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Abstract

The articulation index (AI), denoted
���

snr � , first described by Fletcher in 1921 (Fletcher

1995), has served the speech and hearing community well, as a well known method for char-

acterizing nonsense speech sound intelligibility. For example, the AI is a basic tool of hearing

aid research, and has even been used to fit hearing aids. It is defined in terms of an average

of a special function of the signal noise ratio, in frequency bands. Fletcher’s formulation was

extended by French and Steinberg (1947) when they established an explicit formula for the

error probability in frequency bands, in terms of the band signal to noise ratio, expressed in

dB. Using classic formulas from the literature, this article demonstrates that the French and

Steinberg formula for
���

snr � is essentially Shannon’s Channel capacity � � snr � formula for the

Gaussian channel. The similarity of the two relations justifies characterizing the AI as an infor-

mation theory relationship. This new insight is also useful in that it helps limit the misuse of the

AI, in situations where it may not be applicable. Such misuse includes the case of meaningful

speech sounds, where the entropy is reduced by language (context) effects.

PACS: 43.71.Gv, 43.72.-p
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1 Introduction

Articulation Index (AI) theory, created at Western Electric Research Labs in 1921 by

Harvey Fletcher, in response to the need to characterize speech over a telephone

channel, is a widely recognized method of characterizing the information bearing as-

pects of speech, in terms of a frequency dependent average signal to noise ratio

(Fletcher 1921; Fletcher and Galt 1950; Fletcher 1995; Allen 1996). We shall show

that the AI, denoted mathematically as ��� snr � , is similar to a channel capacity, de-

fined as the maximum information rate that may be transmitted over a channel without

error (Shannon 1948).1

In the following, the term recognition is used to mean the probability of correct

identification of speech sounds, such as consonants C and vowels V. The term articu-

lation is defined as the recognition of nonsense words. Intelligibility is defined as the

recognition of meaningful words. The early pre-Bell Labs AT&T articulation tests con-

sisted of listening to and scoring nonsense syllables, having an a priori distribution of

60% consonant-vowel-consonant (CVC), and 20% each of consonant-vowel (CV) and

vowel-consonant (VC) sounds (Fletcher 1922; Fletcher and Steinberg 1930). These

three types of speech sounds have been shown to compose 76% of all telephone

speech (Fletcher 1995). This testing protocol was first used at AT&T, circa 1910,

to control for speech context effects (Campbell 1910), where CV confusion matrices

were first utilized to analyze speech recognition scores. The articulation may be com-

puted from the mean of the diagonal of the confusion matrix 	�

� between a significant

group of phones in a language, namely � 
 	�
�
���� where � is the total number of stim-

uli. These very basic concepts were critical to these 1910-1924 studies, well before

the ideas of information theory had been formulated.

The AI formalism is based on finding a total probability of error � of identifying

open-set nonsense speech sounds, as a function of frequency band ��� , indexed by

integer �������! ! ! "�$# , #%�'&�( , and computing the resulting frequency density function

of �"�*)+�,�-����� . Each band error is characterized by a band error probability �.��� snr � .
The bandwidths are chosen to give equal average probability of error ( �/�0�1�2� for

1We shall use snr to denote the RMS voltage ratio of the signal and the noise, and SNR to denote snr

expressed in dB, namely SNR 3547698;:=<�>-? � snr � .
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any � and @ ), when averaged across a large speech corpus. Fletcher assumed the

band errors to be independent, and using this assumption, it was found that the total

probability of phone (speech sound) identification error �/� snr � was equal to the product

of band errors, namely

�/� snr �A�B�DC=� snr C2�E�"F.� snr F7�G ! ! ��=HI� snr HJ�2K
This measure, of the total error, was shown to be highly accurate, thereby justifying

the assumption of independence. The accuracy of this formulation has been verified

many times, and in many languages.

