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Many theories have been developed in past years which have attempted to model the function of the 
human cochlea. With the recent availability of the physical measurements of Rhode [J. Acoust. Soc. Am. 
49, 1218 (1971)], these theories now appear to be inadequate. In this paper, improved numerical solutions 
have been found for the two-dimensional cochlear model proposed by Lesser and Berkley [J. Fluid Mech. 
51, 497 (1972)], using the Green's-function method as first suggested by Cox and Lien [(1973) 
unpublished]. The Green's-function method is used to derive an integral equation which may then be 
solved numerically. This procedure has proven to be stable, accurate, and faster than several other 
numerical solution techniques that have been tried. With an appropriate selection of the assumed 
membrane dissipation, the results are seen to agree within a few decibels of the M6ssbauer measurements 
of Rhode, including the sharp change in slope observed in his amplitude ratio measurements just above the 
best frequency. This plateau occurs at a level which is 58 dB lower in amplitude than the amplitude at the 
best frequency. 

PACS numbers: 43.63.Bq, 43.63.Kz 
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INTRODUCTION 

Much attention has been focused in the literature over 

the past several years on the problem of the mechanical 
response of the basilar membrane to an acoustic signal 
stimulation. yon B6k6sy (1960)was the first to measure 
physical motion of basilar membrane. Recently, Rhode 
(1971), Johnstone and Boyle (1967), and Rhode and Ro- 
bles (1974), have given us more detailed and accurate 
data using a radioactive M}{ssbauer source while Wilson 
and Johnstone (1972) have developed a capacitive probe 
technique. These physical data show detailed effects 
which have not been observed either in yon B•k6sy's 
data or in any theoretical calculations. 

Various attempts toward understanding yon B•k•sy's 
data have led to the development of one-dimensional 
transmission-line theories (Zwislocki, 1965; Peterson 
and Bogert, 1950; Schoeder, 1973; and Zweig et al., 
1976) based on yon B•k•sy's observations of a traveling 
wave on the membrane. 

More sophisticated and complete theories have been 
advanced in the literature, again based on yon B6k6sy's 
original results, but these models have not been probed 
in depth. The more complete theories include two- and 
three-dimensional fluid dynamical or quasistatic models. 
Steele (1974) has proposed several models but has not 
yet compared the results directly to the physical data. 
Lien and Cox (1973) developed a detailed three-dimen- 

sional model but then reduced it to the previously de- 
rived and well-known one-dimensional transmission- 

line model after several simplifying assumptions. Sie- 
bert (1974), in the spirit of Ranke (1950), developed a 
two-dimensional model which he then simplified by mak- 
ing a short-wavelength approximation. His solutions 
are believed to be useful only near the place of best fre- 
quency. Lesser and Berkley (1972) formulated a two- 
dimensional fluid model which they solved numerically. 
Their solution would appear to be the most complete 
among these multidimensional models since these were 
obtained directly from the model by numerical methods. 
However their numerical results were limited and were 

highly sensitive to computational errors. 

The one-dimensional models proposed to date (Zwis- 
locki, 1965: Peterson and Bogert, 1950; Schroeder, 
1973; Zweig et al., 1976) have not been correctly based 
on direct physical measurements of basic constants, 
such as the elasticity of tissue, because of the problem 
of relating these fundamental constants to the model's 
transmission-line impedance. The multidimensional 
models have been only slightly more successful in this 
regard due to the great difficulties in obtaining these data 
and due to the lack of knowledge of the important mecha- 
nisms. For example, detailed knowledge of the restor- 
ing forces within the basilar membrane, or of any sys- 
tem loss mechanisms, have been matters of conjecture. 
Lien and Cox (1973), Allarie et al. (1974), Steele (1974), 
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FIG. 1.. Mathematically idealized model of the cocklea. The 
oval and round windows are be on the left end while the helo- 

citrema may be seen on the right end. The basilar membrane 
is represented by the cross-hatched region. 

and Novoselova (1975) concerned themselves with these 
problems of basic mechanisms, and in the cases of A1- 
larie and Novoselova, have ignored temporarily the 
fluid aspects of the problem in order to gain a deeper 
understanding of the basic principles. 

Ultimately, nonlinear effects are of interest (Kim et 
al., 1973; Hall, 1974; Schroeder, 1975). If we are to 
gain any understanding in the future of these nonlinear 
effects thought to be present in basilar-membrane mo- 
tion, a thorough understanding of the underlying phe- 
nomenon is essential. 

I. PRESENT APPROACH 

Because of the many approaches and approximations 
described above, considerable confusion exists in the 
field as to which features of the various models are es- 

sential. A controversy has long existed with regard to 
the relative merits of single versus multidimensional 
theories (long- versus short-wavelength problem). 

