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The purpose of this paper is to provide insight into how speech is processed by the auditory system,
by quantifying the nature of nonsense speech sound confusions.~1! The Miller and Nicely
@J. Acoust. Soc. Am.27~2!, 338–352~1955!# confusion matrix~CM! data are analyzed by plotting
the CM elementsSi , j (SNR) as a function of the signal-to-noise ratio~SNR!. This allows for the
robust clustering of perceptual feature~event! groups, not robustly defined by a single CM table,
where clusters depend on the sound order.~2! The SNR is then re-expressed as an articulation index
~AI !, and used as the independent variable. The normalized log scores log(12Si,i(AI)) and
log(Si,j(AI)), j Þ i , then become linear functions of AI, on log-error versus AI plots. This linear
dependence may be interpreted as an extension of the band-independence model of Fletcher.~3! The
model formula for the average score for the finite-alphabet casePc(AI, H)5( i 51

N Si ,i /N is then
modified to include the effect of entropyH. Due to the grouping of sounds with increased SNR~and
AI !, the sound-group entropyHg plays a key role in this performance measure.~4! A parametric
model for the confusionsSi , j (AI, Hg) is then described, which characterizes the confusions between
competing sounds within a group. ©2005 Acoustical Society of America.
@DOI: 10.1121/1.1856231#
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I. INTRODUCTION

The articulation index~AI ! and the confusion matrix
~CM!, denotedCi , j , are two important measures frequen
used to characterize human speech recognition. This p
explores the merging of these two measures by expres
the CM as a function of the AI. The natural grouping
sounds, observed by Miller and Nicely in their classic 19
experiment, is then explained in terms of a change in e
group’s entropyHg , which is also a function of the AI. A
parametric model of the symmetric form of the CM conf
sionsSi , j (AI, H) is then developed. These parametric mod
lead to a new formulation of the average scorePc(AI, H),
which accounts for chance. This model provides an accu
fit to the raw data, and provides new insight into Fletche
band independenceformulation for the average articulatio
score~Allen, 1994!.

A fundamental building block in the theory of spee
communication is the articulation index~AI ! model of
speech sound recognition~French and Steinberg, 1947
Fletcher and Galt, 1950; Allen, 1994!. The AI is a speech
audibility measure, averaged across many cochlear
quency bands, of a specific speech-to-noise ratio meas
that takes into account the effects of masking and coch
filtering ~Allen, 1994!. The masking can be due either
external noise, when noise is added to the speech at
source, or internal noise, present in the cochlea and aud
nerve. The AI measure is weighted to account for both
chlear critical bands and those frequency regions contain
important speech information. Fletcher developed the A
predict the average nonsense-phone articulation s
Pc(SNR), as a function of the speech-to-noise ratio~SNR!
~specified over 20 frequency bands!, as a way of avoiding
expensive and time-consuming listening tests on spe
communication equipment. The AI also offers important
2212 J. Acoust. Soc. Am. 117 (4), Pt. 1, April 2005 0001-4966/2005/1
er
ng

5
h

s

te
s

e-
re,
ar

he
ry
-
g

o
re

ch
-

sights into human speech perception. In this paper the A
used to provide a new and insightful view of the confusi
data of Miller and Nicely~1955!.

Many procedures have been developed which claim
predict the phone performance score for noisy and/or filte
channels, several of which are called the ‘‘articulation
dex.’’ Following the first proposal in 1921 by Fletcher, the
is the Bell Labs procedure of FS47~key abbreviations are
provided in Table I!, followed by the more extensive versio
by Fletcher and Galt~1950!. Then, Kryter published his sim
plified method in 1962~Kryter, 1962a, 1962b!, soon fol-
lowed by the ANSI version. More recently, the STI was pr
posed to extend the AI procedure when room reverberatio
present~Houtgast and Steeneken, 1973; Steeneken and H
gast, 1980!. This was then followed by the new ANSI pro
cedure SII~S3.5-1997, 1997!.

The focus on the articulation index provided here is n
on predicting the performance of speech communicati
systems, but rather in understanding and modeling the
ception and recognition of human speech sounds. The fo

TABLE I. Table of abbreviations.

Abbreviation Definition

CV, CVC Consonant1vowel sounds
intelligibility Recognition of phonemes
articulation Recognition of nonsense phones
CM Confusion matrix
AM Articulation matrix ~CM of nonsense speech!
AI Articulation index
SNR Speech-to-noise ratio
rms Root-mean-squared
events Perceptual features
MN55 Miller and Nicely ~1955!
FS47 French and Steinberg~1947!
17(4)/2212/12/$22.50 © 2005 Acoustical Society of America
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here is not on procedures for predicting phone intelligibili
but in gaining leverage from the well-validated AI predi
tions, to provide insight into nonsense-phone identificatio

At least four fundamental questions are addressed in
presentation.

~1! What is the relation between the AI and the CM?
~2! How can one more accurately determine the groups

are present in Miller and Nicely’s CM data at certa
SNRs?

~3! What are the limits of Fletcher’sband independenceas-
sumption?

~4! Can the AI be used to predict the phone score for clo
sets~i.e., what are the limits of the AI procedure!?

Subsequent to the Bell Labs articulation studies, and
lowing up work done during WWII, Miller took up the stud
of speech articulations in much greater detail. As detailed
Miller’s ~1951! book Language and Communication, infor-
mation and communication theory are the basis for und
standing the speech code. One of the basic tools of infor
tion theory is thechannel, the mathematical characterizatio
of a communication link~i.e., a noisy pair of wires, with
codecs attached!, in terms of discrete input and output sym
bols from somealphabet. One method for characterizing th
human speech communication channel is the nonse
phone confusion matrix~CM!, which characterizes the prob
abilities of nonsense speech sound~the symbols! transmis-
sion errors. It is expected that an error analysis of t
articulation matrix~AM !, as a function of the SNR, can giv
important insight into the speech code.

A second key concept from information theory is that
entropyH, which is a measure of the compactness of a pr
ability distribution, which in the case of speech represe
the distribution of the sound confusions. In his classic 19
study, Miller et al. ~1951! ~MHL51! showed the effects o
symbol alphabet size, and thus the entropy, on word rec
nition. Four years later, in a second classic study, Miller a
Nicely ~MN55! showed that as the wideband SNR is rais
from 218 to 112 dB, the sounds form perceptual group.
The formation of a group, as a function of the SNR, a
results in a change~reduction! in H.

