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PREFACE 

Some readers may be surprised or even disturbed at the mix- 
ture of problems assembled in this book. These problems 
actually extend from electrical engineering to electromagnetism 

and wave mechanics of the spinning electron, but the link con- 

necting this variety of problems will soon be discovered in their 
common mathematical background. 

Waves always behave in a similar way, whether they are longi- 
tudinal or transverse, elastic or electric. Scientists of the last 
century always kept this idea in mind. When Lord Kelvin 
built up his model for a dispersive medium or when Lord Ray- 
leigh discovered radiation pressure, they never failed to try the 
same methods again and again on all conceivable types of waves. 
This general philosophy of wave propagation, forgotten for a 
time, has been strongly revived in the last decade and represents 
the backbone of this book. . 

All problems discussed deal with periodic structures of various 
kinds, and they all lead to similar results: these structures, be 
they electric lines or crystal lattices, behave like band-pass filters. 
If energy dissipation is omitted, there is a sharp distinction 
between frequency bands exhibiting wave propagation without 

attenuation (passing bands) and those showing attenuation and 
no propagation (stopping bands). These general properties are 
defined for an infinite unbounded medium, but they bear a very 
close relation to selective reflections shown by a bounded medium. 
A wave striking from outside may be partly reflected from the 
surface, if the second medium is able to transmit the correspond- 
ing frequency. - The amount of reflection depends upon how well 
the media are matched at their common boundary. But when 
the frequency falls inside a stopping band of the reflecting 
medium, there is no longer any matching problem; the wave can- 
not be transmitted, and hence it must be totally reflected. This 
same explanation applies to electric filters, rest rays, anomalous 

optical reflections, and selective reflection of X rays or electrons 
from acrystal. In the case of rest rays, the theory was developed 

Vil __
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by M. Born and his school; for X rays, it corresponds to Bragg’s 

reflections and P. P. Ewald’s now classical investigations summa- 

rized in his book “ Kristalle und Roentgen Strahlen” (Springer, 
- 1923), and a paper in the Annales de I’ Institut Poincaré (vol. 7, p. 

79, 1938). Many practical examples of electric filters may be 
found in the treatises of K. 8. Johnson and T. E. Shea, in the 

collection of books from the Bell Telephone Laboratories (van 
Nostrand). The general connection between stopping bands and 
selectivereflection is exemplified in the definition of the zones for a 

crystal lattice, a theory first developed by the authorin his original 
papers and in a book “Quantenstatistik” (Springer, 1931). A 
general discussion of the zone theory is found in the present book 
and will serve as an introduction to Mott and Jones, ‘‘Theory of 
Metals and Alloys’ (Oxford, 1936), and to F. Seitz’s ‘The 

Modern Theory of Solids” (McGraw-Hill, 1940), where the 
theory is applied to many practical discussions. 

‘Apart from physical and engineering problems, the general 

theory developed in this book bears a close connection with many 
~ problems of applied mathematics, such as the Mathieu functions 
and Mathieu’s and Hill’s equations. 

The author discussed these general problems in his lectures at 

the Collége de France (1937-1938) and at the University of Wis- 

consin (1942), when Mary Hewlett Payne very kindly proposed 
to write down her notes and to prepare them for publication. 

Circumstances resulted in great delays before this could be com- 

pleted, and the author’s present duties would never have per- 
mitted him to undertake such a work if Mrs. Payne had not 

made a really excellent record of his lectures, so that very few 
corrections and additions were necessary on her manuscript. 
Let her find here the author’s very best thanks for her valuable 
collaboration. | 

Lton BRitLourn. 
New York, N. Y,, 

January, 1946.
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CHAPTER I 

ELASTIC WAVES IN A ONE-DIMENSIONAL LATTICE OF 

POINT MASSES: EARLY WORK AND INTRODUCTION 

1. Historical Background; Eighteenth Century 

The first work done on a one-dimensional lattice was that of 

Newton! in his attempt to derive a formula for the velocity of 
sound. Newton assumed that sound was propagated in air in 

the same manner in which an elastic wave would be propagated 
along a lattice of point masses. He assumed the simplest possi- 
ble such lattice, viz., one consisting of equal. masses spaced 

  

  

ELASTIC CONSTANT = e 
Fia. 1.1. 

equally along the direction of propagation (Fig. 1.1). Neigh- 

boring masses were assumed to attract one another with an 

elastic force with constant e. Taking m to be the mass of each 

of the particles and d to be the distance between neighboring 
particles in the state of equilibrium, Newton obtained for the 
velocity V of propagation of an elastic wave 

e led i, 
V=d Je = J@ p = density (1.1) 

To compare this result with the experimental value of the velocity 
of sound in air, Newton took p to be the density of air and ed to 

be the isothermal bulk modulus of air. The theoretical value 
thus computed was smaller than the experimental value. In 
1822, Laplace [pointed out that the expansions and condensations 
C 1 Newton, “‘Principia,”’ Book II, 1686. 1992 

(36 4k ane) 1 6% 
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2 | WAVE PROPAGATION [Cuap. I 

associated with sound waves take place adiabatically and that, 
therefore, the adiabatic elastic constant should be used instead 
of the isothermal. A computation using the adiabatic constant 
in Newton’s formula gave excellent agreement with experiment. 
It should be mentioned that Newton’s formula holds only for 
wave lengths large compared with d. 

The reason why Newton considered the one-dimensional lattice 
of Fig. 1.1 was that at that time a continuous structure repre- 

sented an insoluble problem, and nothing was known about 
partial differential equations. Hence, a model had to be chosen 
that would lead to a number of simultaneous equations of motion 
of the usual type. 

The work on one-dimensional lattices was continued in a series 
of letters, starting in 1727, between John Bernoulli in Basel and 
his son Daniel in St. Petersburg at that time. They showed that 
a system with n point masses has n independent modes of vibra- 
tion, t.e., » proper frequencies. Later (1753), Daniel Bernoulli 
formulated the principle of superposition, which states that the 
general motion of a vibrating system is given by a superposition 
of its proper vibrations. This investigation may be said to form 
the beginning of theoretical physics as distinct from mechanics, 
in the sense that it is the first attempt to formulate laws for the 
motion of a system of particles rather than for that of a single 
particle. The principle of superposition is important, as it is a 

special case of a Fourier series, and in time it was extended to 
become a statement of Fourier’s theorem. 

The laws of vibrating strings were first discovered empirically, 
and in 1713 Taylor started a theoretical investigation. Euler’s 
treatment of the continuous string by means of partial differential 

equations (1748) was much more complete. He took the string 
- to be along the x axis and to be vibrating in some plane perpen- 
dicular to this axis. The result he obtained was that the dis- 
placement of the string was given by an arbitrary function of 
(x + vt), where v is the velocity of propagation of the wave and ¢ 
is the time, provided that the function satisfied certain continuity 
conditions. Euler’s result started a controversy lasting until 

1807. If one takes Euler’s result and the principle of superposi- 
tion together, one must conclude that any arbitrary function of 
(x + vt) may be described by a superposition of sine and cosine 
functions, since it is well known that the proper vibrations of a
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string are given by sine and cosine functions. This is, of course, 
merely a statement of Fourier’s theorem, but Fourier’s theorem 

was not proved until 1807, and to Euler’s mind the theorem was 
almost an absurdity. Since he could not doubt the validity of 
his solution to the problem of the vibrating continuous string, 
Euler refused to accept. the principle of superposition. 

The Bernoullis had given the problem of the one-dimensional 
lattice of point masses a fairly complete treatment. Euler had 
solved the problem of the vibrating continuous string. The task 
of treating the continuous string as a limiting case of the one- 

dimensional lattice of point masses still remained. This problem 
was solved by Lagrange in 1759. 

Lagrange followed Euler in refusing to accept the principle of 
superposition. — “This is very strange, since Lagrange’ S paper 

    

  

  

“practically contains the principle of the Fourier series. A num- 

ber of examples of trigonometric series were already known 
at the time, but it was not believed that such expansions could 

be used to represent any arbitrary function. In a paper on 
celestial mechanics, Clairaut (1754) actually had the proof, 
but it remained unnoticed; and it was left for Fourier to give 
the general statement and to emphasize its great practical and / 

theoretical importance. 

All this work at the end of the eighteenth century is most 

interesting since it cleared the way for a number of modern 
problems in theoretical - physics as well as for pure mathematics: 

Proper functions, proper values; first discovered in connection 

with proper vibrations of strings, plates, etc. 

Fourier expansion; expansion in series of proper functions. 

Partial differential equations. 

Wave propagation. 

Atomic theory of solids and crystal structure. 
Lagrange’s paper was often quoted by the famous electrical 

engineer Pupin, who discovered in Lagrange’s theory the solu- 

tion of an important problem of electrical engineering, the | 
loaded cable. 

2. Historical Background; Nineteenth Century. Cauchy, 
Baden-Powell, and Kelvin 

In 1830, Cauchy used Newton’s model in an attempt to 
account for dispersion of optical waves. Cauchy assumed that



4. WAVE PROPAGATION [Cuap. I 

light waves were just elastic waves of very high frequency. He 
obtained the result that for waves with wave length large com- 
pared with the distances between the point masses in the one- 
dimensional lattice, the velocity was independent of wave length. 
For shorter wave lengths and hence for higher frequencies, how- 
ever, he showed that the velocity of propagation was a function 

| of wavelength. The result is correct for elastic waves; however, 
it did not agree quantitatively with values obtained experi- 
mentally for light waves. 

m m m m m m 

O<— d—>¢ y<— d —>C<—d —>C)<— d —>O<— dO 

INTERACTION BETWEEN NEIGHBORING PARTICLES 

Fra. 2.1. 
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d d d ‘2d 2d d d d 

Fra. 2.2.—Wavwve velocity V asa function of a along the row of particles shown 
on Fig. 2.1. 

In 1841, Baden-Powell computed the velocity of a wave propa- 

gating along one axis of a cubic lattice structure as a function of 

wave length. This is equivalent to considering a wave propa- 
gating along a one-dimensional lattice of point masses. Baden- 

Powell’s lattice consisted of point masses of mass m spaced along 
a straight line at distance d from one another (see Fig. 2.1). 
Then he assumed each mass to be elastically bound to each of 
its neighbors with the restoring force the same for all masses. 
His equation for the propagation velocity V of the wave as a 

function of wave length is 

lsin rd /d| _ 
wa/d 

where 2 is the wave length and V,, is the velocity for infinite wave 
length. The curve of V plotted against reciprocal wave length 
is shown in Fig. 2.2, It is evident that if velocity is a function 

V=V. < vw e[E) (2.1)
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of wave length, the frequency must also be a function of the 
wave length. However, ~Baden-Powell - neglected to consider G64q 

etapa taunt tena 4 

a very important point. The curve of velocity as a function of AVat 
reciprocal “wave length appears to be perfectly normal at the * 
point ) = 2d; not so, however, for the frequency vs. reciprocal- ()e& 
wave-length curve. This point was noted by Kelvin, who gave Xs) 
a detailed discussion in 1881.! 

Kelvin assumed the same lattice that Baden-Powell treated 
(see Fig. 2.3). Let us number the particles in such’a way that 

@2—_O@"—_o"—® Or —o"—O 
Yo d 2d 3d 4d (n-l)d nd (n+1)d 

Fie. 2.3. 

the x coordinate of the nth particle in its equilibrium position is 
given by 

In = nd (2.2) 

In a sine wave, we obtain for y,, the displacement of the nth 

particle, Az WR wave 

Yn = A cos 2n(vt — ax) = A cos Qr(vt — and) (2.3) 

where » is the frequency, a the wave number or reciprocal wave 

length, A an arbitrary constant, and ¢ the time. Now in Eq. 
(2.3) we may replace a by 

a =axt 7 maninteger (2.4) 

without changing the value of the displacement. This means 
that » must be a periodic function of a with period 1/d. WC a), 

Now the phase velocity V, V, with which the waves propagate, 
is given by | C 

WE). & 
V= = VA =) » (2.5) 

Q
i
c
z
 

Therefore, if we draw a curve of v = y(a) as a function of a, the 
phase velocity for a given wave length will be given by the slope 
of the line drawn from the origin to the point on the »(a) curve 
corresponding to the given wave length. The function y(a) may 

1 “Popular Lectures,’”’ vol. I, p. 185.’
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be calculated and turns out to be 

| y(a) = B |sin rad| (2.6) 

where B is a constant that is a function of the constants of the 
lattice. From Eq. (2.6) we see that 

“(@)| pin Ea zedl — v | y, Sin [sin sad| 2.7) 
v= "|rad| 

  

  

  

in agreement with Baden-Powell’s equation (2.1), if we take 

V.=7dB | (2.8) 

From Eq. (2.6) we see that v(a) is a straight line for small values 
of a, 1.e., for large values of wave length. This means that the 

Vv 

  

  

  

  

“2.3 .1 1.0 4d a 3 2° 
d 2d d 2d 2d d 2d d 

(a) 

L i 

1 ot 
1: ! 

\ | 
! | 
i ! 

| ! 
A . —— f l _ 3 i “5 7a = Riv) 

2d. 2d 

(0) . 
Fig. 2.4.-Frequency vas a function of a = 1/d for the row of particles shown 

. on Fig. 2.1. 
~~ os f eps 

velocity of propagation should be constant for large wave 
lengths, i in agreement with the earlier calculations. 

The curve of v vs. a is shown in Fig. 2.4a._ The periodicity of 
vy as a function of a means that for a given frequency the wave 

length is not completely determined. In fact, any a’, where a’ 

is defined by Eq. (2.4), will give the same ». The ambiguity in 
wave length results in an ambiguity. 1 in.the direction of propaga- 

et tna arene ence te
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tion—an uncertainty both in magnitude and in direction. This 
is easily seen by referring to Eq. (2.7). 

The physical meaning of the ambiguity in wave length may be 
seen from Fig. 2.5. The solid circles give the equilibrium posi- 
tions of the point masses and the open circles the displaced posi- 
tions at some instant. Through the displaced positions are 
drawn three possible sine waves. All three waves give equally 
good descriptions of the motion, as far as observation of the 

  

points is concerned. The solid line gives the wave form for the 
only value of a such that Remetple Volne 

mac ple a. 

-g S055, (2.9) 

Changing a by 1/d will take a out of this interval, as is immedi- 
ately obvious. ‘The dashed curve corresponds to a + (1/d), and 
the dotted curve to a — (1/d). A glance at the diagram shows 
that the solid and the dashed curves must propagate in the same 
direction for a given motion of the particles, and the dotted curve 

_ propagates in the opposite direction. 
From now on, we shall adopt the convention expressed by 

Eq. (2.9). All ambiguity in wave length and direction of motion 
is removed if we restrict a to this interval, except in the two 
special cases where 

1 

2d 

We shall discuss these special cases shortly. The convention is 
not so arbitrary as might appear at first sight. It allows any 

wave length such that 

H-
 a= (2.10) 

o > Z 2d (2.11) 

to have either direction of propagation, and excludes only wave — 
lengths that lie in the interval 

OSX 2d (2.12)
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If we had a continuous structure so that the motion of all points 
lying on a straight line could be observed, the wave lengths 
included in the interval (2.11) would be the only ones observed, 
since in this case d = 0. Thus there will be no inconsistency in 
what we mean by wave length when we go from a continuous to a 

VA ALAS 
VN 

Fig. 2.6.—The limit \ = 2d. 

  

    
(b) | (c) 

Fie, 2.7. 

discontinuous structure, and vice versa. Furthermore, the 
allowed interval contains a complete period of v(a), so that none 
of the frequencies.that can be propagated are omitted. 

The special case noted in Eq. (2.10) is shown in Fig. 2.6. 
Here there is no way of distinguishing between the two possible 
wave numbers allowed by our convention, or between the two



a 
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possible directions of propagation. In fact, the wave might even 
be considered as aStanding ¥V “wave, 1.e., @ superposition of the two 
allowed wave numbers. The wave length i is, of course, in both 

cases 2d. 

Engineers frequently find it 
convenient to use other curves 
giving essentially the same infor- 

mation as our y vs.acurve. The 

one of greatest interest is the at-. 

_ tenuation curve (Fig. 2.7a). The ‘ 
\ solid part of the curve isourvvs. Ft 2:8.—An aeanmple given by 

‘a curve rotated through 90 deg. oem . 

' The dotted, or B, part gives the attenuation 6 for frequencies 
higher than those that may be propagated. The attenuation 
‘will be discussed in detail in a later chapter. A lattice such as 
this, which allows propagation of all frequencies up to a maxi- 

  

  

  a& : a 
~‘“ ? 

‘ 

x 
- 
- 
t     

Vv >V, 

Fie. 2.9.—Other examples. given Fig@. 2.10.—Attenuation of the 
by Lord Kelvin. The lower vibra- wave for a frequency above cutoff 
tion corresponds to the limit A = 2d. (Lord Kelvin). 

mum, or critical, frequency »., and damps all others, is called a 
(( low-pass filter; i.e., it will pass low frequencies and stop higher 

frequencies. Figures 2.7b and 2.7c give V, the phase velocity, 
and yp, the index of refraction or reciprocal of phase velocity, as 

functions of frequency. Both curves terminate at the critical
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frequency, ag phase velocity i is not defined)for a attenuated wavess> 
The curves shown in Figs. 2.7a, b, and c are very useful for some 
practical purposes. However, in general, we shall find the » vs. 
a curve (Fig. 2.4b) most useful for our analytical discussions. 

xt Lord Kelvin’s discussion is of great significance, since it con- 
tains the discovery of the cutoff frequency. Figures 2.8 to 2.11 

« are reproductions of Kelvin’s original drawings and show the vari- 
ation of wave velocity as a function of N = \/d, the number of 
atoms per wave length. Modes of vibration are shown for large 

‘ly 49 esl N and for N = 2 (cutoff), t together with the attenuated wave 
corresponding toa frequency above cutoff. All this shows how 

clearly Kelvin understood the problem. 

    

or F 

« yea, 

  

      

  

  
Fie. 2.11. 

The paper was often overlooked, since its title, “The Size of 
Atoms,” did not imply any discussion of wave propagation. The 
connection is found in Cauchy’s theory of dispersion. The curve 

in Fig. 2.2 shows that'a material change in the wave velocity can 

be expected only if the wave length is just larger than 2d. Hence, 

Cauchy’s theory leads to the conclusion that interatomic dis- 
tances should be just smaller than /2, giving a distance d of 
about 2,000 angstroms. This, however, sounded impossible 
since there was, at Kelvin’s time, plenty of experimental evidence 
that interatomic distances could not amount to more than a few 
angstrom units. The thickness of oil films on water, for instance, 
had been measured and was quite well known. 

Kelvin’s conception of the molecular structure of matter may 

be illustrated by the following quotation: 

I believe that by imagining each molecule to be loaded in a certain 
definite way by elastic connection with heavier matter . . . we shall.
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have a rude mechanical explanation for refractive dispersion... . 
It is not seventeen hours since I saw the possibility of this explanation.! 

This was a remarkable guess, which led Kelvin to the discovery 
of the modern refraction formula, usually known as the Lorentz 
formula. 

3. Later Work on Models Similar to That Treated in Sec. 2 

After analyzing Baden-Powell’s work and discussing the critical 
wave length and frequency, Kelvin proceeded to devise a theory 

  

M M M M M M 

em em. . @em em om em 

Fie. 3. 1 Kelvin’ 8s model for optical dispersion. 

of dispersion based on a more complicated lattice than Baden- 
Powell’s. He used the lattice shown in Fig. 3.1. Each of the 
masses in this model is supposed to-have a small mass associated 
with it. The large masses are taken to have mass M and are the 
large circles in Fig. 3.1, while the small masses have mass m and 
are represented by dots. Each of the large masses interacts with 
the nearest large masses and with the small mass associated with 
it, so that there are two elastic con- 
stants in the system. Introducing 
two masses effectively doubles the 
number of degrees of freedom of the 
system, and hence one would expect. 
to find twice as many proper vibra- 

tions as if there were only one mass. 
The curve of » vs. a is shown in Fig. 
3.2. The curve is restricted to val- 
ues of a between +1/2d. Itis seen 
that for each a there are two modes 
of vibration of the system, so that 

we do indeed have twice the number of modes obtained by Baden- 
Powell for his model with one mass.. Frequencies below »; and 

between v2 and v3; are propagated by the lattice, and all others are 
stopped. This lattice is an example of a band-pass filter. The 
interval between v; and v2 is known as a stopping band, while that 
between v2 and v3 is known as a passing band. The frequencies v1 
and v, are very near the proper frequency of oscillation of one iso- 

1 Op. cit., p. 194. 
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lated M-m molecule. This resonance frequency has nothing to do 
with the distance between molecules, and a material change in 
wave velocity is obtained when the resonance frequency lies in the 
near ultraviolet, just above the optical spectrum. Thus Kelvin 

explains refraction and escapes Cauchy’s paradox. 
  

  

  

m m m m m m m m 

Fia. 3.3.—Vincent’s model of the first mechanical filter. 

Vincent! built a mechanical model to which Kelvin’s theory 

was assumed to apply. The model is shown in Fig. 3.3. The 
large masses M are suspended from a beam on strings of equal 
length and connected to one another by springs. The small 

Lh masses m are each suspended 

from one of the large masses. 

This model is evidently equival- 
ent to Kelvin’s more abstract 

_ scheme and was the first mechan- 
ical filter to be built. The motion 

of the system was observed for 
y different frequencies. Vincent 

Tig, 8.4.Index of refraction was plotted curves of index of refrac- 

function of frequency »v for Vincent's tion 4 against the frequency for 

model. comparison with standard disper- 
sion curves. These curves are shown in Fig. 3.4. Thesolid curve 

is for negligible damping and the dotted curve for large damping. 
It is to be noted that the dotted curve is a typical anomalous 
dis dispersion curve. Vincent’s curve of » vs. a agreed with Kelvin’s 
curve. The ratio V = v/a can be measured on Fig. 3.2 and curve 
3.4 obtained for » = 1/V as a function of frequency ». 
Kelvin’s p 8 paper received little notice, and the analogy between 

the propagation of f electromagnetic radiation and the propagation 

of elastic waves along a loaded string was forgotten. 

1 Phil. Mag., 48, 537 (1898). 
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In 1887, Heaviside noted that increasing the inductance per 
- unit length of a cable should reduce the attenuation of waves 

propagating along the cable. However, he discussed no experi- 
mental details. Two years later, in 1889, Vaschy tried loading a 
very long cable with four inductances, an experiment much too 
crude to give any observable result. In 1900, Pupin developed 
the analogy between mechanical and electric lines and, referring 
to Lagrange’s work on the discontinuous string, succeeded in 
building loaded lines and low-pass electric filters. The line is 
shown in Fig. 3.5a. The inductances L’ were spaced so that 
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(0) 
Fig. 3.5.—Low-pass electric filter and loaded line. 

  

there were about ten inductances per wave length. Calling the 

capacitance per section d between the two halves of the line C’, 

Pupin obtained a critical frequency of 

1 

eS LO 
Figure 3.5b shows an equivalent line with the capacitance of the 
line lumped and placed along the line as indicated. 

The first high-pass electric filter (7.e., a line passing all fre- 
quencies higher than a certain critical frequency and stopping 
all others) was built by Campbell in 1906. The line is shown in 
Fig. 3.6. Campbell followed up his high-pass filter by designing 
various band-pass filters. Figure 3.7 is the band-pass filter 
analogous to Vincent’s mechanical band-pass filter. 

It is somewhat easier than in the analogous mechanical lines 

(3.1)
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to see why the electric lines mentioned above should pass some 
frequencies and stop others. The impedance offered by an 
electric circuit to a current passing through it is proportional to 
vL and inversely proportional to vC where » is the frequency, L is 
the inductance, and C is the capacitance. Thus in the low-pass 
filter shown in Fig.:3.5b the impedance offered by the coils L’ 
increases with the frequency, while the impedance of the capacities 

1c" —     

    

pc 
12          

  

      

  

by Ly LS | Ly’ 
- Bia. 3.7.—Band filter. - 

connected across the line decreases. The occurrence of a critical. 
frequency is ‘a result of the spacing and lumping of the inductances 
and capacities. In the high-pass filter the low frequencies will be 
shunted to the returning line through the inductances while the 
high frequencies will be passed.. Again, the occurrence of a 

critical frequency is due to the discontinuous nature of the struc- 
ture. These problems will be discussed in detail in a later section. 

4 . So + © od & e & + @—--—* 

0 d 2d 3d 4d 5d 6d 7d. 8d 9d 10d lid 

Fiq. 3.8.—Born’s model for sodium chloride. 

x a 

In 1912, Born investigated the propagation of waves in crystals 
and rediscovered Kelvin’s analysis. Using the model shown in 

Fig. 3.8, with large masses M and small masses m alternating at 
the points along the z axis defined by nd, where d is the distance 
between nearest neighbors, he obtained the curves shown in 
Figs. 3.9a and b. Figure 3.9a shows v as afunction of a. There 
are two branches to the curve because we have effectively
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doubled the number of degrees of freedom of the system by add- 
ing another constant. The additional constant is, of course, 
the second value for mass. We shall find that in general the 
number of branches will equal the number of different masses. 
occurring in the model; 7.e., the number of frequencies correspond- 

ing to a given wave number is equal to the number of degrees of 
. freedom associated with each element or cell of the lattice. In 

this case the cell consists of a large mass and either of its neigh- 
boring small masses. If there were two different masses between 
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Fie. 3.9. 

a given mass and the next one like it, and if this structure were 

repeated all along the lattice, each cell would have three degrees 
of freedom, and the v'vs. a curve would have one lower branch and 

two upper branches as in Fig. 3.9c. This property of discon- 
tinuous media will be discussed in greater detail later. 

In general, the lower branch is called the acoustical branch. 
It corresponds to motion of the particles such that in each short 
section of the line all particles move in the same direction at a 
given instant. The upper branches are called optical branches 
and correspond to one or more types of particles moving in the
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direction. opposite to that of the others at-any giveninstant. In 

Born’s model, where we have only two types of particle, the 
optical branch corresponds to the motion of the large masses in 

one direction while the small masses move in the other. 

Figure 3.9b is the attenuation curve for Born’s model and 
represents the generalization of Fig. 2.7a. There are one stopping 
band and two passing bands associated with this model. The 

Fig, 3.10.—Electric filter corresponding to Born’s sodium-chloride model. 

zZ 

      
    

  

ONat eCi~- 

Fira. 3.11.—NaCl crystal lattice. 

electrical analogue to Born’s lattice is a line with small and large 
inductances alternating (Fig. 3.10). 

Born’s problem is usually referred to as the NaCl crystal lattice 

problem, since a very similar situation is found in the NaCl 
crystal structure: it is a cubic lattice with Nat and Cl ions 
alternately located at the lattice points, as shown in Fig. 3.11. 
Along one axis, the x axis, for instance, the structure is exactly 

the same as that in Fig. 3.8.



CHAPTER II 

PROPAGATION OF WAVES ALONG 

ONE-DIMENSIONAL LATTICES. 

GENERAL RESULTS AND QUALITATIVE DISCUSSION 

4. General Remarks 

Before proceeding to the mathematical treatment of waves 
propagating along a one-dimensional lattice, we shall make some 

general remarks about the problem and discuss some particular 
cases qualitatively.. The simplest example of a one-dimensional 
lattice is Baden-Powell’s model with equal masses spaced uni- 
formly in a line. If we take the masses along the x axis, the x 

coordinate of the nth mass will be given by 

z= ndt+ vn oe (4.1) 

where y, is the displacement of the nth particle from its equilib- 
rium position. y, may be taken to represent transverse or 

longitudinal displacement, or any other quantity whose value 
may be defined at the points occupied by the masses but not 
elsewhere (electric polarization, for instance); i.e, we may 
regard y, as a property associated with point mass n. This 

property is propagated as a wave if the physical problem admits 

a solution of the type 

Wn = Ae2titvi—and) = A ei(wt—kn) . 

a= ., k = 2rad, w = Qrv (4.2) 

where »y is the frequency, ¢ the time, a the wave number, \ the 

wave length, d the period of the lattice, w the angular frequency, 
k the product of the wave number and the period of the lattice 
multiplied by 27, and A a constant amplitude. The quantity k 
is the change in phase in passing from a point n to its right-hand 
neighbor n + 1: 

Vor = vne—* (4.3) 

17 |
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Thus & is essentially defined as an angle and can be known only 

as modulus 2r. The same solution of the problem is obtained for 

k or ki =k +2mr (4.4) 

when m is a positive or negative integer. Equations of the 
physical problem must yield the same value of w or v for every 
equivalent k or k’, which means that the frequency » is a periodic 
function of & or a: 

w = f(k) period 27 in k = 2rad 

y= F(a) period : in a (4.5) 

This is a general and direct consequence of the periodic and dis- 

continuous structure of the one-dimensional line. It was 

explained in Chap. I in Eq. (2.4) by saying that if y could be 
measured between particles, the uncertainty in & or a would be 

eliminated, but since y is measured only at the discrete points nd, 
the condition (4.5) is unavoidable. 

On account of the periodic properties of the line, it is sufficient 
to discuss the properties. of the functions f or F inside one period 
of k ora. The most convenient choice is 

—rSskesr 

— i acs i (4.6) ad = 4 3 og IIA
 

since a wave always propagates in the same way to the right and 

to the left. This means that the functions f and F have the addi- 
tional property of being even functions. Positive & means a 
wave propagating to the right; negative k a wave propagating 
to the left. If ko is a positive number in the fundamental inter- 

val (4.6), it represents a wave going to the right, and so does 
ko + 2; but ko — 2 is negative and represents a wave going to 
the left (Fig. 2.5). Hence, the uncertainty is not only in the 
magnitude of a or k but also in the direction of propagation. 

The limitation (4.6) means 

-Jis x lal = 2d (4.7) 

The shortest wave length is thus equal to twice the distance 
between. particles and corresponds to a certain critical frequency
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or cutoff frequency v» that is characteristic of the structure. In 
many important cases vm is the maximum frequency, and the 
system works as a low-pass filter for all frequencies 

vy Sm | (4.8) 

Frequencies above v, are strongly attenuated. Condition (4.8) 

is, however, not the only possible one, and other situations may 
arise when »,, would be a minimum. The system as a whole is 
always a filter, but it can be of the low-pass, high-pass, or band- 
pass type. 

These general results, plus a direct discussion of the waves 
corresponding to the limiting cases, \ = ©, a = 0,.and A = 2d, 
a maximum, may in a number of instances give enough informa— 

tion to enable one to describe, at least qualitatively, the general 

properties of the structure. In the next few sections we shall 

apply this discussion to specific examples of one-dimensional 
lattices. 

5. A Lattice of Free Particles 

By a lattice of free particles we mean particles in 4 one- 
dimensional lattice with no forces present except those due to 
interactions of the particles among themselves For purposes of 

this discussion we ‘shall limit the interactions to nearest neigh- 
bors. An example of this is a loaded elastic cord with the masses 
distributed uniformly, where the elasticity of the cord remains 
constant along its length and plays the part of the interaction 
forces. . 

Let us first consider longitudinal displacements. The case 
a = 0 corresponds to infinite wave length. In this case the lat- 

tice as a whole is displaced, and no change in the distance between 
masses occurs. Thus no force is brought into play. The fre- 

quency is zero. For a # 0, but still very small, the wave length 
is large compared with the distance between masses, and hence 
the waves are propagated as if the lattice were a continuous string. 

The velocity of propagation of waves along a continuous string is 
constant for all wave lengths; 7.e., for long wave lengths, the 

frequency is proportional to |a|. A rigorous treatment shows 
that the velocity decreases for wave lengths comparable with the 
distance between masses. Now if a wave is to be propagated at 
all, the frequency must be a periodit function of a. Further-
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more, the curve of » vs. a must be symmetrical about the origin. 

If it were not, the frequencies for a given wave length propa- 

gating in opposite directions would be different, a fact that would 

be in contradiction with the symmetry of the structure. If » is 

to be both periodic and symmetrical about the origin, there must 

be a maximum in the value of v at 1/2d, since the period of » is 

1/d. Thus we obtain a curve of the general shape of that in 

Fig. 2.4a. We shall, of course, justify the exact shape mathe- 

matically in a later section. 

The remarks made on the longitudinal vibrations also apply 

to transverse vibrations. Qualitatively, they may be treated in 

just the same way. Quantitatively, however, there is a differ- 

ence. The velocities of propagation for large wave length are 
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Fig. 5.1.—Longitudinal and transverse vibration along the row of particles 

shown on Fig. 2.1. 

different in the longitudinal and transverse cases, and the maxi- 

mum frequencies are also different. A typical curve for a one- 

dimensional lattice with particles with two degrees of freedom is 

shown in Fig. 5.1. The subscripts ¢ and / on the maximum 

frequencies refer to transverse and longitudinal vibrations, 

respectively. The lower curve, representing transverse vibra- 

tions, should properly be considered a superposition of two 

branches of the same frequency, since there are two independent 

‘ directions perpendicular to the lattice in which the masses might 

move. If there were an asymmetry in the elastic cord (e.g., if it 

were of elliptical cross section), the lower branch would split into 

two distinct branches to give the extra frequencies demanded by 

the added degree of freedom. The solid curve corresponds to the 

interval (4.6), and its periodic continuation,is shown as a dashed 

curve. 

The transverse branches will usually be below the longitudinal 

branch in a loaded string, since the force required for a given dis-
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placement is smaller in the transverse than in the longitudinal 
direction. The frequency of displacement is proportional to the 
square root of the elastic constant, which will be smaller in the 
case of transverse displacements. 

6. Longitudinal Vibration in a Row of Equidistant Coupled 
Oscillators 

A particle attracted to some equilibrium position by an elastic 
restoring force acts as a harmonic oscillator. It has one proper 
frequency vo that depends on the elastic restoring force and the 

mass of the particle. If its elastic restoring force is different in the 
x, y, and z directions, we have what is called an anisotropic 
oscillator. An anisotropic oscillator has three proper frequencies, 

Fig. 6.1.—A row of harmonic oscillators coupled together. 

Vor) Voy, aNd voz, corresponding to vibrations in the x, y, and z 
directions, respectively. 

Let us consider a row of similar harmonic oscillators (isotropic) 
spaced at distance d from one another along the x axis and allow 
interactions between nearest neighbors (Fig. 6.1). We wish to 
study the longitudinal modes of vibration of this system. For 
infinite wave length, a = 0. Infinite wave length means that 
all the particles are displaced simultaneously by the same amount. 
Since the distances between the particles do not change, the forces 

of interaction do not enter into the problem. Each particle is 
attracted to its equilibrium position with the same elastic force, 
and the system will oscillate with frequency 7. For a slightly 
smaller wave length the particles will be displaced relatively to 
one another, and the forces of interaction will play a part in the 
motion of the system. The frequency associated with this wave 

length will be slightly different from vp. Whether the frequency 
increases or decreases will depend on whether the resulting forces 
(elastic plus interaction) are larger or smaller than the restoring 

force tending to return each particle to its equilibrium position.
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It may be shown that for large wave lengths v is given by 

y = vy + ba? (6.1) 

_ The sign of 6 depends on the constants of the system and deter-_ 
mines whether » shall increase or decrease as |a| increases. As 
the wave length becomes comparable with 2d, the considerations 

of the previous sections on one-dimensional lattices apply, and v 
approaches an extremum. Thus we will have two limiting fre- 
quencies, vp and », (where m stands for maximum or minimum 
as the case may be). Frequencies between vo and v» will propa- 
gate along the system, and other frequencies will be damped out. 

‘The system therefore forms a band-pass filter. The solid curve 
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Fie. 6.2.—Frequency »v as a function of a = 1/d for the row of harmonic 
oscillators. 

in Fig. 6.2 shows the curve » vs. a in the fundamental interval 
(4.6) for the case b > 0. If each particle represented an aniso- 
tropic oscillator instead of an isotropic oscillator, there would be 
three curves, one for longitudinal and two for transverse vibra- 
tions. These curves might overlap and would not necessarily all 

rise as |a| increases from zero. 

7. Longitudinal Vibrations in a Row of Diatomic Molecules 

The scheme described in the last section is somewhat artificial. 
It is rather difficult to imagine a particle in nature being tied to 
an equilibrium position by a little spring. A more realistic pic- 
ture is obtained by considering diatomic molecules. This is a 
more complicated problem, since we must introduce a second 
type of particle that may interact with the first type as well as’ 
with its own type. 

A lattice of diatomic molecules is shown in Fig. 7.1. The open 
circles are to have mass M, and the dots are to have massm. An 
isolated molecule will have a certain proper frequency of vibra~
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tion that we call »9. This frequency corresponds to an oscilla- 
tion of the two masses along the x axis in opposite directions in 
such a way that their center of mass remains at rest. 

Let us consider the motion of a row of diatomic molecules 
spaced at distance d from one another along the z axis. We 
assume, of course, that the molecules interact, but we limit the 

interaction to nearest neighbors. There will now be two wave 
functions, both imaginary exponential, one describing the motion 
of the masses M and the other describing the motion of the masses 
m. These two functions may be written 

Yu = Ayertivt-az) and vm = Ame?rivt-ez) (7.1) 

The frequencies and wave numbers will be the same, but the 
amplitudes may be different. The frequency » may be found as 

Mom Mom Mom Mm M a Mom 
fb g—s-—g —— wp —— ss J 

Fia. 7.1—A row of diatomic molecules. 

  

a function of the constants of the system and of a. It turns out 
to be double valued in », as will be shown in the rigorous theory, 
corresponding to the doubly infinite set of degrees of freedom of 
the system. 

For infinite wave length, the atoms all oscillate in phase, and 
we may take 

Au = An (7.2) 

This corresponds to a translation of the lattice as a whole without 
alteration of the distance between particles, and hence the fre- 
quency is zero. Another frequency for infinite wave length is ~ 
obtained if we take the small and large masses moving in opposite 
directions in such a way that the centers of gravity of the mole- 
cules remain at rest. This frequency would be »» if there were 
no interaction between molecules. The presence of interactions 

would change this frequency. If the wave length is decreased, 
the lower branch of the » vs. a curve will rise. This branch is 
just what would be obtained if we took each molecule to be a 
single particle. The upper branch will increase or decrease from 
its frequency at a = 0, depending on the relative values of the 
constants involved. Figure 7.2 shows the frequency curves. 
The limit to the frequency of the upper branch is »’» for a = 0. 
Hither, but not both, of the two upper branches shown may
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. occur. Figure 3.2 (Vincent) and Fig. 3.9 (Born) represent two 
typical examples with different upper curves. The size of vo 
relative to the maximum frequency of the lower branch depends 
on the constants of the system, as does also the width of the 
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Fig. 7.2.—Frequency v as a function of a = 1/X for a row of diatomic molecules. 
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upper branch. Frequencies located in the stopping bands may 
be shown to decay exponentially, as in the other models we have 
discussed. The a corresponding to these frequencies are com- 
plex with imaginary part 6. 8 is therefore the attenuation con- 
stant for a given frequency. The attenuation curves are shown 
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Fig. 7.3.—Attenuation as a function of frequency for a row of diatomic molecules. 

in Fig. 7.8. The solid curve is for the solid upper branch and 
the dashed curve for the dashed upper branch of Fig. 7.2. 

