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Abstract

We investigate a statistical model for integrating narrowband cues in speech. The
model is inspired by two ideas in human speech perception: (i)Fletcher’s
hypothesis (1953) that independent detectors, working in narrow frequency bands,
account for the robustness of auditory strategies, and (ii) Miller and Nicely’s
analysis (1955) that perceptual confusions in noisy bandlimited speech are
correlated with phonetic features. We apply the model to detecting the phonetic
feature [+/−sonorant] that distinguishes vowels, approximants, and nasals
(sonorants) from stops, fricatives, and affricates (obstruents). The model is
represented by a multilayer probabilistic network whose binary hidden variables
indicate sonorant cues from different parts of the frequency spectrum. We derive
the Expectation-Maximization algorithm for estimating the model’s parameters
and evaluate its performance on clean and corrupted speech.
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1. Introduction

Two broad lines of research in automatic speech recognition (ASR) are currently moti-
vated by theories of human speech perception. The first, known asmultiband or multi-
streamASR (Bourlard & Dupont, 1996, 1997; Hermansky, Pavel & Tibrewala, 1996; Tibre-
wala & Hermansky, 1997; Mirghafori, 1998; Ming & Smith, 1999), is aimed at improving
the robustness of machines to noise and corrupting influences in speech; it is inspired by
Fletcher’s theory of the articulation index (Fletcher, 1953). The second, known asfeature-
basedor acoustic-phoneticASR (Deng & Sun, 1994; Espy-Wilson, 1994; Erler & Freeman,
1996; Liu, 1996; Ali, Van der Spiegel, Muller, Haentjens & Berman, 1999; Kirchhoff, 1999;
Niyogi, Burges & Ramesh, 1999; King & Taylor, 2000), is aimed at modeling the variabil-
ities introduced by different speakers and linguistic contexts; it is inspired by analyses of
sound patterns, models of articulation, and rules of pronunciation (Chomsky & Halle, 1968;
Stevens, 1999). In this paper, we hope to demonstrate a synergy between multiband and
feature-based ASR, suggesting that certain problems—such as how to integrate narrowband
cues in speech—are best tackled by merging these lines of research.

Research in multiband ASR is inspired by a common view of how humans recognize
speech (Allen, 1994). In this view, the peripheral auditory system—up through the auditory
cortex—appears largely responsible for the resistance of speech to corrupting influences.
The cochlea, modeled as a bank of overlapping bandpass filters, resolves incoming signals
into components from different parts of the frequency spectrum. Speech is then perceived by
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integrating evidence from different parts of the spectrum, ignoring bands with poor signal-
to-noise ratios (SNRs), and capitalizing on bands with informative cues. In this way, humans
maintain a robust capacity to recognize speech in poor listening conditions. This view is
derived from the pioneering experiments ofFletcher(1953), who showed that listeners can
recognize nonsense syllables in corrupted speech, well above chance levels, without the ben-
efit of auxiliary cues. The hope for ASR is that by emulating the multiband processing of the
auditory system, we can improve the robustness of automatic methods.

Multiband ASR is based on the hypothesis that different parts of the frequency spectrum
should be independently analyzed in the early stages of voice processing. This hypothe-
sis raises the following question: what initial stage of ASR can be attacked by working in
“critical” bands of speech; particularly, the narrow frequency bands (roughly between one-
third and one-sixth of an octave above about 500 Hz) derived from auditory filters (Moore &
Glasberg, 1983)? In particular, if critical bands do not have sufficient bandwidth for robust
recognition of whole phonemes, what type of discrete linguistic units (if any) should we be
attempting to extract from them?

A natural hypothesis is that multiband processing in ASR should be aimed at the robust de-
tection of phonetic features. Phonetic features categorize phonemes into broad classes based
on their articulatory or acoustic properties (Stevens, 1999). Voicing, nasality, and frication
are examples of phonetic features. The distinctions implied by these features can be heard in
corrupted speech even when listeners cannot identify whole phonemes. This aspect of human
performance was quantified in a seminal paper byMiller and Nicely(1955), who measured
the mutual information of spoken and perceived phonemes innoisy bandlimited speech. Their
results show that certain phonetic features are detected early in the speech chain, prior to the
general recognition of phonemes, syllables, or words, and that these features are detected
more robustly than larger units of speech.

Just asFletcher’s ideas inspired early work in multiband ASR, we believe that Miller and
Nicely’s results pose many interesting problems in feature detection. Most work in multi-
band ASR has been devoted to training full-fledged recognizers. The fundamental problem
in these recognizers is how to integrate cues from different parts of the frequency spectrum.
Feature detection provides a valuable setting to study this fundamental problem without the
complications introduced by the massive infrastructure of current recognizers.

In this paper, we propose a statistical model of multiband processing for detecting the
phonetic feature [+/−sonorant]. This feature distinguishes vowels, nasals, and approximants
(sonorants) from stops, fricatives, and affricates (obstruents). The [+/−sonorant] distinction,
though not specifically studied by Miller and Nicely, is extremely robust to corrupting in-
fluences in speech (Clark & Yallop, 1995) and is therefore a natural candidate for statistical
models of multiband processing. Sonorants are articulated by periodic vibration of the vocal
cords with an unobstructed airstream; see TableI for examples. Note that the [+/−sonorant]
feature is not to be confused with the attribute of sonority, defined as the loudness of a sound
relative to others of the same length, stress, and pitch. The points of greatest sonority in an
utterance, measured on a continuous scale, tend to be interpreted as syllable peaks (Clark &
Yallop, 1995). This is a different notion than the discrete feature [+/−sonorant] in TableI.

