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Speech Perception and
Hearing Loss

By Jont B. Allen, Ph.D., Andrea Trevino, and Woojae Han, Ph.D.

Over 150 years after the early research of Alexander Graham Bell, it remains unclear

how the auditory system decodes speech, both in individuals who have ‘‘normal ears’’
and thosewho have ‘‘non-normal ears.’’Recent research has shown that normal ears can

decode isolated consonants without error. However, when the inner ear is damaged,
such as with sensorineural hearing loss where hair cells and synaptic connections are

not properly functioning, speech can be heard but not understood. In these cases,
two seemingly-normal articulated utterances of the same consonant can result in

totally different responses. Such specific and consistent confusions uniquely depend on

the auditory system’s function and the utterance. This presentation will discuss the
differences between how the auditory systems of normal ears and non-normal ears

receive and decode speech.
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Introduction

Existing clinical methods for diagnosing speech disorders in individuals
with damaged inner ears seem fundamentally broken. Todaywhen patients go
to an audiology clinic, their pure-tone hearing thresholds are first measured.
Based on the degree of tonal hearing loss, a hearing aid may be prescribed,
which is subsequently adjusted to partially compensate for the pure-tone loss.
This may or may not improve the ear’s speech loss (Walden & Montgomery,
1975). But since the speech loss is infrequentlymeasured (orworse, themethod
of measurement is ineffective), the change is not quantified.
Basedon the evidence available, it has been shown that speech testinghasnot

been successful in fitting hearing aids (Walden & Montgomery, 1975). This
seems counterintuitive since the main purpose of wearing a hearing aid is to
improve speech understanding. Due to historically poor understanding of the
fundamentals of speech perception, it has proven difficult to resolve this
inconsistency. First, researchers may not understand the process of learning
speech, which typically takes place in the first one to two years of life. Second,
due to middle ear infections, young children can temporary lose their hearing,
which can interfere with learning spoken language. It is not until the first year
of school when the child is learning how to read that the child’s ability to hear
consonants is first fully tested.
Children who cannot accurately decode consonants may have increased

difficulty with orthography. For example, if an ear cannot hear the distinction
between /b/ and /d/ or between /t/ and /f/, the child is likely to
misunderstand the importance of the shape of the letter [loop at bottom,
closing to the left (d) or right (b), and curl at top (f) or bottom (t)]. The classroom
teacher assumes that if a child’s hearing is normal, then the child can hear the
consonant distinctions. However, this assumption can be wrong and if so, the
child’s consonant decoding deficiency will go undetected (it will not show up
in a pure-tone hearing test). When the child passes a hearing screen it is
assumed, incorrectly, that they can decode syllables. What is needed is a
targeted consonant discrimination test to predict these reading disorders.
Clinical audiologists can also make the same assumptions about adult

speechperception, and researchhas shown thatmanyof these assumptions can
be wrong. The most serious assumption has been that consonants are
homogeneous. Research has shown that for ‘‘normal ears,’’ confusions
systematically depend on the consonant (Phatak & Allen, 2007; Phatak, Lovitt,
& Allen, 2008; Singh & Allen, 2012). For ‘‘non-normal ears,’’ the errors
dramatically increase, again depending on the ear, the noise-level, and, most
significantly, the utterance.
If consonants were homogeneous, the confusions, as a function of the noise

level, would be the same from one consonant to the next. This is not the case,
since consonant confusions are highly dependent on the utterance (Han, 2011;
Singh & Allen, 2012). While normal ears give similar confusions for a given
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utterance as a function of the noise, non-normal ears are idiosyncratic in their
error patterns. The idiosyncratic nature of the speech scores implies that they
may not be averaged. It is this inappropriate averaging that has led clinicians to
believe that speech is not a reliable measure for fitting hearing aids.
In the last few years, the Human Speech Research (HSR) group at the

Beckman Institute for Advanced Science and Technology at the University of
Illinois, Urbana-Champaign, has determined some key elements in this chain
that seem to enlighten responses from both normal and non-normal ears. For
ourpurposes, ‘‘normal ears’’ aredefinedas thosewithpure-tone thresholds less
than 20 dB-SPL, and ‘‘non-normal ears’’ are defined as having pure-tone
thresholds greater than 20 dB-SPL.
Until very recently, it was not understood that the normal ear can detect

speech with essentially zero error, down to �10 dB SNR (three times more
speech-shaped noise than speech) (Phatak et al., 2008). As the noise increases,
the error goes from zero to chance performance over a small signal-to-noise
ratio (SNR) range. These new results totally change the understanding of what
is happening in normal ears because it means consonant perception is binary
(Singh & Allen, 2012).
The focus of this paper is to describe this difference in performance between

the normal and non-normal ear at the utterance level. The paper will explain
what the HSR group has found, and then predict where this research will go in
the next fewyears. In addition,wewill discuss a speech test that teases out such
natural occurring idiosyncratic speech confusions, which we argue will
eventually be useful for fitting hearing aids.

