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In this paper various aspects of the cat cochlear input impedance Zc (co) are implemented 
using a transmission line model having perilymph viscosity and a varying cross-sectional scalae 
area. These model results are then compared to the experimental results of Lynch et al. [J. 
Acoust. Soc. Am. 72, 108-130 (1982) ]. From the model, the following observations are made 
about the cochlear input impedance: (a) Scalae area variations significantly alter the model 
Zc (w); (b) the use of anatomically measured areas improves the fits to the experimental data; 
(c) improved agreement between model and experimental phase is obtained when perilymph 
viscosity and tapering are included in the cochlear model for frequencies below • 150 Hz; 
(d) when model scalae tapering and perilymph viscosity are chosen to match physiological 
conditions, the effect of the helicotrema impedance on Zc (co) is insignificant; and (e) the 
cochlear map, which is defined as the position of the basilar membrane peak displacement as a 
function of stimulus frequency, can have an important effect on Zc (co) for frequencies below 
500 Hz. A nonphysiological cochlear map can give rise to cochlear standing waves, which 
result in oscillations in Zc (co). Scalae tapering and perilymph viscosity contribute significantly 
to the damping of these standing waves. These observations should dispel the previous notion 
that Zc (co) is determined solely by parameters of the cochlea close to the stapes, and the 
notion that Zc (co) is dominated by the helicotrema at low frequencies. 

PACS numbers: 43.64. Kc, 43.64. Bt 

LIST OF SYMBOLS 

A,B,C,D elements of the 2 X 2 two-port chain ma- 
trix 

Alp area of footplate ( cm 2) 
/3(x) basilar membrane (BM) width 

' [•o exp(•lX) ] (cm) 
/3o BM width at the base (cm) 
•1 rate of change parameter of the BM width 

(cm -1 ) 
c velocity of sound in water (cm/s) 
C(x) capacitive component of Y 
• viscous boundary layer thickness 
A space discretization length (cm) 
f frequency (Hz) 
fcv (x) cochlear map 
Fo,Ft complex functions 
?' ratio of specific heats 
G(x) conductive component of Y 
F (x) propagation constant (cm - • ) 

Jn complex Bessel functions of order n 
K0 (x),K •, (x) BM specific stiffness ( dyn/cm 3 ) 
K• round window stiffness (dyn/cm •) 
L (x) inductive component [ Lo + Lv ] of Z 

a) Portions of this paper were presented at the 116th Meeting of the Acousti- 
cal Society of America in Honolulu, HI [J. Acoust. Soc. Am. Suppl. 1 84, 
$54 (1988)] and also at the ASsociation for Research in Oto-Laryn- 
gology Meeting [ Assoc. Res. Oto-Laryngol. Abstr. 12, 142 (1989) ]. 

Lo(x) 
Lv(x) 
Mf• 

P 

P(x) 

Ro(x) 
to(X) 

s 

S(x) 
Sv(x) 
St(x) 
So 
Sl 

U(x) 
Ust 

(x) 

x 

XL 

Y(x) 

component of L due to fluid inertia 
component of L due to fluid viscosity 
10 6 dyn- s/cm 5 
number of sections of xL 
coefficient of viscosity (gcm- 1 s- 1 ) 
mass density of perilymph (g/cm 3 ) 
pressure difference across BM partition 
( dyn/cm 2 ) 
resistive component of Z 
tube radius 

ratio of the tube radius to viscous bound- 

ary layer thickness 
ratio of the tube radius to thermal bound- 

ary layer thickness 

scala area (cm :) 
scala vestibule area 

scala tympani area 
scala area at the base (cm :) 
rate of change parameter for scala area 
(cm -1 ) 
volume velocity through scala (cm3/s) 
particle velocity of stapes (cm/s) 
BM volume velocity (cm3/s) 
angular frequency (2w'f) 
distance from stapes (cm) 
length of cochlea (cm) 
per unit length shunt acoustic admittance 
(cm 4 dyn-1 S-1 ) 
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Y'(x) 

Z(x) 

Z'(x) 

z• (x) 

BM acoustic admittance per unit length 
(cm 4 dyn- • s- • ) 
per unit length series acoustic impedance 
[ Ro q- sL ] (dyn -- s/cm 6) 
equivalent impedance per unit length for 
the two chambers [Eq. ( 1 ) ] 
BM trans-membrane specific impedance 
[Eq. ( 1 ) ] [ (dyn -- s/cm 3) 
complex cochlear input impedance [Eq. 
(10) ] (dyn -- s/cm 5) 

gcrw (co) 

Za(x),Zo(x) 

Zo(x) 

Z½ with the round window impedance 
added in series [Eq. (19) ] 
magnitude of Z½ and Zcr w 
phase of Zc and Zcr w 
elements of the T network [Eq. (7a)] 
(dyn -- s/cm 5 ) 
acoustic impedance of helicotrema [Eq. 
( 11 ) ] (dyn -- s/cm 5 
characteristic impedance of tube 
(dyn -- s/cm 5) 

INTRODUCTION 

Many aspects of cochlear models are known to fail at 
low frequencies (i.e., below 500 Hz). These problems be- 
come worse as the frequency decreases. As the traveling 
wave approaches the end of the cochlea, the apical boundary 
condition becomes important. An improper boundary con- 
dition leads to apical reflections of the traveling wave. These 
model failures are most easily seen by studying the cochlear 
input impedance where many of the model pathologies 
manifest themselves. While cochlear input impedance for 
animals shows no indication of apical reflections at low fre- 
quencies, model cochlear input impedance data show the 
presence of high-Q (fo•andwidth) cochlear resonances or 
cochlear standing waves for frequencies below 500 Hz (Mat- 
thews, 1980). A presence of these standing waves in nonlin- 
ear cochlear models would likely result in other serious arti- 
facts that could confound further interesting results. To our 
knowledge, there does not exist any study in the cochlear 
modeling literature on how to eliminate these resonances. 
Most previous one-dimensional cochlear models (Peterson 
and Bogert, 1950; Zwislocki, 1950), two-dimensional coch- 
lear models (Lesser and Berkley, 1972; Sondhi, 1978), non- 
linear cochlear models (Hall, 1974), active models (Neely 
and Kim, 1986), and nonlinear active models (Diependaal, 
1988) have assumed a cochlea map of the form 
fcF (x) = A [ 10-,/x,_(x-x,•)]. Standing waves exist under 
the condition of large reflection coefficients at the stapes end 
and at the apical end of the cochlea. In this paper, we shall 
show how standing waves, as seen in Z½, are related to the 
cochlear map, scalae tapering, viscosity, and the helicotrema 
impedance. 

A second problem concerns the magnitude and phase of 
the cochlear input impedance at low frequencies. Previous 
cochlear models indicate that the cochlear input impedance 
significantly decreases in magnitude for frequencies below 
about 1 to 2 kHz. For the cat, models and experimental mag- 
nitude data of Lynch et al. (1982) are in disagreement by as 
much as 16 dB at 50 Hz. In the real cochlea, the scalae are 
tapered, with a decreased area at the apex. Also, in the real 
cochlea, the scalae fluids are viscous. These scalae-area 
changes and viscous losses play an important role at low 
frequencies (Koshigoe et al., 1983). Only by including sca- 
lae tapering and viscosity can we hope to overcome the non- 

realistic standing waves and hope to accurately model the 
cochlear input impedance at low frequencies. 

In summary, there is a poor general understanding of 
low-frequency phenomena in the cochlea. In this paper we 
investigate low-frequency cochlear phenomena by modeling 
the cochlear input impedance. 

There are other reasons besides low-frequency modeling 
questions that motivate us to study the cochlear input im- 
pedance. First, the mechanical "load" on the middle ear is 
the input impedance of the cochlea Z½ (co). Inaccurate repre- 
sentations of Z½ will result in the middle-ear model param- 
eters that are not representative of the physical system. A 
good model for Z½ is necessary to estimate the middle ear 
parameters accurately (Moller, 1965 ). 

Second, accurate knowledge of Z½ is crucial for the ener- 
gy flow consideration in the forward and reverse directions. 
The acoustic energy in the ear canal normally propagates 
toward the cochlea. There have been many observations 
made in the ear canal indicative of nonlinear, and perhaps 
active, acoustic emissions originating in the cochlea. These 
emissions result from a reverse energy flow from the cochlea 
to the ear canal. Examples include the cubic difference tones 
resulting from nonlinearities within the cochlea (Wilson, 
1980; Kim et al., 1980; Fahey and Allen, 1985), as well as 
spontaneous and evoked otoacoustic emissions observed by 
Kemp ( 1978, 1979), Zurek ( 1981 ), and others. The imped- 
ance mismatch at the cochlea-stapes boundary reflects back 
some of the acoustic emissions generated in the organ of 
Corti (Kemp, 1980). The rest of the energy passes through 
the middle ear and appears in the ear canal. To estimate the 
reflection and transmission of energy at the cochlea-stapes 
interface, it is necessary to have a good model of the middle 
ear and of the cochlear input impedance. 

The paper is organized as follows. In Sec. I we review 
previous models and measurements ofcochlear input imped- 
ance. In Sec. II we formulate the model equations. Section 
IIIA shows the effects of various cochlear maps on Z½. In 
Sec. III B, the effects of viscosity and the helicotrema on Z½ 
are analyzed, assuming a constant scalae area. Section III D 
shows the effects of scalae tapering on Z½, and the interac- 
tions of tapering with viscosity and the helicotrema. Section 
III F compares measured data and the model with tapering 
and viscosity. Resulting comparisons to the Lynch et al. ex- 
perimental data are also shown in Sec. III F for several 
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Zc{•o} Rc 
t Mo 

Ro 

FIG. 1. Many previous models of Zc can be generalized by this lumped 
parameter circuit. The values for Re, Ro, Mo and the mechanisms corre- 
sponding to them are listed in Table I. 

choices of parameter variations. In Sec. IV, Zc (co) for the 
cat, man, guinea pig, and the chinchilla are compared. A 
discussion of the results can be found in Sec. V, followed by a 
summary in Sec. VI. 

I. PREVIOUS WORK 

Figure 1 shows the Lynch et al. (1982) lumped network 
representation of the cochlear input impedance, which en- 
compasses many previous models. It is an electrical analog 
of the mechanical system under consideration with voltage 
corresponding to pressure and current to volume velocity. In 
Table I we summarize the results of numerous research vis- 

fi-vis the model of Fig. 1. Lynch et al. (1982) estimated pa- 
rameters for the network of Fig. 1 based on averaged experi- 
mental input impedance data. We start from the Lynch et al. 
model because the experimental data on which that model is 
based is the most comprehensive. This makes their network 
model a good reference point for comparisons. In Fig. 1, Rc 
represents the cochlear impedance at high frequencies. At 
low frequencies, Zc is given by the parallel combination of 
R c and Ro. A transition region exists, which is between 10 
and 200 Hz, where the mass Mo has an effect. 

Based on modeling considerations, Zwislocki (1965) 

TABLE I. Comparison of Z c by various researchers. Figure 1 is a companion figure to this table. The model of Zc by Zwislocki, based on mathematical 
considerations, is a pure resistor Re. Dallos' model, builds on Zwislocki's model by adding the series combination of mass of the helicotrema M o and damping 
of the helicotrema R o in parallel with R c. Allen derived a model for Z½ based on the WKB approximation to the one-dimensional formulation of the cochlea. 