In these examples, the following features can be recognized 

that will be proved in the detailed analysis of later chapters: 
1. Periodicity of v as a function of k or a (4.5).
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2. The possibility of a reduction of k or a inside the funda- 
mental interval (4.6). 

3. If the elementary cell of the one-dimensional lattiee con- 

tains a system with N degrees of freedom, there will be N different 
waves corresponding to each k value, with N different frequencies. 
Examples with N = 1, 2, 3 were given in Secs. 5, 6, and 7. 

4. Hence, the number of degrees of freedom inside an ele- 
mentary cell equals the number of branches in the curve vy = F(a) 
and the number of passing bands of the structure (with possible 
overlapping of the passing bands). 

5. Frequencies outside the passing bands are not propagated 
but decay exponéntially along the line. 

These are the general properties of one-dimensional periodic 
structures that will be investigated mathematically in the follow- 
ing sections. 

A careful discussion of Vincent’s model (p. 12, Fig. 3.3) is 
recommended as a typical problem, and leads to curves of the type 
represented on Figs. 7.2 and 7.3 as dashed lines.



CHAPTER III 

MATHEMATICAL TREATMENT OF A 

ONE-DIMENSIONAL LATTICE OF IDENTICAL PARTICLES 

8. Equation of Motion of a One-dimensional Lattice of Identical 

Particles . 

In this and the following sections we shall derive rigorously 
the results discussed qualitatively in the first two chapters. We 

shall assume an infinite lattice of identical particles of mass M. 

The particles in equilibrium are separated by a distance d along 

the x axis, and we shall take the oscillations of the particles to 

be longitudinal. We number the particles by calling the particle 
at the origin 0, the next particle to the right 1, etc. The dis- 
placement of the nth particle is denoted by yn, so that z,, the 
coordinate of particle n, will be given by 

We shall assume interactions between all particles, and for this 

we require the expression for the distance between two particles 
nandn-+m. This distance is 

Tantm = Lapm — la = md + Yntm — Yn (8.2) 

This expression may be either positive or negative, depending on 
whether m is positive or negative. The energy of interaction 

between two particles will be expressed as a potential function 

that will be assumed to depend only on the distance between the 

two particles: 

U(r) = U(|xn4m — &nl) (8.3) 

The total potential energy of the lattice will then be given by 

U = SY, U(lenrm — tal) (8.4) 
n m>0 

m must be restricted to positive values so that the interaction 

between a given pair of particles will be counted only once. We 
26
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might take the sum over all values of m and divide by two to 
compensate for counting each pair of particles twice. However, 

we prefer to restrict m to positive values, since this enables us to 

drop the absolute-value sign in the argument of U. If we assume 

that the displacements y, are small compared with d, we may 

expand U in a Taylor series. Thus 

U(an¢m — Xn) = U(md) + (Ynim — Yn)U"(md) 
+ e(Yaim — Yn)?U'" (md) + ++: ’ 

where U'(md) and U''(md) are the derivatives 0U/dér and 9?U/dr? 
evaluated at md. Substituting the Taylor expansion in Eq. (8.4), 
and neglecting powers of (Yynim — Yn) higher than the second, we 
obtain for the potential energy of the lattice 

0 =D) D) | veond) + nam = wn) U" (md) 
n m>0O : 

1 
+ 3 (Yn+m _ 0" (ma |, 

or 

U = const. + >) YY | aim — va) Uma 
n m>0 

1 
+5 Uaom — wnO"(md) |, (85) 

where the constant is given by 

Const. = » » U(md) = n » U(md) 

n m>0 m>0 

The force Ff, acting on the pth particle is obtained by taking 
the negative derivative of the potential energy with respect to the 

displacement of this particle. Before performing the differenti- 
ation it should be noted that only two terms from the sum over 

all values of n will remain, the others dropping out because they 

do not contain the variable y,. The two remaining terms will be 
those for which n = p andn+m =>. mis to be positive, so 
the terms for which n = p will give the force on particle p due to 
particles to the right, while terms for which n + m = p give the 
force on particle p due to particles on the left. Therefore,
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aU 0 » » 
F — nn 

? OYp OY 
n m>0 

| vam — yn)U' (md) + 5 Qaim — v0" (ma | 
0 ? . 1 vt -2 x [ori — wad U" End) + 5 min — vsPU" Ome 

+ Wp — Vem U" ma) +3 WU» — Yoon) Uma | 

= Y) [=U (nd) = yeem — yp) U" (md) 
m >0 

+ U'(md) + (Ye — Yr—m)U" (md) (8.6a) 

or, writing Um instead of U’’(md), 

F,= > UO" m(Yp+m + Yp—m — 2Yp) (8.60) 

m>0 

These formulas require some discussion and explanation. In 
Eq. (8.6a), for instance, we find in the first row a term — U’(md) 
representing the force of atom (p +m) on atom p. In an 
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Fia. 8.1. 

infinite lattice this term is compensated by an opposite force 
-+-U"(md) found in the second row of Eq. (8.6a) and representing 
the force of atom (p — m) on atom p. 

The situation is different in a finite lattice (Fig. 8.1). Let us 
assume the row of atoms to extend from n = —o« ton = 0, 

with all atoms n = 1, 2, 3, . . . missing, and let us discuss the 
forces to be added in order to keep the structure undisturbed 

near the end of the row. External forces that would make up 
exactly for the forces that the missing atoms would produce on
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the end of the row must be provided for. For instance, we must 
add the forces 

U's, U's, U's oe 

on atom n = —2. This means a very complicated set of forces 

acting on the last atoms of the row, if the row is to be kept unper- 
turbed with the constant distance d up to the last atom. The 

total force required on all the last atoms of the row is 

~ 

Fy = U's + 2U2+3U's+ ++ = Yo mU'n (8.7) 
m=1 

since there are m.pairs of atoms interacting at distances md 
across the border. The sketch in Fig. 8.1 visualizes the situation 
for m = 5. In order to obtain a one-dimensional lattice with 
distance d between neighboring particles, it is necessary that the 
total force acting upon the end of the lattice be F;, but the condi- 

tion is not sufficient. 
If this total force F;, is differently distributed. between the 

particles at the end of the row, two things may happen: 

1. Itis possible that a local perturbation of the row is produced 
near the end, but that at large distances from the end the equi- 
distance d is obtained. This is usually the case, with forces 
decreasing rapidly when the distance is increased, such as the 
ones encountered in most physical problems of crystal lattices. 
If the forces extend only to a distance Ld, the sum in Eq. (8.7) 
must be taken from m = 1 to m = L, and the distance upon 
which the perturbation of the lattice occurs is of the order of Ld. 

2. The perturbation may extend throughout the lattice and 

offer a periodic character as a function of the distance, thus 
resulting in a sort of ‘superlattice or periodic structure with a 

distance D >d. There may also be different values di, do, . . . 
corresponding to the same total end force F;. 

For instance, a free row of particles is one terminating freely 
with no external forces added. This means that no perturbation 
will occur only if all terms U’; = U’y = ... = U’, = 0, and 
in this case the lattice will keep the interval d up to its end. If 
all U’, are not zero, a perturbation appears near the end of the 
lattice (case 1) or even along the whole lattice (case 2). 

This one-dimensional example corresponds to the problem of
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surface structure and surface tension for solids or liquids. In the 
three-dimensional problems of physics, the interaction between 
particles decreases very rapidly for increasing distances, and 
ease 1 above is practically always obtained. The last L atoms of 

each row build a surface layer Ld deep, which surrounds the solid 

or liquid structure. The perturbation of the lattice inside this 
surface layer results in additional forces, the resultant of which 
is known as surface tension. 

The type of perturbation in the lattice and the extent of this 

perturbation will be discussed later on (see Sec. 10), but we 
‘should immediately emphasize the great complexity of the bound- 

ary conditions for structures including particles interacting at large 
distances. The situation at the boundary cannot be defined by a 
set of forces acting on the. last particles, but the whole distribu- 
tion of these forces on the different particles at the end of the row 
must be specified. The usual mathematical statements about 

forces on the boundary are completely inadequate. A similar 
situation: will be found in connection with problems of wave 
propagation across the junction of two lattices, or reflection of : 
waves at the boundary of a lattice (see Sec. 24), where a minute 
description of the type of junction extending all through a 
boundary layer of order of thickness Ld would be required. 

As for Eq. (8.6b) and vibrations inside an infinite lattice, the 
force F’, will be balanced by the inertial force so that the equation 
of motion for the system will be 

a? , 
F,=M <a = » OU n(Yoim + Yp—m — 2Yp) (8.8) 

m>0 

Let us assume a wave solution for Eq. (8.8). 

(8.9) 

>
|
 

Yo = Aertivt—azp) == A e2rt(vt—apd) a= 

vis, of course, the frequency and a the wave number. This gives 

Yorum + Yp-m — Q2y> = A e2rilvt—apd) (e~2xtmda +. e2timda _ 2) 

= —2y,(1 — cos 2ramd) = —4y, sin? ramd 

Therefore, Eq. (8.9) will be a solution of Eq. (8.8) if the following 
relation between y and a is satisfied:
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“ee Mr*y? = » U" » sin? xramd 

m>0 

= 5 U" «(1 — cos 2ramd) (8.10) 

m>0 

with U", = U"'(md). From Eq. (8.10) we may verify at once 
that v is a periodic function of a and has period 1/d, since 

y? € + ‘) = r%(a) 

and v must be positive. 

9. Rigorous Discussion for the Case of Interactions between 

Nearest Neighbors Only 

If we assume that the interactions among the particles are 

negligible except for nearest neighbors, Eq. (8.10) reduces to 

Mr*v? = U" sin?rad =U" =U", (9.1) 

This is the equation on which the qualitative discussions in the 
first two chapters were based. We may compute the velocity of 
propagation of the wave. 

UO” |sin wrad| UO” |sin x ad! yale 
a NM@ wa ~°NM Tradl (9.2) 

The velocity for infinite wave length V,, is therefore 

ue 

V,.=da va A> ow, a—0O (9.2a) 

and Eq. (9.2) checks with Baden-Powell’s equation (2.1). 

In order to set up the connection between these results and 

Newton’s calculation for the velocity of sound in air, we must 
define a modulus for our discontinuous system; and this must be 
done in such a way that in the limit of dense spacing of our par- 
ticles (7.e., a continuous structure) the modulus will go over into 
the ordinary extension modulus, defined as tension divided by 
strain. In our discontinuous structure, we can define the ten- 
sion between two particles as simply the force between them, and 

this will be equal, for the pth and (p + 1)st particles, to 

Ud) (Your — Yo)
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since the resultant force on the pth particle, due to both particles 

(p+ 1) and (p ™_ 1), is 

U"(d)(Yn+1 + Yp-1 — 2Yp) 

Furthermore, we can define the strain between particles p and 
(p +1) as (Yp41 — Yp)/d. The modulus will, accordingly, be 

« = dU"(d) (9.3) 

and it is evident that in the limiting case of dense spacing all 
our definitions will go over into the usual definitions. 

If we call our modulus ¢ and the average linear density of our 
system p (i:e., p = M/d), Eq. (9.2a) becomes 

V.=al- (9.3a) 

‘which is Newton’s formula [Eq. (1.1)] with e in place of Newton’s 

bulk modulus ed. We can identify our U’ with Newton’s elastic 
' constant e. " 

For the wave length large compared with d, 1.e., if the lattice 
may be regarded as ‘a continuous medium, the velocity is V,, 
and is independent of the wave length. As the wave length 
decreases, the velocity decreases and approaches 2V,,/r, or 
0.635 times V,,, the value for infinite wave length (see Fig. 2.2). 

This velocity is reached at the wave length \ = 2d. For) = 2d, 
there is an ambiguity in the velocity of propagation, as pointed 

out. in an earlier section, since the wave may be propagating in 
either direction with velocity 0.635V,, or may be a standing 
wave.’ The cutoff frequency v, is obtained from Eq. (9.1) by 
setting ad = 4. 

1 ju” 

For frequencies lower than the limiting frequency v, we obtain 
real solutions for a. For higher frequencies a is complex, since 

w?y?M = U”" sin* rad (9.1) 
If we set 

a= £35408, bh = Qnad = +a + 12nd 
: (9.5) 

gin rad = + sin 5 cos trBd = + cosh rd
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. then” 

272M = U" cosh? rBd (9.6) 

or 

TT 

jp] = 2 = se cosh «dl (9.7) 

B is called the attenuation coefficient, and in the attenuation curves 
the magnitude of 8 is plotted as a function of ». Curves repre- 

senting the real and imaginary parts of a = a +76 as functions 
of the frequency » have been drawn in Fig. 2.7 (Sec. 2). Between _ 

0 and v,, ais real, and above », the real part of a keeps a constant 
value +1/2d while the imaginary part 8 increases very rapidly. 

This means that for frequencies above the cutoff », the vibration 
decays exponentially along the string (6 term) while successive 
atoms oscillate in opposite directions (real part 1/2d). This is 
easily seen in Fig. 2.10, which is a reproduction of one of Kelvin’s 
original drawings. It shows that Kelvin had actually grasped 
all the details of this problem. . 

10. Discussion of the Distance of Interaction 

In the case of interactions between nearest neighbors only, we 
find that there is a single frequency corresponding to a given 
wave length and that there is only one wave length larger than 
2d for each frequency. Now if the interactions extend to the 
Lth neighbor, 7.e., to a distance of Ld, we obtain. the following 
expression relating frequency and wave number [Eq. (8.10)]: 

ryM = » U"' 4» Sin? ramd 

O0<m<L 

N
i
e
 

> U"'n(1 — cos 2ramd) (10.1) 
O<m<L 

For very large wave lengths 

2 

Vv.” = oe ay > On sin’ wamd # amd = s » U" wm? (10.2) 
O<m<L O<m<b 

Thus V,, is still a constant whose value depends on the constants 
of the system. As the wave length decreases, the velocity of
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propagation varies. The frequency corresponding to the limit- 

ing wave length \ = 2d, a = 1/2d, may be computed. 

_ oi no osg am HW 
y= = U" a Bin 3 = ay ) U"'(md) (10.8) 

O<m<ZL O<m<L 
m odd 

since 

. 7m 0 m even 

a i +1 m odd (10.4) 

so that the even terms in the sum drop out. 
Returning to the general equation for »v [Eq. (10.1)], we note 

that to each value of a there will correspond a single frequency 
regardless of the extent of the interactions. Now cos 2ramd 
may be expanded as a polynomial of degree m in cos 2rad. Thus 

the frequency will be expressed as a 
polynomial of degree L in cos 2rad. 
This means that for a given frequency 
there will be Z solutions for cos 2rad 
-and hence Z solutions for a in the 
interval —1/2d to +1/2d. The re- 
sult of these remarks is that v is a 
single-valued function of a, but a is 
not a single-valued function of », as 
shown in Fig. 10.1. It is not neces- 

sary in this case that the maximum value of the frequency appear 
at the ends of the interval —1/2d S a S$ +1/2d, but the curve 
must end with a horizontal tangent in any case. 

The LZ solutions for a for a given frequency need not all be 

real; some may be imaginary or complex. Such solutions are to 

be interpreted as meaning that the wave decays exponentially 
along the lattice. This is of special importance in the case of a 
finite lattice such as the one already discussed in Sec. 8 with Fig. 
8.1. If we assume a sinusoidal motion of frequency v imposed on 
the last particle of the lattice, the different waves corresponding to 
this frequency will be excited in various proportions. Those for 
which @ is real will propagate along the lattice, and those for 
which a is imaginary or complex will decay exponentially from 
the point of excitation. If we wish to excite only one of the 
waves on a semiinfinite row of particles, we must impose on the 

Vv 

  

  

0 

P
+
 
L
e
 
e
w
e
 

h
o
n
e
 

Fie. 10.1.
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first L particles the motion characteristic of this special wave. 
In the case of interactions between nearest neighbors only, the 
boundary conditions were simple: we had only to specify the 
motion of the first particle. However, added interactions com- 
plicate the procedure, and the boundary conditions must be 
specified over a length Ld of the lattice. 

The problem of the lattice at rest corresponds to the case v = 0. 
In drawing the curve in Fig. 10.1, it was assumed that the forces 
between the particles were such as to give only one real solution 

a for low » values. The remaining (Z — 1) solutions must then 
be complex and result in a perturbation of the lattice that would 
decay exponentially from the border. The whole distance over 

which these exponential perturbations extend (at the limit 
v = 0) represents the thickness of the border in the one-dimen- 
sional case or of the surface layer in the three-dimensional 
problem. This assumption corresponds to case 1 discussed in 
Sec. 8 after Eq. (8.7). Another pos- 
sibility would correspond to acurve {| 
going down to vy = 0 for some +a 

value of a, such as the curve of Fig. | 
10.2. Under such circumstances a 1 
steady periodic perturbation of wave 4 
length A; = 1/a, may obtain through- 
out the lattice and realize a superlattice structure of period 

di/d = 1/aid, 

Vv 
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Fia. 10.2. 

as anticipated in Sec. 8, case 2. 
Equation (10.1) gives v? as a finite Fourier expansion ina. We 

may use Fourier’s theorem to obtain the interactions among the 
various particles if we assume v = F(a) is a known function. 

1/2d 
_ 12a F(a) (cos 2ramd)da (10.5) U" (md) = —4n?Md 

As an example, let us seek the interactions that would give a 

constant velocity of propagation W throughout the passing band. 
Then 

y=Wlal,  »? = F(a) = We? 

a is, of course, to be taken in the usual interval. Curves corre- 

sponding to this problem are shown in Fig. (10.3). Then
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1/2d 

a?(cos 2ramd)da 
—1/2d | 

OU" n = —aeemraw? | 

_ W? 

Now U”,, is the second derivative of the interaction energy of the 
two particles separated by md and appears as a function defined 

at discrete points at intervals of d along the z axis. We may take 
the continuous function 

2 

U" (2) = —g AW goog B (10.7) 
x d 

to represent the discontinuous function. The function (10.7) 
has the same values as U’’(md) at the points where U’’(md) is 

V 

  

  

  

        
-t 0 a 

2d 2d 

Fie. 10.3. 

defined, but it is continuous, and hence we may integrate twice 

to find the interaction energy. The integration must be done 
by tables in this case. Once the function U’’(x) is known, how- 

ever, one may construct a discontinuous line with the proper 

elastic forces between the elements to obtain a low-pass mechan- 

ical filter having a constant velocity of propagation for all fre- 
quencies in the passing band. The same method may be 
applied to a high-pass filter or to more complicated filters having 
one or more passing bands. For this simple example we may 

easily obtain w?, where w is the angular frequency, 27 times the 
frequency v, as a Fourier series.
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fr 

w? = 4972p? = 2 aa Un = (1 — cos 2ramd) 

4(—1)"""W? 
me (1 — cos 2ramd) 

m 

= aw" la — cos 2rad) — = ra ~- cos 4rad) 

  

5 — cos 6rad) — a (1 — cos 8rad) + vs | 

4W? i,1 1 
= TP |(.-}+h-4+ ) = 00s Brad 

4i d4rad — + cos 6rad + & os Brad — ++ | 7 008 4x 5 008 Gx 16 008 8 

2 2 

= ie ls — cos 2rad + 7608 Arad 

_ 5 608 Grad + a cos 8rad - | (10.8) 

since 
1? -1soi 1 
a=! -Gto7-aet (10.9) 

Let us replace 2rad by k and recall that a = v/W to obtain 
“2 = Agatd? = An y*d? 

= 4n°a*d® = ars 

= 4 — cos k + + cos 2h — 1d cos 3k + ve (10.10) 
B 4 9 " 

Thus we have k? as a well-known Fourier expansion in & in the 
interval —z, +7. 

11. The Low-pass Electric Filter 

The electric filter shown in Fig. 11.1 is a low-pass electric filter. 
The equal self-inductances L alternate with equal capacities C. 
The capacities shunt out the high frequencies, and the low fre- 

quencies are allowed to pass. To obtain the equations of this 
line, we call Q, and V, the charge and potential, respectively, on 

condenser n, while 7, will be the current flowing between con- 
densers (1 — 1) andn. Then 

  

Ain _ _ — Qn-1 Qn 

de Vai = oO Se
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and | 

. . Qn fe mnt = ier (11.1) 
since 

_ Qn 
Va — C (11.2) 

Differentiating Eq. (11.1), we obtain 

7 Bin _ 1fdQi-1  dQn\_ 1, / 9 
L de a(= di ) =@G (tna + tne1 — Qin) (11.3) 

The solution of Eq. (11.3) gives the flow of current in the line, 
and from this the potential differences and charges on the con- 
denser plates may be found. Equation (11.3) is identical with 

Vn-1 In Vn ine] Viel In+2 Vn+2 

Qn-lLaeooe Qh prec ONE L peg rntn, Un+2 

L | L L | L 
C Cc 

  

   
n=l nh a n+l | n+2 

Fie. 11.1. 

the equation of motion of a one-dimensional mechanical lattice 
[Eq. (8.8)] with interaction between nearest neighbors only 
(Chap. I, Sec. 2, or Chap. ITI, Sec. 9). 

2 

MSY = Us (Yna + Yost — 2) (11.4) 
U"'/M is replaced by 1/LC, and y, is replaced by in. Thus all 
the results obtained for the low-pass mechanical filter apply 

- automatically. The velocity of propagation for very long waves 
is d/~/LC where d is the distance between condensers; there is a 
cutoff frequency v,», and all frequencies higher than », decay 
exponentially; v is a periodic function of the wave number. 

From Eq. (9.4) we may compute the cutoff frequency. 

  

1 ; 
AG (11.5) 

The low-pass electric filter shown in Fig. 11.1, to which Eq. 
(11.3) applies, contains no resistance. Introduction of resistance 
changes the properties of the line slightly. There will be a slight 

attenuation of frequencies in the passing band due to energy 
losses in the resistance, and the cutoff frequency will be less 

Vn
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abrupt; 7.e., there will be a region of rapidly increasing attenu- 
ation for increasing frequency near vm, This problem will be 
discussed in detail in Chap IX. The curves in Fig. 2.7 will be 
changed into those in Fig. 11.2. 

a= a+ip 2 
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Fie. 11.4. 

The single-line structure of Fig. 11.1 is equivalent to a double 

line (Fig. 11.3) constructed from the original line of Fig. 11.1 

and its image. This can be simplified in the scheme of Fig. 11.4 

with the same L values as in the single line but with capacities 

iC. 
U=L, C=z (11.6)
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_ Hence, the double line of Fig. 11.4 has exactly the same proper- 
ties as the single line, with the values 

| d = 11.7 
V /2L'C 17) 

1 

vm ar VLC oe V 2L'C" 

as announced in Eq. (8.1). © 

  

  I> Veo= 

me 
i)
 

12. Analogies between Electrical and Mechanical Systems 

In the last section we saw that the equation for the propaga- 
tion of electric waves along a low-pass electric line was of exactly 

the same form as that for the propagation of elastic waves along 

a low-pass mechanical lattice. This suggests the possibility. of 
making an analogy between electrical and mechanical lines that 

will hold generally. The detailed discussion of electrical lines 
will be reserved for Chap. IX. However, we shall examine the — 
problem in sufficient detail here to form a basis for an analogy 
with mechanical lattices. 

In the last section we found that the quantity +/1/LC played 
the part for electrical lines that ~/U"/M plays for mechanical 
lattices. The classical method for drawing an analogy between 
electromagnetic and mechanical effects is to associate electro- 
magnetic energy with kinetic energy and electrostatic energy 
with potential energy. This leads to associating 

Awith U” and LL with M (12.1) 

However, this method is not the only one that can be used, and 
we shall find another method more convenient for some purposes. 
The design of the system under consideration will, in general, 
determine the analogy to be used. 

Another way in which we could make the analogy would be to 
take 

U'»~e and MAC (12.2) 
Dp 

For instance, this is the proper analogy to use if we wish to con- 

struct an electrical line with the same propagation properties as a 

lattice with equally spaced particles of equal mass and inter- 

actions between all particles. This can best be shown by con-
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structing such a line according to Eq. (12.2) and verifying that 
the line equations of the two systems are exactly the same. 

The line is shown in Fig. 12.1. Each condenser has capacity C 
and is connected to its nearest neighbors through an inductance 
L,. The condensers are connected to next nearest neighbors by 
inductances L,. and to the pth neighbors by inductances Lp. 
Only L; and Ls are shown in the diagram in order not to compli- 
cate it too much. The condensers are numbered as before. The 

current flowing through Ly, will be tin, tent) Untind2, and, in 

general, that flowing through Ly will be trp) In—ptintly © 0+ 3 
See 

a a °F aa ms ™. . 

2 L S. ti 

v2 <o Le 3 La NN La ¥ \ La St aa te” “tho 

oS 
a4 cochlea 

brs dul Ee ¢ 

  

Fra. 12.1, 

in-1n+p—1, tnntp. ‘The second subscript on the current indicates 
the condenser into which the current flows, and the first sub- 

script indicates the condenser from which the current started. 
The charge Q, on condenser n will be given by 

dQ, . “ . 
= In—pyn + In—ptin + an ++ bn—1jn 

~~ (tnynti + inst? terse +t dnn-tp) 

= > (Gn—pyn _ tanto) . (12.3) 

Pp 

  

We have the following equations for the current in the various 
branches of the circuit denoted by L,, if we take the potential 

of condenser n to be Va: 

d . n—1 ” 
Ey dt in—in = Vat - — Vn _® a Q 

d ‘ n— n 
Le dt In—2,0 = Va—2 — Va = Sect — Ge (12.4) 

d. n— n 
Lp di tn—pyn = Vip a Vn = 2 an ¢
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Differentiating Eq. (12.3) and combining with Eq. (12.4), we 
obtain 

ct dQ = C he Coos _ tanto 

C ae dt 

Som 4 ones foe Gots SO (12.5) 
& yg 

Equation (12.5) is indeed identical with that for a row of par- 
ticles, each having mass M, with interactions allowed among all 

neighbors [Eq. (8.8)], if we make the correlation. 

M~C and U",~ = (12.2) 

The line shown in Fig. 12.1 will thus have the same propagation 

properties as the lattice of like particles with unlimited inter- 
MASS SPRING actions (Chap. III, Sec. 8). 

J J N A. geometrical argument lead- 
ing to Eq. (12.2) may be given. 

MECHANICAL The mechanical low-pass filter 
consists of point masses joined by 

elastic elements that we might 
2 «woe: Visualize as springs. The elastic 

ELECTRICAL elements (Fig. 12.2) each have 
Fie. 12.2. two ends, one connected to one 

mass and one to another mass, while the masses are represented 
by single points. An electric line having all its condensers 
shunting the high frequencies may be regarded as a single line 
with the condensers connected between the line and ground at 
regular intervals. Then the inductances appear as having two 

ends connected to different condensers, and the condensers are 
essentially points in the structure. Another way of looking at 
the problem is to regard the elastic forces as coupling forces in 

the lattice and the inductances as coupling forces in the electric 

line, while the masses and condensers are thought of as supplying 
inertial forces to their respective systems. 

Tn the case of a high-pass filter, the electric circuit would have 

inductances leading to ground with condensers incorporated in 

the line and separating the inductances. In this case the induct- 
ances would have to be regarded as the points of the system and 
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the condensers as the parts having two ends, so that the classical 
analogy [Eq. (12.1)] would again hold. For a band-pass filter 
with a low-pass band and higher bands in addition, the induct- 
ances would have to be shunted by condensers that would be 
regarded as masses, since one plate of each condenser could still 
be taken as grounded. However, a closer analysis of the system 
would be necessary to decide which analogy to use, since there 
might be condensers elsewhere. in the circuit. — 

There is a limit to which these analogies may be carried. It is 
not possible, for instance, to construct an electrical line by Eq. 
(12.5), giving an arbitrary relation between a and », as it is fora 
mechanical lattice (discussed in Sec. 10). The reason is that 
it is sometimes necessary to allow U’’, to take on negative values. 

This is easy to realize mechanically, but it would not be possible 
to obtain a negative self-inductance for the analogous electrical 
line. 

The electrical problem offers different possibilities, if mutual in- 

ductances between the coils are used. This was first discussed by 
G. W. Pierce and carefully investigated by L. Brillouin (Proc. of 
a Symposium on Large-Scale Digital Calculating Machinery, 
Harvard Univ. Press, 1948, p. 110) with a discussion of the possi- 
bility of obtaining a constant velocity of propagation, as-plotted 

on Fig. 10.3.



CHAPTER IV 

MATHEMATICAL TREATMENT OF 

MORE COMPLICATED ONE-DIMENSIONAL LATTICES 

13. Equations of Motion for the One-dimensional NaCl Lattice 

The one-dimensional NaCl lattice is a special case of the one- 
dimensional diatomic lattice that was discussed qualitatively in 
Secs. 3 and 7. The general lattice is shown in Fig. 13.1. There 
are two masses M,; and M; alternating. A given mass M; will 
have its right-hand neighbor a distance d; away and its left-hand 

© d, e dO dy e do O qd, ed. O d; e dg O d; e 
M, Mo M, Mo M, Mo My. M2 M, M2 

n-2 n-1 n-1 n n ntl ntl nt2 n+2 

Fie. 13.1.—A row of diatomic molecules. 

neighbor a distance dz on the other side. The period of the lat- 
tice is then 

d=di+de (13.1) 

In Sec. 7 we assumed one mass, say Me, much smaller than the 
other. Then M, was supposed to interact with the small mass 

nearest to it and with each. of the two large masses nearest to it. 
The small masses were supposed to interact only with the nearest 

large mass. In other words, we allowed molecules as a whole to 
interact and then included the internal degree of freedom in our 
discussion. 

In this section we shall discuss a slightly different lattice. 

The two will have the same type of curve, however, since we shall 

change only the rules of interaction. The interactions shall take 
place between nearest neighbors only, without reference to the size 
of the masses. This implies, of course, that we are dealing with 
particles that are comparable. If we limit the problem to 

one in which the distances are equal and the interactions of a par- 
ticle with its two nearest neighbors are equal, we obtain the one- 
dimensional analogue of the NaCl lattice used by Born in his 

44
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theory of specific heats. The lattice is shown in Fig. 13.2. The 
solid dots represent particles of mass M, and the open circles 
those of mass M;. The particles can be numbered in two differ- 
ent ways as shown in Figs. 13.1 and 13.2. We use the second 
one, where we have assigned even numbers to solid dots and 
odd numbers to the open circles. This means that the equilib- 
rium coordinates of the particles with mass M, are (2n + 1)d/2, 

while the equilibrium coordinates of particles with mass M, are 
2nd/2 = nd. 

" Tn Oo d/2 e« d/2 O d/2 © d/2 O d/2 °« d?? oO d/2 d/2 O 

My Mo My Ms M, Mo M, Mo M, 

n-3 n-2 n-1 n n+1 n+2 n+3 nt+4 nt+5 

Fie. 13.2.—M. Born’s model for sodium chloride. 

The equations of motion of the two types of particles are differ- 

ent because of their different masses. If we denote the force on 

the mth particle by Fm, which is computed exactly as in Sec. 8, 

Eq. (8.6) or Eq. (11.4), we obtain for the equations of motion 

Yon 
Fo, = OU" s(You—1 + Yenti — 2Yon) = M, aE 

| (13.2) 
” a? Yon+1 

Ponti = U (Yon + Yon-2 — 2Yon41) = M1— de? 

where y; is the displacement of the kth particle from its equilib- 

rium position. Let us assume a wave solution to these equations 

of the following form: 

2 = A cetwt—2nky) 

Yonti = A sett Gat Dky 
(13.3) 

where 

k = 2rad 

ky = 2ra$ = rad = 5h 

w = Qrv 

a= 
~ X 

It should be noted that the first of Eqs. (13.3) represents a wave 

propagating only through the particles of mass Mz, while the 

second represents a wave propagating only through those of
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mass M,. The wave lengths and frequencies for a given dis- 
turbance must be equal. The amplitudes of the two waves, on 
the other hand, are not necessarily equal. They may differ in 
magnitude as well as in phase. 

In order that Eq. (13.3) may satisfy Eq. (13.2), certain rela- 
tions must be imposed on the constants in the solution. These 
relations are obtained by substituting the assumed solution (13.3) 
in Eq. (13.2). The substitution yields 

M.(— Azw?) = U"' (Aye + Ayer _ 2A.) 

M,(—Aw?) = U"";(Aze™ + Are — 2A1) 

The exponential term e+*-2»*) divides out of the first equation, 
while ef+t-(@n+Dk] divides out of the second. Making use of the 
relation 

eM + e-th: = 2 cos ky 

and rearranging terms, we obtain two linear equations in A; and 
As 

Ax(M ew? _ 2U")) + 2A,U"" cos ky = 0 . (13 4) 

Ai(M yw? _ 20") + 2A.U0": cos ky = 0 , 

The condition that these equations give nontrivial solutions for 
A, and A: is that the determinant of the coefficients of A1 and Az 
shall vanish. This condition gives us a relation between w and 
k, in terms of the constants of the lattice: Mi, Me, and U";. 
Thus 

(Mw? — 2U"s)(Mow? — 2U"1) = 4U"'s? cos? ky 

or, expanding, 

1 1\. UN 4_orr f+ 4 4+ \,2 a 
@ 2U 1 Gr. + a) @ + 4 aM sm ky 0 (18.5) 

This equation possesses two solutions for w? and hence two solu- 
tions for w, since the frequency is always taken to be positive; 7.e., 

for each value of k, there will be two values of the frequency, so 
that the w vs. k; curve will have two branches. 

1 1 Ri 1 1\ sin? ky, 2. 77" on a ae —_ _ w= unl (e+ we) tvGht a) ~ 43 b|] ase) 

Substitution of Eq. (13.6) into Eq. (13.4) yields two equations 
for A; and A». These two equations are, however, not linearly 
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independent and hence may be used only to determine the ratio 
A;/A2s, which is real. The magnitudes and actual phases of the 
amplitudes for the two waves will depend on the initial conditions. 

14. Electrical Analogue of the One-dimensional Diatomic Lattice 

To construct the electrical line analogous to the one-dimen- 

sional diatomic lattice, we must use the classical method of associ- 
ation [Eq. (12.1)]. This means that since we have two masses 

in the mechanical model, we must have two inductances in the 
electrical model. We could generalize the problem treated in the 
preceding section and allow different coupling between the two 
masses or, what amounts to the same thing, allow the distance 
between M,and M, to be different on the two sides of the particle. 

— > lon-1 —> lon — > lott 7 lonte 

  

Van—2 Von=1 Von Von+1 V ant2 Von+3 
Fia. 14.1.—Electric line corresponding to the sodium-chloride model. 

This would give an electric line with condensers C, and C, alter- 
_ nating. The condenser C1 to the right of a given condenser C2 

would be joined to it by an inductance Le, while the condenser _ 

C, to the left would be joined by an inductanceL,. This arrange- 
ment would, in general, be analogous to the mechanical model 

described in Sec. 7. 
The electric line is shown in Fig. 14.1. As before, 7m represents 

current flowing from condenser (m — 1) to condenser m as in the 
case of Fig. 11.3. The fundamental equations are 

  

. . na . . dQen 
ton — tonti = en, . tent —~ tente = Wants (14.1) 

Li anys = Von — Vont1 = Qin — Qonss 
dt Ci C. (14 2) 

1," =V —V — Gent _ Gan 
2 dt 2n—1 an C; Ci 

Differentiating Eq. (14.2) and combining with Eq. (14.1) will 

yield
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A*tont1 ton — tenti __ ten¢t — Van4e 
    

    

Ly = 
dé? Ci on 

L Dion dont — ton ton — tants (14.3) 

* dt? C, . Ci 

These two equations would be identical with Eq. (13.2) for the 
diatomic lattice treated in the last section if C,; = C2 and we 
replaced capacitance by the elastic constant and inductance by 
mass. 

The solution of Eq. (14.3) is carried out in exactly the same 
way as that of Eq. (13.2). We assume wave solutions for tz, and 

ten41 With the same frequency and wave number but with differ- 

ent amplitudes, as in Eq. (138.3). 

ton = A petot-2nia) | tontt = A yetlot— (2+) hi] (14.4) 

Substitution in Eq. (14.3) gives two equations linear in the 

amplitudes 

1 i — {= oi ti —iky _ 
| (-tuet + oe +) A (Fe T ae )Ar=0 

( — Zao" + é + a) Az — (5. em ze) Ai =0. 

(14.5) 

These simultaneous linear equations in A, and A; have a non- 

trivial solution if their determinant vanishes. 

41 AN. i. 4 
(-m0+ a+ a) (te +o, +) | 

_ (5. ells a Hs) (% ibs a em) =0 (14.6) 
1 

which reduces to 

1 1 1 1 sin? hy. 
4 742 fF —_ —_— —- oe w@ w (4 + L) G + x) + 4TTC.0s 0 (14.7) 

the solution of which is 

1fil 1 1 1 

e-3(E+E)(a +2) 
1/1 1/1 1\) 4sin? ky 

+ i (L +1) (4+%) —Tic.c, 48) 
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This reduces to the expression (13.6) obtained for the mechanical 
case if Ty = Mae, Le = M,, and 1/0"; = Ci = C.. There will 

be two branches to the w vs. ki curve whether Li ¥ Le or not, but 
taking C; # C2 would distort the shape of the curves. 

This problem was discussed by electrical engineers! who did not 
notice the similarity with the one-dimensional NaCl lattice 
discussed by Born. The problem originated from an attempt to 
join an aerial telephonic line with a city cable, as shown in 

  

  

  

bi 

  

  

12 Lo Ly Lo Ly 
-l 

bmw 7 INFINITY —> 

DDO. 000 0.0.0 nm 9.9.0.0 pm 

A 

Fra. 14.3. 

