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One of the basic questions which has persisted in the field of heating theory is the still unresolved mechanical 
action of hair-cell transduction. The fundamental problem that has historically plagued researches is the 
discrepancy between mechanically measured tuning of basilar membrane motion and neurally measured 
tuning. In this paper we show that the difference between these two measures appears to be accounted for by a 
specific, physically motivated, micromechanical model. This model gives rise to a spectral zero which we 
identify as the "second-filter" of cochlear transduction. For high-frequency fibers this zero resides at a fixed 
frequency ratio below CF (characteristic frequency) while for fibers having low-frequency CF's the zero 
appears to go to zero frequency faster than CF. In this paper we first present and analyze the assumed 
mechanical model. We then briefly discuss a possible specific physical realization for the nonlinearity of 
cochlea mechanics. The nonlinear model is based on dynamical variations in outer hair cell stereocilia 
stiffness. 

PACS numbers: 43.63.Bq, 43.63.Kz 

INTRODUCTION 

The cochlea is the organ which converts low-level 
acoustic signals into the auditory neural code. Its main 
function is to filter the stapes input signal through a 
continuum of very narrow bandpass filters. These 
narrowband signals are then half-wave rectified and 
modulate the firing rate of a large number of neurons, 
which in turn signal the central nervous system. 

While this basic outline has long been documented 
[ e.g., Kiang et al. (1965); Russell and Sellick (1979) ], cer- 
tain critical details are as yet unexplained. Recent models 
of basiLar membrane (BM) motion have reduced the gap 
between the theory and the experimental BM velocity 
measurements [for reference see: Allen (1979); Allen 
and Sondhi (1979)]. •'hese models give rise to an almost 
low-pass frequency response whose cutoff frequency 
varies with place along the BM. Although the point is 
controversial, from observations of the differences be- 
tween mechanical and neural response, a final transfor- 
mation from low-pass to bandpass appears to take place 
during the mechanical to neural transduction process at 
the hair cell level [Geisler, Rhode and Kennedy (1974); 
Evans and Wilson (1975); Hall (1977); Allen (1977); 
Zwislocki (1980)]. Since the model of .a_llen and Sondhi 
(1979) is a linear time-domain model, and since the BM 
response as measured by Rhode was nonlinear, a philo- 
sophical gap remains between their theory and the mea- 
surements. Allen and Sondhi were able to match 

Rhode's magnitude data using one value of BM damping 
and his phase data with a different, larger value of BM 
damping. Rhode's measurements were made at many 
different levels since it was necessary to maintain the 
velocity of the BM source within certain limits. Thus 
the model fit seems to be within the experimental vari- 
ability of the cochlear nonlinearity and the measurement 
method. However the nature of the relationship between 
the input signal and the mechanical parameters (the 
nonlinearity) of the system has not yet been determined. 
Kim et al. (1979) and Hall (1977) have studied various 

nonlinear models in an attempt to understand the effects 
of this nonlinearity. 

In this paper we develop a physical model of the trans- 
duction process which bridges the gap between BM ex- 
perimental data and the neural data since it gives ex- 
cellent quantitative and qualitative agreement with many 
experimental neural measurements. We then show that 
this model provides a framework which might help us 
understand the source of the nonlinearity properties of 
BM motion. 

I. THE "SECOND-FILTER" 

For introductory purposes, we present in this section 
results which argue for the validity of modeling the 
transfer function between BM displacement and neural 
response by a spectral zero. In Figs. l(a)-(d) we show 
the results of model calculations which compare model 
tuning curves with measured neural tuning curves [Kiang 
and Moxon (1974)] at several different characteristic 
frequencies (CFs). The model tuning curves were com- 
puted in the time domain using the linear two-dimen- 
sional mechanical model of Allen and Sondhi (1979), 
followed by a spectral zero (an anti-resonance) system- 
atically located below the CF (and a pole above CF). 
Our experience has been that any measured neural tun- 
ing curve may be closely matched by adjustment of the 
model spectral zero. The reader should be aware that 
no attempt has been made to account for the middle ear 
transfer function in these comparisons. The neural 
curves are normalized to ear canal pressure while the 
model tuning curves have been normalized to the model 
stapes displacement ds. The measured transfer ratio 
between stapes displacement and ear canal pressure is 
approximately constant for frequencies below I kHz and 
decreases at 12 dB/oct above I kHz [Guinan and Peak 
(1966)]. Measured tuning curves normalized to stapes 
displacement would be useful in making more accurate 
comparisons. 