Allen's model is also the one of Fig. 1, but with R o = 0. Since R o = 0 in Allen's model, lim ]Z½] --,0 and lim LZ c --, •r/2. Figure 1 is also the Lynch et aL model, 
f-.0 f-.0 

based on measured data. In that model, lim ]Z•] • R•]]Ro, and lim AZ• 40, due to the presence of R o. Thus there is a low-frequency discrepancy in the 
f-.0 f-.0 

theoretical models of Zc and the measured data. This discrepancy is most significant for frequencies below 1 kHz, and is as large as 20 dB at 10 Hz. Based on 
approximate solutions to a one-dimensional formulation of the cochlea, Koshigoe et al. conjectured that this low-frequency discrepancy in Z• is due to the 
effects of viscosity. In addition to not providing a good fit to the measured data, the Koshigoe et al. model does not attribute any physical mechanism (s) to R o. 
However, they first argued that it is important to incorporate tapered scalae area in model calculations. 

Parameter 

R:dyn -- s/cm 5 Physical or 
Reference Model M: g/cm4 physiological basis 

Zwislocki (1965) Fig. I Rc = x/2pKo//3oSo BM compliance 
Ro = Mo = oo and scala area at 

base 

Tonndorf et al. (1966) measured IZcl data 
for the cat 

Dallos (1970) Fig. 1 R•: as per Zwislocki Ro, Mo due to 
Ro, Mo species helicotrema 
dependent [ see Eq. ( 11 ) ] 

Sondhi (1978) numerical similar to WKB from one- and 
calculation (see Fig. 6) two-dimensional 

cochlear models 

Allen (1979) Fig. I R• = 2pco/So = x/2pHKo/So 2 derived from WKB 
no = o, Mo = 8a/So•, 

Fig. 1 

Dancer and Franke 

(1980) 

Lynch et al. (1982) 

Koshigoe et al. (1983) R + sM 

measured IZ•I data 
for the guinea pig 

Rc = 1.2 X 10 6 phenomenological: 
R o = 0.28 X 10 6, based on measured 
M o -- 2250 data for the cat 

R = Ro(cO), M= Mo(cO) 

Koshigoe et al. (1983) numerical 
calculation 

ZBM , viscosity, and 
constant cross-sectional area 

see Fig. 11 ZBM, viscosity, and 
tapered cochlea 
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estimated Zc (co) to be real and of value R c = x/2pKo//3oSo, 
as shown in Table I. 

Tonndorf et aL (1966) measured IZcl for the cat and 
showed it to be frequency dependent. They found a 6-dB?oct 
slope for frequencies below 400 Hz. Near 400 Hz, [Zcl was 
approximately 8 M• (106 dyn- s/cmS). Above 400 Hz, 
]Zc] decreased, and, at approximately 1 kHz, tended to fluc- 
tuate between 2-5 M•. The maximum error they reported 
was a factor of 3 ( ___ 9.5 dB). Dancer and Franke (1980), on 
the other hand, did not find a low-frequency slope in their 
measurements of the guinea pig cochlear input impedance 
magnitude. 

Dallos' (1970) model closely resembles the Lynch et al. 
(1982) model. The physical basis for Ro and Mo, as hypoth- 
esized by Dallos, is the viscosity and mass of the helicotrema, 
with the transition region being between 100 Hz and 1 kHz. 
In cochlear modeling, the helicotrema boundary condition 
has always been a point of conjecture. We shall show that, 
when we assume physiologically reasonable parameters, this 
boundary condition has a negligible effect. 

Allen's (1979) derivation of Zc is based on the Went- 
zel-Kramers-Brillouin (WKB) solution. The WKB solu- 
tion was formulated for constant scalae area, zero perilymph 
viscosity, no reflections, and no helicotrema. Allen's Zc is 
different from the Lynch et al. model to the extent that 
Ro = 0. It is the inclusion of Ro in the Lynch et al. model that 
gives rise to the behavior of Zc below 200 Hz. From Table I 
we see that the WKB Rc is given by 2pco/So, where Co is the 
speed of the traveling wave on the basilar membrane at the 
stapes and the area at the base is So = S(0). By substituting 
the value for Co, it is easy to show that the WKB Rc is equiva- 
lent to Zwislocki's radiation resistance Rc. At low frequen- 
cies, the WKB input impedance is dominated by the mass 
given by Mo = 8p/(Sok•), which depends on the rate of 
change parameter k• of the BM stiffness at the stapes. In this 
model, the cochlear input impedance depends only on the 
physical parameters of the cochlea in the neighborhood of 
the stapes. 

Sondhi's (1978) numerical calculations of Zc from one- 
and two-dimensional cochlear models are qualitatively simi- 
lar to the WKB solutions for Zc. 

It is natural to consider what physical mechanisms give 
rise to Ro in Fig. 1. Can Ro be accounted for by including 
scalae tapering and viscosity? Given that Ro affects the very- 
low-frequency regions, it is reasonable that perhaps the 
source of its effect is in scalae viscous losses. 

Koshigoe et al. (1983) provide a mathematical frame- 
work that addresses this issue. Their derivation of Zc, in a 
cochlear model with viscosity and constant scalae area, con- 
sists of frequency-dependent parameters Ro and Mo. How- 
ever, since their results do not provide a reasonable fit to the 
measured input impedance data, and their expressions fail to 
give insight into the mechanisms that dominate at frequen- 
cies below 500 Hz, further analysis is in order. Koshigoe et 
al. also calculated Zc for a tapered scalae area model, with 
and without viscosity. At frequencies below 500 Hz, their 
inviscid calculations indicate IZcl to be four to five times 
smaller than those that include viscosity. We will show that 
this result is inconsistent with our own numerical calcula- 

tions. However, they were the first to argue the importance 
of the tapered scalae in model calculations. 

Throughout the paper we have made extensive use of the 
impedance model and data of Lynch et al. (1982). To qual- 
itatively isolate the parameters that have the greatest influ- 
ence on the cochlear input impedance, we initially use the 
averaged measured data and model results of Lynch et al. 
We then use their individual data in an attempt to under- 
stand the individual differences. • 

II. THE CHAIN-MATRIX FORMULATION FOR 

COCHLEAR MECHANICS 

The cochlea, in most animals, is a spiral-shaped struc- 
ture. It consists of three fluid-filled chambers called the scala 

vestibule, scala media, and the scala tympani. In this study 
we assume that the effect of the spiral shape on the acoustical 
properties of the cochlea are insignificant (von B6k6sy, 
1960, p. 407; Viergever, 1978). Figure 2 (a) shows a simpli- 

(a) 
Alp [•[X) Sv(X) 

OW S T (x) HELICOTREMA 
RW 

(b) 

(c) 

U(x) U(x+A) 

P(x) L• P(x+A) 
A 

FIG. 2. (a) Approximate physical representation of the cochlea: Sv (x) and 
St(x) are the scala vestibule and scala tympani area functions, •(x) is the 
basilar membrane (BM) width, RW is the round window, and OW is the 
oval window. The footplate, with area •4fp, is at the basal end of the cochlea 
and the helicotrema is at the apical end of the cochlea. Not shown here is the 
stapes that would have been attached to the footplate at the oval window. 
(b) Equivalent model in terms of"T" sections: The elements Za and Zb are 
functions of position along the length of the cochlea. The cochlea is divided 
into np sections of length A cm. (c) Chain-matrix formulation of the phys- 
ical model of (a): The matrices are formulated to include changes in scalae 
area, effects due to perilymph viscosity, and variations in the organ of Corti. 
Ub is the volume velocity at the base, Krw is the round window stiffness, and 
Zn is the impedance of the helicotrema. 
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fled sketch of the cochlea when it is uncoiled from its spiral 
shape. In Fig. 2 (a), it is further assumed that the scala media 
is treated as part of the scalae vestibule. The two resulting 
chambers are separated by the organ of Corti, which is as- 
sumed to have a width/3(x). The scala vestibule area $v(X) 
and scala tympani area $r (x) are assumed to vary along the 
cochlear length. The distance x is measured from the stapes 
end. The basal end of the cochlea corresponds to x - 0 cm 
and the apical end of the cochlea corresponds to x = x,• cm, 
where x,• is the total length of the cochlea. The scalae are 
divided into n s cylindrical segments, each of length A cm. 
Under the assumptions of conservation of fluid mass and 
momentum, we obtain long-wave expressions for the pres- 
sure and volume velocity. 

A. Some definitions 

In the formulation of our model equations, several dif- 
ferent types of impedances and admittances are required. 
There are two basic types of velocities in acoustics, namely, 
particle velocity and volume velocity. The volume velocity is 
given as surface integral over the particle velocity. Frequent- 
ly, an equivalent uniform distribution of velocity is assumed, 
in which case the volume velocity is defined as the area times 
the effective particle velocity. The two different types of ve- 
locity lead to two different types of impedance, which are 
called specific impedance, and acoustic impedance. The spe- 
cific impedance is given as the ratio of the pressure difference 
divided by the particle velocity, and has units dyn -- s/cm 3. 
The acoustic impedance is defined as the pressure difference 
divided by the volume velocity, which has units 
dyn - s/cm 5. The cochlear input impedance Zc, the helico- 
trema impedance Zh, the characteristic impedance of a tube 
Zo, and the series and shunt impedance of a "T" network Z, 
and Zo are all acoustic impedances. We must also define the 
series acoustic impedance Z and the shunt acoustic admit- 
tance Y for the lossy transmission line on a per unit length 
basis in units of dyn - s/cm 6 and cm 4 dyn- • s- • (see Ap- 
pendix A). 

B. General approach 

Starting from the basilar membrane impedance ZB•t 
(x,co), the series impedance Z(x,co), and shunt admittance 
Y(x,co) from lossy transmission line theory, we would like to 
formulate the chain-matrix elements, A(xi,co), B(xi,co), 
C(x•,co), D(x•,co) [as shown in Fig. 2(c)]. The basilar 
membrane impedance ZB•t (x•,co) is given in terms of the 
physical variables relevant to the cochlea as described in Ap- 
pendix B. From Z•t, the BM width/3(x), and scalae area 
$(x), we may find the shunt acoustic basilar membrane ad- 
mittance per unit length Y •t (x• ,co ). The lossy transmission 
line impedance Z and shunt admittance Y are described in 
Appendix A. We then find Z' and Y', which are the cochlear 
two-chamber series acoustic impedance per unit length, and 
the shunt total lossy acoustic admittance per unit length. 
These allow us to find F and Zo, the propagation constant 
and characteristic impedance, for the lossy cochlear trans- 
mission line. Next, we find the T elements Z, and Zo [see 

Fig. 2(b) ], and finally the chain-matrix elements A, B, C, 
and D, which can be expressed in terms of the T elements. 

C. Lossy BM series impedance 

The equation for the series impedance Z(x,co) [Eq. 
(A 1 ) ] is for a single vestibule. Anatomical measurements of 
scala vestibule cross-sectional area $v (x) and scala tympani 
cross-sectional area $r (x) on humans indicate the areas of 
the two vestibules to be approximately equal for distances 
greater than 0.3 cm from the round window (Wever, 1949, 
pp. 276-278). Thus we will assumeS(x) - $v (x) - St(x). 
The series impedance for a two-chamber model then is 

z'- 2z. (1) 

The two impedances Z and Z' are given as per unit length 
series acoustic impedances (dyn - s/cm 6) along the vesti- 
bule. 

D. Lossy BM shunt admittance 

To find the lossy transmission line shunt admittance for 
the cochlea, we must modify YofAppendix A to include the 
shunt admittance due to the basilar membrane. The basilar 

impedance Z•t (x,co) is a specific impedance 
(dyn- s/cm3). From a macromechanical point of view, 
Z•t consists of BM stiffness Ko (x), damping, and mass. 
Z•t (x) is a physically motivated, micromechanical model 
of BM specific impedance that incorporates a resonant tec- 
torial membrane (Allen, 1980) and that leads to a fourth- 
order equation for partition dynamics. These parameters de- 
pend on the cochlear map as shown in Appendix B. 