In analyzing their confusion matrices, MN55 quantifie
the grouping effect using a mutual-information~MI ! analy-
sis, on assumed groups. An natural advantage of the
analysis method is its insensitivity to bias, as defined by
skew-symmetric form of the CM. This is at the same time
weakness of the MI, since it may be beneficial to remove
effects of subject bias prior to modeling the confusions
major disadvantage of mutual information, as used in MN
is that it gives no insight into the formation of the grou
being analyzed.

This paper explores the limits and applicability
Fletcher’s band-independence model, applied to the 1
closed-set consonant articulation data of Miller and Nic
~MN55!. Such data do not meet the usual assumptions of
AI audibility measure, of a large, high-entropy open-set c
pus. By plotting the confusions as a function of SNR, it
possible to identify the groups in a systematic, logical w
without assuming any predetermined sound ordering. T
J. Acoust. Soc. Am., Vol. 117, No. 4, Pt. 1, April 2005
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leads to an accurate method of identifying the natural so
groups, and allows one to display the complex body of C
data at all SNRs, in a single figure. Once the groups h
been identified, one is then free to further explore the re
tionship of the AM to the AI andH.

The definitions of mathematical symbols has been su
marized in Table II.

II. REPRESENTATIONS OF THE CONFUSION MATRIX
„CM…

Figure 1 shows a typical MN55 consonant–vowel~CV!
confusion matrixor count matrixfor wideband speech~0.2–
6.5 kHz!, at aspeech-to-noise ratio~SNR! of 26 dB ~Miller
and Nicely, 1955, Table III!. The 16 consonants were pre
sented along with the vowel /a/ as in father~i.e., the first
three sounds were@/pa/,/ta/,/ka/#!. After hearing one of the 16
CV sounds as labeled by the first column, the consonant
was reported is given as labeled along the top row. This a
of numbers form the basic CM, denotedCs,h , where integer
indicess and h ~i.e., ‘‘spoken’’ and ‘‘heard’’! each run be-
tween 1 and 16. For example, /pa/ was spoken 230 times~the
sum of the counts in the first row!, and was reported heard 8
times (C1,1), while /ta/ was reported 43 times (C1,2). For
Table III the mean row count was 250, with a standard
viation of 21 counts.

When the sounds are ordered as shown in Fig. 1, t
form groups, identified in terms of hierarchical clusters
articulatory features. For example, the first group of sound
1–7 correspond to unvoiced, group 8–14 are voiced, and
16 are nasal~and also voiced!.

At an SNR of 26 dB, the intraconfusions~within a
group! are much greater than the interconfusions~between
groups!. For example, members of the group 1–7~the un-
voiced sounds! are much more likely to be confused amon
themselves, than between the voiced sounds~8–14!, or the
nasal sounds~15,16!. The nasal are confused with each oth
but rarely with any of the other sounds 1–14.

TABLE II. Table of mathematical symbols.

Symbol Definition Equation

I Intelligibility ~meaningful sound recognition!
C Confusion matrix ~2!
A Articulation matrix ~1!
S Symmetric form ofA ~3!
A Skew-symmetric form ofA ~4!, ~5!

Pc Probability correct ~17!, ~16!, ~18!
Pc

( i ) Same asAi ,i andSi ,i

H Entropy
AI Articulation index ~AI ! ~8!
AI k Specific AI in bandk ~11!

e Total error ~12!, ~13!, ~20!
ei Total error for soundi: ei[12Pc

( i )512Ai ,i ~7!

emin Minimum error ~15!
echance Chance error ~19!
ek kth band error ~14!
emin(i) Minimum error for soundi: ei uAI51

S15 Shorthand forS15,15

snrk Speech-to-noise rms ratio in bandk ~9!
2213Jont B. Allen: Consonant recognition and the AI
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FIG. 1. Typical Miller–Nicely frequency of confusions, or count matrixC, from Table III at26-dB SNR. Each entry in the matrixCs,h is the subject response
count. The rows correspond to thespokenCVs, each row representing a different consonant, froms51,...,16. The columns correspond to theheardCVs, each
column representing a different consonant, fromh51,...,16. The common vowel /a/, as in ‘‘father,’’ was used throughout. When the 16 consonants are o
as shown, the count matrix shows a ‘‘block-symmetric’’ partitioning in the consonant confusions. In this matrix there are three main blocks delineated by the
dashed lines, corresponding to unvoiced, voiced, and nasal. Within the voiced and unvoiced subgroups, there are two additional symmetric blorre-
sponding to affrication and duration, also delineated with dashed lines.
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The MN55 articulatory feature classification scheme
far from perfect. For example, the nasals are voiced in
same sense as those labeled voiced; however, they cl
form a unique cluster. Thus, there is no unique simple art
latory label for sounds 8–14. Groups systematically dep
on the SNR, and groups remain unidentified by this sche
Using the example of Table III~Fig. 1!, @/ba/,/va/,/Za/# form
a group that is distinct from the nonfricative voice
subgroup. An improved order for sounds 8–14 would
@/ba/,/va/,/Za/#, @/za/,/ca/,/da/,/ga/#. Of course, this example
fundamentally breaks the MN55 articulatory feature class
cation scheme. In fact, the feature space cannot strictly
articulatory feature based.

The MN55 data have been the inspiration for a lar
number of studies. The sound grouping has been studied
ing multidimensional scaling, which has generally failed
providing a robust method for finding perceptually releva
groups of sounds, as discussed by Wang and Bilger~1973!.
Thus, the grouping problem has remained unsolved.

The data in the CM represent a psychological sub
response, and therefore need to be represented in term
psychological variablesrather than physical~production!
measures, as labeled by articulatory features. This could h
been the role ofdistinctive features, had they been so de
fined. Unfortunately, there seems to be some confusion in
literature as to the precise definition of a distinctive featu
For example, are distinctive features production or perc
tion quantities?

To avoid this confusion, I shall use the termeventwhen
referring to perceptual features. Since Miller and Nicely’s
confusion data are based on perception, they must be
2214 J. Acoust. Soc. Am., Vol. 117, No. 4, Pt. 1, April 2005
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scribed by events. The precise nature of these events ma
explored by studying the 15 plotsSi , j , iÞ j , as shown in the
lower-left panel of Fig. 2 for the case ofi 52.

A. The transformation from CM to AM

The termarticulation is defined as the probability cor
rect Pc of identifying nonsense-phone speech sounds~con-
sonants and vowels!, while intelligibility I is the probability
of identifying meaningful speech sounds, such as words
sentences~Fletcher and Galt, 1950!.

When normalized as a probability, the consonant con
sion matrix is transformed to anarticulation matrix ~AM !,
denotedA ~script A, Table II!, with elements

As,h[
Cs,h

(hCs,h
. ~1!

This normalization, to an equal probability for each row,
justified because of the small standard deviation of the r
sums~i.e., 250621!.