How Does Speech Perception Fail?

The challenge remains to understand the auditory processing strategy of the
auditory cortex,which iswired to non-normal ears. Tounderstandhownormal
ears decode consonants, the HSR group repeated the classic consonant
perception experiments of Fletcher (1922) andMiller andNicely (1955), among
others. This gave us access to important new data and the ability to reassess
many widely held assumptions. The first lesson of this research is the ‘‘sin of
averaging’’—while audiology is built on averaging measures, most of the
interesting information is lost in these averages. We have shown, for example,
that averaging across consonants distorts themeasure as does averaging across
talkers for a given consonant. We have also found that entropy (a probabilistic
measure of consistency) is more robust than the average error.
In 1970–80, a number of studies explored the role of the transitional andburst

cues in a consonant-vowel (CV) context. In a review of the literature, Cole and
Scott (1974) argued that the burst must play at least a partial role in perception,
along with transition and speech energy envelope cues. Explicitly responding
to Cole and Scott (1974), Dorman and colleagues (1977) executed an extensive
experiment using natural speech made up from nine vowels proceeded by /b,
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d, g/. The experimental procedure consisted of truncating the consonant burst
and the devoiced transition (following the burst) of a CVC, and then splicing
these onto a second VC sound, presumably with no transition component
(since it had no initial consonant). Their resultswerepresented as a complex set
of interactions between the initial consonant (burst and devoiced cue) and the
following vowel (i.e., coarticulations).
The same year Blumstein and colleagues (1977) published a related /b, d, g/

studyusing synthetic speech that also presented a look at the burst and ahost of
transition cues. They explored the possibility that the acoustic cues were
integrated (acted as awhole). This studywas looking to distinguish the necessary
from the sufficient cues, and first introduced the concept of conflicting cues in an
attempt to pit one type (burst cues) against the other (transition cues).
While these three key studies highlighted the relative importance of the two

main types of acoustic cue, burst and transition, they left unresolved the
identity and relative roles of these cues. No masking noise was used in the
studies, ruling out any form of information analysis. Masking is key to an
information theoretic analysis of any communication channel (Allen, 1994,
1996; Fletcher, 1922; Shannon, 1948). As discussed byAllen (2005), based on the
earlier work of Fletcher and Galt (1950), Miller and Nicely (1955), and inspired
by Shannon’s source-channel model of communication, the HSR group
repeated many of the classic experiments (Li & Allen, 2009; Phatak & Allen,
2007; Phatak et al., 2008). The data resulting from our several experiments will
be discussed in the remainder of the paper.

Identifying Perceptual Cues

Li and colleagues (2010) first described amethod to robustly identify speech
cues for a variety of naturally producedCV speech sounds. Thismethod uses a
3-dimensional psychophysical approach using a variety of noise levels, time-
truncation, and high and low pass filtering. These experiments made it
possible, for the first time, to reliably locate the subset of perceptually relevant
cues in time and frequency, while the noise-masking data characterizes the
cue’s masked threshold (i.e., its strength).
Figure 4 describes the resulting consonant maps. Not surprisingly, the

perceptual cues associated with fricative sounds are quite different from the
plosives. Timing and bandwidth remain important variables. For the fricative
sounds, the lower edge of the swath of frication noise is the perceptual cue.
Briefly summarized in Figure 4, the CV sounds /ta, da/ are defined by a

burst at high frequencies, /ka, ga/ are defined by a similar burst in the mid
frequencies, and /ba, pa/ were traced back to a wide-band burst. As noise is
added, thewide-band burst frequently degenerates into a low frequency burst,
resulting in low-level confusions. The recognition of burst-consonants further
depends on the delay between the burst and the sonorant onset, defined as the
voice onset time (VOT). Consonants /t, k, p/ are voiceless sounds, occurring
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about 50 [ms] before the onset of F0 voicingwhile /d, g/ have a VOT,20 [ms].

