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Abstract. This paper surveys the contributions offive mathematiciansmEugenio Beltrami (1835-1899), Camille
Jordan (1838-1921), James Joseph Sylvester (1814-1897), Erhard Schmidt (1876-1959), and Hermann Weyl (1885-
1955)--who were responsible for establishing the existence of the singular value decomposition and developing its

theory.
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1. Introduction. One of the most fruitful ideas in the theory of matrices is that of a
matrix decomposition or canonical form. The theoretical utility of matrix decompositions has
long been appreciated. More recently, they have become the mainstay of numerical linear
algebra, where they serve as computational platforms from which a variety of problems can
be solved.

Of the many useful decompositions, the singular value decomposition that is, the fac-
torization of a matrix A into the product UXVH of a unitary matrix U, a diagonal matrix ,
and another unitary matrix VH has assumed a special role. There are several reasons. In the
first place, the fact that the decomposition is achieved by unitary matrices makes it an ideal
vehicle for discussing the geometry of n-space. Second, it is stable; small perturbations in A
correspond to small perturbations in , and conversely. Third, the diagonality of makes
it easy to determine when A is near to a rank-degenerate matrix; and when it is, the decom-
position provides optimal low rank approximations to A. Finally, thanks to the pioneering
efforts of Gene Golub, there exist efficient, stable algorithms to compute the singular value
decomposition.

The purpose ofthis paper is to survey the contributions of five mathematicians Eugenio
Beltrami (1835-1899), Camille Jordan (1838-1921), James Joseph Sylvester (1814-1897),
Erhard Schmidt (1876-1959), and Hermann Weyl (1885-1955) who were responsible for
establishing the existence of the singular value decomposition and developing its theory.
Beltrami, Jordan, and Sylvester came to the decomposition through what we should now call
linear algebra; Schmidt and Weyl approached it from integral equations. To give this survey
context, we will begin with with a brief description of the historical background.

It is an intriguing observation that most of the classical matrix decompositions predated
the widespread use of matrices: they were cast in terms of determinants, linear systems of
equations, and especially bilinear and quadratic forms. Gauss is the father of this development.
Writing in 1823 [20, 31], he describes his famous elimination algorithm (first sketched in
[19, 1809]) as follows:

Specifically, the function f2 [a quadratic function of x, y, z, etc.] can be reduced to the form

uO Ut UtI UltI
A0 +-Br+--++etc.+M,

in which the divisors ,A,/T, C", Cm, etc. are constants and u, u, u", um, etc. are linear
functions of x, y, z, etc. However, the second function, u, is independent of x; the third, u",
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552 G.W. STEWART

is independent of x and y; the fourth, utp, is independent of x, y, and z, and so on. The last
function, u (’r-l), depends only on the the last of the unknowns x, y, z, etc. Moreover, the
coefficients 4, BP, Cpp, etc. multiply x, y, z, etc. in u, up, u’p, etc., respectively.

From this we easily see that Gauss’s algorithm factors the matrix of the quadratic form
xTAx into the product RD- R, where D is diagonal and R is upper triangular with the diagonals
ofD on its diagonal. Gauss’s functions u, u’, u", etc. are the components ofthe vector u Rx.

Gauss was also able to effectively obtain the inverse of a matrix by a process of eliminatio
indefinita, in which the system of equations y Ax is transformed into the inverse system
x By. Gauss’s skill in manipulating quadratic forms and systems ofequations made possible
his very general treatment of the theory and practice of least squares.

Other developments followed. Cauchy [7, 1829] established the properties of the eigen-
values and eigenvectors of a symmetric system (including the interlacing property) by con-
sidering the corresponding homogeneous system of equations. In 1846, Jacobi [30] gave
his famous algorithm for diagonalizing a symmetric matrix, and in a posthumous paper [31,
1857] he obtained the LU decomposition by decomposing a bilinear form in the style of Gauss.
Weierstrass [63, 1868] established canonical forms for pairs of bilinear functions-- what we
should today call the generalized eigenvalue problem. Thus the advent of the singular value
decomposition in 1873 is seen as one of a long line of results on canonical forms.

