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COCHLEAR MODELS - 1978

; Jont B. Allen
Acoustic Reseqrch Department
Bell Laboratories
Murray Hill, New Jersey (7974

0. ABSTRACT

Two important concepts at the forefront of most cochlear modeling work
today are the need for nonlinear basilar membrane mechanics and the need for a
"second-filtering" mechanism at the transduction site of the hearing system.
Other less controversial topics are one vs. two-dimensional models and the use
of the WKB method for obtaining analytical results for frequencies below the
cut-off frequency.

DEFINITION OF TERMS

CF Characterisitc frequency m BM Mass

dmz BM velocity H Scala height

BM Basilar membrane X Positional coordinate along
BM

p Density P Pressure at BM surface

¢ma Stapes veloecity z BM impedance

moee Effective BM mass K BM stiffness

ST Stapes w Radian frequency 2nf

i V-1 s CF at stapes

1. INTRODUCTION

In this paper we review the present state of cochlear modeling with an
emphasis on the most recent developments in two-dimensional cochlear mechanics,
second-filter sharpening mechanisms and cochlear nonlinearities. Two important
concepts are at a forefront of most cochlear modeling work today. The first
of these is the need for a "second-filter" mechanism at the transduction site
of the hearing system and the second is the need for nonlinear basilar membrane
mechanics.

Recently detailed arguments on each of these points of view have indepen-
dently been put forth. Kim and Molnar (H2,1975) have reviewed the need for
signal dependent (nonlinear) mechanical damping. They argue that based on
present evidence there is no need for a second-filter and tentatively conclude
that the mechanical and neural systems are directly coupled. According to
their working hypothesis the nonlinear mechanics at threshold levels becomes
very sharply tuned as a result of the small mechanical damping. Thus they
argue that the observed differences between neural and mechanical tuning are a
direct result of the stimulus level.

Evans on the other hand (E4,1974) has presented compelling arguments on
the need for a "private, physiologically vulnerable second-filter." As a
result of studies where simultaneous neural and mechanical measurements were
made on cats, Evans and Wilson (E6,1974) came to the conclusion that the
mechanics must be linear and that a second-filter is required between the
mechanical and neural systems.
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Hall, who represents a third point of view, has made numerous numerical
model studies using a nonlinear transmission line model followed by a second-
filter model based on spatial differentiation (€3,1977a;B1,1974), He found
that both nonlinear mechanics and the second-filter are necessary in order to
successfully model combination tome effects and two-tone suppression for
frequencies below the characteristic frequency (CF). His model has also been
successful in modeling Zwicker's psychophysical masking period pattern data
(62,63,1977) (as a time domain version of two-tone suppression) which uses a
very low frequency (20 Hz) suppressor (B3,1978).

In this paper I shall present a point on view of these issues which argues
for both nonlinear basilar membrane mechanics and a linear transduction-stage
sharpening mechanism (second-filter). My approach differs from that of Hall
in that I have studied two-dimensional mechanical models and have used a
different approach to the second-filter problem,

2, One vs. Two Dimensions

The cochlea 15 a three-dimensional, coiled, fluid-filled mechaniecal
chamber divided into two sub-chambers (actually three if Reissnar's membrane is
considered) by the basilar membrane (BM). Because of this one might ask why we
are interested in one and two-dimensional models. The answer is of course that
a good model, by definition, should be the simplest possible model of the
cochlea that accurately captures the principles of its operation. At one level,
it is possible to do this with the one-dimensional, transmission line model.
However, when one is interested in making detailed comparisons between physical
measurements and a particular model, the one-dimensional models are not quanti-
tatively adequate, We illustrate this in Fig, 1 where we compare the results
of: (a) the one-dimensional model without effective BM mass correction [as
discussed by Sondhi (A5,1978), Eq. (39a)], (b) the one-dimensional model with
effective mass correction mep=m+ Wcm. (c) the two-dimensional model
response of Allen and Sondhi (A3,1979), and (d) Rhode's measurements.

