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ABSTRACT

We propose to mimic auditory strategies for recognizing
noisy or distorted speech. Motivated by psychoacoustic
data on human performance, we begin by studying how to
detect the phonetic feature of voicing. We describe an auto-
matic method for voicing detection starting from a cochlear
filterbank. Our method has three stages: first, speech is fil-
tered into critical bands and enhanced by nonlinearities;
second, a degree of voicing is computed in each band based
on its periodicity and signal-to-noise ratio; third, signals
from different bands are combined to make a global de-
cision. These stages are formulated as components of a
probabilistic graphical model, represented by a multilayer
Bayesian network. We train the model from a corpus of
phonetically transcribed speech, then evaluate its robust-
ness to noise and corrupting influences. Implications for
auntomatic speech recognition are discussed.

1. INTRODUCTION

Deprived of linguistic context, visual input, and binau-
ral cues, humans maintain a robust capacity to recognize
speech in poor listening conditions. This was first demon-
strated by the pioneering experiments of Fletcher|[?}, in
which subjects were asked to recognize nonsense syllables
in noisy or distorted speech, without the benefit of auxil-
iary cues. These experiments, and many performed since
then[?], support the idea that the robustness of human
speech recognition is due in large part to the informa-
tion processing at the auditory periphery—i.e., between the
cochlea and the auditory cortex.

The resistance of speech to corrupting influences begins
with the cochlear filtering into critical bands[?]. Critical
bands are to the ear what pixels are to the eye—a mech-
anism for breaking down complicated problems in scene
analysis[?]. Experiments on the articulation index have
shown that cues for recognizing speech are distributed in
a redundant manner across the frequency spectrum. Put
another way, speech is a “spread spectrum” modulation
scheme. Listeners recognize noisy or distorted speech by
integrating eviaence from different "paris of ‘the specirum,
ignoring bands with poor signal-to-noise ratios (SNRs), and
capitalizing on bands with distinctive acoustic signatures[?].

Auditory strategies of information processing provide
many insights into the problems of automatic speech recog-
nition (ASR). Today’s speech recognizers are especially sen-
sitive to background noise and distortion. Current systems
typically couple a back-end of continuous density hidden
Markov models (HMMs) to a front-end that computes mel-
frequency (or similarly smoothed) cepstra{?]. Viewed as a
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long-term strategy for matching human performance, this
program for ASR has inherent limitations. The HMM back-
end does not support the multiband processing used by the
auditory system. Also, the cepstral front-end suppresses the
periodic signature of the speaker’s pitch, blurring the basic
distinction between voiced and unvoiced speech and ignor-
ing the phonetic information carried by this “voicing bit”.

We feel that the mimicking of auditory strategies presents

" a compeiling alternative approach to ASR. We do not dis-

pute the power of statistical methods, combined with the
availability of large amounts of data, to compensate for
our incomplete understanding of auditory processes(?]. On
the other hand, a distinction needs to be made between
incomplete understanding and willful disregard. Certain
fundamentals—such as filtering into critical bands—are so
well established that it seems more logical to ask what types
of statistical models incorporate these fundamentals, rather
than what types of signal processing work best with HMMs.

In this paper, we propose a statistical model for detect-
ing the phonetic feature of voicing—that is, for recognizing
speech sounds generated by vibration of the vocal cords.
As part of a long-term strategy for ASR, we view the abil-
ity to detect voiced speech in difficult listening conditions
as a fundamental prerequisite for making finer distinctions
(such as between phones, syllables, or words) with the same
degree of robustness as human listeners. This view is based
on psychoacoustic evidence that voicing determinations are
made early in the speech chain, with greater reliability than
those of other phonetic features{?].