This paper presents an accurate numerical solution of 
a particular two-dimensional model. First the results 
are given and then the method of analysis is carefully 
developed, since it is the only numerically acceptable 
procedure known to the author for solving the full equa- 
tions with accuracy and stability. We will demonstrate 
that the present theory is in closer agreement with the 
physical measurements of Rhode (1971) than the one-di- 
mensional theory. Results from one-dimensional mod- 
els qualitatively deviate from results of two-dimension- 
al models due to differences in the response at the best 
frequency and the plateau in the magnitude response 
above the place. These deficiencies are believed to be 
inherent in transmission-line models. No reasonable 

one-dimensional theory is believed to exist which is 
totally acceptable. This is not to say that one-dimen- 
sional models are not useful in many approximate ap- 
plications. 

II. SUMMARY OF EQUATIONS AND RESULTS 

We shall now summarize the equations of the model 
and compare the solutions to both Rhode's data (1971) 
(animal 69-473) and to one-dimensional solutions. Be- 
cause of the variability in the experimental data, and 

the computation time involved. more comparisons have 
not been attempted. 

An uncoiled cochlea is physically similar to the box 
shown in Fig. 1 where rectangular coordinates have been 
assumed for simplicity (Lesser and Berkley, 1972). 
The basilar membrane splits the fluid-filled box down 
the center as is indicated in the drawing by the shaded 
region. The stapes is connected to the upper rectangu- 
lar region shown in the left and acts like a piston driving 
the fluid in and out. The lower window is assumed at 

all times to be exactly out of phase such that when the 
upper piston is moving in, the lower piston is moving 
out. 

The fluid is assumed to be incompressible (no change 
in fluid density). This assumption implies an infinite 
speed of sound in the fluid, an approximation which is 
valid because the distance from the stapes to the point 
of maximum displacement is much less than the wave- 
length of sound in the fluid (Lesser and Berkley, 1972). 
We also assume that the fluid is inviscid. The loss will 

be introduced as internal friction within the basilar 

membrane. 

Thus for a steady-state complex sinusoidal excitation 
at the stapes of radian frequency •o, the fluid motion 
may be described by the following equations: 

V"• = 0 , 

V=-V• , 

and 

([) 

(2) 

p = i cop• k . (3) 

The cochlea may be urEolded (Lesser and Be rkley, 
1972; T.ien and Cox, 1973) as shown in Fig. 2(b). The 
stapes boundary condition is defined as a spatially uni- 
form, single frequency velocity source. (assumed here 
to be i cm/sec). At the helicotrema, the potential is 
assumed to be zero. On the upper wall at y =H, V•= 0 

•(X) = .• Oi G(XIX•) 
I 

(a) 

; o 3 

• (x) =-fsP(XlX' ) un(x') dX' 

(b) 

FIG. 2. (a) When a distribution of point sources is known, the 
potential may be determined by superposition. (b) Unfolded 
mathematical idealization showi•g velocity boundary conditions. 
The equations relate the velocities to the potential by the use 
of superposition of the Green's function GCYI X'). 
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FIG. 3. Physical model and boundary conditions. 

since no fluid may flow through this boundary. 

The boundary condition on the basilar membrane (BM), 
namely at y = 0, is derived in Appendix C. It relates the 
pressure p to the BM velocity V•a' 

(4) 

where K(x) is the BM's stiffness due to its transverse 
bending moment, R(x) is the loss, and M is the BM's 
mass. R(x), the loss term, is the only parameter which 
has not been independently measured. It is therefore 
chosen to be in agreement with the measured data of 
Rhode (1071). 

The solution of our problem is thus given in terms of 
the velocity potential q•(x, w) on the BM as a function of 
frequency. The velocity VBM may be found from Eqs. 
(3) and (4). 

VBM has been plotted for various frequencies in Fig. 
8. It is interesting that (• is a complex variable and that 
because of (1), defines an analytic function of the com- 
plex variable x + iy inside the fluid-filled chamber. 

An immediately useful result is the approximate pro- 
portionality between log frequency and characteristic 
place. • Note in Fig. 8 that one octave in frequency al- 
ways corresponds to the same distance. For example, 
the distance between the places at 100 and 200 Hz is the 

L 

G (xlx')=/L---• x' , x < < x' 
I-2- ,x>> x, 

X:X / 

i i i i , i & i ! ,i 

0 x 

FIG. 4. Plot of the Green's function GBM(Xl X') for various 
values of x'. 

i 

•2 
g (xlx'): -•-x2 G(xlx' ) 
L=3.5 

H = .35 

-3. Smm x 3.5mm 

FIG. 5. Plot of the second difference of Gm•(xl x') as a func- 
tion of x-x'. The second difference simulates the second de- 
rivative. 

same as the distance between the places for 5 and 10 
kHz. Using this relationship, we may transform the 
velocity as a function of x for one frequency into the 
velocity as a function of frequency at one place. Since 
Rhode's (1071) data have already been plotted on a log- 
frequency scale, his data need only be scaled linearly 
along the ordinate and the abscissa in order to be com- 
pared to our computed results. 

