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INTRODUCTION

Basic Network Postulates

An electric network is defined as a structure with a set of ports or accessible
terminal pairs at which voltages and currents may be measured. Such ports
are available for the transport of electromagnetic energy into or out of the
structure. The ports may be connected across branches of a low-frequency
circuit, or they may be connected to a complicated branch mesh configur-
ation, or under suitable conditions they may correspond to terminal planes
of a wave-guide or other distributed system across which power may flow.
In any case, whether the system operates at low or high frequencies, the
voltages and currents must be suitably defined so that electromagnetic field
quantities may be directly computed from these voltages and currents. The
subject of network theory is generally only concerned with the voltages
and currents (rather than the fields) at specified ports of an electrical system
and with the constraints imposed by the system on these variables. The
treatment presented here will therefore concentrate on the port or terminal
pair quantities. Other sourcest have dealt in considerable detail with the
relations between voltages, currents, and electromagnetic fields.

For the most part, the discussions in this text will deal with properties of
circuits (e.g., network geometric structure) which are independent of fre-
quency, network analysis techniques in which frequency is only incidental to
the main presentation, or they will involve the study of methods which are
valid at a single frequency. It should be emphasized, however, that many of
the techniques described here may be carried over directly into the domain
of variable frequency network theory. In view of this particular scope, the
major emphasis will be algebraic rather than function-theoretic and, par-
ticularly in regard to networks with many ports (e.g., branches or node

S. Ramo and J. R. Whinnery, Fields and Waves in Modern Radio (New York: John
Wiley & Sons, Inc., 1953).
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pairs), the treatment will utilize the classic (and generally elementary)
properties of matrices.

It should be clear from the above discussion that the properties of net-
works considered as processors of signals in the time domain will not be
directly invoked. Rather, the presentation is mostly limited to steady-state
responses. Nevertheless, it is important at the outset to consider briefly the
physical time domain constraints of the networks whose structural properties
will be dealt with in detail in the remainder of this book.

The physical nature of the networks considered here is defined in terms
of a set of postulates which describe the system in terms of its response to
real time signals at the network portsf. The simplest presentation of these
postulates is given in terms of a 1-port with a single voltage and a single
current. We presume that the voltage v(r) is the excitation} and is limited to
some broad class of time functions which correspond to signalsin the physical
world. The current i(f) at the available port of the system is the response
function. We will generally be concerned with networks which satisfy the
following constraints on o(?), i(t).

P-| Linearity postulate: Generally, we mean by linearity that the re-
sponse is proportional to the excitation. Then, if u(¢) is the excitation
and i(t) the response, written

() — i()
[this is read as, “v(¢) implies i(f)”"] linearity means
av' (1) + PP (1) — i () + BiD(r)
where
o1 — i(1)
() — i)

and a and P are arbitrary constants, and v*)(¢), ®)(7) are any two of the
permissible excitation signals.

P-2 Time invariance postulate: Time invariance means that the system
parameters do not change as a function of time. Thus, a given excitation
produces the same response no matter when it is applied.

{D. C. Youla, L. J. Castriota, and H. J. Carlin, “Bounded Real Scattering Matrices
and the Foundation of Linear Passive Network Theory” (IRE Transactions of the Profes-
sional Group on Circuit Theory, Vol. CT-6, No. 1, (Mar. 1959).

$Note that either voltage or current may be the excitation variable, and in fact »(z) can
stand for either one. For simplicity of presentation we assume voltage excitation and
current response.
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Thus with
u(t)— i(t)
then
o(t +1,)—i(t +1,)

where ¢, is an arbitrary time interval.

P-3 Passivity postulate: Many of the networks discussed in this book
satisfy the requirement that they only absorb or store energy; that is, they
do not amplify it, nor do they return more energy to the source than is
supplied. This property may be described in terms of an energy integral
in which the total energy delivered to the system (plus if absorbed, minus
if outward and back to the source) is measured from some very early
time when the circuit is completely quiescent with no stored energy;i.e.,
starting from ¢ = — co. Then, the passivity restriction requires that for the
1-port in question, and for real signals in real time

total delivered energy = f '_ mv(r)i(r) dr >0, t> —oo

Thus, this restriction requires that the energy delivered be nonnegative
for any time ¢ after the excitation v(7) is applied, a condition that must
be satisfied for all permissible v(7) signals.

