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In this paper we report on a new method of solving a previous derived, two-dimensional model, integral 
equation for basilar membrane (BM) motion. The method uses a recursive algorithm for the solution of an 
initial-value problem in the time domain, combined with a fast Fourier transform (FFT) convolution in the 
space domain at each time step. Thus, the method capitalizes on the high speed and accuracy of the FFT 
yet allows the BM to have nonlinear mechanical properties. Using the new method we compute (linear) 
solutions for various choices of model parameters and compare the results to the experimental 
measurements of Rhode. [J. Acoust. Soc. Am. 49, 1218-1231 (1971)]. We also demonstrate the effect of 
including longitudinal stiffness along the BM and conclude that it is useful in matching the high-frequency 
slope as measured by Rhode. 

PACS numbers: 43.63.Bq, 43.63.Kz 

LIST OF SYMBOLS 

BM Basilar membrane F(a) 
ST Scala tympani L 
S¾ Scala vestibuli H 

CF Characteristic frequency p 
x Longitudinal (place) coordinate W(x) 
y coordinate perpendicular to BM F{.} 
t time coordinate M 
p(x, t) scala pressure m 
v(x,t) BM velocity K(x) 
•(x,t) BM displacement R(x) 
•(x,t) BM acceleration A 
d stapes displacement b (x, t) 
u stapes velocity Q(x) 
G(x,x') Green's function • 

see Eq. (5) 
length of BM 
height of cochlear scala 
density of cochlear fluids 
BM width 

Fourier transform 

number of points along BM 
BM mass 

BM stiffness 

BM damping 
L/(M- 1), spatial increment 
see Eq. (27b) 
augmented kernel, Eq. (28). 
reduced plate operator Eq. (18) 

INTRODUCTION 

In this paper we report on a new method for efficiently 
solving previously developed model equations of basilar 
membrane (BM) motion. We then report on many new 
results using this new method which. are, for the most 
part, refinements on previous results. The most im- 
portant contribution we report on here is our discovery 
of an efficient and rapid method of numerical solution 
of the previously developed integral equation. The 
method takes advantage of the speed and accuracy of 
fast Fourier transform (FFT) convolution methods 
and makes essentially no approximations other than 
that of diseretizing the' integral equation. Further- 
more, the solution is in the time domain, making the 
future inclusion of signal dependent damping (nonlinear 
mechanics) feasible. 

Using our new method, we show results for various 
model parameters and compare them with the experi- 
mental measurements of Rhode. We then demonstrate 

the effects of introducing longitudinal stiffness along 
the basilar membrane. 

The model equations we have been investigating are 
formally the same as discussed in Allen (1977a). We 
assume'that the cochlea may be modeled as a two-di- 
mensional rectangular chamber (Fig. 1) filled with an 
inviscid, incompressible fluid and separated by a 

homogeneous anisotropic, tapered plate (see Sec. III). 
The upper and side walls are assumed to be rigid. At 
the stapes/round window end x- 0, we assume a uniform 
velocity, piston source (as the stapes move in, the 
round window moves out by an equal amount.) 

The early cochlear modeling work of Helmholtz ig- 
nored fluid coupling, treating the cochlea as a homo- 
geneous, anisotropic tapered membrane. In the late 
forties, transmission line models were developed in an 
attempt to approximately account for fluid coupling 
(Zwislocki, 1948). While these models captured the 
essence of the mechanical phenomena and are concep- 
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y= H[•/t X=L X=2L s v I y o ':,,vvv•,•'- ' X (b) 
FIG. 1. (a) Geometry of the cochlea. (13) The assumed sym- 
metry of the motion about the helicotrema. 
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tually very important, they are not quantitatively ac- 
curate enough to make detailed comparisons with mea- 
surements (Sondhi, 1978). The transmission line mod- 
els describe the cochlea as a spatially varying trans- 
mission line. In these models it is difficult to ac- 

curately assess the meaning of various parameters such 
as chamber depth, BM width, or BM mechanical prop- 
erties since they do not •explicitly appear in the equa- 
tions. As a result one must be very careful when using 
this class of models. 

I. FLUID MECHANICS OF THE COCHLEA 

In the modern models, fluid motion in the cochlea is 
described independently from the mechanics of the 
basilar membrane by the use of Green's functions 
(Allen, 1977a). By Green's theorem, one relates trans- 
BM pressure to BM acceleration. This fluid equation, 
along with the plate equation for BM motion, then com- 
pletely specify BM motion. This approach explicitly 
accounts for the dependence of the solutions on the geo- 
metrical and mechanical parameters. It does not ac- 
count for coiling, compressibility, scala fluid viscosity, 
or lateral (radial) fluid motion. 

