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ABSTRACT:
Causality is a fundamental property of physical systems and dictates that a time impulse response characterizing any

causal system must be one-sided. However, when synthesized using the inverse discrete Fourier transform (IDFT) of

a corresponding band-limited numerical frequency transfer function, several papers have reported two-sided IDFT

impulse responses of ear-canal reflectance and ear-probe source parameters. Judging from the literature on ear-canal

reflectance, the significance and source of these seemingly non-physical negative-time components appear largely

unclear. This paper summarizes and clarifies different sources of negative-time components through ideal and practi-

cal examples and illustrates the implications of constraining aural IDFT impulse responses to be one-sided. Two-

sided IDFT impulse responses, derived from frequency-domain measurements of physical systems, normally occur

due to the two-sided properties of the discrete Fourier transform. Still, reflectance IDFT impulse responses may serve

a number of practical and diagnostic purposes. VC 2021 Acoustical Society of America.
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I. INTRODUCTION

A time impulse response describes the response of a

given system to a unit-impulse stimulation. Physical systems

are inherently causal, and the time impulse response charac-

terizing any causal system must be one-sided. That is, any

response from the system cannot occur before the stimulus.

A derived logical rationale is that a two-sided time impulse

response cannot provide the exact characterization of any

physical system. Previous reports, the contents of which we

summarize below, used the terms causal, non-causal, and

anti-causal to describe properties of impulse responses.

Because causality is a property of systems rather than sig-

nals, we reserve these terms for the system and instead apply

the similar terms one-sided, two-sided, and negative-time
one-sided, respectively, to describe properties of impulse

responses. Thus, one-sided without further specification

implies that the impulse response is confined to non-

negative times.

The human ear is a non-linear physical system that is

often characterized by its reflectance transfer function in the

ear canal as a function of frequency. Ear-canal reflectance

and derived quantities such as power absorbance provide a

basis for diagnosing conductive middle-ear disorders (e.g.,

Piskorski et al., 1999; Keefe et al., 2000) and compensating

for effects of the ear-canal acoustics on otoacoustic-

emission measurements (e.g., Souza et al., 2014;

Charaziak and Shera, 2017). Ear-canal reflectance repre-

sents the proportion of sound reflected in the ear canal by

the middle ear and is conventionally measured using an ear

probe inserted into and sealed to the ear canal, enabled by

a preliminary calibration to obtain the ear-probe Th�evenin-

equivalent source parameters (e.g., Allen, 1986; Keefe

et al., 1992; Voss and Allen, 1994). The conventional cali-

bration procedure consists of measuring the pressure in

several rigid acoustic waveguides and solving an over-

determined system of equations at each frequency for the

least-squares approximate source parameters (Allen,

1986). An alternative calibration method determines the

ear-probe reflectance source parameters based on measure-

ments in a semi-anechoic tube (e.g., Keefe, 1997; Keefe

and Simmons, 2003).

Time impulse responses and frequency transfer func-

tions are related through forward and inverse Fourier and

one-sided Laplace transforms (Papoulis, 1962). Using the

inverse discrete Fourier transform, several papers published

in the Journal of the Acoustical Society of America (summa-

rized in the following paragraph) have reported two-sided

synthesized impulse responses of ear-canal reflectance as

well as ear-probe source parameters. We denote synthesized

inverse Fourier transform (IFT), inverse Laplace transform

(ILT), and inverse discrete Fourier transform (IDFT)

impulse responses as such to distinguish them from the gen-

eral physical concept of a time impulse response. Impulse
response without further specification refers to any of the

impulse-response types described above.

a)Electronic mail: krng@interacoustics.com, ORCID: 0000-0002-6845-

0388.
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Voss and Allen (1994) observed negative-time compo-

nents in the ear-canal-reflectance IDFT impulse response

and explained that they occur due to fractional sample

delays. After applying a low-pass frequency Blackman win-

dow to the transfer function that suppresses effects due to

fractional sample delays, Rasetshwane and Neely (2011)

still observed negative-time components in the reflectance

IDFT impulse response, which they removed using time-

reversed addition. Nørgaard et al. (2017a) found these com-

ponents to arise due to evanescent modes and noted that

they vanished when these modes were compensated.

Similarly, Nørgaard et al. (2018) and Siegel et al. (2018)

noted that the ear-probe source-parameter IDFT impulse

responses are two-sided when evanescent modes are not

accounted for during the calibration procedure. Based on

previous studies on reflections between conical bores of dif-

ferent taper (Agull�o et al., 1988; Gilbert et al., 1990; Agull�o
et al., 1992; Agull�o et al., 1995), Nørgaard et al. (2019b)

reported negative-time components in the ear-canal-

reflectance IDFT impulse response when calculated from

spherical-wave characteristic impedances. Most recently,

Keefe (2020) incorporated a one-sided constraint to the ear-

probe reflectance source-parameter IDFT impulse responses

into the ear-probe calibration procedure. He proposed an

increased measurement accuracy, explaining that negative-

time components originate from the approximate least-

squares solution to the over-determined system of equations,

which does not retain one-sidedness. Keefe (2020) further

proposed methods to measure reflectance time impulse

responses that operate exclusively in the time domain, i.e.,

without the use of the IDFT. Robinson et al. (2013) used a

zero-pole least-squares fitting procedure to obtain an

approximate complex-analytic representation of the ear-

canal reflectance and calculated the reflectance ILT impulse

response, which is always one-sided.