A review of the spectral zero model of sharpening 
seems to be in order here. In 1974, Zwislocki and 
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FIG. 1. In this series of figures we make comparisons between cat neural data as measured by Kiang and Moxon (1974) and the 
mechanical model of Allen and Sondhi (1979) modified to include the transduction filter HT(x,s), Eq. (1). (a) The model neural 
magnitude response at the transduction filter output normalized by stapes displacement d s. (b) Cat neural tuning data for six dif- 
ferent units on the same relative scale as (a). The unit having a CF of 2 kHz appears to have a raised threshold. (c) A specific 
comparison between the model and a neural tuning curve at a CF of 3.5 kHz. (d) A comparison between the model and a neural 
tuning curve for a low frequency CF. 

Sokolich introduced a transduction model consisting of 
a difference between two components. These two com- 
ponents were assumed to be inner and outer hair cell 
signals. In this model, specific calculations were diffi- 
cult because the exact nature of the two signals which 
were to be subtracted was not well known. Allen (1977) 
then introduced the idea of a spectral zero model of 
transduction in his Eq. (9) (see also following discus- 
sion). This model seemed to give a very good match to 
neural threshold data, as pointed out in that paper. The 
zero was physically modeled by a very special linear 
combination of scala pressure and BM displacement. It 
now seems likely that this method of physically intro- 
ducing the spectral zero is not a realizable one given 
the microanatomy of the organ of Corti since the model 
required that inner hair cell stereocilia be connected to 
the tectorial membrane (TM). 

In (1979), Kim eta!., published spatial phase data for 
single tones that showed a v phase shift below the best 

place (higher CF region). This led Allen (1979) to point 
out that the v phase shift was in agreement with the v 
phase shift of the spectral zero model. In 1979, Zwis- 
1ocki and Kletsky introduced their spatial integral model 
in which they assumed that the neural signal was deriv- 
able from BM displacements by a spatial convolution 
with an exponential function. They also added an elastic 
TM and an elastic reticular lamina (RL) to the model in 
order to introduce sign changes in the TM-RL shear 
motion. While the exact details were not made com- 

pletely clear, some results of a simulation were pre- 
sented in their paper. Zwislocki has recently pointed 
out that this model does not seem to be sufficient to ex- 

plain neural tuning data [Zwislocki (1980), p. 1682]. 

Frommer (1979) has recently introduced a second 
filter model based on the idea that the Spiral Sulcus (SS) 
changes its cross-sectional area when the BM is dis- 
placed, and that the resulting deformation causes mass 
flow in the TM-RL spaceø His analysis gives rise to an 
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exponential smoothing function which is similar in form 
to that of Zwislocki's (1979) smoothing function. It 
seems likely that all flow in Frommer's model would 
take place along the length of the SS since the flow re- 
sistance would be so much lower in that direction rela- 

tive to the flow resistance in the TM-RL space. 
[ Frommer describes Allen's (1977) model as a "non- 
linear mathematical model involving an arbitrary pa- 
rameter, the 'loss factor'." This is incorrect since 
the spectral zero model is by definition linear. His 
conclusion may have been reached as a result of some 
speculations which were made in Allen's paper about 
the nature of the BM nonlinearity being related to the 
cochlear damping.] 

In Zwislocki's 1980 JASA paper he has introduced the 
idea of a resonant TM model where the mass is the 

mass of the TM and the compliance is the stiffness of 
the outer hair cell stereocilia. In the model considered 

here we also discuss a resonant TM. In our case how- 

ever the assumed compliance is the elastic TM material 
rather than the stiffness of the stereocilia, as assumed 
by Zwislocki (1980). Thus the mode of resonance in the 
model presented here is quite distinct from that of 
Zwislocki's 1980 paper. Furthermore in the analysis 
given here we uncover a spectral zero in the model BM- 
cilia transfer response, as well as a pole, as will be 
shown in the following. This zero is a key issue in the 
present model. 

In Fig. 2 we show (solid line) the cochlear map for 
model CF values corresponding to Fig. 1. This curve 
agrees quite closely with published values of cat coch- 
lear maps. The dashed line gives the location of the as- 
sumed spectral zero frequency f, of the transduction 
filter used in computing the model tuning curve. The 
third curve labeledf• will be discussed. More speci- 
tically we define 

x = positional coordinate along BM, 

f = stimulus frequency, 

co=2vf, i=•/-1, s=ice, VnM(x,s)=BMvelocity, 

O(x,s) = hair cell excitation (tuning), 

s)= + 2(x)s + s + 2(x)s + ' (1) 
where Hr(x,s) is the transduction filter which relates 
O to VBM by the relation 

10'5 I_ I ' ' ' I .... I 
.-. 10 4 '--2_••_ •-- f- (X) 

