
Lecture Notes in

Biomathematics

Managing Editor: 8. Levin

87

P.Da||os C.D.Geisler J.W Matthews

M.A. Ruggero C.R. Steele (Eds.)

The Mechanics and

Biophysics of Hearing
Proceedings of a Conference held at the

University of Wisconsin, Madison, WI, June 25—29, 1990

Springer-Verlag
Berlin Heidelberg New York London

Paris Tokyo Hong Kong Barcelona



6. Macromechanical Measurements
Measurement of middle ear transfer function in cat, chinchilla and 

guinea pig
L. Decory, R.B. Franke and A.L. Dancer 

Helmholtz revisited: direct mechanical data suggest a physical model 
for dynamic control of mapping frequency to place along the 
cochlear partition 
E L . LePage

Measurements of basilar membrane tuning and distortion with laser 
Doppler velocimetry
A L . Nuttall, D.F. Dolan and G. Avinash 

In vivo measurement of basilar membrane-stiffness
E.S. Olson and D.C. Mountain 

Two-tone distortion products in the basilar membrane of the chinchilla 
L. Robles, M.A. Ruggero and N.C. Rich 

Systemic injection of furosemide alters the mechanical response to sound 
of the basilar membrane 
M.A. Ruggero and N.C. Rich

7. General Cochlear Models 
Modeling the noise damaged cochlea

J.B. Allen
Wave propagation modes and boundary conditions for the 

Ulfendahl-Flock-Khanna (UFK) preparation
E. de Boer 

On dipoles and the radiating membrane 
J.S.C. van Dijlc

Approximate evaluation of cochlear model tuning from the wave 
development graph 
S.M. Novoselova 

The fractal doubly stochastic Poisson point process as a model for the 
cochlear neural spike train 
M.C. Teich, R.G. Turcott and S.B. Lowen 

The impedance of the organ of Corti
G. Zweig

8. Nonlinear Models
Implementation of a nonlinear wave-digital filter cochlear model

D.H. Friedman
Nonlinear transmission line model can predict the statistical properties of 

spontaneous otoacoustic emissions 
M. Furst

Mathematical analysis of a nonlinear model for hybrid filtering in the cochlea 
J.L. Goldstein 

Automatic gain control in cochlear mechanics 
R.F. Lyon

Non-linearity in a computational model of the response of the 
basilar membrane
R. Meddis, M J . Hewitt and T.M. Shackleton 

Level dependence of the latency of cochlear transients
S.T. Neely

VII

269
270

278

288

296

304

314

323
324

333

340

348

354

362

371
372

380

387

395

403

411



MODELING THE NOISE DAMAGED COCHLEA

Jont B. Allen

Acoustics Research Dept, AT&T Bell Labs

Murray Hi11,NJ 07090, USA

Introduction

The purpose of this paper is to present a specific model (Allen, 1980) of the cochlea

which replicates normal cat threshold neural tuning curves. This model is first introduced
as a linear passive model. In the process of fitting the model to the neural data, it was

discovered that changes in the basilar membrane stiffness could modify the model cilia

frequency response in a manner similar to the noise damaged neural tuning curves of

Liberman and Dodds (1984). Liberman and Dodds found that the tips of the tuning curves

become elevated by more than 40 dB, and the tails become hypersensitive by about 10

dB, after a noise trauma that damages the outer hair cells. After recording tuning curves

from the noise damaged cells, they found a systematic loss of outer and/or inner hair cells

associated with the noise trauma neurons. They then correlated the hair cell loss to the

frequency response of the associated tuning curves. In this paper we model the Liberman
and Dodds noise damaged tuning curves by associating the loss of normal outer hair cells

with a decrease in the basilar membrane stiffness (increased compliance).
We believe that the compressive and frequency dependent cochlear nonlinearities that

have been observed in the basilar membrane response and in inner and outer hair cell

receptor potentials (for a review see Allen, 1988) are a related phenomenon, and we

propose a model for the nonlinear cochlea based on this approach. In this model, the outer

hair cell length changes, which occur during cell depolarization (Brownell et al. 1985),
dynamically increase the basilar membrane compliance. The effect of this dynamically
modified compliance would be a compression of the dynamic range ofthe basilar membrane

motion, and therefore of the excitation to the inner hair cells. This nonlinearity is important
to compress the dynamic range of the acoustic signal to match that of the inner hair cells.