Fig. 14.2. In order to obtain a correct junction at 4, where the 
line is connected with the cable, it would be necessary to load 
the cable with equal coils at a distance y, y, .... This results 
from two conditions that must be satisfied in order to match the 
line and the cable at their junction: (1) to have the same passing 
bands, and (2) to have the same characteristic impedances (see 
Chap. V). The difficulty was that the underground city cable 
was already built to receive its loading coils at given distances 2, 
z,.... The solution proposed consists in using alternately 

two types of coils L, and L. (Fig. 14.3), resulting in a structure 

1Frencu, N. R., U.S. patent. 1,741,926, Dec. 31, 1929; 8. P. Map and 
N. R. Frencu, U.S, patent 1,769,959, July 8, 1930.
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Fie. 14.4.—Curves computed by Mead and French. Compare with Fig. 7.3 

or 3.9b. 

practically identical with the one of Fig. 14.1. Attenuation 

curves for different values of m [Zi = mLo, L2 = (1 — m)Lo, 
Ly a constant] were computed and are shown in Fig. 14.4. 
They are identical with the attenuation curves 8 shown in Fig. 
3.9b, which were obtained by Born for the NaCl structure, the 
theory of which will now be discussed. 

15. Discussion of the One-dimensional NaCl Lattice 

In this section we shall discuss the motion given by the two 
branches of the w vs. ki = k/2 curve with particular attention 
to the case ky = 0 and ki = +7/2. The relation between w and 
ky is given by Eq. (138.6). 

1 1 V 1 1\° 4 sin? bs] 
2 ef f f } 

° U1 (ar, in) — Gh ir) MM, (13.6) 

or, rearranging terms, 

U"*: 

M,M, 

(M,+ M, + /M,?2+ M.?+ 2M\M, cos 2k1) (15.1) 

  

  o? = 
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Equation (15.1) is completely symmetrical in M4, and M2, and 
we may therefore assume M, the larger of the two masses without 

loss of generality. : 

M,> M, 

The ratio of the amplitudes of the waves may be obtained from | 
either of Eqs. (13.4). Both give the same result in terms of kj. 
Using the first, | 

Ai _ 20", _ Mw? 

  

Az  2U"; cos ky (15.2) 

and, substituting Eq. (15.1) for w*, we obtain 

Ai _ My, —- M2 ¥ VM + Me? + 2MiM; cos 2k; (15.3)   
Ag 7 2M, cos ky 

The minus sign in Eq. (15.3) corresponds to the plus sign in 
Eq. (15.1) or the upper branch of the w vs. k: curve, while the 

plus sign of Eq. (15.3) corresponds to the minus sign of Eq. (15.1) 

or the lower branch. It should be noted that the amplitude 
ratio is always real; therefore, the waves may have only two 
phase relations: phase difference zero if A;/Az > 0, and phase 
difference a if A1/A2 <0. This is typical of a system without 
any resistance and with no damping. 

For large wave lengths \, ki > 0 as does k. For this case we 
may set 

cos 2k, ~ 1 — 2k? = 1 — bk? = cosk 

ky = 2rad, = wad = Lék 

and the radical in Eq. (15.1) becomes 

where 

  
2 

jue 4+ My? + 2MiM, ( - z) 

_ __ eM, 
= Oh +1) 1 ~ oP a 

1 kM\M, 
=~ (Mi + M2) ( —%5 ae.) (15.4) 

and Eq. (15.1) reduces to 
_ kU"; 

2(M, + M2) 

1 1 k? 2 _, TIT —_. a . 

wy! = 2U fart a iM, + Ms) 

w? lower branch 

(15.5) 
upper branch
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The subscripts + and — denote the sign used before the radical. 
Thus w_ is linear in & near the origin as in the case of like particles; 
w4. has a maximum at the origin and decreases parabolically as |h| 
increases. 

To interpret properly the meaning of a second frequency for 
infinite wave length, we must compute the amplitude ratio for 
small k;. Substitution of Eq. (15.4) into Eq. (15.3) yields the 
following relations for small & (powers of k higher than the second 
are neglected) : 

Ai\ _ k? Mi — Mz (4). = J + 3 Mit i, lower branch 5 6) 

A) __Mi(,;_#Mi-MN\ en pranch) 
A.)_ = ~ i, 8M, + MM; pPe ° 

Thus the lower branch increases parabolically at the origin as |k| 
increases from zero. Atk = 0 

Ar) _ Ary _ _ M, . (4) =1 ( ) - am «<< (15.7) 

The waves corresponding to the lower branch have equal ampli- 
tudes and phase difference zero; thus all the particles are dis- 
placed by the same amount and in the same direction. The 
wave-length of each of the waves is infinite, and the lattice is 
displaced as a whole. There is thus no restoring force, and the 
frequency is zero. On the other hand, the waves for the upper 
branch are exactly out of phase; 7.e., the displacement of particles 

of mass M; is opposite to that of the neighboring particles 1/2. 

Evidently the center of mass of two neighboring particles is 
stationary, but restoring forces enter in so that the frequencies 
of the waves are no longer zero. The lengths of the waves are 
still infinite since each wave is regarded as propagating through | 
just one type of particle. 

The values for & on the limits of the interval to which & is 
restricted are +7. The two limits will be symmetrical, and we 
consider only the case 

=m7—e= 2k e small 

Then 
2 

cos k = cos (r — «) = — cose x —1 +5 

E
T
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and the radical in Eq. (15.1) becomes 

  

TT _ F’M iM, 

Vos = = My [14+ ais 
if (Mi — M:) is not too small. Substitution in Eq. (15.1) yields 

2U"y U"' 16? . 
2 = on = y, + 30, — My) 
a 20" Ue (15.8) 
  
M, 2(M,— M,) 

so that the upper branch increases parabolically from 

_ VP U"", 

Qo = iM, 

while the lower branch decreases parabolically from 

_ 30", 

w= 4 Mi 

as |e| increases from zero. It should be noted that w, > w_ at 
the limits of the interval since Mi > Me, and between these 

limiting values of w we have a stopping band to be discussed later. 
The amplitude ratio at the ends of the interval is easily 

obtained. We have 

os ki = cos ("7 —£) = cos 1 = COS \5 5/~3 

(since k = 2k), and therefore from Eq. (15.3) 

  

  

  

  

  

MM, 
, —_— — — 2 - 

(4) mi : + 30h, — rg 
As _ eM, 

_ —eM,M, 
= 3M, — Mp —0 (15.94) 

’M iM, 

At Ma M+ Oh, Ma [1+ sci a 

Ao 4 eM, 

2 

= } 22 —» 0  (15.9b) 
eM, 

asé—.0. The interpretation of these ratios.is not very difficult. 

We have already seen that for the upper branch [(41/A2)-_, 4]
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the amplitude ratio is negative and different from zero at and 
near the origin. Equation (15.9a) shows that it is negative near 

the ends of the interval |k| S$ m and zero at the ends. Then for 
infinite wave length the particles oscillate in opposite directions, 

the lighter particles with larger amplitude. As the wave length 

decreases, the amplitude of the heavy particles decreases, and 
for the limiting wave length the light particles oscillate while the 

heavy particles remain at rest. 

For the lower branch [(A1/A2)4, w—], on the other hand, the 
particles start out all in phase and with equal amplitudes for 
infinite wave length. As the wave length decreases, the ampli- 
tude of the light particles decreases, and they remain at rest for 

    
    

a . ; AL 

w= Y2U; +n) ! , Ae 
! 1 ' 

1 I I 

weft 1 BRANCH + ¢ 
1 { i 

w=, /2U1 BRANCH~ | 
I ] My I i 1 

! 1 t 1 
1 ! _ i | 1 k 

a =a 10 Ut 
-T 0 r ! ! 

M,>M, | T= F2>-1! 
Fre. 15.1. Fig. 15.2. 

the limiting wave length while the heavy particles are still 
oscillating. 

These results are summarized in Figs. 15.1 through 15.3. 
Figure 15.1 shows w as a function of k for M, > M,. Figure 
15.2 shows the variation of the amplitude ratio for the two 
branches, and Fig. 15.3 gives the motion of the particles for the 
various cases discussed. The arrows in Fig. 15.3 indicate the 
amplitudes with which the two types of particles oscillate. Figure 
15.3 shows clearly that the motions obtained for »; and v2 are very 
similar: for »; the particles WM, are all at rest, and particles My 
move in alternate directions. For ve, M,is at rest and M, moving. 
The forces involved are the same in both cases, since changes in 
the distances between particles are the same; hence, the frequency 
ratio must be proportional to the square root of the.inverse ratio 

- of the masses.
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nm [Ms 
V2 M, 

as is actually obtained. 
The lower branch is frequently called the acoustical branch. 

This name comes from the fact that the frequencies in it are of 
the same order of magnitude as acoustical or supersonic vibra- 
tions. The upper branch is frequently called the optical branch, 
because of the fact that its frequencies are of the order of magni- 
tude of infrared frequencies. Further, if we think of the lattice 

Mz My Mz M, Mz Mi Mo My Mz My M2 Mi Me EQUILIBRIUM 
M,>M, POSITIONS 
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Fie. 15.3. 

as being composed of ions having alternate signs, e.g., Nat ions 
alternating with Cl- ions, an alternating electric field could not 
excite the acoustical type of wave in which two neighboring 
particles are in phase, but it could excite the optical type and 
displace neighboring particles in opposite directions. 

So far we have discussed only the passing bands of our lattice. 
We now consider the stopping bands. These occur for fre- 
quencies between w and w. and for frequencies above ws. We 
return to Eq. (13.5). 

9 2 

-( fr) MM, + azar an (M, + Mt) = sin? hy = sin?
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We may rewrite this in the form 

(Mat Me ere) 
w 2U", 4U" 2 

We have seen that as w increases from zero to w1 = 2rv, the 
expression on the right increases from zero to one. If w increases 
still further, the expression on the right becomes greater than one, 

and k/2 must become complex. Let 

  = sin? = (15.10) 

k=a-+ ip (15.11) 
Then 

sin 5 = sin 5 cosh £ + 7 cos 5 sinh (15.12) 

and since this expression must be real, we have the condition that 

cos $ sinh £ = 0 or 55 

That is, R.P. k = 7 = 2rad so that R.P. a = 1/2d throughout 
the stopping band a1 < w < we. R.P. means “the real part of.”’ 
Somewhere between w1 and we the expression on the right of Eq. 
(15.10) reaches a maximum and starts to decrease. It equals 
one at we and is positive and less than one between we. and 

w3. At ws it is zero, and as w increases still further, it becomes 
negative. In other words, Eq. (15.12) becomes pure imaginary 
and therefore 

(15.13) 

ee B 
| sin 5 cosh 97 0 or 5 = 0 (15.14) 

This means that 

k = i8 = 2rad 

Hence 

R.P. a = 0 w > w3 

. Since the real part of k is constant throughout both stopping 
bands and only the imaginary part varies, we have attenuation 
of the waves. In the first case w1 < w < we at the low frequency 
end w; of the stopping band, the light particles are at rest and the 
heavy particles are in motion, neighboring heavy particles being 
just out of phase; and at the other end w. the heavy particles 
are at rest with the light particles vibrating out of phase. The 

motion is attenuated along the lattice (¢.e., the amplitude of 

the vibrations decreases from particle to particle) with an
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attenuation constant that first increases with the frequency. 
Somewhere in the stopping band the motion changes from 
acoustical type to optical type, and as w increases the attenuation 
decreases until w = we, where it becomes zero. 

In the other stopping band w > ws; the particles are vibrating 

in opposite phase with the limiting wave length. This motion is 

attenuated with an attenuation coefficient that increases as w 
increases. 

  

  

i FY V2 V3 
Fia. 15.4. 

Curves of wave number a and of attenuation coefficient 8 

against frequency are shown in Fig. 15.4. (Compare with Fig. 

14.4.) 

16. Transition from a Diatomic to a Monatomic Lattice 

The diatomic lattice discussed in the last section is exactly 
like the monatomic lattice discussed. previously except that two 

masses appear instead of only one; 7.e., the distances between 
neighboring particles are all the same and the interactions are 

restricted to nearest neighbors. The diatomic lattice may be — 
reduced to a monatomic lattice in three ways: 

1. Let M,— 0. 

2. Let Mi ~., 

3. Let MM, — M2. 
The first two methods leave the period d of the lattice unchanged, 
while the last halves the period and results in a lattice d/2 = dj. 
We shall discuss the three methods in the order given above. 

1. Let M,—> 0.—In this case wo; = +/207/M, is unchanged, 

while Wo = VV 2U"»:/M, and oO: = Vor + we? both go to 

infinity. The width of the upper passing band goes to zero; for 

: 2 
Oy . 

1 or = Va Fo — ar = 02( “+1-1) 
2 

1 Wy ? 
= o:4(%) — 0 (16.1) 
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Thus the upper band rises and becomes narrower, finally dis- 
appearing entirely. The lower branch remains, and we have a 
low-pass filter with period d = 2d; left. 

2. Let My — ~.—Here wo; = VW2U"1s/M, goes to zero. we 
remains unchanged and w3— we: Thus in the limiting case 
there is only a single frequency w: = ~/2U"s/M 2, and this fre- 

quency does not really propagate. Each of the light particles 

oscillates separately with frequency we. This corresponds to the 

case of a row of harmonic oscillators with no interaction. The 
heavy masses are responsible for the restoring force on the oscilla- 

tors but take no part in the motion themselves. The amplitude 

        
  

  

Vv 

OPTICAL 
BRANCH Vs 

EET ST Peas hd 

mN a ws 2 sine 

4 

we . , Le cosine 

rd ‘ 7 as 
’ ACOUSTICAL Fg ~N 

BRANCH |. ‘ 
H / N\ | / 

\ f K \ 5 
: . = K= 2irad 

—-27 Ky- -T T 20 

tT = 0 ka T K, = 2m7ad, 

2 

J a a aL Jy 

Fia. 16.1. 

of the vibration is, of course, restricted to values less than d1; the 
light particles must not go through the heavy particles. 

Had we allowed interactions between second d neighbors as 
well as nearest neighbors, we would have obtained in the limiting 
case a lattice of coupled harmonic oscillators that would lead toa . 
band-pass filter. The single frequency present for independent 
‘oscillators would spread out into a band; the lower branch 

present in the diatomic lattice would still be missing. 
3. Let M, — M,—\This process is considerably more compli- 

cated than the previous two because a sudden change in the 
periodicity of the lattice is involved. The original structure, 

with M, > M:, repeats itself after a distance d, but when 

= M., the period suddenly drops to d; = d/2. Let us 
first discuss the relation between frequency and wave number 

= 1/\. This relation was shown in Fig. 15.1, which must be
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understood as representing only one section of a periodic. curve, 

as drawn in Fig. 16.1. The central section (Fig. 15.1) corre- 

sponds to —a« < k < m where k = 2rad as usual, and the com- 
plete curve is obtained when k takes any arbitrary value. 

When M, = M2, two changes must be made: 
a. The change in periodicity results in a sudden extension of 

the fundamental interval. For a lattice with period d, the wave 
number a has period 1/d, and its fundamental interval extends 
from —1/2d to +1/2d. When the lattice period changes to 
d, = d/2, the wave-number period becomes 1/d; = 2/d, and 
the fundamental interval is +1/2d; = +1/d. 

The following table summarizes the changes in a, k, and ki: 
  

  

  

Period for F undamental 
interval 

Lattice a k ky k ky 

M, > M, d ; On x! —_ +5 

; 
16.2) 

Mi=Mi [d=5lg,—g] 4e | 2 | tan | te             
  

where k = 2rad and k, = 2rad; = k/2. 
b. Another change in the curve is that it must become a single 

curve as in Fig. 2.4 instead of the double curve of Fig. 15.1. 
The single curve is drawn as a dotted line in Fig. 16.1, assuming 
that M,, M.— M = 2+/MiM,/(M1 + M;) simultaneously. 

All this can be obtained from Eq. (13.6), giving the frequency 
as a function of k;. If we take Mi = M.= M, the formula 
reduces to | 

Ky 
M. 2 sin? — 

aot Lt V1 — sin? hy = 1 + cos ky = (16.3) 
20", : | ht 

2 cos 9 

Selecting the sine function, we obtain 

TTF 
w = 2/57 

which is identical with Eq. (9.1) for the monatomic structure 
(Fig. 2.4). The cosine curve duplicates the results and in its 

hy sin 
2 

  
  

  

(16.4)
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middle part represents the upper curve of Fig. 16.1. The sine 

and cosine curves intersect at a point that is the common limit 
of Wi and Ws. 

20", 

i M,-M,-M W1 — We   

and the stopping band disappears. 

Another aspect of this transformation refers to the description 

of the wave and of the motion of the particles of the lattice. 
Referring to Eq. (13.8), 

Yon = A et(wt—2nk) 

Yoner = Axeilot-nt+Dhi] 

we see that the solution for the lattice (with Mi > M:) is 
represented as two waves, one propagating along particles of 

mass M, and the other propagating along particles of mass M. 
The wave number k, is therefore to be restricted to values 

between —2/2 and +7/2. For the discussion of this section, it 
will be convenient to change our conventions and obtain the 

solution (13.3) as a wave propagating through all of the particles. 

This means that we must allow k; to take on values in the larger 

interval from —z to 7. To achieve this we introduce two new 

quantities C and D, defined by 

A, =C-—-D=C -+- Dei@nt Dr 

As=C+D=C-+ Dei?) 

From Eq. (16.5) it follows that 

| D_A,— Ay 
CC Ag+ At 

Equation (13.3) may now be written 

Yon = Ceilot—2nky) + Detlet—2ni—1)] 

i[wt-—-(2n-+1) ky] i[wt—(2n-+1) (ki—7)] € + De 

(13.3) 

(16.5) 

Yond = 

and the sum of the two waves 

Yn = Celotmby +. Deilutm(er—m)] (16.6) 

gives a single wave propagating through all (both M; and M,) 
particles. The two methods of representing the wave are shown 

in Figs. 16.2a to 16.3b. Figure 16.2 shows the representation
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with two waves, one passing through each set of particles. The 
a part is for the acoustical and the 6 part for the optical branch. 
Figure 16.3 shows the k; and ki — + waves and their sums for 

the acoustical and optical branches in a and b, respectively. It 

(0) OPTICAL BRANCH 
Fie. 16.2. 

direction of 
propagation    

   
    

~<— direction of propagation 

of is Ki- T oo . “ 
. ‘ ¢ : 

afm’, L Se 74 NG 
io Nv a ¥ ¥    

  

(a) ACOUSTICAL BRANCH oo 
direction of 
propagation 

~<<— direction of propagation 

\ 

(b) OPTICAL BRANCH 
Fie. 16.3. 

      

should be noted that the k, and k1-1r waves propagate in opposite 
directions, so that one may think of the wave propagating to the 
right as being partially reflected as it traverses each particle, 
thus giving rise to a disturbance that consists of a transmitted. 
and a reflected wave.
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In order to see clearly how the transition from the diatomic to 
the monatomic lattice takes place, we must refer to Table (16.2), 
which shows the interval of variation for k1 in both cases. The 
original k, was restricted to values between —7/2 and 7/2, which 
means that k, — r varies between —a and —7/2 for ki > 0 or 
a/2 and x for ky < 0, since k, and k, + 2m are equivalent. This 

  

    

    

      

D 
C 

| | k | 
| 

1 | OPTICAL 
\ | | BRANCH - 

| | ACOUSTICAL | | 
| BRANCH 

| | { 
| i | 1 

al : ln _al \z 
2 | 0 | 2 Ky 2 10 12 x, 

i j 

“fH 0 W k -T 10 \%f 

I Mz ]| OPTICAL | | | AcousTICAL 
y ~ | BRANCH hy BRANCH 

a) M,=M,(1+ €) () 
Fia. 16.4, 

extends the interval to —z, + as shown in Table (16.2). The 
following scheme summarizes this transformation: 

ky Pg (ky +2 = hit) (16.7) 
ky ~ 7% 7 ~x/2 «/2 . 

This explains the correspondence between the different branches 
of the curves in Fig. 16.1. 

We have previously discussed the variation of the ratio A1/Az 
for the different types of waves [Eq. (15.3) and Fig. 15.2]. These 
same curves were drawn again in Fig. 16.4a under the assumption 
of a very small difference between the masses. 

M, = Mi(1 — e) ex<<l
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In this case Eq. (15.3) reduces to 

Mas Jf, 4 (My 42 1 Mt 1+ (¥) + 2 a7. cos 2h 

  

  

  

  

  

  

As _ 
Ao 2 cos ki 

_¢€F V2+ 21 — ©) cos 2h, — We + 
~~ 2 cos ky 

£ = afeost k(t — 6) + ey’ 
_ 2 7 a: = (1-3) 
~ cos ky ~ F cos ki * 2 

cosk, >>e€ (16.8) 
T Tv 

—3 2h 85 

since 144(1 + cos 2k1) = cos? ky. 
The plus sign gives the acoustical branch, and the minus sign 

corresponds to the optical branch. The curves remain very 
near the horizontals +1 except at the ends of the interval. 

These results can be expressed in terms of the ratio D/C of 
our new waves [Eq. (16.5)]. 

Acoustical branch: 

  

  

_ Ai _ € 48 

D_ Ay _ 2cosk;, ' 2 ~f(1- 1 ) (16.9) 

Cc 14 41 2-4 € _¢€ 4 cos ky ° 

Ag 2 cos ky 2 

The C wave is dominant with a very small D wave. 

Optical branch: 

2—-5;~_ —§ a= Poh 22 4 (46,10) 
€ € 

2 cos ki T 2 . (1 + COs 5) 

The D wave is dominant with a small C wave. 
Here we see that in the limit M@, = M, the description of the 

wave motion is much simpler with the C, D waves of Eq. (16.6) 
than with the Ai, A: waves previously used. 

Let us allow k; to run from —z to +7 as shown in the diagram 

16.7. For the acoustical branch 
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—5<h <5 D-0 C#0 (16.11) 

while for the optical branch we obtain 

—r<khi<— 5 , 

—— Cc-0 D#0 (16.12) 

5 <khi<a@ 

There is only one wave left (either .C or D) almost everywhere 
except in the immediate neighborhood of k; = +7/2, which are 
the branching points. where the curves separate in case M, > M, 
and give place to a stopping band. 

The example just discussed is very important, since it repre- 
sents the first instance of a general type of problem very often 

JUNCTION 
CONTINUOUS STRING Y DIATOMIC LATTICE 

x © x © x ™~   

——> INCIDENT WAVE 
~——> TRANSMITTED WAVE 

REFLECTED WAVE «<—~- 

Fra. 16.5, 

encountered on other occasions. Here it was possible to follow 
the transformation from the unperturbed case M, = M, = M 
to the perturbed problem M, # M, in all details. This is not 
always possible, and the method followed in more complicated 
problems will be to start from the unperturbed C, D plane waves 
and to make linear combinations of them [as in Eq. (16.6)] 
before discussing the perturbation near the branching points. 
Such examples may be found in connection with electromagnetic 

waves (X rays) or with electronic De Broglie waves in crystals, 

when the periodic distribution of atoms in the crystal lattice 
can be treated as a small perturbation. 

One more remark should be added to show the connection 
, between passing or stopping bands and reflection of waves. If a 

; continuous line capable of transmitting all frequencies is joined 

to the diatomic lattice (see Fig. 16.5), the coefficient of reflection 

at the junction will depend on the frequency incident from the 
continuous line. If the frequency is in one of the stopping 

f, bands of the lattice, total reflection will occur; #.e., 
| 

FR = coefficient of reflection = 1
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while for a frequency in a passing band both a reflected and a> 
transmitted wave will be excited. The coefficient of reflection 
will be less than one, and the actual value will depend on the 
characteristics of the lattice in this case. 

17. The One-dimensional Lattice of Polyatomic Molecules 

To treat a lattice of polyatomic molecules, we divide the lattice 
into cells. A cell contains one period of the lattice; 7.¢., if we 
start out with atom 1, then the first cell consists of atom 1 to N, 
where atom N + 1 has the same relation to atom N +1-+m 

as atom 1 has to atom 1-+m. Having defined what we mean by 

cell (in general, the same as molecule, unless the molecule itself 

possesses a periodic structure that is a period of the lattice), we 

CELL (n—2) ~=CELL (n~1) CELL n CELL (n#-1) = CELL (n+2) 

voy. sf vs ye. ¥. | ey. yy. sg. | st Ne. ye Je ~¥-¥ ¥ 

123) tf N23 fF "| 230 0¢O«OT "h 23001 Ny 2300«* 
d . 

  

2
x
 

    

change our notation slightly. We number the atoms in a given 
cell from 1 to N. The cells are also numbered, n being used to 
denote an arbitrary cell and n + p being the number of the pth 
cell to the right of cell n. The notation is illustrated in Fig. 17.1. 

The crosses indicate the equilibrium positions of the atoms, and 
the vertical lines the positions of the first atom in each cell, 7.e., 
the boundaries of the cells. We take the length of a cell to be d. 

We shall assume small displacements of the atoms when a 
wave propagates along the lattice and also shall assume that all 

interactions are elastic. We shall not limit the distance at which 

interactions occur. The force on atom r in cell n due to atom sin 
cell n + p is therefore : 

  

Fia..17.1.—A row of polyatomic molecules. 

Srsrinspe = Cors(Ynine — Yn) (17.1) 

where Cy,. is the interaction constant and is independent of n. 
It follows that the force on particle s in cell n + p due to 

particle r in cell n is 

Sutp,sinr == C_psr(Ynr — Yn+p.s) (17.2) 

According to Newton’s third law 

Sriryn-tp.s = —fripemr (17.3)
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and substituting Eqs. (17.1) and (17.2) into Eq. (17.8), we obtain 

Core(Yntp.s — Yr) = —~CopsrYue — Yntve) 

or 
Core = Coper (17.4) 

We take 

Corr = 0 (17.5) 

since the term 

Corr(Yar - Yn,v) = 0 

and does not enter any of the calculations. 
The total force acting on particle r in cell n will be given by 

Snr = > Y fanmtoa = > » Cors(Yntp, ™ Yn,r) 17.6) 

Pp 8s : p 8s 

We. assume a wave solution to Eq. (17.6) of the form 

Yar = A ,e2%i(vt—az) (17.7) 

A, is to be complex so as to contain the phase difference of particle 
r with particle 0, while x is the distance of the origin of the cell from 
the origin of the lattice. 

2=nd 

We may thus write Eq. (17.7) in the form 

Yay = A,eiotnbn) w = Qrv . 

Ym ° {? = om | (17.8) 

Yn,r therefore has period 1/d in a and 2x in k as in Sec. 4. This 

means that k may be replaced by k’ = k +- 2rp without affecting 
the solution. Substitution of Eq. (17.8) into Eq. (17.6) gives 

Saye = oor >, Cors(A se? — Az) 
, D,8 

d*y y, r ; f = M,— = —0°M,A,eior (17.9) 

from which we obtain the following relation between w and k: 

¥) Dralk)As = — 0°M,A, (17.10)
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where the function D,,(k is defined by 

D,,s(k) = > Coreg *? oar 8 

° 7.11 
D,r(k) = > Core + > Corre *? ( 

ps Pp 

The sum over s is to be taken over all atoms in a given cell and 
the sum over 7 is to be taken over all the cells. 

The acoustical branch gives A, = A, at k = 0, and hence 

w?M, = >) D,.(0) = ¥, Dr.) + D,,+(0) 
ar 

= > > Con — 2 Core + 2, Corr 

sr p 

= > > Core — y Con = 0 

3Xxr p p,.sFr 

wo =0 

For other values of & we write Eq. (17.10) as 

> (Dra(&) + 09M, 6,]A, = 0 (17.12) 

where 6 is the Kronecker 6, defined by 

_ fo rs 

ra = I r=8 

Equation (17.12) gives N linear homogeneous equations for A,, 
and the condition that they be consistent is that the determinant 
of the coefficients vanish; 7.e., 

|D,,2(k) + w®M Seal = 0 (17.13) 

Equation: (17.13) is an equation of degree N in w?, and hence 
there will be N values of w? for a given k, 7.e., there will be N 
branches in the w vs. k curve or the v vs. a curve. One of these 
branches will be the acoustical branch, and the remaining 
(N — 1) will be optical branches. w? will be a periodic function 
of k since D,.(k) is a periodic function of k. 

If we let N —» , the number of optical branches becomes 
infinite, since we must have the total number of branches equal 
to the number of degrees of freedom of the system. The lattice 
will become a continuous string with some sort of periodic struc- 
ture. We shall discuss the problem of the continuous periodic
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string ina later chapter. If the string is continuous and uniform, 
w is a linear function of k. Figure 17.2 shows the general appear- 
ance of the w vs. k curves. The dotted curves are w vs. k for a 
uniform continuous string. 

The transition from the uniform continuous string to the con- 

tinuous string with periodic structure (a loaded string, for 
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instance) is one.of the problems of periodic perturbation sketched 
at the end of Sec. 16, and for the discussion of which the example 
of Sec. 16 will be used as a model. The change from the V-shaped 
dotted curve in Fig. 17.2 to the wavy curves occurs in a way 
similar to the change from the single dotted sine curve to the two 
solid curves in Fig. 16.1.



CHAPTER V 

ENERGY VELOCITY, ENERGY FLOW, 

AND CHARACTERISTIC IMPEDANCE 

18. General Discussion; Phase Velocity 

So far we have discussed infinite lattices only. If we wish to 
apply our results to a finite lattice, we must add forces at the 
ends that will satisfy the boundary conditions. At the left end 
we must have a source of energy that will supply to the first 
particle the power that would have come to it if the lattice had 

extended indefinitely to the left. Then the propagation will 

depend on the frequency as noted at the end of Sec. 16. On the 

right end we must have a device that will absorb the energy 

that would have been absorbed by the omitted portion of the 

lattice extending indefinitely to the right. To set up the bound- 

ary conditions rigorously requires a discussion of the energy 

density, energy flow, and energy velocity in the lattice. This 

discussion will be carried on in the next few sections. . 

The one-dimensional mechanical lattice is an academic rather 
than a practical problem, and the only important instance of 

one-dimensional structures is found in electric lines, a discussion 
of which will be given in detail in the last chapters. It is, how- 

ever, very useful to know how to set up the boundary conditions 

for the applications of the theory to two- and three-dimensional 

lattices. 'The method developed in this chapter is general and 

will be extended later to these problems, but it is easier to under- 

_ stand in the one-dimensional case. 
The problems discussed are closely connected with the prop- 

erty of the structures of exhibiting dispersion. The wave velocity 

defined in the preceding chapters is known as phase velocity, 

since it is obtained from a comparison of the relative phase of — 

the oscillations of two neighboring atoms. This phase velocity 

is the one to be used in formulas like 

= Vr, V= (18.1) 

>?
 

ee
t
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where 7 is the period, » the frequency, \ the wave length, and a 
the wave number. A dispersive medium is one for which the 

phase. velocity V depends upon the frequency » of oscillations. 
Many classical problems of wave propagation do not exhibit any 
such variation. Maxwell’s equations of electromagnetism in 
vacuum lead to the equations of propagation of light and yield a 
constant velocity of propagation. Such is also the case for the 

standard equations for the propagation of sound waves, which 
result from a number of simplifications practically eliminating any 

frequency dependence of V. In such cases there is no difficulty in 
defining the velocity with which energy is transmitted through the . 
medium by the wave motion. This velocity is simply equal to V. 
When, however, the transmitting medium is dispersive, the defini- 
tion of energy velocity requires special attention and will be found 
to differ from phase velocity. This results from the fact that sine 
waves extending from —« to --o are the only waves to be 
transmitted without a change in their shape. Short signals or 
short impulses are distorted while they travel through the 
medium, and this distortion makes it difficult to define their 
average velocity. This is where the concept of group velocity 
comes in. A group of waves, or a wave packet (in the language of 
wave mechanics), is a signal of finite length, comprising only a 
limited number of wave lengths. We shall discuss the properties 
of such groups and the way in which they propagate through the 
medium and then compare the average velocity of the group with 
the energy velocity obtained from other definitions. 

19. A Theorem from the Theory of Complex Variables | 

Following a method very commonly used, complex exponentials 
were introduced to represent waves or oscillations. For instance, 
the displacement and velocity of a particle in a wave were written 

y= AeP?rit—az) y = a = QrivA errt-az) 

respectively. Time derivatives are indicated by dots over the 
function. The order of the derivative is given by the number of 
dots. . 

dy, ey 
ae 

It must be recalled that such expressions should always be pre- 

= ¥, etc.
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ceded by the sign R.P., meaning that only the real part of the 
quantity is taken into consideration, v72., 

y = A cos 2nr(vt — az), y = —QrvA sin 2r(vt — az) 

As long as we were working with equations linear in y, ¥, 9, . . . , 
we could drop the R.P. sign. But this is no longer allowed when x 
double products or powers are encountered, since yy, for instance, * 
means 

yy = —2nvA? cos 2n(vt — ax) sin Qr(vt — ax) 4 AwivA%e**i-a) 

This question will now be discussed. 
We shall require the time average of the product of the real 

parts of complex functions on numerous occasions. There is a 
simple way of doing this by the following equation: 

R.P.f X R.PLF = WRP. (fF*) (19.1) | 

Porte han Le Sh RG, Ord Sourndon Pies, gen citi 

where f and F are complex functions of time of the form 

f = freer, FF = Boettot-#) (19.2) 

The star means “complex conjugate of.”” Note that the time 
dependence of the two functions is the same. 

We now prove that Eq. (19.1) is an identity. 

° 
a   

RP. Ff XRPLF = foo cos (wt — ¢) cos (wt — ¢) (owe 
Siw td Ora. 

= = fot [i cos (wt — ¢) cos (wi — ¢)dt, (19.3) 

where + is the period of f and F' and is equal to 2r/w. We may 
expand the integrand in Eq. (19.3) and obtain 

RPT XUPE = 2 [cos (ut — 9) cos (at — 0 + 9 ~ dl 

= Fake I” cos (ot - 0) 
tT Jo 

[cos (wt — ¢) cos (vy — ¢) — sin (wi — ¢) sin (y — ¢)]dt



72 WAVE PROPAGATION [Cuar. V 

We replace (¢ — ¢) by w in the above so that 

T 

RPSXERP.F = fete | 
[cos y cos? (wt — ¢) — sin y sin (wt — ¢) cos (wt — ¢)|dé 

The second term in the integrand becomes zero on integration, 
T 
5 008 y. Therefore, while the first term gives 

RP.JXRP.F = * foro Z cosy = 5 fal’o cos ¥ = 5 RP. (fF*) 
since 

JF* = foF peo! e toro = foF yetd-9) = fF ye-¥ 

which proves the theorem. 

20. Energy Density, Energy Flow, and Energy Velocity 

First, we discuss the energy density and derive a mathematical 
expression for it. For the moment we shall confine ourselves to 
the monatomic lattice with interactions between nearest neighbors 
only. The theory of wave propagation in such a medium was 
discussed in Chap. III, Secs. 8 and 9. 

We shall require the following relations, already derived in 
Kgs. (8.8), (8.10), and (9.2), for the discussion: 

  

  

Yn = Acilutrn) k = Qrad 
2U" 4U” . ,k 2 — _ =. 9 w _ (1 — cos k) m 8D? 5 (20.1) 

_ a sin k/2 
_W = phase velocity = ako W., /2 

  

We shall temporarily drop the subscript on U’’;. 
The average energy density. of the lattice will be the sum of 

the average potential-energy density and the average kinetic- 
energy density. The average potential-energy density is the 
average potential energy per cell divided by d, the length of the 
cell, Thus 

  

E = ERP. U" Gate? (20.2) 
and since 

Yn — Yn—1 = R.P. Aetot-ka) (1 — ett)
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it follows that 

—~— U"l 

  

Eyor = Od 3 R.P. (Yn — Yn—1) (Yn — Yn—1)* 

= a (1 ~ ef) (1 — e*) = A* ae (2 — ek — “ 

_ A? 10" _ _ A?U” 3 - . 
= aq 2 cos b) =a sin 3 (20.3) 

The average kinetioenergy density is obtained in a similar 
manner; it is the average kinetic energy per cell divided by d, the 

length of the cell. 

Fxn = R. Ps qo Ll (Yn)? (20.4) 

and since 

= dyn _ a iwt—kn) — . R.P. “Tt = R.P. A i ) = RP. 10Yn 

we have 

_m 2A? 
Eun = R.P. od ” Gay, = 5 5] 3 mp. P. (tYn) (iyn)* <a d (20.5) 

Making use of the equation for w? as a function of k in Eq. (20.1),- 

we find that Eq. (20.5) reduces to 

a— _ mA?4U" , hk UNA? , 
=-——— §1 

k= 
~ aN — 2” o Eigin dd mo *2” 9 d n’ 5 Eo (20.6) 

The total energy density therefore is 

7H A2 
2U"A® nine & (20.7) 

i= d 2 
  

We shall need this relation later when we discuss the energy 
velocity. 

The energy flow from one cell to the next will be the average 

power absorbed by the second cell from the first. With the 
first cell as cell n, this will be given by the negative product of 
the real part of the force fn,n+1 on cell n due to cell n + 1 and the 
real part of the velocity of the particle in cell n (for the case of 

the monatomic lattice). The negative product must be taken 
since fnn+i is a force acting on particle n; and hence the positive | 

product would be the power furnished while the negative product 
would be the power absorbed by particlen + 1. We have
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Santa = U"' (Ynst — Yn) 
Yn = Aetlot—kn) 

Un = twAcior-m) = jwy, 
(20.8) 

The average power & (time average) absorbed by cell n + 1 is 
thus 

p= —R.P. Snintt x R.P. Yn — oo SRP. (fnnt19n*) 

U"A® 

  

    

= ——5— RP. (e-* — 1)(iw)* 

= SH" RP. [sin k — i(1 — cos b)] = 7A sine (20.9) 

Substituting the value for w given in Eq. (20.1), 

b= U"A? fo sin © sin k (20.10) 
m 2 

The energy flow gives us the energy passing from cell n to 
cell (n + 1) per unit time. A quantity closely connected with 
this is the energy velocity. It is defined as the energy flow 
divided by the energy density and gives the rate at which energy 
flows along the lattice. We denote the energy velocity by U.. 

UNA? Re sin k sin k 
® m 2 Uu" k 

U, = a= WF i =d I C08 5 (20.11) 

2-7 A? gin? 5 

  

2 

The energy velocity can always be defined, even if absorption is 
present. The meaning of Eq. (20.11) will appear clearly if it is 

compared with the formula giving the flow of matter in a fluid: 
let » be the density of the fluid and v its velocity. The flow of 
matter is = pv; hence the ratio &/p is the velocity of the fluid. 
In a similar way the ratio 6/H of energy flow to energy density 
obviously yields a velocity that is the velocity with which energy 
is flowing through the system. More detailed explanations and 

examples can be found in a report by the author. 