Our previous recent results using the Green's function 
were restricted to steady-state pure tone responses us- 
ing linear models. Due to improved understanding of 
nonlinear phenomena in the cochlea (Kim, Molnar, and 
Pfeiffer, 1973; Kim and Molnar, 1975; Hall, 1977; 
Hall, 1974; Hall, 1978), it appears desirable to at- 
tempt to incorporate nonlinear (signal dependent) BM 
properties (e.g., damping) into the fluid mechanical 
models. This is best achieved with a time domain de- 

scription of BM motion (rather than using frequency 
domain methods which rely heavily on linear super- 
position concepts). 

Our first attempt at improved time-domain models 
was to use the differential equation approximation of 
Sondhi (1978). However, a time-domain formulation of 
these equations in a form suitable for computer im- 
plementation, while feasible, appears to be quite dif- 
ficult, and to date, we have not had success with this 
approach. In reviewing the possible time domain 
methods at our disposal we discovered that the original 
integral equation could be solved directly in the time 
domain in an extremely efficient manner by the use of 
the fast Fourier transform (FFT). 

II. A TIME DOMAIN INTEGRAL EQUATION 

In this section we shall review the basic model men- 

tioned earlier. We shall then show that the resulting 
integral equation may be written as a circular convolu- 
tion. • 

As discussed first by Lien (1973), and developed 
further by Allen (1977a), scala pressure p(x, t) and BM 
velocity v(x, t) are related through the integral relation 

.L 

p(x, t) = p/o G(x,x')•(x', t)dx' + (L -x)p•(t) , (1) 
where p is the fluid density, L the length of the cochlea, 
G the Green's function, u(t) the stapes velocity, and 

or_ ot at •. , (2a) 

0t•., (2b) 
where d(t) is the stapes displacement and •(x, t) is the 
BM displacement. 2 Positive directions for d, v, and • 
are into the upper chamber SV in Fig. l(a). The scala 
pressure p(x, t) is referenced to the pressure at the 
helicotrema (x =L). The trans-BM pressure Ap is then 
2p, by symmetry. Derivations of this equation by two 
different methods may be found in Allen (1977a) and 
Sondhi (1978)o By way of review, G(x,x') is the solution 
to Laplace's equation for the pressure on the BM(y =0), 
at a point x, due to a point source (i.e., a 5 function) of 
acceleration on the BM at x'. In solving for G, the fluid 
boundary conditions must be identical to those assumed 

in the undriven cocktear model, namely zero normal 
velocity at the walls and stapes and zero pressure (and 
hence velocity) at the apex, x= L. 

As discussed by Lesser and Berkley (1972), and 
Allen (1977a), the mathematical description of the 
problem is simplified by unfolding the cochlea as shown 
in Fig. l(b). Here the chamber 0 •< x •< L represents 
the scala vestibuli (SV), the chamber L •<x •< 2L repre- 
sents the scala tympani (ST), and the surface y=0 rep- 
resents the BM. In this representation the BM im- 
pedance must have even symmetry around x =L [i.e., 
Z(L -x) = Z(L +x)], while the pressure and BM velocity 
must have odd symmetry around x = L. Thus when a 
point in SV moves up as shown by the small arrow in 
Fig. l(b), the corresponding point in ST must move 
down. 

The method of solution that we present in this paper 
depends on the following further insight: 

For 0•<x •< 2L, the motion in the cochlea of Fig. l(b) 
is identical to the motion of the periodic extended cochlea, 
of period 4L, shown in Fig. 2. Note that x = 0 is a point 
of even symmetry in this figure. The small arrows 
show the symmetry of v(x) [which is the same as that of 
both •(x) andp(x)] in the extended cochlea. For brevity 
we will call this symmetry "real-odd harmonic," be- 
cause the Fourier series expansion of such a periodic 
function consists only of odd-harmonic cosine terms. 

•y=H 

y=o 

•y=-H 
X=-2L X =-L X =0 X=E X= 2L 

X coo 

FIG. 2. Extended cochlea showing the 
4L real-odd harmonic symmetry. This 
symmetry is used to exactly transform 
the integral term of the Green's func- 
tion equation into a periodic convolu- 
tion, which may be evaluated by Fourier 
transforms. 
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This device of replacing a problem by one with period- 
ic boundary conditions is often used in physical model- 
ing. To those familiar, with this technique the truth of 
the above assertion is obvious. To prove it formally, 
note that G(x,x') in Eq. (1) has a natural periodic ex- 
tension outside the range 0 • (x,x')• L, and has real- 
odd harmonic symmetry in each of its arguments. Fur- 
ther, G(x,x') may be written as - 

c(x,x'): •(Ix -x'l)* •(Ix *x' I), (3) 

where F has real-odd harmonic symmetry. These prop- 
erties follow from the representation of G in terms of 
images (Allen, 1977a), as well as from the representa- 
tion in terms of Jacobian elliptic functions (Sondhi, 
1978). From the image representation of G, Allen's 
Eq. (B4), 