We will use modem matrix notation to describe the early work on the singular value
decomposition. Most of it slips as easily into matrix terminology as Gauss’s description of
his decomposition; and we shall be in no danger of anachronism, provided we take care to
use matrix notation only as an expository device, and otherwise stick close to the writer’s
argument. The greatest danger is that the use of modem notation will trivialize the writer’s
accomplishments by making them obvious to our eyes. On the other hand, presenting deriva-
tions in the original scalar form would probably exaggerate the obstacles these people had to
overcome, since they were accustomed, as we are not, to grasping sets of equations as a whole.

With a single author, it is usually possible to modernize notation in such a way that it
corresponds naturally to what he actually wrote. Here we are dealing with several authors, and
uniformity is more important than correspondence with the original. Consequently, throughout
paper we will be concerned with the singular value decomposition

A U.VT,

where A is a real matrix of order n,

diag(trl, tr2 trn)

has nonnegative diagonal elements arranged in descending order of magnitude, and

U (Ul u2 Un) and V (V V2 Vn)

are orthogonal. The function will denote the Frobenius norm defined by

A 2 a. tr/.
i,j

In summarizing the contributions I have followed the principle that if you try to say
everything you end up saying nothing. Most of the works treated here are richer than the
following sketches would indicate, and the reader is advised to go to the sources for the full
story.

2. Beltrami [5, 1873]. Together, Beltrami and Jordan are the progenitors of the singular
value decomposition, Beltrami by virtue offirst publication and Jordan by the completeness and
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THE EARLY HISTORY OF THE SVD 553

elegance of his treatment. Beltrami’s contribution appeared in the Journal ofMathematicsfor
the Use of the Students of the Italian Universities, and its purpose was to encourage students
to become familiar with bilinear forms.

The derivation. Beltrami begins with a bilinear form

f(x, y) xTAy,

where A is real and of order n. If one makes the substitutions

x=U and y=Vr/,

then

f(x, y) TSr/,

where

(2.1) S UTAV.

Beltrami now observes that if U and V are required to be orthogonal, then there are
n2 n degrees of freedom in their choice, and he proposes to use these degrees of freedom to
annihilate the off diagonal element of S.

Assume that S is diagonal, i.e., S diag(0-1 o-n). Then it follows from (2.1)
and the orthogonality of V that

(2.2) UVA 3VT.

Similarly,

(2.3) AV

Substituting the value of U obtained from (2.3) into (2.2), Beltrami obtains the equation

(2.4) Uv(AAT) -]2uT,

and similarly he obtains

(ATA)V VY]2.

Thus the 0-i are the roots of the equations

(2.5) det(AAT 0-2 I) 0

and

(2.6) det(ATA 0
-2 I) 0.

Note that the derivation, as presented by Beltrami, assumes that, andhence A, is nonsingular.
Beltrami now argues that the two functions (2.5) and (2.6) are identical because they

are polynomials of degree n that assume the same values at 0- 0-i (i 1 n) and the

However, it is possible to derive the equations without assuming thatA is nonsingular, e.g., UTAAT vTAT
-]2uT, the first equality following on multiplying (2.2) by AT, and the second on substituting the transpose of (2.3).
Thanks to Anne Greenbaum for pointing this fact out.
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554 G.W. STEWART

common value det2 (A) at tr 0, an argument that presupposes that the singular values are
distinct and nonzero.

Beltrami next states that by a well-known theorem, the roots of (2.5) are real. Moreover,
they are positive. To show this he notes that

(2.7) 0 < IIxTAII 2 xT(AAT)x T2,
the last equation following from the theory of quadratic forms. This inequality immediately
implies that the r/2 are positive.

There is some confusion here. Beltrami appears to be assuming the existence of the vector, whose very existence he is trying to establish. The vector required by his argument is an
eigenvector of AAT corresponding to or. The fact that the two vectors turn out to be the same
apparently caused Beltrami to leap ahead of himself and use in (2.7).

Beltrami is now ready to give an algorithm to determine the diagonalizing transformation.
1. Find the roots of (2.5).
2. Determine U from (2.4). Here Beltrami notes that the columns of U are determined

up to factors of -4-1, which is true only if the ri are distinct. He also tacitly assumes that the
resulting U will be orthogonal, which also requires that the ri be distinct.