Based on these reports, the significance and source of

negative-time components in ear-canal and ear-probe

IDFT impulse responses appear unresolved. Here, we aim

to review and clarify various factors that contribute to

negative-time components in IDFT impulse responses,

explain their main causes, and explore the implications

in practical ear-probe-calibration and reflectance-

measurement scenarios. We further demonstrate the impli-

cations of constraining an IDFT impulse response to be

one-sided and discuss the significance of such negative-

time components.

II. BACKGROUND

A. Transfer functions and transforms

The forward Fourier F and one-sided Laplace L trans-

forms relate real time impulse responses h(t) as functions of

time t to complex HðxÞ and complex-analytic H(s) transfer

functions as functions of real angular frequency x and com-

plex Laplace frequency s ¼ rþ jx (Papoulis, 1962),

HðxÞ ¼ F hðtÞ½ �ðxÞ and HðsÞ ¼ L hðtÞ½ �ðsÞ: (1)

Given a continuous-time one-sided impulse response

hðt < 0Þ ¼ 0 and that both forward transforms converge, the

time impulse response h(t) can be recovered from either of

the inverse transforms F�1 and L�1,

hðtÞ ¼ F�1 HðxÞ½ �ðtÞ ¼ L�1 HðsÞ½ �ðtÞ: (2)

The two transforms differ in a number of ways, in the

context of our present objective most importantly in their

constraints regarding one- and two-sided impulse responses

(Papoulis, 1962; Allen, 2020). The forward one-sided

Laplace transform integrates across the one-sided time axis

t 2 ½0;1Þ, and the ILT impulse response is therefore always

one-sided hðt < 0Þ ¼ 0. The forward Fourier transform inte-

grates across the two-sided time axis t 2 ð�1;1Þ, and the

IFT therefore imposes no one-sided constraint onto the IFT

impulse response. Additionally, the Fourier transform is

only defined for bounded impulse responses, i.e., absolutely

integrable (Papoulis, 1962), because the Fourier integral of a

diverging time impulse response does not converge. The

real part of the complex Laplace frequency r allows the

integral to converge and the one-sided Laplace transform of

unbounded time impulse responses to exist within certain

regions of convergence. However, the IFT of a transfer

function that has an unbounded ILT impulse response does

converge and results in a negative-time one-sided bounded

IFT impulse response (e.g., Gilbert et al., 1990).

In practice, measured acoustic transfer functions of

physical systems H(k) using transient stimuli are Hermitian-

symmetric complex numerical functions of the real spectral

bin number k 2 ½½0;K � 1�� (where double square brackets

denote integer intervals) of a total of K frequency bins rather

than complex-analytic functions of complex Laplace fre-

quency s. Synthesizing IDFT impulse responses hðnÞ
¼ IDFT½HðkÞ� with the integer sample number n 2 ½½�K=2;
K=2� 1�� therefore implicitly involves zero-phase fre-

quency windowing wðkÞ 2 R. That is, negative-time com-

ponents may be a result of time dispersion of the two-sided

IDFT of such window IDFT½wðkÞ�. Calculating ILT impulse

responses requires a complex-analytic transfer function

(Robinson et al., 2013; Allen, 2020).

B. Relations for one-sided time impulse responses

Papoulis (1962) summarized relations for one-sided

impulse responses. Any impulse response h(t) (whether one-

sided or two-sided) can be decomposed into its even and

odd components,

heðtÞ ¼
hðtÞ þ hð�tÞ

2
; (3)

hoðtÞ ¼
hðtÞ � hð�tÞ

2
; (4)

respectively, such that hðtÞ ¼ heðtÞ þ hoðtÞ. Only if the

impulse response is one-sided hðt < 0Þ ¼ 0, then heðtÞ and
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hoðtÞ are directly related by h(0) and the signum function

sgnðtÞ,

heðtÞ ¼ hð0Þ þ hoðtÞ sgnðtÞ; (5)

hoðtÞ ¼ heðtÞ sgnðtÞ: (6)

Note that heðtÞ and hoðtÞ are always two-sided. The one-

sided time impulse response ĥðtÞ can now be recovered

either from heðtÞ or from hoðtÞ and h(0),

ĥðtÞ ¼ 2 ~uðtÞ heðtÞ ¼ ~uðtÞ hðtÞ þ hð�tÞ½ � (7)

¼ hð0Þ þ 2 ~uðtÞ hoðtÞ ¼ hð0Þ þ ~uðtÞ hðtÞ � hð�tÞ½ �;
(8)

where ~uðtÞ ¼ ½1þ sgnðtÞ�=2 is the Fourier step function

with the half-maximum convention ~uð0Þ ¼ 1=2 (Allen,

2020). Note that ~uðtÞ is different from the Heaviside step

function u(t), which is undefined at t ¼ 0. The hat signifies

that ĥðtÞ 6¼ hðtÞ if the impulse response is not one-sided

hðt < 0Þ 6¼ 0. Note that Eqs. (7) and (8) yield different ĥðtÞ
when the time impulse response is not one-sided because

hð�tÞ 6¼ �hð�tÞ.