The approximate frequency shift-invariant property 
that we have observed above can also be observed in the 

one-dimensional model. From that model we may de- 
termine the transformation between the frequency data 
and the place data. This transformation, which has 
been numerically verified using a one-dimensional mod- 
el is 

f=fo e• ß (5) 

The constant a must be identically equal to the expo- 
nential factor of the resistance term in the BM imped- 

ance R(x). In our simulations, a was chosen to be 1.7. 

Shift invariance of the velocity envelope implies a lin- 
ear coehlear map. The cochlear map is a plot of the 
characteristic place as a function of the logarithm of the 
frequency. When the eochlear map is not linear, the 
transformation between the frequency response and the 
place response is more complex. Since we have as- 
sumed a linear eoehlear map in our model and have 
chosen parameters which are consistent with shift in- 
variance, the model results remain the same on either 
the x or log(f) scale. Experimental observations only 
satisfy these assumptions over a limited range however, 
thus slow variations between our results and Rhode's 

(1071) data are expected. 

We therefore transformed Rhode's data from frequen- 
cy to place using the exponential transformation with a 
equal to the value chosen in the impedance calculation. 
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It should be stressed that this approximation is exact 
when the cochlear map is linear and shift invariance 
holds. This result is plotted in Fig. 6. In that figure 
we see a comparison between our result, Rhode's (1971) 
data, and Zweig et al. 's (1976) one-dimensional-model 
results. 

The agreement between Rhode's and our results 
close both quantitatively and qualitatively. Note the 
sharp discontinuity in the magnitude function above the 
characteristic place. This detail, which is 58 dB down 
relative to the peak, has not been reproduced in any one- 
dimensional model. 

The phase data are not easily compared without massive 
calculations. Each frequency point requires a two-hour 
calculation to do the matrix inversion for a 200-point 
solution. Thus using the present solution technique, a 
limited amount of results are necessary. Rather than 
proceeding with the present solution technique, we are 
investigating more efficient models which maintain ade- 
quate accuracy compared to the original model. 

Rhode's (1971) phase and magnitude as a function of 
log(f) is shown in Fig. 7(a). The phase and magnitude 
for our results as a function of x is shown in Fig. 7(a). 
Only the end points may be compared directly. Our 
phase has a total accumulation of 6•r while Rhode's phase 
accumulation is 9•r. The phase accumulation appears to 
be highly correlated with the plateau to peak ratio in the 
magnitude response. Thus we could not match both as- 
pects of the curves simultaneously. The conditions for 
this experiment are given in (C12) (see Appendix C). 
More accurate numerical results are necessary to de- 
termine the true extent of this problem. 

The plateau-to-peak ratio is almost entirely deter- 
mined by the channel depth H and the membrane mass 
M. It is also slightly dependent on R, the loss. The 

RHODE DATA (a) 
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._o 2w' NUMERICAL RESULTS 
o• f= IKHz 

'• 0 

z -2•r 

-6• - 

--8• I I I I I I I • I 
0 X(cm) 3.5 

•G, ?, •he mode] phase •nd m••de •es•ts •nd •hode's 
measured phase •nd m••de p]o•ed •s • •nc•on of •o•(•), 
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FIG. 6. Plots of the displacement ratios on the basilar mem- 
brane as a function of x or Log(fl. The dots are the measured 
results of Rhode animal 69-473. [The Rhode datawere taken 

from Fig. 4 of (Zweig et al., 1976). The dotted curve is the 
one-dimensional result of Zweig, Lipes, and Pierce (1976).] 
The solid curve is the result of solving Eq. (13). 

shape of the region around the place is determined al- 
most entirely by M and R. Smaller R caused a sharp 
peak to rise at the place. Increasing M causes peaking 
and broadens the peak. Thus by carefully choosing H, 
M, and R(x), the Rhode (1971) data may be matched as 
shown in Fig. 6. K and a, the stiffness and the expo- 
nential constant in R, are solely determined by the 
cochlear map. 

We did not anticipate the critical interaction between 
the membrane mass M and the channel depth H. The 
velocity response is highly sensitive to the choice of 
these two parameters. A factor of two is qualitatively a 
large change. 

We now proceed by developing a more complete de- 
rivation of the equations just discussed and our method 
of their solution is outlined. 

III. PROBLEM FORMuLATION-DIFFERENTIAL 

EQUATIONS 

The model and approach we have chosen closely 
parallels and builds on two previous approaches, name- 
ly those of Lien and Cox (1973) and of Lesser and Berk- 
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FIG. 8. ;Family of theoretical response curves for various 
frequencies as a function of position along the basilar mem- 
brane. These solutions were computed using 100 points. For 
this calculation, L =3.5, H=0.35, K 0 = 1.09, R0 = 1.00 anda = 1.5. 
If more points had been used, the ripples would not be present. 
Note that for steady state conditions, velocity ratios are equal 
to displacement ratios. 

ley (1972). Lien and Cox have derived a model from 
basic principles which is essentially the model assumed 
at the onset by Lesser and Berkley. The latter go on to 
find numerical solutions, while the former reduced their 
equations to a one-dimensional transmission-line theory. 