10 • ' ' ' 
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FIG. 2. We compare here the cochlear maps of the zero and 
pole of the model transduction filter to that of CF. The solid 
curve is the cochlear map of CF for the model as computed 
from COCF= [KB/(rnB+ roT)] 1/2. The model we have used for 
transduction is simple in that it consists only of poles and 
zeroes. These pole and zero frequencies vary with position 
along the BM. 

o(x,s ) =Hr(x,s )Vs(x,s ) . (2) 

The roots co, of the numerator of HT(x,s) are the zeroes 
of the transduction filter of the model. The damping 
ratio •,(x) defines the bandwidth (depth or sharpness) of 
the zeroes. For Fig. 2, we have assumed •(x)/=0 in de- 
fining the root frequencies co,(x) and co•(x). Since the 
pole frequency co• is above CF and is therefore in the 
cutoff region, it is a less interesting feature. Thus we 
will concentrate on the zero for the present. For the 
model calculations, Eq. (1) was implemented in the time 
domain using second-order difference equations. Vs• 
was obtained in the time domain using the method de- 
scribed by Allen and Sondhi (1979). 

In Fig. 3(a) we plot the phase of O(x, w) for several 
model tuning curves. Each curve is for a different 
place x on the BM. As a result of the transduction filter 
zero, the phase can jump by as many as v radians (de- 
pending on •,) at co,. Since we have placed the zero in 
the left half s plane, the phase slope for •.o =co, is posi- 
tive (with increasing frequency). A zero to the right of 
the ico axis would have caused the phase to decrease 
across the zero. In Fig. 3(b) we show the phase re- 
sponse to a single frequency tone as a function of place 

x [as found by Sondhi' s method, Alien (1977)]. 
In Fig. 4 we reproduce a figure showing neural phase 

as measured by Kim, Siegel, and Molnar (1979). Using 
their measurement technique they determined the phase 
resulting from a single tone stimulus over a large num- 
ber of units in a single animal. They then plotted 
each neuron' s phase response against the neuron' s 
CF. In this way they approximately determined the 

0.0 

-'i.0 

-2.0 

-3.0 

-4.0 

-5.0 

-6.0 -7.0 

-8.0 

I I I 

2.0 $.0 15.0 10K 
4.0 

f (kHz) 

• I I I I I I I (b) 

• •r- PHASE FROM - 
<• MODEL 
'-' 2w'- - 

n $•r- - 

4•r- _ 

5• I. I • I I I I I I 
0 2.2 

x (cm) 

FIG. 3. As with the magnitude response, the phase, whether 
plotted as a function of log(I) or place x, is quite similar. (a) 
Phase as a function of frequency for four different measure- 
ment locations. (b) Phase as a function of location for a s•- 
gle frequency, In both cases the • pMse reversal is a result 
of the spectral zero of Hy, 
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FIG. 4. This figure shows cochlear neural phase response to 
a single tone of frequency 620 Hz plotted as a function of place 
along the BM [Kim, Siegel, and Molnar (1979)]. Note the 
phase jump for CF's of 2 kHz. Each point corresponds to the 
phase (relative to the input phase) for each neuron measured 
in a single animal. By measuring the CF of each unit, it is 
then possible to obtain an estimate of the relative innervation 
point along the BM. 

phase of the neural excitation due to the input tone as a 
function of position along the length of the cochlea, 
since CF is relatable to .the innervation point on the BM 
by the cochlear map. • As may be seen in Fig. 4, Kim 
et al., found a positive •T phase shift (at 2 kHz) for units 
having CF's above the input stimulus frequency, in 
agreement with the spectral zero model •T phase shift 
[Fig. 3(b) and Eq. (1)]. 

Thus the second-filter model of a left hand plane 
spectral zero gives excellent agreement with both the 
neural tuning magnitude (ear canal pressure for thresh- 
old neural isorate) and phase. 

From the above evidence it appears that: 

(a) the transduction filter Ha- is required from a mod- 
eling point of view; 

(b) the transduction filter may be modeled by a spec- 
tral zero; 

(c) in some sense the cochlea transduction mechanics 
acts as a linear system since linear system theory con- 

cepts are applicable (e.g., zeros make up the transfer 
function). 

As a result of the cross-correlation measurements of 

deBoer and Kuyper (1968), deBoer (1973), Evans (1977), 
and M•ller (1977), it appears that the above conclusions 
are valid at levels well above threshold. If this inter- 

pretation of their data is correct, then the spectral zero 
model of the transduction filter might be useful in in- 
creasing our understanding of hair cell transduction 
mechanics. 