The AM is the empirical conditional probabilityPc(hus)
of reporting soundh after speaking sounds, namely

As,h[Pc~hus!, ~2!

for integer labelss, h ~i.e., spoken, heard!. In another sense
As,h for sÞh is an error probability, since it is the probabi
ity of reporting the wrong soundsh after hearing spoken
soundsÞh.

Figure 2 shows the probability of responding that t
soundh51,...,16 was reported, following speaking /ta/s
52), as a function of the wideband SNR. The upper-l
Jont B. Allen: Consonant recognition and the AI
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FIG. 2. This figure shows Miller and Nicely’s 1955
wideband row-normalized confusion matrix da
As,h(SNR) @Eq. ~1!# for the sound /ta/~sound 2! from
MN55 Tables I–IV, as a function of the speech-to-noi
ratio. The upper-left panel is a plot of the second row
the articulation matrix@A2,h(SNR), h51,...,16, corre-
sponding to /ta/ spoken#, while the upper-right panel is
a plot of the second column@As,2(SNR), corresponding
to /ta/ heard#. The matrix is not perfectly symmetric
(AÞAt), which explains the small differences betwee
these two plots. The lower-left panel is the symmet
form of the articulation matrix given by Eq.~3!, which
is the average ofA and its transposeAt. The lower-
right panel is the skew-symmetric formA @Eq. ~4!#. The
horizontal dashed line in each figure shows chance p
formance~i.e., 1/16!.
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panel shows the probabilityA2,h(SNR) of each heard soun
(h51,...,16), given /ta/ was spoken. The upper-right pa
shows the probabilityAs,2 of each sound spoken (s
51,...,16), given that /ta/ was heard. The curve that rise
1 is the probability of correctly reporting /ta/A2,2(SNR),
given that it was spoken~left!, or spoken given that it was
heard~right!. The solid-thick curve is the total probability o
error e2(SNR)[12A2,2(SNR) of not reporting /ta/, given
that it was spoken~left! or heard~right!.

Symmetric and skew-symmetric decomposition

The lower-left panel of Fig. 2 is a plot of the second ro
S2,j of the symmetric form of the AM, defined as

S[ 1
2~A1At!, ~3!

whereAt is the transpose ofA, while the lower-right panel is
the second row ofAi , j of the skew-symmetricform of the
matrix, defined as

A[ 1
2~A2At!. ~4!

It appears that the sampling error~statistical uncertainty!
in the measurements, due to the sample size, is about 0
~0.005!, which is where the measurements become scatte
This variability is determined by many factors, including t
number of trials per sound, the smoothing provided by
symmetric transformation, the consistency of the talker,
the mental concentration and number of the observers~four
in this case!.

From the lower-right panel, it is clear that the AM
close to symmetric, since the skew-symmetric terms
small. A few terms ofA2,h(SNR) are as large as 5%, bu
most are less than 1%. Since the MN55 data are clos
symmetric, it is reasonable to force the symmetry, and t
to study S and A separately, which is the approach tak
here. Note thatS is slightly smoother thanA, since each
elementAs,h is the average of two similar terms,Ah,s and
J. Acoust. Soc. Am., Vol. 117, No. 4, Pt. 1, April 2005
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As,h . Using the symmetric form simplifies the analysis
the matrix and gives us access to the skew-symmetric fo

Based on an analysis by Goldstein~1980!, the interpre-
tation of the skew-symmetric form is quite different fro
that of the symmetric form. The most likely explanation
the skew-symmetric matrix is that the subjects have a b
for one sound over another, and are therefore more likel
report the consonant for which they have the bias~Goldstein,
1980!.

The largest skew-symmetric sounds in row 2 are /f
/ua/, /va/, and /Za/, which have errors approaching 5%, b
are always less than chance~1/16!. It seems significant tha
the skew-symmetric form always lies slightly below chan
~Fig. 2, lower-right panel!. For the rest of the sounds, th
error patterns are similar in their nature to those of /ta/, w
the largest errors of about 10% in a few places, but with m
of the errors being a few percent or less.

There is an interaction between the row normalizat
@Eq. ~1!#, and the symmetry transformation Eq.~3!, which
requires that the row normalization and symmetric compu
tions be iterated. This iteration always converges to the sa
result, and is always stable for all of the MN55 tables. A
entry of ‘‘1’’ in C represents a single vote for the same utt
ance, from four listeners who heard that utterance. All
were deleted from the matrix before computingS. Once ma-
trix S has been determined,A is computed from

A5A2S. ~5!

Plotting the symmetric dataS(SNR) as a function of
SNR, as shown in Fig. 2, provides a concise yet compreh
sive summary of the entire set of measurements, and sh
the hierarchical grouping, without a need to order the soun
In the next section it is shown that ifSi , j is described as a
function of the AI, rather than the SNR, the same data m
be quantitatively modeled, and the important effects
chance may be accounted for.
2215Jont B. Allen: Consonant recognition and the AI
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B. Grouping the sounds

Sound clustering in the CM was used by MN55 as
basis for arguing that the sounds break down into dist
groups, which MN55 identified as five discretearticulatory
features, which they calledvoicing, nasality, affrication, du-
ration, andplace.

Each symbol in Fig. 2 labels a different articulatory fe
ture. Sounds 1–3~/pa/,/ta/,/ka/! are shown as circles, 4–
~/fa/,/ua/,/sa/,/ba/! triangles, 8–10 ~/ba/,/da/,/ga/! squares,
11–14 ~/va/,/Za/,/za/,/ca/! upside-down triangles, while th
nasal sounds 14 and 15~/ma/,/na/! are labeled by 5-pointed
stars.

The hierarchical clusters are seen as groups that
away as the SNR increases. The symmetric /ta/ data sh
in the lower-left panel of Fig. 2 are a great example: First,
the voiced sounds dramatically drop, starting from chance
the SNR is raised. Next, the unvoiced-fricatives /fa/, /ua/,
/sa/, /ba/ ~triangles! peel off, after very slightly rising above
chance at212-dB SNR. Finally, the two main competitors
/ta/ ~/pa/ and /ka/! peak around26-dB SNR, and then fall
dramatically, as /ta/ is clearly identified at 0-dB SNR a
above. In the lower-left panel /pa/, /ta/, and /ka/~s! are
statistically indistinguishable below26 dB, and approach
chance identification of 1/16 at218 dB. Above about26
dB, /ta/ separates and the identification approaches 1, w
the confusions with the other two sounds~/pa/ and /ka/!
reach a maximum of about a 25% score, and then d
monotonically, as the SNR increases.