As previously described, the unrolled cochlea is simi- 
lar to the idealization shown in Fig. 1. The sound ve- 
locity for the fluid filling the chambers is not known 
precisely, but is not much different from that of water. 
If we define the distance from the stapes to the place as 
D, and the wavelength in water for a frequency f as k, 
then for all frequencies of interest 

<< (6) 

Because the characteristic length D is much less than 
a wavelength, pressure changes applied at the oval win- 
dow are immediately transferred to all parts of the sys- 
tem with a velocity which is infinite. This means that 
the wave equation is unnecessary in describing fluid mo- 
tion and Laplace's equation will suffice. •' 

Next the cochlea is unfolded, by separating it along 
the basilar membrane with the hinge point at the apex 
x= L, and stretched so that the two chambers make one 
long chamber, as shown in Fig. 2(b). This model is 
equivalent to the folded one as long as we constrain 
the membrane velocity to be antisymmetric about the 
x = L point (Lesser and Berkley, 1972; Lien and Cox, 
1973). The steady-state fluid equations therefore re- 
duce to Eqs. (1)-(3). 

Equation (1) is just the result of conservation of mass 

v. (pv) = 0 . 

Equation (2) is the definition of the velocity potential. 

This equation is applicable because the curl of the ve- 
locity is assumed to be zero (no vorticity). Equation (3) 
is the result of Newton's law. 

Associated boundary conditions are (1) the normal 
velocity on the upper wall is zero, (2) on the stapes end 
the fluid is driven with unit sinusoidal velocity, and (3) 
at the antisymmetric point x=L the potential is zero. 3 

Finally, we must find a relation between the pressure 
and velocity on the basilar membrane in order to proper- 
ly apply boundary conditions on this surface. The boun- 
dary conditions, except on the BM (y= 0 plane) are 
therefore 

aq>/ax[•__0=- I , (8) 

, (9) 

aq•/ay [ •:,=0 . (10) 

Equation (8) is the oval-window driving condition, (9) 
the antisymmetry condition, and (10) is the top rigid- 
wall condition. 

Beside Eqs. (1)-(3) and (8)-(10) we also need the y 
= 0 boundary condition on the BM [Eq. (4)] which is de- 
rived in Appendix C. This final boundary condition is 
the heart of the model, since it is the restoring force 
of the BM working against the mass of the fluid which 
causes the resonant behavior we wish to describe. 

Thus on the BM we assume the homogeneous mixed 
boundary condition given by Eq. (4). 

IV. DERIVATION OF AN INTEGRAL EQUATION 

FORMULATION 

We now transform our problem into an equivalent in- 
tegral equation by the Green's function method. We do 
this formally in Appendix D, but in this section we pre- 
sent the needed results in a more intuitive manner. 

Assume we have several point sources of magnitude 
a. placed at locations X,' as shown in Fig. 2(a). If the 

' is G(,YIX,') then the potential at X for a unit source at X, 
total potential is the weighted sum over all the sources, 
as shown in Fig. 2(a). The upper case X is used here 
to denote the coordinate pair (x,y)while the lower case 
x is the x-coordinate value. 

Assuming velocity sources, the velocity potential 4 
may be found by summing over all sources, thus defining 
an integral relationship between the potential, at any in- 
terior point X, and the normal velocity, on the boundary 
S' [Fig. 2(b)] 

q)(,X')=- fs , G(X[ X')V.(X')dS' , (11) 
where G(XIX •) is a known function which must satisfy 
the boundary conditions of zero normal velocity on $•. 

If we let •=0 in Eq. (11) we get an integral relation- 
ship between the potential and the velocity of the fluid 
VBM on the basilar membrane. For y = O, we define 
GBM(xIx')= G(x, 0l x', 0). The evaluation of GsM(xlx') is 
given in Appendix B. Appendix A is a Fortran program 
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which may be used to evaluate GsM(xlx') numerically. 
In this program GR is an array containing the Green's 
function as a function of x assuming a source at point 
IXO. NX and NY are the limits of the image summation, 
NP is the number of x points used along the length, and 
XL and YL are the dimensions of the cavity in centi- 
meters. For our simulations XL= 3. 5, and YL = O. 1. 
M. M. Sondhi of Bell Telephone Laboratories has been 
able to sum our series and has found a closed-form solu. 

tion for GsM(xlx•). We evaluated his analytical result 
rather than numerically determining Gs•. The integral 
of G over the round- and oval-window ends may be 
evaluated exactly (Appendix B) and turns out to be the 
trivial result L-x. Thus Eq. (11) finally reduces to 

½(x)- 2 [ z;- x. 
=0 

(12) 

This integral relation relates the potential •(x)to the 
velocity Vs•a(x) on the basilar membrane. All fluid 
properties and boundary conditions of the model have 
been included in this equation, and the only unused piece 
of information is the BM boundary condition given by 
Eq. (4). 