20, - y

Pig. 1, Comparison of (a) one-
dimensional model with no effective mase,
P (b) one-dimensional model with effective
mase, (e) two-dimensional model of

Allen and Semdhi (A3,1978). ALL model

4 parameters ave identiecal in this figure.
The dashed lines (d) are data of the
Rhode (animal 69-473) made at several

|V Vgr | 1a8)

ea === RHQODE ol 3
" — wooer different sound pressure levels, showing
the frequeney dependent nomlinear
-80 i 1 o8
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The three sets of calculations are based on identical model parameters., The
point we wish to make here is the following. The assumptions made in deriving
the one-dimensional model are more restrictive than those which are required for
the more general two-dimensional model. Thus when two model responses differ
for the same set of parameters, the two-dimensional model must be used if
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quantitative comparisons are to be made. As the scala height H becomes small
the various model responses become equal. However, for any realistic choice

of scala height H and BM mass m, the one-dimensional model is inadequate for
frequencies in the neighborhood of the characteristic frequency (CF). As may
be seen Fig. 1, the one-dimensional model (Fig. 1b) is in good agreement with
the two-dimensional model (Fig. le) for frequencies below CF as long as the
effective mass of the scala fluid is included. When the scala fluid mass is
ignored (Fig. la), the CF for the one-dimensional model may be cleser in
frequency to the 2-D result, but the low frequency response (below CF) does not
have the proper gain _nﬁx.su— where G(x,w) = dmzxdwﬂ. qwx and émﬂ are the

velocities of the basilar membrane and the stapes. It was shown by Allen and
Sondhi (A3,1979) that the high frequency slope can be made to agree with that
of Rhode by the inclusion of a small amount of longitudinal BM stiffness.

3. WKB Approximation

As first pointed out by Zweig et al. (A6,1976) the one~dimensional model
may be accurately integrated by an approximation technique called the WKB
method. The 1-D model is most accurate in the frequency region below Wop: We

may therefore limit the model equation to the valid frequency region and then
use the WKB method to find the solution. For frequencies below resonance the
basilar membrane impedance Z(x,w) may be approximated by the stiffness term
alone

2(x,0) = 22
BM

=~ K(x) (1)
TR ke v

This still yields an interesting model since the resulting impedance is a
function of both the position x and the radian frequenmcy w = 27f.

The 1-D model equation describing the pressure P(x,w) is [assuming an
input of the form exp(iwt) with w<vK(x)/m]

2 2
BP0 4 o pix,) = 0 @
ax c(x)
where
™
(x) = |HEGQ) i s
el(x 7
K(x) = womlmmk = BM stiffness
H = Scala height
P = Scala pressure
p = Scala fluid density
m = BM mass.

Equation (2) accurately models the BM response for frequencies below CF but not
near CF and therefore it cannot be integrated across CF. As a nmmzwmm only one
boundary condition is applicable, namely the one at the stapes [Sondhi,
(A5,1978) ,Eq.43b]
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ap I
ax lx=0 = 7 iupVg,(w), (3
where ﬁmﬂ 1s the stapes velocity. By application of the WKB approximation, we

may find the forward traveling wave component under the WKB assumption that
reflections along the length of the cochlea may be ignored. Using this

Mwﬁnwxwamnwon. only one boundary condition is required. The WKB solution to
q. is

X

Plx,u) = bl\m%mN exp ..w&% nwwu + fwt y (4)
0

The integral is easily evaluated and the boundary condition Eq. (3) may be used
to find the unknown constant A. As a result of this calculation

P
ﬂ%\ﬂ% = @Wﬁ:eﬁnlqﬁxu:

= exp| - W axtiw(t-t(x)) ] (5)
and
Sl LB gty o)
> Vi Z(x,w) P(0,w)
= mmmmﬂw exp[- w.mx+HEnn|ﬂu~ (6)
where
’ dx ey
(=) n.\ e(x)  ac (7)
0 i}

z{w) = mmc.su.\cmﬂﬁfull. Fne ﬁ\mfgf\mw.n\f (8)

0

4 NaT
One immediately useful result is an expression for the cochlear imput impedance
HSnno
z(w) = g (10)
1w i
2

The equivalent electrical circuit for this input impedance is a paralleled
inductor and resistor as shown in Figure 2. From Eq's. (1,6,10) we find

c. = c(0) 2 ﬁjwuw.ﬂ\u nﬂm/.nmu
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s=iw
z . . . - .
in L=2p/a Fig., 2. Bguivalent electrical cireuit
sL ' repco for the mechanical cochlear imput

tmpedance as found by the WKB method.