21. Group Velocity and Propagation of a Signal 

Having explained in Sec. 18 the meaning attached to the 
expression “group” or ‘wave packet,” we may immediately 

1 “Congrés international d’électricité,” Paris, 1932, vol. II, p. 739.
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proceed to the discussion of the simplest example, obtained by 
considering the wave motion due to the superposition of two 
sine waves of frequencies v) + Av and equal amplitudes A. The 
wave vp + Av has wave number do + Aa, while v) — Av has wave 
number a) — Aa. Thus the wave v — Av has the equation of 

motion 

y— = A cos 2a[(vo — Av)t — (ao — Aa)a{ 

while the equation for the wave > + Av is 

y. == A cos 2x[(vo + Av)t — (ao + Aa)z] 

To obtain the resultant motion, we add the two disturbances 

algebraically. 

y = y+ y+ =A {cos 2x[(v — Av)t — (ao — Aa)z] 
+ cos 2x[(vo + Av)t — (ao + Aa)z]} 

= 2A cos 2r(vot — Got) cos 2r(Av+t — Aa: ax) (21.1) 

This represents a modulated wave with an average frequency v in 

the carrier wave 

cos 2ar (vot — aot) (21.2) 

and a slowly variable amplitude considered as the modulation 

A cos 2r(Av-t — Aa: 2) (21.3) 

The phase velocity of the carrier wave is 

Ve=~ (21.4) 
Go 

In the same way the modulation is seen to move with a velocity 

given by Av/Aa. In the limit when the two frequencies become 

equal, | 

U, = group velocity = o (21.5) 

There is no difficulty in defining U, as long as the medium is 

purely dispersive, 7.e., » = (a); but if absorption also occurs, @ 

becomes complex or imaginary and the group velocity ceases to 

have a clear physical meaning. 

So far we have assumed zero coefficient of absorption in the 

monatomic lattice. Therefore,
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ov 0 U"” k 

Us = 3g = aE n( oN mm =) | 
Ut 

= 2d ~~ 5 cos 5 pada “cos & = U, (21.6) 

Thus if no absorption is present, the group velocity and the 
energy velocity are the same. However, the group velocity 

breaks down for cases with absorption, while the energy velocity 

can always be defined. 
The motion represented by Eq. (21.1) is best described in the 

following way: It consists of a succession of wavelets (21.2) of 
frequency vo and wave length 1/d». Ata certain instant of time 
the average amplitude of these wavelets is given by the modula- 

tion (21.3). If we do not pay attention to the detailed motion of 

  

  

Fie. 21.1. 

the wavelets and look only at the average amplitude distribution, 

we see this amplitude curve (21.3) move forward with the group 
velocity U,. But if we look at the phenomenon more carefully, 
we notice the wavelets moving inside the envelope (21.3) with 

their own phase velocity V (Fig. 21.1). A well-known example 
of such an appearance is found when surface waves are created 
by throwing a stone into a pond. The preceding example is just 
one among many similar ones, and the results obtained are to a 

large extent independent of the shape of the group or of the type 

of the modulation curve. It is characterized by the following 
feature: The modulation curve propagates without distortion and 
exhibits a well-defined velocity. The absence of distortion is 
obviously connected with the absence of attenuation. In an 
absorbing medium with attenuation the definition of a group 
velocity loses its accuracy. 

Furthermore, the absence of distortion can be obtained only if 
the wave packet results from the superposition of elementary 
waves whose frequencies lie within a small interval. In the 
preceding example we had just two frequencies ») + Av and
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vo — Av within a finite interval 2Av. We should find similar 
results with wave groups obtained by superposition of any num- 
ber of waves with frequencies within a given interval Av. In 
other words, the Fourier analysis of the group must yield a 
spectrum of finite length, which in the limit can be made infinitely 

small and can allow for the transition from Av/Aa to the deriva- 
tive dv/da of Eq. (21.5). 

There are other types of groups or signals whose Fourier spectra 

extend from —o to +o in the frequency range. For such 
signals it is impossible to go to the limit Av — 0, and the defini- 
tion of a group velocity again loses its accuracy. This results in 

the fact that the modulation curve progressively changes its 
shape in the course of propagation and is more and more dis- 
torted as time goes on. These general remarks will be illustrated 

in a few precise examples, where we shall use some well-known 
formulas involving Fourier integrals. Let C(t) be an even func- 

tion of time and B(») its frequency spectrum. 

C(t) = C(—d 

Then the Fourier transformation reads 

Ci = EL. Biv) cos 2rvi dv 
5 (21.7) 

BY) = [  O() cos art dt 

The last formula obviously yields B as an even function. 

Biv) = B(—») 

and the reciprocity between C and B results in the following 
statement: If a signal C(é) has a spectrum B(v), then a reciprocal 
signal B(é) will be represented by a spectrum C(v). We may use 
the signal C(£) as a modulation curve on a carrier oscillation of 

frequency »o, and we obtain a new even function 

Cx(t) = C(t) cos 2rvot (21.8) 

The frequency spectrum of C; is easily obtained. 

By(v) = L. Ci(t) cos 2xvt dt = LE. C(é) cos Qrvé cos 2rvot dt 

= 5 J C(t) [cos Qar(vo + v)é + cos 2x(v9 — v)éldt 

= 5(B(r0 +v)+ Bin —-»]= 5 [BQv+ vo) + B(v — m)]. (21.9)
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Fig. 21.2, 

B,(v) is again an even function of v. The spectrum B(») of the 
original signal is centered on the origin O. The new spectrum is 
obtained by the average of two such curves, translated by + »o. 

Let us give a few examples of Fourier transformations, corre- 
sponding to the reciprocal curves of Fig. 21.2. 

Spectrum B(v) Signal C(t) - 
I. Rectangular -. 

sin 2rvyt Boy = {j bis C(t) = an, PEE (21.10) 
0 || > V1 

Il. Triangular 

  

_ . 2 
Bo) = 4! 5 (bi<m of =», (Saznt) (21.11) 

0 |y] > v4 wrt 

Both signals exhibit a finite spectrum, while the signals them- 
selves extend from t = —o to¢t = o with a strong maximum 
at t= 0. The reciprocal signals would be finite signals (rec- 
tangular or triangular) B(é) with infinite spectra C(v). 

We now want to prove that a signal with a finite spectrum 
propagates in a way similar to the beats of Eq. (21.1). Let us 
take a C(t) modulation impressed upon a 7 carrier, as in Eq. 
(21.8). We assume this motion to be impressed on the atom at
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x = 0, and we compute the motion at a distance x from the 
origin. This means only replacing 

vt by vt — a(v)x 

where a(v) is the wave number 1/) as a function of v for the 
transmitting medium. Taking our modulated signal (21.8), we 
obtain according to Kq.. (21.9) 

Cx) = f°, Bul») cos 2avt dy = 2 [.° By cos Qnvt dv 

= f° [Biv + v0) + Biv — v)] cos 2rvidy (21.12) 

Let us write 
y=poty Yo > Py 

Then, for both examples (21.10) and (21.11), the first term in 
B(v + ») is always zero, and we find 

C(t) = pr ** B(u) cos Qar(vo + w)t du (21.13) 

This is the motion of the point at the origin = 0. For a point 
at distance x we obtain 

Cx(t,n) = [” B(x) cos 2n{(ve + u)t — a(v0 + wade (21.14) 

But v1 is supposed to be small enough to allow for an expansion. 

a(vo + w) = a(ro) + zB (22), lel < v4 (21.15) 

Hence 

0a 
(v0 + at — ax = wt — ave + u (1 ~ 32 2) 

Expanding the cosine in Eq. (21.14) and recalling that B is even, 
we obtain 

va 

Ci(t,2) = cos 2ar(vot — aox) B(u) cos p ( — a ) a 

0a 
cos 2 (vot — aoz)C (: - an x) (21.16) 

Vo 

This is the result announced: Individual wavelets propagate with 
their own phase velocity as shown by the cosine term. The
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modulation curve C ( _ oe x) moves along without distortion 
0 

with group velocity (21.5). 
The proof rests upon the assumption of a finite spectrum whose 

limit vi can be taken small enough to use Eq: (21.15). Signals 

with an infinite spectrum are always more or less distorted. 
The results are plotted on the curves of Fig. 21.3. The upper 

curve is the familiar one of v against a, as in Fig. 2.4, for the mona- 
tomic lattice with interactions between nearest neighbors only. 

4 
0 ypoar. Sho ur S ts Yro, 

   

  

    

  

Od 
Fia. 21.3. 

If a point M is taken on the curve, the absolute value of the 
slope of a chord OM gives the phase velocity V = v/a, while the 
tangent at M yields the group velocity U': = dv/da. Curves for 
V and U as functions of a are given: at the bottom. The V 

curve does not exhibit any singularity at a = 1/2d (cf. discus- 
sion of Fig. 2.2), but the group velocity U drops to zero on the 
limit +1/2d of the interval, a feature that checks very well with 
our description of these limit waves as standing waves (Secs. 2, 4, 
and 9). 

22. Preliminary Definition of Characteristic Impedance 

Impedance for a mechanical system is defined as the ratio of 

force exerted to velocity. In discussing periodic lines, 7.e., lat- 
tice structures with cells that repeat themselves periodically or a
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continuous line with a periodic structure, we mean by character- 
istic impedance the ratio between force and velocity for a single 
sine wave at the entrances or exits of the cells. For an infinite 
line, along which a single wave is propagated, this should be the 

same for all cells. The same is true if the line ‘is finite but has 

been provided with suitable forces for absorbing and furnishing 
energy, so that, except at the ends, the line behaves as though it 
were infinite. Obviously, a determination of characteristic 
impedance gives us the impedances that must terminate a finite 
line if it is to behave as an infinite line exhibiting no reflection. 

In this section we shall consider only the lattice consisting of 

like particles with interactions between nearest, neighbors: only. 
Then the characteristic impedance is given by ° 

Fanti = —ZYn (22.1) 

where fn,n+1 is the force exerted by particle n + 1 on particle n, 
Yn its velocity, and Z the impedance. From the earlier discus- 
sion of the problem [ecf. Eqs. (20.1) and (20.8)] 

- Yn = Aetot-kn) / 

Samer = UU" (Ynti — Yn) = U"yle™* — VD) 

Yn = WYn 

and therefore 

Zio = U"(1 — e*) = U"1 —cosk+i7sink) (22.2) 

We allow Z to be complex and set 

Z=2,+ 14; (22.3) 

Equating real and imaginary parts in Eq. (22.2), we obtain . 

_ vu" _ 3u" 3 k 

Z, = — (cos k — 1) = 3 sin? 5 

= — /U"m sin O34) 

U" _ 20" . k k _ : 7 k 

Z, = —~ sin k = ~— Sil 5 C08 5 = U"'m cos 5 

on making use of w = 2+>/U”/msin k/2. With the results of the 
last section, 

is
 

Z,=-—U, Uz, energy velocity (22.5) 

Qu
 

Lg 

ff
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We can interpret Z, and Z; completely by replacing . 

U"(1 — cos k) 

by C and noting that C is always positive. Further, Z, is posi- 
tive for the fundamental interval —1 < k < z, since cos k/2 is 
positive in this region. 

; . 7 . Ci. 
Sunt = —LYn = —Z,Yn — tLiYn = —ZYn + +o 

, Ci. , 
= —4,Yn jo 2” — LZYn Cyn (22.6) 

We have now split the force acting on mass n into two parts: the 
first term gives a viscous force and the second an elastic force. 

ELEMENTARY 
CELL 
9 9 -4—d —d_—q—4 —g—_g-—g}-_—-§- —- 

| m ASYMMETRIC CELLS 

>—_—__—4 —p———__—_—__—_-—__6—__—__-— 

4m $m SYMMETRIC CELLS — 
- Fre. 22.1. 

There is a disadvantage to the treatment we have just given; 
we have taken the cells to contain a whole particle at one end. 

If we try to find the impedance at the other end of the cell, we 

run into a difficulty because there is nothing there to exert a 
force or to have a velocity, since the cell must contain exactly 
one period of the lattice. The cells, as we have chosen them, 
are asymmetric and do not lend themselves conveniently to 

_, impedance considerations. 
\\ The difficulty may be obviated by defining the cells differently 

* ‘ and making them symmetric. We take the cells to be of length d 
(where d is the distance between the particles) as before, but we 
associate with the cell half of each’ of the masses at the ends. 
This makes the cell symmetric. The symmetric and asymmetric 
cells are shown in Fig. 22.1, where the vertical lines denote the 
boundaries of the cells in the two cases. Figure 22.2 shows a line 
composed of symmetric cells and terminating on an impedance 
Zi. 

Let us find this impedance Z, at the right end of the cell 
containing half of mass n — 1 at the left and half of mass n at the 
right end. The force on mass n due to mass n — 1 is given by
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OU" (yn—-1 — Yn), and the impedance term is —Z,Jn. Therefore, 
the equation of motion at the right end 44m of the cell will be 

OU" (Yn—1 — Yn) — Zen = Yamin (22.7) 

The force due to mass n + 1 is thought of as acting on the half of 
mass n in the next cell to the right. If that force were added to 

this, we would find exactly the equation of motion obtained 
before; the impedance would have opposite signs for the two 
halves of mass n and would cancel, so that the solution for yn 
would be the same as before. Substituting the solution in Eq. 
(22.7) gives an equation for Z.. 

U''(e®* — 1) — twZ, = Yom(iw)? = —l6me? (22.8) 

We want to show that Z, gives rise only to a viscous force in 

this model, and that the elastic force has already been explicitly 

n-2 n=-1 n 

Ss —-Q—w—- QDs — = 2550 
oom m <m 

A LINE WITH SYMMETRIC CELLS AND 
TERMINATION ON A CHARACTERISTIC IMPEDANCE Z, 

  

1 1 1 1 1 
geo glk gk gl gk. gk 

To To Te OF 
ELECTRICAL ANALOGUE 

Fie. 22.2. 

included; i.e, we now have Z, real. Equating the real and 
imaginary parts of Eq. (22.8), we obtain 

ut" k 
Z, = — sin k = ~/U"'m cos = = Z, 

2 
U" vu" : (22.9) 
—_ _ = Ao ging % me py? , 2 mn (1 — cos k) = 4 m 5 = 

The impedance at the other end of the cell is easily obtained in 
exactly the same manner. The equation of motion will be 

UO" (Yn —_ Yn—1) + LYn—1 = Yomin—1 

and Eq. (22.8) will be replaced by 

OU" (e-* — 1) + twZ, = —l4 mw?
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from which we obtain 

- (22.10) 

Summarizing the whole discussion, we have found that if we 
wish to end the line with particle n (mass m) on the right we 

must use asymmetric cells and apply an impedance Z, + 1Z; 

where Z, is the viscous force and Z; is an elastic force. If such 
an impedance is applied, the remaining masses will vibrate 

exactly as if the lattice were infinite. If we wished to make mass 
_n the last mass on the left, we should have to take asymmetric 
cells with masses on the left instead of on the right end of the 
cells. 

On the other hand, we may take symmetric cells and take 
particle n with 144m to be the end of the lattice, either on the 
right or on the left. The remaining masses will vibrate as if the 
line were infinite if we apply only a viscous force with impedance 

Z, to the remaining half of mass n; and the elastic force Z; 
occurring in the case of asymmetric cells is automatically taken 
care of by removing half of the terminating mass. 

We may make a few remarks on the low-pass electric line of 
Fig. 22.2. Using the classical analogy 

1 
Mw L, C ~ Ut 

we obtain 

Z, = i Cos : (22.11) 

or, for infinite wave length, 

DL 
Z, = G 

L and C are, of course, to be taken as inductance and capacity 
per cell, respectively, though inductance and capacity per unit 
length of line give the same result since the ratio is the quantity 
occurring. The impedance of electric lines will be discussed in 
detail later.
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The energy flow through the lattice was defined in Sec. 20, 
Eq. (20.9), by the formula 

6 = —R.P. Fyn x R.P. Yn = —l R.P. frnrt§n®) 

and now we obtain the characteristic impedance from Eq. (22.1). 

  

Fnintt = —LZYn 

Comparing these formulas, we find 

b= VRP. (Zyntn®) = BZ elynl? (22.12) 

This yields a relation between energy flow and the real part of the 
characteristic impedance, and it must be emphasized here that this 

real part Z, is the one upon which all our different definitions 
agree simultaneously. 

At the limit of indefinitely long wave lengths, our formulas will 

reduce to the well-known ones for a continuous structure. We 

have already discussed this transition in Sec. 9 and obtained 

e= dU"; elasticity modulus (9.3) 
m ; 

p=a density 

U", € ; 
V,.=a a =f phase velocity (9.3a) 

Peay 

  

In the same way we find now xy ey 4 gens 

Uo = Ve ° 22 13) LZ, = Vi, = Veo fv (22.18) 
When there is no dispersion and V is a constant, then, of course, 

yu ®wir%_y 
oa a 

The group velocity is equal to the phase velocity. The formula 
(22.13) for the characteristic impedance is the usual one. 

23. Junction of Two Lattices 

We are now in a position to discuss the behavior of waves at 
the junction of two monatomic lattices with the particles spaced 

at distance d from one another and with interactions between 
nearest neighbors only. Let us suppose that we have two such 
lattices with phase velocities W; and Ws, group velocities U; and 

Il
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Us, energy flows $; and &2, impedances Z; and Z, and ampli- 

tudes A; and A: at the ends to be joined: We shall call the ratio 

of the amplitudes the transformer ratio T. 

T = a or Ag = TAy (23.1) 
1 

We have obtained a relation between energy flow and charac- 

teristic impedance for any lattice [Eq. (22.12)]. If we substitute 

the value of y, and take the time average in the usual fashion, 

Eq. (22.12) becomes . 

& = YZ ,wA?® (23.2) 

Later we shall find it convenient to use Kq. (23.2) as the defining 

equation for the characteristic impedance. 

Zi Zo 

Q-w—-D-w- 9-0-4 

my mi mem, M2 Mo 
2 

Fie. 23.1. 

If we now join the two lines described above and require that 
the ends to be joined be the ends of cells in the two lattices, we 
obtain . 

= Z,07ArP (23.3) 
‘ P, = LEZ nena? A 9” (23.4) 

In general, we shall take w: = w2 and the condition that there be 
no energy loss and no reflected wave is 

B= or mAh =ZnAst or = TP (88.5) 

T may be easily computed for two monatomic lattices when 
the conditions at the junction are specified. Let us take, for 
instance, the lattices as divided into symmetrical cells; then 71 
and Z, are real. At the junction in this structure we have a 
particle, one half of which belongs to one lattice and the other 
half of which belongs to the other lattice (see Fig. 23.1). Since 
the two halves must move together, we have the condition 

Ai = A» or T=] (23.6) 

Hence, the condition for zero energy loss and no reflection at the 

junction is
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We obtained the expression for the characteristic impedance in [| 
the last section. If the masses in the two lattices are different, it 
follows that the elastic coefficients must also be different. 

In general, reflection occurs at the junction of two lattices, and 
the coefficient of reflection may be obtained in terms of the con- 
stants of the lattices. If reflection occurs, we have three waves 

at the junction: the incident wave with amplitude A, the trans- 
mitted wave with amplitude As, and the reflected wave with 
amplitude A3. The energy flows associated with these waves are 
given by 

@, = 16Z,.wA2* 

Bz = 162 ,,w"A 3? 

®, = 46Z 0A ? 

(23.8) 

since the incident and reflected waves propagate in the first lat- 
tice and the transmitted wave in the second lattice. We wish to 

obtain the coefficient of reflection 

As 

To do this, we note that we have two conditions for the expres- 
sions in Eq. (23.8). Conservation of energy requires that 

d, = PD, + B; (23.10) 

and the condition that the two halves of the particle at the junc- 
tion move together is 

A, = A,+ As (23.11) 

since the resultant of the motion due to the incident and reflected 
waves is an algebraic sum of these waves. 

From Eq. (23.10) we obtain 

ZA = ZmAg? + Z,,As? 

Zn (4) _~;,—(4s\ 
Zr, A, — A, 

Ao Zr As\? (a) =2[:-(2)] eo 

or 

or
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and from Eq. (23.11) 

As\’ _ As As 2 

(qe) 1429+) 28.18) 
Combining Eq. (23.12) with Eq. (23.13), we obtain a quadratic 

‘equation in (A3/A1) = & 

GY (rk) (1B 
ee Za) tat Zae (23.14) 

re 

or 

S
E
 

(R + 1)? + 7 (Rt 1) =0 

@+nleti+; 7 (BR - yf=0 (23.15) 

The solution 
: , R=-i (23.16) 

is trivial. The incident and reflected waves are just out of 

phase, and the particle. at the junction is at rest. The trans- 

mitted wave has amplitude zero, as may be seen by substitution 

of Eq. (23.16) in Eqs. (23.11) to (23.13). The other solution is 

Zn — Jr 

Dr Zn + Sr 

which gives the coefficient of reflection for amplitudes. The 

coefficient of reflection for intensities is 

‘Ri =|RP 
The coefficient of transmission T’ for intensities and the trans- 

formation ratio T are given by 

k= (23.17) 

As 
2b =7,= transformation ratio = 1+ R = Z, + Dn 

1" = coefficient of transmission = [T|? = oa (1 — R?) 
. 2 _ 42,2 

(Zr + Zr)? 

24, General Definitions of Characteristic Impedance 

So far we have discussed the monatomic lattice with inter- 

actions between nearest neighbors only. We may extend the
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treatment to the case of a monatomic lattice with the range of 
interaction unlimited and use the definitions and formulas of 
Secs. 8 and 10. The potential energy was obtained in Eq. (8.5). 

U = Trt DY) d)| Weis — UUs + nts Ua)*U"s | 5) 
n p>d 

The potential-energy density is the energy per cell divided by d. 
In a single wave, each particle has a sinusoidal motion and 

(Yntp — Yn)’ is zero; hence 

re | 7 
Fou. = 2d » OC" DYn = re — (24.1) 

| 

p>o 

A single wave y, = Ae‘) propagating to the right gives 

(Yn — Yutp)” = WR.P. (Yn — Yntp) (Yn — Yntr)* 

= IZA? RP. (1 — e-*?)(1 — ef) 

  

= A?(1 — cos kp) (24.2) 

and hence 
2 

Bx! = £ » U",(1 — cos kp) (243) 
p>0 

The average kinetic-energy density i is the same as before [Eq. 

(20.5)]: 

Ein = id im Ary? = ad ary U"’,(1 — cos kp) (24.4) 

p>0 

on substitution for w? [Eq. (10.1)]. Thus 

Bg! = Bai = 49 = 4° 9' v0 — cos kp) (24.5) 
p>od 

  

The larger range of interaction complicates: the problem of 
finding the energy flow. Let us compute the flow of energy to the 
right from all of the cells to the left of a certain particle that can 
be taken at the origin (n = 0). To-do this, we must compute the 

_. force exerted by a particle n < 0 on all particles interacting with 
it on the right. The force on particle n due to particle n + p is 
fnmtp in the previous notation. The subscripts denoting par- 
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ticle numbers have been omitted since each cell contains essen- 

tially only one particle. 

Snntp = OU" (Yntp — Yn) 

and the average energy flow due to this force will be given by 

=fantryn = — R.P. (fantpyn*) (24.6) 

Again the minus sign occurs since fnn+p is the force acting on 
particle n due to particle n + p rather than the force exerted by 
particle n on particle n + p. The latter is, of course, the nega- 
tive of the former. The right-hand side of Eq. (24.6) may be 

ENERGY FLOW 
THROUGH THIS WALL 

0000 0/0 0 0 0 
-4 -3 -2 -1 oOf1 2 3 4 

      

A LE . 

4 INTERACTIONS AT 
DISTANCE p=4 

Fie. 24.1, 

given explicitly by substituting the well-known exponential 
expressions for y, and Yn+. 

SRP. (fantatin®) = AU" RP. (# — 1)(iu)* 

= — 5U",At% sin kp 
which gives for Eq. (24.6) 

—Fanipin = 4U",A% sin kp (24.7) 

There will be p terms of the type (24.7) contributing to the 
energy flow across particle n = 0, since each of the particles 
n=0, —1, -2,..., —p+1 will furnish this amount of 

power to the first p particles to the right of particle 0 (see Fig. 

24.1). Thus the total energy flow will be given by the following 

sum over Dp: 

& = > 5 U"pAtup sin kp (24.8)
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The energy velocity is defined as in Eq. (20.11) and accordingly 
is 

» 5 U" pAtup sin kp 
3 _d 
  

_ ® —_ _? — ”W : U. = z= = ho U",p sin kp (24.9) 
_— m A% 2 ‘ 

2d P 

It is easy to verify that this is the same as the group velocity, for 

y, = 2% = 8% — 4 oe ge 8 mY 
4 lal 0k =.Qw Ak k = Qrad 

We have already shown [Eq. (10.1)] that 

w? = => U",(1 — cos kp) 
m » 

and hence 
2 

= = may U"'»p sin kp 

and substitution yields the equation 

d . 
U, = mo » U",p sin kp = U, (24.10) 

In the previous section we defined the characteristic impedance by 

where f, is the force acting on particle n and y, its velocity. 
Here, however, we have more than one particle affected by the 
particles to the right of particle n, and thus the characteristic 
impedance cannot be defined by Eq. (24.11) since it is not the 
impedance that would be required to terminate the lattice at 
particle n in such a way that no reflection occurs. It would 
be necessary to combine the impedances due to the different L 
particles near the end of the line. A conyenient way of doing 
this is offered by Eq. (23.2). According to this equation 

& = WZA%? (24.12) 

where Z is the characteristic impedance and always remains 
real. The combination of the impedances offered by the differ-
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ent particles is implicit. in the equation since the contribution of 
each particle to the total energy flow has been taken into con- 

sideration. We note that Eq. (24.12) is equivalent to 

& = WZIy,|" (24.13) 

and we use Hq. (24.18) as the general definition of the character- 
istic impedance of a one-dimensional lattice. This definition 

introduces no inconsistencies, and once we have computed ®%, we 
need consider only the particle terminating the lattice in prob- 
lems of finite lattices and the junction of lattices. Z is to be real 

and the cells so chosen that any imaginary part of Z that might 
arise is taken care of by the interactions of the particles in the 

lattice. This definition of the characteristic impedance enables 
one to state the necessary condition for no reflection at the end of 

the lattice: that the lattice be terminated on a system of imped- 

ances resulting in a total impedance equal to the characteristic 

impedance. This condition is necessary but not sufficient, and 

the general situation near the boundary is very similar to the 

one obtained in Secs. 8 and 10, where the problem of steady- 

state equilibrium was discussed. 
For cases where the cells contain particles of various masses 

the problem is more complicated, but the same general methods 

are applicable. To obtain the average potential and kinetic 

energies, the average contributions of each particle in the cell to 

the energy are summed and divided by the length of the cell. 

The energy flow ® is obtained by summing the contributions of 

all particles through a junction between cells. Once the flux 

and the energy density H are obtained, the energy velocity U, is 

defined by Eq. (20.11) and found equal to the group velocity 

[Eq. (21.5)] for all structures exhibiting no absorption. 

The curve »(a) always has a horizontal tangent on the limits 

of the interval a = £1/2d. This means dv/da = 0 and zero 

group velocity and checks very well with the fact that these 

special waves behave practically like standing waves. This was 

observed, for instance, in the NaCl problem discussed in Chap. 

IV, for the waves corresponding to w: and we, the limits of the 

passing bands. 
The characteristic impedance becomes increasingly difficult to 

~ define and loses more and more of its practical significance. 

Different values would be found for Z according to the assump-
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tions made about the distribution of Z between the particles of 
the last cell, and, furthermore, the Z value gives a necessary but 

not a sufficient condition for no reflection. 

To conclude, let us emphasize the importance of quantities 
such as energy flow, energy density, energy velocity, and group 
velocity, in addition to the usual phase velocity. These defini- 
tions were introduced long ago by theoretical physicists. They 
can be extended from one to two or three dimensions. For 

electromagnetic waves, for instance, a most general definition of 
the energy flow leads to Poynting’s vector. 

The characteristic or surge impedance, familiar to electrical 
engineers, is very useful for one-dimensional structures with 
interactions between nearest neighbors only. This includes 

practically | all “problems of filters, lines, and cables for electrical 
communications. We have just found how delicate is the exten- 

sion to one-dimensional structures with interactions at large 

distances. Despite many interesting attempts, the extension to 

two or three dimensions remains rather artificial. 

—
 

a
,
 

1See Scuetkunorr, 8. A., “Electromagnetic Waves,”’ Chap. XII, Van 
Nostrand, New York, 1948. 
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CHAPTER VI 

TWO-DIMENSIONAL LATTICES 

25. Direct and Reciprocal Lattices in Two Dimensions 

Lattices in two dimensions offer much the same sort of diffi- 
culties as those in three dimensions, but they are easier to discuss 
since drawings are simpler and clearer to understand. This is 

y 

~ 
(1-0) ROW 

~ 

| __» (1-1) ROW 

\ \ /\ 

  

    

  

    NS r~ (0.1) ROW 
(1.1) ROW 

Fria. 25.1. 

the reason why a whole chapter is devoted to the two-dimensional 
problem. 

We shall start with a two-dimensional lattice composed of 
particles all having the same mass and spaced at equal distances 
from one another along two lines intersecting at an arbitrary 
angle @. Later we shall find the generalization to more compli- 
cated lattices easy to make. This lattice is shown in Fig. 25.1. 

; 94
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The dots represent the masses. The distance between particles 
in direction d, is not necessarily the same as in direction de. 

We take d, and dz as basis vectors drawn from the particle 
chosen as the origin of the lattice. The vector coordinate of any 
point in the lattice is then given by 

tt, = hidi + leds (25.1) 

where /, and J, are integers. The basis system is not, of course, 

unique. d, and d’, would serve just as well and, in fact, any two 
linearly independent vectors d’’; and d’”’: given by 

d”; midi + nide my ny 

d’’y = modi + node me * Na (25.2) 

where m1, Mo, 1, and nz are integers,! would give a satisfactory 

basis. The d’’s correspond to nd in the one-dimensional system, 
and there we used n = 1, i.e., the vector with the smallest 
absolute value greater than zero. Similarly, here we shall more 

or less arbitrarily designate d, and d», the smallest pair of basis 
vectors greater than zero, as the basis vectors of the lattice. 
When we assume two basis vectors d; and d: for a lattice, then 

the lattice is completely determined if we restrict ourselves to a 
single type of particle and require that the particles be equally 

spaced along the two independent directions. We refer to the 
lattice described by the vectors d; and d» as the direct lattice. 
For each direct lattice we may define a reciprocal lattice that is 
to have basis vectors b; and be given by the equation 

(b;- di) = dix ; _ , 3 (25.3) 

where 6, is the Kronecker 5 symbol, defined by 

li=k 
bi = | Oixk (25.4) 

The reasons for the term reciprocal lattice become apparent 
with a little calculation. For, if we take the origin of a pair of 

orthogonal axes x and y at the origin of the basis system, the 

vectors d; and d, may be written in terms of their Cartesian 
components as follows: 

1 The area of the new cell d’’; d’’, should equal that of di d.; otherwise 
the simple lattice is changed into a lattice with basis (see p. 128).
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di = (dix dy) , 
ds = (den doy) (25.5) 

or, in terms of the matrix notation, the matrix 

_ (di ds ) _ D= 4 25.6) : (‘i dey 28.6) 
represents the basis system. Similarly, the reciprocal basis sys- 

tem has the matrix 

bis ps) 
B= . (a be, (25.7) 

The subscripts on the elements of the matrix D must be trans- 
posed for the matrix B since, if d; and dy are thought of as row 
vectors, bi; and be must be column vectors because the latter are 
defined by taking a scalar product with the former [Eq. (25.3)]. 
It is readily verified that D and B are reciprocal matrices. Let 

_ us form the matrix product. 

\ pa. (ae os) (> Pa) 

° B= (te dey] \by bay J 
_ (j- + diyby dizber + ov) 

dod 12 + doybiy doadon + deydoy 

=(ag) Gas) =G a8 as 
wnere 6 is the unit matrix. From this it follows that | 

B=D-1 (25.9) 

From Eq. (25.3) we see that . 

bi is perpendicular to de | 
be is perpendicular to di (25.10) 

and therefore 

(bi . di) =j= Ibal|da| COs (5 - s) = Ibilld,l sin 8 

7 (25.11) 
(bs ° de) = 1 = [bel |de| cos € — ) = [bel {del sin 6 

where @ is the angle between di and d:. This is easily seen by 

inspection of Fig. 25.1. Now the area of the elemenitary cell in
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the direct lattice (¢.e:, the parallelogram with di and d: for two of 
its sides) is given by 

Sa = ldi x d,| = \di|[do sin 0 (25.12) 

from elementary vector analysis, while that of the elementary 
cell in the reciprocal lattice is 

= [sllbs| sin 6 . (25.13) 

The product of these areas is 

Sa* Ss = |dil|del sin 6/b:||be| sin 6 
. sin 6 

= [dillde| sin 0 eT lag ain 6 
from Eq. (25.11). In other words, the areas of the direct and 
reciprocal cells are reciprocals. 

In the one-dimensional lattice the length of the cell in the 
direct lattice was d. The length of the cell in the frequency vs. 
wave-number space was 1/d, and this was, therefore, the recipro- 
cal cell of the lattice. Thus the direct lattice gave the periodicity 

of the medium, and the reciprocal lattice gave that of the fre- 

=1 (25.14) 

‘quency of the waves propagating through the medium. Similar 

results will be obtained for two dimensions. 
For readers accustomed to the definitions of tensor analysis, 

the following comment may be added. The di and ds basis 

vectors of the direct lattice play essentially the role of the 

covariant unit vectors, while by and bz represent the contra-~ 

variant unit vectors in an oblique coordinate system.’ 
As a matter of fact, many discussions are simplified if the 

d, and d, vectors are used as unit vectors defining an oblique 

axis system, and any arbitrary vector r is given by its & and & 

components along the d vectors. 

r= &di + fede (25.15) 

The oblique (di,d2) cell in the zy space is thus reduced to a 

square cell in the £ space, since 

vector d; means & = 1, & =0 

vector dz means £=0 &=1 

1 Brituoutn, L., “Les Tenseurs en mécanique et en élasticité,” pp. 27-30, 

97, 101, 105, Masson, Paris, 1938. , 
STRATTON, J. A., “Electromagnetic Theory,” p. 39, McGraw-Hill, New 

York, 1941.
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Furthermore, eee to the ons equation (25.3) 

= (r ° bi), = (r . bs) (25. 16) 

A straight line in he plane (this “ne will become a plane in 
three dimensions) is represented by a linear relation. ” 

(a:r) = az +ay=c 

or ait + ack = ay = (a- di) . 
on = (a+ d,) (25.17) 

as is easily seen by direct substitution. Conversely, 

a= ab, + ade (25.18) 

In these equations a obviously represents a vector orthogonal 

to the straight line (25.17), and c/|a| is the distance 6 of the line 
from the origin. 

A lattice point is one with integral coordinates J, and Zs. 

fy = hi, £5 = ls, r= lid, + lode (25.19) 

and a , vector h in the reciprocal lattice is 

h = hyb; + habs hy and he integers (25.20) 

If such an h vector is taken as vector a in Eq. (25.17), it defines 
(for different values of c) a set of parallel lines, some of which 

go through an infinite number of Points of the direct lattice. 
One of these lines is 

(her) = hi(bi- 4) + he(be-r) = Aiki + ak = (05.21) 

For c = 0 the line passes through the origin and through all 
lattice points for which 

Aly -+- hols = 0 

such as 

ly = he and le = —hy 

Other lattice rows will correspond to different c values. Now we 
ask the following question: What is the distance from the origin 
of the lattice row in this set nearest to the origin? This is the 
same as asking: What is the smallest nonzero value of |c{? Since 
hi, 1, he, and & are all integers (positive or negative), c is also 
an integer for a lattice row, and the smallest nonzero value of |c| is, 
provided hi he have no common factor and h is the smallest 
possible vector. 

le] =
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This means that the distance between each of the lattice rows 

in the set (hi,h2) is 

2.
 

p_
 

== (25.22) 

Thus we have the following statement: A point (f1,h2) in the 

reciprocal lattice defines a set of lattice rows in the direct lattice. 
These straight rows are perpendicular to the vector h and are 
spaced at a distance of 1/\h| from one another. This is known 
as the Bravats notation for crystal planes. In Fig. 25.1, the 
(1,0) rows are the vertical lines, and the (0,1) set is parallel to ds. 
The vector d’; is in a (1,1) row, while d’, is in (1,—1). 

According to the physical properties to be discussed, sometimes 

the direct and at other times the reciprocal lattice will yield the 
better description of the periodic structure. 

26. Doubly and Triply Periodic Functions 

We shall have use for doubly periodic functions only in this 
chapter. Since, however, triply periodic functions will arise 

in the theory of three-dimensional lattices, we shall treat the two 
together. By a doubly or triply periodic function we mean a 
function of two or three independent variables, periodic in each 

of its variables. The mathematical theory of such functions 

would be considerably simplified if we could split an arbitrary 

function, say D(z,y), that is periodic in x and y into a product 

of two functions F(x) and F2(y) periodic in x and y, respectively. 

This can be done, however, only in very special cases. Suppose, 
for instance, that 

1 x, y both integers, | 

F(a,y) = | 0 otherwise _ (26.1) 

Figure 26.1 shows F(z,y) plotted in the zy plane. The dots 
represent points at which F(z,y) is not zero. Then 

1 x integer 

Pi(x) = | 0 otherwise 
y integer 

\ (26.2) 
Fily) = 0 otherwise | 

are two functions of one variable each whose product is F(z,y). 
Evidently F(z) and F2(y) are both periodic functions. Consider, 
however, the function
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1 x or y integer 

Fay) = | 0 neither x nor y integer (26.3) 

Figure 26.2 shows the function F(z,y) plotted on the xy plane. 
The horizontal and vertical lines represent the points at which 

F(z,y) is not zero. Let us assume that 

F(x,y) = Fi(z)Fo(y) (26.4) 

holds for all zx and y. Then, if x; and y; are neither integers, 

Fi(a1)Fe(y1) = 0 (26.5) 

so that | . 

Fy(a1) = 0 or F.(yy) = 0 (26.6). 