Incorporating (4) into (12) reduces our problem to the 
solution of the integral equation 

½(x)+2iwp Cs•a(xlX') z( x , w)dx'=L-x . (13) •'=0 

V. NUMERICAL SOLUTIONS 

In order to find solutions to Eq. (13) we used the fi- 
nite-difference method (trapezoidal rule) to generate a 
discrete set of linear equations. Gaussian elimination 
was then used to solve the resulting matrix equation on 
a Data General S/200 Eclipse digital computer. 

From experience, we found that a minimum of 100 
points is needed to represent the data, thus the mini- 
mum size of the matrix equation must be at least 

100x 100. If 200 points were used, the solution did not 
differ by more than 3 dB from the 100-point solutions. 
In order to solve a set of equations this large, the equa- 
tions were stored on disk and only two rows of the ma- 
trix were in core at one time. The Green's function 
was computed in advance and stored on disk. Note that 

since the Green's function is not a function of frequency, 
it need only be computed once. 

Each frequency computation required a new evalua- 
tion of the matrix elements and a matrix inversion. The 

solution values were then put on disk or magnetic tape. 
The total time required at each frequency for a solution 
of 100 points was approximately twenty minutes on the 
Eclipse S/200 using moving head disks. It was crudely 
estimated that the computation time went as n to the 
fourth power, where n is the number of points in the ma- 
trix equation. Since there seemed to be no problem with 
accuracy, only single precision floating point was neces- 
sary, which on the Eclipse consists of a 32-bit floating- 
point word (24-bit mantissa with an 8-bit exponent). 

Some tricks were used which were felt to be useful. 

First, since the Green's function is singular at x= x •, 

the finite difference at that point must be integrated 
analytically. Thus the effective diagonal value of the 
Green's function is found as follows: 

or 

Geff [ x---x ' A = .. -,A/•. (14) 

Ce, , I•:•,= In(iS/2)- 1 . (15) 
This correction has been included in the FORTRAN pro- 
gram of Appendix A. 

The second trick was to take a second difference be- 

fore solving the equations. This was done for several 
reasons. First, it allowed the boundary conditions to be 
reintroduced into the equations, thereby hopefully im- 
proving the global properties of the solutions (i.e., re- 
duce the amount of error propagation in the recursive 
solution). The differenced set of equations were no 
harder to solve and seemed to be slightly better behaved 
in the region about x = L. (Note that since the Green's 
function would become non-integrable if its second de- 
rivative were taken, one must proceed carefully, as has 
been done by differencing the discrete set of equations. ) 

We have defined a function g as the second difference 
of Gs• a. This new function is plotted in Fig. 5 over the 
restricted range of + 10% of the full length about the di- 
agonal x=x'. It is interesting that g(xlx •) is approxi- 
mately symmetrical; also it is a function only of the 
variable x-x ' to a good approximation except near the 
boundary points x'= 0 and x'= L. If the function g(z) 
were a delta function at z = 0, then Eq. (13) could be ex- 
actly reduced to a transmission-line theory. If g(z) is 
expanded as the second derivative of a delta function 
plus a delta function, it may still be reduced to a trans- 
mission-line theory. This was the approach of Lien and 
Cox (1973). All deviations from transmission-line be- 
havior are due the nonlocal nature of g(z). In comparing 
the present solutions to those of Zweig et al. (1976) as 
shown in Fig. 6, we see that near the place the differ- 
ences are significant. Zweig did not use the same im- 
pedance values we used. He chose them to agree with 
the Rhode (1971) data. When our impedance values are 
used in the one-dimensional model, the resulting differ- 
ences are even greater than those of Zweig. 

Vl. SUMMARY 

We have presented a two-dimensional model in detail 
and shown that the solutions agree very closely to the 
physical measurements of Rhode. The two-dimensional 
model was reduced to an integral equation (13)which 
was solved numerically. We have noted that the differ- 
ence between our model and the one-dimensional models 

has arisen because of the logarithmic behavior of the 
G reen's function near x = x • . 

Since all of the system parameters appear with great- 
er physical meaning than those of a one-dimensional 
model, it might be possible to physically determine the 
source of the combination tone nonlinearity (Kim et al., 
1973; Hall, 1974; Schroeder, 1975). From the numer- 
ical work of others (Kim et al., 1973; Hall, 1974; Hub- 
bard and Geisler, 1972), it would appear that the non- 
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linearity may somehow be related to the loss term R(x) 
in the basilar-membrane boundary condition. If the non- 
linearity measured by Rhode and Robles (1974) is the 
same as the nonlinearity which causes the combination 
tones, then the Rhode (1971) data lends support to this 
hypothesis because increased loss would imply increased 
bandwidth. It is also clear that a more direct measure- 

ment of the loss term would be useful since the mecha- 

nism presented in Appendix C has been hypothetically 
chosen, due to a lack of any direct experimental evi- 
dence. 