G(x x')=-_•_1 E • (-1)"ln(r.+mr;m), (4a) ' 7T r•-- -oo m = _oo 

where 

* 2nL) a + (2rnH)2] •/2 (4b) r.= [(x•' + . 

r. m are the distances from the measurement point at x 
to the (n,rn) image of the source placed at x'. Since 

ln(r + r') = ln(r +) + In(w-), 

it is easily seen that Eq. (3) is true with 

1 

F(a)- - • • • (-1)nln[ (lol + 2nL) a+ (2mH)2] ß (5) 
• m 

Also the fact that F(ty) has real-odd harmonic symmetry 
is readily verified by direct substitution. It will be 
convenient to use the double bracket modulo notation 

indicating an arbitrary function f(x) periodic with period 
4L, whereby f((x)) is defined as 

f((x)) =f(x), - 2L <x -< 2L 

and for other x values as 

f ((x)) =f(x + 4nL), - 2L < x + 4nL •< 2L, 

with n any integer. With this notation, and using the 
symmetries of v, p, and G, Eq. (1) may be written as 

P f• a(x,x')b((x'))dx'+ ((L -I•l))• • (6) p((x)): •- ,.• , 
or from Eq. (3) 

P I "• [l*(x -x') + 1,(x +x')]•((x'))d•' p((x)) =• -•.• 
+ (½ - Ixl)) pa. (7) 

By a simple transformation of variables on the second 
term in the integral and using the real-odd harmonic 
symmetry of v [specifically we use v(x)=v(2L -x)] and 
F we find that 

2/; 

2p ((x))= p f_ F(0c-x')){•(0c'))dx' + 2((L - - 
(8) 

Each term of Eq. (8) is periodic with period 4L, and 
therefore may be expanded as a Fourier series. If this 
were to be done, the Fourier coefficients of the integral 
term could be written as a product of the Fourier coef- 

ficients of F and •), since the integral is a circular 
(periodic) convolution. As an alternative approach, we 
propose spatially sampling each of the functions p(x), 
F(x), and v(x), givingpk , Fk, and v• thereby trans- 
forming Eq. (8) into the discrete convolution equation 

4M- 1 

-'•- Fk_m• m + 2 i - • Lp• . (9) 
In this representation p•, F•, and vk are periodic with 
period 4Jl4 samples, and if A=L/(M- 1), thenpa =p(kA), 
F• = F(kA), and v• = v(kA). 

The exact nature of the error made in "sampling" p, 
v, and F cannot be quantified without studying the high 
spatial frequencies present in each of these dependent 
variables. Any frequencies higher than one-half the 
spatial sampling (Nyquist) frequency will give rise to a 
type of error called "aliasing." However, if the sam- 
ples are dense enough (M large enough), Eq. (9) will 
accurately represent our original Eq. (8). Much of the 
earlier work has used M: 175 samples along the BM 
length. In this work, we have used M = 256 (and under 
some conditions, M = 512) points. For M = 256 points, 
the sum in Eq. (9) represents a 1024-point circular 
convolution. 

Sondhi (1978) has given a simple closed form ex- 
pression for F(•r). After multiplying by -(l/w) to ac- 
count for a difference in definitions, his Eq. (31) gives 

L -Io• _ •_ •n[• - exv(- •l•l/s)l, 0 -< iot -< L •(•): 2• 
:- r(•.c -•), L -< I•l-< aL. (•0) 

The sampled version of this function to be used in Eq. 
(9) (obtained in •e case of k = 0 by integrating over the 
log sin•larity at • = 0) is 

-• n •H -1 , k=O 
r• = (zz) 

•• i ln[1 - exp(- ekL/mM)], k • 0 • • (Z-k/•)-7 

with 0 •< k •<M. F• for other ranges of k may be deter- 
mined by its real-odd harmonic symmetry since 

Fk = F_• = - Fz•_ • . (12) 

One period of F• is shown in Fig. 3. 

III. BASILAR MEMBRANE PLATE EQUATION 

The results of the previous section summarize (and 
extend) the fluid mechanical equations for fluid coupling 
within the model cochlea. The important assumptions 
thus far are' 

(1) linear fluid motion, 
(2) two-dimensional flow fields (longitudinal and 
vertical), 
(3) incompressible (oo speed of sound), inviscid fluid, 
(4) a rectangular cochlea, 
(5) piston boundary conditions at the stapes and round 
window, and 
(6) zero pressure at the helicotrema. 
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FIG. 3. Plot of the kernel F(x) of the integral equation on the 
interval 4L showing its real-odd symmetry. 