The MN55 sounds 4–7~/fa/, /ua/, /sa/, and /ba/!, like
sounds 1–3~/pa/,/ta/,/ka/!, also form a group, as may be se
in the lower-left panel, labeled byn. This group also starts
from chance identification~6.25%!, rises slightly to a score
of about 7% at212 dB, and then monotonically drops at
slightly greater rate than sounds 1 and 3~symbolss!.

The third group is the remaining sounds 8–16, labe
by the remaining symbols, which show no rise in perf
mance; rather, they steeply drop from the chance level.

At the lowest SNR of218 dB, the elements in the sym
metric form of the AM approach chance performance, wh
for MN55 is 1/16, corresponding to closed-set guessing.
trapolating the data of Fig. 2, chance performance co
sponds to about221-dB SNR.

Based on the clustering seen in the AM~e.g., MN55
Tables II and III!, it was concluded by MN55 that the thre
sounds /ta/, /pa/, and /ka/ might be thought of as one gro
These three sounds form the unvoiced, non-nasal, nona
cate, low-duration group, having three different values
place. The details of these groupings depend on the SN
detailed analysis of these clusters show that the MN55ar-
ticulatory features~production feature set! do not always cor-
respond to theevents~perceptual feature set!.

In fact, it would be surprising if it turned out any othe
way, given that production and perception are fundament
different things. The details of a scheme that will allow us
make such an analysis of the optimal perceptual feature
form the remainder of this paper.
2216 J. Acoust. Soc. Am., Vol. 117, No. 4, Pt. 1, April 2005
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1. Formula for the total error

The solid-thick curve in the top two, and bottom-le
panels of Fig. 2, are graphs of the total error for /ta/

e2~SNR![12S2,2~SNR!. ~6!

Because each row ofSi , j has been normalized so that it sum
to 1, the total error for theith sound is also the row sum o
the 15 off-diagonal (j Þ i ) elements, namely

ei~SNR!5 (
; j Þ i

Si , j~SNR!. ~7!

Since each error term is non-negative,ei must bound each
individual confusionSi , j . For the data of Fig. 2, lower-left
the other two circle curves~/pa/ and /ka/!, which compete
with /ta/, and thereby form a 3-group, are nearly identic
All other error terms are much smaller. Thus, the solid-th
curve, e2(SNR), is approximately twice the size of th
curves for /pa/ and /ka/. All the off-diagonal terms go to ze
at 112-dB SNR so for that one pointe25S2,j , a fluke of the
small-number statistics.

Equation~7! says that the total error for theith sound is
linearly decomposed by the off-diagonal errors of the A
This is a natural decomposition of the total error into
confusions that can help us understand the AI prediction
much greater detail.

For example:Why does the probability of identificatio
of sounds 1–3 and 4–7 increase even when these sounds
not spoken? The initial rise for the two sound groups follow
from the increase in chance performance due to the
creased entropy, which follows from the reduced size of
group. This conclusion follows naturally from Eq.~7!. As the
SNR increases, the size of the group exponentially decrea

As the number of alternatives in a closed-set task
creases, the probability of guessing increases. Given 2 a
natives, chance is 1/2; given 16, chance is 1/16. Thus, gro
ing and the rise due to the confusion within the group
intimately tied together. In the same manner, as the S
rises from218 to 212, the MN55 sounds 4–16 are perce
tually ruled out, increasing chance performance for sou
1–3 from 1/16 to 1/3.

2. The nasals

In Fig. 3 Si , j (SNR) for i 515, 16, corresponding to /ma
and /na/, are presented. The two nasal sounds are cle
separated from all the other sounds, even at218-dB SNR.
As the SNR increases, the scores rise to'25%, peaking at or
near 212-dB SNR, following with the identification rising
and the confusion dramatically falling for SNRs at and abo
26 dB.

Sounds 1–14 are solidly rejected, even at218 dB.
These scores exponentially drop as the SNR is increa
There is a slight~visual! hint of a rise of a few sounds for th
case of /ma/, in some of the rejected sounds in the left pa
and some corresponding grouping, but the effect is small
it would be difficult to tease out. The rejected sounds in
right panel do not show any obvious grouping effect.

The subjects can clearly distinguish the two na
sounds~sounds 15,16! from all the others~sounds 1–14!,
Jont B. Allen: Consonant recognition and the AI
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FIG. 3. Plots of the symmetric AM corresponding t
the nasals /ma/ and /na/. The curve that rises to 1
Si ,i(SNR) for i 515 ~left! and i 516 ~right!. The solid
thick curve in each panel isei @Eq. ~7!#. The other
curves represent confusionsSi , j (SNR) for the remain-
ing soundsj 51,...,14.
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even at the lowest SNR of218 dB; however, they canno
distinguish between them until the SNR is greater than212
dB. The subjects know the sound they hear is nasal, but
question is, which one? This identification of event-na
leads to a significant increase in chance performance
SNRs between218 and26 dB, from 1/16 to 1/2.

One may also see this effect in the raw count data
218 dB, where the confusions are approaching equal cha
levels. For example, in MN55 Table I, the raw counts a
@25,28;33,32#. At 212 dB, /ma/ and /na/ are significantl
confused with each other, but rarely with the other soun
For example, from MN55 Table II, /ma/ is heard 20 tim
when /ba/ is spoken@S15,8(212)56.72% of the time#, while
/ba/ is heard 11 times when /ma/ is spoken~5.83% of the
time!.

III. TRANSFORMATION FROM THE WIDEBAND SNR
TO THE AI

Miller and Nicely used the wideband SNR, in dB,
their measure of audibility. However, as discussed in the
troduction, there are reasons to believe that the AI~SNR! is a
better audibility measure. We shall now demonstrate this
the MN55 data. Our approach is to transform MN55’s wid
band SNR into an AI, and then to plot the resultingSi , j (AI).

To compute the AI for MN55 one needs to know th
specificSNR, over articulation bands, denoted snrk . This re-
quires knowledge of the average speech spectra for five
male talkers, and the noise spectra. The spectrum for
female talkers is shown in Fig. 4, while the noise spectra w
independent of frequency~i.e., white!. The procedure for
computing AI~SNR! is described next.