P-4 Causality postulate: A system is causal if it yields no response until
after the excitation is applied. More precisely, the system response at any
time ¢ is only a function of the past and present excitation and cannot
be influenced by the future form of the signal. Thus, suppose

v D) — (1), ~-w<t<®
and
() =o'V, t<t

o

i.e., the presumption is that v(s) may differ from vV(1) for ¢> 1,
then causality implies that with

v(z)(t)—-» i(Z)(,)
we must have
=i, 1<,

Thus, the response up to time ,¢ can only be affected by the signal
properties up to time ,,.
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The usual definition of causality, which we may term P-da, states
that if
v(t)— (1)
then
=0, =14,
implies
i(t) =0, t<t,
In general, P-4 is less restrictive than P-4a since it does not require the
excitation to be zero for t < 0. However, in a linear system we can deduce
the causality postulate P-4 from P-4a, or vice versa (see Prob. 1.1).
Therefore, the two postulates are equivalent in such a system. Thus,
suppose we hypothesize P-4a. Now consider two excitations v,(t), v,(f)
defined for —00 <t < 00, With
v,(1) = vy(1), t<t,
Then define
o) =vt) ~v() =0, 1<1,

v()y— (1)
Now, by P-4a

By the linearity postulate P-1, however, since v, — i,, v, = )

0 = i(1) = i (1) — iy(1), t<t,
or
iD=in, 1<ty
which is P-4.

P-5 Real time function postulate: When a signal v(f), which is a real
function of real time, is impressed on the network, it must give rise to a
response i(f), which is also a real function of real time.

It is important to bear this postulate in mind despite the fact that we
often work with signals which are complex functions of time. Thus, it is
customary to employ v(f) = &/*' (0 =2nf,  f=frequency) as an ex-
citation. Of course, such signals generally produce a complex response,
but the postulate states that if the signal has a form such asv(f) = Re gl =
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cos ¢ (Re = real part of), then the response will likewise be a real
function of time. Time signals discussed below are all real.

Since the presentations which follow are primarily concerned with
steady-state responses at a real frequency ®, complex phasor notation is
used throughout. Thus, if 2(j®) is the impedance of a network branch
expressed as a complex number, and

2(jo) = r(jo) + jx(jo) = |z|e*
v jo)
z(Jw)

with o(j®) = |v|e’®, the phasor corresponding to the signal excitation
v(f) = Re |v]e™**% then in accordance with the usual conventions the
real steady-state response is given by

i(jw) =

i() = Re H giler+o-41
V4

= E: cos(wt + 0 — ¢)

Because spatially independent network elements are presumed in
most of the text (thus, in the above discussion z is a complex number
without a spatial variable), the treatment centers about lumped systems,
or distributed systems at reference planes fixed in space.

P-6 Reciprocity postulate: A substantial portion of this book
(Chapter S) is devoted to properties of nonreciprocal networks, but the
first four chapters deal mainly with reciprocal networks. The reciprocity
postulate is primarily associated with network structure rather than with
time domain behavior, and a detailed discussion of this property is given
later. However, in its simplest form, P-6 states that if v, = v is applied.to
port 1 of a network with two ports (a 2-port) with resultant current
i, =iin the lead short-circuiting port 2, then if v, =v is applied to port 2,
the short-circuit current at port 1 is i, = i. In both cases the current polarity
iy, i is into the network from the terminal designated as positive polarity
for the applied voltages »,, v,. It should be emphasized that reciprocity
and passivity (the latter extended to an n-port) are independent postulates.
Passive networks may be reciprocal or nonreciprocal, as also may be
active networks (i.e., those that do not satisfy P-3).

An important general question may be raised concerning the indepen-

dence of the five time-domain postulates. In fact, P-1 (linearity), P-2 (time-
invariance), P-3 (passivity), P-5 (reality) are independent, but a surprising
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result first stated by Youla et al.t is that except for trivial exceptions, P-4
(causality) is a consequence of linearity and passivity. An elementary proof of
this assertion for a l-port is given below. The reader is referred to the
literaturet for a more extended discussion. o

Suppose therefore that a 1-port admits a set of signa! excntfitlons o(1) $'0.
Thus, at this point we immediately exclude a short circuit, which only admits
the excitation v(¢) = 0. In the strict sense we may indeed re.gard the short-
circuited 1-port as noncausal though it is linear and passivt.a, since for () =0
any current whatever may flow. (Regarding i(f) as excitation, »(f) as re-
sponse, the open circuit is similarly noncausal.)

Now, choose a real time excitation v(¢)

(1) — (1), —wsSt<®
with
(1) =0, t<t,

We will show that under the assumptions of linearity (P-1) and passivity

(P-3)
i(H)=0, t<t,

from which P-4 follows.