Our method is based on the hypothesis that sonorant cues are detected in narrow frequency
bands, and that independent detectors, working in parallel, account for the robustness of au-
ditory strategies. The main contribution of our work is to evaluate this hypothesis in a highly
intelligible statistical framework. To this end, we apply modern methods in statistical learn-
ing to the lowest level of feature extraction in speech processing. Our front-end consists of an
auditory filterbank followed by half-wave rectification and other nonlinearities. Narrowband
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TABLE I. The feature [±sonorant] for English consonants.
Consonants are further grouped by the feature [±voiced] and
the manner of articulation: stop, fricative, affricate, nasal, or

approximant

[+voiced] [−voiced]
b (bee) p (pea)
d (day) t (tea) stops
g (gay) k (key)

[−sonorant] z (zone) s (sea)
v (van) f (fin) fricatives
dh (then) th (thin)
zh (azure) sh (she)
jh (joke) ch (choke) affricates
m (mom)
n (noon) nasals
ng (sing)

[+sonorant] l (lay)
r (ray) approximants
w (way)
y (yacht)

measurements of SNR and periodicity are then fed to a probabilistic graphical model, repre-
sented by a multilayer Bayesian network, whose binary hidden variables encode a distributed
representation of the speech signal. The structure of the model formalizes a logical hypothe-
sis, inspired by the work ofFletcher(1953), about how to combine information across narrow
frequency bands.

Our approach combines a number of previously studied ideas in ASR: multiband process-
ing, detecting phonetic features, hidden variable modeling, and learning from examples. We
see these ideas as logically connected in the following way. First, we emulate the multiband
processing of the auditory system in an attempt to approach the robustness of human listen-
ers. Second, we study how to detect the feature [+/−sonorant] because larger units of speech
(such as phonemes) cannot be recognized as robustly in narrow frequency bands, and because
human listeners rarely confuse sonorants with obstruents, even in severely corrupted speech.
Third, we adopt hidden variable models because discovering narrowband cues in wideband
speech cannot be posed as a problem in fully supervised learning. And finally, we use statisti-
cal methods to provide some guarantee of optimality when we fit our hidden variable models
to data.

The organization of this paper is as follows. In Section2, we present our statistical model
for detecting the phonetic feature [+/−sonorant]. In particular, we describe its front-end,
its graphical representation, and its learning algorithm. In Section3, we give experimental
results for our model in clean and corrupted speech. We also compare these results to the
[+/−sonorant] distinction made by standard front-ends and statistical models ASR. Finally,
in Section4, we evaluate the implications of our work for ASR and mention several open
problems needing further study.

2. Statistical model

Detecting the phonetic feature [+/−sonorant] can be studied as a problem in statistical pattern
recognition (Bishop, 1995). The problem is to design a classifier that takes as input a window
of speech,S, and returns as output a conditional probability, Pr[+sonorant|S], between zero
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and one. The probability measures the certainty that the window mainly overlaps a vowel,
approximant, or nasal, as opposed to a stop, fricative, or affricate.

Classifiers of this sort are most commonly trained in the framework of supervised learn-
ing. In this framework, windows of speech are labeled as [+/−sonorant] based on phonetic
alignments of a large corpus, and a learning algorithm is used to optimize an objective func-
tion, such as the average error rate or log likelihood. Classifiers trained in this way can
accurately distinguish between sonorants and obstruents in clean speech. Without further
constraints, however, they do not generalize well to noisy or filtered speech whose character-
istics do not precisely match the training data. This lack of robustness—typical of baseline
systems in ASR—motivates our search for richer statistical models that incorporate ideas in
multiband processing.

A multiband model of [+/−sonorant] detection must satisfy additional criteria. The input
to such a model is speech passed through a filterbank. LetSi denote a window of bandlimited
speech from thei th frequency band. A multiband model must predict whetherSi , by itself,
contains a cue for [+sonorant] speech. In addition, the model must compute a wideband
probability, Pr[ + sonorant|S1,S2, . . .], that integrates narrowband cues from different parts
of the frequency spectrum.

This type of classification poses a challenging problem in machine learning because there
are no labeled examples of bandlimited speech. In particular, while phonetic alignments pro-
vide a [+/−sonorant] segmentation of wideband speech, they do not provide a frequency
profile of [+sonorant] segments, thereby indicating which parts of the spectrum contain
[+sonorant] cues and which do not. We overcome this problem of unlabeled (or “missing”)
data by treating the narrowband cues as hidden variables in a larger statistical model. This en-
ables us to derive an Expectation-Maximization (EM) algorithm (Dempster, Laird & Rubin,
1977) for estimating the parameters of the model from phonetically segmented speech.

The description of this model is divided into four parts. First, we describe the front-end
and the acoustic measurements extracted from the speech waveform. Second, we describe
the model architecture in general terms, explaining at a high level how it manages to balance
competing criteria for robustness. Third, we show how to represent the model by a Bayesian
network (Pearl, 1988). This enables us to compute the statistics of hidden variables using
message-passing algorithms for probabilistic inference. Finally, we present the EM algorithm
for parameter estimation.

2.1. Multiband processing

In sonorant speech, we expect energy to be concentrated at harmonics (equally spaced mul-
tiples of the speaker’s pitch). When such speech is degraded by noise or filtering, we expect
periodicity cues to survive in parts of the spectrum having a high SNR. Our front-end there-
fore focuses on two acoustic correlates of sonorant speech: (i) the periodicity established
by the speaker’s pitch (Hess, 1983; Holmes, 1998), and (ii) increases in the SNR (or in the
case of clean speech, the signal-to-background ratio). These acoustic correlates can be ob-
served in narrow frequency bands. Our general approach to sonorant detection is inspired
by the phenomenon ofresidue pitch(Moore, 1997), the well-known effect that listeners can
perceive pitch from different parts of the frequency spectrum. Many of the specific opera-
tions in our front-end were adapted from biologically motivated models of pitch processing
(Slaney & Lyon, 1990; Smith, 1996, 1997).

Our front-end begins by transforming the speech waveform into an array of narrowband
envelopes. These envelopes are computed by half-wave rectifying, squaring, lowpass filter-
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Figure 1. Stages of front-end processing.

ing, and downsampling the outputs of auditory filters with center frequencies between 225
and 3625 Hz. Parallel measurements are made on sliding windows of these envelopes. Six
measurements are made per frame per critical band: the first two are running estimates of the
SNR, while the remaining four are autocovariance statistics. The measurements are normal-
ized by threshold values derived from identically processed bands of white noise. The overall
scheme is illustrated in Figure1; a more detailed description is given in AppendixA. There
are 24 channels, resulting in a total of 144 measurements per 16 ms window of speech. Just
over 60 frames are processed per second, with contiguous nonoverlapping windows. These
frames are fed, one at a time (or in small groups), to the statistical model described in the
next section.