This model is being offered as a physically realizable alternative to the active (negative-
resistance) cochlear amplifier model of Neely and Kim (1983).

Neural Excitation Patterns

One of the basic problems in cochlear modeling is the determination of the model

parameters from physical data in a systematic way. Frequency domain models give a

response along the basilar membrane for a given input—signalfrequency, whereas the

experimental data (neural tuning curves) to be matched are functions of frequency for a

given position along the basilar membrane. To side step this computational problem, it

is possible to transform the neural tuning curve data to place. These place tuning curves

are called excitation patterns in the literature. This transformation represents a major
simplification of the data—fittingprocess. If the neural excitation patterns are accurately
fitted by the model in the place domain for several well separated frequencies, then the

frequency tuning data should fit as well.

The transformation to excitation patterns is best understood by example. Fig. 1 shows a

family of normal cat tuning curves collected by Liberman. Liberman has also measured the
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Figure 1: This family ofcat tuning curves was provided by Liberman and Delgutte. The phase was

generated by the Fourier Transform minimum phase method.

relation between the characteristic frequency (CF) and position on the basilar membrane

fcp(:z:). Our procedure then is the following. First compute the phase for each tuning
curve using the minimum phase method. The complex frequency responses are then loaded

into the response matrix @(zvi,fj ), where x,- is the index that labels each tuning curve, and

fj is frequency. To find xi, look across frequency to find fCF(.’Eg),the frequency of the

maximum of |@(x.-,fj)l. Then use fcp(:c) to determine $5, the row index for each tuning
curve, from the fcp of the row. The excitation pattern is then @(Ii, fj) vs. 2:,- for any

given fj , as shown in Fig. 2. These threshold response are for single tones as a function of

position along the basilar membrane. The lower panel of Fig. 2 shows the derived phase
along the basilar membrane for a given frequency. Since this phase was generated from

the tuning curves using the minimum phase method, it is not necessarily the phase that one

would measure neurally. The models, however, approximately match this phase. The close

match demonstrates that the models approximately have a minimum phase response.

Modeling the Tuning Curve Data

In this section we show model fits to the neural excitation patterns of Fig. 2. The

macromechanical model is the two-dimensional model of Sondhi (1979). The microme-

chanical model being used is the resonant tectorial—membrane model described in [Allen,
1980; Allen, 1988]. The basilar membrane to cilia transfer function HT(:c, w) is used to

modify the basilar membrane displacement response to give the cilia displacement. The

difference between the 1980 model and the one here is in our choice of model parameters
and the addition of a resistive element to the basilar membrane impedance. The comparison
of the model to the neural data was made using a simple middle ear model.
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Fcf (kHz):

Figure 2: Transforming neural data tuning curves to place gives excitation patterns. These are more

readily compared to model responses, since the model also gives excitation patterns for each input
frequency.

THE TRANSDUCTION FILTER

The transduction filter HT(2:,w) is defined as the transfer function, assumed here to

be linear, between the basilar membrane displacement and the inner hair cell stereocilia

displacement. In this paper HT(:c, w) consists of three parts, which we call C(27),
HTM(2:,w), and HTR(w). First is the lever action of the transduction gain G(.r), which is
defined as the ratio of the cilia displacement to the BM displacement, under the condition
that kC << M. In Allen (1980) a formula was given for this gain (Eq’s. 5 and 6) in terms

of the physical variables. The estimate of G used here was heuristically determined in the

process of fitting the neural data. It is desirable to have a large value of the transduction

gain to increase the hair cell excitation. However, a large value of G seemed inconsistent

with fitting the data. Second, is the effect of the elastic coupling between the limbus and

the tectorial membrane kT(2:). This elastic element introduces a pole and a zero into the

transfer function, as described in Allen (1980, Eq. 13), and shown in Fig. 3, upper right
hand panel. Third H TR(w) is defined as a first order high pass filter which represents the

viscous fluid layer driving the stiffness-dominated inner hair cell stereocilia. HTR is the

transfer function developed between the tectorial membrane to reticular lamina (TM-RL)
shear displacement and the cilia displacement, coupled via fluid viscosity. This component
of the transduction filter is given by

jw

m
(1)HTR(w) Z

If the inner hair cell cilia were attached to the underside of the tectorial membrane, then

this highpass filtering action would not be present since there would be no slip condition.

