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The purpose of this paper is to provide insight into how speech is processed by the auditory system,
by quantifying the nature of nonsense speech sound confusi@nsthe Miller and Nicely

[J. Acoust. Soc. Am27(2), 338—352(1955] confusion matrixXCM) data are analyzed by plotting
the CM elementsS ;(SNR) as a function of the signal-to-noise rat®NR). This allows for the
robust clustering of perceptual featueveny groups, not robustly defined by a single CM table,
where clusters depend on the sound or@@®rThe SNR is then re-expressed as an articulation index
(Al), and used as the independent variable. The normalized log scores-Bg@l)) and
log(§,(Al)), j#i, then become linear functions of Al, on log-error versus Al plots. This linear
dependence may be interpreted as an extension of the band-independence model of Betdteer.
model formula for the average score for the finite-alphabet E@AI,H)=EiN:13,i IN is then
modified to include the effect of entrofdy. Due to the grouping of sounds with increased Si€Rd

Al), the sound-group entropit, plays a key role in this performance measu#.A parametric
model for the confusionS; ;(Al, H,) is then described, which characterizes the confusions between
competing sounds within a group. @005 Acoustical Society of America.
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I. INTRODUCTION sights into human speech perception. In this paper the Al is

used to provide a new and insightful view of the confusion

The articulation index(Al) and the confusion matrix data of Miller and Nicely(1955.
(CM), denotedC, ;, are two important measures frequently  Many procedures have been developed which claim to
used to characterize human speech recognition. This papgfedict the phone performance score for noisy and/or filtered
explores the merging of these two measures by expressinthannels, several of which are called the “articulation in-
the CM as a function of the Al. The natural grouping of dex.” Following the first proposal in 1921 by Fletcher, there
sounds, observed by Miller and Nlcely in their classic 1955|S the Bell Labs procedure of Fsz(key abbreviations are
experiment, is then explained in terms of a change in eacBrovided in Table), followed by the more extensive version
group’s entropyH,, which is also a function of the Al. A py Fletcher and GaltLt950. Then, Kryter published his sim-
parametric model of the symmetric form of the CM confu- plified method in 1962(Kryter, 1962a, 1962 soon fol-
sionsS; j(Al, 'H) is then developed. These parametric modelgowed by the ANSI version. More recently, the STI was pro-
lead to a new formulation of the average sc&€Al, ),  posed to extend the Al procedure when room reverberation is
which accounts for chance. This model provides an accuratgresen{Houtgast and Steeneken, 1973; Steeneken and Hout-
fit to the raw data, and provides new insight into Fletcher’sgast, 1980 This was then followed by the new ANSI pro-
band independencirmulation for the average articulation cedure SI1(S3.5-1997, 1997
score(Allen, 1994, The focus on the articulation index provided here is not

A fundamental building block in the theory of speech on predicting the performance of speech communications
communication is the articulation indetAl) model of  systems, but rather in understanding and modeling the per-

speech sound recognitiofFrench and Steinberg, 1947; ception and recognition of human speech sounds. The focus
Fletcher and Galt, 1950; Allen, 1994The Al is a speech

audibility measure, averaged across many cochlear fre-

guency bands, of a specific speech-to-noise ratio measureiBLE I. Table of abbreviations.

that takes into account the effects of masking and cochleat —
filtering (Allen, 1994. The masking can be due either to AAPPreviation
external noise, when noise is added to the speech at thgv, CvC
source, or internal noise, present in the cochlea and auditorftelligibility
nerve. The Al measure is weighted to account for both co—?:”'c“'at'on

chlear critical bands and those frequency regions containingy,

Definition

Consonantvowel sounds

Recognition of phonemes

Recognition of nonsense phones
Confusion matrix

Articulation matrix (CM of nonsense speech

important speech information. Fletcher developed the Al to
predict the average nonsense-phone articulation SCO®\R
P.(SNR), as a function of the speech-to-noise ragtNR) ™S
(specified over 20 frequency bandss a way of avoiding €'eMs
expensive and time-consuming listening tests on speechg,;

Articulation index
Speech-to-noise ratio
Root-mean-squared
Perceptual features
Miller and Nicely (1955
French and Steinbe(t947)

communication equipment. The Al also offers important in-
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here is not on procedures for predicting phone intelligibility, leads to an accurate method of identifying the natural sound
but in gaining leverage from the well-validated Al predic- groups, and allows one to display the complex body of CM
tions, to provide insight into nonsense-phone identificationsdata at all SNRs, in a single figure. Once the groups have

At least four fundamental questions are addressed in thiseen identified, one is then free to further explore the rela-
presentation. tionship of the AM to the Al andH.

: . The definitions of mathematical symbols has been sum-
?
(1) What is the relation between the Al and the CM~ marized in Table 1.

(2) How can one more accurately determine the groups that
are present in Miller and Nicely’s CM data at certain

SNRs? Il. REPRESENTATIONS OF THE CONFUSION MATRIX
(3) What are the limits of Fletcherband independencas- (CM)
sumption?

(4) Can the Al be used to predict the phone score for closed F|gure L ShOWS a typical .MN55 .consonant—vowek/)
sets(i.e., what are the limits of the Al proceduge confusion matrixor count matrixfor wideband speect0.2—

6.5 kH2), at aspeech-to-noise ratilSNR) of —6 dB (Miller
Subsequent to the Bell Labs articulation studies, and fol@nd Nicely, 1955, Table [Jl The 16 consonants were pre-

lowing up work done during WWII, Miller took up the study S€ntéd along with the vowel /a/ as in fath@e., the first
of speech articulations in much greater detail. As detailed iff1"€® sounds weiépa/,/ta/,/kal). After hearing one of the 16
Miller's (1951 book Language and Communicatiomfor- CV sounds as labeled by the first column, the consonant that

mation and communication theory are the basis for under?vas reported is given as labeled along the top row. This array

standing the speech code. One of the basic tools of informZ2f numbers form the basic CM, denotéd,, where integer

tion theory is thechannel the mathematical characterization dicéss andh (i.e., “spoken” and “heard’) each run be-
of a communication link(i.e., a noisy pair of wires, with Ween 1and 16. For example, /pa/ was spoken 230 tithes

codecs attachadin terms of discrete input and output sym- SUM of the counts in the first rgpand was reported heard 80

bols from somealphabet One method for characterizing the imes €1, while /ta/ was reported 43 times’(). For
human speech communication channel is the nonsensdaPle Il the mean row count was 250, with a standard de-
phone confusion matri«CM), which characterizes the prob- Viation of 21 counts.