The shunt admittance due to viscous losses Y and the 

shunt admittance due to the basilar membrane Y•t are in 
per unit length acoustic admittances (cm 4 dyn - • s - • ). The 
BM impedance ZB•t (x,co), when transformedl to basilar 
membrane acoustic admittance per unit length is 

Y • ( x,co ) = So /HZ• ( x,co ) . (2) 

Thus the total lossy transmission line acoustic admit- 
tance per unit length is found by adding the two admittances 
together: 

Y'- 2Y+ Y•. (3) 
The factor of 2 accounts for the admittance due to the two 

chambers. 

Equation (2) is the BM acoustic admittance per unit 
length. Model parameters and physical measurements of the 
BM are often given in terms of BM specific impedance. For 
our model we use 

Z• •u = /3(x)/Y' (4) BM' 

In this equation the transformed BM stiffness is K; (x). The 
basilar membrane stiffness at the base is defined as K 6 = K; 
(x =0). 

E. Effect of fluid compression 

For most fluids, including perilymph, the ratio of specif- 
ic heats y•_ 1, and thus G(x,co) of Eq. (A5) is zero; conse- 
quently, Y(x,co) in Eq. (3) reduces to sC(x). 

The compliance C(x ) = $(x )/pc 2 is a measure of com- 
pressibility of the fluid. Near the base, 2C(x) is less than 6% 
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of the basilar membrane admittance, and, in the apical re- 
gion, 2C(x) is at least three orders of magnitude smaller 
than Y•t. Although not shown here, the effect of including 
s2C(x) in Eq. (3) on IZ½I was found to be less than 0.5 dB 
near 20 kHz. No differences were observed in LZ½. For these 
reasons, we have used the approximation 

Y'•Y• 

for all further calculations. 

(5) 

F. Transmission line parameters 

Given Z' and Y', one may calculate the characteristic 
impedance Zo and the propagation constant F for the lossy 
cochlear transmission line: 

Z 0 (x,o)) = (Z'/Y') 1/2, (6a) 

F(x,o)) = (Z'Y') 1/2. (6b) 

Transformation to the equivalent cochlear T network of 
Fig. 2b is defined in terms of Z, and Zo as follows (Flana- 
gan, 1983, Chap. 3): 

Z, (x,co) = Zo tanh(FA/2), (7a) 

Zo (x,w) = Zo csch(FA). (7b) 

G. Chain-matrix form 

The relationship for the pressure and volume velocity of 
each section of length A can now be put in chain-matrix form 
(Weinberg, 1962; Pierce, 1989)' 

P(x)] AB][P(x+A) (8) U(x) CD U(x d- A) 
where elements of the ABCD chain matrix are 

A = 1 d- (Z•/Zo), (9a) 

B = Z• [2 + (Z•/Zo) ], (9b) 
C= 1/Z•, (9c) 

D=A. (9d) 

Equation (8) relates the pressure difference and volume 
velocity of a cylindrical section at x given the pressure differ- 
ence and volume velocity of a section at x d- A. Inherent in 
the formulation of Eq. (8) is a forward and backward travel- 
ing wave.. 

Referring to Fig. 2 (c), the chain is started at the helico- 
trema end by assuming U(xr ) = 1. The unit volume veloc- 
ity results in a pressure drop P(xr ) across Z• (co), the acous- 
tic impedance of the helicotrema. Equation (8) is then 
recursively calculated with the space index decreasing from 
x = xr at the helicotrema end to x = 0 at the base, for nv 
segments. P(x) and U(x) are finally normalized so that the 
calculated volume velocity at the base U(0) = u •So, to satis- 
fy the boundary condition in the base of the cochlea. 

We use the chain-matrix method to do all the calcula- 

tions for each of the nv segments. The number of sections nv 
was successively increased by a factor of 2 until no further 
change in the results were observed; this occurred at nv 
= 1024. The computations were carried out on an Alliant 

FX/80 computer. To verify our chain-matrix method, we 
made comparisons of Z½ and the BM velocity calculated by 

solving Laplace's equation for the constant scalae height and 
zero viscosity case, using the difference equation 2 method 
(Allen, 1977). In making these comparisons, we discovered 
a helicotrema boundary condition problem at low frequen- 
cy. This will be further discussed in Sec. II J. With this ex- 
ception, calculations of the cochlear input impedance and 
BM volume-velocity were identical for the two methods. 

H. Cochlear input impedance 

The volume velocity that enters the stapes is UstAfp. By 
conservation of mass, this volume velocity is equal to the 
volume velocity entering the scala vestibule in the base ut, So. 
The cochlear acoustic input impedance is then calculated 
from 

g c ((o) = P(O)/ustAfp. (10) 
Measurements of pressure in the cat scala vestibule and 

scala tympani, as a function of the tympanic membrane 
sound-pressure level, and over a wide range of frequencies, 
have been found to be linear (Nedzelnitsky, 1980). With the 
tensor tympani muscle cut from the stapes, the mammalian 
middle ear acts as a linear system for sound-pressure levels of 
up to 130 dB SPL (Guinan and Peake, 1967). Therefore, we 
asstlme Eq. (10) to hold at all levels of input. The linearity 
assumption is not necessarily valid for all animals. For ex- 
ample, Rosowski et al. (1984) have found the acoustic input 
admittance at the alligator lizard tympanic membrane to be 
ear canal pressure dependent for stimulus levels greater than 
70 dB SPL. 

I. The helicotrema boundary condition 

When formulating a cochlear model, one may assume 
different properties for the helicotrema. The two most com- 
mon boundary conditions are the open circuit Zh = oo and 
the short circuit Zh = 0. A third choice is (Dallos, 1970) 
helicotrema model using a short-tube impedance (TI). In 
this paper we have limited ourselves to either the short-tube 
or short-circuit impedance boundary condition. The open- 
circuit assumption is nonphysiological since it does not al- 
low for any flow between the two scalae. 

The acoustic impedance of a tube of radius ah and length 
lh given by (Beranek, 1954, p. 135) 

Z h (co) = rr a } t- j rr a • co. (11) 
This approximate formula is valid for ah (cm)<0.2/x/f. 
Dallos (1970) used Eq. ( 11 ) for his calculations of Z•. Mul- 
roy (Lynch et al., 1982, footnote 11 ) measured the helico- 
trema radius of the cat by scanning electron microscope 
techniques and found it to be 0.0125 + 0.0005 cm. Using this 
radius, Eq. ( 11 ) is valid for f< 256 Hz. If we assume the 
helicotrema to be a bent circular tube of radius ah as above, 
then the length of the helicotrema lh = rrah m0.04 cm. The 
short-circuit condition will be referred to as Zh = SC, and 
the tube impedance condition will be referred to as Zh = TI 
throughout the text. 
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J. The BM response 

Although this is not explicitly a study of BM mechanics, 
an intermediate result is the BM volume velocity at any place 
along the length of the cochlea: 

U.• (x,co) = [P(x + A) + Z, U(x + A)]/Zo, (12) 
where the terms of Eq. (12) are identified in Fig. 2 (b). The 
BM center-line particle velocity, assuming a half-sine- 
shaped velocity distribution over the BM width, is 

U• (x,co) = rrU• (x)/2A,g(x). (13) 

By conservation of fluid mass, the sum of the complex 
BM volume velocity UBM (X) along the length of the cochlea 
and through the helicotrema must be equal to the volume 
velocity that enters the base of the cochlea ubSo, at any given 
stimulus frequency. This is more formally expressed as the 
volume sum 

np 

ubSo = U(xL ) -3- • UBM (xi), (14) 
i=1 

where U(xL ) is the volume velocity through the helicotrema 
and xi = Ai. Note that uoSo is a real quantity and thus the 
sum of the imaginary part of Eq. (14) must be zero. In the 
difference equation formulation of Allen (1977), Eq. (14) 
was found to be violated for low frequencies (below 200-300 
Hz).This was true independent of the cochlear map used. 
We attribute this to an improper volume-velocity at the heli- 
cotrema boundary U(x• ) in that model. 

cochlear map. (2) Liberman's (1982) cochlear map derived 
from single neuron labeling experiments is 

f•v (x) = 456[ 10 (2"/x'-)(x'-- x) -- 0.8]. (16) 
(3) Greenwood's ( 1961 ) ½ochlear map is derived from hu- 
man psychophysical critical band experiments. It is then 
scaled from the human cochlea to the cat cochlea. The 

Greenwood ½ochlear map, with some modifications (Green- 
wood, 1990) to his original parameters, is 

f• (x) = 456[ 10 (2'I/x'-)(x'--x) -- 1 ]. (17) 
It should be noted that the Greenwood cochlear map for the 
cat used here contains the original subtractive constant 1, 
whereas he now uses the constant 0.8 found by Liberman to 
provide the best fit to neural data (Greenwood, 1990). We 
have used a subtractive term of 1 simply to illustrate the 
effect of such a cochlear map on apical reflections. 

These three cochlear maps are shown for comparison in 
Fig. 3. Once the cochlear map is chosen, our specification of 
Z,M (x,co) is complete (see Appendix B). 

Figure 4 shows Zc (w) corresponding to the three coch- 
lear maps with an untapered cochlear model, zero viscosity, 
and a short-circuit helicotrema boundary condition. Figure 
4 (a) shows the magnitude of Zc (co) and Fig. 4 (b) shows the 
phase of Zc (co). All succeeding figures illustrating imped- 
ance calculations will follow this format. The use of a 

straight cochlear map results in large oscillations in Zc for 
input frequencies below • 500 Hz, indicative of apical re- 

K. Summary 

To this point we have formulated a one-dimensional 
cochlear model that includes scalae area variations, viscous 
losses due to perilymph, organ of Corti impedance variations 
etc., using the chain-matrix formalism. In the following we 
analyze the effects of variations in the cochlear map, scalae 
geometry, perilymph viscosity, and the helicotrema bound- 
ary conditions. The transmission line model was chosen so 
that each of these effects can be analyzed independently. 
Following Sondhi's observation that the cochlear input im- 
pedance for two-dimensional models is indistinguishable 
from that of one-dimensional models, we have assumed that 
the one-dimensional formulation will be adequate for this 
purpose. 

III. RESULTS 

A. Apical reflections and the cochlear map 

As discussed in Appendix B, an important parameter 
for the computation of Z•M (X) is the cochlear map. The 
cochlear map defines the BM peak velocity location along 
the length of the cochlea, as a function of the input frequen- 
cy. The effect of three different cat cochlear maps on Zc (co) 
is compared in this section as follows. (1) Most existing 
cochlear models use a "straight" cochlear map of the form 

f•:s v (x) = 456[ 10(2"/"'-)("'--") ], (15) 
where x is the distance in cm from the stapes, the length of 
the cochlea is x,., and CF stands for characteristic frequen- 
cy. The c and s in the superscript stand for cat and straight 

0.01 4- 

Liberman 

Greenwood 

Straight 

I I I I , 

0 20 40 60 80 100 

% distance from stapes 

FIG. 3. Cochlear map functions for the cat anatomy pertaining to Eqs. 
( 15)-(17) normalized to percent distance from the stapes. The difference 
between the three cochlear maps lies mostly in the frequency region below 1 
kHz. The cochlear map is used in calculating the basilar membrane specific 
impedance ZBM (X,O). Liberman's cat cochlear mapf•F (x) based on single 
auditory-nerve fiber labeling experiments, will be used for all cat Z½ (w) 
calculations in this study. 
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FIG. 4. Magnitude and phase of Zc (co) for each of the three cat cochlear 
maps of Fig. 3. The model parameters are: constant scalae area [s(x) 
= 0.02 cm 2 ], no viscosity (NV, r/ = 0), and an acoustic short-circuit (SC) 
helicotrema boundary condition. The low-frequency limit of the straight 
cochlear map •c• (x,•) is 456 Hz. Stimuli below this frequency result in 
large amplitude oscillation in Zc indicating the presence of standing waves. 
The low-frequency limit of Liberman's cochlear map•c•v (x,•) is 91 Hz. In 
this case the amplitude of the apical reflections are significantly reduced, 
but nevertheless present for frequencies below f•v (XL)' In Greenwood's 

cochlear map lim f•:• (x) --. 0. In this case all frequencies are represented 

on the basilar membrane and thus the stimulus energy is dissipated by the 
motion of the BM before it reaches the apical end of the cochlea. Thus there 
are no apical reflections due to the end of the cochlear map when Green- 
wood's cat cochlear map is used. Standing waves exist when there are reflec- 
tions at both the apical and at the stapes end of the cochlea. One way to 
eliminate the standing waves is to eliminate the apical reflections. Since the 
standing waves are eliminated by using Greenwood's cochlear map, we con- 
clude that apical reflections are directly related to the low-frequency limit of 
the cochlear mapfcv (x L ). 

flections. Liberman's cochlear map reduces the apical reflec- 
tions, and Greenwood's cochlear map virtually eliminates 
them. 