From the above equation, at low frequencies the cilia respond with the velocity of the shear,
whereas at high frequencies, the cilia follow the TM-RL shear displacement. In the model,
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Figure 32 Model responses for octave frequencies between 6 kHz and 182.5 Hz, assuming an

eardrum pressure of 14 dB SPL.

f6 = 5.0 kHz. As may be seen from the model response in the upper right panel of Fig. 3,
the cilia move with the TM-RL shear-displacement for frequencies above fc, and with the

shear-velocity below fc (Dallos, 1984).
Putting the three factors together gives the transduction filter

HT(:E,S) : C(13) HTR(S) HTM(:C,S) (2)

shown in Fig. 3 upper right panel.

SUMMARY OF MODEL EXCITATION RESPONSES

A summary of the model responses is given in Fig. 3. The upper left panel shows

the model basilar membrane center-line and cilia rrns displacements at octave frequencies
between 6.0 kHz and 187.5 Hz at 14 dB SPL. The basilar membrane displacement is

derived from the per unit length volume-displacement by dividing by the basilar membrane

width. The lower left panel shows the stapes rrns displacement at 74 dB SPL. Also

shown in this panel is the volume integral of the basilar membrane displacement. The

stapes volume-displacement and the basilar membrane volume-displacement should be

equal at all frequencies. Because of the boundary conditions that have been assumed at

the helicotrema, these two integrals are not exactly the same (Puria and Allen, 1990). The

difference between them is due to fluid flow through the model helicotrema. The lower

right panel shows the stapes input impedance Z”, the ossicle impedance Zme, and their

sum Z“, which is proportional to the eardrum impedance.
In Fig. 4 the dashed lines give the model cilia excitation patterns, magnitude and phase,

at the frequencies 0.5, 1.0, 2.0 4.0 and 6.0 kHz. The units in the upper panel are in

nanometers (nm), and correspond to 74 dB-SPL constant pressure in the model ear canal.

The solid lines are the neural data from Liberrnan. The amplitude scaling for the neural

curves is arbitrary, but all curves are scaled by the same factor. The lower panel shows the

327



Nonlinear model Allen

dB SPL
'—

MODEL 5 SCALED NEURAL DATA vs X at 74
T100.0

DISPLACEMENT
(an)

0.0 PLACE (cm) 2.2

o.o pmcz (cm) . 2.2

Figure 4: The solid curves are the neural data of Liberman and the dashed lines are the model

responses in nanometers for a 74 dB SPL stimulus.

excitation pattern phase for the model (dashed lines) and of the neural data (solid lines) for

the octave frequencies. The 4.0 and 6.0 kHz phase curves have been displaced down by
27m, where n is an integer, to separate them for clarity of plotting. The neural data is the

same as shown in Fig. 2. The most significant deviation between the model and the neural

data is in the phase curves for the 4 kHz tuning curves where the curves are 7r radians

apart below CF (at 0.5 cm). There is also a trend for the model data to show a slightly
greater phase lag than the neural minimum-phase result. This effect may also be seen by
comparing Fig. 1 to Fig.5.

Model Tuning Curves

After computing the model response at 7 locations along the basilar membrane for a

large number of frequencies we find the results shown in Fig. 5. This figure should be

compared to Fig. 1. An important degree of freedom that remains in comparing these

curves is the threshold sensitivity of the model hair cell. For both Fig. 4 and 5 we would

like to know if the sensitivity of the BM at the characteristic frequency (fcp) is realistic.