(11)

0

The results predicted by these equations are consistent with both 1-D and
2-D models at a given point x on the BM for frequencies sufficiently below CF.

The important results here are the 6-12 dB/oct magnitude slope of the
velocity transfer function |G| Eq. (11), the frequency-independent group delay
(phase slope) t(x) = - a¢/3w for frequencies below CF Eq. (7), and the expres—
sion for the cochlear input impedance Eq. (10). Note further that Eq.. {5)
shows that under the conditions assumed, namely for frequencies less than CF,
the pressure is slightly attenuated and delayed by an amount t(x) independent
of frequency. Thus for frequencies less than CF the mechanical response of the
cochlea acts like a delay line having delay 1(x).

Variants of Eq's. (6,7) were used recently by Allen and Sondhi (A3,1979
Eq's. 33,34) to match Rhode's mechanical data which has a 6 dB/oct slope for
frequencies well below CF, According to Eq. (11), a 6 dB/octave slope of _n_
implies that w > mnc\m. Assuming exponential stiffness variation, this
aw

max mH

7 mm.‘ where w is the largest

condition may be written as w >
max

nmﬁeama = xxo\ag :

To the extent that the nonlinear effects are isolated to the CF region, and
assuming [as discussed by Sondhi, (AS5,1978)] that the major source of the input
impedance results from the frequency region below CF, all of the above results
approximately hold for nonlinear models. Sondhi found that the input impedance
is not greatly affected by the choice of models or the response near CF.
Sondhi's model results shown in his Fig. 11 are consistent with Eq. (10).
[Sondhi (A5, 1978) used the parameters of his Fig. 5 rather than those of

Fig. 6, as indicated in the figure caption]. In Fig. 3 we compare Sondhi's
3

input impedance calculation to that of Eg. (10) with eq = 9.35 x 107 (em/sec).
The low level (but conceptually important) nonlinear cochlear reflections
observed recently by Kemp (D2,1979) in the ear canal are clearly not accounted
by this simple linear theory. Any nonlinear mechanical CF related effects in
live animals would, in principle, be present in cochlear input impedance
measurements., Nonlinear CF effects would probably affect the input impedance
impulse response (pressure response at the stapes to a stapes velocity pulse)
at large delays —nvmﬂAxOVH and at small relative levels. However, at this

point comprehensive model simulations have not yet been published on nonlinear
model input impedance.
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3. Need for a Second-Filter

The results of Eq. (11) highlight ome of the key issues in cochlear
models today, Eq. (11) indicates that the velocity transfer gain below CF (4n
the linear Tesponse region) must vary by less than 12 dB/oct, and when

ac
w > |MM¢ _n_ Must vary by 6 dB/oct (Rhode's measurements show 6 dB/oct),

Neural and receptor potential measurements on the other hand indicate a totally
different result with slopes for frequencies below CF as large 300 dB/oct,
Under some conditions the slope even changes sign. Every modeling attempt
directed at a resolution of this contradiction has supported, in my opinion,
the need for g second-filter at the transduction stage (the hair cell),

The use of the terminology "second-filter" is perhaps unwise since the term
has been Proposed by so many in such a variety of forms. By second-filter as
used here we mean that the hair cell excitation function B8(x,t) is given by a
linear Lransformation of BM Pressure P(x,t) and displacement £(x,t). Since BM
velocity v(x,t) = d£/dt is a linear transformation of the displacement, velocity
has been included in this definition, Models of this form alse include spatial

derivatives § = mdmxmxm [Hall (€3,1977a)], the recent spatial integral model of
Zwislocki (€6,1979), and the linear two component (LTC) transformation of Allen
ﬁnH.Hmuqru 8 = ap + bz, They do not include nonlinear transduction operations
such as neural interactions, Nonlinear transduction models have the unfortunate
Property that the resulting neural excltation depends upon the nature of the
time waveform and therefore cannot be treated as a filter which modifies the
mnmacmnnw content of the exeiting waveform. Strictly speaking only a linear
transformation may act as a filter.