Let us suppose F2(y1) = 0; then 

Fi(n)F.(y1) = 0 nan integer (26.7) 

- contradicts the hypothesis that F(x,y) defined by Eq. (26.3) has 
the form (26.4). . Starting from F's(z1) would lead to a similar 

  

  

        
    

y y 
2 e e e 2 

1 2 eo e 1 

> = e- X x 

o| 1 2 3 0 1 2 3 
Fia. 26.1 Fie. 26.2. 

conclusion; hence the decomposition is impossible. Many 
authors have also tried a sum. 

F(z,y) = Fila) + Fey) | (26.8) 

An example of this would be given by taking F, and F»2 as in 
Ea. (26.2). | | 

2 x and y integers 
F(x,y) = 1 x or y integer 

0 elsewhere 

Such an example is obviously a very special case of little practical 

use.
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We shall, however, find it possible to expand doubly or triply 
periodic functions in double or triple Fourier series, and this will 
be done by means of the reciprocal lattice defined in Sec. 25. 

A periodic function F(x,y) in the direct lattice has the same 
value at points 

r= (x,y) and Yo=rt iidi + hide (26.9) 

Changing to coordinates &: and £ as in Eq. (25.15), we obtain a 
function f(£,£2) with period 1 in both & and &. This periodic 

function can be expanded in a double Fourier series of imaginary 

exponentials. 

F (x,y) = S(&1, &2) = >» Cr snge?miiadrthade) (26.10) 
Atha 

where hj and he are integers, and the coefficients of this series are 

given by 

1 1 ; , ; 

h f S (G1, ae Pmt bldey dbs 

= > Cum I * f * g2mil(a—h') feta) Ble, dey 
Atha 

The integral is zero whenever h; # h’; or hz ¥ h’, and the only 
remaining term is the one for which hy = h’; and hz = h’». 

Chm = fl [0 fengdetnretmtodg, dé (26.11) 

The Cj... coefficient is generally complex and includes the ampli- 
tude and phase angles. Returning to the original F(z,y) func- 
tion and making use of Eq. (25.21), we obtain 

F(ay) = Y) Cineerier = Dy Crynge2ti arr) +halbarr) 
Atha hihe 

(26.12) 
h = hyb, + habs 

where h defines one of the vectors of the reciprocal lattice. The 
periodic character of this expansion can be checked directly 
from Eqs. (25.20) and (25.8). 

(her’) = [he @ + hidi + led,)] 

= (h ° r) + Agli(b1 ° di) + hele(be ° de) = (h ° r) + Aili + hele 

The imaginary exponential in Eq. (26.12) obviously has the same 

value at (hr) as at [(h- 1) + integer]. ,
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In the transcription of Eq. (26.11) we must be cautious, since 

£, and & correspond to oblique coordinates, and the length of a 
vector r is 

In]? = a + y? = [dil&s? + 2a - da) frge + [dl2Es? (26.13) 
The area Sz of the d cell is transformed into an area 1 in the & 

system; hence . 

Sa = |dl[d,| sin 4, dx dy = Sad&i dés (26.14) 
and 

dt dz 

Chins = t J | F(a,yje?2t@nrda dy (26.15) 
Sa Jo Jo 

To give a physical interpretation to expansion (26.12), we may 
say that the periodic function is decomposed into plane waves, 
corresponding to each of the lattice rows (lattice planes in three 

dimensions) defined by the points h in the reciprocal lattice. A 
periodic function F(2z,y) that can be represented by a product 
F,(x2)F2(y) offers the very special property that 

Chip = Ch, Cr, with Ch. = [ file ?™™ hide, (26.16) 

and a similar equation for C;,. This, obviously, cannot be 

general, but it retains the whole set of coefficients C. The 
assumption in Eq. (26.8) of a sum F(x) + Fe(y) is much more 

restricting since it knocks out all the coefficients except C;,0 and 

Con, which means that all oblique atomic rows are ruled out. 

To emphasize the importance of these definitions, let us state 
that X-ray reflections from a crystal yield directly the values of 
\Cino| in the expansion of electronic density inside the crystal. 
Only the absolute value of the coefficients is obtained from the 
experimental data, but symmetry considerations often enable 

one to guess the phase angles and to reconstruct the whole 
periodic function representing the average density of electrons 

throughout the crystal lattice. 

oT. Zones in a Two-dimensional Lattice 

In the discussion of the one-dimensional case, we found that 
the frequency was a periodic function of the wave number, and 

hence for a given frequency there was ambiguity in the wave 

length and the direction of propagation. We chose an interval 

containing one period of the frequency and taken symmetrically
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about the origin, and then we restricted the wave number to 

values in this interval. In the language of this section, we should 

call this interval the first zone. The second zone in one dimen- 

sion would consist of ‘two intervals containing half a period each, 
one on each side of the first zone, etc., for higher order zones. | 

The zones for one dimension are shown in Fig. 27.1. 
We now proceed to find the analogues of these zones in the two- 

dimensional case. The zones will be regions in the reciprocal 
lattice, since this is the lattice describing the periodicity of 

V 

  

a 
K 

("J 1st ZONE 3rd ZONE {1 5th ZONE 
=] 2nd ZONE 4th ZONE 

Fia. 27.1.—Zones in one dimension. 

frequency as a function of wave number. Let us consider a 
plane wave propagating through the two-dimensional medium. 
It will have the form 

y == A eilwt—2rayx—2razy) (27.1) 

or if we let a be a vector with components a; and az and r a 

vector with components x and y, 

Y= Aeletrer) and fal? =a? ast = (27.2) 

a will be a vector in the direction of propagation, and its magni- 

tude will be the reciprocal of the wave length dX. In a discon- 
tinuous medium, y is defined only at points r at which particles 

are located; t.e., at the points riz, .of the direct lattice. Thus 

Qm(atap,) = 2e(a- dads) + Qu(a- leds) = Liki + lak (27.8) 
where we have set 

ky = 2r(a- dy) and ka = 2r(a- de) (27.4) 

Accordingly, Eq. (27.2) may be written 

YP = Aet(wt—hil—kale) | (27.5)
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Now, as in the one-dimensional case, we may replace k, and kz by 

k’,; and k’s where 

kh’; = ky + 2am; m,; integers (27.6) 

without changing either the motion of the particles or the fre- 
quency. This ambiguity in the value of ki and ke is the analogue 

of that in k in the one-dimensional case (Sec. 4). The values of 
k’; and k’, in Eq. (27.6) correspond to the-following value for a’: 

a’=a + mybi -+- Mode (27.7) 

for 

k*y = 2r(a’ : di) = 2r(a . d;) + 2rmyi(b1 . di) 

+ 2rmMe(be ° di) = ky + 2rm ’ 

k’ = 2r(a’ . d.) = 2r(a . de) + 2rmy,(b1 ° de) 

+ 2rme(be ° d:) = ke + 2rmMms 

(27.8) 

The direction of propagation is given by a’, and this, as well as 

the magnitude of the wave length, will depend on m; and mz 
in Eq. (27.7). Various a’ vectors corresponding to a given a 

[Jv] 
  

  

  

  

  

‘Fie. 27.2. 

are shown drawn in the reciprocal lattice in Fig. 27.2. This 
discussion shows that the frequency » of the wave, in a two- 
dimensional lattice, is a periodic function of the wave vector a 
in the reciprocal lattice with basis vectors b; and bs. 

We must now formulate a rule for choosing the area to which a 
is to be confined. We might. start at the origin of the basis
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system and confine all vectors a to the first elementary cell of 
the reciprocal lattice—+.e., to the parallelogram bounded by the 
points (0,0), (0,1), (1,0), and (1,1) in Fig. 27.2. There are two 
disadvantages to this. In the first place, this method singles out 
the directions contained in the angle 7 — @ as preferred direc- 
tions of propagation for the waves. Further, it does not require 
the use of the longest possible wave length for a given disturbance 

and thus is inconsistent with the conventions set up for the 
one-dimensional case. 

To do away with these objections, we try to construct a zone 
that will be analogous to the first zone in the one-dimensional 

ff ff 

« be 4 
q 5 

A 

b, 
= so” 

FIRST bron / 

Fia. 27.3. 

case. This méans, first, that we must place the origin in the 
center of the zone. The remainder of the construction is accom- 
plished by drawing perpendicular bisectors of the lines joining 
the origin to each of the other points in the reciprocal lattice. 

The smallest closed polygon formed by these perpendicular 
bisectors is taken as the first zone. It is independent of the 

basis system chosen and allows propagation in all directions. 
Furthermore, it requires the longest wave length describing a 
given disturbance to be used, as is easily seen by inspection since 
a complete period for each direction of propagation is included 

inthe zone. There is still an ambiguity on the boundaries of the 
zone just as in the one-dimensional case. The construction 

for the first zone is shown in Fig. 27.3. The first zone has the 
same area as the first elementary cell of the reciprocal lattice, as
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may be seen by comparing elements of the two areas containing 
the same numbers. These elements are easily seen to be con- 
gruent from plane geometry. 

The construction of the second zone and higher order zones is 
more complicated. They must all be bounded by perpendicular 
bisectors of lines joining the origin with other lattice points, and 
there can be no perpendicular bisectors passing through the 
interior of a zone. The significance of this will be seen later. 

e @ e 

Notice 
All lines limiting the zones are 
perpendicular bisectors upon 
lines joining the center © to 
some points of the reciprocal 

lattice 

  

° 

OC Ist ZONE 

=] 2nd ZONE 
WZ 3rd ZONE 

Fie. 27.4. 

If a wave propagates through a continuous medium with small 
periodic variations in such a manner that its wave vector meas- 
ured from the origin terminates on a perpendicular bisector of a 

line joining the origin with a lattice point, a discontinuity occurs 

in the v vs. [a] curve. The object of introducing zones is to 
eliminate discontinuities in the v vs. |a] curve except at the 
boundaries. This is exactly analogous to the one-dimensional 
case. 

To construct the second zone, we draw the second smallest 
closed figure about the origin and bounded by perpendicular



Src. 28] TWO-DIMENSIONAL LATTICES 107 

bisectors. The second zone is the area enclosed between the 
boundary of the first zone and the boundary of this second figure. 
The construction is shown in Fig. 27.4. Similarly, one may 
construct a third zone that is the area enclosed between the 
boundary of the second zone and the third smallest closed figure 
bounded by perpendicular bisectors. This is also shown in 
Fig. 27.4. Higher order zones are constructed in just the same 
manner. It should be noted that the (n -+ 1)st zone consists of 
figures having at least one side in common with one side of the nth 
zone and all vertices in common with the (n — 1)st zone. 

Each zone has the same area as the elementary cell in the 
reciprocal lattice. This is shown by taking sections of the zone 

under consideration and noting their position relative to some 
lattice point. Now the wave vectors terminating in the cor- 

responding section of any other cell will give the same value for 
y, since the only change in y is the addition of 2mm in the exponent 

of the exponential. Therefore, we may consider the two sections 
equivalent. The matching of sections in the elementary cell 
with sections in the first and second zones is shown in Fig. 27.4. 
In all these cases the area of each of the zones is equal to the 
area of the elementary cell in the reciprocal lattice, and this is - 
true for all cases that have been worked out. A general proof 
that this will always be the case has been worked out. (See 

- Appendix.) 
28. Propagation of Waves in a Continuous Two-dimensional 

Medium with a Periodic Perturbation 

We are considering waves propagating in a two-dimensional 
continuum with a nonuniformity in the structure of the medium 
that is periodic in each of the two independent directions. This 
problem was sketched in Sec. 17 for the one-dimensional case 
and will be fully discussed now. We can define a direct lattice 
with basis vectors pointing in the two directions di and dz and 

having magnitudes equal to the periods of the structure in these 
two directions. Each point in the first elementary cell may be 
defined by a vector of the form [Eq. (25.15)] 

0O<& <1 
r= &idi + fede 0<% <1 

The vectors from the origin of the lattice for each point in the 
lattice are obtained by adding the vector for the corresponding
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point in the first cell to the vector of the origin of the cell in 
which the point lies. 

r= (&:dy + fede) + mids + mode | 

A reciprocal lattice with basis vectors b; and be defined by 

(by + di) = dx 

as in Sec. 25 may be constructed. The vectors in this lattice 
are the propagation vectors of a wave propagating in the direct 

lattice, and the frequency of the wave is a function of the propa- 
gation vectors. , 

The general wave equation for a two-dimensional continuum 
with periodic nonuniformities is 

Vy — aed =0 (28.1) 

where V? is the two-dimensional Laplacian operator, is the wave 
function, and V is the phase velocity of the wave, assumed to be 
a periodic function with periods d; and dy. + is a function of 
(x,y) and of the time t. We assume that the time-dependent: 
part of & is separable from the space-dependent part, 7.e., 

y = u(z,ye (28.2) 

from which we obtain a differential equation for wu. 

ww? 

ava (28.3) 

Now the wave equation for a two-dimensional homogeneous 
isotropic continuum is (after the time part is eliminated) 

Vu + 

v? wo" Uo + Ve Uy = 0 (28.4) 

where V» is a constant depending on the constants of the medium. 
A solution of Eq. (28.4) is 

Uy = Aem2ti@r) (28.5) 

where 

Vo? dna? = 20, fale = 2%, (28.6) Tv al Vo? Ve . . 

Equation (28.5) represents a plane wave. We may think of the
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wave as an ordinary sound wave or as an electromagnetic wave. 
Both of these have constant velocities in a homogeneous medium. 

We solve the problem of propagation of waves through a 

continuum with periodic structure by perturbation methods. 

Thus we set 

(28.7) 

We take a, the propagation vector, as fixed both in magnitude 
and in direction. u, 1/V2, and w? are all functions of a in the 
reciprocal and r in the direct lattice. ¢ is a constant small 
enough so that any terms in e?, e?, . . . that we may encounter 

may be neglected in comparison with terms in ¢, at least to a 
first approximation. The function f is periodic, and its average 
is zero in order to ensure . 

i f1 
Vo? V? 

We substitute Eq. (28.7) in the general wave equation (28.3). 

2 2 

Vu + Tau =0= Vue + 75 Uo 

: 2 

+ é | vu + 72 U1 + (*, + ws) uo (28.8) 

if we neglect terms in e? and higher powers of «. The zero-order 
approximation is obtained by neglecting the term ine. This is 

just the wave equation for the continuum without variations, and 

the solution has already been given. The first-order correction 

to the zero-order approximation is given by equating the term in 

e to zero. | 

2 : ; 

V7U1 +73 uy“ (%, + w'/) Uo (28.9) 

This is an inhomogeneous differential equation as it stands. The 

homogeneous differential equation in wu: is identical with the 
zero-order approximation and has the solutions . 

w= Be~2K@"") (28.10)
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where 
2 

Anja’? = 575 = deta’, fa”? = jal? (28.11) 

To obtain the solution of the inhomogeneous equation we expand 
the periodic function f in a double Fourier series as in Sec. 26. 

f = DC mm err stake) (28.12) 

where the Crim, are constants (in general complex to take care 

of phase factors) that may be evaluated from Fourier’s theorem 
and Coo = 0. £1 and & are the coordinates of the point in the 

direct lattice at which f is to be evaluated with respect to the 
origin of the cell in which it lies, and mi and mz are integers. 
We may write f as a function of the vectors in the reciprocal 

lattice as in Eq. (26.12) by noting that 

(bi . r) = (bi * £1d)) + (by . fod) = & (28.13) 

(be: 1) = (be+ Edi) + (be- Eode) = & 

-and, therefore, 

Sf = Wayne? Mma Orn+mbrr)] (28.14) 

Substituting Eq. (28.14) into Eq. (28.9), substituting the 
solution [Eq. (28.5)] of Eq. (28.4) for uw, and introducing the 
abbreviation 

@ mnyme =-a- mb; —_ MeDo (28.15) 

yields 

® 
2 

V2ui + V3 us =_--—J/ (Hs en 2ri(a-r) 

+ wo? » Omani *ettnes?) = R(r) (28.16) 

This is an equation with right-hand term of the type 

2 

Vu, + v3 ui = R(r) 

As is well known, such an equation possesses a finite solution only 
if the right-hand term is orthogonal to all solutions of the homogene- 
ous equation, by which we understand the condition 

/ us*R(t)dr = 0 
all space
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where u1* is the complex conjugate of u: in Eq. (28.10). In our 
problem this means that first of all we must write 

[ [ R@ererrd =0, la" =la] (28.17) 
all space 

where a” is any vector of length |a| according to Eq. (28.11). 

Once this condition is satisfied, the general solution of Eq. (28.16) 

has the form 

U1 = DBinyme Pm (28.18) 

and we shall be able to evaluate the Bnm, coefficients of this 

expansion in terms of known quantities. The general char- 
acter of the solution will perhaps be better understood if it is 
written in a slightly different way. 

Ww = e2nila-r) F(x) § F(t) = DB rarmoe2rilrhr-7) +2 (b2-7)] 

This means that the solution ¥ is a plane wave. 

Y = e* (ug + eur) = e?t-@NI1A (x); A(r) = A+ &(r) 

with an amplitude A(r) that is a periodic function in the direct 
lattice. . 

In the discussion of condition (28.17) two cases must be 

distinguished: . 
1. Among all vectors a’’ having the same magnitude as vector 

a, a must be considered separately, but there is no other vector 
a” coinciding with any of the a’ nn, vectors. 

a” ~ all a’ mim 

2. An exact (or approximate) coincidence can be found for a 
certain vector a’ and a corresponding a’ mm 

al’ = a! mum and al mimg = & — Midi — Mode 

which implies the condition 

a ame] * lal 
If this happens, both a and this special a’ must be singled out 
in the discussion of condition (28.17). 

Case 1.—In this case we first write the necessary condition 

(28.17) for vector a, and we obtain a relation that determines the 

value of the unknown coefficient k,. The integral in Eq. (28.17)
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becomes 

Qwi(a-r) ky —2ri(a-r) 2 C —2xi(al-r) } 
€ Ve + Wo mymgl T 

a At _ = V3 J dr =0 

or 

ky = 0 (28.19) 

since 

a -— a’ = mibi + meb2 

is zero only for m, = me = 0 and Coo = 0, and hence all the . 
exponential terms become zero on integration. Equation 
(28.19) means that the average perturbation on the unperturbed 
wave is zero for this case. For all other vectors a’ we have 
a” a and |a”|  |a’mn,| for all m: and m2 values. This con- 
dition implies that none of the a’ vectors may have the same 
magnitude as a. The orthogonality condition (28.17) is auto- 
matically fulfilled for these other a” values, since the integrals 
will all go to zero. Using now our value ky = 0, we may 
attempt to solve Eq. (28.16) with an expansion of the type 
(28.18). 

2 — 2 Wo Gd: wo" oes V7ur + Sa ) = Hmm? Two! Banymae te man") 
y 0 b 0” 

= — Aw? » C myma@ 2G mma?) (28.20) 

where 

Cee Bla! 2 | 

We may combine the t two sums in Eq. (28.20) and set the coeffi 
cients of e—27@’m=7) equal to zero. This gives 

2 

BO we Bram = — Awe Crm: (28.22) 

and solving for Bmim, in terms of Crm, We obtain 

_ Awo?V 0? . 

Bram, ™ wo? _ Wmnrmae Cima | (28.23) 

We have assumed that |a’mim| ~ |al, and therefore wo? 4 Wmym2, 
so that Bim, is always finite. Summarizing the results for case 1,
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we see that there is no first-order correction to the frequency (since 
ki = 0) and the shape of the waves is slightly perturbed, in accord- 
ance with the general scheme (28.18). Case 1 is characterized 

by the fact that one of the coefficients in A is much larger than 

the others, which are all of the order of «. 
Case 2—We ficst discuss the case of an exact coincidence: 

a’ “ara = a'mm, for some mi and me values, say m1 and no. 

In this case then 

la’ anal = lal, Q nyng = A — Mb — Neobe (28.24) 

This means that there are two values of a that describe the motion 
equally well; 7.e., there are two solutions for the unperturbed 
problem that are equivalent. This degenerate motion is the ana- 
logue of the motion in the one-dimensional case whena = +1/2d. 
We must write wo as a linear combination of two exponentials 
in this case, one for each of the solutions. 

ug = Cem?) 4 Ole 2xH(a'nyny) (28.25) 

with arbitrary coefficients C and C’ to be discussed later. The 
terms in a’nin. Will turn out to represent the reflected wave in 

Bragg reflection. Substituting Eq. (28.25) into Eq. (28.9) and 
using Eq. (28.14) will yield 

V2u1 + wo! w= Aa (Cenarion) Ce 2rila'nyny?)) 
Vor Vor 

—w 0 (> CC nme 2 Tetras) 7) 

+ > C1 Cat Pénn-mb-me)) 

kiC ; 

~ (BS + wo?C"C_ny—ns enter) 

+ wo" N O'C nyse PTO ranged —naba) 7] 

miy~ 11 
Ma Na 

(Vi 

- Ee + w2C Cam) E—2ri(a’nyng7) 
0 

+ wo? » CC mméttmin” (28.26) 
mini 
mayne
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The two sums give no trouble since their exponentials are never 
zero, even when multiplied by e?™*@”” in the orthogonality rela- 
tion (28.17). Therefore, we need consider only terms in e~27#(@) 
and e~27#@’=-"), We use the orthogonality relation to determine 
k;. All terms in the integral (28.17) vanish except the two 

already noted. We must allow two values for a’’, one corre- 
sponding to a and one to a’n.n. The first gives the equation 

f e2xi(a-r) (2 kC + wo 20 Cnn) en 2rila- 7) 

+ (HS + osm) c-intnn | dr 
0 

= (ES + vst0'C-n-a) fa = 0 

Since a * a’ except in magnitude, the second term vanishes on 
integration. The constant coefficient of the integral must van- 
ish, and this gives one equation in ky, C, and C’. 

we 5 + @o 2c" C_ni—ns = 0 (28.27a) 

The other svthogonatity relation is 

/ e2Fta' ant) | (2S +. w0°C" Cn ) e72rila-r) 

iC” 
+ (BS 2. + Wa 00am) ec 2ri(a’nyng* >| dr 

= (6 + wo "0Cnm) a = 0 

by the same reasoning, and this gives a second equation 1 in ky, C, 
and C’. 

  

ae + woCCnin, = 0 (28.275) 

These two equations must give the same ratio of C to C’.. The 
condition for this is that the determinant of the coefficients of C 

and C’ vanish. Thus 

es wo2C_ni—ne a worCnina® 

‘ =0= 9 (28.28) 
ky 

wo’Cnins Vo worC nine Vo
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since C_n—n: = Crin.* is necessary to keep f real. Solving Eq. 
(28.28) for ki gives 

2 

(Fs) —wolCanl? =O or ky = to0’Vo Crm! (28.29) 
0 

Once k, is obtained, the ratio C’/C results from Eq. (28.27), 
~ and the remaining coefficients of expansion (28.18) are computed. 

without difficulty. 

Summarizing the results for case 2, we obtain a first-order 
correction on the frequency 

wo? = wo + ek, = Wo" + €00?V 07|Casnal (28.30) 

and a wave whose general shape is still represented by Eq. (28.18), 
but which has two large coefficients (C and C’) in its expansion 
instead of a single one as in case 1. All other coefficients in the 

amplitude function A(r) are of the first order in e. 

  

   

    
     

PASSING BAND 

STOPPING BAND 
Aw 

PASSING BAND 

lal=lanjn,l 

Fra. 28.1. 

We have already seen in case 1 that the perturnation is small 
when a is not too close to any a'nm,. When it is, however, the 
perturbation becomes larger and when a = a’n.n,, the frequency has 
two possible values, one for each of the values of ki given by 
Eq. (28.29). Thus for the unperturbed wave the frequency is a 
linear function of |a] as shown by the solid line in Fig. 28.1. 

The dotted line shows w as a function of a for the perturbed 
wave. For a certain value of a the curve splits up and the 

perturbation becomes less as a gets farther away from a’ nyns. 

29. The Exceptional Waves of Case 2 and Bragg Reflection 

We shall discuss later the transition from the portion of the 
curve that remains unperturbed and the exceptional point at 
which the splitting occurs, but first we wish to compare the 

conditions for case 2 with Bragg’s formula for reflection from 
crystal planes. Bragg discovered that X rays can be selectively
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reflected from some of the atomic planes in crystal lattices, 
provided a certain relation among wave length, the distance of 
separation of the planes, and the direction of propagation is 
satisfied. We want to prove that this condition is equivalent to 

la] = |ansns| (29.1) 

for the (1,2) values that define the atomic planes (which in the 
two-dimensional case are just rows of atoms). This is, of course, - 
exactly the condition for case 2 of Sec. 28. 

We consider the vector in the reciprocal lattice 

B= Ndi + Node 

This vector defines a direction in the two-dimensional reciprocal 
lattice and a row of atoms perpendicular to this direction in the 

plane of the direct lattice. This row is the row responsible for the 
Bragg reflection. For the reflection to take place, Eq. (29.1) 
must hold. We denote the a for which Brage’ s condition holds 
by ao and replace a’ninz by a'o. Thus 

ao = a) ~B - (29.2) 

and 
la’ ol = |ao| (29.1) 

In other words, 

[a’o|? = laol? = lao — Bl? = [ao] — 2(a0* B) ++ [BI? 

and 

[aol? = la’o|? = |a’o + Bi? = |a’|* + 2(a’o - B) + [BP 
These two equations yield 

|B\? = 2(a9°B) = —2(a’)- B) 
or : 

|ao| cos (@o;B) = —|a’o| cos (a’p,B) = |B] —-_ (29.3) 

and since a and a’ differ only in direction but have the same 
length, 

cos (a,B) = — cos (a’o,B) 

or a) makes the same angle with B that a’) makes with —B. 
From Eq, (29.3) it now follows at once that ao terminates on the 
perpendicular bisector of B, while a’) terminates on the perpen- 
dicular bisector of —B. This means that the projection of a on
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B has magnitude |B|/2 or 

lal cos = + co _B_ 1 |¢ gp = COSY =F = 55 

or 

A = 26 cos 9 (29.4) 

where ¢ is the angle between a and B and 6 is the distance 
between successive rows passing through the lattice points in the 

direct lattice and perpendicular to the basis vector conjugate to B 

[Eq. (25.22)]. This is illustrated in Fig. 29.1, showing a set of 
parallel rows in the direct lattice, with a distance of separation 

6, with the incident beam a, and with the reflected beam a’». 
The elementary theory of Bragg reflection is as follows: 

INCIDENT |" REFLECTED 

| XA Lh” 
Qt eZ Ze CRYSTAL 
BWW 
  

  

LATTICE 
- ROWS 

xe e 
) 

AOB= 26 cos p=naA 

. Fig. 29.1.—Bragg’s reflection. 

1. Angles y and ¢’ must be equal, ensuring a uniform reflection 

from each lattice row. _ 
2. Waves reflected from two successive lattice rows must be in 

phase; hence 
AOB = 26 cos y = md (29.5) 

This is Bragg’s formula, which checks with Eq. (29.4) when 
m= 1. Let us specify the integers defining the particular vector 
B corresponding to m = 1 by m and nz. We note that other 
vectors B,, of the reciprocal lattice are obtained if we take 

Bh = mB = mnybi + mnobz 

and yield rows in the direct lattice separated by a distance 

” |Brl ~~ mB] m 

from which we obtain the generalization contained in Eq. 

(29.5).
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All this proves that ease 2, with its two large components in 
the wave, corresponds exactly to Bragg’s condition for reflection ; 
t.e., to the situation in which an incident C wave (a) can be 
reflected from atomic rows in the lattice and generate a C’ wave 
(a’o) of large amplitude. 

30. Transition near the Discontinuity 

We wish now to investigate the region where a almost satisfies 

Bragg’s condition but not quite; 7.e., we allow 

a= ao + 7B where 7 is small (80.1) 

Then / 

a’ =a—B= a) —B-+ 7B = a’) + 1B (30.2) 

where a and a’y are the vectors defined in Secs. 28 and 29 and 

exactly satisfy Bragg’s reflection condition. The new vectors 

B 

  

  
Fie. 30.1. 

a and a’ satisfy these same conditions approximately only, 
according to the 7 terms. This is shown in Fig. 30.1. The 

squares of the absolute values of a and a’ are given by 

jal? = |aol? + 2n(ao - B) 

la’|? = |a’o|? + 2n(a’o-B) = |aol? — 2n(ao- B) (30.3) 

according to Eq. (29.3) and by dropping 4? term. Furthermore, 
we define the following expressions: 

2 

rz = An*lag|? 

2 2 

72 = Aral? = Fg + 8a'n(ao - B) (30.4) 
Wa!” 2 

= 47/2 = @o 8r?n(ao - B) 
Vo? 

  
Vo?
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Also 

Up = Cem2riler) +. Cl e—2nt(a"-r) (80.5) 

as in Eq. (28.25), and 

U = Up + eu 

1 1 

The frequency w of the wo wave is given by 

w? == wo" + ek 

as in Eq. (28.7). This frequency w is the same for both terms 
entering wo and should not be confused with w, and wy, which 
represent the frequencies of the (C,C’) waves in the unperturbed 
medium, while w is the common frequency of both terms in the 
medium with periodic perturbation. 

We start again from Eq. (28.8), and we take Eq. (30.4) into 
account. The Vu. term yields 

V2uU9 = V2(Ce-2tor) + C"e—2rtla'r)) 

= —An|al/*Ce—2ra-r) — Ala’ |2C"e—2ai(a"-r) 

2 = ~ Sua — 8u2n(ao” B)(Co-*io) — Cler*Hto-) (80.7) 
6 

The new 7 terms characterize our present problem. 7 and « are 

both perturbation coefficients and are assumed to be of the same 
order of magnitude. We set . 

h= 

om 
13
 

(30.8) 

We now separate the perturbation terms from the rest of the 
equation and set them equal to zero. as before. 

2 

Vu, + Ve w= — (Fi + en'f) (Cem?rarr) Cle arita')) 

+ 8r*h(a * B)(Ce-?2er) — C’e-2rie"r)) (30.9) 

This is exactly Eq. (28.9) but for the additional h term. The 
discussion from now on parallels that given in Sec. 28, case 2. 

We again expand f according to Eq. (28.14) and group the terms 
that contribute to the perturbation as in Eq. (28.26). The 
two important terms are



120 , WAVE PROPAGATION [Cuapr, VI 

Ee wo2O' C_ni—ne —_ Sir?h(ao . BC | ea 2ri(a-r) 

0 

and , (30.10) 

BS + wo’CCnin, + 8r*h(ao * B)C’ eW2ri(a’r) 

When we substitute the right-hand side of Eq. (30.9) in the 
orthogonality relation (28.17), all terms contribute zero to the 

integral except the two above. The first will give rise to one 
equation similar to Eq. (28.27a) for C and C’ when the solution 

e—?xi(@-r) of the homogeneous equation for wu is used. 

a Sb 000C"C mm — 8mh(ao*B)C =0 (80.112) 

The second one gives another relation similar to Eq. (28.270), 
when u; = e~?**"") ig used. 

ne , . 
V2 + we2CCain, + 897h(ao* B)C’ = 0 (80.11) 

The determinant of the coefficients of C and C’ must vanish as 

before. This determinant is 

ms — 81°h(ao , B) wo’ Crna” 
0 k =0 (80.12) 

wo2C nine i + 8rrh (ao ‘ B) 

. : 0 

Solving for ky yields 

fy 
Vo? 

For h = 0 we have the Bragg condition and the same results as - 

before. When fh is large, 

  = + Vann)? + eho B)P (30.18) 

  

pi = +8qh(ay-B) h>>1 (30.14) 
But 

Wa? 

w? 0? k wo? Vor 

Vo 
according to Eq. (30.4). Thus a will be in one zone and a’ in
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another, and the values for w will lie on the dotted transition 
curve shown in Fig. 28.1. 

The whole discussion of Secs. 28 and 30 shows that discon- 
tinuities in the function v(a) appear only when the a vector has 
its extremity on the perpendicular bisector of the vectors in the 
reciprocal lattice. This justifies the rule given in Sec. 27 for the 

construction of successive zones. Some examples of the shape 

of the first zone have been found by various authors, and the 
general rule was given by the present writer, with a comprehen- 
sive discussion of the structure of higher zones in two and three 
dimensions. 

31. Examples and Discussion of Zones in Two Dimensions 
The theory just developed in Secs. 28, 29, and 30 contains the 

principle of X-ray reflection from crystal lattices. X rays 

propagate through the crystal with the velocity of light in 

vacuum, and atoms or molecules may just slightly perturb the 
propagation. The perturbation is practically proportional to 

the electronic density, and an equation of propagation of the type 
of Eq. (28.8) is obtained, with a perturbation term f proportional 
to the electronic density. In a crystal lattice, atoms are regu- 
larly distributed along a direct lattice, each atomic nucleus 
being surrounded by a cloud of electrons that may partly overlap 
that of its neighbors. The electronic density is a periodic 
function with the periodicity of the lattice and can be expanded 

in a multiple Fourier series like Eq. (28.14). In the final results 

given by Eq. (28.30) or Eq. (80.13) only the absolute value 
|Cmym,| of the coefficients of the Fourier terms appeared. Hence, 

any experiment on wave propagation through the crystal lattice 
will give only the absolute value and not the phase angle. This 
latter may often be obtained from symmetry considerations and 

some general knowledge of the lattice structure, and then the 
whole Fourier expansion of the electronic space charge is found, 
from which the distribution of the space charge at any point 

can be computed. Figure 31.1 gives an example of such experi- 
mental results.. 

This is the principle of the procedure announced at the end of 
Sec. 26. As a rule, all coefficients C, of the Fourier expansion 
are required, and there is practically no example of actual lattices 
where simplified assumptions such as Eq. (26.1) or (26.8) could 
be used. Sometimes a few exceptional terms may happen to be 
zero, but this is not very frequent.
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~The relation between the conditions yielding discontinuities in 
the v(a) curve and Bragg’s reflection condition was explained in 
Sec. 29. In principle the explanation is the same as for the rela- 
tion between passing bands and stopping bands in the one- 
dimensional lattices discussed in Sec. 16: Let a certain direction 

  

        
Fria. 31.1.—Crystal structure of pentaerythritol tetracetate C-(CH:0-CO-CHs3)4 . 

showing the position of carbon and oxygen atoms as resulting from a Fourier 
analysis based on X-rays diffraction. (Courtesy of T. H. Goodwin and R. Hardy, 
Proc. Roy. Soc. (London) A, vol. 164 (1938), p. 369.) 

of propagation be given (direction of a) and the frequency » 
of the wave be varied. If the frequency corresponds to a passing 

band, then the wave falling upon the lattice with this direction 

of propagation and frequency may be propagated through the 

crystal. Surface conditions at the boundary of the crystal 
will give only partial reflection from the surface. If, however, 
the frequency » falls inside one of the stopping bands, like the 
intervals obtained in Fig. 28.1, then the corresponding wave 
cannot be propagated through the crystal and must be totally 
reflected from the surface. 

The elementary Bragg theory, as sketched in Fig. 29.1, 
predicted reflection for just one frequency, while our more com- 
prehensive treatment yields reflection for the whole stopping
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band Av. For X rays, the perturbation of the wave by the 
erystal lattice is extremely small and the Av bands for ideal 
crystals are very narrow. 

All this was explained here for a two-dimensional lattice 
structure, but X-ray reflection actually occurs in three-dimen- 

sional structures. Electron reflection according to wave mechan- 

ics (electrons being represented by De Broglie waves) is a more 

  

    ATOM ROW 

§=.8660 d=" 
Fie. 31.2.— Hexagonal lattice. 

d 

accurate example of a two-dimensional problem, since in many 
experiments (Davisson and Germer) the reflection takes place 
on the surface of the crystal (two dimensions) and electronic 
waves do not penetrate inside the crystal. 

We now give a few examples of direct and reciprocal lattices in 

two dimensions, with the corresponding zone structures. Where 

a certain direct lattice is given, the shortest way to find the 

reciprocal lattice is to use Eq. (25.22) and look for some parallel 

rows of lattice points in the direct lattice, compute their distance 

of separation 6, and obtain a vector of the reciprocal lattice by 

taking a length 1/6 in the direction perpendicular to the rows. 
This is shown in Fig. 31.2 for a hexagonal lattice based on two
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vectors d making an angle 7/3. The reciprocal lattice is another 

hexagonal lattice, turned through an angle 7/6 and with vectors 

b. 
2 1 

Pl aid 
as shown in Fig. 31.8. The first five zones have been drawn and 

  
C Ist ZONE 

2nd ZONE 
3rd ZONE 

   
KP JIGSAW PUZZLE 

FOR THE 3rd ZONE ft 4th ZONE 

ass =] 5th ZONE 

Fig. 31.3.—Zones for a hexagonal lattice. 

the sixth one is easily recognized. Each zone covers an area equal 
to that of the first one or to that of the (b,b) parallelogram. 

while the area of the cell in the direct lattice is 

_ V3 42 — 1 
= ~5- |d| = Idl2 = Aa = |d|? sin Ay 

“
4



Sec. 31] TWO-DIMENSIONAL LATTICES 125 

Each zone can be reduced to the first zone by taking its sec- 
tions and giving them a translation parallel and equal to one 
of the vectors of the reciprocal lattice. This. is obvious for the 
second zone in Fig. 31.3. The case of the third zone is illustrated 
by a mosaic showing how the different sections of the third zone 
exactly cover the first one after being given the necessary trans- 

lation. Similar mosaics can be drawn for higher zones. 

Oblique lattices were used in Figs. 25.1, 27.2, and 27.4. The 
case of a rectangular lattice is shown in Fig. 31.4, where the first 
four zones have been drawn, each of which has an area equal to 

DIRECT LATTICE RECIPROCAL LATTICE 

      
   

    
     

   

DS 1) 

  

([—] Ist ZONE 

BE 2nd ZONE dth ZONE 
GZ 3rd ZONE JIGSAW PUZZLE 
Tw 4th ZONE 

Fra. 31.4.— Rectangular lattice. 

  

  

      
that of the first one. Translation of the different sections of one 
zone by vectors of the reciprocal lattice can be used to superpose 

them on the first zone. The corresponding mosaic is shown for 
the fourth zone. Figures 31.5 and 31.6 refer to the square- 
lattice structure and are original drawings given by the writer 

in a paper published in 1930. Figure 31.6 contains the mosaics 
for the successive zones in the square lattice. 

All this theory is based upon the assumption of the periodicity 

of the function f of Sec. 28. It is not inconceivable that in 
certain physical problems the perturbation function f (the 

electronic density, for instance) may have a lower symmetry 

than the atomic lattice, and that its periodicity may offer a 

different character. In such cases the zone structure would
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ZONE 1 23 456 7 

“BOUOUREOME 
Fie. 31.5.—Zones for a square lattice. 
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Fie. 31.6.—Square lattice, reduction of the first zones. 
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correspond to the actual periodicity and symmetry of the 
perturbation function and not to those of the lattice itself. 
This may be the case when the individual electronic clouds 

around each atomic nucleus already possess a certain structure 
(atoms in P, D, . . . states) and do not exhibit spherical sym- 
metry (S state) for the isolated atoms. 