To the best of our knowledge all previous cochlear mod- 
els that have used the straight cochlear map have apical re- 
flections, and therefore standing waves, for frequencies be- 
low 500 Hz. Published examples include the oscillations in 
the BM frequency response (Hubbard and Geisler, 1972; 
Matthews, 1980) as well as the presence of large oscillations 
in Zc (Matthews, 1980), as shown in Fig. 4. Understanding 
and eliminating these artifacts is particularly important in 
time-domain implementations of nonlinear cochlear mod- 
els. 

Apical reflections are directly related to the low-fre- 
quency limit fcv (xz:) of the cochlear map. For example, 
close examination of Fig. 3 reveals that forf•v, frequencies 
below 456 Hz are not defined. Consequently, for input fre- 
quencies below this critical frequency, the traveling wave 
launched at the stapes will reach the apical end and be re- 
flected back toward the stapes. This results in standing 
waves along the length of the cochlea; f•F does not define 
frequencies below 91 Hz and correspondingly there are api- 
cal reflections below 91 Hz. Note that the apical reflections 
actually begin at a frequency slightly above the low-frequen- 
cy end of the cochlea because of the finite slope of the travel- 
ing wave apical to the OF. 

In f•, all frequencies of interest are represented and- 
therefore there are no apical reflections. Only in the later 
case is the energy completely dissipated by the BM before the 
wave reaches the helicotrema. Minute reflections exist 

everywhere in the cochlea due to the stiffness gradient in the 
BM impedance (Viergever, 1988); however, these reflec- 
tions have little effect on Zc and may usually be ignored. 

According to Greenwood, f•:• was obtained by scaling 
the human function to the cat. Greenwood used a human-to- 

cat cochlea length ratio of 35:22, respectively. Cabezudo 
(1978) found the averaged cat cochlea length to be 
2.36 + 0.1 cm. Liberman found that the average cat cochlea 
length to be about 2.5 cm. Given this length, Liberman 
found the slope of the cochlear map to be the same as Green- 
wood's, but the end points of the cochlear map differed. Li- 
berman derived a new cochlear map using the Greenwood 
formula, but with constants determined from his own data. 
Liberman's cochlear mapf•v is based on intracellular label- 
ing of single auditory-nerve fibers of known characteristic 
frequency, and is thus derived from a physical correlation 
between characteristic frequency and place. Unless other- 
wise stated, we will usef•v in all further calculations of the 
cat Zc (co). 

B. Constant scalae area 

Figure 5 shows the effects of viscosity and the helico- 
trema on Zc (co) for a constant scalae cross-sectional area 
cochlear model. The addition of viscosity has very little ef- 
fect on Zc except at frequencies below 50 Hz. Without peri- 
lymph viscosity (NV), a tube impedance (TI) helicotrema 
boundary condition slightly reduces the amplitude of apical 
reflections. The largest difference occurs near 25 Hz, where 
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FIG. 5. The effects of the helicotrema and perilymph viscosity in a cochlear 
model with constant scalae area [S(x) -- 0.02 cm2]. The "Av cat data" are 
the average cochlear input impedance of four cats by Lynch et al. (1982). 
The impedance measurements were made with the round window intact. 
The model calculations are without the round window. Model impedance 
calculations with perilymph viscosity (WV, •/= 0.02) are not significantly 
different from the no viscosity (NV, •/= 0) case. For a tube impedance 
(TI) helicotrema boundary condition, the magnitude of the cochlear input 
impedance tends to vary in the 25-Hz region, but it does not increase the 
impedance magnitude over a wide range of frequencies as is seen in the 
Lynch et al. data. The impedance magnitude does not increase when both a 
TI at the helicotrema and perilymph viscosity are included in the model. 
Thus the helicotrema, in terms of its effect on the magnitude of Zc, is not as 
significant as that hypothesized by Dallos (1970). It is clear from the figure 
that the magnitude of model results and measured data diverge for frequen- 
cies below about 1 to 2 kHz, and the model phase is substantially higher 
(more masslike) than the phase of the averaged data. 

IZcl is reduced approximately by a factor of 2.5 ( 7.6 dB) and 
/_Z c by approximately -- 3•r/4. When perilymph viscosity is 
added (WV) to the TI case, IZcl increases by approximately 
a factor of 1.6 (4.1 dB) near 25 Hz, and the phase changes by 
less than •r/18( 10 ø) from the (NV,TI) case. Also shown in 
Fig. 5 is the average of cochlear input impedance measure- 
ments made on four cats by Lynch et al. (1982). The animal 
impedance measurements were made with the round win- 
dow intact. Since the model computations were made with- 
out the round window, comparisons between data and mod- 
el results are meaningful only for frequencies above m 70 Hz. 
More will be said regarding the effects of the round window 
on cochlear input impedance in Sec. III E of the paper. Fig- 
ure 5 indicates that the animal input impedance magnitude is 
higher than the magnitude of all four model cases for fre- 
quencies below about 1 to 2 kHz. The phase for all four 
model cases is significantly higher than the averaged phase 
data for all frequencies. We conclude from Fig. 5 that in a 
constant scalae area model, neither the viscosity, or a realistic 
helicotrerna, or the combination of the two, model the experi- 
mental data, which shows a significant increase in the coch- 
lear input impedance magnitude below about 1 to 2 kHz. 

Dallos (1970) hypothesized a helicotrema consisting of 
a mass and damper in parallel with the cochlear structures, 
which is represented here as the TI boundary condition. Fig- 
ure 5 shows that, for the constant scalae area model, Zc is 
masslike in the 50-Hz <f< 2-kHz region, independent of the 
helicotrema boundary condition. This conclusion seems to 
be in direct conflict with Dallos' hypothesis regarding the 
effect of the helicotrema on the cochlear input impedance. 

C. Comparison of constant scalae area cochlear 
models 

Some of the input impedance models from Table I that 
have constant scalae area and inviscid perilymph are plotted 
in Fig. 6. Not explicitly shown is Zwislocki's ( 1965, p. 37) 
theoretical consideration of the specific input impedance 

(o)) = ( 2pSo Ko llo 

X(1--j[coRmC+ (R/cop)I} -'/2. (18) 
By assuming the curly-braced quantity of Eq. (18) to be 
approximately equal to 1, Zwislocki concludes that "the spe- 
cific input impedance of the cochlea is independent of fre- 
quency and is real." Note that the left-hand term of Eq. 
(18), when divided by So, is equivalent to the radiation resis- 
tance Rc derived from the WKB solution (Allen, 1979), 
which is equal to 2pco/So, where Co is the velocity of the 
traveling wave on the BM. 

Dallos ( 1973, Fig. 4.15) calculated Eq. (18) exactly 
and showed that Z• is resistive at frequencies above = 30 
Hz•for a given set of parameters. In Dallos' helicotrema 
model of Zc, the impedance due to the cochlea Z• is taken to 
be independent of frequency; i.e., Z• = R c. 

The solutions for Zc by the WKB method and Koshigoe 
et al.'s [ 1983, Eq. (62) without K•w ] are also shown in Fig. 
6. As a result of approximations in their formulation, Koshi- 
goe et al.'s constant scalae area results are valid only in the 
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30-Hz-l-kHz frequency region (Koshigoe et al., 1983, p. 
489). Both Koshigoe et al. and the WKB results are derived 
under the assumption that there is only a forward traveling 
wave. Since the chain-matrix method for a constant scalae 

area yields a result similar to that of Koshigoe et al., we 
might reasonably conclude that: (a) the two results give the 
same answer over most of the frequency range, and (b) re- 
flections along the cochlea can be ignored above fcF (XL), 
which for Liberman's cochlear map is 91 Hz. 

Figure 6 shows that in the Koshigoe et al., WKB, and 
chain-matrix constant scalae area model results are not in 

agreement with the Lynch et al. model based on averaged 
data. For example, at 70 Hz IZcl of the theoretical models 
are below Lynch et al.'s model by a factor of more than 6 
( 15.6 dB). The model phase is •r/3 larger than the experi- 
mental data (in Koshigoe et al.'s calculations, the discrepan- 
cy in phase is somewhat less). 

All models considered thus far have been one-dimen- 

sional models, and the possibility remains that in two-di- 
mensional, or even three-dimensional models, the theory 
and experimental results would agree. Higher dimensional 
models might be expected to effect the results at higher fre- 
quencies where the wavelength is shorter. Sondhi (1978) 
has shown that, for specific model parameters and with con- 
stant scalae area and zero viscosity, the acoustic input im- 
pedance of a two-dimensional and a one-dimensional model 
is identical. Therefore, a higher dimensional model does not 
appear to help. Finally, experimental observations indicate 
that pressure in the scala vestibule, near the base, is relatively 
independent of depth of the measurement probe into the ves- 
tibule in the frequency range below 10 kHz (Nedzelnitsky, 
1980). 

In summary, for constant scalae area and no viscosity, 
the best approximation to the exact calculations by our chain- 
matrix methods is Koshigoe et al. 's for 30 Hz •f • 4 kHz and 
WKB for f> 4 kHz. The parameters considered thus far, 
namely, viscosity, helicotrema, cochlear map, and dimension- 
ality of the model, do not appear to close the gap between 
theory and measurements. 

FIG. 6. Comparison of previous models of Zc having constant scalae area 
and inviscid perilymph (see also Table I). As a verification of the chain- 
matrix calculations, a one-dimensional transmission line model of the coch- 

lea was computed by the difference equation (DE) method using the same 
set of parameters; the two curves are indistinguishable from each other. The 
Lynch et al. phenomenological model indicates that Zc is resistive at fre- 
quencies above •. 400 Hz. The theoretical models indicate a masslike behav- 
ior at these frequencies. Dallos' model resembles the Lynch et al. model but 
the physiological mechanisms attributed to Dallos' helicotrema model of 
Zc (to) is not consistent with our results (see Fig. 5). Also shown are the 
constant scalae area closed-form expressions of Zc by Koshigoe et al. 
(1983), valid for frequencies below approximately 1 kHz, and the WKB 
solution (Allen, 1979), valid for frequencies above approximately 1 kHz. 
This figure shows that the constant scalae area model calculations using the 
chain matrix can be approximated by Koshigoe et al.'s (1983) constant 
scalae area model for frequencies below approximately 4 kHz and by the 
WKB solutions (Allen, 1979) for frequencies above approximately 4 kHz. 

D. Effects of tapered scalae area 

The geometry of the scalae is not that of a constant 
cross-sectional scalae area as has been assumed thus far. 

Wever (1949) and Dallos (1970) have made anatomical 
measurements of the scalae cross-sectional area. To a first- 

order approximation Dallos found the scala vestibule area to 
be exponentially decreasing along the length of the cochlea 
[i.e., S(x) = So exp( - s•x) ]. Here, Sois the area at the base 
and s• >0 is the rate of change parameters of the area. In this 
section we consider the effects of the parameters So and s, on 
Zc (co). In addition, we also analyze the interaction of these 
parameters with viscosity and the helicotrema boundary 
condition. 