Fletcher’s formulation was extended by French and Steinberg (1947) when they

established an explicit formula for �L��� snr � , in terms of the signal to noise ratio SNR � ,
expressed in dB. This formula was based on the audible fluctuations of speech within

a band and lead to a simple formula for the AI as the average SNR, averaged over the

band SNRs, in dB, namely ��� snr �M�ON SNR �,K
Using classic formulas from the literature, this article demonstrates that the French

and Steinberg formula for �P� snr � is essentially Shannon’s Channel capacity QM� snr �
formula for the Gaussian channel. The similarity of the two relations justifies charac-

terizing the AI as an information theory relationship. Like the channel capacity, the

AI may be viewed as a volume, that describes the information rate (the number of

bits/sec) that may be transmitted without error. This characterization should allow for

an improved understanding of the AI measure, as the number of bits per second, of

nonsense speech information, that may be transmitted over an auditory communica-

tion channel. This new insight is also useful in that it helps limit the misuse of the

AI, in situations where it may not be applicable. Such misuse includes the case of

meaningful speech sounds, where the entropy is greatly reduced, by context effects.

2 Modeling nonsense syllables

Listening teams typically consisted of 10 members, with 1 member acting as a caller.

Three types of linear distortions were used, lowpass filtering, highpass filtering, and a
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variable snr. The sounds were typically varied in level to change the signal to noise

ratio snr, to simulate the level variations of the telephone channel.

The test consisted of the caller repeating context-neutral zero predictability (ZP)

sentences, such as “The first group is na’v.” and “Can you hear pōch.” All the initial

consonants, vowels, and final consonants were scored, and several statistical mea-

sures were computed. For CVCs, the average of the initial R=
S� snr � and final R7TU� snr �
consonant score (each score is the probability correct of identification of that phone)

was computed as RD� snr �V�W�XR!
ZY[R!T/�S��& , while the vowel recognition score was \Z� snr � .
These numbers characterize the raw data. Next the data is modeled, and a mean-

CVC-syllable score is computed from the triple product]^ � snr �M�_R�\`R=K (1)

Based on many thousands of trials, Fletcher found that the average phone recognition

score for nonsense syllables, defined asa )b�-&�RcY0\��S��d`� (2)

did an excellent job of representing nonsense CVC syllable recognition, defined as^fe ) a e�g ]^ K (3)

Similarly, nonsense CV and VC phone recognitions were well represented by^ Fh) a F g �XR�\iYj\`R7�S��&`K (4)

These models fit the raw data with little error (Fletcher 1995, Figs. 175, 178, 196-218),

and worked well over a large range of scores, for both filtering and noise degradations

(Boothroyd and Nittrouer 1988; Rankovic 2002).2

The exact specifications for the tests to be modeled with these probability equa-

tions are discussed in detail in (Fletcher 1929, Page 259-262). The above models are

necessary but not sufficient to prove that the phones may be modeled as being in-

dependent. Namely the above models follow from an independence assumption, but

2These formulae only apply to nonsense speech sounds, not meaningful words. The extension to mean-

ingful sounds (cat, hat) has been studied by Boothroyd (Boothroyd 1968; Boothroyd and Nittrouer 1988),

and more recently by Bronkhorst (Bronkhorst et al. 1993; Bronkhorst et al. 2002).
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demonstrating their validity experimentally does not prove independence. To prove in-

dependence, all permutations of element recognition and not-recognition would need

to be demonstrated (Bronkhorst et al. 1993).

2.1 Diphones as a speech unit:

There is a glaring problem, so obvious, that it requires some discussion. In the intro-

duction the development was based on two probability measures given by Eq. 2 and

Eq. 3. The only way that both of these equations can be simultaneously true is ifk )_\��LR��l� (5)

Fletcher did some calculations to try to estimate the value of
k
, which appears to

vary between 1 and 1.4, in an attempt to justify the seeming conflict. However the

issue has remained largely unexplored until this day. Some speculations are in order.

Many believe that
k

should be very large, reflecting the much greater energy in the

vowel. If the vowel and consonant probability are correlated (e.g., if
k

is independent

of the snr), then the information in speech could well be the transition rather than the

consonant and vowel, as is more commonly believed. Since the number of transitions

within a /CVC/, given a fixed number of consonant and vowels units, is equal to the

number of states of a /CVC/, either could be used to code the information. For ex-

ample, if there were 2 C units and 3 V units in a CV, then there are 2x3=6 possible

CV units. The number of transitions on the other-hand is also 2x3=6 (for each of 2

starting points, there are 3 possible outcomes). If the transitions carried the critical

information, then
k

could be 1, as the consonant and the vowel would share the en-

ergy on each side. If this conjecture were correct, then what is traditionally viewed as

coarticulation, would actually be the information bearing signal.