Consider a signal

i(t) = v(t) + ow(t), —w<tL

where o is an arbitrary constant and

(1) — i(1), —o <t ®
(1) — i(1), —ww<t<®
vo(f) £0

Furthermore, linearity (P-1) yields
i(f) = i (1) + ai(t)
Hence, the passivity relation (P-3) which applies to all admissible signals
f‘_ o(t)i(t) dt = 0, t> —w
becomes

f " [ofD)i1) + a0 (D)i(T) + an(2)ig(7) + a’e(D)i(W]dT 20, 1= —co

tYoula, Castriota, and Carlin, Op. cit., p. 2.

INTRODUCTION 7
For t < t,, v(f) -= 0, hence the above integral reduces to
f'_ 0, i(v) dr + o f " o) dr=0, <1,

But for any ¢ < ¢, the first integral is nonnegative (by passivity), and if the
second integral is nonzero we may always choose the arbitrary constant o
so as to violate the inequality, e.g., we may choose o large in magnitude and
negative if the second integral is positive. But the passivity hypothesis re-
quires that the integral inequality (i.e., on the sum of the two integrals) be
satisfied, and this can only be the case when

f'_wv,(‘r)i(r) dt =0, t<t,
and since this is true for all ¢ < ¢,, the integrand must be zero and
v,(0i(t) = 0, t<t,
By hypothesis v,(t) # 0, hence
=0 tx<1,

This proves that, given P-1 and P-3, P-4a follows. But we have already
shown that P-4a implies P-4. Hence [except for the trivial restriction on v(1)]
a passive linear system must be causal. This is true whether the network is
time invariant or not. This causality theorem has a good deal of importance
even beyond the confines of pure network theory (as indeed do many other
network theorems) since it applies to any linear passive system. For example,
it has been cited by workers in the field of thermodynamics and elasticity.t

Notation

The philosophy governing notation has aimed at maximum simplicity.
The following rules have been generally adhered to, though from time to
time where the context ruled out any possibility of confusion, the rules may
have been relaxed in the interest of naturalness of presentation.

1. (a) Capital letters usually indicate matrices; thus
Z, Y, S, A, B

In certain cases (the text presentation clearly defines the symbol)
upper case is used for scalar elements
P (power), G (gain), Z, (an impedance element)

1S. R. Groot and P, Mazur, Non-Equilibrium Thermodynamics, (Interscience, 1962),
Chap. 8; and J. Meixner and H, Konig, Rheologica Acta, Vol. 1 2/3, 1958.
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(b) Determinants are indicated by det ( ), €8 det Z, and deter-

minant arrays by vertical rules, e.g.,\‘: Z‘ Matrix arrays are indicated
a b

by brackets, [c d]'

. Lower case letters generally indicate scalar elements such as branch

impedances, driving point impedances, voltages, currents, and scatter-
ing variables

2, p,0, 0,8, b

. Lower case letters with double subscripts indicate matrix elements.

Single subscripts are usually used for elements of a column vector.
Zyg Yijs Sij
Ay, Vs by

Occasionally, capital letters with double subscripts are used for matrix
elements.
R,, (resistance), Ly, (inductance), Cu (capacitance)

. In Chapter 4, special notation is used to distinguish normalized from

nonnormalized quantities, but in other chapters where the distinction
is generally unnecessary, the special notation is omitted.
(a) Nonnormalized matrices in Chapter 4 are indicated as

Z ¥ &
v, 1

(b) Nonnormalized scalars are underscored

Vi s 2ij

But special symbols are used for nonnormalized (rarely used) scattering
variables, i.e., %, Bi-
©) Normalized quantities are unbarred

zZ,YS
v, I
(a) Single column matrices (column vectors) are indicated by a lower

case letter above a tilde. Thus for normalized incident and reflected
scattering variables

a b

Lower case letters above a tilde are also occasionally used to indicate
row vectors.
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(b) Itl the SpeClﬁC cases Of Volta (< al)d curren lngle CO]U"I" matrices
g t s s
Ca])llal lettels are uSed to i"diCate colul“" vectors

v,1

. rﬂnsf T 1 b‘ C ed W]t]l an uppel bﬂ|
6 ] (] “led variapbles and matrices are |ndl at >
Clrcumﬁex, or Other dls‘,lngulsh]ng mark. lhuS

V,1or?1
g, borab
Z,Yor 2, ¥

7. Various operations on i
matrices and scalars
e o e are denoted as follows:

s*, 2%, o}
o}
v3
. A
S - (s:[)s V* =
D*

(b) Transpose of a matrix or column vector
Z' = (z;y), with Z = (z;))
Also

V={(v;,0, ...,1,)
and

g’ =(als Ay vy an)
where a, V are column vectors
(¢) Conjugate transpose or adjoint of a matrix
*e _ :
Z¥ =7 = (z}), with Z = (z;))

g*r -

St

= * %
"'(ah ay, ... ,a,f)

where g is a column vector.