3. Determine V from (2.2). This step requires that be nonsingular.

Discussion. From the foregoing it is clear that Beltrami derived the singular value decom-
position for a real, square, nonsingular matrix having distinct singular values. His derivation
is the one given in most textbooks, but it lacks the extras needed to handle degeneracies. It
may be that in omitting these extras Beltrami was simplifying things for his student audience,
but a certain slackness in the exposition suggests that he had not thought the problem through.

3. Jordan [32], [33]. Camille Jordan can rightly be called the codiscoverer of the
singular value decomposition. Although he published his derivation a year after Beltrami, it
is clear that the work is independent. In fact, the "M6moire sur les formes bilin6aires" treats
three problems, of which the the reduction of a bilinear form to a diagonal form by orthogonal
substitutions is the simplest.

The derivation. Jordan starts with the form

P xTAy
and seeks the maximum and minimum of P subject to

(3.1) Ilxll = IlYll = 1.

The maximum is determined by the equation

(3.2) 0 dP dxTAy + xTAdy,

which must be satisfied for all dx and dy that satisfy

(3.3) dxTx 0 and dyTy 0.

Jordan then asserts that "equation (3.2) will therefore be a combination of the equations (3.3),"
from which one obtains

2The other two are to reduce a form by the same substitution of both sets of variables and to reduce a pair of
forms by two substitutions, one for each set of variables. Jordan notes that the former problem had been considered
by Kronecker [37, 1866] in a different form, and the latter by Weierstrass [63, 1868].

3jordan’s argument is not ver clear. Possibly he means to say that for some constants tr and r we must have
dxTAy + xTAdy crdxTx + rdyi y, from which the subsequent equations follow from the independence of dx and
dy.
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THE EARLY HISTORY OF THE SVD 555

(3.4) Ay x

and

(3.5) xTA ryT.

From (3.4) it follows that the maximum is

xT(Ay) axTx a.

Similarly the maximum is also r, so that a r.
Jordan now observes that a is determined by the vanishing of the determinant

of the system (3.4)-(3.5). He shows that this determinant contains only even powers of a.
Now let al be a root of the equation D 0, and let (3.4) and (3.5) be satisfied by x u

and y v, where Ilull = Ilvll = 1. (Jordan notes that one can find such a solution, even
when it is not unique.) Let

ll=(uU,) and ’=(vV,)

be orthogonal, and let

x=l] and y=.
With these substitutions, let

P

In this system, P attains its maximum4 for 37 el, where el (1, 0 0)T. Moreover,
at the maximum we have

and T/ O.IT,

which implies that

Thus with 1 .1 and 01 331, P assumes the form

0"1101 "+" el,

where P1 is independent of and 0. Jordan now applies the reduction inductively to P1 to
arrive at the canonical form

P

Finally, Jordan notes that when the roots of the characteristic equation D 0 are simple,
the columns of U and V can be calculated directly from (3.1), (3.4), and (3.5).

4jordan nods here, since he has not explicitly selected the largest root al.
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556 G.W. STEWART

Discussion. In this paper we see the sure hand of a skilled professional. Jordan proceeds
from problem to solution with economy and elegance. His approach of using a partial solution
of the problem to reduce it to one of smaller size--deflation is the modem term--avoids
the degeneracies that complicate Beltrami’s approach. Incidentally, the technique of deflation
apparently lay fallow until Schur [52, 1917] used it to establish his triangular form of a general
matrix. It is now a widely used theoretical and algorithmic tool.

The matrix

AT 0

from which the determinant D was formed, is also widely used. Its present day popularity is
due to Wielandt (see [18, p.113]) and Lanczos [38, 1958]. The latter apparently rediscovered
the singular value decomposition independently.

Yet another consequence of Jordan’s approach is the variational characterization of the
largest singular value as the maximum of a function. This and related characterizations have
played an important role in perturbation and localization theorems for singular values (for
more, see [55, 4.4]).