Important challenges for ASR are to solve two basic prob-
lems: first, to identify voiced segments in noisy, band-
limited speech, making few assumptions about the noise,
channel, or bandwidth; second, to determine the voicing
profile as a function of frequency—that is to detect which
regions of the frequency spectrum provide evidence of voic-
ing, and which do not. In our view, existing methods for
voicing detection are inadequate. On one hand, there are
heuristic algorithms based on auditory processes; these al-
gorithms, relying mainly on expert knowledge and man-
ual parameter-tuning, provide no guarantee of optimality
on large data sets. On the other hand, there are general
purpose methods from statistical pattern recognition; these
methods, ignoring the role of critical bands, do not gener-
alize well to noisy, bandlimited speech.

Our approach to voicing detection combines the strengths
of auditory and statistical models. These strengths are the
ideas of multiband processing and learning from examples.
Our front-end consists of a cochlear filterbank followed by
half-wave rectification and other nonlinearities. Narrow-
band measurements of SNR and periodicity are then fed
to a statistical model, represented by a multilayer Bayesian
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network, whose binary hidden variables indicate voiced ex-
citation in different parts of the frequency spectrum. The
structure of the model formalizes a logical hypothesis about
how information is combined across critical bands. The
model is discriminatively trained to maximize the probabil-
ity of correct voiced-unvoiced classification in clean speech.
Results of voicing detection in clean and corrupted speech
demonstrate the robustness of our approach.

2. VOICING

Psychoacoustic data show that voicing is one of the first bits
of information extracted from the speech signal, as well as
one of the least likely to be corrupted. Miller and Nicely[?]
measured the intelligibility of nonsense syllables in noisy
and bandlimited speech. Tabulating confusion matrices,
they found that over a wide range of acoustic conditions, lis-
teners were much less likely to confuse voiced consonants for
unvoiced ones, and vice versa. These results imply that the
phonetic feature of voicing is detected early in the speech
chain, prior to the more general recognition of phones, syl-
lables, or words. They also imply that voicing is detected
more robustly than other phonetic features: most confu-
sions in noisy or bandlimited speech do not involve voicing.

In light of these results, it is somewhat ironic that most
ASR front-ends begin by systematically erasing all signs of
voicing! from the waveform. While possible to recognize
devoiced speech (e.g., whispering), such a strategy seems
unlikely to match the robustness of human listeners. Whis-
pered speech is not as resistant to corrupting influences as
normal speech. In fact, its typical purpose is to prevent all
but the most ideally situated listeners from understanding
what is being said.

Based on auditory strategies, we believe that the “voic-
ing bit” of phonetic information should be the first priority
of signal processing in ASR, not the first casualty. Speech
recognition is an analog-to-discrete process in which acous-
tic waveforms are converted to discrete sequences of sym-
bols. The detection of phonetic features[?], such as voicing,
marks the perceptual boundary at which analog informa-
tion is converted to discrete form. Errors at this stage can
be (and are) corrected by higher-order linguistic processes.
But such correction is limited, time-consuming, and men-
tally taxing. Semantic and syntactic processes cannot cor-
rect widespread errors in phonetic feature detection; the
time scales here are simply not commensurate.

Successful ASR requires a balanced integration of
bottom-up and top-down strategies. Many researchers
have proposed a bottom-up component based on the de-
tection of phonetic features, starting with voicing. The
so-called “acoustic-phonetic” approach advocates a divide-
and-conquer strategy for extracting phonetic bits of infor-
mation from the speech signal. This approach has been
criticized for relying on questionable assessments of pho-
netic features, and for not exploiting statistical methods
that provide some .guarantee of optimality on large data
sets(?]. Mindful of these criticisms, this work focuses on a
phonetic feature of widely recognized importance and makes
a rather purposeful use of statistical methods.

The acoustic-phonetic approach is premised on the ability
to detect phonetic features in noisy or distorted speech and
to label which parts of the frequency spectrum constitute

1Typically, the first stage of signal processing is to compute
smooth estimates of the short-time magnitude spectra; phase in-
formationis discarded, and the periodicsignature of the speaker’s
pitch is completely suppressed.

evidence for positive identifications. We attribute previous
difficulties with this approach to the challenge of detecting
phonetic features in narrow bands of speech. Coordinated
efforts in signal processing and statistical modeling are re-
quired to build phonetic feature detectors. This leads us
to consider the information processing strategies of the pe-
ripheral auditory system.