A discussion of the sensitivity question may be found in Hudspeth (1983). Denk and Webb

(1989) have shown that hair cells transduce their cilia Brownian motion. The magnitude of

this motion depends on the real part of the mechanical impedance of the stereocilia in situ.

Hair cell sensitivity is an importantand open question that has caused many to speculate on

the need for a cochlear amplifier in the basilar membrane (Neely and Kim, 1983; Mountain

and Hubbard, 1989; Patuzzi et al. 1989). Estimates of cilia displacements are complicated
by the uncertainty introduced by the unknown transduction filter. It is not known if inner

hair cells are velocity or displacement sensitive in vivo. Dallos (1984) has estimated that

there is a velocity to displacement transition with a transition frequency of about 1 kHz. In

the present model we assume a similar velocity to displacement as described in Eq. 1, but

with fc : 5.0 kHz.

It is assumed here that the rate threshold for the cat corresponds to an eardrum pressure
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Figure 5: Once the model parameters have been determined, it is practical to compute the frequency
tuning curves at points along the basilar membrane. These tuning curves are shown here, and should

be compared to Fig. 1. As before, the upper panel is the cilia displacement in nanometers for a

stimulus level of 14 dB SPL. The lower panel is the corresponding phase.

of 14 dB SPL. From Fig. 3, the model BM motion is 120 pm at the CF of 1 kHz and

14 dB SPL. The stapes displacement at 1 kHz for the model is 3.5 picometers at 14

dB-SPL. This means that the model basilar membrane has a gain of 31 dB at 1 kHz.

Threshold displacements as low as 0.1 nm (100 pm) for cilia displacements have previously
been estimated by Hudspeth, A.J. (1983). Nuttal et a1. (1990) found basilar membrane

displacements of 0.5 nm at 35 dB for his most sensitive animals. They also showed

BM displacement data for several animals that showed a nonlinear input—outputresponse

growth at 80 pm for 50 dB SPL. Sellick et a1. (1983) estimated the BM threshold at 350

pm, while Robles et al. (1986) have estimated the BM threshold at 1.9 nm.

THE BASILAR MEMBRANE STIFFNESS

During the parameter fitting process it was found that the basilar membrane stiffness

was much more sensitive than other parameters in its effect on the basilar membrane

tuning curve. Fig. 6 shows this effect. In this figure the basilar membrane stiffness was

modified by a relative factor of 0.3 to 1.0 times the normal value (the value that gave a

match to the tuning curve data). From this figure one may see that the tip of the model

tuning curve becomes less sensitive by 40 dB and the tail of the model tuning curve is

more sensitive by about 10 dB. There are several reasons for these changes in the model.

First, as the stiffness decreases, the CF shifts toward the base. This means that the CF is

shifting into the ’zero’ (f;) of the resonant tectorial membrane transfer function. Because

of the presence of the zero, the CF threshold rises dramatically. A second important effect

is the hyper-sensitive tails of the tuning curve. As the volume of fluid motion at the

CF is reduced, the volume-motion in the tail increases because the net fluid motion must

remain constant, as required by conservation of fluid mass. These model results should be

compared to those of Liberman for noise damaged cochlea.
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Figure 6: For an input frequency of 5.0 kHz, KBM(:L') was varied from 30% to 100% of its
normal value. This response should be compared to the tuning curves for damaged outer hair cell as

found by Liberman.

Discussion: A Nonlinear Cochlear Model

A nonlinear version of this model remains to be explored, and an approach toward this
end is described next. As the basilar membrane displacement increases with level, the

depolarization of the outer hair cell increases due to the increased shearing of the sterocilia
of the outer hair cell at the higher input levels. We propose that as the cell depolarizes, the

induced hair cell shortening reduces the basilar membrane stiffness in the way assumed in

Fig. 6. The published sensitivity of the hair cell length changes is 20 nm/mv (Santos-Sacchi
and Dilger 1987). In Fig. 6 the stiffness changes are uniform along the basilar membrane,
whereas in the nonlinear model they would be signal dependent and thus nonuniform.
Since the stiffness variations would be low-pass filtered by the membrane capacitance of
the outer hair cells, the stiffness variations would not follow the signal on a cycle-by-cycle
basis. In this sense, the model could be characterized as a nonlinear parametric model.