C. Kramers–Kronig relations

The above time relations for one-sided time impulse

responses hðt < 0Þ ¼ 0 can be extended to the transfer func-

tion using the Fourier transform HðxÞ ¼ F½hðtÞ�ðxÞ, whose

real Re and imaginary Im parts are given from heðtÞ and

hoðtÞ, respectively (Papoulis, 1962),

ReHðxÞ ¼ F heðtÞ½ �ðxÞ; (9)

jImHðxÞ ¼ F hoðtÞ½ �ðxÞ: (10)

The Kramers–Kronig relations are frequency-domain equiv-

alents of Eqs. (5) and (6), and based on the Hilbert transform

H and hð0Þ ¼ Hð1Þ � limx!1 HðxÞ 2 R [note that

hðtÞ ! 0 for t!1 only if ImHð1Þ ¼ 0] (Papoulis, 1962),

ReHðxÞ ¼ Hð1Þ þH ImHðxÞ½ �; (11)

ImHðxÞ ¼ H�1 ReHðxÞ½ �; (12)

respectively. Similarly, recovering the transfer function

ĤðxÞ with one-sided IFT impulse response ĥðt < 0Þ
¼ F�1½ĤðxÞ�ðt < 0Þ ¼ 0,

ĤðxÞ ¼ ReHðxÞ þ jH�1 ReHðxÞ½ � (13)

¼ Hð1Þ þH ImHðxÞ½ � þ jImHðxÞ: (14)

The above time [Eqs. (5)–(8)] and frequency [Eqs.

(11)–(14)] formulations are directly related through the

Fourier transform, i.e., ĤðxÞ ¼ F½ĥðtÞ�ðxÞ, regardless of

the impulse response not being one-sided hðt < 0Þ 6¼ 0. For

continuous-time analysis, as with the Fourier transform, the

Kramers–Kronig relations [Eqs. (11) and (12)] theoretically

require integrating HðxÞ up to infinite frequency.

D. Discrete-time relations

For practical discrete-time measurements with a finite

number of frequency bins K, the time and frequency formu-

lations are related through the discrete Fourier transform.

Further, the Kramers–Kronig relations apply for the discrete

Hilbert transform (DHT) (Gold et al., 1969), for which the

numerical implementation involves inverse and forward dis-

crete Fourier transforms. The explicit discrete-time equiva-

lents of Eqs. (7) and (8) are

ĥðnÞ ¼ 2 ~uðnÞ heðnÞ ¼ ~uðnÞ hðnÞ þ hð�nÞ½ � (15)

¼hð0Þþ2 ~uðnÞhoðnÞ¼hð0Þþ ~uðnÞ hðnÞ�hð�nÞ½ �;
(16)

and similarly those for Eqs. (13) and (14) are

ĤðkÞ ¼ ReHðkÞ þ jIDHT ReHðkÞ½ � (17)

¼ hð0Þ þ DHT ImHðkÞ½ � þ jImHðkÞ; (18)

where IDHT is the inverse discrete Hilbert transform (Gold

et al., 1969). The time and frequency relations then apply

when the IDFT impulse response satisfies the periodic one-

sided condition hðn < 0Þ ¼ 0 (Oppenheim and Schafer,

1989). Thus, the practical utility of these relations is con-

strained by the properties of the discrete Fourier transform.

Equation (15) is the one-sided constraint employed by

Keefe (2020) and is effectively a time-reversed addition.

III. IDEALIZED EXAMPLES

A. Frequency windowing

Consider the s-time delay transfer function

HðsÞ ¼ e�ss: (19)

For s � 0, the transfer function H(s) has identical inverse

Fourier and Laplace transforms, which result in the one-

sided IFT and ILT impulse response

hðtÞ ¼ F�1 e�jxs½ �ðtÞ ¼ L�1 e�ss½ �ðtÞ ¼ dðt� sÞ; (20)

where dðtÞ is the Dirac-delta function.

For discrete-time analysis, a corresponding numerical

Hermitian-symmetric N-sample delay transfer function can

be calculated as

HðkÞ ¼
e�j2pNk=K; for k 2 0;K=2� 1½ �½ �;
ej2pNðK�kÞ=K; for k 2 K=2;K � 1½ �½ �:

(
(21)

Its IDFT impulse response can now be written as an infinite

sum and a special case of an integer sample delay N 2 Z,

hðnÞ ¼ IDFT HðkÞwðkÞ½ �

¼
X1

m¼�1
sincðn�N�mKÞ)

N2Z
dn;N; (22)
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where dn;N is the Kronecker delta. The infinite summation of

sinc functions sincðnÞ ¼ sinðpnÞ=ðpnÞ is a result of implic-

itly limiting the bandwidth of the transfer function using a

rectangular window w(k)¼ 1 (Oppenheim and Schafer,

1989) and referred to as the Gibbs phenomenon. When K is

adequately large, contributions from the sinc functions with

m 6¼ 0 in the summation are negligible.

Panel columns of Fig. 1 show the magnitude and real and

imaginary parts of the numerical transfer functions H(k) [Eq.

(21)], their IDFT impulse responses h(n) [Eq. (22)], the magni-

tude and real and imaginary parts of the one-sided constrained

transfer functions ĤðkÞ [Eq. (17)], and the IDFT impulse

responses ĥðnÞ [Eq. (15)] for K ¼ 2048 samples, with different

sample delays N and frequency windows w(k).

Figures 1(a)–1(d) show the case for the delay N ¼ 4

samples (this delay resembles the round trip length of ear

canals and rigid calibration waveguides at the audio sam-

pling rate) and the rectangular window w(k)¼ 1. Because N
is an integer and the phase /HðK=2Þ ¼ Np, the spectrum

for k � K=2 and the harmonic spectra are perfectly repre-

sented by Eq. (19). The two-sided sinc function sincðnÞ is

therefore sampled at integer n 2 Z, and h(n) is one-sided.

Consequently, the transfer function ĤðkÞ and impulse

response ĥðnÞ can be exactly reconstructed from Eqs. (15)

or (16) and Eqs. (17) or (18), respectively, using discrete

Fourier and Hilbert transforms.