3. CRITICAL BANDS

In voiced speech, energy is concentrated at harmonics, or
equally spaced multiples of the speaker’s pitch. Periodicity
at the fundamental frequency can be detected in critical
bands containing sufficient energy at two or more adjacent
harmonics. When certain parts of the frequency spectrum
are corrupted by noise or filtering, voicing determinations
are made from surviving critical bands with high SNR. Our
strategy for voicing detection is based on this picture of
auditory processes. We focus on two acoustic correlates of
voicing: the periodicity established by the speaker’s pitch,
and changes in the signal-to-noise ratio (SNR).

Our front-end consists of a bank of 24 bandpass filters
with overlapping passbands. The center frequencies are
equally spaced on a logarithmic scale between 250 Hz and
3600 Hz, and the width of each passband is matched to
empirical estimates of cochlear bandwidth[?]. Cochlear fil-
ters are modeled (crudely) by 2rd order type-I Chebyshev
filters.

The outputs of these filters are half-wave rectified and
squared. The half-wave rectification mimics the transduc-
tion of neural firing patterns by the inner hair cells; it is
known that neural excitation occurs only for one direction
of movement of the basilar membrane[?]. The squaring non-
linearity is a purposeful form of intermodulation distortion.
In voiced bands spanning two or more adjacent harmonics,
the squaring operation creates energy at the fundamental
frequency of the speaker’s pitch. After these nonlinearities,
the channels are bandlimited to 50-300 Hz and downsam-
pled to speed up subsequent processing.

Measurements are made by blocking each channel into
64 ms frames with a frame shift of 10 msec. Five mea-
surements per frame are recorded in each channel. The
first measurement is a running estimate of SNR, computed
by dividing each frame’s energy by the minimum erergy
of neighboring frames spanning 400 ms of speech. A small
positive offset is added to the denominator in this calcula-
tion to accomodate regions of silence. If this ratio is greater
than unity, the SNR is recorded as its logarithm; otherwise,
it is recorded as 0 dB. An autocovariance for lags between
50 Hz and 300 Hz is also computed for each frame, normal-
ized by the value at zero lag plus a small positive offset.
The normalization is used to compress the dynamic range
of the speech signal. The maximum and minimum values
of this autocovariance are recorded as the second and third
measurements, while the average values of peaks and valleys
are recorded as the fourth and fifth measurements. These
values provide a measure of the periodicity at frequencies
within the normal range of pitch for an adult speaker.

To summarize, our front end transforms the speech wave-
form into an array of baseband signals with energy concen-
trated between 50~300 Hz. Parallel measurements are made
on sliding winrdows of speech in each band. The first mea-
surement is an estimate of SNR; the remaining four are
autocovariance statistics. There are 24 channels, resulting
in a total of 120 measurements per 64 ms window of speech.
One hundred such frames are processed per second. These
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frames are fed one at a time (or in small groups) to the
statistical model described in the next section.

4. STATISTICAL MODEL

Many statistical models for voicing detection have been
proposed in the literature[?]. Generally speaking, mod-
els trained in clean environments do not generalize well to
noisy, bandlimited speech. One strategy to improve gen-
eralization is to incorporate noisy speech into the training
procedure. By itself, however, this strategy represents a
flailing, shortsighted approach to the problem of robustness.
It fails to appreciate the number of degrees of freedom in
noisy, bandlimited speech. One cannot hope to sample the
universe of acoustic possibilities in any reasonable training
procedure. We feel that the only viable long-term strategy
for robustness is to incorporate prior knowledge about the
speech signal(?].

Voicing detection in our model occurs in two stages. In
the first stage, an independent assessment of voicing is made
in each critical band. For a critical band to be labeled as
voiced, its measurements of SNR and autocovariance must
pass a number of statistical tests. In the second stage, in-
formation is combined across critical bands. In this work,
we follow a simple rule: for the wideband speech to be la-
beled as voiced, it must be the case that voicing is detected
in one or more critical bands.