2.2. Balancing errors: false positives vs. false negatives

A robust [+/−sonorant] detector must balance competing demands of selectivity and invari-
ance. On one hand, to avoid false positives, it must be selective about what constitutes evi-
dence for [+sonorant], focusing on appropriate measures of periodicity and SNR, and dis-
counting incidental correlations that also happen to be generated by noise. On the other
hand, to avoid false negatives, it must be sensitive to a variety of cues, monitoring the en-
tire frequency spectrum for significant acoustic events, and not relying too much on any one
particular cue (e.g. low-frequency energy) that can be destroyed by noise or filtering.

Our model has two stages that explicitly address these concerns. To convey the basic in-
tuition behind these stages, we will first describe them in terms of simple binary events and
logical decision rules. In the next section, however, we will model the binary events as ran-
dom variables and show how to propagate uncertainty in their outcomes throughout the entire
decision-making process.

Roughly speaking, then, in the first stage of the model, independent assessments of
[+/−sonorant] are made on sliding windows of bandlimited speech generated by the filter-
bank. A window of bandlimited speech is labeled as [+sonorant] if its measurements of SNR
and autocovariance meet a number of criteria. Effectively, these criteria are treated as inputs
to a logicalAND gate. Only by meeting all the criteria is theAND condition satisfied and the
window of bandlimited speech labeled as [+sonorant]. The requirement that several criteria
must be simultaneously satisfied is designed to minimize errors due to false positives.

In the second stage of the model, an overall assessment of the feature [+/−sonorant] is
made for the frame of wideband speech. A simple prescription is used to combine infor-
mation across frequency bands. In particular, the wideband speech is labeled as [+sonorant]
if one or more frequency bands are labeled as [+sonorant]. Note that this rule amounts to
feeding the outputs of the previousAND gates to a logicalOR gate. Only when no indi-
vidual frequency band is labeled as [+sonorant] is theOR condition violated and the wide-
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Figure 2. Multilayer Bayesian network for detecting the feature [+/−sonorant]. The
inputs are windowed measurements from narrow frequency bands of speech.

band speech labeled as [−sonorant]. Thus, as long as periodicity cues are detected in some
part of the spectrum with a high SNR, the frame of speech is labeled as [+sonorant]. This
way of combining information is motivated byFletcher’s hypothesis (Fletcher, 1953; Allen,
1994) that independent detectors, working in parallel, account for the robustness of auditory
strategies. A similar model for combining narrowband cues in ASR was also investigated
by Ming and Smith(1999).

The logical operations in this model represent consensus strategies for balancing the de-
mands of selectivity and invariance. AND gates, triggered only by a consensus of positive
inputs, work to minimize false positives. OR gates, silenced only by a consensus of negative
inputs, work to minimize false negatives. Together, these operations help a [+/−sonorant]
detector trained on clean speech to generalize well to noisy bandlimited speech. In partic-
ular, while theAND operations prevent false positives from noise, theOR operation makes
it unlikely that evidence of [+sonorant] will be completely missed, even when most of the
frequency spectrum has been corrupted.

2.3. Probabilistic graphical model

Figure 2 depicts the statistical model described in the previous section as a multilayer
Bayesian network (Pearl, 1988). The nodes in this network represent random variables, while
the links represent statements of conditional dependence. The bottom–up flow of the network
describes the sequence of operations used to determine if a frame of speech is [+/−sonorant].
The model is also used to propagate uncertainties in the outcomes of theAND andOR opera-
tions. Note that the direction of the arrows in the network is from bottom-to-top: thus, the net-
work parameterizes a discriminative model for classifying [+/−sonorant] frames of speech,
as opposed to a generative model for evaluating the likelihood of acoustic measurements.

The nodes in the bottom layer represent the six measurements of SNR and autocovariance
(per frame) in each critical band. The variables represented by these nodes are always instan-
tiated; that is, determined by measurements of the waveform, whereas the other nodes in the
network represent binary (0/1) random variables with genuine uncertainty. The nodes in the
bottom layer are shaded to emphasize this distinction.
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The nodes in the second layer represent binary variables indicating whether the measure-
ments of SNR and autocovariance meet certain criteria for detecting [+sonorant]. We useM i

to denote the vector of acoustic measurements in thei th critical band, andXi j to denote
whether or not thej th criterion in this band is satisfied. The conditional probability that this
criterion is satisfied is given by:

Pr[Xi j = 1|M i ] = σ(θ i j · M i ), (1)

whereσ(z) = [1+ e−z
]
−1 is the logistic function. The nodes in the second layer are marked

by sigmoids to indicate the logistic function in Equation (1). The weightsθ i j in this equation
are parameters in a logistic regression; they are estimated by automatic methods, as described
in Section2.4. Though not explicitly indicated, a default input of unity can be appended to
the measurement vectorM i in order to accommodate a bias term in the logistic regression.

The nodes in the third layer represent the assessments of [+/−sonorant] in each critical
band. We useYi to denote the binary random variable for thei th critical band. As described
earlier, a positive assessment is made only if all the criteriaXi j are satisfied. Thus, the con-
ditional probability distribution forYi is given by:

Pr[Yi = 1|M i ] =
∏

j

Pr[Xi j = 1|M i ]. (2)

The nodes in this layer are labeled byAND to indicate the conjunction relatingXi j to Yi .
The node in the top layer represents the overall assessment of [+/−sonorant] for the frame

of wideband speech. We useZ to denote this binary random variable. As described earlier,
the frame is labeled as [+sonorant] if one or more critical bands are labeled as [+sonorant].
Thus, the conditional probability distribution forZ is given by:

Pr[Z = 1|M ] = 1−
∏

i

(1− Pr[Yi = 1|M i ]), (3)

where we have usedM = {M 1,M 2, . . .} as shorthand to denote the entire set of measure-
ments. The top node in the network is labeled byOR to indicate the disjunction relating
Yi to Z.