Besides the large disparity between the mechanical gain and neural slopes
below CF the neural phase response data measured by Kim and Molnar (H2,1975)

fibers in individual animals, and have plotted the data as a function of each
fiber's CF. Note that this method neatly avoids the middle ear transfer
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function since only one input frequency is used. Their &mnram is mvvnwwaMwouw
equivalent to measuring the rhase as a function of wQWhnHon along the mum
of the cochlea. For a pure tone, response as a function of place x and the

<mnwmwpm hmwommss wmnm<mnwmwaﬁwmn.awﬁm property of the cochlea has long
max

been recognized but has only been approximately monaﬂumnmm mhmhw”»nmww%mwmwmmmmm

attempt to formalize this property is the so called mw+mnlwbdmﬂ Mwnm: .

by Allen (A1,1977a) and also by Sondhi (A5,1978, Appendix B). zw e mmmnH

invariance" is only approximately valid in the real cochlea, wn Hm mmamHHnmﬂmu.

concept that has long been recognized (e.g. constant Q, or 1/3 octav

The results of Kim and Molnar (H2) reproduced in Fig. 4(a,b) show nmeural

w
o -1 CF
phase and normalized rate as a function of Mipom e

- w
mMrpomﬁE

max max

called "pseudo-place"]. The startling result is that a v phase shift occurs at

) might be

" fg=620 Hz
e COMBINED
a Ls=
2 4w 45d02
= Fig. 4a,b. Kimet al, (46, 1979)
& il Ls=15 db measured the neural phase and apike
T rate to a gingle frequency tone over
& o a large number of fibers, for g single
i e animal. They then plotted the _phase
i b b s g and normalized rate as a function of
womﬁEQmLu where Wop ig the best %WWl
A B L L | quency of each fiber measured. This
= © cF s phase may approzimately be viewed as
6 |20 ' 40 ' 80 ' sa | | wo the neural phase to a pure tone as a

function of position along the basilar
membrane. The rate function is g
strongly distorted by the satyration
of the meural system nxm.wxmﬁmwwwm %8
dtfficult to interpret divectly.

ESTIMATED DISTANCE FROM STAPES (%

f.=620 Hz
B Le=15db
S a SR 215 5/
3 3
£ L
m al J@\W
m -
oo




? Allen

4 place having a CF 1.5 octaves below the in

T ! put frequency. Since

mmpmmﬂwmmwwmrwouwm now.ﬂm“_.mnmm with the input excitation annamun% M”wwmwwwwm

Pl L, cmnmm“.._.n.o_.. a local mechaniecal distortion on the BM but is

S e mﬂu M_HH:EIﬁ:mwm zero (zero in the left half s=iw plane). The

Sephars Hm. oes ucm lock like a neural tuning curve because m. h
neural rate saturation. In Fig. (5a,b) we show the results om Z_.n_mm

Fig. Sa,b. "Neupal” ma itude
_...:._mmnmnwo: Fram the g?&ggmagﬁmxsmnwﬁwmmmnxnmm
model as eomputed by the linear two-
component transduetion medel of Allen
ar(Cl, 1977). TIn that model in order to
uaami\am neural tuning we substract the
22 Pr288ure fram the BM displacement. Forp
low frequencies the pressure and dis.
placement are the same funetion of fre-
___ quency and thus eancel. Near CF they go
| out of phase by v and therefore add at
| mﬂ and above. As a result of this
___ wmnamm%mmwmﬁz obmgnmnxanwmfmﬁﬁmz
_
_
_

PHASE (RAD)

response 8 has considerably sharper tun-
g properiies, mvw.ﬁ agreement: between
our caleylated tuning and a typical eat