abilities of nonsense speech souftide symbol$ transmis- When the sounds are ordered as shown in Fig. 1, they
sion errors. It is expected that an error analysis of thidorm groups, identified in terms of hierarchical clusters of

articulation matrix(AM), as a function of the SNR, can give articulatory features For example, the first group of sounds
important insight into the speech code. 1-7 correspond to unvoiced, group 8—14 are voiced, and 15,

A second key concept from information theory is that of 16 are nasaland also voiced o
entropyH, which is a measure of the compactness of a prob- At an SNR of —6 dB, the |ntr'aconfu5|on.$W|th|n a
ability distribution, which in the case of speech representdfoUP are much greater than the interconfusigbstween
the distribution of the sound confusions. In his classic 1959r0UPS. For example, members of the group 1fie un-
study, Miller et al. (1953 (MHL51) showed the effects of voiced soundsare much more likely to be confused among

symbol alphabet size, and thus the entropy, on word recoglemselves, than between the voiced souf@isl4), or the
nition. Four years later, in a second classic study, Miller and'@S@! soundl5,18. The nasal are confused with each other,
Nicely (MN55) showed that as the wideband SNR is raisedPUt rarely with any of the other sounds 1-14.
from —18 to +12 dB, the sounds form perceptual groups
The formation of a group, as a function of the SNR, alsoTABLE Il. Table of mathematical symbols.
results in a changé&eduction in H.

In analyzing their confusion matrices, MN55 quantified
the grouping effect using a mutual-informatiéill) analy- % Intelligibility (meaningful sound recognition
sis, on assumed groups. An natural advantage of the i:’ﬂrgﬁggnmr:zﬁx %
analysis method is its insensitivity to bias, as defined by the Symmetric form ofA 3
skew-symmetric form of the CM. This is at the same time aa Skew-symmetric form ofd (4, (5
weakness of the MI, since it may be beneficial to remove the

Symbol Definition Equation

effects of subject bias prior to modeling the confusions. Agﬁ) 2;2::2!% CZ:S‘; (7). 16 18

major disadvantage of mutual information, as used in MN55;/ Entropy !

is that it gives no insight into the formation of the groups Al Articulation index (Al) (8)

being analyzed. Al Specific Al in bandk (12)
This paper explores the limits and applicability of | Total error (12), (13), (20)

Fletcher’s band-independence model, applied to the 195§ Total error for sound: e,=1-P"=1- A4, )

closed-set consonant articulation data of Miller and Nicelye,,,  Minimum error (15

(MN55). Such data do not meet the usual assumptions of th&nac Chance error (19

Al audibility measure, of a large, high-entropy open-set cor-« _ kth band error 14

pus. By plotting the confusions as a function of SNR, it is&m® ’\S/It:rgg]huanr:de;;g for sound: €| -1

possible to identify the groups in a systematic, logical Waygn,  speech-to-noise rms ratio in bakd ©

without assuming any predetermined sound ordering. This
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TanLE III. Confusion matrix for S/N=—6 db and frequency response of 200-6500 cps.
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FIG. 1. Typical Miller—Nicely frequency of confusions, or count matgjxrom Table Il at—6-dB SNR. Each entry in the matr& j, is the subject response
count. The rows correspond to tepokenCVs, each row representing a different consonant, fseni,...,16. The columns correspond to treardCVs, each

column representing a different consonant, flem1,...,16. The common vowel /a/, as in “father,” was used throughout. When the 16 consonants are ordered
as shown, the count matrix shows a “block-symmetric” partitioning in the consonant confusions. In this matrix there are three main bloclexldslitreat
dashed lines, corresponding to unvoiced, voiced, and nasal. Within the voiced and unvoiced subgroups, there are two additional symmetriceblocks, co
sponding to affrication and duration, also delineated with dashed lines.

The MN55 articulatory feature classification scheme isscribed by events. The precise nature of these events may be
far from perfect. For example, the nasals are voiced in thexplored by studying the 15 plo& ;, i #j, as shown in the
same sense as those labeled voiced; however, they cleatlywer-left panel of Fig. 2 for the case of 2.
form a unique cluster. Thus, there is no unique simple articu-
latory label for sounds 8—14. Groups systematically depen .
on the SNR, and groups remain unidentified by this scheme%’ The transformation from CM to AM
Using the example of Table I(Fig. 1), [/ba/,/va/,da/] form The termarticulation is defined as the probability cor-

a group that is distinct from the nonfricative voiced rect P, of identifying nonsense-phone speech soufuis-
subgroup. An improved order for sounds 8-14 would besonants and vowelswhile intelligibility Z is the probability
[/bal,lval pal], [/zal,kal,/dal,/gd). Of course, this example of identifying meaningful speech sounds, such as words and
fundamentally breaks the MN55 articulatory feature classifi-sentencesgFletcher and Galt, 1950

cation scheme. In fact, the feature space cannot strictly be When normalized as a probability, the consonant confu-

articulatory feature based. sion matrix is transformed to aarticulation matrix (AM),
The MN55 data have been the inspiration for a largedenotedA (script A, Table 1), with elements
number of studies. The sound grouping has been studied us- Cen
S,

ing multidimensional scaling, which has generally failed in AS’hEW_ (1)
providing a robust method for finding perceptually relevant h*s,h
groups of sounds, as discussed by Wang and Bil§§@73.  This normalization, to an equal probability for each row, is
Thus, the grouping problem has remained unsolved. justified because of the small standard deviation of the row
The data in the CM represent a psychological subjecsums(i.e., 250+21).
response, and therefore need to be represented in terms of The AM is the empirical conditional probability.(h|s)
psychological variablesrather than physicalproduction  of reporting soundh after speaking sounsl namely
measures, as labeled by articulatory features. This could have .
been the role oflistinctive featureshad they been so de- Asn=Pc(hls), 2
fined. Unfortunately, there seems to be some confusion in thior integer labelss, h (i.e., spoken, heajdIn another sense,
literature as to the precise definition of a distinctive feature As , for s# h is an error probability, since it is the probabil-
For example, are distinctive features production or percepity of reporting the wrong soundk after hearing spoken
tion quantities? sounds# h.
To avoid this confusion, | shall use the teewentwhen Figure 2 shows the probability of responding that the
referring to perceptual featuresSince Miller and Nicely’'s soundh=1,...,16 was reported, following speaking /t& (
confusion data are based on perception, they must be de=2), as a function of the wideband SNR. The upper-left
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AM2 h(SN R): /ta/ spoken AMS 2(SNFi): /ta/ heard

o i)