For [+sonorant] frames of speech, we can recast Equation (3) in a more familiar form. In
this case, the probability of error is given by:

1− Pr[Z = 1|M ] =
∏

i

(1− Pr[Yi = 1|M i ]). (4)

This isFletcher’s product-of-errors rule (Fletcher, 1953; Allen, 1994). In this context, the rule
states that the overall error rate for mistaking obstruents as sonorants is equal to the product
of error rates from narrowband detectors.

So far we have described how this model computes Pr[Z|M ]—namely, the probability that
a frame of speech is [+/−sonorant] based on narrowband measurements of SNR and period-
icity. This inference involves a bottom–up propagation of information through the network
in Figure2. Other inferences can also be made, involving a combination of bottom–up and
top–down reasoning. Posterior probabilities, such as Pr[Xi j |Yi ,M i ] and Pr[Yi |Z,M ], are
of particular interest for the problem of learning from examples. Certain of these posterior
probabilities follow trivially from theAND and OR operations. For example, based on the
AND operation, we can make the inference Pr[Xi j = 1|Yi = 1,M i ] = 1, or if Yi = 1,
then Xi j = 1 for all j . Likewise, based on theOR operation, we can make the inference
Pr[Yi = 1|Z = 0,M ] = 0, or if Z = 0, thenYi = 0 for all i . Other posterior prob-
abilities can be computed from Bayes rule. To simplify the resulting expressions, we use
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pi j = Pr[Xi j = 1|M i ] to denote the conditional probabilities computed by Equation (1) in
the bottom layer of the network. In [−sonorant] frequency bands, we can make the inference:

Pr[Xi j = 1|Yi = 0,M i ] = pi j

[
1−

∏
k 6= j pik

1−
∏

l pi l

]
. (5)

The term in square brackets on the right-hand side of this equation is always less than one.
Thus Equation (5) states that when one or more criteria in the bottom layer is not satisfied, we
should decrease our belief that any particular criterion is satisfied. Likewise, in [+sonorant]
frames of speech, we can make the inference:

Pr[Yi = 1|Z = 1,M ] =

∏
k pik

1−
∏

m

(
1−

∏
l pml

) . (6)

The denominator in this equation is always less than one. Thus Equation (6) states that when
[+sonorant] speech has been detected in one or more critical bands, we should increase our
belief that it was detected in any particular critical band. The advantage of the probabilistic
graphical model is that it formalizes these intuitions in a quantitatively precise way.

Two simple extensions to the above model are useful for producing smooth [+/−sonorant]
estimates as a function of time. The first is to include first- and second-order time deriva-
tives of the SNR and autocovariance statistics in the measurement vector. The second is to
feed measurements from consecutive frames (as opposed to the same frame) to the logistic
regressions under eachAND gate. These extensions do not complicate the inference proce-
dures in any way. Both were used in our experiments to improve the overall performance
of the model.

Again, it is worth noting that certain types of inferences cannot be made from the network
in Figure2. We emphasize that the bottom nodes in the network are always assumed to be
instantiated, and that the arrows in the network point from bottom to top. Thus, the network
defines a discriminative model, from which to compute Pr[Z|M ], but not a generative model,
from which to sample Pr[M |Z]. Thus, the network cannot be used to evaluate the likelihood
of acoustic measurements or to fill in missing data (Cooke, Green, Josifovski & Vizinho,
2001). The purely bottom–up aspect of the model’s computation has both advantages and
disadvantages; these are discussed more fully in Section4.2.

2.4. Learning algorithm

The quantitative predictions of the model in Figure2 are determined by the values of its
parameters. These parameters—the weightsθ i j in the bottom layer of the network—must be
estimated from training data. The training data for the network consists of frames of wideband
speech, labeled as [+/−sonorant] based on phonetic alignments.

The parameters of the model are tuned so that its [+/−sonorant] predictions match (with
high probability) the labels indicated by the phonetic alignment. Specifically, to each frame
indexed by the superscriptt , we associate a set of acoustic measurements,M t , and a target
label,zt

∈ {0,1}, indicating whether or not the frame is [+sonorant]. The model parameters
are found by attempting to minimize the cross entropy error function (Bishop, 1995):

E = −
∑

t

{zt log Pr[Zt
= 1|M t

] + (1− zt ) log(1− Pr[Zt
= 1|M t

])}, (7)

whose two terms sum over [+sonorant] and [−sonorant] frames of speech. Due to the chaining
of AND andOR operations in Equations (2) and (3), this error function depends in a highly
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nonlinear way on the weightsθ i j in the bottom layer of the network. The internal structure
of the model, however, can be exploited to derive a simple learning algorithm. This is done
via the EM algorithm (Dempsteret al., 1977), a general iterative procedure for parameter
estimation in hidden variable models.

The EM algorithm consists of two alternating steps, an E-step and an M-step. The
E-step in this model is to compute the posterior probabilities Pr[Xi j |Z,M ], conditioned
on the labels provided by the phonetic transcription. The M-step is to update the parame-
ters in each logistic regression, using these posterior probabilities as target values. The value
of this two-step approach is to decouple the original problem of minimizing the log loss
into several independent weighted logistic regressions. By a general convergence theorem
(Dempsteret al., 1977), each iteration of these steps is guaranteed to decrease the overall log
loss. Details of the algorithm are given in AppendixB.

The EM algorithm for this model solves a version of the “multiple-instance” learning prob-
lem (Maron & Lozano-Perez, 1998); namely, it trains a classifier from collections of exam-
ples that are ambiguously labeled. In multiple-instance learning, a collection of examples is
labeled as negative if all the examples in it are negative, or as positive if one or more examples
in it are positive. The problem of detecting [+sonorant] cues in narrowband speech fits neatly
into this framework. In our case, the phonetic alignment labels the wideband speech as ob-
struent (negative) or sonorant (positive). A negative label indicates that no [+sonorant] cues
exist in individual critical bands: Pr[Yi = 0|Z = 0] = 1 for all i . On the other hand, a positive
label indicates that [+sonorant] cues exist in one or more bands: Pr[

∑
i Yi ≥ 1|Z = 1] = 1.