3 Extensions to the frequency domain

Given the success of the average phone score Eq. 2, Fletcher extended the analysis

to account for the effects of filtering the speech into bands (Fletcher 1921; Fletcher

1929). This method is now known as articulation index theory. A highly simplified
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version of this theory is defined in the well known ANSI 3.2 AI standard. To describe

this theory in more detail, we need additional definitions provided in Table 1.

Fletcher’s basic idea was to vary both the signal to noise ratio and the bandwidth

of the speech signal, in an attempt to idealize and simulate a telephone channel.

Speech was passed over this simulated channel, and the average phone articulationa )nmpo7�-qc�r��o2� was measured. The parameter q , the gain applied to the speech, was

used to vary the snr. The signal to noise ratio depends on the noise spectral level (the

power in a 1 Hz bandwidth, as a function of frequency), and q . For the wideband case,

the consonant and vowel articulations RD�-qs� and \Z�-qs� , and thus a �-qt� , are functions of

the speech level q . The average phone articulation error is �/�-qs�M�l��u a �-qs� .
The speech was filtered by complementary lowpass and highpass filters, having

a cutoff frequency proportional to the 3 dB crossover frequency ��o Hz. The low fre-

quency filter cutoff was typically �,oS�`��Kv& and the high frequency cutoff is ��Kv&D�/o . Because

the skirts of the filters were very steep, the crossover frequency of the filters were more

than 30 dB below the 3dB frequency �/o . This is an important detail that is commonly

not appreciated.

The articulation for the low band is defined as a/w �-qc�r��o2� , and aLx �-qc�r��o2� for the high

band. The nonsense syllable articulation, and word and sentence intelligibility, are

defined as
^ �-qs� , yz�-qt� and {Z�-qt� , respectively.

Formulation of the AI. Once the functions a �-qs� , a w �-qM�r��o2� and a x �-qc�r��or� are known,

it is possible to find relations between them. These detailed relations were first pub-

lished by French and Steinberg (1947), but first derived by Fletcher in 1921.

The key Fletcher insight was to find a linearizing transformation of the results.

Given the wideband articulation a �-qt� , and the banded articulations a,w �-qc�r��o2� and aLx �-qc�r��or�
for nonsense speech sounds, he sought a nonlinear transformation of probability � ,

now called the articulation index, which would render the articulations additive, namely

��� a �A�_�P� a w �9Yj��� a x �2K (6)

This formulation payed off handsomely.

The function �P� a � was determined empirically. It was found that the data for the
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nonsense sounds closely follows the relationship|~}D� �E��u a �M� |~}D� �E�hu a w �9Y |~}D� �E�hu a x �2� (7)

or in terms of error probabilities �J�B� w � x � (8)

where �J�l�su a , � w �l�su�� w and � x �l�su a x . These findings require ��� a � of the form

��� a �A� |�}D� �E�hu a �|~}D� �-�7�c
���� K (9)

This normalization parameter �=��
������hu a ���$� is the minimum error, while a ���r� is the

maximum value of a , given ideal conditions (i.e., no noise and full speech bandwidth).

For most of the AT&T measurements a ���$� �%(�Kv�D�D� (i.e., 98.6% was the maximum

articulation), corresponding to �L�c
��*��(�K
(��7� (i.e., 1.5% was the minimum articulation

error) (Rankovic and Allen 2000, MM-3373, Sept. 14, 1931, J.C. Steinberg), (Fletcher

1995, Page 281) and Galt’s notebooks (Rankovic and Allen 2000).