Figures 1(e)–1(h) show the case for the delay N ¼ 3.5

samples and the rectangular window w(k)¼ 1, which result

in an abrupt discontinuity at k ¼ K=2 in the Hermitian-

symmetric spectrum. The sinc function sincðnÞ is now sam-

pled at half-integers n 2 Zþ 1=2, and h(n) is two-sided

(Voss and Allen, 1994). Applying a one-sided constraint to

the transfer function ĤðkÞ and IDFT impulse response ĥðnÞ
using Eqs. (15) and (17) still results in a one-sided ĥðnÞ, but

ĤðkÞ and ĥðn � 0Þ clearly differ from H(k) and hðn � 0Þ,
respectively, because they have been altered to suppress the

negative-time components in h(n) caused by the sinc func-

tion. In this case, the one-sided constraint effectively results

in a low-pass filtration of the original transfer function H(k),

but the error in the reconstructed transfer function ĤðkÞ
depends on the specific characteristics of H(k). Note that,

due to the way MATLAB draws figures by linearly interpolat-

ing between adjacent samples, ĥðnÞ may immediately

appear two-sided because ĥð0Þ 6¼ 0, but it is one-sided.

Finally, Figs. 1(i)–1(l) show the case for the delay N
¼ 3.5 samples with the transfer function low-pass filtered by

a Blackman window w(k) (Rasetshwane and Neely, 2011).

It is evident how the filtering causes a confined smearing of

h(n), and ĤðkÞ and ĥðnÞ can now be reconstructed with

good accuracy despite the half-integer delay because the

IDFT of a Blackman window is more localized in time than

a sinc function. For delays N short enough that h(n) extends

below t ¼ 0 into negative time, this results in notable

changes to ĤðkÞ and ĥðnÞ.

B. Unbounded impulse responses

Consider the transfer function H(s) with a pole in the

right-hand plane at s ¼ 1,

HðsÞ ¼ 1

1� s
: (23)

FIG. 1. (Color online) [(a), (e), and (i)] The magnitude and real and imaginary parts of the Hermitian-symmetric numerical transfer function H(k) [Eq. (21)]

as a function of the integer spectral bin number k of K total bins, multiplied by the frequency window w(k), [(b), (f), and (j)] its IDFT impulse response h(n)

as a function of the integer sample number n and the one-sided constrained [(c), (g), and (k)] transfer functions ĤðkÞ [Eq. (17)] with [(d), (h), and (l)]

impulse responses ĥðnÞ [Eq. (15)] for delays of [(a)–(d)] N ¼ 4 samples and w(k)¼ 1, [(e)–(h)] N ¼ 3.5 samples and w(k)¼ 1, and [(i)–(l)] N ¼ 3.5 samples

and a Blackman window w(k) (Rasetshwane and Neely, 2011).
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The transfer function has the ILT impulse response

hðtÞ ¼ L�1 1

1� s

� �
ðtÞ ¼ �etuðtÞ; (24)

which is one-sided but is unbounded because et !1 as

t!1. Despite the fact that the Fourier transform of the

ILT impulse response F½�etuðtÞ�ðxÞ does not converge, the

IFT of the transfer function [Eq. (23)] does converge and

results in the IFT impulse response

hðtÞ ¼ F�1 1

1� jx

� �
ðtÞ ¼ et ~uð�tÞ; (25)

which is a negative-time one-sided bounded function.

Consequently, depending on the inverse transform used, the

transfer function may characterize both a causal unstable

system [Eq. (24)] and a non-causal stable system [Eq. (25)]

(Allen, 2020).

Applying a one-sided constraint [Eq. (7)] to the IFT

impulse response h(t) of the transfer function with a right-

hand-plane pole [Eq. (23)] results in time reversal,

ĥðtÞ ¼ hð�tÞ ¼ e�t~uðtÞ: (26)

Accordingly, the transfer-function one-sided constraint

using the corresponding Kramers–Kronig relation [Eq. (13)]

results in complex conjugation (denoted by the asterisk

superscript),

ĤðxÞ ¼ H�ðxÞ ¼ 1

1þ jx
: (27)

One-sided constrained impulse responses and transfer func-

tions using Eq. (8) or (14) result in opposite signs of operation

in Eqs. (26) and (27). Constraining transfer functions with

right-hand-plane poles to be one-sided does not remove the

potentially problematic instability but rather mirrors its

negative-time one-sided behavior resulting from the IFT into

positive time. For numerical transfer functions and discrete

Fourier transforms, these expressions are additionally subject

to two-sided effects of windowing as discussed in Sec. III A.

IV. PRACTICAL EXAMPLES

This section describes practical examples in which dif-

ferent types of two-sided IDFT impulse responses occur.

The considered examples include analytical representative

ear-canal reflectances, measured reflectances in an

occluded-ear simulator, and ear-probe calibrations. In all

these cases, the influence of employing the one-sided con-

straint [Eqs. (15) and (17)] is explored.