% % FIG. 2. This figure shows Miller and Nicely’s 1955
"Ehn \.Eh‘ wideband row-normalized confusion matrix data
2 = Asn(SNR) [Eq. (1)] for the sound /ta(sound 2 from

o o

MN55 Tables 1-1V, as a function of the speech-to-noise
ratio. The upper-left panel is a plot of the second row of
the articulation matri{ . A,,(SNR), h=1,...,16, corre-
10 sponding to /ta/ spokdnwhile the upper-right panel is

-20 -10 10 -20 -10

0 0
SNR [dB] SNR[dB] a plot of the second colun{nds ,(SNR), corresponding
Symmetric: /ta/ Skew-symmetric: /ta/ to /ta/thea@ The m:_;\trix is not perfectly symmetric
0 ) 0 (A# A", which explains the small differences between

these two plots. The lower-left panel is the symmetric
form of the articulation matrix given by Eg3), which

is the average ofA and its transposed'. The lower-
right panel is the skew-symmetric forA[Eq. (4)]. The
horizontal dashed line in each figure shows chance per-
formance(i.e., 1/16.

8, (SNR)
A, (SNR)

20  -10 0
SNR [dB]

panel shows the probabilityl, ,(SNR) of each heard sound Ag,. Using the symmetric form simplifies the analysis of
(h=1,...,,16), given /ta/ was spoken. The upper-right panethe matrix and gives us access to the skew-symmetric form.
shows the probability As, of each sound spokens( Based on an analysis by GoldstditP80, the interpre-
=1,...,16), given that /ta/ was heard. The curve that rises ttation of the skew-symmetric form is quite different from
1 is the probability of correctly reporting /tad, (SNR),  that of the symmetric form. The most likely explanation of
given that it was spokefleft), or spoken given that it was the skew-symmetric matrix is that the subjects have a bias
heard(right). The solid-thick curve is the total probability of for one sound over another, and are therefore more likely to
error e;(SNR)=1— A, (SNR) of not reporting /ta/, given report the consonant for which they have the liasldstein,
that it was spokertleft) or heard(right). 1980.

The largest skew-symmetric sounds in row 2 are /fal,
/6al, Ival, and da/, which have errors approaching 5%, but
. . are always less than chant®16). It seems significant that

The lower-left panel of Fig. 2 is a plot of the second row ¢ skew-symmetric form always lies slightly below chance
S of the symmetric form of the AM, defined as (Fig. 2, lower-right panél For the rest of the sounds, the

S=1A+AY, ®) error patterns are similar in their nature to those of /ta/, with
the largest errors of about 10% in a few places, but with most
of the errors being a few percent or less.

There is an interaction between the row normalization
[Eq. ()], and the symmetry transformation E@), which
A=1(A-AY. (4)  requires that the row normalization and symmetric computa-

tions be iterated. This iteration always converges to the same
5525u|t, and is always stable for all of the MN55 tables. An
gntry of “1”in C represents a single vote for the same utter-
ance, from four listeners who heard that utterance. All 1's

Symmetric and skew-symmetric decomposition

whereA' is the transpose ofl, while the lower-right panel is
the second row of; ; of the skew-symmetriéorm of the
matrix, defined as

It appears that the sampling eri@tatistical uncertainjy
in the measurements, due to the sample size, is about O.
(0.005, which is where the measurements become scattere
This variability is determined by many factors, including theWere deleted from the matrix before computBgOnce ma-

number pf trials per sgund, the sm_oothmg provided by th%rix Shas been determined, is computed from
symmetric transformation, the consistency of the talker, an

the mental concentration and number of the obsertfers A=A-S. (5)
in this case
From the lower-right panel, it is clear that the AM is Plotting the symmetric dat&SNR) as a function of

close to symmetric, since the skew-symmetric terms ar&NR, as shown in Fig. 2, provides a concise yet comprehen-
small. A few terms ofA,,(SNR) are as large as 5%, but sive summary of the entire set of measurements, and shows
most are less than 1%. Since the MN55 data are close tihe hierarchical grouping, without a need to order the sounds.
symmetric, it is reasonable to force the symmetry, and thein the next section it is shown that § ; is described as a

to study S and A separately, which is the approach takenfunction of the Al, rather than the SNR, the same data may
here. Note thatS is slightly smoother thand, since each be quantitatively modeled, and the important effects of
elementAg, is the average of two similar termsl,  and  chance may be accounted for.
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B. Grouping the sounds 1. Formula for the total error

Sound clustering in the CM was used by MN55 as the The solid-thick curve in the top two, and bottom-left
basis for arguing that the sounds break down into distincPanels of Fig. 2, are graphs of the total error for /ta/
groups, Whi_ch MNS55 identiﬁe_d as five _discreagticglatory e,(SNR=1-S, SNR). (6)
features which they calledsoicing, nasality, affrication, du-
ration, andplace

Each symbol in Fig. 2 labels a different articulatory fea-
ture. Sounds 1-3/pa/,/ta/,/ka) are shown as circles, 4-7

Because each row & ; has been normalized so that it sums
to 1, the total error for théth sound is also the row sum of
the 15 off-diagonal (#i) elements, namely

(/fal,/6al,/sal fa)) triangles, 8-10 (/ba/,/da/,/gal squares, _ _ .
11-14 (/val,bal,/zal #al) upside-down triangles, while the &i(SNRy V%i S j(SNR). @
Q;Srzl sounds 14 and 1Bna/,/na are labeled by 5-pointed Since each error term is non-negatiee,must bound each

) ) individual confusionS; ;. For the data of Fig. 2, lower-left,
The h|erarch|c_al clusters are seen as groups that pegla other two circle curvegpa/ and /kal, which compete
away as the SNR increases. The symmetric /ta/ data showpith /ta/, and thereby form a 3-group, are nearly identical.
in the lower-left panel of Fig. 2 are a great example: First, alla|| other error terms are much smaller. Thus, the solid-thick
the voiced sounds dramatically drop, starting from chance, agurve, e,(SNR), is approximately twice the size of the
the SNR is raised. Next, the unvoiced-fricatives /f#a//  curves for /pa/ and /ka/. All the off-diagonal terms go to zero
Isal, fa/ (triangles peel off, after very slightly rising above at+12-dB SNR so for that one poiet= S, afluke of the
chance at-12-dB SNR. Finally, the two main competitors to small-number statistics.