Equation (8) relates the pressure p(x,t) in the scala 
on the BM surface to the acceleration of the BM t•- 
where •(x,t) is the BM displacement. 

We now seek a physical model ot• the BM displace- 
ment •(x, t) in terms of the forces across it. Toward 
this end we expand on the approach of Lien (and Cox) 
(1973). If the BM is modeled as a homogeneous aniso- 
tropic plate [see pp. 365-366 of Timoshenko and Woin- 
owsky-Krieger, 1959] then the basic equation for the 
plate's displacement is 

Dx a 4• a 4• a 4• • + 2(Dx D,) •/•' + D• - q• z t) (13) 

where q is the load (force/area) on the plate. The 
rameters D•,D•'are assumed to be constants (homo- 
geneity) but not necessarily equal (anisotropy). They 
are determined by the internal structure, t•ckness, and 
modulus of elasticity of the BM. 

For the case of •e BM,..the load q consists of the 
inertia of the BM mass m•, BM damping R(x)i, and 
the trans-BM pressure 2p (pressure across the BM). 
•us, we have 

q= -2p -a(x)• -m•. (14) 

A physical model •or R(x) has been proposed (Alien, 
19•8) and •urther discussion o• this topic will be de- 
•erred to a •umre paper. The mass per unit lenCh is 
that o• the organ o• Corti and does not include the fluid 
o• the cooblear duct since Reissner's membrane is ig- 
nored in this •ormulation. • we use the shorthand vec- 

tor notation •or gq. (13) . 

D.V•=q, 

then gq. (14) may be written 

z v"e + p=-• . 

At this point we might have obtained an equation •or 
BM displacement by equating the pressure p o• gq. (15) 
to that o• gq. (8), except that gq. (8) has been derived 
on the assumption that in the z (lateral or radial) di- 
mension there is no variation. We must therefore first 

find a •o-dimensional approximation to gq. (15). 
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IV. REDUCTION OF THE PLATE EQUATION TO TWO 

DIMENSIONS 

In order to eliminate the z dependence in Eq. (15) we 
assume that the pressure is uniformly distributed in the 
z direction and that the z dependence of the BM dis- 
placement has a simple cos(.) dependence across the 
BM width W(z) (Lien, 1973; Allen, 1977a). If •(x, 0, t) 
is the centerline B M displacement, we assume that 

•(x, z, t)= •(x, 0, t)eos[•rz/W(x)]. (16) 

This approximate transformation allows us to neatly 
reduce Eq. (15) to a function independent of z in terms 
of the BM centerline displacement •(x, 0, t) since by Eq. 
(16) [and ignoring all derivatives of W(x)] 

, 

az• •=o W(x •(x,O,t), (Z7a) 

• ':ø = •(x, O, t), (17b) 

ax2az • =- W(x •(x, O,t) . (17c) •=0 

By use o• th•s approx•maQon it •s possible to greaQy 
s•mplffy our equation w•thout, we hope, •gnor•ng any 
s•gn[ficant physical properties. 

Thus, Eq. (13) •or the (two-d•mens•onal) BM plate 
equation eval•ted on z = 0 becomes •ter uQl•z•ng Eq. 
(17) 

+•' w•) •' (z8) 
Substituting • into Eq. (15) for 9-V4• and then s•sti- 
tuti• for p from Eq. (8) gives 

which is the required equation for BM motion. The * 
denotes the circular convolution integral of Eq. (8), a 
convolution which can be carried out because the argu- 
ment of F is invariant to shifts of 4L. The invariance 

results from the assumptions of constant scala height 
H and BM mass m. 

Equation (19) is an initial value problem in time and 
a boundary value problem in space. We will solve the 
boundary value problem by Fourier transforms, and 
the initial value problem recursively starting from the 
initial displacement and velocity of the membrane. The 
Fourier transforms and the updates at each time step 
alternate during the solution procedure, as will become 
clear in the following discussion. 

V. DISCRETIZING THE SPACE AND TIME 

VARIABLES 

In this section we show how we discretize x and t of 

Eq. (19). The right-hand side has already been shown 
in Eqs. (9) and (11) with x discretized to the values 
0, A,..., (4M- 1)A, where A=L/(M- 1) isthe spatial 
sampling interval. To complete the x discretization we 
specify that the partial derivatives •=O•'•/ax •', 
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• •-•4•/0X4 occurring in Eq. (18) be replaced by the 
central differences 

- + (20) 

•....*• (•_•.,. - 4•_•,. + 6•,. - 4•+ •,. + •+2,r•)/A4 , (2•) 
where k is the space variable and n is the time variable. 