II. A SIMPLE MODEL FOR RADIAL SHEAR 

A concept that seems to have prevailed throughout the 
recent (last 20 years) history of cochlear modeling is 
the concept of radial (transverse) shear motion. Origin- 
ally it seems to have been suggested by Kuile (1900), 
but first studied by G. von B•k•sky [1951, 1953(a),(b)], 
based on his vibrator measurements of the cochlear 

duct. von B•k•sy observed that the cochlear micro- 
phonic (CM) was greatest when the cochlear duct was 
vibrated radially. About the same time hair cell mor- 
phologists revealed the directional sensitivity of the 
hair cells, adding further credibility to the radial shear- 
motion hypothesis. 

The first analytic model work seems to be that of 
Rhode and Geisler (1967) who attempted (unsuccessfully) 
to account for BM nonlinearities in their model. 

In the following we present a simplified model of 
radial shear motion (which we will need later) in order 
to reveal what we feel are the basic principles (this 
analysis was first presented by Alien, 1978). 

Consider the simplified model of the cochlear duct 
shown in Fig. 5(a). By comparison to Fig. 5(b) one may 
identify the various features of the model. The basilar 
membrane (BM) extents from A to E. The tectorial 
membrane (TM) is represented by a rigid bar (plate)DC 
pinned (hinged) at D. The spiral sulcus is labeled SS. 

The basic question we ask is the following: Assuming 
that the BM is displaced by an amount •, what is the 
relative shearing displacement between TM and RL. 
We pick points on TM and RL that are opposite each 
other in the rest condition and define the distance zx as 

their relative radial or transverse (z direction) separa- 
tion when the BM is displaced by •. The displacements 
of the model are defined in Fig. 6. 

A simple analysis of the geometry shows that tri- 
angles abc and a'b'c' are similar. For small angles at 
vertex a we then have the proportionality 

li/W• = zi/(e + h) , (3) 
where 

• = BM displacement, 

zX = radial-shear-displacement, 
W• = length AB • length ab, 

• = subtectoriat dimension, 

In the following we assume that e is given by the length 
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FIG. 5. We show here a labeled three dimensional represen- 
tation of a cross section of the cocklea. (a) Points A, D, and 
E are hinge' points which represent pinned boundary conditions 
for BM displacements. The BM extends from points A to E. 
(b) A two dimensional labeled cross-sectional drawing of the 
organ of the corti due to Rassmussen (some modifications have 
been made to the original drawing). Points ABCD have been 
indicated for reference. 
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of the outer hair cell stereocilia, since these stereo- 
cilia appear to be firmly fixed to both TM and RL, and 
that W• • W/2, where W(x) is the BM width. 

We now define a new variable G(x) which we call the 
shear gain: 

(5) 

For purposes of the present definition we assume here 
that the TM is rigid, a restriction which we shall later 
relax. 

Note that the relation between zX and • is linear (pro- 
portional) and instantaneous (frequency independent). It 
is equivalent to a lever having a displacement gain of G. 
The electrical equivalent is a transformer having a cur- 
rent gain of G. 

Thus according to the above assumptions and Eqs. 
(3)-(5) 

G(x) • 2h(x)/W(x) (6) 

since e << h. For order of magnitude calculations we 
will use Eq. (6). However, in the remaining sections we 
shall treat G(x) as unknown since in the future more ac- 
curate models of G(x) may be of interest. 

Rhode and Geisler (1967) defined a quantity similar to 
G(x) and determined from measurements that it went 
from 3 at the base (x=0) to 0.3 at the apex (x-L) (see 
their Fig. 4). Equation (6) is also given in Allen (1978) 
and in Zwislocki (1980). 
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y 

FIG. 6. A cross section showing the BM displaced. Since AB 
and DC are equal in length in this simplified model, BC re- 
mains parallel to AD after any BM displacement •. As a re- 
suit, triangles abc and a'b'c' are similar, and displacement A 
is proportional to the BM displacement •. We define this ratio 
as the shear gain G, namely G(x) = A (x)/• (x). 

III. THE RESONANT TECTORIAL MEMBRANE 

MODEL 

A. The physical model 

In Sec. I we presented some model results which 
showed the utility and parsimony of a spectral zero in 
modeling neural tuning data. In this section we shall 
develop a physical micromechanical model which phys- 
ically justifies Such a zero. In the following all forces, 
stillnesses, masses, etc. are defined on a per unit 
area basis (in the plane of the BM) averaged over 
the BM width, and as a function of position along the 
length of the cochlea. This approach is common in 
acoustical impedance calculations. 