/ltal (/pa/ and /kal peak around—6-dB SNR, and then fall Equation(7) says that the total error for théh sound is
dramatically, as /ta/ is clearly identified at 0-dB SNR andlinearly decomposed by the off-diagonal errors of the AM.
above. In the lower-left panel /pa/, /ta/, and /K&¥) are This is a natural decomposition of the total error into its
statistically indistinguishable below-6 dB, and approach confusions that can help us understand the Al predictions in
chance identification of 1/16 at18 dB. Above about-6  Much greater detail.

dB, /ta/ separates and the identification approaches 1, while FOF €xampleWhy does the probability of identification
the confusions with the other two sound®a/ and /ka/ of sounds 43 and 4-7 increase even when these sounds are

reach a maximum of about a 25% score, and then dror;)lot spokef_a The |n|t|€_;1l rise for the two sound groups follows
. . rom the increase in chance performance due to the de-
monotonically, as the SNR increases.

. creased entropy, which follows from the reduced size of the
The MNSS5 sounds 4-Tffa/, /6al, /sal, andf4), like group. This conclusion follows naturally from E{). As the
sounds 1-3/pa/,/ta//kal, also form a group, as may be seen g\ R increases, the size of the group exponentially decreases.

in the lower-left panel, labeled bf. This group also starts As the number of alternatives in a closed-set task de-
from chance identificationi6.25%), rises slightly to a score creases, the probability of guessing increases. Given 2 alter-
of about 7% at-12 dB, and then monotonically drops at a natives, chance is 1/2; given 16, chance is 1/16. Thus, group-
slightly greater rate than sounds 1 angs$mbolsO). ing and the rise due to the confusion within the group are
The third group is the remaining sounds 8-16, labeledntimately tied together. In the same manner, as the SNR
by the remaining symbols, which show no rise in perfor-rises from—18 to —12, the MN55 sounds 4-16 are percep-
mance; rather, they steeply drop from the chance level.  tually ruled out, increasing chance performance for sounds
At the lowest SNR of-18 dB, the elements in the sym- 1-3 from 1/16 to 1/3.
metric form of the AM approach chance performance, which
for MN55 is 1/16, corresponding to closed-set guessing. Ex-

) ) 2. The nasals
trapolating the data of Fig. 2, chance performance corre-

sponds to about21-dB SNR. In Fig. 3S ;(SNR) fori =15, 16, corresponding to /ma/
Based on the clustering seen in the Afd.g., MN55 and /na/, are presented. The two nasal sounds are clearly

Tables Il and Il), it was concluded by MN55 that the three separated from all the other sounds, even-a8-dB SNR.

. As the SNR increases, the scores rise-6%, peaking at or
sounds /ta/, /pa/, and /ka/ might be thought of as one groan'ear—lZ-dB SNR, following with the identification rising

These three sounds form the unvoiced, non-nasal, nonaffri- . . .
. . . nd the confusion dramatically falling for SNRs at and above
cate, low-duration group, having three different values o _6dB

place. The details of these groupings depend on the SNR. A Sounds 1-14 are solidly rejected, even -a18 dB.
detailed analysis of these clusters show that the MBBS  thege scores exponentially drop as the SNR is increased.
ticulatory featuregproduction feature sptlo not always cor-  There s a slightvisual hint of a rise of a few sounds for the
respond to thevents(perceptual feature set case of /ma/, in some of the rejected sounds in the left panel,
In fact, it would be surprising if it turned out any other and some corresponding grouping, but the effect is small and
way, given that production and perception are fundamentallyt would be difficult to tease out. The rejected sounds in the
different things. The details of a scheme that will allow us toright panel do not show any obvious grouping effect.
make such an analysis of the optimal perceptual feature set, The subjects can clearly distinguish the two nasal
form the remainder of this paper. sounds(sounds 15,16from all the others(sounds 1-1%
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Symmetric: /ma/
At

FIG. 3. Plots of the symmetric AM corresponding to
the nasals /ma/ and /na/. The curve that rises to 1 is
S i(SNR) fori=15 (left) andi=16 (right). The solid
thick curve in each panel is; [Eq. (7)]. The other
curves represent confusioss;(SNR) for the remain-
ing sounds =1,...,14.

S1e,j(SN R)

10 -20 -10

-20 -10

10

0
SNR [dB]

0
SNR [dB]

even at the lowest SNR of 18 dB; however, they cannot level E. Thekth articulation band power-sispeech detection
distinguish between them until the SNR is greater thel?  thresholdmay be modeled as

dB. The subjects know the sound they hear is nasal, but the 5 > 2

question is, which one? This identification of event-nasal T4l _ onk*C Tsk _ 1 4 c2sni (10)
leads to a significant increase in chance performance for I a'ﬁ'k '

SNRs between-18 and—6 dB, from 1/16 to 1/2. h ¢ ind d h detecti tant
One may also see this effect in the raw count data af/Nere a frequency-indepen espeech detection constant ¢

—18 dB, where the confusions are approaching equal chand@ determined empirically from data on the detection of

levels. For example, in MN55 Table I, the raw counts areSpeeCh in noiseFletcher and Munson, 1937; French and

[25,28:33,32 At —12 dB, /ma/ and /na/ are significantly Steinberg, 1947 The role ofc is to convert the speech rms

confused with each other, but rarely with the other soundst.0 the speech peaks, which are typically 12 dB above the rms

For example, from MN55 Table Il, /ma/ is heard 20 timesSpeeCh level. When snspecifies the speech peakss 2.

when /ba/ is spokefSys o — 12)=6.72% of the timé while C_:]cqcrxllerting to decibels, and scaling by 30, defines the

/bal is heard 11 times when /ma/ is spok@n83% of the Specil

time). Al =min($log;o( 1+ c?sni),1). (11)
Relationship Eq(11) follows from the detailed discussions

IIl. TRANSFORMATION FROM THE WIDEBAND SNR of FS47 and Fletcher and G4lt950, followed by the sub-

TO THE Al sequent analysis by Alle(1994. [See especiallyFletcher,

Miller and Nicely used the wideband SNR, in dB, as 1995, Eq.(10-3), page 167 ]

their measure of audibility. However, as discussed in the InbecaBuZt(\;v?rfen Oerirgrj'ntscg‘ ::12 tli%:: t%re?Fs)oretscnha:st(;tl)g?/ésgbcertain
troduction, there are reasons to believe that th&SAR) is a P P

better audibility measure. We shall now demonstrate this folrevel is proportional to the dB SL lever¢: threshold sen-

the MN55 data. Our approach is to transform MN55’s Wide-?;;g? é?vle/);iroenqu ?rg?nstfénge;ga’nigﬁ;fgeg]; :SLQSZ[:E ina
band SNR into an Al, and then to plot the resultig(Al). y 9 P