Once the zonal structure has been obtained, most of the results 
established in the first chapters for one-dimensional structures 
can be readily extended to two-dimensional problems. Zones 

  

  

  
  

      

  

ws 
A v 

oN: CO D) fa. 

AN . 
/ | a 0 1 

2dx 2dy 
(a) sr Locus of points 

Ov _ 
where “ap = 0 

v 

a 1 
2dx 2dy 

(c) Cross-section at ay*0 (d) Cross-section along Op 
Fre. 31.7, 

1, 2, 8, . . . correspond to intervals of similar numbers in one 
dimension, as explained in Fig. 27.1. The frequency v was a 
periodic function of period 1/d in one dimension, and continuity 
across the boundary of the first zone meant that the (a) curve 

should reach this boundary with a horizontal tangent. In two 

dimensions »(a) is a function of the two variables a, and dy 

(components of a), and it must reach the boundary of the first 
zone with a zero normal derivative. We can plot a map of v 
inside the zone, using lines of equal v values (like lines of equal 
altitude on a map), and obtain a drawing like the one represented 
in Fig. 31.7a. A cross section of the map along Oz yields a
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curve similar to those of Chaps. I, II, and III (Fig. 31.75). 
Another cross section at ay, gives the curve of Fig. 31.7c with 

horizontal tangents in the middle and at the ends of the interval. 

A radial cross section along Op, as shown in Fig. 31.7d, shows 
no horizontal tangents at the ends of the interval. The dis- 
tinction between the radial derivative dv/dp or a normal deriv- 
ative is also exemplified in Fig. 31.7a, where the normal derivative 

is zero along the border of the zone, while the locus of point 
dv/dp = Ois represented by the dotted curve. One must always 
be very careful not to confuse these two different definitions. 

Figure 31.7 would represent the qualitative behavior of a 
monatomic lattice for elastic vibrations in the case of a rectangular 

lattice (d,,dy), and it corresponds more closely to problems of 

d, 
    

    10e& . 
M, ay 
Fia. 31.8.—Lattice with basis. 

the type discussed in Chap. III with a low passing band. The 
phase velocity in the x and y directions is different, and the 
limiting frequency (cutoff) varies all along the boundary of 

the first zone. It depends upon the direction of propagation as 

well as the lattice. structure. 
A polyatomic lattice is one containing several atoms in the 

fundamental cell, as shown schematically in Fig. 31.8. It is 

often called a lattice with basis, where the word ‘‘basis” is used 
for the bundle of vectors re, rs, 74, . . . » fn defining the positions 

of particles Me; Ms, ..., M, of the cell with respect to a 

certain particle M, taken as the origin. This is the two-dimen- 
sional generalization of Fig. 17.1. Such problems resulted, in 
the one-dimensional case, in a »(a) curve with N branches, one 
acoustical and the remaining (N — 1) optical. Here we obtain 

N surfaces covering the first zone. The cross section of these V 

surfaces along a given direction is very similar to the curves in 

Figs. 3.2 and 3.9 in one dimension. 

The NaCl problem may be discussed more accurately in con-



  

Suc. 31] . TWO-DIMENSIONAL LATTICES 129 

~ nection with the theory developed in Chap. IV. When the 
particles M, and M, differ in mass, the lattice is a square- 
centered lattice as shown in Fig. 31.9 and represents a lattice 
with basis, built upon two equal orthogonal vectors d and d. 
Its first two zones are shown at the bottom of the drawing. 

When, however, 14, = M2, the lattice suddenly changes its 
character and becomes a simple square lattice, built on two 

vectors d’ = d/+/2 at 45 deg. Its first zone includes both the 
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‘ UY JIGSAW PUZZLE 
P FOR THE 2nd ZONE     [_] lst ZONE 

‘QA 2nd ZONE 
Fra. 31.9. 

  
first and the second zones of the previous structure. In this case 

(M1 = M2) we obtain v(a) as a single-valued function of a 
over the whole big zone. When M,; # Ms, the four outer 
triangular sections (second zone) must be translated to the 
reduced first zone, and v(a) becomes a double-valued function of a 

inside this new first zone. The limits of these zones are at 
+1/2d and +1/d along the x or the y axis (as in the one-dimen- 
sional problem) except for directions at 45 deg.; here the limits 
of the zones coincide. The mosaic of the sections of the second
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zone shows how two points P and P’ come in contact with the 

new representation. Since v obviously has the same values at P 
and P’, by symmetry there is no discontinuity of v(a) along the 
diagonals of the mosaic. Both branches of the »(a) function 

are continuous except at the boundary of the new first zone. 

N particles per cell mean N branches in the »(a) function 
when a is restricted to the interior of the first zone. It may also 
be thought of as an extension of one branch v(a) over N zones, as 
in the preceding paragraph. 

A continuous periodic structure is obtained at the limit N — 
- and yields an infinite number of branches inside the first zone or a 
one-branch function extending over the whole plane. This is 
the problem studied in Secs. 28 and 30. For a uniform medium 

with constant properties, the one-branch function 

y = Wia| 

extends all over the a plane. Periodic perturbation introduces 
discontinuities in the function v(a) on all lines chosen as the 

limits of a zone (Secs. 27 and 29) and corresponding to Bragg 
reflection. A large perturbation simply increases the discon- 

tinuities without ever changing their location in the a plane. 
All the secitons of an arbitrary zone can be brought back to the 
first zone by translations hib: + Aebe in the reciprocal lattice . 

and fit into a mosaic just covering the first zone. When this is _ 

done, each zone yields one branch of the »(a) function reduced 
inside the first zone. 

As stated before, experimental evidence shows that an actual 
crystal lattice exhibits the complete row or plane system, with no 
set missing. Therefore, the complete Fourier expansion of 
Sec. 26 and the complete system of discontinuity lines or zone 

limits must occur.



  CHAPTER VII 

THREE-DIMENSIONAL LATTICES 

32. Direct and Reciprocal Lattices in Three Dimensions 

The lattice in three dimensions is usually defined by three 
oblique coordinates. The elementary cell is thus a parallele- 
piped. We take the basis vectors di, de, and ds to be the vectors 
joining the origin of the lattice with three particles in. the lattice 

that do not all lie in the same plane. These vectors define the 
first elementary cell. Then any other set of basis vectors! is 
defined by 

d’y = ayids + aieds + aisds 

d’s ote1d1 + Goods + Qosd3 

d’s = of31d4 + a32de + assd3 

Qit = positive or 
negative integers 

II (32.1) 

where the determinant of the a, must not be zero to ensure that 
‘d’1, d’s, and d’; are not linearly dependent; 7.e., d’1, d's, and d’; do 
not all lie in thesame plane. A lattice point is given by the vector 

Rian = bidi + ide + [sds (32.2) 

where 1;, 2, and ls are integers. Points in the first elementary 
cell have vectors of the form 

r= &:di + fede + &sds (32.3) 

where [&| <1. Any other point in the lattice may be obtained 

by adding vectorially the vector for the origin of the cell in 

which the point lies to its vector from the origin of its cell. 

The reciprocal lattice is defined in exactly the same fashion as 
for two dimensions: Its basis vectors b1, be, and bs satisfy the 
nine equations analogous to Eq. (25.3). — 

(bj di) = dix (32.4) 

The propagation vector for a wave propagating in the direct 
lattice is drawn in the reciprocal lattice as before. The analogue 

1See footnote on p. 95. 

131
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to the fact that direct and reciprocal cells have reciprocal areas 

in two dimensions [Eqg. (25.14)] is that they have reciprocal 

volumes in three dimensions. . 

Vavn = 1 (32.5) 

To prove this, we note that bs is perpendicular to d; and d: from 
Eq. (82.4). Thus we may write 

bs = k (dy x de) (32.6) 

Now 
(b; . ds) =|= kids ° (di x d.)] = kV (32.7) 

Therefore, k = 1/Va, and from Eq. (82.6) it follows that 

Similarly, 

bi = = (de x ds) 

d (32.9) 

bi = Ge (da X dh) 
and conversely 

1. 1 
d; = V;, (bi x be), d, = V; (be x bs), 

dy = $ (bs X bi) (32.10) 
b 

Therefore, 

_ [(di X dz) « (bi X be)] 
VaVo 

and if we break the vectors in the numerator up into their 
Cartesian components and rearrange them, it becomes 

(di ° bi) (de ° be) _ (de ‘. b;) (dy ° be) = 1 

(bs - ds) = 1   

so that we obtain the desired relation. 
Another theorem that we shall find useful is that the position 

vector of any lattice point in the reciprocal lattice is perpen- 
dicular to an infinite set of lattice planes in the direct lattice 

[the two-dimensional analogue is expressed by Eq. (25.22)] where 
a lattice plane is defined as a plane passing: through a set of 

lattice points. Thus, if we denote the position vector of a
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lattice point in the reciprocal lattice by 

H = hib; + hobs + hsbs (32.11) 

where fx, he, and hs are integers, and let 

H 

be the unit vector in the direction H, the vector equation repre- 

senting a plane perpendicular to the vector H is 

_ (A-n) _ (at) = a = C (32.13) 

where C represents the distance of the plane from the origin. 

Such a plane passes through a point Riz, of the direct lattice if 

H: Ritts = Ialy + hole + hals = 

|H| || 

by direct substitution for H and Rizz, from Eqs. (32.2) and 

(32.11). The numerator is an integer m. Now the distance 

between these lattice planes in the direct lattice is given by the 

smallest allowable variation of the right-hand member of Eq. 
(32.14). Since the numerator must be integral,’ its smallest 

value is 1 and the distance: 

  (32.14) 

_ 1 
|F| 

if Eq. (32.14) is reduced to lowest terms. One may also state 
this theorem by saying that the distance between the lattice 
planes perpendicular to a given direction n is the reciprocal 
of the distance of the lattice point in the reciprocal lattice nearest 

to the origin and in the direction n from the origin. An analogous 
theorem may be stated and proved in the reciprocal lattice. 

The density of points in the lattice planes is proportional to 

5 (32.15) 

5 = a For the volume density is constant, and hence the 

number of points per unit area of the plane is directly pro- 
portional to 6. This result is, of course, also true for reciprocal 

lattices with appropriate changes in notation. 

A vector in the direct lattice may be written 

r= £:di + Sade + &sds (32.16) 

1 See last sentence on p. 98.
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where we have the relations 

£1 = (bin), fe = (be-r), = &s = (bs- 7) 

as may easily be verified. Similarly, for a vector in the reciprocal 
lattice 

H = abi + nebe + sb; (32.17) 
we have | 

m = (di: H), ne = (de . H), ns = (d3° H) 

Before going on to the propagation of waves, it is well to give 
some examples of three-dimensional lattices and their reciprocals. 

  

d 

) (6) 
CUBIC LATTICE RECIPROCAL CUBIC LATTICE 

Fra. 32.1. 

The simplest three-dimensional lattice structure is probably the 
cubic lattice shown in Fig. 32.la. Here 

ja i=k 
(ay = {4 ie 

where d is the length of one edge of the cube. From Eq. (32.9) 
we obtain the reciprocal lattice |b,| = 1/d and b, parallel to 
d;. This reciprocal lattice, shown in Fig. 32.1b, is also cubic. 

The simple cubic lattice does not occur naturally. There are, 

however, some related lattices that do. Let us consider the 
face-centered cubic lattice shown in Fig. 32.2a. This lattice has 
atoms in the center of each of the faces of the cube as well as at 

the corners. We think of the elementary cell in this lattice as the 

parallelepiped determined by the lines AZ, AF, and AG. The 
volume of this cell is Vz = d?/4 if the edge of the cube is d. 
The cell based on these vectors contains only one atom A, all 
others being considered as belonging to similar adjacent cells. 
It is easily verified that linear combinations of these three 
fundamental vectors give all the points in the lattice. The sum
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of the three vectors leads to B, while AF + AF — AG yields 

point D. The cube d cannot be used as a fundamental cell, 

since it contains four atoms instead of one. If the atoms 

located in the faces of the cube were different from those at the 

corners, the lattice would become a cubic lattice with a basis 

AEFG, but this point of view is not logical for equal particles. 

To obtain the reciprocal of the face-centered cubic lattice we 

make use of the theorem that a vector in the reciprocal lattice 

drawn to the point nearest to the origin in a given direction is 

perpendicular to a set of lattice planes in the direct lattice and 

has a magnitude equal to the reciprocal of the distance between 
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FACE CENTERED CUBIC LATTICE BODY CENTERED CUBIC LATTICE 

AE, AF, AG BASIC VECTORS AD’, AC’, AH’ BASIC VECTORS 

Fie. 32.2. 

these lattice planes. The distance between the lattice planes 

in the direction AD is d/2, and hence there is a point D’ of the 

reciprocal lattice in this direction at a distance 2/d from the 

point A’ (see Fig. 32.2b). Similarly, there are points at distance 

d/2 from A in the directions AI and AH. The corresponding 

points are indicated by J’ and H’ in the reciprocal lattice. There 

is only one set of planes in the direct lattice separated by a 

distance greater than d/2, viz., those parallel to the plane deter- 

mined by DEIGHF. Thus there can be only one point in the 

first cube of the reciprocal lattice besides those already found. 

All other points will be in different cells. The planes are shown 

in Fig. 32.2a. These planes are separated by a distance 

d 1 1 §= 3AB=3V38d=
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and hence | 

1_v3_v32_ v3, where b= 5 

gives the position of a lattice point in the reciprocal lattice in 
the direction A’B’. This point is at the center C’ of the cube. 
This structure—a cube with a point at its center—is called a 
body%centered cube. Thus the reciprocal of the face-centered 
cubic lattice is a body-centered cubic lattice. It may easily be 

shown by similar reasoning that the converse statement is true: 
The reciprocal of a body-centered cubic lattice is a face-centered 
cubic lattice. The first cell of the body-centered cubic lattice is 
taken as the parallelepiped determined by the lines A’D’, A’H’, 
and A’C’. The volume of this cell is one-half the volume of the 
cube 

1/2) _ 4 =#41 
Ye=5 (3) ~~ Va 

as it should be. Many other examples may be found in books on 
crystal structure, for instance, P. P. Ewald’s book. 

33. Zones in Three Dimensions and Bragg Reflection; Ewald’s 
Construction 

The discussion given in Chap. VI can be used without any 
change for three-dimensional problems. We used vector nota- 
tion, which works just as well for three as for two components. 
The areas Sz and 8; are to be replaced by the volumes Vz and 
Vz as in Eq. (32.5), and atomic planes in the direct lattice replace 
the atomic rows occurring in two dimensions, as explained in 
Eg. (32.14). 

Triply periodic functions are expanded in triple Fourier 

series in exactly the same way as in Sec. 26 for two dimensions. 

The coefficients Ci.2.,, with three integral indices hi, he, hs will 
simply be written C, for convenience. The proof of the perio- 
dicity of v as a function of a is carried out exactly as in Sec. 27 

and may be briefly repeated here on account of its importance. 
A point in the direct lattice is given by 

R = lid, + leds + lsd (33.1) 

where 1, J2, and 1; are integers and dj, de, and d; are the lattice
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vectors. An arbitrary vector in the direct lattice is given by 

r= £:idi + fede + Eds (33.2) 

where £1, £, and & are the components of r in the directions 
di, dz, and ds, respectively. If a wave is propagating through 

the lattice and can be observed only at the lattice points R, we 
may express the disturbance » by 

Py = Aerribt-@R)] (33.3) 

where a is the wave vector and is regarded as a vector of the 

reciprocal lattice. The function y is evidently periodic in a and 
R. The vector 

a’), =a + hibi + hobo + hsbs (83.4) 

where hy, ho, and hs are integers, will describe the motion at the 

lattice points just as well as a; for 

(a’, . R) = (a . R) + hi(b. . R) + ho(be ° R) + hs(bs ‘ R) 

= (a: R) + Aili + hole + hsls = (a: R) + integer 

Since the same motion can be represented by a or any arbitrary 
a’,, the frequency must be a periodic function of a also, with 

the periodicity bi, be, and bs of the reciprocal lattice. 

We wish to set up conventions for eliminating all but one of 
the values for a, 7.e., define zones to which a is to be restricted, 
as was done in Sec. 27 for the two-dimensional case. The 

method is exactly the same, and we take the first zone to be a 
volume centered upon the origin O of the reciprocal lattice and 

limited by plane perpendicular bisectors of vectors in the recip- 
rocal lattice. The first zone has a volume V; equal to the 
volume of the elementary cell in the reciprocal lattice, and any 
point in space can be brought. back into the first zone by H 
translations in the reciprocal lattice. 

H = hyb, + hobs + hsbs 

Higher zones surrounding the first one are built in a similar way, 
and some actual examples will be given below. 

The choice of these particular planes, bisecting and perpen- 

dicular to the vectors of the reciprocal lattice, is based on the 
analysis previously given in Secs. 28 and 30 for two dimensions. 

The theory of waves propagating through a continuous medium
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with a small periodic perturbation is identical with the two- 
dimensional theory, and one must distinguish between 

Case 1, where all la’n| = |al 
. : 33.5 

Case 2, where one certain a’, say a'n, is |a’,| ~ |al (83.5) 

where a’, is a vector (83.4). Case 2 arises when two vectors 
a’,, and a having almost the same length can be found, such that 
their difference is a vector of the reciprocal lattice. 

an —a=H = hybi + hobs + hsb3 (83.6) 

A geometrical interpretation ofthis condition was presented in 
Sec. 29 where it was proved that the circumstances leading to 
case 2 were identical with those yielding Bragg’s reflections in 
the crystal. This is always true if atomic rows are replaced by 
atomic planes in the direct lattice. 

Another geometrical interpretation was given by P. P. Ewald. 

e From point O of the reciprocal 

reciproca, lattice he draws a vector a to. 
\ LATTICE point P. A sphere is drawn with . 

radius |al| about the point P at 
the end of the vector a. If it 

e happens that this sphere passes 

through or near to a second point 
B of the reciprocal lattice, we | 
obtain a discontinuity in the 
frequency as a function of a. 

The reason for this is that there is some a’, that just fulfills 

Kq. (33.6). There is no way of telling from the motion of the 
lattice points which of vectors a and a’, should be preferred. 
Since the two vectors have different directions, we must assume 
that the motion is given by a superposition of the two waves. 

One of these is an incident wave and the other a reflected wave 
(Bragg wave). There will be two values for the frequency for 
this single value of |a| and hence a discontinuity in the » vs. a 
curve. 

We note that when Bragg reflection occurs, the vector ter- 
minates on a plane that is the perpendicular bisector of the line H 
joining two lattice points of the reciprocal lattice. This justifies 

the rule for constructing zones. We construct planes that are 
perpendicular bisectors of lines joining lattice points with the 

    
Fie. 33.1.
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origin. The smallest polyhedron bounded by such planes is 
the first zone. The area bounded by the first zone and the 
second smallest polyhedron is the second zone and similarly for 
higher order zones. . 

34. General Results for a Wave Propagating i in a Three-dimen- 
sional Periodic Medium 

The problem of wave propagation in a continuous medium 
with a small periodic perturbation was discussed in Secs. 28 to 30 
for two dimensions. ‘The results immediately extend to three 
dimensions without any difficulty. 

We shall now discuss the general problem of wave propaga- 

tion in a periodic medium, without restricting our discussion 
to the case of a small periodic perturbation. The following 
sections will contain various applications and examples of this 
general theory. 

The three-dimensional wave equation is 

vy + & y+ yi y =0 (34.1) 

We confine ourselves to waves in a periodic medium, and there- 
fore we may assume 

=a = F(t) (34.2) 

where F(r) is periodic in the three directions specified by the 
lattice vectors di, dz, and dg; 7.e., 

F(r) = F(t + midi + node + msds) 21, Ne, and nz integers 

The basis vectors of the reciprocal lattice are bi, ba, and bs, where 

| (b; dj) = 6 

F(r) may be expanded in a triple Fourier sum. 

F = TC nymamge enim burt) + ma barr) + malbarr) | (34.3) 

The solution of Eq. (34.1) may also be expressed as a Fourier 

sum. 
yb = A(r)errbt-C-r)] . (34.4) 

where A is to be periodic in r and may be written 

A(r) = ZA mymgmge lm orr) + ma (barr) +a barr) | (34.5)
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The form taken for the ¥ solution in Eq. (84.4) will be justified 

by the following discussion. It is generally known as F. Bloch’s 
theorem and represents the generalization for three dimensions 
of an old theorem dating back to Floquet for the one-dimensional 
problem of Mathieu’s equation, which is discussed in the next 
chapter. Combining Eq. (34.4) with Eq. (84.5) yields y as a 
Fourier sum. 

VY = 68 DA yma 27 mimams'?) (34.6) 
where 

a’ mimams =a mb, _— Mode _ msds , (34.7) 

The last three terms in Eq. (34.7) specify a lattice point in the 
reciprocal lattice. 

Substitution of the solution (34.6) into the wave equation 

gives a relation between w and a. The Laplacian V? of an 
arbitrary term of the sum in Eq. (84.6) is 

V2q— Aria! mymgmy?) = — Ar? |a! mymams] et mama?) 

and substitution in Eq. (84.1) gives 

Vy = —4n? », A mimyrma]& mymsm,| 227 mamaria”) = —wF (ry 
, mi 

= —y? > C nanan gerrizniber) » A prpepi@ 27 ~EPi Oe] (34.8) 

ry pt 

replacing a’p.io.» by its equivalent given in Eq. (34.7). We 

introduce new subscripts m1, ms, and ms in the last form of 

Eq. (34.8) as follows: 

Mm; = m+ Di (34.9) 

Equation (34.8) may now be written in the form 

4a? ’ Qg—2Ti(almymgmg-?) 
“oe A mymym,|@ mymama| ¢ mama 

mi 

= » » Cnr—D1,mo—p2, map Apap 27 mime?) (34.10) 

mi opi . 

and equating corresponding terms, we obtain, finally, 

5 Arla’? = » Cu—pAp (34.11) 

pana
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where m and p stand for each set of three indices mymzm; and 

Pipeps, respectively. This gives an infinite set of linear homoge- 
neous equations to be solved simultaneously for the A’s. This 
can be written 

» (Cn-» - 4 an") A, =0 (34.12) 
D 

where 6m,» is a Kronecker symbol that is unity when m, = 7, 

Me = po, and ms = ps, and zero otherwise. After dividing by 
|a’m|? the equation reads 

Cn— 1 

» Ca ~ ¥ sar) Ay = 0 6479) 
Dp 

This set of simultaneous homogeneous equations in the A,’s has 
a nontrivial solution only if the infinite determinant is zero. 

Cn—-p 1 
la’ |? — 53 Om,p = Q (84.14) 

  

  

This means that the 1/v? are the proper values of the infinite 

determinant The structure of the general equation is 

    

m—p 

[a’ml?) 
better understood if the determinant is explicitly written, with a 

one-dimensional problem (one subscript m or p instead of three) 

as an example. 

  

  

pe fee =2 ~1 0 1 2 

ma -g.. oo. 2b Ca Cua C3 
la’_2]?v® Ja’? |a’_»|? la’_.2|? 

3]... GL Co 1 Ca) Cua 
la’_1|? ja’_1|? ov la’? |a’_1|* 

gl). C2 C1 Co tL Ca Cue 
[a |? la’o|? la’o|2 vf’? a’ol? 

i|... 23 Ca C1 Co 1 Cn 
ja’s|? la’s|? la’s|? la’s|?— va’?   

(34.15)
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where one should remember that expansion (34.3) must represent 
a real function F, hence the relation 

Cn = C,* 

The equation is obviously symmetrical in all |a'n|?, and so are the 
solutions : . 

y= fC fa’nl2-  -). (34.16) 

Some general results are thus provided: 
a. The frequency » is a periodic function of the a vectors, 

with the periods bi, bs, and b; of the reciprocal lattice, since 

replacing a by any a’, just changes the names of the a vectors 
without changing the set of a vectors as a whole. This is also 

shown by the fact that the wave itself [Eq. (84.6)] contains all 
the a’, vectors in a similar way and offers no possibility of assign- 
ing to any one of these vectors special importance. 

b. Changing a into —a makes a similar change in all vectors, 

since. 

— an = —(a - - maby _- maba _ msb3) = —a + mb, + mibs 

. + mabs = (— a)! in (34. 17) 

Hence, the same frequency is | obtained for two similar waves 
propagating in opposite directions. 

c. The frequency v depends symmetrically upon all vectors 

a’, and contains only the absolute value of these vectors, not their 

direction. This supports the rule used for the definition of the 
boundary of the zones, which was based only on the existence 
of certain relations between the lengths of the vectors a’,. The 

zone boundaries are obtained for a small periodic perturbation, 
as discussed in the next section. 

Zone boundary: fal = |a’al (34.18) 

The definition of the first zone, for instance, is justified in this 
way. Among all. the a’, entering the expansion of the wave 
[Eq. (34.6)] we chose the smallest |a| as the parameter. This 
special vector a is used to specify the wave, but for each a we 
obtain an infinite number of waves, with an infinite number of 

frequencies that: are the roots of the infinite determinant [Eq. 
(34.14)]. 

These infinite determinants will be encountered in the theory 
of Mathieu’s equation, which will be discussed in the next
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chapter. The Mathieu problem corresponds to one dimension 
when the determinant (84.15) is obtained, and this special case 
has been completely computed by Hill and Whittaker (see 

Sec. 48). It would be very interesting to obtain an extension of 
Hill’s results for three dimensions, but this problem has not yet 
been discussed. 

We shall now examine the problem for the case of a small 
periodic perturbation. . 

35. Waves in a Homogeneous Isotropic Medium with a Small 

Periodic Perturbation 

The problem of the propagation of waves through a three- 

dimensional homogeneous isotropic medium with a small periodic 
perturbation does not differ from that for two dimensions 
treated in Sec. 28. Weassume that 1/V? is almost constant witha 

small periodic variation. 

n-yitd (35.1) 
To continue the discussion we expand f in Eq. (35.1) as a 

Fourier sum. 

f = Zmrmamye2"=0e") with cooo = 0 (35.2) 
Then Cn; in the expansion of F(r) = 1/V? may be written 

in the following form: 

1 
Crinans = V2 50n150n250n + €Cninans (35.3) 

with Kronecker symbols 6, which mean 

Cooo = Fi finite 
0 

and all other (35.4) 
ninons = €Cninans infinitely small ; 

This means that the determinant (34.14) or (84.15) has finite 
terms only along the principal diagonal, while all off-diagonal 

terms are infinitely small. We want to expand the determinant 
in powers of «. The term independent of ¢ is the diagonal term 

I] (oss - 3) 5.) 
™m
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which we may write as 

“1 o1y\, 1 — Coo _ —_ | . 

The next terms in the expansion are in e? and are obtained by 
replacing the terms n and p on the diagonal by the (n- p) and 
(p-n) nondiagonal terms. These terms have a minus sign 

according to the law of determinants. — 

1 1\ Cy—plp— 
—- 2 a oe | PP 

Cn— = -2V6 » I] (4-5) et aan 
mp 

nx mop 

  

‘To make this process clear, let us consider the determinant 
(34.15) and write the term n = 0, p = 1. 

, (ot _ Ves _ 1)(-e Ss ia) (S 1)... 
a )\a ap )\ eee ee 2 

We shall not attempt to compute terms in e°, e*, .... Group- 
ing terms (35.6) and (85.7) together, we obtain for our determinant 

NMED . 

1 1 1 1 i 1 Cn ol? 

(4-3) [G3 -#) (3 -f)- er ea (85.8) 
_ We can now discuss the solution of this equation. The first 
approximation is obviously obtained by making the product 
(35.6) of the diagonal terms zero, which means that » must be 
equal to one of the vn’s: 

VP = Vm (35.9) 

This is correct as long as no two values », and v, are too close 
together, which means 

Case 1: 

All mv, ~~ orall la’,.|?  |a’,|* (85.10)
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An exception arises when two values », and vy are close enough 

to make both terms of equal order of magnitude in one of the 
square brackets of expansion (35.8). 

Case 2: 
Vn Vy OF la’nl? = |a’p|2 (35.11) 

When this occurs, we can no longer neglect the e? terms, and 

instead of simply writing 

1 1\/f/i1 1 

(4-3)(5-4)-0 
we must take the complete square bracket from Eq. (35.8) and 
write 

1 1\fi_il len—pl? 

an equation that includes both case 2 of Sec. 28 and the case 

discussed in. Sec. 30. 
In order to see this clearly, let us use the same notation as in 

Chap. VI, Secs. 28 and 30, and choose one of our two vectors, 
a’, for instance, as vector a. This is always allowed on account 
of the equivalence of all vectors a’m. Hence we write, instead of 

(35.11), 

Vy = Vo, la’a| = la _ nid _ Nobo _ nb | ad lal (35.13) 

To make the comparison with Sec. 30 easier, let us call ay the 
vector for which the relation (85.13) would be exactly satisfied 
and take 

lao — BI = laol, B = n3D4 + Neds + Nabe (35.14) 

Then the case of the approximate condition (35.13) is defined by 

a= a+ 1B 

a’n = a9 - B+ 1B 

which corresponds to the definitions (30.1) and yields, as in — 
Egs. (30.3) and (30.4), 

lal? = aol? + 2n(ao - B) 
la’,|? = lagl? — 2n(asB) (35.16) 

” small (35.15) 

or 

2 

2 

v vo? + 2nVo2(ao * B) vo? ~ 2nVo2%(ao « B) (35.17) 
Vr
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With this notation, Eq. (35.12) can be transcribed as 

1 2n 1 1 2n 1 

E Fgh Vet(@o" B) — 5 LF ~ 98 Vor(@o * B) — 3 
c 2 

— €2V 54 kel = 0 

but »,2v? can be replaced by vo! in the last term, which is already 
small like e?. 

1 1\? 4n? nl? (4 _ +) — HE yet(an By — eV Sel = 0 85.18) 
p> v9 

which yields 

1 Vo? , q Fa besa Vielen? + hao B)P, hk == (85-19) 
  i 

yp? Vo 

This is exactly the same as Eq. (30.13), where we had 

w? = wo? + eky (28.7) - 

ky = + V "hr? V/ v04\Cn|? + [2h(ao ° B)|? (30.13) 
  

which means 

and checks with Eq. (35.19). 
Thus the general method developed in Sec. 34 checks com- 

pletely with the approximation previously discussed in Secs. 28 

and 30. Just as in this previous discussion, case 1 is character- 
ized by o1te amplitude coefficient A much larger than all other A 
coefficients in expansion (35.6), and the definition that gives 
the best connection with the problem of the uniform homogeneous 
medium consists in calling Aooo this specially large coefficient, as 

was done in Sec. 28. In case 2, two A coefficients are of the 
same order of magnitude, and according to the notation (35.14) 
one of them is called Aooo and the other one A njnons- 

The whole theory of zone structure was based on the discus- 
sion of Secs. 28 and 30 and finds here a more complete and general 

foundation.



  

Suc. 36] - THREE-DIMENSIONAL LATTICES . 147 

36. General Remarks on Waves in a Discontinuous Lattice 

We have defined in Sec. 31 a lattice with basis for two dimen- 
sions (Fig. 31.8), and the same definition applies for three 
dimensions. The whole lattice is based on three vectors di, da, 

and d; as before, and inside each d cell there is a certain number 
N of particles, whose positions with respect to the origin of the 
cell are 

f1,)To °° * , fy 

and whose masses are taken as Mi, Mo, . . . My, respectively. 
If N = 1, we obtain the monatomic lattice, with one particle per 
cell, and it is convenient to take r; = 0 and have this particle at 

the origin of the cell. In the general case, an arbitrary particle 
k anywhere in the lattice is located at 

ref; + nid, Se Neds + nds (36.1) 

_where particle k is the jth particle in cell (n1,n2,n3). A general 

scheme for propagation of waves through such a lattice was 
given in Sec. 17 for the one-dimensional case. It could be 

developed in a similar way for three dimensions. For each 
j type of particle in the lattice we could write a wave 

p; = Alje2xioten) (36.2) 

but it is more comvenient to include the exponential e—27(«) 
in the complex amplitude A; and to keep the same imaginary 

exponential in all the j waves. | 

eile t—nyky—noke—n3k3) 

ky = 2nr(a . di), ke = 2r(a ° ds), ke = 2r(a . d3) 

as we did in Sec. 27 for two dimensions. The wave motion of 

particles 7 is then described by 

v= A jeiet—nikr—nake—naks) | Aj = A’ je72ti(@-r1) (36.4) 

(36.3) 

There will be N constants: Ai, Ae, . . .', Aw, in general complex 
to include the phase of particle j with particle 1. 

As in the one-dimensional case we will have N equations of 
motion, and substitution of Eq. (36.4) in the equations of motion 
will yield N linear equations in the A; Each A; is a vector 
function and has therefore three components, thus yielding 
altogether 3N linear homogeneous equations to be solved simul-



148 WAVE PROPAGATION [Cuap. VIT 

taneously. As before, we equate the determinant of the coeffi- 
cients of the A; to zero, which yields an equation of degree 3N 

w in w%, This means that for each 

value of a in the first zone of the 
reciprocal lattice, there will be 

3N values for the frequency. 
This is shown schematically in 

Fig. 36.1. 
The number of branches for the 

function »(a) is thus equal to three 
times the number WN of particles 

K per cell. A continuous periodic 
medium may be regarded as the 

Fra. 36.1, limit N—- oo. Uncertainty in 
the wave vector a is best avoided by restricting a to the interior 
of the first zone. 
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37. Some Examples of Zones in Three Dimensions 

The face-centered and body-centered cubic lattices were dis- 
cussed in Sec. 32 (Fig. 32.2) where it was proved that they are 
mutually reciprocal. The face-centered cubic lattice is of special 

  

  

    

  

    Oo 

Fig. 37.1.—Face-centered cubic lattice. 

  oO 

importance since it represents one of the possible structures for 
close-packed spheres. The lattice can be described as in Fig. 
32.2a, and also as in Fig. 37.1, which obviously represents the 

same structure since it is derived from Fig. 32.2a by translation 
of 14d parallel to the axis. Looking at this cubic structure 
from the direction of the arrow and taking the diagonal OZ 
as the vertical axis, we obtain the drawing of Fig. 37.2, which
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represents the same lattice as the hexagonal structure shown in 
Fig. 37.8. This is one of the possible structures obtained by 
piling up equal spheres provided that the distance from the 
central sphere to its twelve neighbors is the same, and this is the 
case for 

C 2 
i= 2 3 = 1.633 (37.1) 

where the distance c measured vertically from A to B is slightly 
less than the distance BE = +/3d = 1.732d. The structure 

repeats itself after a vertical distance (34)c. 

  

  

    

  

          or pdt | 
@eee Main Horizontal Plane 1. 

© @@ Top “ 
© © © Bottom A o.. 

Fra. 37.2.—Face-centered cubic lattice. Fie. 37.3.—Face-centered cu- 
bic lattice. 

      

There is another possible structure for close-packed spheres 
shown in Figs. 37.4 and 37.5. It obviously has exactly the 
same density as the face-centered cubic lattice. Comparing 
Fig. 37.3 with Fig. 37.4, we notice that in Fig. 37.3 the lower 
atoms are diagonally opposite to the upper ones. In Fig. 37.4, 
on the other hand, the lower atoms lie just below the upper 
ones, and the structure repeats itself after a vertical distance ce. 
This remark shows immediately that the hexagonal lattice of 
Figs. 37.4 and 37.5 is not a simple Bravais lattice built on three 
vectors di, de, and d3, but that it represents a lattice with basis 
according to the definition given in Sec. 31 (Fig. 31.8). 

In the case of lattices containing only one type of particle, the 
following criterion can be used to distinguish between a simple
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Bravais. lattice and lattices with a basis: Taking a vector OA 
from one particle O to another A, we construct its negative O.A’ 
(Fig. 37.6). If the lattice is a simple Bravais lattice, there 
must be an atom at the point A’ (as in Figs. 37.2 and 37.3). If 
there is no atom at A’ (as in Figs. 37.4 and 37.5), the lattice 
has a basis. Hence, the face-centered cubic structure, which 
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Fig. 37.4.—Hexagonal  close- Fie. 37,5.—Hexagonal close-packed 
packed lattice. lattice. 

F 
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D i E 

Fig. 37.6. { 

c 
> 

7 Fie. 37.7.— Q f 

/ Hexagonal close- 

/ packed lattice. _~-4--4 

/ A <7} > : 
: G d SA       

Note that point Q is not on the vertical line going to D but well inside 
the parallelepiped, as can be seen on Fig. 37.4. 

looked like a structure with a basis, actually represents a simple 
Bravais lattice. The hexagonal close-packed lattice, however, 
cannot be represented that way and actually possesses a basis. 
The fundamental cell contains two atoms as shown in Fig. 37.7 
where AQ represents the basis vector. In this hexagonal lattice 
as in the face-centered cubic lattice of Fig. 37.3 

AB =¢ = 1.633d, BE = 1.732d
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for spherical particles. Both structures can be projected on a 
vertical plane passing through DF as shown in Fig. 37.8. In the 

reciprocal-lattice discussion of a lattice with a basis, all additional 
atoms inside the basis must be ignored, and the discussion refers 
only to the three fundamental vectors di, de, and d3. In the 
hexagonal structure of Fig. 37.7, for instance, we ignore the Q 
points on the level 14c and look only for lattice planes running 
through the points on levels O orc. In a horizontal projection, 

<— j—_> <_— f —> 

  

  

  

        

  

  

    

      

  

  

  

      
      

  

B 1.732 B 1.732 
DY] E D E 
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3 3 3° 

(a) (0) 
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Fie. 37.8. 
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E’ 
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ne ° “TT? ' 
A 1 1       

Fie. 37.9.—Hexagonal close-packed lattice, 

the hexagonal structure is the same as in Fig. 31.2 for two 
dimensions and the reciprocal is another hexagonal structure 
with the side 

b (37.2) 
_ 2 

/3 d 

as drawn in Fig. 31.8. Looking at the vertical projection in 
Fig. 37.86, we obtain the fundamental cell represented by ABEH 

with dimensions 

pa = Sq and AB =c=2,[¢¢ (37.3)
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Ist zone- central cube 
2nd zone —between central cube and dodecaeder 

  

3rd zone— between dodecaeder and outer surface 

  

      

4th zone— between 3rd zone and new outer surface 

[Cuap. VII 

  

  
    
  

  

  

  

  

  

  

  

  

Fig. 37.10.— Cubic lattice, zones 1, 2, 3 and 4. 