Fletcher’s simple two-band example illustrates Eq. 8: If we have 100 spoken sounds,

and 10 errors are made while listening to the low band, and 20 errors are made while

listening to the high band, then

�J�_(�K����*(�Kv&��_(�K
(.&`� (10)

namely two errors will be made when listening to the full band. Thus the wideband

articulation is 98% since a �l�,uJ(�K
(.&��B(�Kv�D�`� and the wideband nonsense CVC syllable

error would be
^ � a e �_(�Kv�L�U��K

In 1921, based on results of colleague J.Q. Stewart, Fletcher generalized the two-

band case to #��B&�( bands:

���'� C � F  ! ! ��7�� ! ! 2� H � (11)

where ���1��u a is the wideband average articulation error and �.��)1��u a � is the

average articulation error in each of the K bands. Formula 11 is the basis of the

articulation index. The # band case has never been formally or directly tested, but

was verified by working out many examples. The number #�� 20 was a compromise

that may have depended on both computational cost and theoretical considerations.

Fewer bands were insufficiently accurate. Since there were no computers, more than



Allen, JASA 9

10
−1

10
0

10
10

1

2

3
x 10

−3

FREQUENCY [kHz]

D
(f)

/κ
(f)

AI band per critical band 

Figure 1: This figure shows the ratio of the articulation index density (also called the speech
importance function), and the critical bandwidth (also called the equivalent rectangular bandwidth
or ERB), which is a measure of the cochlear filter bandwidth. The critical bandwidth was derived
from the ratio of the RMS level of a tone, adjusted to its detection threshold level, to the spectral
level of a noise. Note that ratio has units of bandwidth. From the figure we conclude that the
information density of speech used in the AT&T tests, per cochlear critical band, is approximately
uniform.

20 bands was prohibitive with respect to computation. More important perhaps, more

bands would result in the bands being unrealisticly narrow. Each of #�� 20 articula-

tion bands corresponds to approximately 1 mm along the basilar membrane (Fletcher

1995), resulting in each articulation band corresponding to about 2 cochlear critical

bands, which Fletcher estimated as being about 0.5 mm.

The details of the AI calculations are outlined in the classic 1947 French and Stein-

berg paper. Each of the # bands was chosen to have an equal contribution to the

articulation (This represents a maximum entropy partitioning). When the articulation

is normalized by the critical ratio, as a function of the cochlear tonotopic axis, it was

found that the articulation density per critical band, is roughly constant (Fletcher 1948;

Fletcher 1950; Allen 1994; Allen 1996), as shown in Fig. 1.3 This figure was calculated

using the data of Table 63 on page 333 of Fletcher 1953 book (Fletcher 1995), and

dividing it by the ERB estimate (Figure 121 of 1953 book) given in (Fletcher 1938a;

Fletcher 1938b). The raw data of Table 63 were smoothed by a polynomial interpola-

tion of the log of the tabulated data. The critical ratio data are given in table 16, page

101, and were interpolated using splines to the same frequency base. The figure was

3This result was discovered by Galt. He tried several times to publish his observation, but the paper

was rejected by JASA. This was a source of considerable anguish to Galt, as may be observed in his many

notebooks (Rankovic and Allen 2000).
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computed from the ratio of the frequency density of articulation per critical bandwidth,

and the final curve was normalized to have unit area. The results of Fig. 1 depends

critically on the natural distribution of sounds used in the speech tests. When biased

(unnatural and non-typical) initial distributions are chosen, the importance function

(articulation density over frequency) will be different (Duggirala et al. 1988).

3.1 French and Steinberg (1947)

In 1947 French and Steinberg derived an expression relating Fletcher’s band error�7� (the �`��� band probability of error) to the band signal to noise ratio SNR � , in dB.

Steinberg had worked closely with Fletcher (Fletcher and Steinberg 1930) on the ar-

ticulation index in the late 1920’s. It is therefore not surprising that some 17 year later

(i.e., in 1947), a deep insight for ��� had evolved. They understood that the speech in-

formation was contained in the natural level fluctuations in speech energy, measured

in half-octave bands, in 1/8 second intervals. Dunn and White (Dunn and White 1940)

had shown that speech energy, in bands, was linear on a log scale over a 30 dB range

of intensity. French and Steinberg state their critical assumption as follows:4

When speech, which is constantly fluctuating in intensity, is reproduced at a

sufficiently low level, only the occasional portions of highest intensity will be

heard, but if the level of reproduction is raised sufficiently even the portions

of lowest intensity will become audible. Thus the similarity in slope of the

straight line portions of the y curves and the speech distribution curve

suggests that y is equal to the fraction of the intervals of speech in a band

that can be heard.