Little effort has been spent in this paper evaluating 
the qualitative effects seen to be present in the data, 
such as the plateau in the magnitude function above the 
characteristic place. An analytical interpretation of this 

phenom. enon would be interesting. It is a two-dimen- 
sional effect which will not be present in one-dimension- 
al models. 
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APPENDIX A 

PROGRAM NAME: G4 

COMPUTES GREEN'S FUNCTION FOR POINT IXO 

SUBROUTINE G4 (GR,. IXO, NX, NY, NP, XL, YL) 
DIMENSION GR(1) 
TPY= 8. *ATAN(1. ) 
DX= XL/FLOA T(N_P-1) 
EXM 1 = EXP (- 1. ) 
AS= (EXMi*Dg/2.)**2 
TYL=2.*YL 
FXL = 4. *XL 

TXL=2.*XL 

NI = 2* NX+ 1 

NJ = 2*NY+ 2 

X O0 = DX* FLOAT (/X0 - 1) 

LOOP OVER X 

DO 20 IX = 1, NP 
GI =0 

X= DX*FLOAT(IX- 1) 
LOOP OVER Y0 

DO 15J=l,NJ 
M=J-NY- 1 

YO = TYL*FLOAT(M) 
Y02 = Y0** 2 

G4= 1 

LOOP OVER X0 

DO 10 I= 1,NI 
N=I-NX-1 

X0 = X00 + FXL*F LOAT(N) 
A1 = Of- xo)**2 + Y02 
IF(A1. EQ. 0. )A1 =AS 

A 2 = (X +X0)** 2+ Y02 

IF (A2. EQ. 0. )A2 = AS 
B1 = (TXL- X- X0) **2 + Y02 
IF (B1. EQ. 0. )B1 = AS 
B2 = (TXL - X + X 0)**2 + Y02 
IF(B2. EQ. 0. )B2 =AS 
R4 = (Ai*A2)/(Bi*B2) 
G4 = G4* R4 

10 CONTINUE 

GI =GI- ALOG(G4) 
15 CONTINUE 

GR(IX) = GI/TPY 
20 CONTINUE 

RETURN 

END 

APPENDIX B' BEHAVIOR OF THE GREEN'S FUNCTION 

The Green's function used in Eq. (13) is the solution 
of the differential equation 

• + • G(XIX')=- 6(X-X') (B1) 
since we assume a two-dimensional model. Physically 
G is the potential at X due to a unit velocity source at 
X'. The upper case X used'here represents the vector 
coordinates (x, y). 

The two-dimensional Green's function in an unbounded 

region is given by 

G(X[ X')=-(2•r) '• ln(] X-X'[ ). (B2) 
When the source is on a single rigid wall (zero normal 
velocity), the Green's function may be found by the meth- 
od of images to be 

C•,a,, CYI x')= - •-'ln( Ix-x' I ). (B3) 
Finally when the upper rigid wall and side walls are 

included, we may again use the method of images. How- 
ever in this case, an infinite number are required as 
shown in Fig. 9, where a small portion of the infinite 
image space is presented (Morse and Feshbach, 1953). 
The source is introduced at x = x', y = 0. There is a 
positive image at -x'. Each of these two sources is 
periodically repeated with a period of 4L along the x 
axis. Negative images occur at 2L+ x', also with a 
period of 4L. Images also occur at multiples of 2H. 

y SOURCE AT x= x', y'=0 

_xC Ox=x. , ¸.• 
Y=H 

y=0 

X= 0 X=l X= 2L 

FIG. 9. Image space used to evaluate the Green's function. 
GB•(X [ x') is found by summing over all images with the obser- 
vation point restricted to the y =0 surface (line). The images 
are periodic with a period of 4L along x. 
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Since each image has a strength, other than sign, given 
by (B3), the full Green's function at y- 0 is then 

C•M(xlx,)= - 1 • • (_ 1)•ln(z..mz;m), (B4) 
7• rl=_oo 

where 

•.• = [ (x ñ x' + 2nL )• + (2mH )•]•/• (BS) 
Note that 

r = ix I = (x 2+y2)•/•' . 
In practice this sum may be truncated after a few terms. 
In the solutions presented in Fig. 8, n and rn were 
summed over ñ 10 terms. G •M(xl x') for several values 
of x ' are shown in Fig. 4. 

To evaluate the integral when the source is at the oval 
window, images appear with a period of 2L and 2Ho For 
this ease we find that at y = 0 

-1 • G s (x I Y') = -•- • (- 1)" In (r,*•r;•) , (B6) rl---_ oo 

where 

•,• = [ (y' q- 2rnH) • + (x + 2nL )•]•/2 . (B7) 

Since the stapes source velocity is uniform, the inte- 
gration over uniformly distributed line sources gives a 
uniform plane source. Thus we may evaluate the driv- 
ing function integral exactly 

2 Cs(xlf)dy'=L-x. (BO) 
'---0 

Equation (BS) is the solution of the problem of finding 
the electrical potential between two uniformly charged 
plates. In our ease, the charges are replaced by uni- 
form, plane velocity sources and sinks. 