4. Syivester [57, 1889], [59, 1889], [58, 1889]. Sylvester wrote a footnote and two

papers on the subject of the singular value decomposition. The footnote appears at the end of
a paper in The Messenger ofMathematics [57] entitled "A new proof that a general quadric
may be reduced to its canonical form (that is, a linear function of squares) by means of a real
orthoganal substitution." In the paper Sylvester describes an iterative algorithm for reducing
a quadratic form to diagonal form. In the footnote he points out that an analogous iteration
can be used to diagonalize a bilinear form and says that he has "sent for insertion in the C. R.
of the Institute, a Note in which I give the rule for effecting this reduction." The rule turns out
to be Beltrami’s algorithm. In a final paper [58, 1889], Sylvester presents both the iterative
algorithm and the rule.

The rule. Here we follow [59, 1899]. Sylvester begins with the bilinear form

B xTAy

and considers the quadratic form

(which is xTAATx, a fact tacitly assumed by Sylvester). Let M )ij/ be the canonical form
of M. If B has the canonical form B _, 0-ilirli, then [0-i]2 is orthogonally equivalent to
M )ij/, which implies that i 0"/2 in some order.

To find the substitutions, Sylvester introduces the matrices M AAT and N ATA and
asserts that the substitution for x is the substitution that diagonalizes M and substitution for
y is the one that diagonalizes N. In general, this is true only if the singular values of A are
distinct.

In his Comptes Rendus note, Sylvester gives the following rule for finding the coefficients
of the x-substitution corresponding to a singular value 0". Strike a row of the matrix M 0"2I.
Then the vector of coefficients is the vector of minors of order n of the reduced matrix
normalized so that their sum of squares is one. Coefficients of the y-substitution may be
obtained analogously from N 0-I. This only works if the singular value 0- is simple.
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THE EARLY HISTORY OF THE SVD 557

Infinitesimal iteration. Sylvester first proposed this method as a technique for showing
that a quadratic form could be diagonalized, and he later extended it to bilinear forms. It is
already intricate enough for quadratic forms, and we will confine ourselves to a sketch of that
case.

Sylvester proceeds inductively, assuming that he can solve a problem of order n 1. Thus
for n 3 he can assume the matrix is of the form

a 0 fl0 b g

f g c

the zeros being introduced by the induction step. His problem is then to get rid of f and g
without destroying the zeros previously introduced.

Sylvester proposes to make an "infinitesimal orthogonal substitution" of the form

x2 -5 0 2
x3 -r/ -0 3

where the off-diagonal quantities are so small that powers higher than the first can be neglected.
Then the the (2, 1)- and (1, 2)-elements of the transformed matrix are

(4.1) (a b)e fO go,

while the change in f2 + g2 is given by

3(f2 q_ g2) (a -c)fo + (b c)gO.

If either (a c)f or (b c)g is nonzero, 0 and 0 can be chosen to decrease f2 + g2. If
(a b) is nonzero, e may then be chosen so that (4.1) is zero, i.e., so that the zero previously
introduced is preserved. Sylvester shows how special cases like a b can be handled by
explicitly deflating the problem.

Sylvester now claims that an infinite sequence of these infinitesimal transformations will
reduce one of f or g to zero, or will reduce the problem to one of the special cases.

Discussion. These are not easy papers to read. The style is opaque, and Sylvester pon-
tificates without proving, leaving too many details to the reader. The mathematical reasoning
harks back to an earlier, less rigorous era.

The fact that Sylvester sent a note to Comptes Rendus, the very organ where Jordan
announced his results a decade and a half earlier, makes it clear that he was working in
ignorance of his predecessors. It also suggests the importance he attached to his discovery,
since a note in Comptes Rendus was tantamount to laying claim to a new result.

Sylvester was also working in ignorance of the iterative algorithm of Jacobi [30, 1846]
for diagonalizing a quadratic form. The generalization of this algorithm to the singular value
decomposition is due to Kogbetliantz [36].

It is not clear whether Sylvester intended to ignore second-order terms in his iteration or
whether he regards the diagonalization as being composed of an (uncountably) infinite number
of infinitesimal transformation. Though the preponderance of his statements favor the latter,
neither interpretation truly squares with everything he writes. In the first, small, but finite,
terms replace the zeros previously introduced, so that a true diagonalization is not achieved.
The second has the flavor of some recent algorithms in which discrete transformations are
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558 G.W. STEWART

replaced by continuous transformations defined by differential equations (for applications of
this approach to the singular value decomposition see [8] and [11]). But Sylvester does not
give enough detail to write down such equations.