• computing the terms •,, and •,,,,, boundary con- 
ditions (BC) are necessary at x = 0 and x = L, the stapes 
and helicotrema. Since we assume that D, is small, the 
actual BC's used are probably unimportant. We have 
used the condition that •,,,, and •,, are zero in the 
neighborhoods of x = 0 and x =L. Periodic bo•dary con- 
ditions would be the natural choice, but for computa- 
tional reasons these conditions were not used here. 

•en one is not interested in the effects of longitudinal 
stiffness (i.e., when D, =0), most of the assumptions 
in this section •out Eq. (13) are not req•red. 

The discretization in time is achieved similarly by 
specifying the time derivatives in terms of sampled 
values. We specify that any time function g(•) and its 
time derivatives be approximated by •e following dif- 
ferences' 

(t) - + 

• (t) •(g,_• -g,.•)/T, (22) 

g (t) • g,_x , 

where T is the sampling interval and n is the discrete 
time variable. The reason for •is choice is based on 

•e behavior of a consent coefficient second-order 

differential equation. 

For example suppose we were given the second-order 
differential equation (23a) having Laplace transform 
(23b) and roots s+ and s_ (23C) 

• + a• + Vg=f(t), (23a) 

(sZ+as +b)G(s)=F(s) , (23b) 

(s - s+)(s - s_)G(s)= F(s) . (23c) 

When we map the derivatives of Eq. (23a) by dif- 
ferences, as in Eq. (22), it reduces to the recursion 
relation 

g,= (2 -aT -bTZ)g,.x- (1 -aT)g,_,.+ T•f...x 

= - 2•g,_ • - f•Zg,_ z + TZf,_x. (24) 

This discrete equation has the z transform 

(1 + 2o•z-x+[izz-z)G(z)=z-•TZF(z). , (25) 

The two characteristic roots z+ and z_ of the difference 
Eq. (25) are 

z •: (1 -aT)•/Zexp(+ i•o), (26a) 
where 

2 -aT -bT 2 

cOS0o= 2(l_aT)•/z ß (26b) 
When Iz •1 < 1, the difference equation is stable and the 
root locations describe the resonant frequencies of the 
difference equation. By studying root locus plots of 
z•(s+, s_) as a function of the roots s+ and s_ of Eq. 
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(23c) in the s plane, one may study the mapping implied 
by the differencing scheme of Eq. (22). From this analy- 
sis it is possible to show that to guarantee stable differ- 
ence equations, the sampling frequency 1/T must be at 
least • times greater than the resonant frequency of Eq. 
(23b). Equation (22) turns out to be an excellent (the 
best to our knowledge). method of transforming our dif- 
ferential equation in the sense that the digital resonances 
z • closely approximate the actual resonances s• [in the 
sense of impulse invariance (Rabiner and Gold, 1975)]. 

Vl. METHOD OF SOLUTION 

By using the transformed Eqs. (9), (11), (20), (21), 
and (22) we render Eq. (19) discrete in x and t. For a 
fixed time t/T =n, this discretized equation is a re- 
lationship between the vector of displacements • 
(with components •,.,,,m =x/A =0, 1,...M-1) and the 
vectors tj,_x and tj,_z. We can now solve recursively 
for each new vector tj, in terms of the previously com- 
puted vectors. In the continuous time domain this is 
equivalent to rearranging Eq. (19) with the • terms on 
the left 

.. .. 

p•*• +• = •(•, •), (27a) 

where 

b(x,t)= - •)• -R(x)• - 2((L -Ixl))p/•. (27b) 
Defining an augmented kernel Q(x) as 

Q(x) = pF(x) + (rn/2) [5 (x) - 6 (2L - x)], (28) 

where 6(x) is the Dirac 6 function, Eq. (27) may be 
rewritten as 

Q(x) *• (x) = b (x , t) , (29) 

where * represents circular convolution. In Eq. (28) 
the factor of one-half and the second •(.) term are 
necessary to make Q(x) have the real-odd harmonic 
symmetry required by the circular convolution. Be- 
cause of the known symmetry of •, this modification is 
exact, as may easily be shown by direct substitution. 

For a fixed time t, this equation may be solved by a 
Fourier transformation which converts the circular 

convolution into a multiplication. Thus, 

-. 
•(x,t)= r- [ F{Q(x)}/' (30) 

where F{.} and F-•{ .} are the Fourier transform and 
its inverse. (Recall that in the discrete ease this trans- 
form is over 4M = 1024 points. Our hardware array 
processor is capable of a floating point transform of 
this size in 9 ms). 

By utilizing the real-odd harmonic symmetry of all 
the functions involved, it is trivial to reduce the trans- 
form to a 512 point s real FFT (which on our array pro- 
eessor takes 5 ms). 