The EM algorithm solves the problem of multiple-instance learning by inferring individual
labels from the posterior distribution, Pr[Yi |Z,M ].

3. Experiments

We conducted experiments on the TIMIT speech corpus (Garofolo, 1988), whose phonetic
transcriptions and speech waveforms have been manually aligned. Phonetically derived seg-
mentations of [+/−sonorant] speech were used to train the multiband model described in
the previous section. Frames of speech were labeled as [+sonorant] if they were predomi-
nantly aligned with sonorants, and as [−sonorant] if they were predominantly aligned with
obstruents or silence. Except for three special cases, vowels, nasals, and approximants were
treated as sonorants, and stops, fricatives, and affricates as obstruents. The three special cases
were: flapped /d/ (“ladder”), which was treated as [+sonorant], and voiceless /h/ (“hay”) and
devoiced schwa (“suspect”), which were treated as [−sonorant]. These exceptions can be
viewed as borderline cases. The flapped /d/ is a rapidly articulated voiced stop that does not
interrupt the periodicity of its neighboring sonorants. Likewise, the voiceless /h/ and devoiced
schwa—though articulated with an unobstructed airstream—do not contain periodic acoustic
energy. The [+/−sonorant] labels derived in this way should not be construed as absolute
truth, but rather as imperfect (yet generally consistent) targets for the training and evaluation
of frame-based statistical models.

We also investigated the [+/−sonorant] distinction made by traditional acoustic models in
ASR (Rabiner & Juang, 1993). This was done to assess how robustly current models cap-
ture the same bit of phonetic information. Two Gaussian mixture models (GMMs)—one for
[+sonorant] speech, one for [−sonorant] speech—were trained from windowed (16 ms) mea-
surements of mel-frequency cepstra and log-energy. First- and second-order time derivatives
were included in the cepstral feature vectors, and feature variability was reduced by utterance-
based energy normalization and cepstral mean subtraction. The posterior probabilities from
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Figure 3. Top: manual segmentation of clean speech into [+/−sonorant] segments.
Middle and bottom: probabilities Pr[+sonorant] from cepstra-GMM and multiband
classifiers.

these GMMs were used to classify frames of speech as [+/−sonorant]. The parameters of
the GMMs were estimated by an EM algorithm (Bishop, 1995). Each GMM had 32 mix-
ture components with diagonal covariance matrices. The number of mixture components was
chosen to optimize the error rate in a matched testing condition.

The multiband and cepstra-GMM classifiers were trained exclusively on clean wideband
speech sampled at 8 kHz. Overall, the multiband and cepstra-GMM classifiers had 1368
and 5056 parameters, respectively, which had to be estimated from training data. Training
data consisted of 380 sentences, or 112 586 frames of speech, nearly evenly divided between
[+sonorant] and [−sonorant] frames. Testing data consisted of 110 sentences from different
speakers. All speakers were taken from the first dialect region of the TIMIT corpus; this was
done simply to limit the size of the experiments in a controlled way. After training, we eval-
uated the robustness of the multiband and cepstra-GMM classifiers by measuring the frame
error rates in a wide variety of listening conditions. SNRs for additive background noise were
computed from the total energy ratios of speech to noise over non-silent (endpointed) regions
of the speech waveforms.

3.1. Example

Our results are best introduced by considering an illustrative example. Figure3 shows the
waveform for the test utterance “OBJECTS MADE OF PEWTER ARE BEAUTIFUL” spoken
in quiet. Dashed vertical lines indicate the boundaries between [+/−sonorant] segments, as
determined by the manual alignment. The bottom plots in this figure show the probabili-
ties Pr[+sonorant] for consecutive frames, as computed by the cepstra-GMM and multiband
classifiers. [See Equation (3) for the latter inference.] Note that in quiet surroundings, both
models provide nearly perfect segmentations of this utterance. In contrast, Figure4 shows
the same utterance contaminated by 0 dB bandlimited noise from 0 to 1 kHz. Despite the
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Figure 4. Top: manual segmentation of noisy speech into [+/−sonorant] segments.
The speech was contaminated by 0 dB bandlimited white noise from 0 to 1 kHz.
Middle and bottom: probabilities Pr[+sonorant] from cepstra-GMM and multiband
classifiers.

ragged appearance of the waveform, the speech in this example is quite intelligible. The
cepstra-GMM classifier, however, completely breaks down because the cepstral feature vec-
tors conflate different parts of the frequency spectrum. On the other hand, the multiband
classifier degrades gracefully, focusing on those critical bands with high SNR.

Figure5 illustrates how the multiband model monitors sonorant activity in different crit-
ical bands for these waveforms. Recall that the hidden variablesYi in the multiband model
encode a frequency profile of sonorant cues in the speech signal. The plots in Figure5
show the probabilities Pr[Yi = 1|M i ] for the clean and noisy waveforms, as computed from
Equation (2). The center frequencies of the critical bands are shown to the left of they-axes.
Note that for each frame of speech, the multiband model produces a complete profile of
sonorant activity by frequency, as opposed to a single wideband measure. Appropriately, for
the noisy waveform, almost all the sonorant activity is detected above 1000 Hz. The plots
unambiguously illustrate that the hidden variables in our model have learned to represent
frequency-dependent phonetic cues.

3.2. Results

These patterns of generalization were also observed in more formal experiments. We eval-
uated the multiband and GMM classifiers in 10 testing conditions: (i) wideband speech in
quiet, (ii) telephone distortion from the nTIMIT database (Jankowski, Kalyanswamy, Basson
& Spitz, 1990), (iii) 0 dB white noise, (iv)–(vii) 0 dB bandlimited noise from 0 to 1 kHz,
1 to 2 kHz, 2 to 3 kHz, and 3 to 4 kHz, and (viii)–(x) speech bandlimited to 0–1 kHz, 1–
2 kHz, and 2–3 kHz.