A. Frequency windowing and reflectance

Fractional sample delays occur in ear canals to varying

degrees with varying ear-canal lengths. We exemplify the

practical implications of frequency windowing and frac-

tional sample delays in an acoustic load similar to the

human ear canal by modeling the ear-canal reflectance

RecðkÞ as a lossless delayed reflection from a representative

tympanic-membrane impedance ZtmðkÞ,

RecðkÞ ¼
ZtmðkÞ � Z0

ZtmðkÞ þ Z0

e�j4plecfsk=ðKcÞ: (28)

The complex tympanic-membrane impedance ZtmðkÞ was

modeled according to Nørgaard et al. (2019b) using two par-

allel acoustic RLC circuits to match the reflectance charac-

teristic of a standardized occluded-ear simulator (IEC

60318–4, 2010) with a cross-sectional area Aec ¼ 44:18

mm2. Furthermore, Z0 ¼ qc=Aec is the ear-canal characteris-

tic impedance with air density q and speed of sound c, lec is

the ear-canal length, and fs is the sampling rate. Thus, the

ear-canal reflectance of Eq. (28) characterizes an ideal

causal stable acoustic system with a one-sided time impulse

response similar to the adult ear canal.

Panel columns of Fig. 2 show modeled ear-canal reflectan-

ces RecðkÞ [Eq. (28)] with lec ranging from 1.5 to 4 cm in 0.5-

cm increments, the corresponding reflectance IDFT impulse

responses recðnÞ, and the one-sided constrained ear-canal

reflectances R̂ecðkÞ [Eq. (17)] with one-sided reflectance IDFT

impulse responses r̂ecðnÞ [Eq. (15)], with different frequency

windows w(k) and frequency-truncation approaches.

Figures 2(a)–2(d) show quantities using a rectangular

frequency window w(k)¼ 1 and truncating the frequency

spectrum at 20 kHz. This results in negative-time compo-

nents due to fractional sample delays occurring randomly to

varying degrees, depending on the delay of the main reflec-

tion from the tympanic membrane. Consequently, recon-

structing the reflectances R̂ecðkÞ to have one-sided

reflectance IDFT impulse responses r̂ecðnÞ results in errors

similar to those in Fig. 1, depending on the ear-canal length.

Figures 2(e)–2(h) show quantities using a Blackman win-

dow w(k) (Rasetshwane and Neely, 2011), similarly truncating

the spectrum at 20 kHz, which effectively suppresses negative-

time components due to fractional sample delays in the

reflectance IDFT impulse responses recðnÞ. It is evident that

reflectances R̂ecðkÞ can now be accurately reconstructed across

most of the frequency spectrum to have one-sided IDFT impulse

responses r̂ecðnÞ. In this case, there is of course little need to

compute the one-sided constrained IDFT reflectance impulse

responses because they were one-sided in the first place.

Finally, Figs. 2(i)–2(l) show quantities using a rectangu-

lar window w(k)¼ 1 and a frequency-truncation approach at

the largest-possible frequencies where the reflectance phases

/RecðkÞ are integer multiples of p (Nørgaard et al., 2017a),

which suppresses negative-time components due to the sinc

function in recðnÞ. Similarly, reflectances R̂ecðkÞ can now be

accurately reconstructed to have a one-sided reflectance

IDFT impulse response r̂ecðnÞ, although part of the spectrum

is discarded in the truncation process.

B. Evanescent modes and reflectance

Considerations regarding windowing similar to those

described in Secs. III A and IV A apply for other transfer
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functions, e.g., the impedance jxL of an inertance L, which

approximates the series impedance of higher-order evanes-

cent modes (Karal, 1953; Keefe and Benade, 1981). The

IDFT impulse response of such inertance is sampled using

the sinc-function derivative sinc0ðnÞ ¼ cosðpnÞ=n
�sinðpnÞ=ðpn2Þ at integer n 2 Z (Nørgaard et al., 2018).

Using the inverse Fourier or Laplace transform, the imped-

ance IFT or ILT impulse response of the inertance

hðtÞ ¼ F�1½jxL� ¼ L�1½sL� ¼ Ld0ðtÞ, with the Dirac-delta

derivative d0ðtÞ. While an inertance is a causal component,

its impedance IDFT impulse response is a two-sided odd

function.

Figure 3 shows quantities and conditions identical to

Fig. 2 of ear-canal reflectance measurements in a uniform

standardized occluded-ear simulator (IEC 60318-4, 2010).

The measurements were adopted from Fig. 5(c) of Nørgaard

et al. (2019a), using a perpendicular ear-probe insertion

with different ear-canal lengths lec and a fixed characteristic

impedance Z0 corresponding to a cross-sectional area Aec

¼ 44:18 mm2. That is, the measurements represent an ideal

laboratory setting, affected only by evanescent modes and

frequency windowing. Note that the manual ear-probe inser-

tion results in some uncertainty in the ear-canal length.

Evanescent modes introduce a dependency of the reflectan-

ces RecðkÞ on insertion depth, and negative-time components

in the reflectance IDFT impulse responses recðnÞ due to eva-

nescent modes are clearly visible for all windowing and

truncation approaches. It is interesting that the influence of

evanescent modes is largely remedied in the one-sided

constrained reflectances R̂ecðkÞ, which vary less with ear-

canal length. This is because the effect of evanescent modes

on the reflectance IDFT impulse response recðnÞ is a super-

imposed partly odd function, and Eq. (15) reconstructs

r̂ecðnÞ from the even part of recðnÞ. Notice also how the two-

sided effects due to fractional sample delays are reduced

compared to the modeled results of Fig. 2. The measured

ear-canal reflectances in Fig. 3 are nearly identical to the

modeled reflectances of Fig. 2 up to 10 kHz; however, the

occluded-ear simulator has a protection grid and dust protec-

tor mounted near its reference input plane. This results in a

decreased reflectance beyond 10 kHz and effectively a low-

frequency filtration.