We summarize our method of solution as follows' 

(a) Compute b•.,Eq. (27b) at time n=t/T for m =x/zX 
= 0,... ,M- 1. This requires only previously computed 
values. 
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(b) Take the Fourier transform of bm.,,rn =x/A 
=0,...,4M-1. 
(c) Divide by F(Qm) (which has been previously com- 
puted and stored). 
(d) Inverse transform results of c. 
(e) Compute a new displacement vector recursively 
from the discrete version of Eq. (30). 
(f) Repeat steps (a)-(e) as often as desired. 

The computation time per time step is that required 
to compute b(x, t), one Fourier transform, one inverse 
transform and a few vector additions. In the case Dx 
= 0 for which 

II)l• = KOc)li (x, t) (31) 

(i.e., the usual BM stiffness term), we require about 
40 ms/time step on our array processor (M = 256). This 
is less than the time required to compute a time step 
for the one-dimensional transmission line approxima- 
tion using FORTRAN code. 

, 

Note further that the BM mechanical properties need 
not be linear. The quantity b(x, t) can be any nonlinear 
function of • and • and the method is Still applicable. 
However, the BM mass rn and the scala height H must 
be constant for the method to apply. 

VII. DISCUSSION OF NUMERICAL RESULTS 

In order to check our numerical results we solved 

the case of a constant BM impedance and compared the 
solutions to an analytical formulation by the normal 
mode method. The two solution methods differed in the 

4th decimal place. We also compared the new method 
to our previous method (Allen, 1977a) (correcting for 
the factor of two error mentioned in Footnote 2) and 
the agreement was excellent. Next we modified the 
kernel function F(a) of Eq. (10) to be that of the trans- 
mission line model [by replacing the In(.) term by a 6 
function] and compared the solutions to the trans- 
mission line equation solutions. The agreement again 
was excellent (the solutions differed by much less than 
1 dB). Finally, when either T or A were reduced, no 
changes were observed in the solutions. 

We now present the results of simulations. In the 
first example we assume that Dx, the longitudinal stiff- 
ness, is zero, and we compare our numerical results 
to the measurements of Rhode on squirrel monkey. In 
making these comparisons, in order to be consistent 
with Rhode, it is necessary to redefine the direction 
of BM motion with displacement into ST as positive. 

Our present comparisons differ from earlier ones in 
several respects. First we have attempted to model 
cochlear map data. Second we have not arbitrarily 
scaled the magnitude of the transfer function. The mea- 
sured data is a transfer ratio between malleus and BM 

velocity. We have modeled the BM to stapes ratio. The 
malleus to stapes response is believed to be a flat at- 
tenuation of about 6 dB for squirrel monkey. We did not 
correct for this effect here. Third we attempted to 
match the phase slope below CF. As a result of these 

three constraints the damping was the only remaining 
unspecified parameter. This was then varied to give 
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the best fit near CF. For squirrel monkey we choose 
the following parameters 4 (in cgs units) 

p=l(g/cma), L=2.5(cm), H=0.09g(cm), 

T=0.25x 10-S(s), a=0.9(cm-•), rn =0.043(g/cm"), 

R(x) = 100(dyn-s/cma), 

W (x) = 0.01 gexp[0.5(ax + 0.031xS)] (cm), 
D•: KoW4(O)/w4(dyn cm), Ko: 0.262 x 10Xø(dyn/cma), 

D, =0, M = 512(points). 

Note that R is a constant here. The parameter a is 
called the cochlear map parameter and determines the 
slope of the cochlear map. 

In Fig. 4(a) and 4(b) we show a comparison of our cal- 
culated results with some data of Rhode (1971, Fig. 6). 
The numbers 1-10 code the BM measurement points. 
The actual locations may be determined by reference to 
Fig. 4(e). The calculated frequency response was ob- 
tained by (time) Fourier transforming (by FFT) the 
normalized time velocity (impulse) response •(Xo, t)/u o 
(normalized by the stapes velocity Uo) at a place x = Xo 
on the model BM to an impulsive velocity input 

(32) 

In Figs. 4(c) and 4(d) we increased the damping R to 
R = 1000o In Figs. 4(a)and 4(b)the magnitude gives a 
better match than the phase, while the reverse is true 
in Figs. 4(c) and 4(d). We were not able to obtain simul- 
taneous matches to both magnitude and phase with one 
choice of R. 

In Fig. 4(e) we show the calculated cochlear map for 
the parameters assumed along with three estimated s 
values for squirrel monkey (SQM). The cochlear map 

is a plot of 1ogm(fcF) against XcF , the place of measure- 
ment. For squirrel monkey the cochlear map has not 
been measured. Our lack of knowledge of the SQM 
cochlear map makes further comparisons to Rhode's 
data difficult (if not impossible). Our unusual choice 
of W(x) causes the computed map to be curved. 