__ Hmwwmmamgawm n..ﬂudm (dashed Iine) is
__ «  For frequencies in + Egh-
) borhood of the mﬁmwﬁﬁw z2ero wmwm&xmw.mr
' the phase jumps by w rad as shown by
ﬁu the upper panel. This phase should be
mﬂwﬂ.?f: mnavnuﬁ.m to that of Fig. 4a where g v
S A .w__xn_ phase jump belaw CF is also observed
! — '~z Beyond 3 Wiz (dashed line) the phage

i data (Fig. 5a) has been shifted by 2 «
for plotting Puwrposeas. i

\
(fep = 3.06 kHz) __

=y ; { 7 _
o 175 75 10 1.2
fep {kHz)

the -
: m:MMMMMM mmu.numn model proposed by Allen (€1,1977h). The magnitude response
ot place is given in Fig. Sb. "En Fig. 5b we also show a cat nmcﬂwumw

B =
tuning cur ve from mﬁ..l__.mn—m and Moxon ﬁuwm- kubu UHOﬁﬂﬂﬂ a8 a Hﬁﬂ-nnHOH._ of pseudo—
P lace .Ith og nn._u where g has been derived from the cat cochlear map The

absolute coordinates for th
e neural response have
(however relative differences have been vﬂmmmﬂcm&=o s e

g T CF F

MH@mewuq nNMWMan”Mm mwamwzmn by the two-component transduction model (Allen
e e e w model is still lacking in many important details (e.g m.
e mmeH muﬁ it appears to be consistent with the measurements of ;
e EM ! F2,1979). H:nww Measurements are strong direct evidence
it alia monnmnuonnMM w" the hair-cell transduction stage. These measure-—
g nuﬂmnw WMm:Hn om M : wnmwkﬁom H. Davis), that Feceptor potential changes
Sottdarst iy air-cell electrical impedance modulation through
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According to the Allen LTC (linear two component) transduction model, the
second-filter is equivalent to a minimum phase spectral zero just below CF as
discussed by Allen (C1,1977, Eq. (9)).

Since spatial differentiation models do not appear to exhibit the 7 phase
shift or equivalently the positive slopes in the magnitude of the tuning curve
(region labeled "+'" in Fig. 5b) it seems unlikely according to the measured
phase jump of Fig. 4a that these models can be correct.

In Fig. 6 we show a family of model tuning curves normalized to stapes

100, ¢

Fig. 6, Family of model neural
tuning curves for six atations along
the basilar membrane. These results
were obtained using the linear two-
dimengional time doman mechanical
model of Allen and Sondhi (A3,1878).
For this figure K, = .65 H:u_un_.

R, = 400, m = .05, H = .1, L = 2.2,

a= 2.2 (CGS).

]
]
=

UmaaLL

8/5T- DISPLACEMENT
T

displacement for six different locations along the basilar membrane. These

curves were computed from the LTC model

B(x,t) = a(x)p(x,t) + b(x)E(x,t) (12)

as discussed by Allen (C1,1977b). The pressure p(x,t) and basilar membrane
displacement £(x,t) were computed from the linear two-dimensional mechanical
time domain model of Allen and Sondhi (A3,1979). Figure 7 compares the model
cochlear map to that estimated for cat. The lack of fit in the 1.2 < x < 2.0
region is easily corrected by a choice of a slightly different function for
K(x). For the sake of simplicity we did not make this modificiation here.

In Fig. 8a we show the impulse response of m?c‘nu for station 4 on the

basilar membrane (see station identification numbers in Fig.'s 6,7), Fig. 8b

is the Fourier transform magnitude and phase corresponding to Fig. 8a.

In Fig. 9 we compare the frequency response of station 5 to a neural
tuning curve [Kiang and Moxon, (E8,1974), unit M92-23]. The mechanical
damping was reduced relative to that of Fig. 6.
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%1.9”__ the model tuning curves, The
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) J 100.
as e - ——MoDEL (sTATIONS] |
La22 [ == =iiang Moxon (1973} \_ . ;
He oy 0.k M32-23 Fig. 8. Model neural vesponse magnitude
* E canpared to a meural tuning curve of
= aﬁ ) F Kiang and Moxon (E8,1974) M92-23. The
= Fig 7. n.enxmmﬁ\..sn,w for model parg- 3 neural data has been inverted and scaled
m._.uu_a meters used in Fig., 6 as determined . in amplitude to best fit the model data.
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plots.
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4, Cochlear Nonlinearities