In order to introduce a zero into the transfer function 

between BM displacement • and TM-RL shear zx it is 
necessary that the tectorial membrane move indepen- 
dently and not be locked to BM motion through the radial 
shear level gain G, Eq. (5). With this end in mind we 
introduce an elastic connection between the body of the 
TM and the scala wall as shown in Fig. 7. In this figure 
the BM stiffness is represented by the spring/is and the 
BM mass by the block labeled ms. Since the actual BM 
restoring force /i s is most probably due to the 
bending rigidity of the BM, the representation of/is as 
a spring is artificial but graphic. The cilia stiffness k c 
represents stiffness with respect to radial shear; it might 
be thought of as a bar clamped at the RL end and pinned 
at the TM end. Since the space between TM and RL, the 
subtectorial space, is only 2-6 •m, the equation of mo- 
tion between these two surfaces must include a viscous 

force which is shown here as the dashpot labeled r c. A 
formula for r c will be derived in Sec. V B (Allen, 1978). 
The tectorial membrane mass is labeled my, while the 
elastic connection to the scala wall (spiral limbus) is 
k•,. For reasons which will become obvious it is neces- 
sary to include a damping loss across kz labeled rz. 
This loss might represent internal friction in the TM 
tissue. Since the TM tissue is in a longitudinal mode of 
vibration its loss factor might be ouite different (name- 

_ 

ly larger) than that of the bending mode of BM motion. 
The basic principle of this model is that the spring- 

FIG. 7. In this figure we have further abstracted the physical 
model of Fig. 5(a) by specifically specifying the BM restoring 
force K s, the BM mass m s, the tectorial mass m r, the cilia 
stiffness k½, and the subtectorial damping re. Furthermore 
we have added the tectorial stiffness and damping k T and rT 
as discussed in the text. By allowing the TM to move inde- 
pendently of BM displacements, with its own resonant frequen- 
cy as determined by k•,+ k c and rn•,, it is possible to introduce 
a zero into the transfer function between TM-RL shear dis- 

placements and BM displacement. 

mass system of the TM, namely k• and mr, may re- 
sonate independently from that of the basilar membrane 
system of K s and ms. When conditions are right the 
TM can move with equal magnitude and in phase with 
the RL producing zero relative motion. We will show 
that this condition will give rise to a spectral zero in 
the RL-TM shear as assumed in Sec. I. We assume 

here that the neural excitation is simply related to the 
RL-TM shear. 

B. The rectilinear mechanical model 

In order to analyze the physical model of Fig. 7 it is 
helpful to redraw it in rectilinear form as shown in Fig. 
8. Those not acquainted with this procedure should re- 
fer the book of H. Olson (1958), Chap. 4. The solid lines 
represent hinged rigid massless rods in the rectilinear 

VERTICAL SHEARING 
MOTION MOTION 

• kc 
VBM f 

F• 

KB 

kT 

FIG. 8. In order to analyze the mechanical system described 
by Fig. 7 we redraw it in rectilinear form. The solid lines 
represent massless rigid rods or linkages. The vertical rod 
labeled G is a lever having a mechanical advantage of G. It 
represents the radial shear model which transforms vertical 
BM motion to radial shearing motion (Fig. 6). Springs are rep- 

pots are labeled r c and rz. The pressure drop across the BM 
gives rise to force F and thus to velocity VBM. 

1665 J. Acoust. Soc. Am., Vol. 68, No. 6, December 1980 J.B. Allen' Physical model of cochlear transduction 1665 

 Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP:  130.126.255.24 On: Fri, 15 May 2015 22:07:49



circuit, the coils are springs, and the boxes are mass- 
es. The radial shear model has been included as a lever 

having a m•chanical advantage of G(x) [see Eq. (5)]. 
The mass on the left is the sum of mr and my since 
vertical BM motion is loaded by both masses, assuming 
the outer hair cell stereocilia are rigid to vertical 
forces. 

To the left of the lever, the physical forces and dis- 
placements are vertical, while to the right they are 
shearing. 

A number of subtle assumptions have been made in 
going from Fig. 7 to Fig. 8. In the physical model, Fig. 
7, the lever action is nonobvious. In the rectilinear cir- 
cuit Fig. 8 it is explicit. The radial stiffness of the cilia 
k c is not clear in the physical model Fig. 5(a), while in 
the rectilinear model it is represented as the spring k c. 
In a similar manner the BM bending stiffness K s is 
not clear from Fig. 6 but is in Fig. 8. 

The analysis of the rectilinear model is quite straight- 
forward as discussed in Olson (Chap. 4). We first de- 
termine the "mobility" electrical equivalent and then 
convert it to the "classical" electrical equivalent cir- 
cuit. Finally we write the system equations using the 
electrical equivalent circuit. 

C. The electrical equivalent circuit 

A straightforward and simple method for finding the 
electrical equivalent network is to use the mobility 
method (see Olson, Chap. 14). The mobility equivalent 
circuit may be drawn by inspection from the rectilinear 
model, and is given in Fig. 9. The classical electrical 
network is then found by forming the dual network (in- 
terchange current and voltage, L and C, R and (3, and 
parallel with series). After performing these operations 
we find the classical mechanical analogue circuit shown 
in Fig. 10. 