5. Sehmidt [50, 1907]. Our story now moves from the domain of linear algebra to
integral equations, one of the hot topics of the first decades of our century. In his treatment
of integral equations with unsymmetric kernels, Erhard Schmidt (of Gram-Schmidt fame
and a student of Hilbert) introduced the infinite-dimensional analogue of the singular value
decomposition. But he went beyond the mere existence of the decomposition by showing
how it can be used to obtain optimal, low-rank approximations to an operator. In doing so he
transformed the singular value decomposition from a mathematical curiosity to an important
theoretical and computational tool.

Symmetric kernels. Schmidt’s approach is essentially the same as Beltrami’s; however,
because he worked in infinite-dimensional spaces of functions he could not appeal to previous
results on quadratic forms. Consequently, the first part of his paper is devoted to symmetric
kernels.

Schmidt begins with a kernel A (s, t) that is continuous and symmetric on [a, b] x [a, b].
A continuous, nonvanishing function q)(s) satisfying

o(s) A(s, t)o(t) dt

is said to be an eigenfunction of A corresponding to the eigenvalue .. Note that Schmidt’s
eigenvalues are the reciprocals of ours.

Schmidt then establishes the following facts.
1. The kernel A has at least one eigenfunction.
2. The eigenvalues and their eigenfunctions are real.
3. Each eigenvalue ofA has at most a finite number oflinearly independent eigenfunctions.
4. The kernel A has a complete, orthonormal system of eigenfunctions; that is, a sequence

991 (S), 992 (S) oforthonormal eigenfunctions such that every eigenfunction can be expressed
as a linear combination of a finite number of the tpj(s).

5. The eigenvalues satisfy

t)_ >_

which implies that the sequence of eigenvalues is unbounded.

Unsymmetric kernels, Schmidt now allows A (s, t) to be unsymmetric and calls any
nonzero pair u(s) and v(s) satisfying

u(s) ) A(s, t)v(t) dt

and
v(t) X A (s, t)u(s) ds,

a pair of adjoint eigenfunctions corresponding to the eigenvalue ..6 He then introduces the
symmetric kernels

5This usage of the word "complete" is at variance with today’s usage, in which a sequence is complete if its finite
linear combinations are dense.

6Again the usage differs from ours, but now in two ways. We work with the reciprocal of , calling it a singular
value, and we distinguish between the singular values of a matrix and its eigenvalues.
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THE EARLY HISTORY OF THE SVD 559

A(s,t) A (s, r)A (t, r) dr

and

A_(s, t) fa
b

A(r,s)A(r,t)dr

and shows that if Ul (S), U2(S) is a complete orthonormal system for A-(s, t) corresponding
to the eigenvalues )2, )22 then the sequence defined by

b

vi(t) i A(S, t)U(S) ds, 1, 2

is a complete orthonormal system for A_(s, t). Moreover, for 1, 2 the functions Ui(S
and vi(s) form an adjoint pair for A(s, t).

Schmidt then goes on to consider the expansion of functions in series of eigenfunctions.
Specifically, if

b

g(s) A(s, t)h(t) dt,

then

g(s)
Ui(S) PJa b h(t)vi(t)dt,

and the convergence is absolute and uniform. Finally, he shows that if g and h are continuous,
then

(5.1) A(s, t)g(s)k(t) ds dt . b

g(s)ui(s) ds h(t)vi(t) dt,

an expression which Schmidt says "corresponds to the canonical decomposition of a bilinear
form."

The approximation theorem. Up to now, our exposition has been cast in the language
of integral equations, principally to keep issues of analysis in the foreground. These issues
are not as important in what follows, and we will therefore return to matrix notation, taking
care, as always, to follow Schmidt’s development closely.

The problem Schmidt sets out to solve is that of finding the best approximation to A of
the form

k

A xiy/T
i=l

in the sense that

A-xiy/ -min.
i=l

In other words, he is looking for the best approximation of rank not greater than k.
Schmidt begins by noting that if

(5.2)
k

Ak= oiuiv/T,
i=l
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560 G.W. STEWART

then
k

IIA AII 2 IIAII r/.
i=1

Consequently, if it can be shown that for arbitrary xi and Yi
k k

(5.3) A- xiy/T >_ IIAII- r/,
i=1 i=1

then At will be the desired approximation.
Without loss of generality we may assume that the vectors x xt are orthonormal.