The phrase “sufficiently low level” could be exchanged with the phrase “sufficiently

high noise,” and retain the same meaning. The variable y is the contribution of the AI

in a band.

Definition of SNR The standard method for calculating a perceptually relevant

signal to noise ratio was specified in 1940 (Dunn and White 1940). In each articulation

4Page 106 (French and Steinberg 1947).
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band the signal and noise power is measured, and the long term ratio is computed as

snr �J) �� �G���t��� � �� �N�¢¡ C � F£ ���t�.�S¤$��¥
C§¦EF � (12)

where � £ ���t�/�S¤$� is the short-term RMS of a speech frame and � � ���p�D� is the noise RMS,

at frequency band � . The time duration of the frame impacts the definition of the snr,

and this parameter should be chosen to be consistent with a cochlear analysis of the

speech signal.

To characterize the observed fluctuations, each band snr � was converted to dB,

and then limited and normalized to a range of 0 to 30, defined as

SNR �i)©¨ªªªª« ªªªª¬
( &�( |~}D� C®­ � snr �D� ¯ (&�( |~}D� C®­ � snr �D�S��d�( ( ¯ &�( |~}D� C®­ � snr �D� ¯ d�(� d�( ¯ &�( |~}D� C®­ � snr �L�2K (13)

The justification of this formula is that when the snr � is less than 1 within each

cochlear critical band, the speech is undetectable, and when snr � is greater than 30,

the noise has no affect.

The factor 30 comes from the fact that speech has a 30 dB dynamic range in a

given articulation band (French and Steinberg 1947, Fig. 4, page 95). Between 0 and

30 dB, SNR � is proportional to
|~}D� � snr ��� , and thus may be normalized to vary lineally

between zero and one.

In the terminology of the present paper, the final formula for the band error is5

�"�J�'� SNR ° ¦SH�c
�� K (14)

Merging Eq. 11 and Eq. 14

���B�DC2�7Fs ! ! 2�=H_�'� SNR�c
�� �B�7±�c
�� � (15)

provides a formula for the total error in terms of the average SNR, defined as

��) SNR � �# N � SNR �,K (16)

5Both Fletcher, and French and Steinberg, worked almost exclusively in dB units, which were more

convenient in those times. Now that the computer is available to compute these formulas, it seems better

to rework the equations in a more meaningful notation.
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Figure 2: This figure shows a typical set of results for the French and Steinberg AI model, as
defined in (Allen 1994). See the text for a detailed description of each panel.

The final articulation index formula, relating the articulation a �l�9u²� to the articulation

index ��) SNR, is therefore a �b�hu³�!±��
�� K (17)

Note that as snr �J´1d�( dB in every band, ��´µ� and a ´ a ���$� . When a"¶f· �J´�( dB in

all the bands, �n´¸( and a ´¸( . This formula for a ���¹� has been verified many times,

for a wide variety of conditions. However it is not perfect (Allen 2004).

Figure 2 shows typical results of articulations in a band [ a ��� SNR �D� ], for phones

[ a ���¹� ], CVCs [
^ ���¹� ], high context words [ yz���º� ] (Boothroyd and Nittrouer 1988, Fig. 7)

with @��»d`Kv��� , and the effects of two types of context (Allen 1996; Allen 2004). The

upper left panel shows a �`� SNR ��� (dashed curve) and �=��� SNR ��� (solid curve) for band� . As SNR � varies from 0 to 30 dB, the band articulation goes from 0 to just under

20%, corresponding to an error between 1 and 80%. The product of 20 such bands,

when subtracted from 1, gives the average wideband articulation a , as shown in the

upper right panel. The CVC syllable error is then
^ � a e . Since a ¯�� , the cube

must be less than a , namely a e ¯ a . We conclude that the human speech code is

an example of a spread-spectrum channel, with about 4.3 bits/phone, with about 5

phones/s (e.g.,
g

21.5 bits/sec), spread over about 7 kHz of bandwidth. The channel

capacity is about 70 kB/s (7 kHz and snr F =1000).
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Figure 3: Plot of
|~}D� �E��Y snr F � and

|~}D�Z¼ ½¹¾L¿ �E��� snr � F�À versus SNR= &�(JÁ |~}D� � snr � .
In the lower left panel, a typical example for a meaningful word score is provided.