The BM velocity vsM(t,x) is a•/at, vT(t,x) is the TM 
velocity, and •s(t,x) is the shear velocity between TM 
and RL. 

ß 

IV. ANALYSIS OF THE MODEL 

In the last section we went from a model of the cross- 

section of the cochlear duct to an electrical equivalent 
circuit. We are now in a position to analyze the as- 
sum ed mo de 1. 

1/r C 

1/(mB+mT)S 

FIG. 9. By use of the mobility analogue it is possible to de- 
scribe the mechanical circuit of Fig. 8 in electrical terms. 
The use of the mobility analogue simplifies the transformation 
between the mechanical and the electrical circuit. 

FIG. 10. The more common form of mechanical-electrical 
analogue is the force = voltage analogue. This analogue may be 
found by forming the dual of the mobility circuit. Thus the im- 
pedances of Fig. 9 are replaced by admittances and series 
connections are interchanged with parallel connections. The 
mechanical model of the cochlear duct, as shown in Fig. 5(a), 
has therefore been reduced to the electrical circuit of this fig- 
ure. 

A. The second filter 

The principal question of interest is: What is the 
transfer function which relates Vs (x, •:)to VsM(x,•) ? 
The quantity Vs has been defined as the shear velocity 
between TM and RL, and it is a quantity that might well 
drive inner hair cell cilia. According to recent obser- 
vations [Lim (1980)] these cilia do not seem to be con- 
nected directly to the TM; however, the cilia would be 
displaced by fluid flow across them (in a manner simi- 
lar to sea grass bending in a gentle wind). 

The transfer function in question may be identified as 
the second filter, and from the current divider law, can 
be shown to be 

Hr(x,s) • Vs -C smT + ry + ky/s 
+ + + + k)/s ' 

(7) 

As in Sec. I Eq. (1) we call Hy(x, s) the transduction 
filter. 

The transfer function H•, consists of a zero at fre- 
quency f, and a pole at frequency f• where 

f, (1/2•)(k•r/m•r , 

f•,=(1/2•T)[(k c + k•,)/m•,] '/• . (9) 
Note that f• >/, since k c + k•. > k•.. The significance of 
this result is that a spectral zero, which is required to 
account for the difference between the mechanical and 

neural response, naturally follows from the model of 
Fig. 7. This point is one of the main results of this pa- 
per. 

, 

B. Basilar membrane impedance 

A basic quantity of importance in basilar membrane 
macromechanics is the BM impedance, defined as the 
ratio of pure tone trans-BM pressure to steady state 
normal velocity (or force/volume velocity) 

Zsu(x,s )-• -2P/Vsu = F/(WVBM). 

This impedance is usually assumed to be of the form 

Zsu=Ks(x)/s +R(x) + sM o . (10) 

All calculated results in this paper have in fact as- 
sumed a BM impedance of this form. We hope there- 
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fore that the BM input impedance of the model proposed 
in Fig. 7 will be in some way consistent with Eq. (10). 
To a certain degree of approximation this appears to 
be the case, as discussed in Sec. V.C. If the input im- 
pedance to the right of the transformer were real, then 
Eq. (10) would hold exactly. In fact, by inspection, 
from Fig. 10 (or Fig. 7) 

z•(x,s)=s(m• +m•) +K•/s + C•(x) 

x (% + k•/s)(k•/s + r• + sm•) 
(k• + k•)/s + (r• + r•) + sm• ' 

Therefore a rigorous analysis of BM motion assuming 
the model of Fig. 7 is significantly more complicated 
than previous BM macromechanical models since the 
time differential equations are fourth-order rather than 
seeond-orde r. 

(11) 

V. MODEL PARAMETERS 

A. The transduction filter 

The model presented in the last section has some im- 
portant properties: It follows from a specific physical 
micromechanical model, and it has a spectral zero as 
required in matching neural tuning data. However, be- 
fore it may be seriously considered as a reasonable 
model we must more carefully investigate the model 
parameters and show that they have physically reason- 
able values. Since no direct measurements have been 

made of TM elasticity and mass, or of cilia stiffness, 
these values must presently be deduced from neural 
tuning data. Of course this makes the argument some- 
what circular. However if the deduced values are rea- 

sonable (order of magnitude correct) and if the model 
fits the tuning-curve data accurately, as it appears to 
do, the model must be seriously considered and further 
evaluated. A critical future test of the model will be 

mentioned in Sec. VI of this paper where we discuss the 
nonlinear cochlea. In this paper only linear model 
calculations have been performed. 