APPENDIX C' DERIVATION OF IMPEDANCE 

BOUNDARY CONDITION 

In this section we wish to derive the boundary condi- 
tions needed at the basilar-membrane surface y = 0. 
This derivation was inspired by the one given by Lien 
and Cox (1973). It is believed by the author that more 
work needs to be done in this area. This section should 

be thought of as indicative of how this calculation might 
proceed. 

We assume that the BM is an nonisotropic inhomo- 
geneous plate vibrating with a known displacement dis- 
tribution in the z dimension (a third dimension for this 
model). The differential equation relating h, the y dis- 
placement, to the forces on the plate is 

D,a 4h(x, z )/a z4 = fn , (C1) 

where D, is the stiffness parameter, h the y displace- 
ment, and fn is the force normal to the plate (Timoshenko 
and Woinowslw-Krieger, 1959). Casual numerical 
experiments showed that the main effect of longitudinal 
stiffness was to dramatically reduce the sharp slope 
above the best frequency. Thus longitudinal stiffness 
was dropped from the model. The forces acting on the 
plate are due to the pressure of the fluid, the inertial 
mass of the plate, and internal friction of the plate. 
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The internal frictional forces are assumed to be propor- 
tional to the rate of curvature. Thus (C1)becomes 

D, (a 4h/O z •) = - 2P + o•rnh + ico r(O•h/O z • ) (C2) 

where P is the pressure, rn is the membrane mass per 
unit area, and r is the internal loss coefficient. 

Next we assume t•hat the distribution of the displace- 
ment, and thus the velocity, is first-mode-like 

h(x, z)= (Vsu(x)/ioo )cos[•z/W(x)] , (C3) 
where W(x) is the width of the BM. 

From (C2) and (C3) one may easily show that 

P(x, z) [ D,•' loom r• ] =- iiw(x)+ 2 cos 
(C4) 

If we integrate (C4) from - W/2 to W/2 after multi- 
plying by cos[7rz/W(x)] and then make the following defi- 
nitions' 

- P(x,z)eos dz , (C5) 

K(x) = D, rr412W4(x) , (C6) 

M=m/2 , (C7) 

R(x)= r•e/2W2(x) , (C8) 

z(x, - , (c9) 

we find the following expression for Z (x, co ), the effec- 
tive BM impedance function 

z (x, )= • +iooM+R(x) dynsec/cm • . (C10) 

For the solutions given here the following constants 
may be found 

W(x)= 0. 017e ø'85• cm , 

L=3.5 cm, 

H=0.1 cm, 

D•= 1. 7140 dyn em, (Cll) 

rn = 0.1 g/cm • , 
ß 

r= 0.017569 dyn see/cm a , 

from the assumed impedance parameters 

K(x) = 10 ø e -• dyn/cm • , 

R(x) = 300 e '• dyn sec/em •' , 

a=l.7 
' (C12) 

M= 0. 05 gm/cm , 

L=3.5 cm , 

H=0.1 cm. 

It is interesting to observe what might happen if one 
could drain all chambers of the cochlea without causing 
any damage. If this were possible, the eigenfrequencies 
of the BM would be given by those frequencies where Z 
is zero. The resonant frequency f, bandwidth BW, and 
the quality factor Q may then be found using the results 
of (C12) 
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•0 = z/2•f•(•)/•- (x(•)/2•)•-] v•- Hz , 
•w=•(x)/• uz, (c•3) 

, 

Q =70/sw--- •/2•(x)[•<(x)/•] 1/•' . 

This calculation gives values for the Q of about 3.75. 
This value of the Q seems intuitively reasonable given 
the transverse fiber material discussed by Iurato (1067). 
A direct measurement of the unloaded Q of the basilar 
membrane would obviously be very useful in increasing 
our understanding of possible internal loss mechanisms. 
A measurement of this kind might also give an increased 
insight into nonlinear effects if the nonlinearity is in the 
loss term, and if the loss is due to internal friction. 

APPENDIXD: DERIVATION OF THE INTEGRAL 
EQUATION 

We may transform the differential equation to an 
equivalent integral-equation formulation by the following 
procedure (Green's-function method). 

Define G(XJX •) by the differential equation 

v•'c(x[ x')=- •(x- x'). (m) 
Upon integrating the combination 

0V•'C - CV•'0 (D2) 

by parts, one may show that 

½(x)=f c tx l x' ) o__•_½ , an' dS• 

_ • qb(X•) a•G dS' (D3) 
where qb(X) is the potential and 

- aqb/On (D4) 

is the normal velocity of the fluid out of the surface. S' 
is the surface of the container. 