A. Computing the specific AI

The AI is defined by FS47@their Eq.~8!# as

AI5
1

K (
k

K

AI k , ~8!

namely as a 20-band average over thespecificAI, denoted
AI k . The specific AI is defined in terms of the speech-
noise ratio

snrk[ss,k /sn,k , ~9!

where the speech power isss,k
2 @Watts/critical band# and the

masking noise power issn,k
2 @Watts/critical band#, in thekth

articulation band. When calculatingss,k , the average is ove
1/8-s intervals. snrk is the same as FS47’s band sensat
J. Acoust. Soc. Am., Vol. 117, No. 4, Pt. 1, April 2005
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level E. Thekth articulation band power-snrspeech detection
thresholdmay be modeled as

I 1DI

I
[

sn,k
2 1c2ss,k

2

sn,k
2

511c2snrk
2, ~10!

where a frequency-independentspeech detection constant
is determined empirically from data on the detection
speech in noise~Fletcher and Munson, 1937; French an
Steinberg, 1947!. The role ofc is to convert the speech rm
to the speech peaks, which are typically 12 dB above the
speech level. When snrk specifies the speech peaks,c52.

Converting to decibels, and scaling by 30, defines
specificAI

AI k5min~ 1
3 log10~11c2snrk

2!,1!. ~11!

Relationship Eq.~11! follows from the detailed discussion
of FS47 and Fletcher and Galt~1950!, followed by the sub-
sequent analysis by Allen~1994!. @See especially~Fletcher,
1995, Eq.~10-3!, page 167!.#

Between 0 and 30 dB, AIk is proportional to log(snrk)
because the percent of the time the speech is above a ce
level is proportional to the dB SL level (re: threshold sen-
sation level! ~French and Steinberg, 1947; Allen, 1994!. The
factor of 1/3 comes from the dynamic range of speech i
given articulation band~French and Steinberg, 1947, Fig.

FIG. 4. This figure from Dunn and White, 1940~their Fig. 10! shows the
average power spectrum for six men and five women. The dashed c
which approximates the power spectrum for the five women, has a slop
0 from 125 to 500 Hz, and a slope of229-dB/decade between 0.5 and
kHz.
2217Jont B. Allen: Consonant recognition and the AI
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page 95!. As discussed extensively by FS47~i.e., their Table
12!, an empiricalthreshold adjustmentmust be made, la-
beledc in Eq. ~10!. The value ofc is chosen such that th
speech is just detectable when snrk51, in each cochlear criti-
cal band, corresponding to specific AIs of zero~i.e., AIk
50). Equation~11! over-predicts the data of FS47 Table
by 3.2% (c[1/2, snrk5E). A more precise estimation ofc
would require repeating Fletcher’s critical ratio experime
using narrow bands of speech, with a white-noise mas
and measuring snrk at the detection threshold. The min(x,1)
part of the definition limits the AI on the high end, since f
an SNR above 30 dB, the noise has a negligible effect on
articulation~and intelligibility!.

The band independence model of the total error

The average soundarticulation error e ~SNR!, in terms
of the average sound articulationPc(SNR), is

e~SNR!512Pc~SNR!. ~12!

In 1921 Fletcher showed that the articulation error proba
ity e(SNR) could be thought of as being distributed ov
K-independent articulation bands. The bandwidth of each
these articulation bands was chosen so that they contri
equally to e @the articulation per critical band is consta
from 0.3–7 kHz ~Fletcher and Galt, 1950; Allen, 1994
1996!#. Assuming band independence, the total articulat
error may be written as a product overK band articulation
errors

e5e1e2¯ek¯eK . ~13!

This equation is called theband independence model.
Galt established that the articulation bandwidth is p

portional to cochlear critical bandwidths~French and Stein-
berg, 1947, page 93!, as measured by thecritical ratio
method and the frequency jnd~Allen, 1994, 1996!. Fletcher
then estimated that each articulation band was the equiva
of 1 mm of distance along the basilar membrane, ther
taking up the 20-mm distance along the basilar membra
between 300 to 8 kHz~Allen, 1996!. Thus, the AI@Eq. ~8!#
may be viewed as an average SNR,averaged over dB units,
of a scaled specific SNR, defined over cochlear criti
bands.

As first derived in Allen~1994!, the probability of ar-
ticulation error in thekth bandek may be written in terms of
the specific AI as

ek5emin
AIk /K , ~14!
2218 J. Acoust. Soc. Am., Vol. 117, No. 4, Pt. 1, April 2005
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where the constantemin is defined as the minimum error vi
the relationship

emin[12max
snr

~Pc~SNR!!. ~15!

This constantemin depends in general on the corpus, talke
and subjects. For Fletcher’s work,emin was 1.5%~H'11,
i.e., more than 2048 sounds!. For the work reported here,
value of 0.254%~H54! was used, based on an extrapolati
of the MN55 data to AI51 and a minimization of the mode
parameters for a best fit to MN55 data.

It follows from the above relations that

Pc~AI !512emin
AI . ~16!

The total error e5emin
AI in Eq. ~16! was represented by

Fletcher ase5102AI/0.55. Both expressions are exponenti
in AI, differing only in the choice of the base (emin

510(21/0.55)). Equation~16! only applies to the case of non
sense phones, having the maximum entropy.

Figure 5, left, shows the relative spectrum and no
level corresponding to SNRs of218 to 112 dB, for female
speech with a white-noise masker. On the right one may
the resulting AI~SNR!, based on the calculations specified
the equations presented in this section. The final value
the AI were determined withc52 to be ~starting from an
SNR of 112!: @0.459,0.306,0.186,0.1,0.045,0.016#.

Because the spectrum of the speech and the spectru
the noise are not the same, the AI~SNR! cannot be a linear
function of SNR. Only for the case where the two spec
have the same shape will AI~SNR! be linear in SNR. For the
case at hand, a white-noise masker, the high frequencies
progressively removed as the SNR decreases, as show
the left panel of Fig. 5.

B. AM „SNR… to AM „AI…

The left panel of Fig. 6 shows the MN55 consona
identification curvesPc

( i )(SNR)[Si ,i(SNR), as a function of
the SNR for each of the 16 sounds (i 51,...,16), along with
their meanPc(SNR) ~solid curve with circle symbols!

Pc[
1

16 (
i 51

16

Pc
~ i ! . ~17!

It must be mentioned that Eq.~17! only applies to the case a
hand, where thea priori probabilities of the sounds ar
equal. In the more general case, a Bayesian formula
would be required.
he
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g a
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FIG. 5. Using the speech power spectrum given by t
dashed line in Fig. 4, and assuming a uniform noi
spectral level, the AI~SNR! was calculated. Each curve
shows the relative spectral level of the speech havin
peak level at the wideband SNRs used by Miller a
Nicely @218,212,26,0,6,12#, in units of dB. The top
curve shows the112-dB speech spectrum. The dashe
dot line is the noise spectral level having an rms of
dB.
Jont B. Allen: Consonant recognition and the AI



in
nt

e

FIG. 6. The light dashed lines arePc
( i ) for each of the

16 consonants. On the left the abscissa is the SNR
dB, while on the right, the AI is used as the independe
variable. The solid-thick curve~circles! on both the left
and right is the average scorePc , Eq. ~17!. The solid-
thick curve~squares! on the right is the average phon
prediction given by Eq.~18!.
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In the right panel the individual scores, along with t
average, are shown as a function of the AI. To transfo
from SNR to AI the values shown in the right panel of Fig.
are used.