To compute the Al for MN55 one needs to know the given articulation bandFrench and Steinberg, 1947, Fig. 4,
specificSNR, over articulation bands, denoted,snfhis re-

quires knowledge of the average speech spectra for five fe-  -a2s ]
male talkers, and the noise spectra. The spectrum for five . ., el
female talkers is shown in Fig. 4, while the noise spectra was 3 wamli B
independent of frequencti.e., white. The procedure for ._T.:N R Siope 0b9 dB/ddcad
computing A[SNR) is described next. 53 “40 2 [(
A. Computing the specific Al 2 & "‘#‘{
wl -5
The Al is defined by FS4ftheir Eq.(8)] as W T\:’éﬁl
NS SV g Eie— | o e
K K ko ®) §:w : 3\'4‘.
Is S
namely as a 20-band average over #pecificAl, denoted : - JY
Al,. The specific Al is defined in terms of the speech-to- * \
noise ratio <84
625 125 250 500 1000 2000 4000 8a0oa
Snli(E O-S,kla-n,kr (9) FREQUENCY IN CYCLES PER SECOND

where the speech power«i:%k [Watts/critical bandland the ~ FIG. 4. This figure from Dunn and White, 194teir Fig. 10 shows the
masking noise power ieﬁ . [Watts/critical banﬂi in the kth average power spectrum for six men and five women. The dashed curve,

. . ' . . which approximates the power spectrum for the five women, has a slope of
artlculgtlon band. V\/_hen calculating; , the average is OVEI' 0 from 125 to 500 Hz, and a slope ef29-dB/decade between 0.5 and 8
1/8-s intervals. spris the same as FS47's band sensatiorkHz.
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page 9%. As discussed extensively by FS@%., their Table where the constard,,;, is defined as the minimum error via

12), an empiricalthreshold adjustmenimust be made, la- the relationship

beledc in Eqg. (10). The value ofc is chosen such that the _

speech is just detectable when,sal, in each cochlear criti- Cmin=1 n;;;:)( Pc(SNR). (15

cal band, corresponding to specific Als of zdlie., Al _ )

—0). Equation(11) over-predicts the data of FS47 Table V This con_stan'emin depends in general on the corpus, talkers,

by 3.2% =1/2, sng=E). A more precise estimation af _and subjects. For Fletcher's work,,, was 1.5%(H~11,

would require repeating Fletcher’s critical ratio experiment-€:» more than 2048 sounds-or the work reported here, a

using narrow bands of speech, with a white-noise maskeyalue of 0.254%{=4) was used, based on an extrapolation

and measuring sprat the detection threshold. The miri() of the MN55 data to A#.l and a minimization of the model

part of the definition limits the Al on the high end, since for Parameters for a best fit to MNS5 data.

an SNR above 30 dB, the noise has a negligible effect on the !t follows from the above relations that

articulation(and intelligibility). P.(A)=1—¢A . (16)

The total errore=ef. in Eq. (16) was represented by

Fletcher ase=10"A"05 Both expressions are exponential
The average sounalticulation error e(SNR), in terms  in Al, differing only in the choice of the baseef;,

of the average sound articulatiéh,(SNR), is =10(~%05%) " Equation(16) only applies to the case of non-
e(SNR=1—P,(SNR). (12  sense phones, having the maximum entropy. _

Figure 5, left, shows the relative spectrum and noise

In 1921 Fletcher showed that the articulation error probabiligye| corresponding to SNRs 6f18 to +12 dB, for female

ity e(SNR) could be thought of as being distributed overspeech with a white-noise masker. On the right one may see

K-independent articulation bands. The bandwidth of each ofj,e resulting AISNR), based on the calculations specified by

these articulation bands was chosen so that they contribuifie equations presented in this section. The final values of

equally toe [the articulation per critical band is constant tne A| were determined witle=2 to be (starting from an

from 0.3-7 kHz (Fletcher and Galt, 1950; Allen, 1994, gNR of +12): [0.459,0.306,0.186,0.1,0.045,0.016

1996]. Assuming band independence, the total articulation  Because the spectrum of the speech and the spectrum of

error may be written as a product oviérband articulation  the noise are not the same, the®INR) cannot be a linear

The band independence model of the total error

errors function of SNR. Only for the case where the two spectra
e= €16y € Ex . (13y  have the same shape WiII_(CSNR) be linear in SNR. For the
) o ] case at hand, a white-noise masker, the high frequencies are
This equation is called thkand independence model progressively removed as the SNR decreases, as shown in

Galt established that the articulation bandwidth is pro-ihe jeft panel of Fig. 5.
portional to cochlear critical bandwidtl{§rench and Stein-
berg, 1947, page 93 as measured by theritical ratio
method and the frequency jr{dllen, 1994, 1996 Fletcher B. AM(SNR) to AM (Al)
then estimated that each articulation band was the equivalent
of 1 mm of distance along the basilar membrane, thereb
taking up the 20-mm distance along the basilar membran
between 300 to 8 kHfAllen, 1996. Thus, the Al[Eg. (8)]
may be viewed as an average SNiReraged over dB units
of a scaled specific SNR, defined over cochlear critical 1 XX
bands. Pe=15 21 P 17)
As first derived in Allen(1994), the probability of ar-
ticulation error in thekth bande, may be written in terms of It must be mentioned that E¢L7) only applies to the case at

The left panel of Fig. 6 shows the MN55 consonant
Ydentification curve®?(SNR)=S; ;(SNR), as a function of
%he SNR for each of the 16 sounds=(1,...,16), along with
their meanP.(SNR) (solid curve with circle symbo)s

the specific Al as hand, where thea priori probabilities of the sounds are
equal. In the more general case, a Bayesian formulation
e=enik! (14) i
k™ Smin would be required.
Speech: -18to +12, Noise: 0 [dB] Female speech and white noise
..... 3 0.5 -
) . FIG. 5. Using the speech power spectrum given by the
E ----- N\ 0.4r dashed line in Fig. 4, and assuming a uniform noise
= 1 — spectral level, the ABNR) was calculated. Each curve
o 10 € 03 . _
> = shows the relative spectral level of the speech having a
%’ 2 0.2 peak level at the wideband SNRs used by Miller and
s | < = Nicely [—18,—12,—6,0,6,13, in units of dB. The top
o curve shows the-12-dB speech spectrum. The dashed-
D .0 0.1 - ; .
& 10 ; dot line is the noise spectral level having an rms of 0
- D79 % % 0 : i ; dB.
-|0'1 10° 101 -20 -10 0 10