I. Invi$cid perilymph 

Figure 7 shows Zc (co) in a cochlea without perilymph 
viscosity (r/= 0) and Liberman's cochlear map, as a func- 
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FIG. 7. The effect of tapering in a cochlear model with inviscid perilymph 
($o- 0.02 cm 2, Zh -- SC). This figure shows that Zc is strongly dependent 
on the change in the scalae area. For stimulus frequencies greater than 
f•F (XL), as the tapering parameter s• (cm -• ) increases, IZcl increases, 
and/Zc decreases. This indicates that, above this frequency, the real part of 
Zc increases as tapering increases. In addition, as tapering increases, the 
amplitude of the apical reflection also increases for stimulus frequencies 
belowf•F (xL). This is due to an increase in impedance mismatch between 
the helicotrema and the scalae, at the end of the cochlea. 

tion of the taper parameter S l. The following observations 
are made. 

(a) There is an overall increase in I Zc[ as tapering in- 
creases. For frequencies above f•v (xL), the/_Z c decreases 
as tapering increases, which means that tapering makes the 
cochlea more resistive. Equation (A 1 ) shows that the series 

impedance increases as the area decreases. Thus, for a fixed 
So, as the tapering parameter increases so does the series 
impedance. Shera and Zweig (1990) have recently hypoth- 
esized that the increasingly resistive behavior of Zc, with an 
increase in tapering parameter s•, is due to an increase in 
cancellation of the mass dominated series impedance 
Z'(x,w) and the compliance dominated shunt admittance 
Y' (x,w), basal to the characteristic place. 

(b) As tapering increases, the amplitude of the standing 
waves seen in Zc increase dramatically for frequencies below 
•f•v. As mentioned above as s• increases so does the series 
impedance and this results in a larger reflection coefficient at 
the apical end of the cochlea, leading to an increase in the 
standing wave amplitude. 

(c) For frequencies below f• (x L ), Fig. 7 ( b ) indicates 
that Zc is largely mass dominated. 

2. Viscous perilymph 

Figure 8 shows the same parameter range for S 1 as Fig. 7, 
but with the perilymph viscosity set to the normal value of 
r/- 0.02. By comparison with Fig. 7, we make the following 
conclusions. 

(a) For frequencies greater than • 150 Hz, I Zc I in- 
creases as Sl increases and is within 1 dB of IZc[ for the no 
viscosity case, with the corresponding/-Zc being within 0.05 
•r (9*) of the no viscosity case. Thus viscosity has only a 
small effect on the impedance for frequencies greater than 
• 150 Hz. 

(b) For frequencies greater than • 150 Hz, Zc becomes 
increasingly real as tapering parameter (Sl) increases. 

(c) For frequencies below • 150 Hz, Zc becomes more 
resistive as tapering parameter S l increases only for the vis- 
cous perilymph case. Therefore, viscosity becomes increas- 
ingly important as the scalae radius in the apical region be- 
comes comparable to the viscous boundary layer thickness 
[see Eq. (A4) ]. 

(d) As tapering is increasing, oscillations in Zc due to 
the end of the cochlear mapf• (xt) are diminishing for the 
viscous case; in fact, there are no oscillations in Zc for 
s• = 1.8. Therefore, the viscous boundary layer dissipates 
the apical reflections. 

(e) If tapering is increased beyond a certain point for 
the viscous case, then phase of Z• may become negative, 
indicating a compliant behavior. For example, for Sl = 1.8 
(arbitrarily chosen), the phase is negative for frequencies 
below 60 Hz. Our interpretation of this observation is that 
the increase in tapering results in the scalae impedance being 
greater than the BM impedance. Thus it is easier for the peri- 
lymph to flow "into" the BM than to flow down the scala 
vestibule. 

In the above discussions of Figs. 7 and 8, there are two 
important frequencies. First, apical reflections occur due to 
the cochlear map limit. This frequency will be referred to as 
fc• (XL). Second, viscous effects become important when 
the viscous boundary layer becomes comparable to scalae 
radius. The frequency where this occurs depends on the sca- 
lae radius in the apical region. For a fixed So (as in Figs. 7 
and 8), the scalae radius depends on the tapering parameter 
s•. The viscous boundary layer thickness is frequency depen- 
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FIG. 8. The effect of tapering in a cochlear model with viscous perilymph 
(r/= 0.02, So = 0.02 cm:, Zh = SC): Above approximately 150 Hz, Zc is 
similar to the no viscosity case (Fig. 7). Below that frequency, Z c becomes 
more and more resistance dominated as tapering increases. As tapering in- 
creases, the tube radius in the apical region becomes more comparable to the 
viscous boundary layer thickness. Thus we conclude that interaction of the 
reduced radius in the apical region with the viscous perilymph gives rise to 
Ro in the Lynch et al. model. In addition, as tapering is increasing, apical 
reflection due to the low-frequency limit of the cochlear map are diminish- 
ing. Thus the presence of viscosity dissipates the apical reflections by a sig- 
nificant amount. 

boundary layer becomes equal to the tube radius, then, by 
setting ro = 1 in Eq. (A3), we obtain AI 
-- 0.5•7p- 1S- 1 (x). For So = 0.0175 and s• = 1.3,f•l is 15 

Hz at x = xL. Thus, near 15 Hz, the viscous effects com- 
pletely dominate. However, viscosity will start to have an 
effect at frequencies greater than 15 Hz. For the purposes of 
discussion, we have chosen 150 Hz as the frequency below 
which viscous effects become important. Coincidentally, 
this frequency is close tof•F (xL). This frequency was cho- 
sen based on when Zc was more real rather than mass domi- 
nated. For these parameters, rothe ratio of tube radius to 
viscous boundary layer is approximately 2.46. If one were to 
recompute the calculations of Fig. 8 with f•, then the ef- 
fects of viscosity below 150 Hz on Zc would still be observed, 
but without the complications of reflections belowf•F (xc). 

Figure 9 shows how I Zcl scales with So for a fixed 
s• = 1.0, and with •7 = 0.02. The overall shape of IZcl is 
maintained with no significant change in the slope of Zcl for 
each value of So. For frequencies above •_.f•F (xc), 
IZcl • s•- • and/-Zc is, to a first-order approximation, inde- 
pendent of So. For large So, visa weak function of So. But, for 
So < 0.03 cm 2, v is constant and is m0.87. Thus, given Zc at 
one frequency and the corresponding So, one can evaluate 
the proportionality constant and therefore find IZcl for any 
other So at that frequency. 

3. Effects of the helicotrema with tapering 

In Sec. III B the effects of the helicotrema boundary 
condition for a constant scalae area model were analyzed. In 
a similar manner we now analyze the effect of the heli½o- 
trema in the tapered ½ochlear model. In Fig. 10 four possibil- 
ities are considered: with and without viscosity (WV,NV), 
and using two different heli½otrema boundary conditions 
(SC,TI). This gives a four-way comparison. By comparison 
of Fig. 7 to Fig. 8, we showed that the introduction of viscos- 
ity greatly reduces the low-frequency standing waves in a 
tapered cochlea. Figure 10 shows that changing the heli½o- 
trema boundary condition from SC to TI, in the zero viscos- 
ity case, has the effect of reducing the magnitude of the oscil- 
lation in Zc, but its effect is not as great as that due to 
viscosity alone. In addition, for frequencies below • 150 Hz, 
Z½ is resistance dominated in the viscous perilymph case and 
it is mass dominated when perilymph viscosity is zero. Intro- 
ducing a TI boundary condition when perilymph viscosity is 
already present has little effect on Z½. We therefore conclude 
that in the tapered cochlea, the effects due to the viscous peri- 
lymph are more significant than the effects due to the acoustic 
impedance of the helicotretna. Unless otherwise stated, all 
further calculations of Zc will be assumed to be with 
•7 = 0.02 and Z h = SC. 

dent and is proportional to 1/x/• (see Appendix A). Thus, 
for a given tapering parameter s l, the cochlear input imped- 
ance will become more and more resistive as the frequency 
decreases. 

If we defineAl to be the frequency at which the viscous 
, 

E. Comparison of tapered scalae area cochlear models 

The Koshigoe et al. model is the only model in Table I 
that includes the effect of tapering. But, as they stated in 
their paper: "In our approximate analysis, apical reflections 
are ignored" (Koshigoe et al., 1983, p. 488 ).Thus their ana- 
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FIG. 9. The effect of So in a cochlear model with tapering parameter s, fixed 
(s• = 1.0, Zh = SC). For frequencies above •fcv (xL), scaling S(x) (i.e., 
by decreasing So) effectively results in a proportional translation in IZcl 
with only a small effect on/-Zc. For this case IZcl cc S•-", where v•0.87 
(see text). 

FIG. 10. The effects of the helicotrema and perilymph viscosity in a tapered 
cochlear model (So = 0.02, x• = 1.0). As shown here, and in Figs. 7 and 8 
the introduction of viscosity (WV) virtually eliminates the apical reflec- 
tions that result in the standing waves. A tube impedance (TI), in the no 
viscosity case, reduces the apical reflections but its effect is not nearly as 
great as that due to viscosity alone. For frequencies less than approximately 
150 Hz, the phase indicates that Zc is resistance dominated only when vis- 
cosity is present. Thus, when tapering and viscosity are present, a TI model 
of the helicotrema has a negligible effect. 

lyric method does not lend itself to the type of analysis we 
have established in the previous sections where apical reflec- 
tions can be of considerable importance. 

Figure 11 compares, for the same set of parameters, our 
results for the acoustic input impedance with those of Koshi- 
goe et al.'s numerical calculations. In this figure only, K (• 
was adjusted to match Ko used by Koshigoe et al. Measured 
data and Koshigoe et al.'s numerical calculations assume a 
round window stiffness Krw. The round window impedance 

Zrw (co) = Krw/s adds to the cochlear input impedance as a 
series impedance (Nedzelnitsky, 1980): 

Zcrw (co) =Krw/$q-Zc(co). (19) 
Nedzelnitsky (1980) concluded that the effect of the round 
window, in the cat, is important for frequencies below m 300 
Hz. To fit tZcl for frequencies below 40 Hz, where Zc •Zrw, 
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FIG. 11. Comparisons of measured data and cochlear models with tapered 
scalae area. The impedance of the round window Zrw (co) has now been 
added to the model calculations of Zc (co). The sum of these impedances is 
referred to as Zcr w (co). Koshigoe et aL's numerical results (their analytical 
approximations) are from their Figs. 1 and 2. Parameters for both models 
are: So = 0.02, st = 1, K(• = 109, r/= 0.02, Zn = SC, and the round win- 
dow stiffness Krw is 108. In the chain-matrix model, Liberman's cochlear 
map was used. In Koshigoe et aL's calculations, an exponential stiffness was 
assumed. "Av cat data" are from Lynch et aL (1982). Although the chain- 
matrix calculations are in better agreement with the data than the Koshigoe 
et al., calculations, discrepancies still exist. For example, for frequencies 
above 500 Hz, the discrepancy in phase is as large as .{rr (60') and, for fre- 
quencies below 1 kHz, the discrepancy in magnitude is as large as a factor of 
2.5 (8 dB) (note the change in magnitude scale from previous figures). 

Lynch et al. (1982) chose a value of 108 dyn/cm s for the 
round window stiffness. Unless otherwise stated, we will use 
this value for the round window stiffness. This value of the 
round window stiffness has an effect on the phase for fre- 
quencies up to 70 Hz. Thus, when referring to effects above 
70 Hz, we will use Zc and Zcrw interchangeably. Unless oth- 
erwise stated, all further calculations in this section will in- 
clude Krw. 