  

Reduction of 2nd zone 

Reduction of 3rd zone 

Reduction of Ath zone
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This gives us the reciprocal lattice shown in Fig. 37.9, a flat 
hexagonal structure whose vertical projection is also given. 

Let us now discuss the zone structures. Starting with a cubic 

lattice, we obtain the zones represented in Fig. 37.10, where the 
first four surfaces have been drawn and the reduction to the first 
cubic zone is indicated on the right with the three-dimensionsl 
mosaics obtained by translations parallel to the side of the cube. 

A face-centered cubic lattice has a body-centered cubic lattice 
as its reciprocal. The first zone is shown in Fig. 37.11 and has 
the same shape as the fourth zone of the cubic lattice. The 
fundamental cell of the direct lattice has a volume 14d? (four 

  

  

Fie. 37.11.—Face-centered cubic Fie. 37.12.—Body-centered cubic 
lattice, first: zone. lattice, first zone. 

points per cube); hence the first zone and each fundamental cell 
of the reciprocal lattice have a volume of 4/d°. 

A body-centered cubic lattice has a face-centered cubic lattice 
as its reciprocal. The first zone is shown in Fig. 37.12 and is 

similar to the second zone of the cubic lattice. The volumes 
are 14d? for the direct lattice and 2/d? for the reciprocal lattice 
and the first zone. The second zone is similar to Fig. 37.11. 

A hexagonal lattice with arbitrary d and c has a hexagonal 
reciprocal with 2/+/3 d and 1/c as shown in Fig. 37.9. The first 
zone is a hexagonal cell looking exactly like Fig. 37.9. Firet 
and second zones are shown in Fig. 37.13. 

Let us now consider the transition from a continuous medium 

to a discontinuous lattice. Starting from a homogeneous 

isotropic continuum and a certain type of wave (longitudinal 

elastic waves, for instance), we first introduce a slight periodic
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perturbation with the face-centered cubic distribution. This 
introduces discontinuities in the v(a) relation on all plane surfaces 
corresponding to zone boundaries. Instead of letting a run from 
0 to ©, we may reduce all vectors a inside the first zone, since 
each higher zone possesses sections that give a continuous 7(a) 
branch inside the first zone, and finally we obtain an infinite 
set of successive branches inside the first zone. This is the 
three-dimensional equivalent of the process described by Fig. 
17.2 for one dimension. Increasing the periodic perturbation, 
we finally reduce the structure to the discrete atoms located 

at the points of the face-centered lattice. In this process all 

the upper branches of the »(a) curves rise to infinity and dis- 

appear. The only remaining branch is the lower one, and. 

CY 
Fig. 37.13.—Hexagonal lattice, first and second zone. 

  

      

Fig. 17.2 reduces to Fig. 2.46. A very similar process of trans- 
formation was discussed at the beginning of Sec. 16. 

Let us now follow the same procedure with a hexagonal close 
packing. The periodicity is hexagonal, but there are two atoms _ 

in each cell. The transformation will leave us with two branches 

in the first zone instead of one. The final »(a) will be similar 

to the double curve or the one-dimensional NaCl lattice (Fig. 
16.1), instead of the single curve of Fig. 2.4b. In Sec. 16 we 
discussed the transition from the case of two different masses 

M, # M, to two equal masses M; = Mo, and Fig. 16.1 explained 

the transformation. A similar discussion could be applied to the 

transformation indicated in Fig. 37.14 and obtained by. straight- 
ening the vertical atomic line, thus going from the close-packed 
hexagonal lattice of height c to the simple Bravais hexagonal 
lattice of height 4c. The fundamental cell of the latter has a 
volume one-half that of the original. Its first zone has a double
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volume, being twice as high as the original one of Fig. 37.13. In. 
this first zone we should find just one v(a) branch, but as soon 

as the perturbation corresponding to the zigzag of the vertical 
lines is introduced, this zone is cut in two, and the single branch 
splits into two branches in the new first zone. The procedure 
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(a) (b) 
Fie. 37.14. 

along the z axis is exactly the same as in Born’s discussion of the 
NaCl reduction. 

38. Zones in the Direct Lattice; Principle of the Wigner-Seitz 

Method 

Let us return to the problem of wave propagation in a periodic 
medium for three dimensions, as discussed in Sec. 34. We found 

that the general solution could be written as in Eq. (84.4). 

b= A(r)e2nibt—@-r)] (34.4) 

with an amplitude A(r) that is a periodic function in the direct 
lattice. This offers the possibility of defining the function A (r) 
inside a single d cell or inside a closed surface containing a volume 

equal to that of an elementary d cell. 
This is the basis of the Wigner-Seitz method of treating the 

theory of solids that we shall discuss briefly in this section. To 

do this, we break the vector r of a point in the cell (nynens) 
into a number of terms. 

r= fo + r’ + N14 + Nos + n3d3 (388.1) 

ro is the vector for some point in the first cell relative to the 
origin of the cell, midi + ned + nsd3 the vector for the origin 
of the cell (ninens) relative to the origin of the lattice, and r’ 
the coordinate of the point under consideration relative to the 
point ro in the cell (ninens). rr’ is to be restricted to values inside
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a single cell or an equivalent surface. This is illustrated in 
Fig. 38.1. 

Now we must rewrite the solution (34.4) in terms ofr’. First, 

we note that (a-r) becomes 

(a-r) = (a-ro) + (a-r’) + mila: di) + neo(a- de) 
+n3(a-ds3) (88.2) 

We set 
Qr(a . d;) = k, (38.3) 

Then 

A(r) = A(ro -- r’) = erril(a-ro)+(a-r/)]4 1" (y") (38.4) 

and we regard A’’(r’) as defined in the first cell only. Substi- 
tuting the expression A(r) into Eq. (84.4), we obtain 

b = Al (x!) eiet—mki—nakr—naks) (38.5) 

This is the wave function inside the cell (ninens). The ampli- 
tude A” is defined inside the first cell and is independent of 

(11,N2,N3). , 

One may notice immediately 
/ that Eq. (88.5) is the translation 

for a continuous medium of the 
type of definitions recommended 
in Sec. 36 for a discontinuous 

a, structure. The choice of the first 
cell is, of course, arbitrary since 

the choice of the basis vectors 
in the direct lattice is arbitrary. Wigner and Seitz choose their 

elementary cell in a manner similar to that in which zones are 

constructed for the reciprocal lattice, viz., by constructing a 
polyhedron about a lattice point. The faces of the polyhedron 
are planes that are perpendicular bisectors of the lines joining 
the point taken as the origin with neighboring lattice points. 
This is shown schematically in Fig. 38.2 for a two-dimensional 

lattice. 
Some conditions are required to insure continuity of the y 

function throughout the lattice and to prevent any discontinuity 
across the border of the zone in the direct lattice. Let r’ be a 
point on the boundary; the vector r defining the analogous point 

in the next cell (Fig. 38.2) is then 

T= r’ + nid + Nos + N3d3 (38.6) 

  

      
  

, Al, r 

d3 0 

To     
(ny ,N2,N3) 

Fie. 38.1.
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This results from the definition of the zones in the direct lattice, 

and ni, Nz, and nz are small integers such as 0 or +1 if the first 
zone is being used. We must obtain a continuity condition for 
y and its normal derivative at xr’. The condition 

Al'(r!) = All (r)e~intbrtmabst nats) (38.7) 

ensures the continuity of the wave function y. A similar condi- 
tion holds for the normal derivative. For very long wave length, 
ki, ke, and kg are small, as are 1, N2, and nz, and one may approzi- 
mately state 

A”(r') = A”’(t) (38.8) 

along the boundary. 
This is a first approximation, but it is generally necessary to 

use a second simplifying assumption, since the polyhedron 

/ WieNer/SeITz ZONE / / 
Fra. 38.2. 

limiting the Wigner-Seitz zone offers considerable difficulty as a 
boundary. The simplification used is to replace the polyhedron 
by a sphere of equal inside volume and radius R. The corre- - 
sponding points r’ and r are replaced by diametrically opposite 
points tr’. 

A’ (r’) — A''(—1’) 

7 0 (38.9) 
OR 

This can give only a first approximation for long wave lengths, 
and the discussion of corrections for small wave lengths offers 
serious difficulties. 

39. Frequency Distribution for Waves in an Actual Crystal 

The general discussion of the preceding sections leads to very 
important results, which play a prominent role in a number of
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problems in theoretical physics. We do not intend to discuss all 
these problems, but we shall select the oldest. one as the most 
typical: the theory of specific heat of solid bodies. Let us first 
summarize our main results: 

For any kind of waves (elastic, electromagnetic, or wave 
mechanical De Broglie waves) propagating in a medium with 

periodic structure, discontinuities are found in the relation 
between the frequency v and the wave vector a (a vector of 
length |a| = 1/d and pointing in the direction of propagation). 
These discontinuities are obtained whenever the vector a ter- 
minates on a plane that is a perpendicular bisector of one of the 
vectors of the reciprocal lattice. These planes play the same 
role for all waves, whatever their particular nature may be. 
For instance, in electromagnetic waves the discontinuities in 
y(a) are directly responsible for the selective reflection of X rays 
(Bragg-Laue spots). This general property is the reason for 
choosing these special planes as limits of the zones defined in the 
preceding section, and the zone structure i in a given crystal lattice 
is the same for all waves. 

Elastic vibrations, for instance, are propagated through a 
crystal lattice as elastic waves. Their properties result from the 
discussions of Chaps. II, III, and IV and their generalizations in. 

three dimensions. Assuming N atoms per lattice cell (lattice 

with basis), the best representation of the waves is obtained by 
restricting the a vector to the first zone. Each a vector yields 

3N different wave motions, of which three are of the acoustic 

type and 3(N — 1) of the optical type, as Fig. 36.1 shows 
schematically for the case N = 3. The three acoustic waves 
correspond to the well-known waves in an isotropic solid: one 
longitudinal and two transverse vibrations. In an ideal con- 
tinuous anisotropic medium three vibrations at right angles are 
obtained, none of which is exactly longitudinal or transverse. 

In the crystal lattice with discontinuous structure, there are 

still three different acoustic waves for each a vector, but their 
properties are much more complicated than for a continuous 

medium. We may, for the sake of visualization, call the waves 
longitudinal (2) and transverse (t1,f2), but these names do not 
correspond exactly to the properties of waves in a lattice structure. 

The hexagonal lattice, although it contains only one type of 
atom, is a lattice with basis and yields three acoustic branches
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and ‘three branches of higher frequency, which may be called 
optical. A real monatomic crystal lattice (such as the face- or 
body-centered cubic structure) is one without basis and contains 
only one atom per cell. It yields only three acoustic branches 
and no optical branches. 

The volume of the first zone equals the volume V, of the 
fundamental cell in the reciprocal lattice, and 

1 Wz (39.1) 
where Vz is the volume of the cell in the direct lattice. 

All this refers to an infinite crystal lattice. Now what can 
be said about a finite piece of crystal of volume V, containing, 

for instance, one gram molecule and a total of 31 atoms? 

x = 6.06 X 10” Avogadro’s number (39.2) 

The vibrations of such a bounded crystal lattice depend upon the 
properties of the infinite lattice and upon the boundary condtitons. 
These conditions are usually very troublesome in all problems of 
elasticity. _Even in the case of an isotropic continuum, boundary 
conditions generally result in mixing all the wave types. A lon- 
gitudinal wave, for instance, falling upon a plane boundary 
gives a reflected longitudinal wave but also excites a. transverse 
reflected wave. For an ideal isotropic continuum, there is a 
boundary condition that avoids these complications—a perfect, 
smooth, and rigid boundary—but it does not work for crystal 
lattices. M. Born invented for that purpose a very ingenious type 
of condition which he characterizes as cyclic condition. He 

takes an infinite unbounded medium through which plane waves 
can propagate freely and selects inside this infinite medium a 
finite volume V, which is a rectangular parallelepiped. 

O0Os2rslhi, Osysh, OS28L,, 
V = LileLs (39.3) 

The condition for the waves is to take the same value at a point 
(x,y,z) and at points (@ + mili), (y + mele), and (z + Ngl3) 

where 71, No, and ns are any arbitrary integers. 

V(x + niLy + Nobs2,2 + NsLs) = p(x,y,2) (39.4) 

Since 
yp = etet—2ailartbytez) NyNeNs integer (39.5) ©
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this requires that 

m b= 
Ly Dy’ 

A characteristic frequency of the crystal will be excited when- 
ever the wave vector terminates on a point with components 
given by Eq. (39.6). The number of such points per unit’ 
volume of the reciprocal lattice is LiLeLs3 (since thé points are 

spaced at intervals 1/Li, 1/L2, and 1/Ls along the z, y, and z 
axes, respectively). 

The number % of atoms contained i in the volume V is stu- 
pendous [Eq. (39.2)], and Li, Le, and L; are very large, compared 
with the dimensions d1, dz, and ds of the elementary lattice cell. 
This means that the density of the vibration points given by 
Eq. (39.6) is extremely high. Even if we take a very small 
volume element dr in the abc space, we may obtain the average 
number of points inside dr by just taking 

dn = LyLeli3 dr = V dr 

a= c= 7 mymzms; integer (39.6) 
3 

Let us, for instance, consider a certain direction of propagation 
and a small cone of aperture dQ around this-average direction. 
The number of a vectors that terminate inside this cone between 
the distances r and r + dr is 

dn = LyLoLydr dQ = Vr°dr dQ (39.7) 
r= lal = (39.8) 

1 1,f/1\_, p? y 

where W is the phase velocity for one special type of wave. 
According to the definitions given } in Sec. 21, the group velocity U 
is defined by 

Hence 

= 2 =~, l1i_afv 
W= “Uda Uw (¥) (39.9) 

and we finally obtain 

dn = Va (39.10) 

Ina crystal lattice the difficulty is that phase and group velocities
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depend upon both » and the orientation of the cone. In an 

ideal isotropic body this last dependence disappears, and one 

may immediately integrate about all orientations, thus replacing 

dQ by 4n. 
2 * . 

dn = 4rV a ' jsotropic in all directions (89.11) 

There is, however, a general result that can be deduced directly 
from Eq. (39.7): For each type of elastic wave, the total number 
of vibrations (with cyclic conditions) is exactly equal to the number 

3 of atoms in the volume V. This is easily seen, since the total 

number of vibrations of a certain type is obtained by integrating 

Eq. (39.7) over the whole first zone, the volume of which is V». 

/ rdrdQ = Vz 

V (39.12) 

n= [dn=V= y= 

according to Eq. (39.1). This is a very important and general 
result of the zone theory. 

How can this general scheme be 
simplified to be applied to the prob- 
lem of an zdeal isotropic solid body? 
The word ‘‘Ideal”’ is necessary to 
remind us of the somewhat artificial 
character of the assumptions: ac- 
tual so-called isotropic solids are only 
mixtures of tiny crystals oriented 
at random. Our ideal isotropic 
solid will represent a sort of average of crystal properties for the 

purpose of simplification. Two assumptions will be made: 
a. We assume that the curves of Fig. 36.1 are replaced by 

straight lines, as shown in Fig. 39.1. This means that the upper _ 

optical branches are supposed to correspond to single frequencies 

(instead of the actual frequency bands of finite width) and that 

for the acoustic branches we assume a constant phase velocity 

W = U = const. (39.13) 

b. We simplify the shape of the first zone and replace it by a 

sphere. But here we must not forget the general results empha- 

sized at the beginning of this section, and we assume the same 

a) 

  

  

  

    
    0 

‘Fie. 39.1. 

nl
s = 

2



162 WAVE PROPAGATION [(Cuap, VIT 

spherical first zone for all waves (whether electromagnetic or 
longitudinal and transverse acoustical waves). Let the sphere 
have a radius R. Then the volume is 

4 1 I 
3 rh = V, = Va = Vv 

where Vz is the volume of the cell in the direct lattice and 9 the 
number of atoms in a total volume V. Accordingly, we main- 
tain the validity of Eq. (39.12) as necessary. 

In order to comply with the requirements of the general 
theory we see that we have to introduce the same RF for all 

types of waves, hence the same limit for the wave length. 

(39.14) 

  R = |almex = = cutoff wave length 

dn V\ ™ (39.15) 
Amin = (2) common to all waves 

which means different cutoff frequencies for different waves. 

We may speak now of longitudinal waves (phase velocity W1) 
and transverse waves (phase velocity W,), and we obtain the 

maximum frequencies 

M4 | \% 
ve = Wi (2) 1 m= WwW (2%) (39.16) 

These assumptions are very close to the ones introduced by 
Debye in his famous theory of specific heats. but not quite the 

same. At the time of Debye’s original paper, the theory of zones 

was not known, although some of the main results had already 

been obtained by Born. Hence, Debye did not realize the 
necessity of taking the same minimum wave length (and differ- 
ent cutoff frequencies) for the different waves. He found it 
easier to assume the same cutoff frequency and different cutoff 
wave lengths and stated the condition 

{1 2\%/ 90 \* 
Vp = (ws + ia) (2) (39.17) 

vp is Debye’s single cutoff frequency. His reasoning was as 
follows: Starting from Eq. (39.11) and taking 

W, = U; = const. 

W;.= U; = const.
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he first computed the total number of vibrations in the fre- 

quency interval (v,» + dv) for all waves (one longitudinal and 
two transverse) and wrote . 

1 2 
dn + 2dni = 4rVv'dy (Ge + i) (39.18) 

Then he integrated from » = 0 to vp and assumed that the 
total number of vibrations was 39t. Hence 

_4,ya(t 4 7. 3% = a tVy (qe + Wa) (39.19) 

which is the same as Eq. (39.17).. The weak point in Debye’s 
argument is that this oversimplification does not satisfy the 

dN 
dN — 
w ” 

  B. v 

Fre. 39.2. Fra. 39.3. 

  

   

  

TOTAL 

     % 
vw, YM 

Fie. 39:4. Fia. 39.5. 

t 

necessary condition (39.12). We must always have % longi- 

tudinal and 297 transverse vibrations. With Debye’s assump- 
tion the distribution between longitudinal and transverse modes 

is modified; only the total number is maintained by 39. 

Figure 39.2 shows Debye’s distribution function, while Fig. 

39.3 shows ours. In Fig. 39.3 the two curves are to be added 

(the sum is given by the heavy curve) to obtain the actual distribu- 

tion. Figure 39.4 shows the curves that would be obtained for 

an anisotropic medium. The sharp points on our curves are
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due to the assumption of a spherical first zone. A better approxi- 
mation yields a curve of the type shown in Fig. 39.5. 

40. The Energy of a Solid; the Characteristic Temperatures 

_ We regard the solid as made up of 3% harmonic oscillators. 
The energy of a harmonic oscillator vibrating with frequency v 
is, according to Planck (quantum theory), 

hy 1 
Uy = Quek? — 

where k is Boltzmann’s constant, A is Planck’s constant, and 7 
is the absolute temperature. The constant ghv did not appear 
in the original Planck treatment, but quantum mechanical 
considerations indicate that this, and not zero, is the correct 
energy at 7 = 0. Each longitudinal or transverse vibration of 
frequency » receives an amount of energy u,, and the total 
energy of the ideal solid at temperature T is 

U7 = » / U,ANm (40.2) 
m =1,t1,te 

The upper limit of integration is the cutoff frequency for the 
corresponding type of wave. . 

These frequencies can be used to define characteristic tempera- 
tures. A first definition Op is the one of Debye and is based 
upon his single frequency limit yp. 

kOp = hyp or Op = —— (40.3) 

Our theory will evidently yield two characteristic temperatures, 
since the cutoff frequencies are different for longitudinal and 
transverse waves [Eq. (89.16)]. 

hy = hW, ( 39 y" 
eo= = = —> —_— 

ke k ta (40.4) 

0, = bet BW ( 35 
tk” bh \4arV 

If we denote the type of wave by the subscript m, the total 
energy at temperature T is, according to Eqs. : (39.11), (40.1), 
and (40.2),
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U, = any rs | a + 3 | (40.5) 
™ = » we 

We make the following change of variables: 

hy _ hrm _ 9 

t= Ep fe a 
and Eq. (40.5) becomes 

YN 4rv kT) 1 1 
Or = W,* he / Edé E= =] + 3 40.6) 

1,t1,te 

  

This integration must be performed by approximate methods 
for most cases. We define the Debye function — 

  

8 Y? 1 1 
D(a) = 5 lay + 5 £edé (40.7) 

Now the coefficient of the integral in Eq. (40.6) is given by 

ArV (kT) W ( ” (40.8) 

and, if we multiply by &,?/3, we can replace the integral by the 

Debye function. Then 

AV (bT)4 Em? 4a V (bT)4 hg? 
eee 

W, h® 3 38W? bh PBT? 

4nV Pn? _, 4aV 300 \ _p 
= 3 Ww. kT = er (3%, t) = Uk = RP 

Thus we may write Eq. (40.6) in the form 

Ur = > Ur, = RD YD (92) 
1L,t1,te 

and, if the two transverse waves are alike, this becomes 

Ur = RT E () 4+ 2D (%)| (40.9) 

The Debye treatment gives 

Ur = 8RTD 3) (40.10)
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In general, Eq. (40.9) is more reliable than Eq. (40.10). How- 
ever, the two characteristic temperatures ©; and 9; are often 
both fairly close to Op and for very high or very low temperatures 

the two theories agree. 
For very high temperatures, classical thermodynamics holds 

with equipartition of energy, as can be seen from Eq. (40.1). 

= gf 1.) a w= er ( af (+38) era — +48) 

~ —~§1£)_ =~ kT ( 5 + ‘) = kT (40.11) 

Each of the oscillators has an energy kT. Both theories have 
been formulated in such a way as to yield the correct number 

39 for the total number of degrees of freedom; hence we obtain 
a total energy 39kT or 3RT in both cases. This may also be 
seen from Eq. (40.7), since for very high temperatures Debye’s 
function approaches one and both theories yield the result 

Ur = 3RT (40.12) 

- which is just the law of Dulong and Petit. For temperatures 

so small that 

T << 0,, On, ©; 

holds, 0,,/7' is very large, and the upper limit in the integral of - 
Kq. (40.5) may be replaced by «©. Physically this means that 

only the low frequencies are excited and the number and value 
of the higher frequencies i is unimportant. The Debye function 
becomes 

A 3 /* 1 1 

xL—> 0 x 0 x 

_ 3 [x “1, 
= im (5 + I et) (40.18) 

The last integral is a constant that is found equal to 4/15. 

Ur = > | er 8% "4 3RT B(2)] 

=2R (+20) + pre |(Z) +2 (Z) | (40.14)
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The first term is a constant and will not enter into the applica- 

tions to specific heats, etc., since these involve derivatives of Ur. 

Debye’s solution for Ur is 

5 

where C is a constant, and so the two theories agree for low 
temperatures, on account of the relation 

1 2 3 

Of * 85 ~ Oot 
which is easily obtained from Eqs. (40.8), (40.4), and (39.17). 

Ur=37rr(Z C | Tro; 6, + (40.15) 

(40.16) 

41. Thermal Expansion and Entropy of a Solid Body 

We close our treatment of solids with a discussion of the 
entropy. To do this, we must take account of the radiation 

pressure due to elastic waves. The radiation pressure is due to 
deviations from Hooke’s law and has been computed by Rayleigh 
and L. Brillouin: . . 

m= F(5- qa) ary) 
where U,, denotes the total energy of the waves oftypem. For 
electromagnetic radiation in vacuum, 

_1Un 
Pu “37 

since in this case there is no a“ term. Equation (41.1) may 

also be written in the form 

Pn = a (41.2) 

since from Eq. (40.4) 

log On _ 140m _ 4 ( ha 1 “Y) 
  

aV On9V = aV 

or
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The external pressure must balance the internal pressure. 
The latter is given by the sum of the pressure due to the inter- 

actions of the molecules of the crystal and the radiation pressure. 

p=f(V) +), Dm (41.3) 

If the external pressure is zero, then 

(VY) = — Yim 

and we may think of the radiation pressure as doing work against 
the cohesive forces of the molecules during an expansion due to 
rise in temperature. 

The total energy of the solid is 

U = F(V) + U, + Ui, + U;, (41.4) 

where 

| F(V) = —ff(M)av 
During a small expansion the work done is 

Un 00m 
0, a0" 

=fdV — er [> (S") 3 He5y] - (41.8) 

where U,, is assumed to be given by Eq. (40.9). The change 
in energy is given by 

aW = pav = fav — 

dU = aviv +$ sya = sav 45) are + SP 

=-fdV+R > [p (2 2) ay. +DaT — 3 0 (3) 

(41.6) 
Now the heat change will be 

dQ =dU + dw 

and the change in entropy 

q -G-cty (41.7) 
T
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Substituting Eqs. (41.5) and (41.6) into Eq. (41.7) gives 

T 00n ,({00n m as =D, [Dar - D 5 SqaV + D (Seav - Sear) | 

D' OD Om 

= BY)  ~ @) (don - er) 
on replacing av by dOm. If we let Xn = On/T 

D 
= t — dS=R ) (v AX 

dS v_ ,_ D az. (v P) (41.8) 

We can write this as an explicit function of X, by using Eq. 
(40.7) x 

_2 [ "_ dé 3 

in Eq. (41.8), which then becomes | 

a _p(_ 9 [* 8a, 8 8 feat 
aX m Xm Jo e& ~-1° eXm—1 Xat Jo e& —1 

_ 8k 12R [*" ede - , - 8 _ PF I pu (41.9) 

It is interesting to note that Eq. (41.9) agrees with the quan- 
tum mechanical result for the entropy of our system of harmonic 

oscillators. The quantum theory offers a possibility for a direct 
statistical computation of entropy. A distribution of » quanta 
hy (total energy nhv) among g résonators is found to have an 

entropy 

S$ = ty 1+2) 10 (1 +2) - "10 “| 41.10 g ( g g q q g rar ( ) 

The most probable distribution corresponds to Planck’s formula 

for the average energy per resonator. 

nhy _ hv _ hv 

g wm Ff 

and 

    

  

Uy = | (41.11) 

Hence 
e§ 

it eé — ] 

    

1
3
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On the other hand, we have obtained an expression (39.11) for the 
number of resonators of frequency »(dv). Using this value for g, 

2 

= V ae ” wave typem _ (41.12) 

and integrating on » from 0 to the limit »,, we obtain the total 

entropy of the solid. 

S= }, Sn (41.13) 
T 3 On/T ef et 

1 
—_ eé—1 _ i 18 e— 1 — fdé 

The method followed for entropy is exactly the same as the one 

used for energy, in Eqs. (40.2) to (40.9). Some regrouping of 

terms and elementary transformations finally yields 

Xm 

We may integrate by parts to eliminate the logarithmic term. 

. . (Xm é . 8, = 24 I af — log (ef — 1) | dE (41.14) 
0 e& — 1 . 

Xm Xs 
-f log (e& — Ll)hBd—E = — “3 log (e*= — 1) 

0 
ee 1 Xm e 

so that 
Xm p&¢3 _ s-> | -2 log (eX* — 1) + # ff seat (41.15) 

Differentiation with respect to Xm yields 

    

  

dS _ Re» «12 I *™ ettide | 4Rexm 
dXn em=—1 Xntfo ef -1) ek —1 

_ 8ReX» 12k [*™ etetde == oe ti (41.16) 

This is easily seen to check with Eq. (41.9) by the following 
transformation: . 

ds 12R 1 
fe = r(s hy Ly +1)- ge fe (hy +1) oe
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The (+1) term in the second bracket yields, after integration, 

    

12R £4)Xm _ 

Xni/dlp = 38 
which cancels the (+1) term in the first bracket and yields 

Eq. (41.9). 
Thus the whole theory is proved to be entirely consistent. 

Debye’s theory with its single characteristic temperature does not 

work, since it is not consistent with Eq. (41.2) for internal 

pressure. 
Further details on the theory of solids and the direct compu- 

tation of Eq. (41.1) for the radiation pressure can be found in 
the author’s book, ‘“‘Les Tenseurs en mécanique et en élasticité.’”! 
This short summary of the problem was intended to emphasize 
the connection of this problem with the theory of zones, as 
explained in Secs. 39 and 40, and to show the necessity of a 
correction to the original Debye theory involving the use of two 

characteristic temperatures, as pointed out by Born in his dis- 

cussion of the theory of solids. 
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CHAPTER VIII 

MATHIEU’S EQUATION AND RELATED PROBLEMS 

42. Mathieu’s Equation 

The problem of the propagation of waves in a periodic con- 
tinuous medium was discussed in Sec. 34, and there some general 
results were obtained on the type of the solution and its proper- 
ties. Few examples of such problems have been completely 
discussed. Some of the best known relate to the one-dimensional 
problem. The general equation given in Eq. (34.1) reduces to 

A = 
agi t OF) = 0 (42.1) 

v= e*tu(a) 
Mathieu’s equation is obtained when the periodic function F (of 
period d in x) contains only one cosine term and the expansion 
(34.3) can be written 

F(x) = Co + Cre? - Cre?) = Cy + 2C1 cos om (42.2) 

So far we have discussed equations of this type in detail only 

for very small C; (corresponding to a very small perturbation) 
when we assumed from Eqs. (85.1) and (85.3) 

F=(Qt+ef € very small 

Now we wish to discuss the solutions for any arbitrary value of 
both Cy and C;. We may use the following notation to reduce 
the equation to standard type: We introduce a new variable 

TL 
f= a (42.3) 

which has period 7 instead of d, and we obtain 

ae t (n+ 7 cos 2é)u = 0 

n= w? c Co = 4y*d?C vy = 8v7d?C, 

172 

(42.4)
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This equation was first obtained by Mathieu in connection with 

the problem of vibrations of an elliptic membrane, and this is the 

reason for the choice of 7 as the period. The same equation is 

found for the oscillations of an elliptic lake, for the tides in an 

elliptic sea, and, in general, in all problems concerning waves or 

vibrations with an elliptic boundary, such as propagation of 

acoustic or electromagnetic waves along a pipe of elliptic cross 

section. We shall indicate in a later section some other interest- 

ing problems of physics and engineering where Mathieu’s equa- 

tion plays a major role.! 

Floquet discovered that the general solution of the equation 

could be written . 

u = D,A(£)o"# + DB few (42.5) 
with amplitudes A and B that are periodic functions of ~ with 

period +. This solution is thus a superposition of two waves 

propagated (or attenuated) in opposite directions. This is 

clearly seen if we retain the e factor and write the original y 

function of Eq. (42.1). D1 and Dz, are arbitrary constants. If 

we keep only one of these waves, we obtain 

u = A(éer* A(é) has period 7. (42.6) 

This corresponds exactly to our general solution (34.4). 

In our previous discussion we assumed that we had to deal 

with actual waves, and we therefore took 

T d 

and determined afterwards the corresponding w value and the 

frequency. Here the discussion is conducted in the opposite 

way. The frequency has been chosen as primary data, and the 

problem is to obtain », which may be 

p= if | pure imaginary, unattenuated sine waves (42.7) 

w»=atigs complex or real, attenuated motion " 

Both 7 and ¥ are proportional to ? [from Eq. (42.4)], and hence 

increasing frequency means increasing 7 and y. Their ratio is 

constant. The diagram in Fig. 42.1 summarizes the results. 

1 Different authors writing on Mathieu functions use widely different 

notations: this text, 7, y; Mathieu, R, +2h?; Strutt, A, 2h?; Strutt and 

van der Pol, 4w?, 4a?; Whittaker and Humbert, a, 16g. -
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The coordinates are 7 and y. The plain white regions correspond 
to (,y) values for which » is complex or real and attenuation 
occurs. The shaded regions are those for which y is pure imagi- 
nary and yields unattenuated waves. In the language of the 
engineers, blank regions mean absorption or stopping bands and 

shaded regions mean passing bands. 
The two lines y = y and» = —vy are drawn as guides. All the 

passing bands become straight lines parallel to » = —y at 
56     

  

x 
48 

y= 

    24-16 -8 16 24 
— i] 

32 40 

Fig. 42.1. 

infinity. These lines intersect a line parallel to the 7 axis at the 
point given by 

n= —¥ + (Qn + 1) V 27 (42.8) 
if the line is drawn sufficiently far above the 7 axis. Evidently, 
then, they also become parallel to one another at infinity. 

There is no propagation for any value of 7 < —y. We can 
make the following statements about the character of the waves: 

l. y» < -y, » complex or real, absorption 
w real or complex, broad 

2 —y<n<y¥ absorption bands 

# pure imaginary, narrow 
transmission bands (42.9) 
mw real or complex, narrow 

3.4 >¥ absorption bands 

»pureimaginary, broad trans- 
mission bands
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The boundary between blank and shaded regions is the curve 

R.P. p = 0 (R.P. means “real part of.’’) (42.10) 

The » axis corresponds to y = 0 and hence to a continuous uni- 

form medium with no periodic structure whatever. The entire 

positive part of the 7 axis lies inside the shaded region, since our 
definitions in Eq. (42.4) mean, in case of propagation, 

1 And? 
Co — Vor R= Vor > 0 (42.11) 

A small perturbation is obtained when y << 7, #.e., in the 
immediate neighborhood of the n axis. The boundary curves 
(42.10) leave the 7 axis at the points 

n= 7? n = integer (42.12) 

and have contacts of order (n — 1) at these points: 
n= 1, two curves crossing each other 
n = 2, two curves with a common vertical tangent 

n = 8, acommon vertical tangent and the same curvature, etc. 

These curves were very carefully computed by Mathieu himself 

and checked by later computations. 

43. Mathieu Functions: General Discussion 

The general solution, according to Floquet, was written in 
Eq. (42.5), and in this discussion emphasis can be laid either upon 
the imaginary exponentials [free waves as in Eq. (42.6)] or upon 
the real combinations that correspond to standing waves. This 
latter type of solution is the one mostly used by mathematicians 
who have computed the numerical solutions of Mathieu’s equa- 
tion. They start from the solution obtained along the 7 axis 

(y = 0, no periodic perturbation), which they write 

cos mé, sin mé, wo = im =iv/y (43.1) 

In this case, A(£) is a constant, and the correspondence with 
Eq. (42.5) is contained in the well-known relations 

cos mE = Lo(eimt + e-imt) Di =D,=% 
1 

sin m— = 5 (emt — eink) D, = —D, = 3; 

For y + 0, Mathieu functions have been defined: 

Cem(y,é) and Sém(y,é) (43.2)
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They are known as expansions in powers of y, starting with either 
cos mé or sin mé as the independent term. Each of these 

functions corresponds to the same value of m, hence to the same pz. 

B= im = S(ny), y¥— 0, m-— Vn (43.3) 

Lines of given w (or m) run through the shaded areas of Fig. 42.1, 
as schematically shown in Fig. 43.1. On each line, two functions 
Cen and Sém may be computed, except on the boundaries of the 
shaded area. On these boundaries only one of the two functions 

  
    

is obtained, as shown in Fig. 43.1. The boundaries correspond 
to integral values for m according to Eqs. (42.12) and (43.1) 
and start from the point 7 = m? = 1, 4, 9, 16,... on the 7 
axis. ‘Two m curves start from each of these points: one curve 

yields the function Se,, and the other curve corresponds to Cem. 
On each curve there is an additional aperiodic solution. 

From these diagrams we can see how to obtain information 
about waves propagating through a periodic medium. The 

medium is defined by two constant coefficients Cy and C;, and 
Eq. (42.4) yields » and y each proportional to v?, with a fixed 
ratio
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n Co 

y 2C, 
This means a straight line running from the origin as shown in Fig. 
43.1. The line cuts the successive curves corresponding to differ- 

ent m values. The shaded area of Fig. 42.1 gives passing bands, 
and the blank areas give stopping bands. The correspondence 

with our former notation results from Eqs. (42.6) and (43.3). 

(43.4) 

iu = k= = —m (43.5) 

Hence +-mm plays the same role as our former k. The type of 
the resulting (v,m) curve is shown in Fig. 43.2. Here, again, 

N | LY 
oedtey Se 4 or ne, | 

o we , Y \ . < 

aw ‘..L.7 sabe” “OL 

a a on] we s 

wos“ ; . 
. ‘ ¢ . 

2? ee “en 

i “s 
4 ‘J 

                  
  

  

7 rr a | 0 1 2 3. 4 

—47 39 -27r - 0 v an 3m an k 
ae caad 

FIRST ZONE 

Fie. 43.2. 

instead of choosing k (or m) values that insure continuity with 

the unperturbed uniform medium (vy = 0), we may select each 
time the smallest |k| and reduce all curves inside the first zone 

—¢ <k<-x. The important point is that increased perturba- 

tion (increased Cx) does not modify the position of the discon-— 

tinuities but only increases the magnitude of the discontinuities. 

The general theory of Mathieu’s equation is very thoroughly 

discussed in Whittaker and Watson’s “Modern Analysis,’’ 

which contains some important results concerning the infinite 

determinants that we obtained in Sec. 34 in the preceding chap- 

1 Chap. IX, Sec. 19.41.
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ter. Whittaker considers Hill’s equation, which is a generaliza- 
tion of Mathieu’s and which he writes as 

ee + J(x)u =0 (43.6) 

where J is a periodic function (period +) of x. This-is our general 
equation of Chap. VII, reduced to one dimension. The cor- 
respondence of notations is as follows: 

Brillouin: d b= Qa ww 
Whittaker and 1 8 J (43.7) 

Watson: T “H ™ 

and Eq. (48.6) reduces to our former Eq. (42.1). 
The discussion of Secs. 34 and 35 centered on the determinant 

given in Eqs. (84.14) and (34.15). 

Cm—p _ i 5 

(a — mb)? yp? 

which according to Eq. (48.7) corresponds to the determinant 
with the elements 

A = |An»| = (43.8) 
    

Lt wn _ 

Whittaker and Watson assume that the 6, series is absolutely 
convergent and compute another determinant 

  

Ai(ip) = [Bro 

= — 9x —p Bnp = (Qm — in)? — Be m#p>) (438.10) 

Bim = 1 

_ These elements can be represented by the general formula 

B= womme + Smp(2m — in)? _ (2m — in)? 
mp — 6 + (2m _ tp)? mp wo _ (2m _ tp)? 