Frequency (kHz) Wideband SNR [dB]
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PU o fori=1..16 & mean (Tables I-VI)

corr

1 : PP
Y P . FIG. 6. The light dashed lines aR{’ for each of the
. : 16 consonants. On the left the abscissa is the SNR in
] N dB, while on the right, the Al is used as the independent
@ 7 ﬁ/ 7/ variable. The solid-thick curvéeircles on both the left
o’ 04 ’ _.'_ mean (Pt and right is the average scolRe, Eq. (17). The solid-
02 p(i)(sll\jﬂc) thick curve(squareson the right is the average phone
.. - - c . .
. 'm 11 (SNR+20)/30 prediction given by Eq(18).
0 :
-20 -10 0 10 0 0.5 1
SNR [dB] Al

In the right panel the individual scores, along with the 0.254% is one-sixth that used by Fletch€r.5%). The
average, are shown as a function of the Al. To transfornsmaller size could be attributed to the larger amount of train-
from SNR to Al the values shown in the right panel of Fig. 5ing the subjects received over such a limited set %ize4
are used. =100,(16).

We also wish to compare the Al model prediction to the As may be seen in the left panel of Fig. 5, since MN55
measurements shown in Fig. 6. However, it is necessary tased white noise, the snfor frequency bands larger than
modify Eq. (16) so that it accounts for chandguessing  about 0.7 kHz have an SNR of less than 30 dB, resulting in
given by Pgance=2" ", when{=4 and Al=0. This is done an Al of much less than 1. In fact, the Al was less than 0.5
by again assuming independence of the error probabilitiedor the MN55 experiment, corresponding to a maximum
Since chance error for guessing 8§,ance= 1 — Pchance the  score of only 90%.
chance-correcte®(Al) formula is A most interesting and surprising finding is that the ex-
tended Al modelEq. (18)] does a good job of fitting the

—1_ Al
Pe(Al, 1) =1~ Cchanck ™) €min (18 average data. In fact, the accuracy of the fit over such a small
with set of just 16 consonants was totally unanticipated. This
- needs further elucidation.
€chancéH)=1—2 n (19

Fletcher’s formula Eq(16) is the limiting case of Eq(18) C. Extended tests of the Al model
whenH becomes largéFletcher'sH~11).

A plot of Eq. (18) is shown in the right panel of Fig. 6 I one plots th? total error prpbab|l|tye(A|) =1
(solid curve, square symbolswith e, =0.254%, and —P¢(Al) in log coordinates, as a function of Al, such plots

H=4. The fit of Eq.(18) to the average of the 16 MN55 should approximate straight lines. This follows from the log

curves is excellent. of Eq. (18
IOg( e(Al))= IOg( emin)AI + IOg( echancéH))a (20)

which has the convenient forp=ax-+b. The ordinate(y

The left panel of Fig. 6 shows that there is an approxi-axis) intercept of these curves at AD gives the log chance
mately linear relationship betwed?,(SNR) and SNR over error[b=y(0)=Ilog(e(0))=log(enancdH)) 1, While the ordi-
the range from—18 to 6 dB. The thick dashed-dot line is nate intercept of these curves atAl defines the sum of the
(SNR+20)/30. This line is useful as a simple reference. log-chance error and the log-minimum error, namey+ b

The main deviation from the linear dash-dot curve is due=y(1), thusa=log(ey;,)]. In Fig. 7 the log-error probabili-
to the strong saturation that occurs for the two nasal soundses for each of the 16 sounds, along with the average and the
and sound 7the three curves with the higheBt,(SNR)]. Al model, are shown. The sounds have been regrouped so
Note that each of the sounds has a nearly lineathat the log-error plots have similar shapes. The shallow
Pg')(SNR), with different saturation levelgif they are slopes are shown on the left and the steeper slopes on the
reachedl The saturation point folP(SNR) occurs at an right.
SNR of about 30 dB above the threshold,-&20 dB (thick From Fig. 7, we shall find that the linear relationship
solid line with circles. Note that since the relatiod.,(SNR)  [Eqg. (20)] holds for 11 of the 16 sounds, with the free pa-
depends on the noise spectrum, the linear relation observedmeters ey, (i) and echancki), either depending on the
in the left panel of Fig. 6 can only hold for the white-noise sound, or on a sound group.
masker, since if the noise spectrum is changed,SNR) The upper two panels show the most linear groups,
must change, and it is linear for the white-noise case. while the lower panels are the most nonlinéaonstraight

In the right panel of Fig. 6 the extended Al model log-error curves. The curves that are close to lingae two
[Eq. (18)] is shown for MN55's data. Each of the 16 curves top panelgare consistent with the Al model, due to E0).

Discussion

Pf:i)(AI), i=1,..,16, is shown as the light-dashed curves.  This observation of a log-linearity dependence for the
This averagdEqg. (17)] is shown as the solid-thick curve probability of error of individual sounds is rather astounding
with circles. in my view. First, there was na priori basis for anticipating

The solid-thick line with squares is the extendedthat individual sounds might obey Fletcher's band-
(chance-correctgdd\l model, Eq.(18). The value ofe,,;, of  independence property, Eq18). Second, if individual
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Sounds 1,3,5,9,10,12
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FIG. 7. This figure shows the probability of error for the sound,P{(Al) =1—P{(Al), as a dashed curve. To reduce the clutter, the sounds have been
sorted over the four panels, with the sound number indicated in each panel title. The top two panels are the cases where the individual soued-@mor curv
close to straight lines. The left-upper panel are those cases where the sound lies above the average, while the right-upper panel shows thes¢éheases whe
sound lies below the average. The two lower panels correspond to the sounds that violate the exponeatialmatestraight lines on a log-error ploFor

reference, each panel contains the average probability of Bg(@d) =1— P (Al), shown as the solid curve with circles, and the model eeﬁ#,g, shown
as the solid lingsquareg

sounds obey equations of the form of E§), then sums of peting soundgi.e., Eq.(7)]. In the case of the nasals, the

such equations cannot obey H§), since the sum of many confusions for the other sounds is small, namely only /ma/

exponentials, each having a different base, is not an expand /na/ significantly compete.

nential. As a result of plotting the data as a function of Al, for
The finding that individual CV recognition error is ex- Al>Al,=0.045 (SNR=—12), the log-error curves become

ponent_ial in the Al(the basis of the band—independen_ce hY-linear in Al, as predictedmodeled by Eq.(18). This value

pothesis therefore extends, and at the same time wolatesofAlg is shown in the plot with an arrow indicating the point

Fletchers.ongmal funQamentaI Al hypothesis that the averyg separation of the target sound from the competing sound.
age error is exponential. . . : :
: . Extrapolating this linear region back to AD, one finds the

It is therefore essential to understand the source of the . - “H .