Plosive /b/ may have a negative VOT.

Based on the results of Li and colleagues (2010), this study, along with a host

of verification experiments on the ~100 CV utterances in the HSR database

(Kapoor & Allen, 2012; Li & Allen, 2011; Régnier & Allen, 2008), we have

conclusively demonstrated that these features uniquely label the indicated

consonant.

Methods

Isolated CVs were taken from naturally produced speech from 18 talkers.

Noise was added to the speech with a range from�26 dB to quiet (Q). Both

uniform and speech weighted spectrum level noise was added to the speech.

The listener corpus consisted ofmore than 200 normal and 45 non-normal ears,

with 9-16 consonant and8vowel sounds. To assure the estimates of the error are

reliable, aminimumof 10 trials per utterance and SNR are required (Han, 2011;

Phatak, Yoon, Gooler, & Allen, 2009; Singh & Allen, 2012). The difference

between these new experiments and their classic counterparts is that the

utterances of each consonant are not averaged.

Figure 4. Time-frequency allocation of the plosives and the fricatives. Mapping these
regions into perceptual cues required extensive perceptual experiments (Li et al., 2010).
Once the sounds have been evaluated, it is possible to prove how the key noise-robust
perceptual cues map to acoustic features. In the cases of the three voiced consonants
indicated with a tilde (/ , , /), the frication noise is modulated at the pitch
frequency.
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Results

In Figure 5, the average probability of the errorPe(SNR) is shown (for speech-

weightednoise the SNR is the same as the articulation index).On the left (a), the

‘‘average normal hearing’’ (ANH) score Pe(SNR) (black line), along with the

score for each heard consonant /h/, given spoken consonant /s/ as a function

of the SNR for flat-spectrummasking noise (Phatak et al., 2009). There is a huge

variation in scores across the consonants: the SNR corresponding to the 50%

point ranges from�12 dB [/m, n/] toþ8 dB [/h, ð/] [shown as /T/ and /D/ in

Figure 5)]. Such a large range of scores is not captured by an average. Not

shown here, each utterance in the HSR database has a wide range of scores,

varying in error from zero to chance depending on themasking noise intensity

(Singh & Allen, 2012).

The right panel (b) shows the average scores for the 17 non-normal ears as

compared to the average scores of the participants with normal hearing in

speech-shaped masking noise. One of the best ears in terms of average error is

36R. Not shown is that his error for /ba/ reaches 100%, while the remaining 13

consonants tested had zero error. Thus, the reported performance is highly

distorted, again due to the ‘‘sin of averaging.’’

Figure 5. LEFT: Shown here is the average error (log scale) for 16 CV consonants as a
function of the relative intensity of constant-spectrum-level masking noise (Phatak et
al., 2009). The solid black curve labeled ‘‘Avg. Normal’’ shows the average across all the
consonants. Note the large variation in error. RIGHT: This family of curves compares
the average consonant error for 14 normal and 17 non-normal ears in speech shaped
masking noise. For the non-normal ears, there is a large spread in scores due to the
variation in hearing loss as compared to listeners with normal hearing (gray region), all
of whom are similar in their average performance.
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A second major conclusion is that when characterizing a listener with
hearing loss, onemust look at the individual confusions. In Figure 6, confusion
patterns (CPs) are compared to SNR. The CP is a graphical display of the
confusion probabilities as a function of the intensity of the masking noise
relative to the speech. To estimate a CP requires a totally different clinical
measure than is being applied today. CPs allow one to visualize the confusions
of each soundas a function of the SNR. From theCP it is easy to identify a sound
that primes, meaning that it can be heard as one of several sounds with equal
probability by changing one’s mental bias. In this case the CPs show subject
responses that are equal (the curves cross each other), similar to the CP of
Figure 6(b) at�8dBwhereonenaturally primes/p/, /t/, and, to a lesser extent,
/k/ (at�10 dB).
When asked, most clinicians report that they do not have the time to make

detailed measures. In our opinion, this is more a reflection of old habits than
actual time constraints. The confusion sets, and their dependence on the noise,
are not predictable without such tests. Utterance confusions and their masked
dependence are important because they reveal the mix of underlying
perceptual cues being confused with the target sound.
When using an utterance confusion measure, each non-normal ear