Performance was measured by frame error rates for detecting [+/−sonorant] speech. These
error rates measure the percentage of incorrectly labeled frames, including both sonorant–
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Figure 5. Sonorant activity in critical bands with different center frequencies for the
waveforms in Figures3 and4. The plots show the probabilities Pr[Yi = 1|M i ] of
hidden variables in the multiband classifier, as computed from Equation (2).

obstruent and obstruent–sonorant confusions. The top panel of Figure6 compares these
error rates for the multiband and cepstra-GMM classifiers. Roughly speaking, given the
number of test frames—over 20 000—we believe that differences in error rates greater than
1/
√

20 000≈ 0.7% can be regarded as statistically significant. Applying more stringent cri-
teria, based on the number of phonemes or the number of [+/−sonorant] segments in the test
set, leads to more conservative estimates for statistically significant differences in error rate.
These estimates are 1.5%, based on the number of phonemes, and 2.3%, based on the number
of [+/−sonorant] segments. Using any of these criteria, however, we can draw a number of
conclusions.

As expected, the multiband model is significantly more robust to bandlimited noise. The
superiority is particularly marked for low frequency noise below 1 kHz. Note that the ban-
dlimited noise in these experiments had no special relation to the auditory filters in our
front-end.

In the other test environments, the differences in overall error rates do not appear as sig-
nificant. Note, however, that sonorant cues are generally destroyed by noise and filtering,
and thus one expects higher error rates—arising from false negatives—in these types of test
conditions. It is therefore instructive to compare false positive rates, which measure only the
errors in [−sonorant] frames that do not contain vowels, nasals, or approximants. The bottom
panel of Figure6 compares false positive rates. The multiband model produces significantly
fewer false positives than the cepstra-GMMs; in many cases, the number is lower by an order
of magnitude. A revealing trend is that severe noise and filtering, which destroy periodicity
cues in the actual speech signal, actually lead to higher numbers of false positives in the
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Figure 6. Frame error rates for [+/−sonorant] detection in 10 different environments:
clean (CLN), telephone channel (TEL), white noise (WHI), bandlimited noise
(N f1 f2), and bandlimited speech (Bf1 f2), where f1 and f2 are measured in kHz.

cepstra-GMMs. Thus it appears that the cepstra-GMMs learn to cue on acoustic events that
are incidentally correlated with sonorants in clean speech (such as energy bursts at low fre-
quency), but completely uncorrelated with sonorants in general. These results shed light on
the fragility of current recognizers.

We also investigated the [+/−sonorant] detection as a function of SNR. Four types of
broadband noise were added to the 110 test utterances at SNRs ranging from 30 dB to 0 dB.
The noises—babble, factory floor, white, and pink—were taken from the NOISEX database
(Varga, Steeneken, Tomlinson & Jones, 1992). Figure7 shows the frame error rates of the
cepstra-GMM and multiband classifiers vs. SNR. The results indicate that the multiband
model is more robust over a wide range of SNRs.

The above results demonstrate the viability of the multiband approach. The numbers in
Figures6 and7, however, are less important than the overall picture of multiband process-
ing that emerges from Figure5. As we discuss below, the multiband model in this paper
has many shortcomings, even for the narrowly defined task of [+/−sonorant] detection. To
the best of our knowledge, however, it represents the first statistical model of its kind: a
multilayer Bayesian network—purposefully structured to encodeFletcher’s product-of-errors
rule—whose hidden variables monitor narrowband phonetic cues, and whose parameters are
jointly estimated to optimize a wideband measure of performance.

4. Discussion

The multiband processing in our model provides a certain degree of robustness to many
types of noise and distortion. To avoid “misses”, or false negatives, the model exploits the
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Figure 7. Frame error rates for [+/−sonorant] detection as a function of SNR.

idea that evidence for [+sonorant] is distributed across the frequency spectrum. Likewise,
to avoid false positives, the model looks (within each critical band) for multiply consistent
measurements of periodicity and SNR. These measurements are derived from auditory filters
and purposeful nonlinearities, as opposed to smoothed power spectra and cepstra, which tend
to lose their predictive value in corrupted speech. Though the model is trained only on clean
wideband speech, its performance degrades gracefully in noisy bandlimited speech.

To what does the model owe its robustness—the nature of its signal processing, or the
structure of its decision making? In related experiments, we attempted to train an unstruc-
tured classifier, with the same number of free parameters, that took as input the same nar-
rowband measurements of the waveform but did not encode theAND-OR integration of nar-
rowband cues. We found the training of such a classifier, whose input vector is formed by
concatenating all the inputs to the bottom layer of the network in Figure2, to be considerably
more difficult due to the high dimensionality of its input—nearly two orders of magnitude
greater than that of the individual narrowband detectors. Thus, it should be emphasized that
the structure of theAND-OR network not only serves to incorporate prior knowledge, but also
to decompose the learning problem into simpler, independent sub-processes, as discussed
in Section2.4 and AppendixB. Based on our experience, it seems unlikely that a classifier
whose learning procedure does not exploit such a decomposition could realize the full poten-
tial of multiband signal processing. (It is also worth pointing out that such a classifier could
only function as a “black box” for [+/−sonorant] detection, whereas the hidden variables in
the multiband model can in principle support other useful inferences for ASR.) Finally, we
note that the unstructured classifier did not learn to recognize [+/−sonorant] cues from dif-
ferent parts of the frequency spectrum, so that its performance degraded catastrophically in
highpass filtered speech.
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4.1. Implications for ASR

Today’s speech recognizers suffer from a tremendous sensitivity to the acoustic environ-
ment; in particular, moderate amounts of noise or frequency response distortion can lead
to catastrophic failures. Current systems typically couple a back-end of continuous density
hidden Markov models (HMMs) to a front-end that computes mel-frequency (or similarly
smoothed) cepstra (Rabiner & Juang, 1993). Viewed as a long-term strategy for matching
human performance (Lippmann, 1997), this program for ASR has inherent limitations. Tra-
ditional back-ends do not provide much support for emulating the multiband processing of
the auditory system. The smoothing of the spectra suppresses the periodic signature of the
speaker’s pitch, blurring the elementary phonetic distinctions that can be made on this basis.
Finally, the use of cepstra conflates different parts of the frequency spectrum, focusing on
incidental energy ratios instead of robust phonetic cues. The results of the cepstra-GMMs in
the previous section reflect these significant limitations.