. L chance guessing probability of12~ "¢=1/2, corresponding
deviations for the individual sounds from the average, and t? | i o.—1 This is sh th
critically assess the accuracy of the model for individual 0 a nasal group en r.opy g IS IS shown on the )
sounds. Five sounds,8,11,15,16have a probability of er- graph by the dashed line su_perlmposed on the corresponding
ror that deviates from linear, with the most nonlinear and the2TOr curve(stars. In the region G<Al<Al=0.045,7 de-
largest deviations from the mean, being the nag#isl 6, as pends on Al, since it dramatically drops from 4 to 1. _ .
shown in the lower-right panel. In the next section | explore ~ Thus, the reason that the nasal curves are not linear in
the reasons for this. Fig. 7 is that chancdthe entropy factoris dramatically
changing between€Al<Al,, due to the formation of the
perceptual “event-nasal” group.

When the data are plotted as a function of SNR, as in
Fig. 3, the log-error linearity is not observed. Also, the shape

In Fig. 8 the nasal data are shown using the same logef the curve will depend on the spectrum of the noise.
error linear decomposition used in Fig. 3, where the totalClearly, the SNR to Al transformation is an important key to
error (solid-thick curve is the sum of the errors of the com- making sense of these data.

1. Log-error for the nasals
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2. Log error for [Ipal, Ital, and [kal sound ordering. When plotted as a function of SNR, sound
Finally, in Fig. 9 we return to the case of /pa/, /tal, angorder is irrelevant, and clusters depend instead on a smooth-

/kal. This 3-group generalizes the /ma/, /na/ 2-group conclul'€ss, or continuity, across SNR.

sions of Fig. 8. In the middle panel it is clear that for small A second contribution is the use of the Al as the inde-
values of Al less than 0.04S, (Al) for /ta/ is equal to the pendent variable. When the Pl is plotted as a function of the
curves for /pa/ and /kd/S, ;(Al),j=1,3]. As the Al rises SNR, the only structure observed are the clustéig. 2.
above about 0.1, the three curvircles split due to the  When these same data are plotted as a function OFiyl 8),
identification of /ta/ and the rejection of /pa/ and /ka/. Thethey become linear functions of Athey form straight lines
shape and slope of the curves corresponding to the two rgym |og-error axes consistent with the band-independence

jected sounds are id_entical. The pr.o.jection of the rejectedh,qgel of FletchefEq. (13)], thereby corroborating Fletch-
curves back to A=0 gives the probability of chance error for er's Al model equatiofiEq. (16)] for the case of single com-

a group of 3(i.e., 1-1/3, as shown by the dashed line in this _ .. _
middle panel. In the left-most and right-most panels, corre—peung consonants. Plots 8f,;(Al) depend on the spectrum

. > f the noise.

Z?f?erlghntglct:;-/g%?g?oi)k:sji tthvltlngerfJtehcéeSNzogggﬁefgja\éir\\//(;;?/ A third cohtribqtion is the extensjoﬁand verification of
still project back to the chance error probability for a groupF'etcher’s articulation model equation fét:(Al), for the
of 3 (1-1/3. This change in the slope for the two soundscase of small set siZkEq. (18)], by introducing entropy}
shows thate,,,(i,j) can, in general, depend on the sound ininto the model[Eq. (16)], thereby accounting for chance
the group. This seems to reflect the more robust nature of /taguessing
relative to /pa/ and /ka/ due to /ta/ having more high- As the SNR increases from chance lev@g., —21-dB
frequency energy than its competitors. SNR), sound groups form, forcing the entropy to decrease.

Based on the small amount of the data shown in Fig. 8The extended moddIEq. (18)] leads us to the conclusion
and Fig. 9, it appears that the band-independence assumptigiht the entropy must depend on Al. This functiGa(Al),
[Eq.(lS)] and the band error expressidag. (14)] model the  gecreases from its maximum value of 4 at=Al, to M,
individual sound confusions; ;(Al) more accurately than —=log, (group siz¢ for AI=Al,, where the group is fully

they model the average band erfBn. (13)]. The total sound formed. The entropy associated with these groups may be

error is more precisely the sum of these off-diagonal confu-___. ' .
sion terms, as given by Eq7). The implications of this estimated from the clusters B;(Al), or from the intercept

model seem quite significant, but without more data it isat Al=0 of the dashed I|nes_of Fig. 8 ant_j Fig. 9. For the
unwise to speculate further at this time. nasal sounds the group size i§72=1), leading to an |.nter.-
cept of 1-1/2. For th§/pa/,/ta/,/ka} group, the group size is

3 [H=log,(3)~1.58]; thus, the intercept is 1-1/3.

A. Parametric model
The intent of this paper is to provide a theoretical analy-
sis of the venerable 1955 Miller and Nicely confusion matrix
data, which have been difficult to fully appreciate, due to®®S for the sound groups 1-3 and 15, 16 has been estab-
inadequate analysis methods. Replotting the data as a funfiShed. Chance, defined b§cnancé™) [Eq. (19)], depends
tion of the SNR, rather than as confusions at a fixed SNRONY on the experimental selphabel size, characterized by

provides a novel way of robustly clustering the feature?(0), not on the sounds themselves. Each sound may be
groups. This grouping, not robustly defined in a single CM,described by three parameters. The sound-dependent param-
is easily determined in such SNR plots. When working witheters of Eq(18) areeyq(i,j) Hg(i) and Aly(i). The param-
individual CM data at a single SNR, clusters depend on theter e(i,j) appears to be a property of the individual

IV. CONCLUSIONS

In summary, a parametric model of the confusion matri-

Symmetric: /ma/

10

SHRCY)
Sy6,(A)

FIG. 8. Since the log-error plots for /ma/ and /fisée the lower-right panel of Fig) 8how the greatest deviation from linear, they seem to be a “worst case”

for the Al model. From this figure it is clear that the reason for the deviation from linear dependence is due to the migration of chance fém4)/t6

1/2 (H=1), due to the nasal grouping. The rising nasal curves results from the robust grouping of the nasal, resulting in the increase in chance from 1/16 at
Al=0 to 1/2 at AF=0.045. The solid-thick curve is the sum of all the err@sd is 1- Pc for the spoken soundA dashed line has been drawn from the point