Boothroyd has shown that meaningful word scores y may be related to the nonsense

syllable score
^

with a “degree-of-freedom” model of the form

yz� ^ �M)l�hu ¼ ��u ^ ���¹� À � K
where @ is a number greater than 1. In the example of Fig. 2, @��Âd`Kv��� . Using this

example, the above relation may be written as following

�hu5yz� ^ �A) ¼ ��u ^ ���¹� À ¼ �hu�R�� À �!ÃfC �
where R�� is the probability correct due to context alone (Boothroyd and Nittrouer 1988).

The value of @�uO� characterizes context effect of real words, namely it depends on

the occupancy of words in nonsense CVC syllable space. One may view such word

models as being similar to error correcting codes, where a nearest neighbor is taken

as the best choice when an error is heard. The precise details are unclear about how

this might function, however the work of Bronkhorst has enlightened us considerably

on this question (Bronkhorst et al. 1993). In the lower right panel, the model relations

between
^ � a � and yn� a � are shown graphically.

4 The AI and the Channel Capacity

When computing the AI measure, it is important to note that this band average is taken

over dB values ( � � SNR � ) rather than the linear values � � snr � . This is a subtle and

significant observation that has been overlooked in previous discussions of the AI. The
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average over SNR � , which are in log units, is proportional to the log of the geometric

mean of snr � , namely

�b) �# N � SNR �iÄ |~}D��Å�Æ � snr �"Ç C§¦SH K (18)

The geometric mean of the snr is used in information theory as a measure an abstract

volume, representing the amount of information that can be transmitted by a channel,

where each frequency band is treated as a dimension capable of transmitting Nyquist

rate samples, having a number of levels proportional to the linear signal to noise ratio.

The Shannon Gaussian channel capacity formula

Q*�'ÈÊÉÃ É |�}D� F ¼ ��Y snr F �-�9� À¢Ë � (19)

is a measure of a Gaussian channel’s maximum capacity for carrying information, is

very similar to Eq. 16, if we take the limit to zero filter bandwidth.

From Fig. 3, we see that ��� snr � is a straight–line approximation to to the Shannon

channel capacity formula QM� snr � . The figure shows the two functions

	¹� snr �M) |~}D� F ¼ ��Y snr F À (20)

and Ì � snr �A) |~}D� F ¼ ½¹¾L¿ �E��� snr F � À � (21)

which represent the integrands of Eq. 19 and Eq. 18 respectively.

We conclude that the articulation index, first proposed by Fletcher in an internal

Western Electric report in 1921, is in fact functionally a channel capacity very similar

to that for the Gaussian channel. This is important because it helps us understand the

meaning and limitations of the AI, by placing it in a much firmer footing. It also provides

us with an important, practical example of Shannon’s channel capacity. Shannon’s

formulation might result in a slight improvement to the use of the max function in the

traditional AI formulation. In retrospect, the function �ÍY snr appears to fit the raw data

given in the French and Steinberg paper as a smooth curve, better than their finalÎ�Ï/Ð �E��� snr � formulation.
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5 Discussion

We have reviewed the early speech articulation work done at AT&T research labs

starting in 1921. Harvey Fletcher was the first to clearly demonstrate that probability

theory could be used to account for the errors made in recognizing nonsense speech

sounds. Two types of rules were found. Both were based on the assumption of “inde-

pendence.”

The first class, called sequential processing, results from products of probability

correct. An example is the relationship between the syllable and the phone score, as

shown in Eq. 1 or Eq. 3. Sequential processing reflects the fact that any error in a

chain reduces the score. When one unit is wrong, the whole is wrong. The second

class, called parallel processing, results from the products of probabilities of errors.