Our results support the idea that emulating the multiband processing of the auditory sys-
tem can improve the robustness of automatic methods. As we have seen, this approach to
robustness gives rise to an important tradeoff involving bandwidth. How narrow should we
make the filters in the front-end? On one hand, the filters should be sufficiently narrow to
reject noise in large parts of the spectrum. On the other hand, the filters should be sufficiently
wide to preserve useful phonetic cues. We believe one way to balance these competing goals
is to work in critical bands and look for phonetic features.

4.2. Relation to previous work

The most ambitious work in multiband ASR has led to full-fledged recognizers (Bourlard
& Dupont, 1996, 1997; Hermanskyet al., 1996; Tibrewala & Hermansky, 1997; Mirghafori,
1998; Ming & Smith, 1999). In this paper, we have attempted to detect the feature
[+/−sonorant] from critical band measurements of SNR and periodicity. In contrast, exist-
ing multiband recognizers tend to work in much wider frequency bands, searching for larger
units of speech based on subband cepstra. While these recognizers have demonstrated im-
provements in robustness, we believe that the multiband approach can be pushed further than
this, and that long-term progress requires greater understanding of narrowband phonetic cues.
The difficulty of this approach, which we acknowledge, is that progress cannot be so easily
measured in terms of word error rates.

Another compelling approach to robust ASR treats noisy frequency bands as missing
data (Cookeet al., 2001), making use of probabilistic methods—such as marginalization or
imputation—to handle acoustic evidence from unreliable parts of the spectrum. These meth-
ods can be viewed as forms of top–down reasoning, since they involve a generative model of
acoustic measurements that are correlated across frequency and time. The power of the miss-
ing data approach is that it can exploit these correlations to make inferences about corrupted
parts of the frequency spectrum. Nevertheless, it remains of interest to study whether purely
bottom–up computations, which are considerably faster, can lead to robust phonetic discrim-
inations. Our model, in which independent detectors work in narrow frequency bands, has
the advantage that its computations are relatively cheap; thus, at least for [+/−sonorant] it
may provide a reasonable degree of robustness at less computational cost. The disadvantage
of this approach is that it does not exploit the potential of top–down reasoning.

Feature detection continues to be an active area of research in ASR (Deng & Sun, 1994;
Espy-Wilson, 1994; Erler & Freeman, 1996; Liu, 1996; Ali et al., 1999; Kirchhoff, 1999;
Niyogi et al., 1999; King & Taylor, 2000). Our approach to [+/−sonorant] detection is based
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on the working hypothesis that sonorant cues are detected independently in different parts
of the frequency spectrum. This hypothesis provides a number of points of departure for
our work. In the front-end, for example, it does not accommodate signal processing based
on measurements of cepstra or wideband autocorrelation. Likewise, in the back-end, it does
not accommodate “black box” statistical methods that violate the assumption of indepen-
dence. Our approach also differs from purely “expert-based” approaches to feature detection.
Though informed by aspects of human speech perception, we make elaborate use of statistical
methods to fit models consistent with our working hypothesis. In fact, our approach reflects
a more general trend in ASR and other areas of artificial intelligence: the design of rich sta-
tistical models with highly structured dependencies incorporating prior knowledge (Jordan,
1999). In our view, these probabilistic graphical models provide a way to study feature detec-
tion that combines the benefits of prior knowledge and learning from examples. They enable
researchers to bridge the divide between models based on expert engineering (Holmes, 1998)
and those derived by automatic methods (Bendiksen & Steiglitz, 1990).

4.3. Open problems

Much more work is needed, and in many areas. First, theOR combination of [+sonorant]
cues in different critical bands is too simplistic. TheOR gate, triggered by periodic activity in
any part of the frequency spectrum, is obviously not appropriate for periodic forms of noise.
In general, there must occur a more sophisticated integration of information across critical
bands. It is commonly believed that listeners use commonalities in pitch and amplitude mod-
ulations to group different parts of the frequency spectrum into auditory streams (Bregman,
1994). In our setup, this suggests that cues for [+sonorant] should only accumulate across
bands if these bands belong to the same stream. The ability to handle periodic interference,
as arises from overlapping speakers, thus requires some sort of streaming mechanism.

A second (and related) assumption that needs to be relaxed is the complete independence
of signal processing in different critical bands. Phenomena such as comodulation masking
release (CMR) show that listeners correlate temporal modulation activity across critical bands
(Hall, Haggard & Fernandes, 1984). The CMR effect refers to the striking observation that a
pure tone in narrowband noise is more easily detected when flanking bands of masking noise
are added with the same envelope modulations. It seems likely that a similar mechanism—
comparing envelope fluctuations across critical bands—helps listeners to detect periodicity
cues in noisy speech.

A third direction for research is to extend the model in this paper to other phonetic fea-
tures. Clearly, not all features will be amenable to this approach. The approach seems most
reasonable for those features, such as voicing and nasality, that are also extremely robust to
noise and filtering (Miller & Nicely , 1955; Wang & Bilger, 1973). Other features will require
different strategies for signal processing and integrating information across critical bands: a
robust voicing detector, for example, might compute narrowband estimates of the voice onset
time (Niyogi & Ramesh, 1998). Nevertheless, the network in Figure2 can serve as a useful
starting point for learning from examples of wideband speech. The main idea is that the hid-
den variables in these networks should encode a distributed representation of speech-related
cues in different parts of the frequency spectrum. It would also be worthwhile to investigate
other binary distinctions—such as rising/falling pitch, male/female speaker classification, or
foreground/background identification—that can be made in narrow bands of speech.

A fourth and final challenge is to fold all these ideas into a speech recognizer. A simplis-
tic way to do this is to compute phoneme probabilities by combining wideband measures
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of [+/−sonorant] and other phonetic features. The narrowband measures of [+sonorant] in
Figure5, however, convey much more information than the wideband measures in Figures3
and4. Ideally, uncertainties in narrowband feature detection (as reflected by the probabili-
ties of hidden variables) should also be propagated so that they can be resolved by higher
level considerations, such as linguistic context. Finally, it must be recognized that features
do not turn on and off in perfect synchrony at phoneme boundaries. Traditional HMMs are
not designed to handle this type of parallel asynchronous input, corresponding to the activa-
tion and deactivation of phonetic features (or partial cues) in different parts of the frequency
spectrum. Recently, however, a number of researchers have investigated models that address
these issues (Hopfield, Brody & Roweis, 1998; Mirghafori & Morgan, 1999). All these ideas
need to be further developed.