From Fig. 11, despite a similar choice of parameters, the 
chain-matrix model and Koshigoe et al.'s model show a ratio 
of up to 1.7 (4.6 dB) between 0.1 and 8 kHz. The most 
obvious explanation for the differences between our and Ko- 
shigoe et al.'s results is that the Koshigoe et al. solution is an 
approximate solution, while our chain-matrix solution is an 
exact numerical solution. This approximation has two parts. 
The first is that our numerical solution includes a forward 
and backward traveling wave, whereas Koshigoe et al.'s 
method includes only a forward traveling wave. Specifically, 
the Koshigoe et al. model ignores reflections due to scalae 
tapering and apical reflections. Second is the approximations 
for the series impedance they make in finding the solutions. 

There is also a significant difference between the conclu- 
sions arrived at by the chain-matrix method and those of 
Koshigoe et al. For frequencies above m 150 Hz, we have 
presented evidence that the low-frequencies increase in IZcl 
is independent of viscosity and is due only to tapering. For 
frequencies below m 150 Hz, the phase indicates that Zc is 
resistance dominated due to presence of both viscosity and 
tapering, independent of the helicotrema impedance. Koshi- 
goe et al., on the other hand, argue that it is viscosity alone 
that is responsible for the rise in IZcl below 500 Hz. 

F. Comparison with measured data 

Figure 11 compares averaged Zcr w obtained by scala 
vestibule pressure and stapes velocity measurements in anes- 
thetized cats (Lynch et al., 1982) with our model calcula- 
tions of Zcrw (in Lynch et al., Z•rw is referred to as Zc ). 
There is some agreement in IZ•rw I for frequencies above 2 
kHz but poor agreement in ZZcr w above 500 Hz. For fre- 
quencies below 200 Hz, our theoretical calculations match 
measured ZZ•r w quite well. But our model IZ•rw I is below the 
average data by as much as a factor of 2.5 (8 dB) in the 
frequency region between 30 Hz and 1 kHz. Lynch et al. 
estimate their experimental worst-case error to be _+ 10 dB; 
however, the "actual measurement errors are likely to be 
substantially smaller than these worst-case estimates of er- 
ror limits" (Lynch et al., 1982, p. 113). Shera and Zweig 
(1990) have recently made minimum-phase fits to the am- 
plitude and phase of the Lynch et al. data. Their calculations 
indicate that the data stays minimum phase for approximate 
deviations of _+ 2 dB in amplitude and q- 10 ø in phase. Thus, 
although the measurement errors are not exactly known we 
assume that they are sufficiently small. This indicates that 
the parameters chosen to calculate our model results need to 
be reevaluated. 
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FIG. 12. Anatomical measurements of cat scala vestibule area S(x). The 
basal end corresponds to x --0 and the apical end of the cochlea corre- 
sponds to x -- 2.5 cm. The circles indicate anatomical measurements in one 
cat (Dallos, 1970). The curve with So = 0.02, s• = 1 is an approximate fit to 
the measured area function (Dallos, 1970). The curve with So = 0.0175, 
s• -- 1.3 is another approximate fit to the measured area function, Sm (x) is 
Dallos' area function heuristically modified (see text) to obtain a better fit 
to measured Zc• (to). 

1. The appropriate geometric representation 

As mentioned previously, the most important param- 
eter that affects the cochlear input impedance is the scalae 
area function. Thus, in this section, we further explore the 
effect of $(x) on Zc (co). Figure 12 shows the various area 
functions that we use next to calculate Zc (co). To our knowl- 
edge, the only anatomical measurement of the area function 
for the cat scala vestibule is one by Dallos (1970). The 
$o = 0.02 cm 2 and $1 = 1 cm- • curve is the approximate fit 
made by Dallos to the measured area function; this is the 
approximation that we have used to this point. The 
So = 0.0175 cm 2 and s• ---- 1.3 cm-1 curve is a second ap- 
proximation to the measured area function. Discussion of 
the S,, (x) curve is deferred for the moment. The effect of 
each of these area functions on Zc (co) is shown in Fig. 13. 

For frequencies below 1 kHz, we see that a better fit to 
IZ•w I is obtained with So = 0.0175 ½m 2 ands 1 = 1.3 cm- 1 
than with So = 0.02 cm 2 and Sl - 1 cm- 1. However, even 
with this area function, our match to averaged phase is still 
poor for frequencies above 400 Hz. In the experimental data, 
the phase starts to decrease near 300 Hz becoming negative 
near 500 Hz, and it stays negative for frequencies up to 2 
kHz. Above 2 kHz, the phase is approximately zero, indicat- 
ing that Zc is more or less resistive. The model Zcr w, on the 
other hand, approaches zero phase gradually, still having an 
angle of ½r/10 rad at 10 kHz. Near 5 kHz there is also a 
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FIG. 13. gcr w ((D) corresponding to the area functions of Fig. 12. Going 
from the So = 0.02, s• -- 1 curve to theSo = 0.0175, s• = 1.3 curve results in 
a better agreement between the calculated Zcrw (co) and the measured data. 
Using the actual measured area function of Dallos yields only a slight im- 
provement. When Dallos' area function is heuristically modified as in 
S•, (x) of Fig. 12, then there is a better agreement between the calculated 
Z•w (co) and the measured data. The decrease in phase near 300 Hz is due to 
the local maximum in the area function Sm (x) apical to x = 0.9 cm. Krw 
-- 108 (Lynch et al., 1982) for all four cases. 

systematic error in [Zc I, becoming as large as 1.8 ( 5.1 dB) at 
high frequencies. Since we have shown that the geometry of 
the cochlea has an important effect on Zc, perhaps repre- 
senting S(x) by an exponentially tapered function is not a 
sufficient approximation for the purposes of accurately cal- 
culating the input impedance. Figure 13 shows calculations 
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of gcr w using Dallas' measured area function of the scala 
vestibule, which results in an input impedance that is not 
significantly different from the one obtained with 
So- 0.0175 and s• = 1.3. Theref9re, the errors as stated 
above persist. 

The scala vestibule area measured by Dallas is for one 
cat only. In addition, an error bound on the measurement 
was not provided by Dallas. To better fit the average cach- 
lear input impedance data, we have tried slight perturbations 
(less than a factor af2) to the measured area function. In the 
apical region, the So =0.0175 and s• = 1.3 curve has a 
smaller area than the So = 0.02 and Sl = 1 curve. Since the 
former area function results in a better fit, we have decreased 
the measured area in the region apical to 0.9 cm; with the 
exception of the 1.6-cm region, where the area was slightly 
increased. Figure 12 shows that the net effect of these 
changes results in an area function with a local maximum in 
the apical region of the cochlea. One important motivation 
for making these changes comes from the observation that 
the scalae vestibule area function measurements are not 

monotonically decreasing in the human cochleas (Wever, 
1949, pp. 276-278) (see Fig. 16). Figure 13 shows that this 
16cal increase in the area function gives rise to a sharp de- 
crease in phase above approximately 300 Hz. From Fig. 12 
we note that there are no area measurements in the 

0.1 < x <0.85-cm region. Perhaps the area function in this 
region cannot be approximated by an exponential function 
as we have assumed. Based on our experience with perturba- 
tion of the area at the x = 0.5-cm point, we have increased 
the scalae area by a factor of 1.5 at that point. The result of 
increasing the area near the x = 0.5-cm region is to decrease 
the magnitude and phase of Zc above the 3- to 4-kHz region, 
which is consistent with the measured Zc data. The area 
function with the modifications described above is referred 

to as Sm (x) in Fig. 12. The input impedance corresponding 
to Sm (x) is shown in Fig. 13. The resulting cochlear input 
impedance calculations are in very close agreement with those 
of the averaged measured data. 
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2. Effect of transducer placement 

In calculating the load to the middle ear, one should use 
the pressure in the scala vestibule at the stapesmas we have 
done thus far. However, for comparison to measured Zc 
data, one should use the pressure inside the scala vestibule in 
the vicinity of the transducer. Thus we need to know the 
location of the transducer relative to the stapes. Figure 14 
shows the results of evaluating Eq. (10) at various locations 
near the stapes; i.e., use P(xo) instead of P(0). For frequen- 
cies below 1 kHz, there are virtually no differences in I Zcrw I 
and ZZcr w as a function afxo, which we define as the distance 
from the stapes. But for frequencies above 1 kHz, large dif- 
ferences in ZZ•r w exist as a function of Xo. Figure 14 shows 
that the phase decreases with an increase in Xo. Individual 
cat data (Lynch et al., 1982) in Fig. 15 display negative 
phase for some of the high-frequency data points. A change 
in Xo is one model parameter that results in a negative phase 
above 2 kHz. This distance is most likely to be difficult to 

FIG. 14. The effect on Z, rw (w) of placing the pressure transducer at dis- 
tances Xo apical to the stapes. The major effect ofplacing the pressure trans- 
ducer at different location along the length of the cochlea is in the phase 
[S(x) = s,. (x)]. 

measure experimentally, and was not reported by Lynch et 
al. (1982). However, Fig. 2 of Lynch et al. (1982) suggests 
that Xo < 0.2 cm. To calculate the model result shown in Fig. 
15, we have chosen Xo -- 0.15 cm. 

G. Interanimal comparison with the chain-matrix model 

Up to now, we have been using the Lynch et al. averaged 
Z c data. The parameters used thus far have proven to cap- 
ture some of the detail present in the averaged Zc data. Since 
averaging of data smears out details, we now wish to com- 
pare our results with the individual measurements from 
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FIG. 15. Comparison with Lynch et al.'s measured data. "cat27," "cat25," 
"cat18," and "cat7" are measurements of Zcrw (o) on individual cats 
(Lynch et al., 1982). The "Av cat data" shown here and in previous figures 
were obtained by Lynch et al. by averaging the individual curves. The indi- 
vidual data shows significant interanimal variability. For frequencies 
greater than I kHz, the measured phase is distributed on both sides of 
zero. This indicates that the individual animal phase is not necessarily resis- 
tive, at frequencies above 1 kHz, as one would be lead to believe by looking 
at the phase of the averaged data. From the present study we conclude that 
one reason for the inter-animal variability in cochlear input impedance is 
due to inter-animal differences in the scalae area. Calculation parameters 
are: S•, (x), K/• = 1.7 X 109, Krw = 1.2 X I O s, and Xo -- 0.15 cm. 

which the averaged data were obtained. Figure 15 shows the 
four measurements of Zc on individual cats by Lynch et al. 
(1982). It is apparent from Fig. 15 that the individual cats 
show a large amount of interanimal variability. Some of the 
trends present in the averaged data are more pronounced in 
each of the individual curves. For frequencies above 1 kHz, 

the individual phase is positive and negative across animals 
and would tend to average to zero, leaving a real result. 
Thus, for any gioen animal, Zc is not necessarily real at fre- 
quencies abo•e 1 kHz. 

The model results shown in Fig. 15 are obtained by us- 
ing parameters of previous sections. The parameters used 
are: Sm (X) (see Fig. 12), pressure measured at location 
Xo = 0.15 cm, r/= 0.02, Zn = SC, K/• = 1.7X 109. Krw was 
increased to 1.2 X 108. A comparison with individual data 
shows good quantitative agreement. From our modifications 
to the area function, albeit in a heuristic manner, we have 
been able to capture some of the detailed structure of the 
cochlear input impedance. From this exercise we reach the 
conclusion that individual animal differences in the scala 

area result in measurable differences in the cochlear input 
impedance. It was noted that for frequencies above 1 kHz, 
the interanimal phase is both positive and negative; this vari- 
ation is most likely due to interanimal differences in the basal 
region of the scala vestibule area function, variations in 
transducer placement, or perhaps errors in animal measure- 
ments. 