If the stiffness variations at high frequencies (e.g. 10-20 kHz) do not follow the signal
waveform, then the term ’cochlear amplifier’ does not apply to this class of model. It

is an ’active’ model in the usual electrical engineering sense, just as the Davis model of

the hair cell is ’active.’ However, this use of the term ’active’ is not what is usually
meant in cochlear modeling, where the term is frequently used interchangeably with the

term ’cochlear amplifier’, implying gain on a cycle by cycle basis. The details following
the cell depolarization which lead to the basilar membrane stiffness change are presently
unknown and we have assumed here that such a dependence is plausible. To study the site

of the nonlinearity in a more systematic way, it may be helpful to model the frequency
response of the 2 f1 — f2 distortion product for constant f2. These distortion products may
be modeled using quasi-linear techniques by introducing voltage sources in series with

K B M to represent the generation of the nonlinear components. From the equivalent model

of the micromechanical circuit (Allen, 1980, Fig. 10), a source in series with K B M would

see the series impedance of the tectorial membrane, which has a minimum at f2. This

suggests that the nonlinearity might have maximum coupling to the fluid at this frequency.
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A little analysis shows that this would give a maximum of the distortion product amplitude
when 2f1 — f2 : f2. First we argue that the distortion product is generated at, or near,

23;, which is defined as the f2 place. Next we define 5W) : fz(x2)/f2(r2) as the ratio

of f; to f2 at 1:2. It follows that the distortion product amplitude will have its maximum

at f2/f1 2 2.0/(1 + fl). For 13 in the range of 0.7 to 0.5, as it is in this model, this

would give a best frequency ratio of 1.18 to 1.33, which is close to the range of observed

maximum values (Wilson, 1980).
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Comments and discussion

LYON
In your first step, you convert iso-response tuning curves to "excitation patterns" that

appear to be in terms of an iso-intensity situation. This would be a sensible
transformation for a hnear system, such as your model, but how can it be interpreted for a

system with a strong input-output compression nonlinearity, such as the cochlea from
which the data were taken ?

ALLEN

I agree with your observation which you make in your paper that the frequency
dependent compression of the type that has been observed in the basilar membrane

response will have an impact on the response characteristics as the input level is varied.

These nonlinear properties make the job of modeling BM responses much more difficult.

The question then is one of the philosophy of how to go about this difficult task. TWO

points need to be made about this.

The first point goes back to my paper in Keele (Allen, 1988) where I discussed the

three regions of the amplitude and frequency space where we see different nonlinear

behavior. Observations of basilar membrane nonlinearities are considerably reduced in

the apical region of the cochlea (for example, for frequencies below 4 or 5 kHz and for

levels below about 60 to 65 dB-SPL.) Evidence for this statement is documented in my
Keele paper. It follows that the effects you describe are most important in the base of

the cochlea, which I have not attempted to modeled for this conference. As I said in

Keele, we must be very careful about not generalize the effects we see in the base of the

cochlea to the apex region.
Second, in a nonlinear system it is helpful if one can hold the signal to the nonlinear

element constant when specifying the systems response. In the case of the basilar mem-

brane, there is not one nonlinear element but a nearly continuous distribution of nonlinear

elements. In the case of neural tuning curves, such as I have been trying to match, we

have not only the basilar membrane nonlinearity, but also the hair cell rate level nonlin-

earity. In making a tuning curve one attempts to minimize the nonlinear effect of the

inner hair cell transduction nonlinearity by measuring the locus of pressures as a function

of frequency that produce a constant output firing rate. The analogous measurement in the

case of basilar membrane measurements would be to hold the excitation to the nonlinear

elements constant To the best of our present knowledge, this nonlinear element is the

outer hair cell, which is controlled by the receptor voltage. Since the experimenter does

not have direct control of this voltage, the basilar membrane velocity or displacement is

typically help constant. This implies that the nonlinearity is varying over the course of

the measurement, which greatly complicates both the interpretation and modeling of the

measurement.
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