For if they are not, we can use Gram-Schmidt orthogonalization to express them as linear
combinations of orthonormal vectors, substitute these expressions in Y= xiy[, and collect
terms in the new vectors.

Now
k

A- xiy
i=l

trace xi y/T xi y/T
i=1 i=1

trace ATA + (yi ATxi)(Yi ATxi)T ATxix/TA
i=l

Since trace((y ATxi)(Yi ATxi)T) >_ 0 and trace(Axix/TAT) IIAxi 2, the result will be
established if it can be shown that

k k

IIAxill 2 _< o’/2.
i=l i=l

Let V (V1 V2), where V1 has k columns, and let diag(l, -22) be a conformal
partition of . Then

[[Axi 2
o’k
2 q- (l[-]lVXi 2 o’[[V1Txi 2)

(5.4) --(o-ff IIV2Txi 2 II2V2Txi 2)

Now the last two terms in (5.4) are clearly nonnegative. Hence
k

Axi 2

i=1

k

ko’ff -- (l[’]lVTXi 2- o’ffllV1Txi 2)
i=l
k k

i=1 j=l-- o-k
2 "- (ffj2 ) ]vjT.Xi 12

j=l i=1
k

j=l
k

j=l

which establishes the result.
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THE EARLY HISTORY OF THE SVD 561

Discussion. Schmidt’s two contributions to the singular value decomposition are its gen-
eralization to function spaces and his approximation theorem. Although Schmidt did not refer
to earlier work on the decomposition in finite-dimensional spaces, the quote following (5.1)
suggests that he knew of its existence. Nonetheless, his contribution here is substantial, espe-
cially since he had to deal with many of the problems of functional analysis without modem
tools.

An important difference in Schmidt’s version ofthe decomposition is the treatment ofnull-
vectors of A. In his predecessors’ treatments they are part of the substitution that reduces the
bilinear form xTAy to its canonical form. For Schmidt they are not part of the decomposition.
The effect of this can be seen in the third term of (5.4), which in the usual approach is zero
but in Schmidt’s approach can be nonzero.

The crowning glory of Schmidt’s work is his approximation theorem, which is nontrivial
to conjecture and hard to prove from scratch. Schmidt’s proof is certainly not prettymwe will
examine the more elegant approach of Weyl in the next sectionmbut it does establish what
can properly be termed the fundamental theorem of the singular value decomposition.

6. Weyl [64, 1912]. An important application of the approximation theorem is the
determination of the rank of a matrix in the presence of error. IfA is of rank k and A+ E,
then the last n k singular values of A satisfy

(6.1) -2 -2 <_ IIEII 2O’k+ + -- O" n

so that the defect in rank of A will be manifest in the size of its trailing singular values.
The inequality (6.1) is actually a perturbation theorem for the zero singular values of a

matrix. Weyl’s contribution to the theory of the singular value decomposition was to develop
a general perturbation theory and use it to give an elegant proof of the approximation theorem.
Although Weyl treated integral equations with symmetric kernels, in a footnote on Schmidt’s
contribution he states, "E. Schmidt’s theorem, by the way, treats arbitrary (unsymmetric)
kernels; however, our proof can also be applied directly to this more general case." Since here
we are concerned with the more general case, we will paraphrase Weyl’s development as he
might have written it for unsymmetric matrices.

The location ofsingular values. The heart ofWeyl’s development is a lemma concerning
the singular values of a perturbed matrix. Specifically, if Bk XYT, where X and Y have k
columns (i.e., rank(Bk) < k), then

(6.2) 0" (A B) >_ O’k+ (A),

where O" (’) denotes the ith singular value of its argument.
The proof is simple. Since Y has k columns, there is a linear combination