Finally, by assuming the boundary conditions of 
G(XIX •) to be 

• c/o•' l • . o,, s , = O , (•5) 
we may reduce (D3) to the simpler form 

qb (X)=- fs,G(XIx•)vn(X')dS' , (DO) 
where we have defined the normal velocity Vn(X) to be 
out of the box, 

All normal velocities are zero except on x= 0, x = 2L, 
and on theBM. Since V,=-lontheendx=0andlat 
x = 2L, we may find an expression for the potential on 
the surface of the basilar membrane y = 0: 

½ (x)= c.(•, 0l x', 0)v,(•', O)ax' 
s= 0 (D?) 

- it(x, 0[ 9.œ•, y')_ C(x, 0[ 0, y')] ey' , 

where V•,(x) is the velocity of the BM at x, y = 0. The 
dependence on z has been suppressed in this derivation 
since we assume an infinite extent in this direction (two- 
dimensional model). 
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TABLE E-I. Data for Appendix E. 

x ½,. ½i V,. 1/i 

0.00 -0.6515 0. 7440 -0. 2572E -0l 0. 2948E -0l 

0.18 -0.4733 0.7412 -0. 3397E -01 0. 5349E -0l 

0.35 -0.2846 0.7217 -0. 3707E -0l 0. 9497E-01 

0.53 -0. 8355E--01 0. 6718 -0.1932E -01 0.1615 

0.70 0.1.244 0.5702 0.5650E-01 0.2512 

0.88 0.31.55 0. 3885 0. 2605 0. 3151 

1.06 0.4252 0.1057 0. 6555 0.1544 
1.23 0. 3257 -0. 2295 0. 9593 -0o 7014 
1.41 -0. 8795E--01 -0.3363 -0.5991 --2.062 
1.58 -0.2299 0.2383 --3.275 3.743 
1.76 -0.1.990 --0. 2623E -02 -13.78 2.1.67 
1.93 0. 8599E -04 -0. 5591E -04 -0. 6188E -02 0. 3039E -02 
2.11 0. 1642E-04 -0. 7212E-05 --0. 5453E-03 0.2120E-03 
2.29 -0.4139E-05 -0. 6315E--05 0.1.0llE -03 0.1630E-03 
2.46 - 0.1516E - 04 0. l 191 E - 04 0. 3477E - 03 - 0. 2640E - 03 
2.64 --0. 9431E -05 0. 7807E -05 0. 2035E -03 -0.1645E -03 
2.81. --0. 4497E -05 0.1577E -04 0. 9595E -04 -0. 3262E -03 
2.99 --0. 6338E-05 0. 1651E -04 0. 1313E-03 -0. 3360E-03 
3.17 0. 2045E -04 -0. 6115E -05 -0.41.40E -03 0.1218E -03 
3.34 0. 5713E-05 -0. 9545E -05 -0.1156E-03 0.1917E -03 
3.50 0. 0000 0. 0000 0. 0000 0. 0000 

Finally to simplify the notation, we define 

G,(xly')=G(x, olo, y') , 

G,,,,(xl x' )- G(x, Ol x', O) , 
and 

(D8) 

(DO) 

u•(x)= v,(x, 0) . 
Thus (D?) may be written as 

½ (x)=+2 Gs(x[y')dy' , 
'--0 

+ 2 %•½l x')v,•,(•')ax' , 
x 

where we have used the symmetw of Gs• and Vs• to re- 
duee the •tegration limits of both integrals. 

(D10) 

(Dll) 

APPENDIX E 

In Table E-I we present a few values of the potential 
<h{x) and the velocity V,•M(x) for the ease of f= 1000 Hz. 
Conditions were as described in the text by Eq. (C12). 
The length of the cochlea L was assumed to be 3. 5 cm 
and the height H was 0.1. Of the 200 points used, we 
list only one out of every ten, starting with the first at 
x=0. p is 1. 

APPENDIX F' SUMMARY OF FINAL EQUATIONS 

A. Basic equation 

<h (x) + 2i•p G,•M(x I x' ) z(X ,co ) dx' = L - x . X '=0 
(13) 

B. Green's function 

- t • (- t)" •n(r.•r;•) (B4) 

•,,, = [ (x + x' + 2nL )• + (2rn//)•] •/•' . (B5) 

C. Impedance 

Z(x, co )= K(x)/ia, + icoM+ R(x) . (C10) 



119 J.B. Allen: Two-dimensional cochlear fluid model 119 

D. Velocity, pressure 

Vn•(x, w)=- iwpqS(x, w)/Z(x, w) 

p(x, co )= iwoqb (x, w) . (3) 

1The characteristic place is defined as the point of maximal 
displacement for a single-frequency input. 

2The following method of solution may be generalized to include 
the effects of fluid compressibility, but the generalization ap- 
pears to be unnecessary. 

3It is easy to check that if • is zero on the plane x = L then V• 
is zero on that surface as required by the antisymmetric con- 
dition. 

4The velocity potential is proportional to the pressure as shown 
byEq. (3). 
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