We also wish to compare the AI model prediction to t
measurements shown in Fig. 6. However, it is necessar
modify Eq. ~16! so that it accounts for chance~guessing!
given byPchance522H, whenH54 and AI50. This is done
by again assuming independence of the error probabilit
Since chance error for guessing isechance512Pchance, the
chance-correctedPc(AI) formula is

Pc~AI, H!512echance~H!emin
AI , ~18!

with

echance~H![1222H. ~19!

Fletcher’s formula Eq.~16! is the limiting case of Eq.~18!
whenH becomes large~Fletcher’sH'11!.

A plot of Eq. ~18! is shown in the right panel of Fig. 6
~solid curve, square symbols!, with emin50.254%, and
H54. The fit of Eq.~18! to the average of the 16 MN5
curves is excellent.

Discussion

The left panel of Fig. 6 shows that there is an appro
mately linear relationship betweenPc(SNR) and SNR over
the range from218 to 6 dB. The thick dashed-dot line
~SNR120!/30. This line is useful as a simple reference.

The main deviation from the linear dash-dot curve is d
to the strong saturation that occurs for the two nasal sou
and sound 7@the three curves with the highestPc(SNR)].
Note that each of the sounds has a nearly lin
Pc

( i )(SNR), with different saturation levels~if they are
reached!. The saturation point forPc(SNR) occurs at an
SNR of about 30 dB above the threshold, at220 dB ~thick
solid line with circles!. Note that since the relationPc(SNR)
depends on the noise spectrum, the linear relation obse
in the left panel of Fig. 6 can only hold for the white-nois
masker, since if the noise spectrum is changed,Pc(SNR)
must change, and it is linear for the white-noise case.

In the right panel of Fig. 6 the extended AI mod
@Eq. ~18!# is shown for MN55’s data. Each of the 16 curv
Pc

( i )(AI), i 51,...,16, is shown as the light-dashed curv
This average@Eq. ~17!# is shown as the solid-thick curv
with circles.

The solid-thick line with squares is the extend
~chance-corrected! AI model, Eq.~18!. The value ofemin of
J. Acoust. Soc. Am., Vol. 117, No. 4, Pt. 1, April 2005
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0.254% is one-sixth that used by Fletcher~1.5%!. The
smaller size could be attributed to the larger amount of tra
ing the subjects received over such a limited set sizeH54
5 log2(16).

As may be seen in the left panel of Fig. 5, since MN
used white noise, the snrk for frequency bands larger tha
about 0.7 kHz have an SNR of less than 30 dB, resulting
an AI of much less than 1. In fact, the AI was less than 0
for the MN55 experiment, corresponding to a maximu
score of only 90%.

A most interesting and surprising finding is that the e
tended AI model@Eq. ~18!# does a good job of fitting the
average data. In fact, the accuracy of the fit over such a s
set of just 16 consonants was totally unanticipated. T
needs further elucidation.

C. Extended tests of the AI model

If one plots the total error probabilitye(AI) 51
2Pc(AI) in log coordinates, as a function of AI, such plo
should approximate straight lines. This follows from the l
of Eq. ~18!

log~e~AI !!5 log~emin!AI1 log~echance~H!!, ~20!

which has the convenient formy5ax1b. The ordinate~y
axis! intercept of these curves at AI50 gives the log chance
error @b[y(0)5 log(e(0))5log(echance(H))#, while the ordi-
nate intercept of these curves at AI51 defines the sum of the
log-chance error and the log-minimum error, namely@a1b
[y(1), thusa5 log(emin)]. In Fig. 7 the log-error probabili-
ties for each of the 16 sounds, along with the average and
AI model, are shown. The sounds have been regrouped
that the log-error plots have similar shapes. The shal
slopes are shown on the left and the steeper slopes on
right.

From Fig. 7, we shall find that the linear relationsh
@Eq. ~20!# holds for 11 of the 16 sounds, with the free p
rameters emin(i) and echance( i ), either depending on the
sound, or on a sound group.

The upper two panels show the most linear grou
while the lower panels are the most nonlinear~nonstraight!
log-error curves. The curves that are close to linear~the two
top panels! are consistent with the AI model, due to Eq.~20!.

This observation of a log-linearity dependence for t
probability of error of individual sounds is rather astoundi
in my view. First, there was noa priori basis for anticipating
that individual sounds might obey Fletcher’s ban
independence property, Eq.~18!. Second, if individual
2219Jont B. Allen: Consonant recognition and the AI
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FIG. 7. This figure shows the probability of error for theith sound,Pe
( i )(AI) [12Pc

( i )(AI), as a dashed curve. To reduce the clutter, the sounds have
sorted over the four panels, with the sound number indicated in each panel title. The top two panels are the cases where the individual sound-erroes are
close to straight lines. The left-upper panel are those cases where the sound lies above the average, while the right-upper panel shows those care the
sound lies below the average. The two lower panels correspond to the sounds that violate the exponential rule~are not straight lines on a log-error plot!. For
reference, each panel contains the average probability of errorPe(AI) [12Pc(AI), shown as the solid curve with circles, and the model erroremin

AI , shown
as the solid line~squares!.
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sounds obey equations of the form of Eq.~8!, then sums of
such equations cannot obey Eq.~8!, since the sum of many
exponentials, each having a different base, is not an ex
nential.

The finding that individual CV recognition error is ex
ponential in the AI~the basis of the band-independence h
pothesis! therefore extends, and at the same time viola
Fletcher’s original fundamental AI hypothesis that the av
age error is exponential.

It is therefore essential to understand the source of
deviations for the individual sounds from the average, and
critically assess the accuracy of the model for individu
sounds. Five sounds~4,8,11,15,16! have a probability of er-
ror that deviates from linear, with the most nonlinear and
largest deviations from the mean, being the nasals~15,16!, as
shown in the lower-right panel. In the next section I explo
the reasons for this.

1. Log-error for the nasals

In Fig. 8 the nasal data are shown using the same
error linear decomposition used in Fig. 3, where the to
error ~solid-thick curve! is the sum of the errors of the com
2220 J. Acoust. Soc. Am., Vol. 117, No. 4, Pt. 1, April 2005
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peting sounds@i.e., Eq. ~7!#. In the case of the nasals, th
confusions for the other sounds is small, namely only /m
and /na/ significantly compete.