consistently makes large errors on a small subset of utterances. Furthermore,

Figure 6. The ‘‘sin of averaging’’ extends to the utterance level. On the left (a) we see
confusion patterns for the average score for /ta/ from Miller and Nicely (1955) (white
masking noise). On the right (b) we show the confusion patterns for male talker 117
saying /te/ (speech shaped noise). Based on data with the same masking conditions,
and as concluded in Figure 5, averaging across utterances removes critical information
from the ANH scores. The confusion error is a function of the SNR in dB. As we shall
see, this ‘‘sin’’ is much worse for non-normal ears at the utterance level. The arrow at�8
dB and 30% shows the priming point, defined as where a listener reports one of a small
set of sounds (Li & Allen, 2011).
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for a given utterance, there are patterns in these errors across listeners with
hearing loss. In other words, normally spoken utterances are heard
idiosyncratically by non-normal ears, yet with correlated error patterns.

Confusions in Non-Normal Ears

As a direct extension of earlier studies (e.g., Phatak et al., 2009), four
experimentswereperformed (Han2011), twoofwhichwill be reportedonhere.
In Experiment 1 (Exp-1), full-rank confusion matrices for the 16 Miller-Nicely
CV sounds were determined at 6 SNR [Q, 12, 6, 0,�6, and�12 dB] for 46 non-
normal ears (25 subjects). In Experiment 2 (Exp-2), a subset of 17 ears were
remeasured, but with the total number of trials per SNR per consonant raised
from 2–8 (Exp-1) to as high as 20 (Exp-2) to statistically verify the reliability of
the subjects’ responses in doing the task.

Figure 7 shows that listeners with hearing loss are using a common
strategy that depends systematically on the utterance. Clearly, if such very
different scores for the two /ba/ sounds were to be averaged together (i.e.,
present clinical practice), the idiosyncratic (i.e., the most important)
information about the ears would be lost. As discussed earlier, the average
score is a distorted metric due to its high variance a) across consonants, b)
across utterances for each consonant, and c) across subjects with hearing
loss. Entropy gives a direct measure of consistency and is insensitive to
mislabeling errors (e.g., consistently across a voicing error, as in reporting
/d/ given /t/). Given the observed increased mislabeling of sounds in

Figure 7. These pie charts show the proportion of confusions for two different /ba/
utterances, as reported by all of the 17 non-normal ears. The most common error for the
/ba/ on the left is /da/ and then /va/, while the one on the right is most frequently
heard as /va/ and then /fa/. The one on the left is almost never heard as /fa/ and the
one on the right almost never as /da/. These two /ba/ sounds are reported correctly
by normal ears.
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non-normal ears, a high-consistency measure (i.e., entropy) seems to be a
better measure.

Summary

This article has reviewed some of what the HSR group has recently learned

about speech perception of consonants, and how this knowledgemight impact

understanding of nonlinear (NL) cochlear speech processing. However, the

role of outer hair cell (OHC) processing of speech is still poorly understood

(Allen, 2008; Allen & Li, 2009). It is now widely accepted that OHCs provide

dynamic range and are responsible for much of the NL cochlear speech signal

processing, thus the common element that links all theNLdata (Allen, Régnier,

Phatak, & Li, 2009). OHC dynamics must be understood before any model can

hope to succeed in predicting basilar membrane, hair cell, neural tuning, and

NLcompression.Understanding theOHC’s two-waymechanical transduction

may be the key to solving the problem of the cochlea’s dynamic range and

dynamic response (Allen, 2003).
However, the perception of speech by the non-normal eardoes not seem to be

consistent with the above commonly held view. For example, the large

individual differences seem inconsistent with the OHC as the tying link, and

seemmore likely related to synaptic dead regions (Kujawa & Liberman, 2009).

Continued analysis of these confusions will hopefully provide further insights

into this important question. The detailed study of how a complex system fails

can give deep insights into how the normal system works.
The key open problem here is, ‘‘How does the auditory system (e.g., the NL

cochlea and the auditory cortex) process human speech?’’ There are many

applications of these results including speech coding, speech recognition in

noise, hearing aids, and cochlear implants as well as language acquisition and

reading disorders in children. If we can solve the robust phone decoding problem,

we will fundamentally change the effectiveness of human-machine interac-

tions. For example, the ultimate hearing aid is the hearing aid with built in

robust speech feature detection andphone recognition.While researchers have

no idea when speech-aware hearing aids will come to be, and the time is

undoubtedly many years off, when it happens, it will be a technological

revolution of some magnitude.
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