IV. EXTENSION TO OTHER SPECIES 

To accurately compute the cochlear input impedance, 
we have proposed a cochlear model that requires the specifi- 
cation of species-dependent parameters such as: the area 
function of the vestibule, the cochlear map fcF (x), the 
length of the cochlea XL, the BM width function/•(x), the 
round window stiffness Krw, and the area of the footplate 
Afp. In addition, one also needs to specify the physical con- 
stants for the perilymph such as: viscosity •/, and the density 
p. The parameters chosen thus far were for calculating the 
cochlear input impedance of the cat. Given the model, we 
now compute the cochlear input impedance for the guinea 
pig, man, and the chinchilla, and compare our results to 
those of the cat, for frequencies up to 70 kHz. 

The human cochlear map according to Greenwood 
(1961) is 

fcm•n(x) = 165.4[ 10 (2"/•"•(•"- • - 1], (20) 
the guinea pig cochlear map (Greenwood, 1990) is 

f$$ (x) = 350[ 10 (2"/•")(•"- •) -- 0.85 ], (21) 
and the chinchilla cochlear map (Eldredge et al., 1981 ) is 

fsh• (X) = 112.5 [ 10{2'24/•"•(•"- • ]. (22) 
The area functions for the cat [ S• (x) of Fig. 12], hu- 

man (Wever, 1949), guinea pig (Dallos, 1970), and the 
chinchilla (Dallos, 1970) that we have used are shown in 
Fig. 16. Since round window stiffness measurements for 
some of these animals are not available, we make compari- 
sons of Zc rather than Zcr w . For this reason, comparisons of 
our calculated results with measurements of Zc reported in 
the literature are meaningful only for frequencies above • 70 
Hz. Figure 17 compares Zc for cat, human, guinea pig, and 
chinchilla cochleas in the frequency region between 10 Hz 
and 70 kHz given the areas shown in Fig. 16. The BM stiff- 
ness K ;, (x) was modified for other species, as in the case for 
the cat, so that the calculated cochlear map coincided with 
the actual cochlear map of either Eq. (20), (21 ), or (22). 
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FIG. 16. Inter-species comparison of anatomical measurements of the scala 
vestibule area. The cat area labeled Sm (x) is from Fig. 12. The human scala 
vestibule area is from (Wever, 1949). The guinea pig and chinchilla area 
measurements are from Dallos (1970). The human scala area is the largest 
and the guinea pig scala area is the smallest. 

The species-dependent physical parameters, including the 
BM stiffness at the base K •, are shown in Table II. 

A. Human impedance 

Our model calculations (Fig. 17) show that, below 1 
kHz, the human cochlear input impedance slope is approxi- 
mately 4 dB/oct, reaching a peak at 1.2 kHz of 1.24 MII. 
Between 1.2 and 10 kHz the model IZcl starts to decrease 
with an approximate slope of - 6 dB/oct. In comparison, 
the cochlear input impedance magnitude measured on hu- 
man temporal bones, is "flat" for 0.6 kHz <f< 2.2 kHz, and 
the mean value on 11 temporal bones is 0.7 MII at 1 kHz 
(Aritomo and Goode, 1987 ). Estimates of the measurement 
error are not reported in (Aritomo and Goode, 1987).Thus, 
at 1 kHz, our IZcl is higher than the measured data by a 
factor of 1.8 (5.1 dB). 

B. Guinea pig impedance 

The only reported measurements of guinea pig imped- 
ance have been by Dancer and Franke (1980). Since phase 
measurements were not reported in that study, we compare 
our theoretical results with their magnitude measurements. 
Dancer and Franke estimated the impedance from pressure 
measurements in the first turn of the scala vestibule. In the 

frequency region between 200 Hz and 2 kHz the measured 
impedance magnitude is approximately 0.4 MII. The slope 
of the measured impedance is approximately 5 dB/oct for 
the frequency region between 2 and 5 kHz, and the imped- 
ance is approximately 0.8 MII near 5 kHz. Above 7 kHz the 
measured impedance magnitude is approximately 0.4 MII. 
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FIG. 17. Interspecies comparison and high-frequency effects of Zc (co). For 
frequencies just above fm.•x = fCF (X -- 0), Zc becomes completely mass 
dominated for all four animals. This is a predictable result, since the mass of 
the fluid and mass of the BM dominates in that frequency region. However, 
the sudden decrease in IZcl for • 10 kHz <f<fm.•x is unexpected. Human 
Zc is lowest in magnitude, due to its relatively large scalae area, and the 
guinea pig Zc is largest in magnitude due to its relatively small scalae area. 
Since the human scalae area in the apical region is larger than the other 
animals, the viscous boundary layer is not as significant for human Zc as it is 
for the other animals at low frequencies (below m 150 Hz). Thus the human 
Zc is more mass-like than the other animals studied, as may be seen by the 
phase. The corresponding scalae areas are shown in Fig. 16. The other mod- 
el parameters are listed in Table II (•/-- 0.02, Zh = SC). 

Figure ! 7 shows that this estimate of the magnitude of the 
impedance is smaller than our theoretical calculations by as 
much as a factor of •_,6 (15.6 dB). From Fig. 2 of Dancer 
and Franke (1980), we estimate that their "confidence in- 
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TABLE II. Species dependent parameters. For chinchilla and man Asp of 
the cat were used; K/• is the basilar membrane stiffness at the base. Anato- 
mical parameters for the helicotrema are not required for man, guinea pig, 
and chinchilla model calculations since a short-circuit helicotrema imped- 
ance was used; they are listed here only for comparison to the cat. 

Parameter Cat Guinea pig Chinchilla Man Units 

x•. 2.5 a 1.85 b 1.84 c 3.5 d cm 
/P 0.146 0.161 0.137 0.254 cm 

/go 0.011 f 0.01 b 0.023 e 0.015 h cm 
/5'1 0.56 f 0.375 • 0.3 e 0.329 h cm- i 
a h 0.125 i 0.0084 e 0.0248 e cm 
lh j 0.04 0.0284 0.078 cm 
Alp 0.0126 k 0.014 • cm 2 
Krw 108 k dyn/cm s 
K/• 1.7X100 8.3X108 4.5X108 2.4X108 dyn/cm 3 

Liberman (1982). 
Fernfindez (1952). 
Eldredge et al. ( 1981 ). 
Yon B6k6sy ( 1960, p. 29). 
Dallos (1970). 
Cabezudo (1978). 
H = 2•o/rr. 

hWever (1949, p. 100). 
Mulroy (Lynch et aL, 1982, note 11 ). 

J lh -- •ah. 
Lynch et al. (1982). 

terval" of 95% corresponds approximately to a measure- 
ment error of ñ 6 dB. Even with this measurement error our 
results seem to be outside the range of experimental error. 

C. Chinchilla impedance 

Recently, Ruggero et al. (1990) have reported measure- 
mcnts of Zc for the chinchilla. They found an impedance of 
approximately 0.5-0.9 MII in the 1-kHz <f< 15-kHz fre- 
quency region, and the impedance decreases with an ap- 
proximate slope of 7 dB/oct below 1 kHz. Our model calcu- 
lations arc greater than the reported values by as much as a 
factor of 4.4 ( 12.9 dB). The measured phase decreases from 
approximately rr/4 at 300 Hz to approximately rr/8 at 3 
kHz, in agreement with our calculations. However, for 3 
kHz <f< 18 kHz the measured phase starts to increase to- 
ward rr, whereas the model phase continues toward zero. 
The model phase is rr/2 for f> 20 kHz. In Ruggcro et al. 
(1990) the maximum measurement error was not reported. 
Note that f• is a straight cochlcar map but oscillations in 
Zc in the model wcrc substantially reduced duc to the pres- 
ence of viscosity and tapering. 

D. Interspecies comparisons 

For stimulus frequencies below 10 kHz, it is observed 
that, of the four species studied, the human impedance is the 
lowest in magnitude, while the guinea pig impedance is high- 
est in magnitude. For the most part, the human scalae area is 
greater than the other animals, and the guinea pig scalae area 
is smaller. These results are consistent with our previous ob- 
servation (Fig. 9) that the impedance magnitude is inversely 
proportional to the scalae area. 

1. Low-frequency effects 

In the previous sections we concluded that the resistive 
behavior of Zc below • 150 Hz is due to the interaction of 
tapering with viscosity. Since the area in the apical region of 
the human cochlea is significantly larger than other coch- 
leas, the viscous boundary layer thickness is less significant 
in the human cochlea; thus the human cochlear input imped- 
ance is not as resistive at low frequencies as the other animals 
studied. 

2. High-frequency effects 

For 10 kHz <f<fmax, where fmax = fCF (X = 0), there 
is a "dip" or decrease in the impedance for all four species. 
To our knowledge, this decrease in model impedance has not 
been previously observed. In all four cases, Zc abruptly be- 
comes mass dominated for frequencies above fmax of the 
cochlear map. For the cat, man, guinea pig, and chinchilla 
this occurs atfm• •57, 20.7, 43.8, and 19.6 kHz, respective- 
ly. Based on heuristic arguments, this mass-dominated re- 
gion was modeled as M• in Lynch et al. ( 1982, Fig. 23). In 
the chain-matrix model, the high-frequency effects of the 
perilymph fluid mass and organ of Corti mass arise in a natu- 
ral manner. 

If it could be measured, the sharp transition in Z c near 
fm• of the cochlear map would appear to be a sensitive test of 
a traveling wave in species such as the turtle or the lizard, 
where the traveling wave properties are in question. 

Most measurements of the cochlear input impedance 
have tended to be below 20 kHz. A way of verifying these 
high-frequency results would be to make cochlear input im- 
pedance measurements up to and beyond fmax of the coch- 
lear map of the specific animal being studied. 

v. DISCUSSION 

Standing waves exist when there are reflections at both 
the stapes end and the apical end of the cochlea. The problem 
ofapical reflections has been analyzed in detail. We conclude 
that the magnitude of apical reflections can be eliminated by 
using a cochlear map of the form fcF(X) 
= A [ 10 - {a/xL>{x - •L> _ 1 ]. Alternatively, the amplitude 
of the apical reflections can be substantially reduced by 
properly accounting for scalae area variations and viscosity 
in the cochlear model. In such a model, the apical reflections 
are dissipated by the viscous boundary layer when it is com- 
parable to the tube radius in the apical region of the cochlea. 
Potential artifacts due to standing waves in nonlinear time- 
domain models can be controlled by eliminating apical re- 
flections. 

By modeling the cochlear input impedance, important 
insight has been gained regarding mechanisms of the coch- 
lea. Specifically, we have shown that the scalae area function 
$(x) of the cochlea is important when one is interested in 
accurately calculating Zc (co). The effect of viscosity is sig- 
nificant for frequencies below those where the viscous 
boundary layer thickness is comparable to the radius of the 
scalae in the apical region. For the cat, chinchilla, and guinea 
pig, this occurred at approximately 150 Hz. The helicotrema 
boundary condition has been a point of conjecture in coch- 
lear mechanics. We have shown that the helicotrema acous- 
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tic impedance has an insignificant effect on Zc (to) in com- 
parison to the effects of tapering and viscosity. We conclude 
that the helicotrema can be approximated as an acoustic 
short circuit without altering cochlear dynamic results, as- 
suming tapering and viscosity are properly accounted for in 
the cochlear model. Traditionally, the helicotrema is consid- 
ered to be the small hole at the apex of the cochlea. However, 
our model calculations show that, acoustically, the helico- 
trema extends well into the cochlea. 

In answer to the question "What physical mechanisms 
give rise to Ro of Fig. 1," we conclude that tapering increases 
the impedance magnitude and inclusion ofperilymph viscos- 
ity results in the impedance becoming real as f-• 0. For the 
cat, chinchilla, and guinea pig, the impedance is dominated 
by the real component for frequencies below approximately 
150 Hz. Therefore, the notion that the input impedance de- 
pends only upon the properties of the BM close to the stapes, 
such as in the WKB approximation, is not consistent with 
the results derived in this paper. Stated in other terms, the 
reflected wave component is an important and necessary 
part of the cochlear input impedance calculation. 