As a result of plotting the data as a function of AI, fo
AI.AIg50.045 ~SNR>212!, the log-error curves becom
linear in AI, as predicted~modeled! by Eq. ~18!. This value
of AIg is shown in the plot with an arrow indicating the poi
of separation of the target sound from the competing sou
Extrapolating this linear region back to AI50, one finds the
chance guessing probability of 1222Hg51/2, corresponding
to a nasal group entropy ofHg51. This is shown on the
graph by the dashed line superimposed on the correspon
error curve~stars!. In the region 0<AI<AIg50.045,H de-
pends on AI, since it dramatically drops from 4 to 1.

Thus, the reason that the nasal curves are not linea
Fig. 7 is that chance~the entropy factor! is dramatically
changing between 0<AI<AIg, due to the formation of the
perceptual ‘‘event-nasal’’ group.

When the data are plotted as a function of SNR, as
Fig. 3, the log-error linearity is not observed. Also, the sha
of the curve will depend on the spectrum of the nois
Clearly, the SNR to AI transformation is an important key
making sense of these data.
Jont B. Allen: Consonant recognition and the AI



nd
clu
al

he
r

te
r
is
re
ve
ve
up
ds
in

f /
h

.
pt

fu

i

ly
rix
to
un
R
re
M
ith
th

nd
oth-

e-
the

ce
-
-

e

se.
n

be

he

tri-
tab-

be
ram-

al
2. Log error for ÕpaÕ, ÕtaÕ, and ÕkaÕ

Finally, in Fig. 9 we return to the case of /pa/, /ta/, a
/ka/. This 3-group generalizes the /ma/, /na/ 2-group con
sions of Fig. 8. In the middle panel it is clear that for sm
values of AI less than 0.045S2,2(AI) for /ta/ is equal to the
curves for /pa/ and /ka/@S2,j(AI), j 51,3#. As the AI rises
above about 0.1, the three curves~circles! split due to the
identification of /ta/ and the rejection of /pa/ and /ka/. T
shape and slope of the curves corresponding to the two
jected sounds are identical. The projection of the rejec
curves back to AI50 gives the probability of chance error fo
a group of 3~i.e., 1–1/3!, as shown by the dashed line in th
middle panel. In the left-most and right-most panels, cor
sponding to /pa/ and /ka/, the two rejected sounds have
different log-error slopes. However, the two dashed cur
still project back to the chance error probability for a gro
of 3 ~1–1/3!. This change in the slope for the two soun
shows thatemin(i,j) can, in general, depend on the sound
the group. This seems to reflect the more robust nature o
relative to /pa/ and /ka/ due to /ta/ having more hig
frequency energy than its competitors.

Based on the small amount of the data shown in Fig
and Fig. 9, it appears that the band-independence assum
@Eq. ~13!# and the band error expression@Eq. ~14!# model the
individual sound confusionsSi , j (AI) more accurately than
they model the average band error@Eq. ~13!#. The total sound
error is more precisely the sum of these off-diagonal con
sion terms, as given by Eq.~7!. The implications of this
model seem quite significant, but without more data it
unwise to speculate further at this time.

IV. CONCLUSIONS

The intent of this paper is to provide a theoretical ana
sis of the venerable 1955 Miller and Nicely confusion mat
data, which have been difficult to fully appreciate, due
inadequate analysis methods. Replotting the data as a f
tion of the SNR, rather than as confusions at a fixed SN
provides a novel way of robustly clustering the featu
groups. This grouping, not robustly defined in a single C
is easily determined in such SNR plots. When working w
individual CM data at a single SNR, clusters depend on
J. Acoust. Soc. Am., Vol. 117, No. 4, Pt. 1, April 2005
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sound ordering. When plotted as a function of SNR, sou
order is irrelevant, and clusters depend instead on a smo
ness, or continuity, across SNR.

A second contribution is the use of the AI as the ind
pendent variable. When the PI is plotted as a function of
SNR, the only structure observed are the clusters~Fig. 2!.
When these same data are plotted as a function of AI~Fig. 8!,
they become linear functions of AI~they form straight lines
on log-error axes!, consistent with the band-independen
model of Fletcher@Eq. ~13!#, thereby corroborating Fletch
er’s AI model equation@Eq. ~16!# for the case of single com
peting consonants. Plots ofSi , j (AI) depend on the spectrum
of the noise.

A third contribution is the extension~and verification! of
Fletcher’s articulation model equation forPc(AI), for the
case of small set size@Eq. ~18!#, by introducing entropyH
into the model@Eq. ~16!#, thereby accounting for chanc
~guessing!.

As the SNR increases from chance levels~e.g.,221-dB
SNR!, sound groups form, forcing the entropy to decrea
The extended model@Eq. ~18!# leads us to the conclusio
that the entropy must depend on AI. This function,H~AI !,
decreases from its maximum value of 4 at AI50, to Hg

[ log2 ~group size! for AI5AIg , where the group is fully
formed. The entropy associated with these groups may
estimated from the clusters inSi j (AI), or from the intercept
at AI50 of the dashed lines of Fig. 8 and Fig. 9. For t
nasal sounds the group size is 2~H51!, leading to an inter-
cept of 1–1/2. For the@/pa/,/ta/,/ka/# group, the group size is
3 @H5 log2(3)'1.58#; thus, the intercept is 1–1/3.

A. Parametric model

In summary, a parametric model of the confusion ma
ces for the sound groups 1–3 and 15, 16 has been es
lished. Chance, defined byechance(H) @Eq. ~19!#, depends
only on the experimental set~alphabet! size, characterized by
H~0!, not on the sounds themselves. Each sound may
described by three parameters. The sound-dependent pa
eters of Eq.~18! areemin(i,j) Hg( i ) and AIg( i ). The param-
eter emin(i,j) appears to be a property of the individu
se’’

m 1/16 at
nt
e

FIG. 8. Since the log-error plots for /ma/ and /na/~see the lower-right panel of Fig. 7! show the greatest deviation from linear, they seem to be a ‘‘worst ca
for the AI model. From this figure it is clear that the reason for the deviation from linear dependence is due to the migration of chance from 1/16~H54! to
1/2 ~H51!, due to the nasal grouping. The rising nasal curves results from the robust grouping of the nasal, resulting in the increase in chance fro
AI50 to 1/2 at AI'0.045. The solid-thick curve is the sum of all the errors~and is 12Pc for the spoken sound!. A dashed line has been drawn from the poi
~0,.5! to ~0.31,.01!. This line fits the error curve~/na/ given /ma/, and /ma/ given /na/! with very little error, for AI5AIg.0.045, and intercepts the ordinat
at 1/2 for AI50, as expected for a 2-group~H51!. This further supports the band independence model Eq.~13!.
2221Jont B. Allen: Consonant recognition and the AI
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FIG. 9. This figure showsSs,h(AI) for s51, 2, 3 cor-
responding to the sounds /pa/, /ta/, and /ka/. The das
lines connect ~0,121/3! with ~0.48,0.1! and
~0.442,0.01!.
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sounds in the group. For example, the value ofemin(i,j) for
sounds 1 and 3 are the same, but the value for sound
much smaller~Fig. 9!.