The second of the two basic issues in cochlear modeling today is cochlear
nonlinearities. This issue has perhaps a longer history than that of cochlear
sharpening. Cochlear nonlinearities at this point seem inevitable from a model-
ing point of wiew. By including cochlear nonlinear mechanical damping (a
relatively mild form of nonlinearity in the sense that the system retains its

\J linear behavior) in the model many important phenomena may be modeled. The non-
_ linear damping model is presently the only one known which explains all of these

phenomena., Experimental results that are explained (or are at least consistent
with the nonlinear damping model hypothesis) are:

Bti,:‘l

_ a) CF related BM velocity growth with SPIL (Rhode D3,1971; D6,1978),

Pig. 8. a) Model neurgl impulse
_ _ response for station 4, p) Magni - b) Decreasing mechanical CF with increasing SPL (Rhode D3,1971; D6,1978),
o.l|r|...ll...||r||u_o|||rlfll.IIL||I=_E wﬁ&m and mwﬁmm as found by Fouriep
1 tms) ransforming wpulse response. ¢) Distortion component generation and subsequent propagation (Kim, Molnar,
H2,1975; Hall B1,1974),
100.

e d) Decreased tuning sharpness (increased bandwidth) of: the mechanical
= system, the receptor potential, the cochlear micorphonie and neural

ﬁ A_._. tuning, with increasing SPL (Rhode, D4,5,6,1974, 1971, 1978; Russell and
ol 3 -2 Sellick, F2,1978; Dallos F1,1973; Evans, E4,5,6,1974, 1977, 1975),
§ .
g h 1.2 e) Observed differences between critical BW as measured by classical
gk i F (simultaneous) masking vs. pulsation threshold (nonsimultaneous)
&5 cE B techniques (Houtgast, G1, 1973),
o - -+
& _ur } £) Two-tone suppression observations (Sachs and Kiang, E9,1968; Houtgast,
m T G1,1973; Kiang and Moxon, E8,1974; B2, Hall, 1977),
.umwfr[ﬂ.olullﬂ_nllll[lr[m._n 8) Zwicker's "Masking Period Pattern" (Zwicker, G2,63,1977a,b; Hall, B3,
FikHal A 1978), (this appears to be a form of two-tone suppression),

h) Receptor potential frequency response data and amplitude growth (single
frequency) data vs. SPL (Russell and Sellick, F2,1978),
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i) Nonlinear input impedance Mmeasurements (Kemp, D2 1979)
J) Time domain nonlinearities (Goblick, Pfeiffer, £7,1969, see B5)

> mOMM MMMWMMmuamMHmmm. Enﬁw. Or even all, of the above meas
» 45 are their explanations If

b ] the

mcMwMMMM nonlinearities would likely be a closed Hmme%mﬂmcMM”m mxﬁmnmunw i

S wM“MvMHnHam cochlear nonlinearities ig Vvery strong Hun. h munmnmu

ool vnowwwmm Hmcouﬁnucnnnw point of view, cochlear nonanMMNMWHM oanH

bl :wa% be accepted by almost EVEeryone as an eXperimental mm 4)

Bl Bonmpo ¥y Mmﬂ:mvm be greatly accelerated by a good micromecha Mnnm
Which embodies the above pPrinciples. 4 model of mmsﬁwsm MMHH

en
al membrane and ’

model studies, According t lues of damping used 1
& in
approximately by: 8 Lo that model, the BM damping R(x) is given

urements are open

R(x) = m Mzmmugm (13)

where n = fluid viscosity, h = organ of corti height,

E = mcvnmnnanuwp|wvmnm

—._.ﬂu.mu.—nw and EANV = BM wid h . ¥
width. " s
n CGS units: T/ = .OH- h = Dwv E =2 5x10 Il SmOu

5. Discussion

nonli;
ﬁmnnmwmwﬂm%mﬂmwbw (as Propesed in nonlinear cochlear models) acts to com res
g requency components of 8(t,x), the neural excitatio b
Wop (% (in a logarithmic or exponential e i et
manner) in order to increase the dynamic