C. Unstable components and constrained calibrations

Unbounded acoustic ILT impulse responses as

described in Sec. III B result from non-physical systems,

e.g., an anechoic contracting conical horn; reflections will

occur at the apex of such a horn (Chapman, 1989; Gilbert

et al., 1990; Agull�o et al., 1995). The transfer function in

Eq. (23) has a form identical to the parallel negative iner-

tance of the spherical-wave characteristic impedance look-

ing toward the apex of the conical horn (Benade, 1988). The

form is also identical to the negative parallel compliance

observed in the ear-probe source-parameter IDFT impulse

responses when evanescent modes are not accounted for

during calibration (Nørgaard et al., 2018; Siegel et al.,
2018). The hypothetical negative acoustic compliance is a

FIG. 2. (Color online) [(a), (e), and (i)] The ear-canal reflectances RecðkÞ [Eq. (28)] with different ear-canal lengths calculated using causal transmission-line

theory, [(b), (f), and (j)] the reflectance IDFT impulse responses recðnÞ, and [(c), (g), and (k)] the reconstructed reflectances R̂ecðkÞ [Eq. (17)] with [(d), (h),

and (l)] one-sided reflectance IDFT impulse responses r̂ ecðnÞ [Eq. (15)]. Numerical results are shown using [(a)–(d)] a rectangular window w(k)¼ 1 and

[(e)–(h)] a Blackman window w(k) (Rasetshwane and Neely, 2011) truncating the frequency spectrum at 20 kHz, and [(i)–(l)] a rectangular window w(k)¼ 1

truncating the frequency spectrum according to Nørgaard et al. (2017a). Note that the shown ear-canal reflectances RecðkÞ in (a), (e), and (i) are not multi-

plied by the corresponding frequency windows w(k), and the reconstructed reflectances R̂ecðkÞ in (c), (g), and (h) are divided by the frequency windows w(k)

to restore the actual frequency content.
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non-physical unstable but causal component (that is, a dis-

charging acoustic volume flow from the compliance results

in an increase in pressure). However, the IDFT impulse

responses of such systems are negative-time one-sided due

to the Fourier transform.

Here, we illustrate the implications of non-physical

unstable components in ear-probe source parameters and

constraining the ear-probe source-parameter IDFT impulse

responses to be one-sided (Keefe, 2020). Results are shown

for calibrations of the same ear probe, obtained as described

and reported in Fig. 5 of Nørgaard et al. (2017b). That is,

the two following unconstrained calibrations are obtained

using sets of waveguides with

(1) 4-mm diameters and accounting for evanescent modes

according to Nørgaard et al. (2017b) and

(2) 8-mm diameters and the conventional method of acous-

tically estimating waveguide lengths (e.g., Allen, 1986;

Scheperle et al., 2008), thus not accounting for evanes-

cent modes.

Calibration (2) now contains a negative parallel compli-

ance as a result of not accounting for evanescent modes

(Nørgaard et al., 2017b; Nørgaard et al., 2018; Siegel et al.,
2018). For calibrations (1) and (2), a one-sided constrained

calibration was calculated by applying the one-sided con-

straint according to Keefe (2020) [Eqs. (15) and (17)] to the

ear-probe source impedance ZsðkÞ, admittance YsðkÞ
¼ 1=ZsðkÞ, and reflectance RsðkÞ ¼ ½ZsðkÞ�Z0�=½ZsðkÞþZ0�,
where Z0 is the characteristic impedance of the occluded-ear

simulator, resulting in a total of four calibrations. The one-

sided constraint was not applied to the ear-probe source

pressure PsðkÞ and incident pressure P0ðkÞ ¼ PsZsðkÞ=
½Z0þZsðkÞ�, as described by Keefe (2020), because it had no

qualitative impact on the results. Note that Keefe (2020)

reformulated the least-squares solution to approximate only

the real part of the source reflectance ReRsðkÞ [opposed to the

formulation of Allen (1986), which is used here], based on

which the complex source reflectance RsðkÞ was recon-

structed from Eq. (15) or (17), but the implications of the

reconstruction are similar. For each type of ear-probe source

parameters, the reflectances RZs
ecðkÞ; RYs

ecðkÞ, and RRs
ecðkÞ of the

occluded-ear simulator were measured using an approximate

ear-canal length of 2.5cm.

For all four calibrations, Figs. 4(a), 4(e), and 4(i) show

the magnitudes and Figs. 4(b), 4(f), and 4(j) show the phases

of the ear-probe source impedances ZsðkÞ, admittances

YsðkÞ, and reflectances RsðkÞ; Figs. 4(c), 4(g), and 4(k) show

their respective source-parameter IDFT impulse responses

zsðnÞ; ysðnÞ, and rsðnÞ; and Figs. 4(d), 4(h), and 4(l) show

the ear-canal reflectances RZs
ecðkÞ; RYs

ecðkÞ, and RRs
ecðkÞ. Note

that the ear-canal reflectances measured using the uncon-

strained calibrations (1) and (2) are similar because the com-

bination of the parallel compliance and the inertance of

evanescent modes constitutes a lumped-element extension

of the transmission line (Nørgaard et al., 2017b).