In Fig. 5(a) and 5(b) we show the results of similar 
comparisons to Fig. 8 of Rhode (1971) (higher CF 
data). In Fig. 5(a) and 5(b) 

D• = Ko(W(0)/•)4(dyn-cm), D, = 0, 

W(x)=O.Olgexp[O.5ax]cm, Ko=0.28x 10Xø(dyn/cma), 

Ro=200(dyn-s/cma), mo = 0.032(g/ern•'), 

a=l.5(em-•), L=4(em), H=0.13(em), 

T = 0.Sx 10-S(s), M = 256(points). 

For Fig. 5(c) the damping was increased by a factor 
of 5 to R = 1000. The cochlea map for the case of R 
= 200 is given in Fig. 5(d), again along with some esti- 
mated relative cochlear map points for SQM. We feel 
that the cochlear map is an important constraint on the 
model since it determines a. 

In Fig. 6 we show the results of including longitudinal 
stiffness into the model. In this example all conditions 
were identical to those of Fig. 4(a) except that DR = 10 -4 
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FIG. 4. Results of solving Eq. (19) for the BM/stapes velocity transfer function: (a) magnitude of velocity ratios; (b) phase with 
parameters given in Sec. VH; (c) magnitude with the damping increased to R =1000; (d) phase for case of increased damping; 
and (e) cochlear map from model. In (e) the solid line connects three rough estimates of the squirrel monkey map. These points 
may be shifted along the x axis since they are only relative positional estimates. Note that we have effectively made the scala 
length greater than the BM length, which is believed to be only 2 cm long. The scala length for squirrel monkey is presently un- 
known. The dashed plots in (a)-(e) are Rhode's 69-473 squirrel monkey data for 70, 80, and 90 dB SPL. For all phase plots the 
sign of BM displacement was reversed in order to be consistent with Rhode's data where displacements into ST are positive. 
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FIG. 5. In this figure we compare ot•r model results to Rhode's 1971, Fig. 8 data (higher CF plot): (a) family of transfer func- 
t-ions and Rhode's data, (b) phase, (c) phase with fivefold increase in damping, and (d) cochlear map. The important difference 
between this case and the previous one is that we have arbitrarily chosen a very different cochlear map parameter a = 1.5 (com- 
pared to the previous case of a =0.9) and the cochlear map has been made linear by our choice of K(x)=Ko e'2ax [when R is small, 
fcF is always very well approximated by 2•rfcF='gK(x)/rh]. Due • the range of CF's required, and our choice ofa, the length was 
chosen to be 4 cm. Since the squirrel monkey basilar membrane is only 2 cm long, the cochlear map of the previous figure is 
more reasonable than the one shown here. In general the BM velocity is ordy weakly dependent on a. Measurements are needed 
of squirrel monkey cochlear maps. As in the previous figure, it was necessary to increase R in order to match the phase. Thus 
we were not able to match both magnitude and phase with one choice of R. 

and 10 -5, where Ds =D,,/D,,. According to these results, 
D• must be less than 10 -4 times smaller than D,, the 
transverse stiffness coefficient. This result argues 
strongly against models which assume significant BM 
longitudinal stiffness. The phase for this case differs 

only above fcr, and has a smaller slope in that region. 

In all cases where we found reasonable agreement 
between the measured data and the model, the high- 

frequency (f>fcr) plateau as observed by Rhode was not 
present in the model results. The reason for this dif- 
ference is presently unknown. Note that the plateau is 
present for lower CF's, Fig. 4(a). 
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VIII. PARAMETER SELECTION 

In order to help fit measured data for frequencies f 
below the characteristic frequency (fcr) we have used 
the following approximate formulas for m and H ob- 
tained from the one-dimensional model (Sondhi, 1978, 
Eq. 42) and the WKB approximation [Morse and Fesh- 
bach, (1953), p. 1092] 

4p sinh(0.5ax0) 
m = ?ocooG ø a (33) 
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where DR=D•/D •. Apparently even minute amounts of longitu- 
dinal stiffness strongly modify the high-frequency slope. Ex- 
cept for the longitudinal stiffness, all conditions are identical 
to those of Fig. 4(a). Note the expanded frequency scale of this 
plot. 

where we define 

cv = 2•f, CVo= 2•fc• , 
Xo= place of measurement relative to stapes, 

a: map parameter. 