We are grateful to H. Hwang (M.I.T.) for sharing the results of related experiments. We would also like
to thank the editor, M. Ostendorf (U. Washington), and the anonymous reviewers for many valuable
comments.
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Appendix A: Front-end

Our front-end consists of a bank of 24 gammatone filters with overlapping passbands (Slaney,
1993). The widths of the passbands are matched to equivalent rectangular bandwidth (ERB)
estimates of auditory filters (Moore & Glasberg, 1983), and the center frequencies are equally
spaced on an ERB scale between 225 Hz and 4000 Hz. The outputs of these filters are half-
wave rectified and squared. These nonlinearities are purposeful forms of intermodulation
distortion (Hartmann, 1997). Specifically, in bands spanning two or more adjacent harmonics,
these operations create and concentrate energy at the fundamental frequency (Smith, 1996).
After these nonlinearities, the channels are bandlimited to 50–300 Hz and downsampled to
speed up subsequent processing. The frequencies 50–300 Hz were chosen to represent the
extremes in pitch of male and female adult speakers.

Measurements are made by blocking each channel into contiguous, nonoverlapping 16 ms
frames, with a frame shift of 16 ms. Six measurements per frame are recorded for each
channel. The first two measurements are running estimates of SNR, computed by dividing
each frame’s energy by the minimum energy of neighboring frames spanning 200 ms and
400 ms of speech, respectively. A small positive offset is added to the denominator in this
calculation to accomodate regions of silence. If this ratio is greater than unity, the SNR is
recorded as its logarithm; otherwise, it is simply recorded as 0 dB.

The autocovariance function for lags between 3.3 and 20 ms (50 and 300 Hz) is also
computed in each channel, normalized by the value at zero lag plus a small positive offset.
The normalization is used to compress the dynamic range of the speech signal. The auto-
covariances are computed over 64 ms windows centered on the same sample as the shorter
16 ms windows used to estimate the SNR. The longer windows are required to span multiple
pitch periods of deep male voices. The maximum and minimum values of the autocovariance
function are recorded as the third and fourth measurements in each frame, while the average
values of peaks and valleys are recorded as the fifth and sixth measurements. In addition,
the signs of the fourth and sixth measurements are flipped so that all the measurements are
positively correlated with the amount of periodicity in the waveform.

Finally, the six measurements of SNR and autocovariance are thresholded to reduce their
variance in noise. Threshold values are computed from the means plus one standard deviation
of the same measurements for identically processed bands of white noise. Measurements
greater than these threshold values are replaced by the amounts in excess; measurements less
than these threshold values are replaced by zero. The purpose of these thresholding operations
is to preserve only those sonorant cues unlikely to have been generated by noise.

Appendix B: EM algorithm

The EM algorithm for the network in Figure2 attempts to minimize the cross entropy error
function, given by Equation (7). Combining Equations (2) and (3), we can rewrite this error
function as:

E = −
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where the sum is over frames of speech, indexed byt . Note that the error function depends in
a complicated way on the probabilitiespt

i j (and hence the parametersθ i j ) computed by the
logistic regressions in the bottom layer of the network.
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The EM algorithm provides an iterative procedure for minimizing the error function in
Equation (B1), with guarantees of monotonic convergence. The algorithm consists of two
alternating steps, an E-step and an M-step. The E-step for the model computes the posterior
probabilities of the hidden variables, conditioned on the labels provided by the phonetic
alignment. The calculations here are different for [−sonorant] and [+sonorant] frames of
speech. For [−sonorant] frames, we have:

Pr[Xi j = 1|Z = 0,M ] = pi j

[
1−

∏
k 6= j pik

1−
∏

l pi l

]
. (B2)

To make this equation easier to read, we have dropped the superscript indexing the frame
number, which strictly speaking should be added to each variable in the equation
(e.g.Xt

i j , Zt , etc.). The posterior probabilities for [+sonorant] frames are given by:

Pr[Xi j = 1|Z = 1,M ] = pi j

[
1−

∏
k 6= j pik

1−
∏

l pi l

][
1−

∏
n pin

1−
∏

m

(
1−

∏
l pml

)]

+

∏
k pik

1−
∏

m

(
1−

∏
l pml

) . (B3)

These posterior probabilities are derived by applying Bayes rule to the left-hand sides of
Equations (B2) and (B3), marginalizing the hidden variableYi , and making repeated use of
Equations (5) and (6). The computations remain tractable due to the conditional independen-
cies of the underlying Bayesian network (Pearl, 1988).

The M-step of the EM algorithm updates the parameters in each logistic regression. Specif-
ically, it prescribes how to choose updated parameter estimates,θ̃ i j , to replace the current
ones,θ i j . Let qt

i j = Prθ [Xt
i j = 1|Zt

= zt ,M t
] denote the posterior probabilities com-

puted from Equations (B2) and (B3), using the current parameter estimates,θ i j . Likewise,
let p̃t

i j = Prθ̃ [X
t
i j = 1|M t

] denote the prior probabilities computed from Equation (1), using

the updated parameter estimates,θ̃ i j . The M-step consists of replacingθ i j by θ̃ i j , where:

θ̃ i j = arg max
˜θ i j

{∑
t

[qt
i j log p̃t

i j + (1− qt
i j ) log(1− p̃t

i j )]

}
. (B4)

Note that this procedure decouples the problem of parameter estimation into several inde-
pendent weighted logistic regressions. The terms in Equation (B4) define a convex func-
tion of θ̃ i j , so that these maximizations can be performed by Newton’s method or (in rare
cases of instability) by gradient ascent. The power of the EM algorithm is that it replaces the
seemingly intractable cross entropy error function in Equation (B1) by the simpler ones in
Equation (B4).
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