For the results based on the source impedance ZsðkÞ in

Figs. 4(a)–4(d), the unstable negative parallel compliance is

evident in Figs. 4(a) and 4(b) from the approximate 1=k
behavior in jZsðkÞj and /ZsðkÞ ! 90� with increasing fre-

quency for the unconstrained calibration (2) as opposed to

the unconstrained calibration (1). Further, for the uncon-

strained calibration (2), the negative-time exponential decay

resulting from the IDFT of the unstable negative parallel

compliance [see Eq. (25)] is evident from zsðnÞ in Fig. 4(c),

as opposed to the unconstrained calibration (1) for which

zsðnÞ is close to being one-sided. The impulse response of

FIG. 3. (Color online) Quantities and conditions identical to Fig. 2 but showing measurements adopted from Fig. 5(c) of Nørgaard et al. (2019a), using per-

pendicular ear-probe insertions into the uniform occluded-ear simulator.
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the causal unstable non-physical negative parallel compli-

ance would be a one-sided growing negative exponential

[see Eq. (24)]. The remaining negative-time behavior in

zsðnÞ for the unconstrained calibration (1) may be partially

due to fractional sample delays, frequency windowing, and

the approximate least-squares solution. Resultingly, ZsðkÞ
and zsðkÞ of the one-sided constrained calibration (1) deviate

only marginally from those of the unconstrained calibration

(1) in Figs. 4(a)–4(c), yet RZs
ecðkÞ based on the unconstrained

and one-sided constrained calibration (1) in Fig. 4(d) still

deviates substantially, especially toward higher frequencies.

Conversely, ZsðkÞ and zsðkÞ of the unconstrained and one-

sided constrained calibration (2) in Figs. 4(a)–4(c) deviate

substantially due to the time reversal of the negative-time

exponential decay in zsðnÞ, and the partly complex conjuga-

tion of ZsðkÞ [see Eq. (27)] is evident from Fig. 4(b). Note

that most of jRZs
ecðkÞj in Fig. 4(d) lies beyond unity for the

one-sided constrained calibration (2).

For the results based on the source admittance YsðkÞ in

Figs. 4(e)–4(h), YsðkÞ and ysðnÞ for the unconstrained and

one-sided constrained calibration (1) in Figs. 4(e)–4(g) are

again similar, yet substantial deviations between corre-

sponding RYs
ecðkÞ can be observed in Fig. 4(h). For the uncon-

strained calibration (2), the negative parallel compliance C
is clearly visible in Figs. 4(e) and 4(f), but its admittance

jxC now acts as an imaginary frequency-linear superposi-

tion to YsðkÞ, which superimposes as an odd function onto

ysðkÞ in Fig. 4(g). Therefore, the compliance vanishes in

YsðkÞ and ysðnÞ in Figs. 4(e)–4(g) of the one-sided

constrained calibration (2) [see Eqs. (15) and (17)], which

are now similar to those of the unconstrained and one-

sided constrained calibration (1), although still resulting in

errors in RYs
ecðkÞ for the one-sided constrained calibration

(2) in Fig. 4(h).

Finally, for the results based on the source reflectance

RsðkÞ in Figs. 4(i)–4(l), despite the fact that jRsðkÞj are simi-

lar for the unconstrained calibrations (1) and (2) in Fig. 4(i),

the negative parallel compliance results in a negative delay

in RsðkÞ for the unconstrained calibration (2), evident from

the positive slope in /RsðkÞ in Fig. 4(j), because the source

impedance ZsðkÞ and the impedance of the negative compli-

ance 1=ðjxCÞ are much larger than Z0. rsðnÞ is now domi-

nated by a negative factional sample delay for the

unconstrained calibration (2) in Fig. 4(k), which introduces

corresponding errors into RsðkÞ, rsðnÞ, and RRs
ecðkÞ in Figs.

4(i) and 4(j), 4(k), and 4(l), respectively, for the constrained

calibration (2). Conversely, RsðkÞ and rnðkÞ in Figs.

4(i)–4(k) are close to minimum-phase and almost identical

for the unconstrained and one-sided constrained calibration

(1) to such a degree that no qualitative difference can be

observed between RRs
ecðkÞ in Fig. 4(l).

V. DISCUSSION AND CONCLUSIONS

Physical systems are causal; thus, time impulse

responses characterizing them must be one-sided. However,

IDFT impulse responses synthesized from numerical trans-

fer functions are two-sided, except for ideal cases of integer

FIG. 4. (Color online) Results for unconstrained and one-sided constrained [Eqs. (15) and (17)] ear-probe calibrations using calibration (1) accounting for

evanescent modes and calibration (2) acoustically estimating the calibration-waveguide lengths, based on the ear-probe transfer functions, the source

[(a)–(d)] impedance ZsðkÞ, [(e)–(h)] admittance YsðkÞ, and [(i)–(l)] reflectance RsðkÞ. The [(a), (e), (i)] magnitude and [(b), (f), (j)] phase of the ear-probe

transfer functions ZsðkÞ, YsðkÞ, and RsðkÞ, [(c), (g), (k)] their corresponding IDFT impulse responses zsðnÞ, ysðnÞ, and rsðnÞ, and [(d), (h), (l)] the reflectance

magnitudes jRZs
ecðkÞj, jRYs

ecðkÞj, and jRRs
ec ðkÞj measured in the occluded-ear simulator based on the specified ear-probe transfer function. Note that impedance

and admittance variables are normalized by the ear-simulator characteristic impedance Z0.
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sample delays, because they are subject to the two-sided

properties of the IDFT. Thus, one-sidedness of an IDFT

impulse response characterizing a physical system is neither

a crucial nor an expected property. Primary sources of

negative-time components in ear-canal and ear-probe IDFT

impulse responses include frequency windowing and the

appearance of right-hand-plane poles in the ear-probe trans-

fer function (see below). Disregarding measurement noise

and spontaneous otoacoustic emissions, these considerations

apply to ears and ear probes as well as any other physical

system.