% is the phase slope for frequencies well below CF 

TO- • co <w 0 ' 
as measured at x =x0, and 

Go= Wø l v(xø' co) [ (36) co u(co) •<•o' 

For Rhode's 1969 data animal 69-473, 

fee: 7785 Hz, %= 0.4x 10-3s, Go = 4.78, (37) 
as may be easily determined from his data. The pa- 
rameters a and Xo are presently unknown for SQM. We 
have assumed here that a = 0.9 and Xo= 1.8. The use of 
Eqs. (33) and (34) assure that for frequencies below CF 
the gain and phase will match measured values. These 
formulas are therefore very helpful in parameter selec- 
tion. When the damping R is large, these equations will 
not be accurate and some other method of parameter 
selection must be used. 

After the determination of H and m, Ko the stiffness 
constant, may be estimated from 

Aax :fcF e•ø' Kø: m (2Wfmax)2. (38) 
The above formulas should serve only as initial pa- 
rameter estimates with final refinements made by direct 
comparison of the computed solution with the experi- 
mental results. In most cases we found them to work 

well. 

IX. CONCLUSIONS 

In this paper we have presented a method for nu- 
merically solving the fluid mechanical equations for 
basilar membrane motion. The solution proceeds in the 
time domain and will allow for nonlinear BM parameters 
(such as signal dependent damping). As a further ex- 
tension, we have included longitudinal stiffness. As a 
result of our calculations, large amounts of longitudinal 
stiffness appear to be inconsistent with Rhode's mea- 
surements in squirrel monkey cochleas. This is an 
important (negative) result because a number of prev- 
ious cochlear models have assumed significant longi- 
tudinal stiffness. 

Since our method of solution requires the use of a 
fast FFT, our solution technique might not be as use- 
ful to those who do not have a high speed array pro- 
cessor capable of computing a 512-point real (or 128- 
point complex, if all symmetry is used) FFT in less 
than20ms. For thosewithout array processors, symme- 
trymay be used to reduce the computation (Rabiner, 1979). 

Using very reasonable mechanical parameters we 
have found reasonable agreement between the model 
solutions and the measurements of Rhode. The damping 
required to match the magnitude was different from that 
needed to match the phase. 

If the BM mechanical damping R is nonlinear, as many 
believe it is, then one would not expect to be able to 
match Rhode's magnitude and phase with one value of R, 
since his measurements have been made using different 
input levels (and hence, different R values, according 
to the present nonlinear models). Thus we believe that 
any future model work must include nonlinear damping 
effects as required by two-tone suppression models 
(Kim and Molnar, 1975; Hall, 1978). The method of so- 
lution presented in this paper is still valid for the case 
of nonlinear damping. Further refinement in matching 
the BM magnitude data might be possible if we had more 
direct data on the SQM cochlea map and Rhode's place 
of measurement. 

The results reported on here continue to support the 
need for a second filter since the model mechanical re- 

sponse is not as sharply tuned as neural tuning curves 
(Allen, 1977b). 

tCircular convolution has the well-known property that it may 
be performed in N log2 (N) time on a digital computer by use 
of fast Fourier transforms (FFT's), whereas by direct comp- 
utation, circular convolution takes N 2 time units, where N is 
the number of points to be convolved. Furthermore, as a re- 
sult of the circular convolution, storage may be reduced from 
N 2 to N. These two improvements render the direct solution 
of the integral equation a trivial matter. The development of 
the FFT made convolution a practical computer computation 
for systems where N is greater than a few hundred points. 

2In Allen (1977a), a factor of two error was made in his Eq. 
(12). Because of the definition of GBM (X,X'), $' of Appendix 
D should have been from 0 to L rather than 0 to 2L. Thus the 

limits on the second integral of Eq. (Dll) should have been 
0 to L, as shown, but with no factor of two preceding the in- 
tegral. Making this correction, and using the definition of 
pressure, p=iwp•, Allen's Eq. (12) becomes our present 
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Eq. (1) above. If all his impedance values Z are normalized 
by th•.s factor of two, the results of that paper are correct. 
The statement by Sondhi (1978) after his Eq. (31), p. 1471, 
becomes correct after this change, and his Eqs. (30) and (31) 
are then equivalent to Allen's. 

3By further use of all the symmetries, it is possible to reduce 
the size to a 256 point real, or 128 point complex FFT. This 
has been accomplished by L. R. Rabiner (1979). However 
the complexity of the pre- and postprocessing required is 
rather cumbersome on our array processor. 

4All impedances given here are BM impedance values defined 
by the relation 2p(x, w)=-Z(x, w)r(x, w), where Z(x, w) 
=K(x)/iw +R(x) +iwm, and K•)=Dg(•/W(x)) 4. Note the factor 
of two difference between this definition of Z and the one used 

by Allen (1977a) and Sondhi (1978). 
5The center point was given to us by Rhode (personal commun- 

ication). The extreme points were estimated from neural 
data as the highest and lowest possible CF. These points are 
only relatively estimated. Thus they may be moved along 
the x axis for best fit. 
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