In order to recover the model parameters from tuning 
data it is important that we render Eq. (7) dimension- 
less by defining the following normalizing parameters 

The radian frequencies top and co, are the pole and zero 
frequencies of Eq. (7). The quantity • is called the 
damping ratio and is a measure of the damping or Q (Q 
-1/2• -1) of the pole or zero. Using these definitions 
Eq. (7) becomes 

G(x) ((s/co•)2 + 2•(s/co•) +1) •(x,s)= • (s/•fi+2•(s/•)+l ' (13) 

The normalizing variables co,, cop, •,, • are physically 
meaningful since they may, in principle, be identified 
easily from the transfer function spectrum. The fre- 

quencies co, and fJ0p may be identified from the null and 
peak frequencies in the spectrum, and •, and •p from the 
zero and pole bandwidths. The pole frequency cop ap- 
pears to be sufficiently above CF that it cannot be ob- 

served in normal tuning data. For the same reason [p 
is not observable. However we do have the bound on cop 

cop >coc• ß (14) 

By simple calculations for different •, values in the 
model we have found that •, must be greater than •0 to 
give a reasonable match to tuning curves for frequencies 
near co,. Thus we have 

1 (15) •,(x) > ,-• . 
From the defining Eq. (12a,b) 

2 2-k•/m >0 (16) cop -- coz T ß 

giving the obvious result [Eq. (12e)] 

y-co/co,> 1. (17) 

In order to relate k r and k c we use Eqs. (12a,b,e) 

- - ( 8) 

Assuming y > 2 then: 

kc>3k•,. 

For large • = •,)p/co, we may therefore replace k• + kr by 
k• [for example in Eqs. (12b, d)]. Also from Eqs. (12) it 
follows that 

•/f,=(1 +r•/rr)/y. (19) 
The parameter rc may be directly modeled from the 

geometr•y of the subtectorial space as follows [Allen 
(•a)]. 

B. Model for subtectorial damping r c 
Assume, as shown in Fig. 11, that TM and RL are two 

plates separated by a viscous fluid of viscosity 7. If the 
width of the upper plate is 1, the distance between them, 
e, and their relative shearing velocity is %, which re- 
sults from a shearing force f. We may then calculate the 
resistance r defined by 

r---a f/vs . 

The solution to this problem is well known and is given 
in any basic textbook on fluid mechanics as 

. (20) 

y 

FLUID WITH f = VELOCITY V 
VISCOSITY .... _=- ................. 

FIG. 11. The circuit element r c may be associated with the 
viscous drag between TM and RL (see Fig. 5). The TM is 
modeled as the upper plate having a shear force f driving it. 

The terminal velocity of the TM is given by r=f/r with r given 
by Eq. (20). 
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We then define 

r½=r/W (21) 

since the acoustic resistance re is found by dividing r by 
the BM width W. We assume that for endolymph r• =0.015 
(g/cm-s). The parameters 1 and e are either known or 
are easily measured [e •4x 10 -4 (cm), /•0.015 (cm)] 
for any given animal. This source of damping seems to 
be in excellent agreement with damping estimates de- 
rived from model calculations using Eq. (10)[Allen 
(1978)] where 

R(x)=rcG2(x) . (22) 

C. Analysis of BM impedance 

We now look at a simplifying approximation of ZsM, 
Eq. (11). Using the definition of the transduction filter 
Hr(x,s), Eq. (7), we may rewrite ZBM as 

Zs• =s(rnr +ms) + + 1 + GHr(x s). (23) 
s s •] ' 

The most important frequency region is • < cocF, 
namely below cutoff. Again we assu•e that cocF <cop. 

As may be deduced from Eq. (13), for co < t•c• < cop the 
denominator (pole) of Hr may be approximately replaced 
by the low-frequency dominant stiffness term (k• + kr)/s. 
Next we define the cilia damping frequency co• 

•c =kc/rc . (24) 

We shall show that •c >> •, giving for • < • << coc the 
constraint •/coc<< 1. Thus JSrc/kc[ =co/•c may be ig- 
nored compared with 1 in Eq. (23). From these two ap- 
proximations we find the following approximate expres- 
sion for Zs• 

Zs•=s(mr +m•) + K• + kcG2(x) (s k•) + +-- ' 

According to the above approximations the BM impe- 
dance remains second order as assumed in Eq. (10); 
however the resulting impedance values have been mod- 
ified by the micromechanical superstructure. 

It remains to be shown, as assumed, that •:/•>> 1. 
From Eqs. (12a,b,e) and (18) 

kc= mT•}(1 --1/•2) , (26) 

From the following approximate values for the param- 
eters 

l• 0.015 (cm), • •0.015 (g/cm-s), 

• •4.0x 10 TM (cm), • •3.0, 

mr >0.2m• •0.008 g/cm x , 

we find from Eq. (2•) 

co,/• > 0.013•. 