Figure 7?7 depicts our model as a multilayer Bayesian
network[?]. The nodes in this network represent random
variables, while the links represent conditional dependen-
cies. The bottom-up flow of the network describes the se-
quence of operations used to determine if a frame of speech
is voiced.

The nodes in the bottom layer represent the measure-
ments of SNR and autocovariance in each critical band.
These variables are always instantiated—that is, deter-
mined by measurements of the waveform—whereas the
other nodes in the network represent binary random vari-
ables with genuine uncertainty. The nodes in the bottom
layer are shaded to emphasize this distinction.

The nodes in the next layer represent the outcomes of
statistical tests on the measurements of SNR and autoco-
variance. We use M; to denote the vector of measurements
in the sth critical band, and X;; to specify the outcome of
the jth test in this band. The conditional probability that
the jth test in the ¢th band is satisfied is given by:

Pr{X:; = 1|1M;] = o (6i; - M;), (1)

where a(z) = [1 + e7*]"? is the logistic function. The
weights €:; in this equation may be viewed as parameters in
a logistic regression. Though not explicitly indicated, a bias
term can be included in the logistic regression by adding an
extra input to the measurement vector, M;.

The nodes in the next layer represent the positive or nega-
tive assessments of voicing in each critical band. We nse Y;
to denote the binary random variable for the tth critical
band. As described earlier, a positive assessment for voic-
ing is made only if all the tests X;; are positive. Thus, the
conditional probability distribution for Y; is given by:

PrlY: = 1{M;] = HPI‘[X,;,‘ = 1|M;]. (2)

The nodes in this layer are depicted as AND gates to in-
dicate the conjunction relating X;; to Y;. The AND gates,

Figure 1. Multilayer Bayesian network for voicing detection.

triggered only by a consensus of positive inputs, are designed
to minimize false positives in noise.

The top node in the network represents the overall assess-
ment of voicing for the frame of wideband speech. We use Z
to denote this binary random variable. As described ear-
lier, the frame is labeled as voiced if and only if one or more
critical bands are labeled as voiced. Thus, the conditional
probability distribution for Z is given by:

PriZz=1M] = 1-[Ja - PrlYi = 1|ML)).  (3)

Here, we have used M = {M3, M>,...} to denote the en-
tire set of measurements. The top node in the network is
depicted as an OR gate toindicate the disjunction relating ¥;
to Z. The OR gate, silenced only by a consensus of negative
inputs, is designed to minimize false negatives—i.e., failures
to detect voicing in noisy or bandlimited speech.

The quantitative predictions of this model are determined
by the weights 8;; in the bottom layer of the network. These
weights are estimated from a corpus of phonetically tran-
scribed speech. The training data for this procedure con-
sists of frames of wideband speech, labeled as voiced or un-
voiced based on the phonetic transcription. The parameters
are chosen to maximize the likelihood that the model’s pre-
dictions (i.e., Pr[Z|M]) match the labels generated by the
phonetic transcription. The voicing determinations in indi-
vidual critical bands (i.e., Pr[Y;|M;]) are modeled as hid-
den variables. Monotonic convergence to a local maximum
in the likelihood is guaranteed by the EM algorithm(?], a
general iterative procedure for parameter estimation in sta-
tistical models with hidden variables. Further details of this
algorithm will be provided in a longer article.

Two simple extensions to the above model are useful for
producing smooth voicing estimates as a function of time.
The first is to include first and second-order time deriva-
tives of the SNR and autocovariance statistics in the mea-
surement vector. The second is to feed measurements from
consecutive frames (as opposed to the same frame) to the
statistical tests under each AND gate. These extensions do
not complicate the inference procedures in any way.