The value ofei is the sum of all the errors of the corre
sponding off-diagonal values, namely

ei~AI !5(
j Þ i

Si , j~AI !. ~21!

This equation is the same as Eq.~7! except for the indepen
dent variable. The total minimum error is given by the av
age of the row errors, evaluated at AI51

emin5
1

16(i
ei~AI !U

AI51

. ~22!

This follows from Eq.~17! and Eq.~7!.
Parameter AIg( i ) characterizes the transition from th

maximum alphabet entropy@H~AI50!# to the group entropy
Hg . We have not attempted to find an analytical express
for H(AI), to describe the transition from entropy maximu
H~0! to that of the groupH(AIg). The hierarchies mentione
in the Introduction each have their own AIg parameter, each
group within the hierarchy having a smaller value of AIg .

The change in the entropy, fromH→Hg , due to the
formation of groups as the sounds start becoming identifi
accounts for the deviations from linear of the log-error pro
ability.

One might even view the ultimate identification of th
sound, as AI→1, as a further reduction of the sound’s ro
entropy to zero.

Since the parametric model is based on very little da
there is presently no clue as to how it will generalize.

B. Preprocessing of C
The confusion matrixC was transformed to form the

articulation matrixA, by a normalization step@Eq. ~1!#, and
then further transformed by symmetrizing@Eq. ~3!#. These
two transformations interact and must therefore be iterate
convergence. While these transformation steps are not es
tial, they are justified, since they reduce sampling noise
remove subject bias. Sampling noise and bias are interes
topics in their own right that deserve further analysis. F
example, the skew-symmetric formA(AI, H) @Eq. ~4!#
should be carefully considered in the future, to characte
and determine the precise nature of the subject bias.
bias should be considered when designing MN55-type
periments.
2222 J. Acoust. Soc. Am., Vol. 117, No. 4, Pt. 1, April 2005
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Once the CM has been preprocessed so that its rows
to 1, an error decomposition is possible. The equation for
is Eq.~7!, which says that the total sound identification err
is the sum of the confusions. This expression is usefu
those cases where the sounds group, as it uniquely dec
poses the error into the group confusions. When plotted
log error ~e.g., Fig. 9! one may characterize the sources
the sound errors in a quantitative way@i.e., using the param-
etersemin(i,j) and AIg( i )]. This method seems superior to a
previous analysis methods of such confusion matrices.

As shown in Fig. 7, the nasals appear to violate Flet
er’s independence formula Eq.~13!, since the total error is
not a straight line on the log-error plot. However, when d
composed by Eq.~7!, we see thatindividual competing
sounds obey band independence. Thus the total error devi-
ates from a linear log error, due to the dramatic change inH
with AI, from 4 to 1, over the small range of AI between
and AIg'0.045~Fig. 8!.

Furthermore, the projection of the straight lines that
along the log-error curves, back to AI50, givesechance, for
the group. This is an important corroboration of Eq.~18!.
Two examples of these are seen for the nasals, where
group has entropy 1, and the dashed lines of Fig. 8 pro
back to 1–1/2, and the 3-group of Fig. 9, where the das
lines project back to 1–1/3.

C. Calculating the AI

The procedure for calculating the AI, developed in S
III A, has some novel aspects as well. Rather than defin
the specific AI in terms of the band SNRs, the modifi
function of Eq.~11! was used. The justification for Eq.~11!
comes from the work of Fletcher as well as French a
Steinberg, both of whom promote~but did not use! this de-
tection formulation. Thespeech detection constant cis cho-
sen to characterize the detection of the speech peaks w
noise is added to the speech. Even though this formulatio
the AI has some important advantages, and is more accu
it is never referred to in the modern AI literature. This, I fee
is a mistake that needs rectification. Again, this approach
not studied in detail in this paper; however, there is a deta
analysis of Eq.~11! in both of the references, and a deep
analysis here is off topic. It was necessary to introduce
~11! to get reasonable values of AI~SNR! when fitting the
model Pc(AI, H), as shown in Fig. 6. This is because th
estimates of the SNR as a function of frequency@i.e.,
snrk(SNR)], in the left panel of Fig. 5, are strongly affecte
by this detection model, and on the specific choice ofc in
Jont B. Allen: Consonant recognition and the AI
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Eq. ~10!. Without the use of this speech detection parame
(c52), the band SNR values snrk(SNR) would be unrealis-
tic for small values of AI.

D. Band independence

Fletcher’s band-independence assumption Eq.~13! has
proven to be an important tool at the individual sound lev
This should come as a surprise, as it was not anticipated
Fletcher’s work, or any work following~that I am aware of!.
On the other hand, the fact that it works at all should lead
to the possibility that it could generalize. It would appe
from the analysis provided here that Eq.~13! is more accu-
rate in describing competing sounds than in describing
average probability correctPc(AI, H). This statement is sup
ported by the very linear behavior of the off-diagonal con
sion termsSi , j in Fig. 8 and Fig. 9. The partial errors ar
highly linear once the group has formed (AI.AIg). It fol-
lows from Eq.~7! that the deviations from linear are a resu
of the groups, which depend on the noise spectrum.
influence of a group formation distorts this basic linear ch
acter, and therefore distorts the linearity of the sum o
many error terms@i.e., Pc(AI)]. Based on the small amoun
of data we presently have~those shown in this paper!, it
would be reasonable to conclude that band independen
more a property of individual consonants than it is of t
group means, as first proposed~derived! by Fletcher. Much
more data and analysis are needed to verify this possib
which is hardly proved at this time.

E. Implications to ASR

Automatic computer recognition of speech~ASR! could
benefit from many of the same considerations as thos
MN55. It would be interesting to run similar experiments
modern ASR systems, to characterize theirA~AI,H! perfor-
mance. In many cases this might not be practical, due to
limited performance of the ASR front ends, or if the conf
sion matrices turned out to be skew-symmetric. The A
language model performance is inhibited when using n
sense speech, since most of these systems depend on
sort of language context for their performance.
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