Thus for frequencies greater than 12 Hz, coc > •,•, or 
for m < m•, m<< •c and the approximation in the numera- 
tor of Eq. (23) is justified. 

The above calculations demonstrate that commonly as- 
sumed model parameters for Zs• [Eq. (10)] .are consis- 
tent with the model suggested here. They also specify 
the properties of the spectral zero and the pole in the 
TM-RL shear signal. 

VI. A NONLINEAR MICROMECHANICAL MODEL 

The nonlinear properties of the cochlea have been well 
documented in the recent literature. Clearly, for any 
micromechanical model to be useful it must account for 

these nonlinearities, such as combination tone genera- 

tion, two-tone suppression, known threshold, and Q•0 
variations with input level. Toward this end we propose 
that the stereoci!ia stiffness k c be a decreasing function 
of signal level (i.e., the cilia become limp with in- 
creased SPL). We feel that there are many qualitative 
justifications for such a proposal. First, Flock (1977) 
has pointed out that the outer hair cell cilia are com- 
posed of the protein actin. Based on the structural com- 
position of the actin filaments Flock has proposed that 
the cilia bending moment (k½) could possibly be variable. 
Second, the cilia appear to grow limp after strong sound 
stimulation [Hunter-Duvar (1977)]. Third, stimulation 
of the COCB efferent neural system, which terminates 
at the outer hair cells and thus might effect k½ directly, 
seems to modify neural tuning in a way which is consis- 
tent with decreased k c in the model. Fourth, the rapid 
loss of the tip of the tuning curve of the receptor poten- 
tial [Russell and 8ellick (1978)] near CF seems consis- 
tent with this hypothesis since as k c goes to zero the CF 
decreases toward the zero of Hr [see Eq. (25)]. Fifth, 
the apparent increase in BM damping might be accoun- 
ted for by decreased k½ since as k c decreases r c is 
"turned on" in the sense that a greater velocity is al- 
lowed across the TM-RL interface (increasing the ef- 
fective mechanical damping). 

The ultimate test of these ideas must await a more 

complete nonlinear simulation of this model and better 
experimental data. Many experiments, which might 
strengthen or weaken the proposed model, suggest 
themselves. 

VII. PHYSICAI• MEASUREMENTS 

The basic premise of this paper is that the transfer 
function which relates neural to mechanical response 
consists of a spectral zero below CF. Based on some 
preliminary calculations we have estimated the zero 
frequency co, from existing neural data and have found 
that Wc•/Cc, is about one octave. The calculated tuning 
curves give excellent quantitative agreement with neural 
measurements. Since a zero has a •r phase shift, a 
more accurate way of measuring co, or •, may be by 
measuring this phase jump. This could be done for 
many different CFs and as a function of level. 

There presently seems to be very little informa- 
tion on the TM mass mr; by measuring the cross- 
sectional area of TM it should be possible to obtain 
an approximate estimate of mr(x). Values for e (x) are 
available; however apparently l(x) has not been mea- 
sured. 
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The neural response pole co, and zero co, might be in- 
dependently observed if the BM could be driven directly 
while observing neural rate, thereby removing the BM 
macromechanics (the low-pass filter) from the re- 
sponse. 

A possible explanation of the alligator-lizard neural 
data of Weiss et al., (1978) might be the pole and zero 
of Hz(x,s). If Ks(x) were set to a large constant in the 
model we could remove BM resonance as we presently 
model it in the mammalian cochlea. This might account 
for the lack of observed tonotopic mechanical BM organ- 
ization. 

Finally, we feel that there appears to be one important 
flaw with this model that we would like to point out. 

This model seems to predict a cochlea microphonic 
(CM) having a sharpened frequency response, assuming 
that CM (recorded differentially) is proportional to TM- 
RL shearing displacements. Schmiedt and Zwislocki 
(1977), on the other hand have shown that in the middle 
turn of the gerbil the CM frequency response is quite 
similar to the mechanical response as measured by 
Rhode in squirrel monkey. 

VIII. CONCLUSIONS 

In this paper a physical micromechanical model of 
cochlea transduction has been introduced and developed. 
Although a full analysis of a nonlinear version of the 
model is not yet practical, the linear results presented 
here are strongly encouraging in that they qualitatively 
agree with many diverse pieces of data. Of particular 
interest is the close agreement between the model and 
neural tuning data, both in magnitude and phase. The 
novel feature of the present model is the radial resonant 
tectorial membrane which affects the transduction 

mechanism by introducing a spectral zero into the 
transfer function between basilar membrane motion and 

inner hair cell excitation. 
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