5. EXPERIMENTS

The multiband model was trained on speech from the first
dialect region of the TIMIT speech corpus. Voicing labels
were generated from the phonetic transcription, with the
initial assignments based on linguistic conventions[?]. An
iterative procedure was then used to optimize these assign-
ments, incorporating the effects of left and right context.
The goal of this procedure was to determine the “bit” of
phonetic information most readily available from critical
band measurements of SNR and periodicity. The final as-
signments were close, but not identical, to the conventional
categorization of voiced and unvoiced phones.

We also investigated how well current acoustic models in
ASR capture the same bit of phonetic information. Two
Gaussian mixture models (GMMs)—one for voiced speech,
one for unvoiced speech—were trained from windowed mea-
surements of mel-frequency cepstra and log-energy. First
and second-order time derivatives were included in the cep-
stral feature vectors, and feature variability was reduced
by utterance-based energy normalization and cepstral mean
subtraction. Each mixture model had 16 components with
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Figure 2. Frame error rates for voicing detection in ten differ-
ent environments,

diagonal covariance matrices. The number of mixture com-
ponents was selected to optimize the voicing detection in a
matched testing condition.

The multiband model and GMMs were trained exclu-
sively on clean speech. Training data consisted of 380 sen-
tences, or 112586 frames of speech (54% voiced, 46% un-
voiced). We then evaluated the robustness of these models
to noise and corrupting influences. This was done by mea-
suring the frame error rate of their voicing determinations
in corrupted speech. Testing data consisted of 110 sen-
tences from different speakers in the same dialect region.
The models were evaluated in ten testing conditions: (1)
clean speech (matched conditions), (2) telephone distortion
(nTIMIT), (3) 0 dB white noise, (4-7) 0 dB noise from 0-
1 kHz, 1-2 kHz, 2-3 kHz, and 3-4 kHz, and (8-10) speech
bandlimited to 0-1 kHz, 1-2 kHz, and 2-3 kHz.

Figure ?7 shows the results of these experiments. The
multiband model is significantly more robust. Note that se-
vere noise and filtering lead to false negatives in the multi-
band model (as one might expect even from humans), but to
random errors in the GMMs. These results shed light on the
fragility of current recognizers. Similar results have been
obtained for speech contaminated by babble noise, white
noise, pink noise, and factory noise at SNRs from 30 dB to
-5 dB. These results will be presented in a longer article.

6. SUMMARY

The multiband processing in our model makes it robust to
many types of noise and distortion. To avoid “misses”, or
failures to detect voicing, the model exploits the idea that
evidence for voicing is distributed across the frequency spec-
trum. Likewise, to avoid false positives, the model looks for
multiply consistent measurements of periodicity and SNR.
These measurements are derived from cochlear filters and
purposeful nonlinearities, as opposed to spectral energies
and cepstra, which have little predictive value in corrupted
speech.

The architecture of our model is specifically tailored to
the problem of multiband voicing detection. This gives it
a unique advantage over generic approaches, such as de-
cision trees, fully connected neural networks, or mixture
models. Notably, our model learns to provide not only
an overall estimate of voicing, but also a profile by fre-
quency (i.e., the voicing determinations in individual criti-
cal bands, Pr[Y:|M,}]). Beyond the problem of voicing de-
tection, our approach illustrates a more general trend in the
field of artificial intelligence—the design of rich statistical
models with highly structured dependencies incorporating
expert knowledge. Probabilistic graphical models are at the
core of a renaissance in the fields of artificial intelligence and
neural networks. The notential to combine these models

with our current understanding of auditory processes has
not been fully realized. We feel it is worth revisiting the
acoustic-phonetic paradigm for ASR in this framework.
Other researchers have also studied multiband process-
ing[?] and Bayesian networks for ASR{?]. Our goal has
been to combine these ideas with insights from auditory
processes and psychoacoustics. The present work eschews
the trappings of cepstra, HMMs, and word error rates and
focuses on the fundamental problem of voicing detection.
This may seem like a step backwards from the frontier of
large vocabulary ASR. However, we believe it is a necessary

step to overcome the fragility of current methods.
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