MMMWM MMﬁhwm mmwnmﬂm. Thus the nonlinear damping acts as a mechanical auto-
control, The price paid for this increased dynamic range is: 1) a

L nrmrﬂmwmchH narrow-band filters which result from the second-filter action
anical response serve three functions: i) to reduce the bandwidth of

MMMMMHM” ﬂoHWmv. mwm HMMV to remove distortion products created by the nonlinear
ga rom this functional point of view the no
) nlinear dampin
Mmomwaﬂmmwnnn seem somewhat reasonable. If the above point of HWmawhwnmowwwnn
OL yet presently clear how the damping is
second filter might physically operate. Sk s i e

6. Summary

mnnmswwwwmawnwwwwwwnnwbwwﬁmunwm mew of being prematurely philosophical we have
1lied point of view which attempts to broadl
MHWnunamM nsm mxmmuusmsnmw cochlear data Presently available Many owrmwms o
ortant and relevant factors have not been menti i i
oned in this discussion
Mw.rmw the nonlinear damping might arise, how pressure and antuNnmﬂ&ﬂMﬁEﬁMﬂm:
ointly interact on the cilia, or how the outer hair cells enter into the
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global picture. The outer hair cells are coupled to the efferent system and
COCB stimulation (Ref. E11) (stimulation of the outer hair cells through the
efferent system) also gives rise to broadened tuning about CF in a manner wvery
similar (as best we know) to the nonlinear level dependent mechanical damping
(Weiderhold, E11,1970). This experimental fact seems to be an important clue
toward an understanding of the cochlear nonlinearity.

If the mechanical system is nonlinear, as we presently believe, a further
interesting questiion remains. How could nonlinear damping have affected
Rhode's mechanical measurements? It was necessary for Rhode to drive the cochlea
with a wide range of input levels in order to measure its output frequency
response, due to the limited dynamic range of the measurement system. If each
of the various input levels gave rise to a different BM damping, no linear model
would be successful in matching the measurements with one value (the linear case)

of amauﬁnm.w This was the argument that Allen and Sondhi (A3,1979) found
necessary in attempting a match model responses to Rhodes magnitude and phase
data using the linear time domain two-dimensional model. Wide band noise cross
correlation measurement methods [such as "rev-cor,” de Boer, (E2,3,1968, 1973;
Evans E5,1975] seem to be a convenient means by which one might skirt this
signal dependent damping problem since they use a stationary noise signal to
measure the signal dependent system "frequency response'" of the cochlear
filters, unlike the "nonstationary" pure tone stimuli used by Rhode.
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TRAVELLING WAVES AND COCHLEAR RESONANCE

E. de Boer
Physica Labovatory , ENT (KNO) Clinie,
Wilhelmina Hospital, Amsterdam, The Netherlands

1. INTRODUCTION

The principal elements that determine the mechanics of the cochlea are: the
mass of the fluids filling the canals and the stiffness of the cochlear parti-
tion (i.e. the basilar membrane and its associated structures). See figure I-a
for the simplified geometry of the cochlea. The first theories that sought to
explain Bekesy's observations on the movement pattern of the basilar membrane,
were based on just these two elements: fluid mass and membrane stiffness (Zwis-
locki 1948, Dallos 1973). It proved simple to explain the formation of travel-
ling waves in the basal part of the cochlea. Because the stiffness diminishes
with increasing distance from the windows, the wave amplitude must increase to
keep the emergy constant. From a certain point on, the effect of ever—-present
resistance causes the wave amplitude to diminish, In this way the formation of
a vibration maximum, at a location that depends on frequency, is explained. 1In
later theories (e.g. Fletcher 1951) the effect of the mass of the cochlear
partition was taken into account. In those theories the partition shows true
Tesonance, at each location there is one frequency for which the mechanical
impedance is minimal and near that frequency the wave amplitude may be expected
The resonance frequencies are evenly distributed over the

to be maximal.
(For a review of these theories see Zwislocki 1953 or

audible frequency range.
Geisler 1976.)

scala vestibuli
cochlear partition

helicotrema

z
round im:noi/ funm_n tympani

Fig. 1-a,b. B8implified geometry of the cochlea, see text.