An example is given by Eq. 11, which corresponds to across-frequency listening. In

parallel processing, a single channel, can dramatically increase the articulation. In

parallel processing, channels having no information (chance error close to 1) do not

contribute to the final score.

A non-rigorous analysis leads to the conclusion that consonants and vowel artic-

ulations must be approximately equal. This follows from the fact that Eq. 1 is well

modeled by Eq. 3, as defined by Eq. 2. Real words are a simple extension of these

principles, as shown by Boothroyd in 1988 (Eq. 3.1), which is an example of parallel

processing. Here word context is modeled as @suÑ� independent parallel channels (i.e.,

a product of errors is used for this model).

Using a concept of linearity of articulation Eq. 6, Fletcher found the speech in-

formation density across frequency, which turned out to be constant on a cochlear

filter bandwidth (critical band) scale. This analysis lead to demonstrating that across

frequency band the errors are consistent with independence Eq. 11. Thus across

frequency, speech information appears to be an example of parallel processing.

Using a specific definition of the signal to noise ratio, we call SNR, a formula for

the articulation was established Eq. 17. This formula depends on the average signal

to noise ratio, and this formula is very close to Shannon’s channel capacity formula for

the Gaussian channel Eq. 19.

When the Fletcher AI theory was developed, the computer had not yet been in-



Allen, JASA 16

vented, thus many of the variables were expressed in log units (i.e., dB) to simplify the

computations. In my view, this use of log units, justified in those early days for compu-

tational reasons, obscures the fundamentals. Thus we have reviewed AI theory using

a modern notation.

The AI and the channel capacity measure are nearly identical (Fig. 3). I suspect

that if we start viewing AI as a channel capacity, we will use it more effectively. Also

there may be other extensions that have been developed in the Theory of Communi-

cations, that could be applied back to speech communication.

Given what we know today, it would be better to compute the SNR based on a

cochlear filter bank, and what we know about loudness integration times. Cochlear

filter bandwidths are presently an uncertain quantity of human hearing (Allen 1996;

Shera et al. 2002; Oxenham and Shera 2003). An averaging time constant of 200 ms,

following the filter bank, corresponds to the integration of loudness over time (Munson

1947).

A Appendix: Historical context

The early idea of a channel capacity, first proposed by R.V.L. Hartley (Hartley 1928),

was to count the number of intensity levels in units of noise variance (Wozencraft and

Jacobs 1965). This idea has its historical roots in the psychophysical literature, and is

a conceptually related to “counting JNDs.” The internal noise variance of the auditory

system determines the number of physiological levels (i.e., the number of intensity

JNDs). Thurstone (Thurstone 1927) is given credit for the first developing the idea of

precisely relating psychological variables to the JND (for a detailed review see (Torg-

erson 1967)). Fletcher also performed a very interesting full analysis of the number

of joint intensity and frequency JNDs in an early analysis (Fletcher 1923a; Fletcher

1923b), prior to Thurstone’s famous work of 1927. (The 1923 paper of Fletcher’s con-

tains an extensive bibliography of the early literature.) Allen and Neely first determined

the relationship between Ò¹Ó and Ó for the case of loudness Ó (Allen and Neely 1997).

It is interesting and relevant that R.V.L. Hartley (a Rhodes scholar, well versed in

psychophysical concepts) also proposed the decibel, which was also based on the

intensity JND Òº{ (Hartley 1929; Hartley 1919). Prior to 1924, loudness was assumed
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to be proportional to the log of intensity, which was called Fechner’s Law. Fechner’s

analysis leading to Fechner’s law was soon to be proved to be wrong by Riesz and by

Fletcher and Munson (Allen and Neely 1997). The expression|�Ô �E��Y snr F �A� |�Ô�Õ {JY[Òº{{ Ö g Òº{{ u �& Õ Òº{{_Ö F Y× ! ! "� (22)

(the approximation holding when the ratio Òº{��L{ is small) where Ò¹{ and { are the JND

and intensity respectively, is closely related to counting JNDs. It has been shown, by

George A. Miller (Miller 1947), that noise is close to the first JND level if its presence

changes the input stimulus by 0.43 dB, corresponding to a Weber fraction of 0.1. That

is �!( |~}D� C®­ �E��Y[Òº{��L{`�M�_(�KØ�/d g �!(|�Ô �E�!(/� Ò¹{{ �
thus Òº{`�L{ g (�K�� .