We have shown that accurate calculations of the coch- 

lear input impedance require accurate specifications of the 
scala vestibule and scala tympani area functions. A further 
verification of this result would require more cochlear input 
impedance measurements along with corresponding ana- 
tomical measurements of the area functions. 

Sondhi (1981) conjectured that it is possible to gain 
insight about important BM parameters, such as the BM 
stiffness function K0 (x), from Zc (to). Testing this idea, 
with a constant height cochlear model, did not prove to yield 
physically reasonable results for the stiffness function 
(Sondhi, 1988). Alternatively, under the assumptions of full 
knowledge of the BM stiffness K0 (x) derived from the coch- 
lear map, it might be possible to recover the area function 
$(x) from the input impedance measurements by Sondhi's 
acoustic inverse method. 

VI. SUMMARY 

A nonuniform transmission line model of the cochlea is 

formulated as a cascade of two-port chain matrices. This 
model includes the effects due to the spatial variations in 
scalae area, the viscous perilymph, spatial variations in the 
basilar membrane partition, and the impedance of the heli- 
cotrema. 

Figure 18 graphically depicts some of the main points of 
this paper. The curve with (S= 0.0167 cm 2) is the only 
curve with constant scalae area. The other curves are with an 

area that is a close approximation to anatomical measure- 
ments of the scalae area $m (X)' It is clear from Fig. 18 that, 
for frequencies below about 1 to 2 kHz, the magnitude of the 
cochlear input impedance with a constant scalae area di- 
verges from the model calculations with realistic scalae area. 
For frequencies above • 150 Hz, there is good quantitative 
agreement between the data and our model calculation with 
a realistic scalae area (see Fig. 15). The amplitude oscilla- 
tions in Zc belowf•F (XL) are present in both the constant 
scalae area model and the model with the realistic scalae 

area. These oscillations indicate the presence ofapical reflec- 
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FIG. 18. Summary of results: Zc (to) with constant scalae area, no viscosity, 
and a helicotrema short circuit is labeled as ($ = 0.0167, N¾,$C). The sud- 
den jump in Zc near 100 Hz is due to apical reflections resulting from the 
low-frequency limit of the cochlear mapf•F (XL). The other calculations of 
Z• use the more realistic scalae area Sm (x) of Fig. 12. For frequencies below 
about 1 to 2 kHz the constant scalae area model magnitude of Z• diverges 
from the model calculations with realistic scalae area. For all cases having 
scalae area S•, (x), model results are in good agreement with measured data 
for frequencies above • 150 Hz (see Fig. 15). Below f•F (xL), the large 
oscillations in Z• are due to apical reflections. Adding a tube impedance, for 
the helicotrema, has the effect of changing the nature of the reflections, but 
it fails to remove them. After including perilymph viscosity (W¾), two 
important result emerge for frequencies below • 150 Hz. First, the phase 
indicates that Z• is resistance dominated. Second, the apical reflections 
have dissipated. Viscous effects are important when the scala• radius be- 
comes comparable to the viscous boundary layer. 
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tions. In the realistic scalae area case, the magnitude of the 
reflections are much greater due to an increase in impedance 
mismatch between the scalae and the helicotrema. Although 
adding a tube impedance, for the helicotrema, affects the 
nature of the apical reflections, it fails to remove them. When 
perilymph viscosity is included in the model, two important 
effects are observed for frequencies below • 150 Hz: First, 
the impedance starts to become more and more resistive as 
frequency decreases and, second, the apical reflections have 
dissipated. These effects are due to the viscous boundary 
layer becoming comparable to the scalae radius in apical 
region of the cochlea. 
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APPENDIX A: LOSSY CYLINDRICAL TUBE THEORY 

Lossy transmission-line theory describes the acoustical 
properties of a tube, having section length A and area S, in 
terms of the per unit length series acoustic impedance Z(co) 
and the per unit length shunt acoustic admittance Y(co). 
This theory, originally formulated by Kirchhoff (1868), is a 
linear acoustic theory which includes viscous and thermal 
boundary layers to account for the propagation of losses. To 
calculate Z and Y, one needs to know the scalae radius 

ro(x) --x/S(x)/•r, and the viscous and thermal boundary 
layer thickness (see below), which are proportional to 
co- 1/2. Given Z and Y, one may calculate the propagation 
"constant" (which is not a constant), and the characteristic 
impedance using standard transmission-line formulas. 

1. Lossy series impedance 

The per unit length series acoustic impedance Z is given 
by (Benade, 1968, Flanagan, 1983; Keefe, 1984) 

Z(x,co) = Rv (x,co) + sL(x,co) 

- sp/S(x) (1 -- Fv), (A1) 

where the functions Ro and L are defined as the resistive and 
inductive parts of Z. The viscous factor Fo is given by 

F• -- 2Jl(rvx/ --j)/rvx/ --JJo (r•x/ --j). (A2) 
In the preceding equation, 

r• = ro/• (A3) 

is the ratio of the tube radius ro -- x/S/•r and the viscous 
boundary layer thickness 

• = •/r//pco. (A4) 

2. Lossy shunt admittance 

The per unit length shunt acoustic admittance Y is de- 
fined as (Benade, 1968; Flanagan, 1983; Keefe, 1984) 

Y(x,co) = G(x,co) q- sC(x,co) 

= [sS(x)/pc 2] [ 1 q- (7/- 1)F, ], (A5) 

where the thermal factor F, is given by 

F, = 2J1 (r,x/ --j)/r,x/ --jJo(r,x/ --j). 
where 

(A6) 

r, (x) = r•x/N p . 
The tube radius, normalized by the thermal boundary layer 
thickness, is r, and is related to r• by the Prandtl number 
Np = rlCe/•c. The functions G and C are defined as the con- 
ductive and compliant parts of Y. 

The thermodynamical constants used in the foregoing 
equations are listed in Table AI. The Bessel functions Jo and 
J1 must be calculated at a -- •r/4 angle in the complex plane 
since rv and r, are real and arg(x/-j) = -•r/4. Benade 
( 1968 ), Keefe (1984), and others have given results leading 
to small and large tube radius approximations for F• and F,. 
In the interest of preserving the accuracy of Eqs. (A 1 ) and 
(A5), since any error might propagate in the recursive solu- 
tions, we calculate the Bessel functions of complex argu- 
ments with double precision accuracy. 

The real and imaginary parts of Y(x,co) are defined as 
G(x,co) and coC(x,co). The real and imaginary part of 
Z(x,co) are defined as R• (x,co) and coL(x,co). We further 
break down the definition of L into two components, Lo nd 
L•. The fluid inertia term Lo increases from the base to the 
apex. Since F• is complex, it is evident from Eqs. (A 1 ) and 
(A2) that the presence of viscosity gives rise to a real part 
and a reactive part. By definition, Rv (x,co) is the increased 
resistance, and L• (x,co) is the added mass due to viscosity. 
For the inviscid case (r/-•0), r•-• oo, and from the large 
argument approximation to the Bessel functions (Morse and 
Feschbach, 1953, p. 1321 ), F• -•0. As a result, R•-•0 and 
L -• Lo ---- p/S(x ). In using the above results, we assume that 
S is constant over a section length A. 

TABLE AI. Thermodynamic constants for perilymph. 

Name Parameter Value Units 

Density p 1 g/cm 3 
Viscosity •/ 0.02 g cm- • s- • 
Sound speed c 1.5 X 105 cm/s 
Prandtl number Np 7.02 dimensionless 
Ratio of specific 7/ 1 dimensionless 
heats 
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APPENDIX B: DERIVATION OF BASILAR MEMBRANE 
IMPEDANCE 

The equations describing the parameters corresponding 
to a BM with fourth-order partition dynamics are summar- 
ized here (Allen, 1980). The BM specific impedance is 

ZB•t (x,s) -- s(rnr + rnoc ) 

-• gl, (X)/$ -• G2(x) XHr(x,s), (B1) 

where Kb is the BM stiffness, mo• is the organ ofCorti (OC) 
mass, rn r is the mass of the tectorial membrane, and G(x) is 
the shear gain. The transduction filter Hr (x,s) is defined as 

(rc + kc/s) (kr/s + rr + Smr) 
Hr(X,S) = , (B2) 

(kc + kr)/S + (rc + rr) + Smr 

where kc and rc are the stereocilia stiffness and damping, and 
similarly kr and rr are the tectorial membrane stiffness and 
damping. Equation (B2) can be rendered dimensionless by 
redefining kc (x), kr(x), rc (x), rr(X) in terms of COz (x), 
c% (x), •z (x), •v (x) (Allen, 1980), where c%, COz are the 
pole, zero frequencies of the transduction filter and •v, •z are 
the damping factors associated with the pole and the zero. 
Equation (B2) then becomes 

G(x) ( (s/coz )2 + 2•'z (S/coz ) q-1) - ^2 + + , 
where 

A = •v/•. (B4) 

In this form, one needs only to specify co z (x), cop (x), •z (x), 
•p (x) and the gain G(x) to calculate Eq. (B2). To estimate 
the parameters we have assumed the following: 

cop (x) = 1.3cocv (x) (BS) 
coz (x) = 0.65cocv (x) (B6) 

•(x) =0.3 (B7) 
•z(x) ----0.5 (B8) 

G(x) = 0.5 exp{(x -- xL )/xL} (B9) 
and 

cocv (x) = 2•rfc v (x), (B10) 

wherefcv (x) is the cochlear map. It is as'sumed in Eqs. (B5) 
and (B6) that the pole and the zero lie above and below 
fcv (x). Kb in Eq. (B 1 ) is evaluated according to 

2 

Ko (x) = (mr + mo• )co•v -- tarcop 

x [ 1 + G(x) 

:- :- 
The specific mass of the organ of Corti is 

moc =pochoc (x), (B12) 

and the specific mass of the tectorial membrane (TM) is 

mr =prhr(x), (B13) 

wherepoc andpr are densities of the OC and the TM, hoc (x) 
is the height of the OC, and h r (x) is height (thickness) of 
the TM. We assume that Poc = Pr = P the density of water. 
With these assumptions, rnoc + rn r is 0.04 g/cm 2. The coch- 

lear map from the model was generated by plotting the peak 
location of the BM velocity as a function of the input fre- 
quency. Using Eq. (B 11 ), the resulting calculated cochlear 
map fell below (in frequency) the actual cochlear map [ei- 
ther Eq. ( 15 ), (16), or (17) ] by • 1/•rg. This deficiency in 
the model of the basilar membrane stiffness Ko (x) [Eq. 
(B 11 ) ] was accounted for by multiplying Ko (x) by a con- 
stant ( • 3) so as to make the model cochlear map and de- 
sired cochlear map coincide. 

The total stiffness in ZB•t [Eq. (B 1 ) ] is 

K(x) = K• (x) -P G2(x)(kc (x)kr(x)/ 

X [kc (x) + kr(x)]). (B14) 
For the parameters chosen, G 2 (x) < 1, and the parallel com- 
bination of k c and kr is typically less than 0.1 of Ko (x). 
Thus the second term of Eq. (B 14) has a negligible effect 
[i.e.,K(x)•Kb(x)]. 

•Here, Z•M (x) was formulated for the rectangular coordinate system with 
height H cm. The present model is formulated in the cylinderical coordinate 
system. The impedance transformation was necessary for the results of the 
two formulations to be equivalent (Viergever, 1980, p. 69). 

2The model of Allen (1977) was formulated for a two-dimensional cochlear 
model (fourth-order system of equations in the notation of that paper). 
The formulation was sufficiently general enough so as to allow a one-di- 
mensional formulation (second-order system of equations), as is appropri- 
ate for the present case. 
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