(0,.5 to (0.31,.03. This line fits the error curvéna/ given /ma/, and /ma/ given /natith very little error, for Al=Al>0.045, and intercepts the ordinate

at 1/2 for Al=0, as expected for a 2-groupi{=1). This further supports the band independence model Ej.
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FIG. 9. This figure shows; ,(Al) for s=1, 2, 3 cor-
responding to the sounds /pa/, /ta/, and /ka/. The dashed
lines connect (0,1-1/3) with (0.48,0.3 and

(0.442,0.0L
sounds in the group. For example, the valueegf(i,j) for Once the CM has been preprocessed so that its rows sum
sounds 1 and 3 are the same, but the value for sound 2 1§ 1, an error decomposition is possible. The equation for this
much smaller(Fig. 9). is Eq.(7), which says that the total sound identification error
The value ofei is the sum of all the errors of the corre- is the sum of the confusions. This expression is useful in
sponding off-diagonal values, namely those cases where the sounds group, as it uniquely decom-
poses the error into the group confusions. When plotted as
e(Ah=>'S J(Al). (21)  log error(e.g., Fig. 9 one may characterize the sources of
j#i the sound errors in a quantitative wiye., using the param-

etersemq(i,j) and Aly(i)]. This method seems superior to all
previous analysis methods of such confusion matrices.
As shown in Fig. 7, the nasals appear to violate Fletch-
er's independence formula E¢L3), since the total error is
. :iE e (Al) 22) not a straight line on the log-error plot. However, when de-
mno164 ! A|—1' composed by Eq(7), we see thatindividual competing
sounds obey band independentéus the total error devi-
This follows from Eq.(17) and Eq.(7). ates from a linear log error, due to the dramatic chande in
Parameter AJ(i) characterizes the transition from the jth Al, from 4 to 1, over the small range of Al between 0
maximum alphabet entrody(Al =0)] to the group entropy and Aly~0.045(Fig. 8.
Hg. We have not attempted to find an analytical expression  Fyrthermore, the projection of the straight lines that lie
for H(AI), to describe the transition from entropy maximum ajong the log-error curves, back to AD, givesegnancs fOr
H(0) to that of the groug(Alg). The hierarchies mentioned the group. This is an important corroboration of E#8).
in the Introduction each have their own/parameter, each Tyo examples of these are seen for the nasals, where the
group within the hierarchy having a smaller value oAl group has entropy 1, and the dashed lines of Fig. 8 project

The change in the entropy, froti—H,, due to the  pack to 1-1/2, and the 3-group of Fig. 9, where the dashed
formation of groups as the sounds start becoming identifiedines project back to 1-1/3.

accounts for the deviations from linear of the log-error prob-
ability.

One might even view the ultimate identification of the
sound, as Ak-1, as a further reduction of the sound’s row  The procedure for calculating the Al, developed in Sec.

This equation is the same as K@) except for the indepen-
dent variable. The total minimum error is given by the aver-
age of the row errors, evaluated at=Al

C. Calculating the Al

entropy to zero. IIIA, has some novel aspects as well. Rather than defining
Since the parametric model is based on very little datathe specific Al in terms of the band SNRs, the modified
there is presently no clue as to how it will generalize. function of Eq.(11) was used. The justification for E(L1)

comes from the work of Fletcher as well as French and
Steinberg, both of whom promoteut did not usgthis de-
tection formulation. Thespeech detection constanischo-

The confusion matrixXC was transformed to form the sen to characterize the detection of the speech peaks when
articulation matrix4, by a normalization stefEg. (1)], and  noise is added to the speech. Even though this formulation of
then further transformed by symmetrizifgqg. (3)]. These the Al has some important advantages, and is more accurate,
two transformations interact and must therefore be iterated tit is never referred to in the modern Al literature. This, | feel,
convergence. While these transformation steps are not essdr-a mistake that needs rectification. Again, this approach was
tial, they are justified, since they reduce sampling noise andot studied in detail in this paper; however, there is a detailed
remove subject bias. Sampling noise and bias are interestiranalysis of Eq(11) in both of the references, and a deeper
topics in their own right that deserve further analysis. Foranalysis here is off topic. It was necessary to introduce Eq.
example, the skew-symmetric formA(Al, H) [Eq. (4)] (11) to get reasonable values of GNR) when fitting the
should be carefully considered in the future, to characterizenodel P;(Al, ), as shown in Fig. 6. This is because the
and determine the precise nature of the subject bias. Thisstimates of the SNR as a function of frequence.,
bias should be considered when designing MN55-type exsni(SNR)], in the left panel of Fig. 5, are strongly affected
periments. by this detection model, and on the specific choicec arf

B. Preprocessing of C
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Eq. (10). Without the use of this speech detection parametemeaning ofe,;,?” | would like to thank my students Suvrat
(c=2), the band SNR values (8NR) would be unrealis- Budhlakoti, Bryce Lobdell, Andrew Lovitt, and especially

tic for small values of Al. Sandeep Phatak, and also thank Harry Levitt, for many im-
_ portant insights and critical discussion, and thank Anthony
D. Band independence Watkins and two anonymous reviewers, for many insightful

Fletcher’s band-independence assumption @g) has comments. Finally, | would especially like to thank George
proven to be an important tool at the individual sound level.Miller for doing his original 1955 work, for reading the
This should come as a surprise, as it was not anticipated byresent manuscript, and for the personal encouragement he
Fletcher’s work, or any work followingthat | am aware of  has provided.

On the other hand, the fact that it works at all should lead us

to the possibility that it could generalize. It would appear

from the analysis provided here that Ed3) is more accu-

rate in describing competing sounds than in describing the

average probability corre@.(Al, ). This statement is SUp-  ajien, J. B.(1994. “How do humans process and recognize speech?” IEEE
ported by the very linear behavior of the off-diagonal confu- Trans. Speech Audio Proce§4), 567-577.

sion termsSiyj in Fig_ 8 and Fig_ 9. The partial errors are Allgn, J. B.(J‘.996. “Harvey Fletcher’s role in the creation of communica-
highly linear once the group has formed (ARIg). It fol- tion acousfics,” J. Acoust. Soc. Ar89(4), 1825-1839. o
lows from Eq.(7) that the deviations from linear are a result ANS! $3.5-1997(1997. “Methods for calculation of the speech intelligi-

. . bility index (SI1-97)" (American National Standards Institute, New Yprk
9f the groups, which depgnd (_)n the n_mse S_pe.Ctrum' Thgletcher, H.(1995. “Speech and hearing in communication,” ithe ASA
influence of a group formation distorts this basic linear char- Egition of Speech and Hearing in Communicatiedited by J. B. Allen
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