The function
|~}D� F �E�ÙY snr F � is related to the number of JNDs (in bits) (French and

Steinberg 1947; Fletcher and Galt 1950; Allen and Neely 1997). The product of the

number of articulation bands times the number of JNDs determines a volume, just

as the channel capacity determines an information based volume. In my view, the

similarity between the AI and the Shannon channel capacity, is striking.

It is difficult to understand why these two great thinkers, Fletcher and Shannon,

did not connect. From 1935 to 1950 Fletcher was the head of the Bell Labs Physical

Research Laboratory. Shannon worked at Bell Labs from 1941 to 1956. The chain

of management was Fletcher (Dir. of Physical Research), Bode (Dir.), Schelkunoff or

Dietzold (Dept. Head), Shannon.
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Endnotes

1. We shall use snr to denote the RMS voltage ratio of the signal and the noise,

and SNR to denote snr expressed in dB, namely SNR )B&�( |~}D� C®­ � snr � .
2. These formulae only apply to nonsense speech sounds, not meaningful words.

The extension to meaningful sounds (cat, hat) has been studied by Boothroyd

(Boothroyd 1968; Boothroyd and Nittrouer 1988), and more recently by Bronkhorst

(Bronkhorst et al. 1993; Bronkhorst et al. 2002).

3. This result was discovered by Galt. He tried several times to publish his obser-

vation, but the paper was rejected by JASA. This was a source of considerable

anguish to Galt, as may be observed in his many notebooks (Rankovic and Allen

2000).

4. Page 106 (French and Steinberg 1947).

5. Both Fletcher, and French and Steinberg, worked almost exclusively in dB units,

which were more convenient in those times. Now that the computer is available

to compute these formulas, it seems better to rework the equations in a more

meaningful notation.
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Table 1: Table of definitions required for the articulation index experiments.

DEFINITIONS FOR THE AI
SYMBOL DEFINITIONÚ Gain applied to the speechÛ`Ü®ÚÙÝVÞWß o Ü consonant à ÚÙÝ consonant articulationápÜ§ÚÙÝVÞWß o Ü vowel à Ú�Ý vowel articulationâUÜ§ÚÙÝVãåä;æ`Û,Ü§Ú�ÝsçOápÜ®ÚÙÝ$èXé`ê Average phone articulation for CVC’sëUÜ§Ú�ÝVãÂì�í'âUÜ§ÚÙÝ Phone articulation errorî o Highpass and lowpass cutoff frequencyâ w Ü§Ú�ï î o Ý â for lowpass filtered speechâ x Ü®Ú�ï î o Ý â for highpass filtered speechð Ü§ÚÙÝ Nonsense syllable (CVC) articulationñ Ü§ÚÙÝ Word intelligibilityò Ü§ÚÙÝ Sentence intelligibility
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Figure Captions

Fig. 1. This figure shows the ratio of the articulation index density (also called the

speech importance function), and the critical bandwidth (also called the equivalent

rectangular bandwidth or ERB), which is a measure of the cochlear filter bandwidth.

The critical bandwidth was derived from the ratio of the RMS level of a tone, adjusted

to its detection threshold level, to the spectral level of a noise. Note that ratio has units

of bandwidth. From the figure we conclude that the information density of speech

used in the AT&T tests, per cochlear critical band, is approximately uniform.

Fig. 2. This figure shows a typical set of results for the French and Steinberg

AI model, as defined in (Allen 1994). See the text for a detailed description of each

panel.

Fig. 3. Plot of
|~}D� �E��Y snr F � and

|~}D�G¼ ½¹¾L¿ �E��� snr � F À versus SNR= &�(JÁ |~}D� � snr � .
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