V y1V1 -]- 2V2 --"""-]- k+lVk+l

of the first k + 1 columns of V (from the singular value decomposition of A) such that
YTv 0. Without loss of generality we may assume that Ilvll 1, or equivalently that

y1+...+2 =1 It follows thatk+l

o12(A- B) >_ vT(A- B)T(A- B)v
vT(ATA)v
/?O’? + ’ O’ -]-" -]- k+lO’/+l

>_ a+l
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562 G.W. STEWART

Weyl then proves two theorems. The first states that if A A’ + A’, then

(6.3) oi+j_

where the or/and or/’ are the singular values of A’ and A" arranged in descending order of
magnitude. Weyl begins by establishing (6.3) for j 1"

{71 ulTAv1 ulTA’v1 + UlA V1 O" -- O"

To establish the result in general, let A_ and A.t_l be formed in analogy with (5.2). Then

or1 (At-A_I) ri(At) andrl (A’-A.t_I) crj(A’). Moreoverrank(Ati_l+A_l) < i+j-2.
From these facts and from (6.2) it follows that

o’/ + o’f o"1 (A’ A_ d- o1 (A" A.’_
>_ Crl(A- A_
> O’i+j_l,

which proves the theorem.
The second theorem is really a corollary of the first. Set A A Bk and A" Bk,

where, as above, B has rank k. Since r+l (B) 0, we have on setting j k + 1 in (6.3),

ri(A- Bk) >_ Ok+i, 1, 2

As a corollary to this result we obtain

This inequality is equivalent to (5.3) and thus establishes the approximation theorem.

Discussion. Weyl did not actually write down the development for unsymmetric kernels,
and we remind the reader once again of the advisability of consulting original sources. In
particular, since symmetric kernels can have negative eigenvalues as well as positive ones, Weyl
wrote down three sequences of inequalities: one for positive eigenvalues, one for negative,
and one--corresponding to the inequalities presented hereufor the absolute values of the
eigenvalues.

Returning to the perturbation problem that opened this section, if in (6.3) we make the
identification A --/, A ,-- A, and A’t -- E, then with j we get

where IIElle O-l(E). On the other hand, if we make the identifications A’ -- / and
Att - -E, then we get

6i O’i --IIEII.

It follows that

IcTi ril < IIEII, 1, 2 n.

The number IIEII is called the spectral norm of E. Thus Weyl’s result implies that if the
singular values of A and are associated in their natural order, they cannot differ by more
than the spectral norm of the perturbation.
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THE EARLY HISTORY OF THE SVD 563

7. Envoi. With Weyl’s contribution, the theory of the singular value decomposition can
be said to have matured. The subsequent history is one of extensions, new discoveries, and
applications. What follows is a brief, selective sketch of these developments yet to come.

Extensions. Autonne [2, 1913] extended the decomposition to complex matrices. Eckart
and Young [16, 1936], [17, 1939] extended it to rectangular matrices and rediscovered
Schmidt’s approximation theorem, which is often (and incorrectly) called the Eckart-Young
theorem.

8. Nomenclature. The term "singular value" seems to have come from the literature on
integral equations. A little after the appearance of Schmidt’s paper, Bateman [4, 1908] refers to
numbers that are essentially the reciprocals of the eigenvalues of the kernel as singular values.
Picard [45, 1909] combined Schmidt’s results with Riesz’s theorem on the strong convergence
of generalized Fourier series [48, 1907] to establish a necessary and sufficient condition for
the existence of solutions of integral equations. In a later paper on the same subject [46,
1910], he notes that for symmetric kernels Schmidt’s eigenvalues are real and in this case
(but not in general) he calls them singular values. By 1937, Smithies [53] was referring to
singular values of an integral equation in our modern sense of the word. Even at this point,
usage had not stabilized. In 1949, Weyl [65] speaks of the "two kinds of eigenvalues of a
linear transformation," and in a 1969 translation of a 1965 Russian treatise on nonselfadjoint
operators Gohberg and Krein [21] refer to the "s-numbers" of an operator. For the term
"principal component," see below.

Related decompositions. Beltrami’s proof of the existence of the singular value decom-
position shows that it is closely related to the spectral decompositions of ATA and AAT. It can
also be used to derive the polar decomposition of Autonne [1, 1902], [3, 1915], in which is a
matrix is factored into the product of a Hermitian matrix and a unitary matrix.