The Fourier and one-sided Laplace transforms differ in

their ability to handle two-sided and unbounded impulse

responses, but only the forward and IDFTs can be evaluated

numerically. Calculating an ILT impulse response requires a

complex-analytic transfer function, e.g., estimated from the

complex numerical data (Robinson et al., 2013). Despite the

inability of the IDFT to produce one-sided IDFT impulse

responses, such transformation can be useful for a number

of practical applications, e.g., estimating the ear-canal char-

acteristic impedance and area-distance function

(Rasetshwane and Neely, 2011), compensating for evanes-

cent modes (Nørgaard et al., 2017a) and oblique ear-probe

insertions (Nørgaard et al., 2019c), or clinical applications

(Merchant et al., 2019). For all these applications, minimiz-

ing the effects of frequency windowing on the IDFT impulse

response is essential.

In ideal cases, a one-sided IDFT impulse response can

be exactly reconstructed from its even [Eq. (15)] or odd [Eq.

(16)] parts. For practical two-sided IDFT impulse

responses—e.g., due to the influence of windowing and

instability on the Fourier transform—negative-time compo-

nents are not removed, but rather mirrored into positive

time. Consequently, constraining a two-sided IDFT impulse

response to be one-sided requires altering the frequency

content of the corresponding transfer function. These con-

siderations apply to acoustic transfer functions characteriz-

ing ear canals, the middle ear, and ear probes, which are

inherently different from integer sample delays. Moreover,

because the speed of sound is a function of frequency

(Kirchhoff, 1868; Mason, 1928; Allen, 2020), integer sam-

ple delays cannot exist in any acoustic system. In particular,

the ear-probe source parameters may be subject to both two-

sided windowing and unstable poles when evanescent

modes are not properly accounted for during the calibration

procedure (Nørgaard et al., 2018; Siegel et al., 2018).

Consequently, constraining IDFT impulse responses of

transfer functions characterizing ear probes or ear canals to

be one-sided introduces errors into those transfer functions

because the IDFT impulse response of the true transfer func-

tion is two-sided. In some special cases where measurement

errors are caused by physical phenomena that exhibit super-

imposed odd IDFT impulse responses, e.g., evanescent

modes, the measurement errors may be remedied through

the one-sided constraint. However, one might as well sub-

tract the approximate behavior directly from the measured

transfer function, as proposed by Nørgaard et al. (2017a).

Non-physical unstable components occur as a result of

imposing inaccurate or non-physical assumptions onto a

physical system and result in two-sided IDFT impulse

responses. In conical horns, they occur due to the non-

physical nature of the anechoic contracting horn; however,

all physical horns of finite length have stable time impulse

responses (Agull�o et al., 1995). In ear-probe source parame-

ters, unstable components are a result of inadequately

accounting for evanescent modes during the calibration pro-

cedure. In this case, the two-sided impulse response is useful

for revealing the presence of the negative parallel compli-

ance in the source impedance (Nørgaard et al., 2018). When

evanescent modes are accurately accounted for, the negative

parallel compliance vanishes from the source parameters

along with the majority of the negative-time behavior

(Nørgaard et al., 2018; Siegel et al., 2018), an observation

that we have also confirmed in this paper.

It is possible to increase the temporal resolution and

mitigate some sources of two-sided IDFT impulse responses

by increasing the sampling rate of the measurement system;

however, there are caveats to this approach. Higher-order

modes are a causal physical phenomenon (Keefe, 2020), but

their low-frequency approximation as an inertance leads to a

two-sided odd IDFT impulse response (Nørgaard et al.,
2018). Thus, increasing the bandwidth to include the propa-

gating higher-order modes can lead to a one-sided IDFT

impulse response; however, this may have detrimental

implications for interpreting the ear-canal-reflectance IDFT

impulse response, which is based on the assumption of one-

dimensional wave propagation.

Unlike impedance and admittance impulse responses

that are one-sided hðt < 0Þ ¼ 0, reflectance time impulse

responses are strictly one-sided hðt � 0Þ ¼ 0 and only

include the response to a perturbing impulse and not the

impulse itself. Due to the finite speed of sound, reflectance

only has a purely conceptual time impulse response that can-

not physically exist, and its measurement requires a subse-

quent deconvolution operation that removes the perturbing

impulse.

We conclude that IDFT impulse responses of acoustical

systems are inherently two-sided and that one-sidedness is

neither a crucial nor an expected property of ear-probe or

ear-canal IDFT impulse responses. However, a two-sided

IDFT impulse response may reveal problematic non-

physical unstable components in the transfer function, and,

with the properties of the Fourier transform in mind, IDFT

impulse responses may serve a number of practical or diag-

nostic purposes. While a two-sided time impulse response

cannot provide an exact characterization of any physical

system, we find the reverse argument to be logically flawed;

one-sidedness, as a property of any impulse response, does

not enable inferring conclusions regarding its accuracy in

characterizing a specific physical system. More specifically,

a one-sided IDFT impulse response cannot exactly charac-

terize any acoustical system. Measurement accuracy must

be evaluated in realistic settings by comparison with a

known reference, e.g., an occluded-ear simulator for ear-
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canal reflectance. To avoid the issues of two-sided IDFT

impulse responses, methods suitable for measuring aural

acoustic impulse responses should be restricted to the time

domain (Keefe, 2020). In such a case, one-sidedness is a

logical constraint to apply to ear-probe time impulse

responses and an expected property of aural time impulse

responses.
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