In his investigation of the geometry of n-space, Jordan [34, 1875] introduced canonical
bases for pairs of subspaces. This line of development lead to the CS (cosine-sine) decompo-
sition of a partitioned orthogonal matrix introduced implicitly by Davis and Kahan [9, 1970],
and explicitly in [54, 1977]. The CS decomposition can in turn be used to derive the general-
ized singular value decomposition of a matrix, either in the original form introduced by Van
Loan [60] or in the revised version of Paige and Saunders [43, 1981]. Recently even broader
generalizations of the singular value decomposition have been proposed, e.g., see [10].

Although it is not, strictly speaking, a matrix decomposition, the Moore-Penrose pseu-
doinverse [41, 1920], [44, 1955] can be calculated from the singular value decomposition of
a matrix as follows. Suppose that the first k singular values of A are nonzero while the last
n k are zero, and set t diag(r-1,... r1, 0, 0). Then the pseudoinverse of A is
given by A U V.

Unitarily invariant norms. A matrix norm I1" Ilu is unitarily invariant if IIuHAVIlu
IIAIlu for all unitary matrices U and V. A vector norm I1 is a symmetric gauge function
if IIPxll Ilxll for any permutation matrix and IIIxlll Ilxll. Von Neumann [61, 1937]
showed that to any unitarily invariant norm I1" Ilu there corresponds a symmetric gauge function

I1" I1 such that IIAIlu (r rn)TIl, i.e., a unitarily invariant norm is a symmetric gauge
function of the singular values of its argument.

Approximation theorems. Schmidt’s approximation theorem has been generalized in a
number of directions. Mirsky [40, 1960] showed that Ak of (5.2) is a minimizing matrix in any
unitarily invariant norm. The case where further restrictions are imposed on the minimizing
matrix are treated in [12], [22], and [47].

7parts of this passage were taken from [55, p. 35]
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564 G.W. STEWART

Given matrices A and B, the Procrustes problem, which arises in the statistical method of
factor analysis, is that of determining a unitary matrix Q such that IIA BQII is minimized
(see [29, 1962]). Green [25, 1952] and Schrneman [51, 1966] showed that if UTAXBV
is the singular value decomposition of AXB, then the minimizing matrix is Q VU’. Rao
[47, 1980] considers the more general problem of minimizing [IPA BQI[, where P and Q
are orthogonal.

Principal components. An alternative to factor analysis is the principal component anal-
ysis of Hotelling [27, 1933]. Specifically, if x is a multivariate random variable with mean
zero and common dispersion matrix D, and D VV is the eigenvalue-eigenvector de-
composition of D, then the components ofxV are uncorrelated with variances cri. Hotelling
called the transformed variables "the principal components ofvariance" ofx. If the rows ofX
consist of independent samples of x, then the expectation of XTX is proportional to . It
follows that the matrix V obtained from the singular value decomposition ofX is an estimate V.

Hotelling [28, 1936] also introduced canonical correlations between two sets of random
variables that bear the same relation to the generalized singular value decomposition as his
principal components bear to the singular value decomposition.

Inequalities involving singular values. Just as Schmidt did not have the last word on
approximation theorems, Weyl was not the last to work on inequalities involving singular
values. The subject is too voluminous to treat here, and we refer the reader to the excellent
survey with references in [26, Chap. 3]. However, mention should be made of a line ofresearch
initiated by Weyl [65, 1949] relating the singular values and eigenvalues of a matrix.

Computational methods. The singular value decomposition was introduced into nu-
merical analysis by Golub and Kahan [23, 1965], who proposed a computational algorithm.
However, it was Golub [24, 1970] who gave the algorithm that has been the workhorse of
the past two decades. Recently, Demmel and Kahan 13, 1990] have proposed an interesting
alternative.

Sources. For short bibliographies of the principles see the Dictionary ofScientific Biog-
raphy [6], and particularly the articles [6], [14], [15], [42], and [56]. The nearest thing to a
systematic survey of the development of matrix decompositions is the chapter on determinants
and matrices in Kline’s Mathematical Thoughtfrom Ancient to Modern Times [35, Chap. 33].
Mac Duffee’s book, The Theory of Matrices [39], is a gold mine of references to the older
literature.

Acknowledgments. I would like to thank Anne Greenbaum, Nick Higham, David Wood,
and Hongyuan Zha for reading and commenting on the manuscript.
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