(43.11) 

which gives the correspondence with our former notation. The 
determinant A; of Whittaker and Watson is shown to be equal to 

Ai@y) =1+K | cots (in + VO) — cots (in — vo | (43.12)
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where the constant K can be obtained by computing A1(0). 

sin + ~/ 65 

sin 5 (iu + V/00) sin 5 (in — V6) 

Ai(0) = 1+ 2K cot 5 VAT 

x= BO AL MO 1 gg FV 
2 cot 5 -V/% , 

Aiiw) =1—K 

  

Hence 

sin? 5 V6 

sin 5 (iu + V/00) sin 5 (in — V6) 
(43.13) 

  Ai(tu) = 1 — [4x(0) — IJ 

This enables one to write the fundamental equation stating that 
the determinant is zero. 

sin 5 (iu + V/00) sin 5 (iu — V0) = [An(0) — I] sin?5 VG (48.14) 
or 

— cos? (; in) + cos? (; vin) = [Ai(0) — 1] sin? 5 4/80 

Hence | 

sin? (5 in) = A,(0) sin? 5 4/95 (43.15) 

which is Whittaker’s result, except that he introduces another 
determinant A(iu) that is equal to Ai(0) for » = 0. . 

These relations are very interesting since they apply to Hill’s 
general equation and not only to the Mathieu problem. An 
attempt to find an extension of these results for the three- 
dimensional problem of Sec. 34 would, if successful, be very 
important. 

From our former notation, according to Eq. (48.7), Whittaker’s 
equation (43.15) becomes 

sin? (a) = A1(0) sin? 5 V/Co = Ax(0) sin? (7") (48.16)
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and yields the general relation between wave number a and fre- 
quency v for a one-dimensional lattice of period d = rinz. The 
fact that » appears as a periodic function of period 1/d = 1/rin 
a is obvious, as are the discontinuities in the »(a) relation when 
Ai(0) > 1. The similarity of this equation with those obtained 
in Chap. III is also very striking. 

44. Hill’s Equation with a Rectangular Curve 

As already stated, Hill’s equation is obtained when the cosine 
term in Mathieu’s equation is 
replaced by an arbitrary periodic 
function of x. Let us write it as 

x     =-rF 9=-7F m yer 

Sit int dew =0 (44.1) 
  

ie | 441 Strutt has shown that some gen- 
— eral results about this equation 

can be obtained. Assuming the integral of f over a period to be 
zero so as to make 

f=0 

and calling fu and —f, the maximum and minimum values of f, 
respectively, it is possible to show that the ny plane is again 

    

    

    

  

— + TS * 
| ly 0 lo l, , 

4 d t ! 

iF | 
poof tf 
| LoL | ft | 

Fa Fe 
Fie. 44.2, 

divided into three regions (Fig. 44.1) by the lines 

n= —fu, 1 = hm (44.2) 
In the first region » is compiex. In region II, » is generally com- 
plex with some narrow bands where it becomes pure imaginary. 
In region III, p is generally imaginary with some narrow bands 
where it is complex.
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This may be shown in an example where the computations 
can be carried out explicitly. Let us assume a line built as shown 
in Fig. 44.2, with alternate portions of lengths 1, and I, with 
values f; and f2. This is obviously a special case of Eq. (44.1) 
with the function f represented by a rectangular curve. 

—_ . = = —v,2 

pty byons oa] ws 
In the first interval we obtain a solution 

—l<a#2 <0: wu = Aex + Be-xe (44.4) 

while in the next interval, the solution is | . 

0<2<le: u = Cex + Dex (44.5). 

Furthermore, the entire solution must fit the form given by 

Floquet’s theorem [Eq. (42.5)]. Choosing one of Floquet’s 
exponentials, as in Eq. (42.6), we write 

u = A(ax)e* (44.6) 

where A(x) has period d. This means, for instance, 

u(x) = e#4u(a — d) (44.7) 

Using this relation, we write the solution in the second J; interval 

k<a<ht+h=d: ulz) = Aetten@) + Berte-xe-) (44,8) 

The problem is to find the A, B, C, and D coefficients that satisfy 
these relations and the continuity condition at the junctions 

(0,l2), where wu and oa must join smoothly. This yields four 

relations: 

x = 0: U: A+B=C+D 

0 
a Axi - Bx = Cx. — Dxe 

x= ly: Ui 
Actin f. Bewdtxih = Cexs + Demmi! (44.9) 

ou. 
ax 

Axiertah — Byserttah = Cyzer — Dx2ex
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This set of four linear homogeneous equations in A, B, —C, and 
—D can be solved only if its determinant is zero. 

1 1 1 1 

_ {Xl —Xi1 X2 —X2 _ 

A ~ e#a—xili ebdtxal ex2te ‘eT Xela = 0 (44.10) 

pd—xity wd xa xele —xale 
X1€ xX1e X26 X2€ 

It is a matter of elementary computations to expand this deter- 
minant and to obtain the equation 

y? — 2Y | cosh xili cosh xele + L(x += X2) sinh Xil1 sinh xele 
2\xe2  X1 

+1=0 (44.11) 

where Y = e#¢, This second-order equation has two solutions 
(Y,,¥2) whose product is unity 

Y,= end, Y= enna, YiY,=1 

and whose sum is twice the bracket in Eq. (44.11). 

Y,+ VY. = gud +e? = 2 cosh pd = 2[- - -] 

cosh pd = cosh xili cosh xele 

1 4 5 (« 4 x2) sinh xil1 sinh x2 ) 

- (44.12) 

To check this equation, let us take x1 = x2, a continuous line. 

Then pd = xil1 + xele is the obvious solution. 

We shall discuss a whole class of problems of this type in 
Chap. X and develop a more direct and very powerful method 

for solving them. Equation (44.12) will appear as a special case 
of a more general equation. According to whether xi and x2 

are real or imaginary, some of the hyperbolic sines and cosines 

“may become ordinary sines and cosines. For instance, van der 
Pol and Strutt consider the problem of equal sections. Let us 
take 

— d=r 

in order to obtain the same period a as occurs in Mathieu’s 

equation, 

m=aty m=
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Case 1: 

n>vy>0 both 41 and ne positive 

1 vt pr . 
Xaly = 9 FX = 9 Vm = 1 Uy (44.13): 

p= ip’ = 1200 

1 . 
Xale = 5 7X2 = a V2 = 4 Xe 

Equation (44.12) becomes 

. 1 far, x 
yoo — — | — COS TH = COS Zi COS Zz — 5 é + 2) gin 71 Sin Ze 

Case 2: 

1< 7 y¥>0 m>0, m<0O>) (44.14) 

gx Vn = i 
5 x2 = 5 V1 = vs 

cos ru’ = cos 21 cosh x3 — 1 (® _ *) sin a1 sinh 23 (44.15) 
2 V3 Ly 

The problem is to follow the variation of expressions (44.12) or 
(44.14) and (44.15) in the ny plane and to distinguish between 
the regions giving » real or complex. Three cases are obtained: 

A. cosh pd 2 1 be = po real 

B. —1 S cosh pd J 1 B= tp’, pw’ real (44.16) 
C. —1 S cosh ud B= bo + tr 

Case B gives waves propagating through the whole line without 

attenuation, which means passing bands, and is represented in 

Fig. 44.3 by shaded regions. Both cases A and C yield waves 
_ attenuated exponentially either to the right or to the left [et#~ 

factor in Eq. (44.6)] and differ only in the relative phases of 
oscillations in successive (l1,/2) sections. This means stopping 
bands and blank regions in Fig. 44.3. 

The whole map in Fig. 44.3 is very similar to that in Fig. 42.1 
for Mathieu functions, except for some intersections of boundary 
curves. The boundaries are obtained for k = 0 or p = tr. 

They are denoted by CoC1C2 and SoS1S2, these symbols corre- 
sponding to the Ce and Se Mathieu functions, respectively. 

The discussion given by van der Pol and Strutt covers all cases
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Fia. 44.3, 

of (0,7) variations. Kronig and Penney limited their discussion 
to the ease of (—71) very large and positive, with 1, very small, 
while 42 is positive and 1, ~ d. The exact conditions assumed 
are 

2c . 
X17 4177” X2 = ta 

lil. 

where c is a constant. Then Eq. (44.12) yields 

. 2 2 / 

cosh pd = cosh xl; cos al, + lon sinh xil; sin al, (44.17) 

According to these conditions 

cosh xili > 1 

x — oe? Lig ey Le 
2a:x%1 sinh xaly ~~ De (x1 a!) = ale - 

and we obtain 

cosh yd = cos ad + ~ sin ad / (44.18) 

The variation of this expression is represented in Fig. 44.4 where 
the limits +1 corresponding to cases A, B, and C of Eq. (44.16) 
are clearly seen. SO 

A general formula giving the relation between v and a was 
obtained in Sec. 43 by using a result proved by Whittaker under 
the assumption that the coefficients 6, = w?C, of the Fourier 
expansion for the function J constituted an absolutely convergent 
series. This is not true of the step function used in this section.



Src, 44] MATHIEU’S EQUATION 185 

{ sin. aa +c0s aa 

. 1 

i 

Fiaq. 44.4, 

  

    

                
The function can be expanded in a Fourier series, but the con- 
vergence of the series of coefficients is not secured. 

Equation (43. 16) is 

sin? rad = A,(0) sin? —— avd 
Vo 

‘where Ai(0) did not depend upon a or », and: d was supposed 
equal to 7, while 

(43.16) 

1 i(4 average | Vo2 ~ \Ppe g 

In the present section we obtained Eq. (44.14) 

cos 2rad = cos x COS 22 — i (® + 21) sin 41 Sin Z2 (44.14) 
. . 2 v2 Uy 

with 
wd _ 7d x wh «avd (=n) 

2V, Vi ~~ 38V,~ Ve ~ = 

This equation can be written 

vy = 

_ x17 + a? cos 2rad = cos (41 + 22) + (1 Danks ) sin 241 sin 2X2 

but 

  

, ev tee (ti ws)? _ (V2 — Vi)? 
i 201%. Q2tit2 == 2ViV 2 (44.19) 

We may replace cos 2¢ by (1 — 2 sin? y) and obtain 

. . 1 1 \rvd | 
2 — 2 _ sin? wad = sin | (, + 7) 5 

4 (V2 — Vi)? V1) avd. avd iW, sin , sin Ve (44.20)
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which does not reduce to the general type (48.16). For very small 
perturbations, however, we may take 

1 1 1 1 
177, ito 77,047 % 

(V2—Vi)*?_ oa... 
“ai, EF 

Hence 

sin? rad = (1 + + + *) sin? (7!) (44.21) 
0 

dropping higher powers of e. This equation, rather than the 
general one, is of the Whittaker type. 

This example shows the limitations of the general equations 
of Sec. 43, which should not be used when the series of the Fourier 
coefficients 6, (or C,) does not converge absolutely. 

45. The Self-excited Oscillator 

A. circuit containing only an inductance and a capacity will 
oscillate with frequency 1/+/LC, where L is the inductance and 
C the capacity. The equation of the circuit is 

Q,Q_, L de + cm 0 (45.1) 

If we vary the capacity periodically, the equation may be written 

in the form of Mathieu’s equation. 

. = A + B cos ait (45.2) 

where A and B are constants and ; the frequency with which 
we vary the capacity. Equation (45.1) becomes _ 

2 

oe + TAF B cos witQ = 0 (45.3) 
If we set 

Q=u and &= bot 

then Eq. (45.8) is 

07u 
gga + (n+ ¥ cos 2é)u = 0 — (45.4) 

where 

4A —_ 4B (45.5) 
=” Lo,” Y Law?
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Equation (45.4) is Mathieu’s equation and has solutions of the 
type (42.5) . 

u= D,A(er# + D.A(— é)e7#* (45.6) 

where the exponent » is pure imaginary in the shaded regions of 
Fig. 42.1 and real or complex in the blank regions. This means 

Shaded regions: yw = 78 stable oscillations of constant 

average amplitude 
Blank regions: 4 real or complex; unstable oscilla- 

tions, one term increasing to infin- 

ity, the other term decreasing to 
ZeTO | 

(45.7) 

Thus the map in Fig. 42.1 completely describes the situation. 
If the variation of capacity were stepwise instead of sinusoidal, 

we should use the map in Fig. 44.3. 

An example of an electric circuit with variation of the capacity 
is shown in Fig. 45.1. This device was proposed in the last 

    
Fie. 45.1. 

century as a self-excited high-frequency oscillator. A self- 
excited oscillator can also be built with a periodic variation of 
the self-inductance, such as a standard alternator with stator and 
rotor windings connected in series, and a fixed capacity. Self- 
excitation means unstable conditions, which yield oscillations of 
increasing amplitude: the amplitude would start from zero and 
continue to increase, finally reaching a constant value when 
some of the nonlinear terms omitted in the equation become 

sufficiently important; such terms might be sparks in the con- 

denser or finite power of the engine turning the condenser. 
In the electric examples, L and C are always positive, which 

means 
n>y>O0 | (45.8) 

z.e., case 1 in Sec. 44 [Eq. (44.14)], which corresponds to region ITT 
in Figs. 42.1, 44.1, and 44.4, where stability is the rule and 
instability the exception. Looking at Fig. 42.1, we notice that
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the main region of instability (or self-excitation) is the V-shaped 

region near 7 = 1, which means, according to Eqs. (45.2) and 
(45.5), 

4A _ 4 _ go 
Lot LCOw2 “of 

i (45.9) 1 
A = Cy wo? = LC,’ 2w9 Yo 

wo is the frequency of the circuit (£,Co) and should be nearly 

equal to 14 the frequency of excitation w. 
This result was found by an elementary discussion, relating to 

the case of small excitation (B << A) before the complete 
theory was developed. The situation is easier to explain if the 

S 
L te 

Cc 

Fie. 45.2. 

condenser is supposed to be plane (Fig. 45.2) with a varying 
distance e between the plates. 

* = 2 e (45.10) 

If the electric surface density on. the condenser plates iso = Q/S, 

_ then the force acting per unit area is 2rc2, and the total force of 
attraction between the plates is 

f = S2ne? = * g? = = (45.11) 

The variation of capacity is obtained by varying the distance. 

€ = é5 + 5b cos ait 

1 1 | 4ab (45.12) 
+ o COS wit GC” GO 

For small perturbation, small b, the oscillations in the circuit 
will have a frequency very close to the proper frequency wo, and 

hence Q? will vary with twice this frequency. 

Q = A cos (wot + ¢) 
Q? = A? cos? (aot + ¢) = WAFL + cos 2(wot + ¢)] (45.18)
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The work done per oscillation by the engine operating the system 
is 

— bw 1A 2 W = fs de ~ =a § cos" (oot + y) sin wit dt 

_ —bw,A? ' . 
= “Ge f COS 2(wot + y) sin wit dt (45.14) 

This is zero unless w1 = 2w) and may be positive or negative 

according to the phase y. When the work done is positive, 
oscillations in the circuit increase in amplitude (instability and 

self-excitation). This is a crude explanation of the physical 

  

Fia. 45.3. 

meaning of condition (45.9). The physical explanation for 
excitation near the points 

1=4,9,-°°°,7”? 

corresponding to 

/ 2 

fos = io = oh = n*; 209 = nw (45.15) 

is not so elementary and must be found in the harmonic content 

of oscillations in the circuit with varying capacity. 

Mechanical oscillators can also be taken as examples, and 
some models are shown in Fig. 45.3. Here the mass M (replac- 
ing L) is always positive, but the A and B coefficients in the 

restoring force [replacing 1/C, Eq. (45.2)] may become. negative, 
as for a reversed pendulum or for a spring pushing the mass away 
instead of pulling it toward its equilibrium position. This means 
that the whole map of Fig. 42.1 or 44.3 can be used. Region I 
is very interesting: an unstable pendulum can be made stable 
by a periodic perturbation of appropriate frequency. Some



190 - WAVE PROPAGATION [Cuar, VII 

other examples follow: the movement of a direct or reversed 
pendulum whose support is moved up and down with a frequency 
w1; oscillations along a string whose tension is varied periodically. 

More detailed explanations and equations may be found in the 
paper by van der Pol and Strutt already quoted. 

46. Free Electrons in Metals 

According to wave mechanics, the motion of electrons in a 
potential field (7,y,z) is obtained from the solution of the Schroe- 

‘dinger wave equation: 
892m 

where h is Planck’s constant. In a crystal lattice the potential 
P results from the positive charge of the ions located at the 

lattice points and from the equal negative charge of the electron 
cloud distributed among the ions. All this yields a periodic P 

function with the same periods di, de, and ds as the crystal 
lattice itself, and hence Eq. (46.1) reduces toa type similar to the 
one studied in Sec. 34, where we had | 

vay + HON =0 | (34.1) 

H = a =F (34.2) 

while here the coresponiience is. | 

= hE — P(r)] . (46.2) 

E is the energy of the electrons and P (r) the periodic potential. 

The whole theory of Sec. 34 applies directly to the problem of 

free electrons and yields the usual rules about zone structure. 
As a matter of fact, the zone structure is completely independent 
of the special physical meaning of the waves considered, and it 
must be the same for elastic, electromagnetic, and Schroedinger 
electronic waves. Some authors did not pay enough attention to 

' this very general result and based their definitions of the zones on 

different criteria for different waves, thus obtaining discrepancies 
that are not consistent with the mathematical nature of the 

problem. As we emphasized in Secs. 26 and 31, another error 

to be avoided is an oversimplification of the problem, such as an 
assumption 

P(t) = Py(x) + Poly) + Pa(z) (46.3)
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This is an academic problem of no actual interest whatever, since 
no crystal lattice is known that would give a field of the type 
(46.3), even as a first rough approximation. Such a structure 
would mean a disappearance of most Bragg spots in X rays 
except for the few reflections from planes parallel to coordinate 

planes, a circumstance never realized in any known crystal. 
Actual physical problems yield periodic potentials P with their 
complete set of Amnm, coefficients in the triple Fourier expansion, 

which means a complete set of lattice planes with indices m1, 
Mo, and mz. 

a 
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The problem of a small perturbation for usual waves was 
discussed in Sec. 35 under the assumption 

1 1 
PF=pm= pat d = Coot J, H = 25 + w¥f 

In the electronic problem we may assume the average potential 

- inside the crystal to be zero, since this merely means a special 
choice of the zero energy level, and we state 

P=e@ | | HEE — e) (46.4) 

Writing Planck’s relation 

E = hv (46.5) 

we define a frequency for the electron waves. The difference 

between the two problems results from a comparison of the 
equations 

w? 

Elastic waves Va = w*Cooo = hk*v electron waves (46.6)
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The V-shaped curves obtained for unperturbed elastic waves with 
> 

= =2 46.7 Vo w|a| ( ) 

now result in parabolic ¢ curves for unperturbed electron waves 
with 

hy = 4x|al? (46.8) 

and curves relating to a small perturbation differ from this 

parabola only in discontinuities on the boundaries of the zones, 
as shown in Fig. 46.1. 

The whole problem, however, is more complicated than the 

simple scheme developed here, since’ the. periodic potential P is 
not known a priori. This potential, as we said before, results 

from the distribution of both ions and electrons. The average 
electron density can be computed once the y functions of Eq. 
(46.1) have been obtained. The potential P is deduced from the 
electron density, and it must check with the P function u upon 
which the whole computation was initially based. This is a 
typical problem: of the self-consistent field, as Hartree calls it, 
and the solution of Eq. (46.1). represents only one step in a more 
complicated problem. 
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CHAPTER IX 

MATRICES AND THE PROPAGATION OF WAVES 
_ ALONG AN ELECTRIC LINE 

47. General Remarks 

In the historical summary given in the first chapters, it was 
explained how the theory of wave propagation first started with 

the discussion of waves along a discontinuous string. Then 
followed the theory of waves in a continuous medium, and we 
emphasized the importance of some of Lord Kelvin’s remarks on 
waves in a discontinuous structure and the existence of a cutoff 
frequency. Up to Kelvin’s time only one type of wave had been 
discussed, viz., elastic waves. Later electromagnetic waves and, 
still later, electron waves in wave mechanics were discovered, 
and the properties first obtained for elastic waves were immedi- 
ately translated for these new waves. For instance, Lagrange’s| 
theory of how to pass from the discontinuous string to the limit 
of a continuous string was used by Pupin in his discussion of 

loaded telephonic cables. The deep discussion of Kelvin, related 
in Sec. 2, led him to imagine a new model for an optical medium. 

A similar mechanical model was built by Vincent and proved 
to have the properties of a mechanical band-pass filter. This 
model was translated into an electrical circuit by Campbell |\ * 
and was the point of departure for his invention of electric filters, 
of which he gave a number of important applications. . 

Hence, for scientists of the last century, it was common knowl- 
edge that the special nature of the waves did not matter and that 
the same general properties could be found for any type of 
waves. The general relations among the various types of waves 

seem to have been forgotten for some time. Physicists devel- 

oped the theory of electromagnetic waves for optics and X rays. 
Then theoreticians discussed very carefully the properties of 

electron waves (wave mechanics) in crystals and too often did 
not pay attention to the fact that a great part of the work had 
already been done in the theory of X-ray propagation in. crystals. 

193
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On the other hand, electrical engineers did a (wonderful analysis 
on the theory of propagation of waves along lines, cables, filters, 

etc., but omitted to notice that many important facts had already 

been discovered by theoretical physicists (see Secs. 18 and 14). 
More recently, practical acoustics was revived, mostly by 
electrical engineers, who were especially well trained in electric- 

circuit theory and found it easier to translate mechanical prob- 
lems into the equivalent electric circuits before discussion. 
These scientists at last rediscovered the similarity of all prob- 
lems of vibration and wave propagation, but they did just the 

opposite of what their ancestors had done. Pupin and Campbell 
started from mechanical models to discuss electric lines and 
filters. A modern engineer, wishing to discuss wave propagation 
along a train of railway cars, translates the problem into an 
electrical one (an impulse propagating along a filter) and then 

translates the answer back into mechanical terms. 
This explains why we want to include a general discussion of 

wave propagation along electric lines and filters in this book. 

Many modern theoretical physicists have hardly heard of these 

problems and do not realize the very great advance in the theory 
by this engineer’s art. Engineers, on. the other hand, have a 
tendency to imagine that any wave problem can be-reduced to a 
problem in electric lines, and this.is not entirely true. We have 
already discussed in Chap. V the importance and the limitations 

(ot the concept of characteristic or surge impedance. This concept 
is fundamental for one-dimensional structures such as mechanical 
or electric lines and filters. Its generalization for three dimen- 

sions is not so easy, and we noted that the definition of energy 
flow, exemplified by the Poynting vector for electromagnetic 
waves or similar definitions in wave mechanics, is better adapted 
to the three- or four-dimensional problems. 

Recent developments in wave mechanics point to the impor- 
tance of matrix calculus and its very close connection with a 
number of problems of wave propagation. It is very interesting 

to note that electrical engineers have independently come to the 

same conclusion. . Matrix theory is now commonly used in the 
discussion of problems of waves in electric filters. Furthermore, 
these problems seem to represent the only classical example 
where some special matrices, of great importance for the theory 

of electron spin, appear for practical purposes, and we shall try
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in the next chapter to show the connection between the theory 
of electric filters and the Pauli-Dirac wave theory of the spinning | 
electron. . 

The discussion in this chapter will be on the propagation of 
waves along electric lines. Let us, once for all, give the correla- 
tion. between the electric quantities and the mechanical quanti- 
ties arising in similar mechanical problems. This can be done in 
different ways, but the most direct translation is obtained by the 

use of the following glossary: 

Electrical Mechanical 
Electric charge Displacement or coordinate 
Electric current Velocity 

Electric current, time derivative | Acceleration 

Self-inductance Mass 
Mutual inductance No direct equivalent; it appears, 

however, in problems with con- 
straints, where generalized La- 

grange coordinates are used 
Magnetic energy Kinetic energy 
Electric energy ; Potential energy 

Capacity C . Elastic coefficient = 1/C 
Voltage Tension 

We shall discuss in this chapter the propagation of electric - 
disturbances along electric lines. This can be translated into a 
problem of mechanical disturbances propagating along a periodic 

mechanical line structure. Electric lines are schematically repre- 

sented in Fig. 51.1 or 55.1, for instance. The same general 

scheme may be just as well interpreted in mechanical terms. A 
square box with four terminals is supposed to represent a certain 
electric circuit. Let us imagine the box to contain a given 

mechanical device. We have two terminals on the left for input 
current and voltage and the two others on the right for output 

current and voltage when we think of the box as containing an 
electric circuit. With a mechanical structure, we have only one 
connection on each side (a rod or a string going from one box 

to the next one), but we need two quantities to specify the con- 
nection: the velocity of the string motion (analogous to electric 

current) and the elastic tension along the string (analogous to the 

voltage). Hence the correlation is complete, and the glossary 
will help in translating from one problem to the other. | 

As noted earlier; there are, however, some cases where
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difficulties are encountered: electrical mutual inductances 
between circuit elements have no direct counterpart in mechan- 
ical problems. However, a general expression for the kinetic 
energy was introduced long ago in analytical mechanics and has 
the same form as Eq. (48.2) of the next section. Such expressions 
are obtained in mechanical problems with constraints when 
generalized Lagrange coordinates must be used instead of the 
usual position coordinates of the mass points. 

Other limitations refer to the range of possible values for some 
quantities. We have already pointed out in Secs. 11 and 12 the 
fact that capacities are always positive in electrical theory, while 

- elastic coefficients may be either positive or negative in mechan- 
ics. Thus, if the general scheme and theory are common to all 
problems of wave propagation, there are restricting conditions 

or practical limitations for each separate class of problems, which 
should always be kept in mind. 

The first sections of this chapter are devoted to essential 
definitions and to the systematic introduction of the matrix 
notation, visualizing elementary matrix computations by their 
equivalent circuit connections. Then we shall go on to a discus- 
sion of the role of characteristic impedance of the line and the 
propagation of waves. Finally, in the next chapter we shall 

let the elements of the line become infinitesimal and thus will be 

enabled to draw some analogies between the propagation of the 
waves and the quantum mechanical problem of electron spin. 

The electric lines that we shall discuss are to consist of identical 
circuits connected together. Each circuit is an electric circuit, 
which may be as complicated as desired with the following 
restrictions. First, all circuit elements must be linear; 1.e., 
we allow resistances, self-inductances, mutual inductances, and 
capacities. Rectifiers, coils containing iron, and other non- 

linear elements are excluded. Negative resistances are allowed 

if care is exercised in their use. They will appear in the mathe- 
matical equations, and, if they are to be used in an experiment, 
one must be sure that the linear portion of the characteristic 

curve is used. The second restriction is that no sources of 
current are to appear in the circuit. All electromotive forces 

will appear as external parts. 
We shall represent the circuits composing the line as rectangles 

with pairs of terminals, as shown in Fig. 47.1. At present, we
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shall place no restriction on the number of terminals. The 
electromotive forces are to be applied to these terminals, which 
we number. Each electromotive force E; will then give rise to a 

current 7,, both of the same frequency. For the present we shall 
choose the signs of E, and 7, so that the product R.P. Hyt,* is 

the power furnished to the circuit. We shall assume that the 
circuit is a simple circuit; 7.e., that it does not contain two or 

more circuits completely separate from one another. Further, 

we shall assume that the number of terminals is reduced to a 
minimum. For instance, if two or more pairs of terminals are 
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in series, they may be replaced by a single pair of terminals with 

an applied electromotive force equal to the sum of the separate 

electromotive forces. 

48. Expressions for Energy 

We shall assume that the minimum number of pairs of ter- 

minalsisn. The kth pair of terminals will have an electromotive 
force EH, The meaning of H, = 0 is just that the kth pair of 

terminals is short-circuited. Each electromotive force #;, will 
furnish charge q, to the pair of terminals across which it is con- 
nected. The q, will form a complete set of independent variables 
for the system if there are n branches to the circuit. If there 

are more than n, then it is necessary to introduce more terminalis 
with an applied electromotive force of zero at these additional 

terminals. We shall assume that this has been done. 
There will be two types of energy present in the general circuit: 

electrostatic due to capacities, magnetic due to self-inductances 
and mutual inductances, and, in addition, dissipation of energy
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due to resistances. If we let Qa be the charge on condenser a, 

then the electrostatic energy is given by 

_15' Qe B=5>, C | (48.1) 

where C, is the capacity of condenser a. Similarly, if Q, is the 

current in inductance a the magnetic energy is 

En =3), Lae! + >) Mass = 5 D> MusQ.Op (48.2) 

where ne | 

La = Maa = self-inductance of inductance a 
Mig = MM, go = mutual inductance of inductances o and 6g 

when a + 8 

Finally,. if Q. is the current flowing through resistance a, the . 
dissipated energy per unit time is. 

¢= D, Fade (48:3) 

where R, is the resistance of resistance a. 

Now all of our circuit elements are to be linear and it follows 

that we may express the Q. as a linear sum of the q; defined in the © 
first paragraph of this section; 7.e., 

Qa = » DakQh (48.4) 

k 

where the a,, are constant coefficients. We may substitute 

Eq. (48.4) into Eqs. (48.1), (48.2), and (48.3) to obtain first 

E. “30, (y Dak Qi 2 a3 =5 j C816 (48.5) 

where a 

cry =) Satal — 6, (48.6)



Src. 48] MATRICES AND WAVES 199 

where 

Mik = y M apQajApr = Mr; (48.8) 
of 

Finally, 

¢ = » Ra » aid > dakde = > T3nQide (48.9) 
a j k ike 

where 

Tik = » RiGejGar = Try (48.10) 

The coefficients cz;, mz;, and r,; may be computed in terms of the 

circuit elements; they will be homogeneous in the C., Mas, and Ra, 

respectively. Furthermore, they are all symmetrical in & and j. 
The general circuit equations may be written 

Ey = » (magi + TeiGi + Cus) (48.11) 

where E, is the electromotive force across the terminals k. The 

work furnished to the circuit in time dé is 

dW = » Fxg, dt = » y (mugs + Teds + CuiQs) qa at 
k kh 4 

= > (mids Adi + TeiGigr dt + crige Aqx) 

ak 

= dE n + dE. + ¢ dt 

This means that we have not omitted any energy from considera- . 

tion. 
We shall assume that all the applied electromotive: forces 

have the same frequency w. Then 

th = te = Tye, E, = Vyer% G=v-) (48.12) 

and Eq. (48.11) may be written 

Vi = » Seely. (48.13)



200 | | WAVE PROPAGATION .  .—‘[Cmar. IX 

where 

Sei = Majo + Tei + Fa = Sin (48.14) 

from Eqs. (48.6), (48.8), and (48.10). 

49. Definition of a Four-terminal and Equations for Its Circuit 
« « . . e . e 

A four-terminal is a special case of the circuits we have dis- 
cussed in the previous sections. It is a circuit for which 

k=O j&1,2 — (49.1) 

For a four-terminal, Eq. (48.18) becomes | 

Souk= Vi 

» Sols = Ve (49.2) 

DY bul = 0 ba34--- on) 

where 7 is the number of branches. We may solve the equations - 
(49.2) since the number of equations is equal to the number of 
independent variables J;. . 

I; = xuVi + X12V2 

Ts = x21Vi + x22V2 (49.3) 
Ty = xXn1Vi + xn2V 2 k=3,4, ++ "yn 

It can be shown that Xni = x, follows from tei = fm. The first 
two relations are the only ones of interest: Solving them for 
Vi and V2 gives a. 

: ve ya OL} 

Vi = 2uli + Zl ] at : it — 
Vo = Zoli + Zoole pene ~ a (49.4) 

where the 2, are constants of the circuit. ~ 
So far we have taken the V; and I; to have signs so that the 

product Eg; is the power furnished by the electromotive force. 
A different convention will be more useful in the discussion of. 
electric lines since we shall regard the line as composed of a row 
of four-terminals each with a current flowing in one direction 
along one set of connections and in the opposite direction along
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the other set. This is shown in Fig. 49.1. If we consider four- 
terminal n, we have a potential difference EH; at the left end and 
E, at the right end. The current I’; at the left end flows into 
the four-terminal, and I’, flows out of the right.end. Then I’ 
and I’, bear the following relation to J; and Ie: 

I'; = Ih, I's = —Ts> (49.5) 

Then Eq. (49.4) becomes on dropping the prime from I', and I’, 

Vi = @uli — Zrole 

Vo = 211 — Zool 
(49.6) 

There is one further change in the equations to be made for 
convenience in discussing line problems. In general, we are 

  

I I, 
ae Oo o= 

vi V3 

    

        

    Ly Ip: 

= 
Fia. 49.1. 

  

  

n+ 

interested in comparing conditions at one end of the four- 
terminal with conditions at the other end, rather than currents 
with electromotive forces. This means that we should express 
V, and J, in terms of Ve and Jy. Rearranging Eqs. (49.6) gives 

Vi = aV2 + bls U2 Arde with 

Ty =cVeo + dole Az (49.7) \ “a 

where 
[ | 3 au 2 aoa \ 7 S224. a= oi a, = <2 Aa { 222) 212 win 49.8) 

h = iran — 212? pak ( where 8). = ; — N= Sn 3.9 38 
#12 

on taking account of the fact that zi. = zo. The four constants 

4 are not independent, for it is obvious that — Bo 

aid, — be = 1 [A] = =. (49.9) 
é ‘amy vy oA 

50. Matrix Notation for a Four-terminal (acre foe rng 

We shall find it useful to regard the current and voltage at the 
exit of a four-terminal as two quantities that are transformed
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by a matrix to give the current and voltage at the entrance. 
The matrix will, of course; be the matrix of the coefficients in 
Eq. (49.7). From this point of view, it is convenient to change 
our notation as follows: 

en, Electromotive force at entrance = V1 = 21 

Electromotive force at exit = V2 = 2’, 4\ 
Current at ent =I, = 2 (50.1) ae urrent at entrance =I, = 2 

*<, Current at exit =I, = 2’, 

Then Eq. (49.7) may be written ry oy 

ABC? T vans ars5/an atv 1, ; ‘en rE xe | = A120’ %1 u2'1 + aise’s 50-2) 

Le = Gei0'1 + Aoot’e 

where Pe put put 
xe 

G11 = a1 Qi = 5b [eo = ah, arn) 
Qe1 = €, G22 = de Spa py 

Then we may call the matrix (a;;) the matrix of the four-terminal. 

It depends only on the constants of the four-terminal circuit and 
is thus characteristic of the four-terminal. 

It follows immediately from Eqs. (49.9) and (49.3) that the 
determinant of the matrix (a,;) is unity. 

G11 12 
“| = 1122 — Ai2021 = Gid2 ~ be = 1 (50.4) 

Go1 G22 
las] = 

  

  

Equation (50.2) may be solved for 2’; and 2’, in terms of 

and 2. 
4 

Vs xy = Divi + Dyers 

* ” 2, = beit1 + deers | (50.5) 
where 

2 m=
 

we
 

r
a
e
 

c bu = ial = Are, bis = — Jal = —dais 

(50.6) 
ba = — Gat boos = Gir _ ye 21 [al Get, 2 = [a| 

\a It is evident that the determinant of the matrix (6:) is unity. ~ 
The matrix (0,;) is the inverse of the matrix (a,;), and we may 
write Eqs. (50.2) and (50.5) symbolically as follows: 

(3) “A (? ) (") -3 (=) | B= 4>\ (60.7) Xo L's Le v2 ; 
a  N, 

where A and B stand for the matrices (a:;) and (b,), respectively. 
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Thus we see that there are two matrices, one the inverse of the 

other, that are of significance for a given four-terminal. One of | 
these, A, would be used if we thought of a wave propagating M 
through the four-terminal from right to left, and the other 

- would be used for a wave propagating from left to right. 
It should be noted that the elements of the matrices A and B 

are not all pure members; some have dimensions: 

Q11, G22, bu, bee pure numbers 

G12, O12 . impedance 
@oi, be admittance (reciprocal of impedance) 

51. Combination of Two Four-terminals; Multiplication of 

Matrices 

In this and the following two ‘sections, we shall illustrate 
various rules from the theory of matrices by means of four- 

terminals. First, we consider the effect of connecting two four- 
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terminals in cascade, as in Fig. 51.1. These two four-terminals 
together constitute a composite four-terminal. We wish to find 
the matrix of the resultant four-terminal in terms of the matrices 

of the two component four-terminals. 

If the matrix (6,;) of the previous section is denoted by (c;) 
for the left-hand four-terminal and by (d,) for the right-hand 
four-terminal, then 

i= y dyt!; = 2 dij (>, cine) 

= y (5 ase) th = SS 

where the double-primed letters represent conditions at the exit 
(right end) of the right-hand four-terminal, the single-primed 
letters conditions between the two four-terminals, and the 
unprimed letters conditions at the entrance of the left-hand 
four-terminal. 

(51.1)
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Now . 

fa =D dyn or F=D-C (51.2) 
j 

are the elements of a matrix (fi) that is the product of the 
matrices (d;;) and (c,;). The order in which the matrices appear 
makes a difference in the product except in certain cases. We 
shall have occasion to note some of these cases in later sections. 

In general, however, 

» CijAhjr =C:-D#D-:C= » dijCit (51.3) 

j j 

In the previous section we noted that A and B were inverse 
matrices. It is readily verified by direct calculation that 

1 0 
A:B=B8 a=(8 t) = 5 (51.4) 

6 is called the unit matrix since it is evident that 

A:6=6:A=A . (81.5) 

for any arbitrary matrix A. Moreover, it is also easily shown 

that the determinant of the product P of any two matrices R 
and S is the product of the determinants of R and S. 

|P| = |R- S| = [R] - [S| (51.6) 

52. Inverse and Reversed Four-terminals and Transformations 

If two four-terminals, connected in cascade, produce no change 
in the electromotive force or in the current, then we say that one 
four-terminal is the inverse of the other; 2.e., if A is the matrix 
of the first and B the matrix of the second, 

A:B=5=B-A (52.1) 

In this case, evidently, the order of the four-terminals with 
respect to the direction of propagation is immaterial. 

Now making use of the fact that A and B each have deter- 
minant one and Eq. (50.6), we see that 

G11 = dee Gig = —bie (52 2) 

dor = —bor Goo = bit 

Evidently to construct the four-terminal inverse to that with 
matrix A will require self and mutual inductances, capacities,
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and resistances that are the negatives of those occurring in four- 
terminal A. This is not always impossible, but often quite 
difficult to achieve experimentally. 

By a reversed four-terminal, we mean one in which the sense of 
the current is changed and the entrance and exit are interchanged. us 
This is, it should be noted{ not) the same as changing the chaning | 9 
of propagation of waves. The latter involves only interchanging ; ° 
the entrance and exit. 

We shall denote the transformation of a four-terminal by B 

and the corresponding one for the reversed four-terminal by R. 
Then the direct four-terminal gives 

wy = b11%1 + diare 

wo = bait + baore 

Interchanging the entrance and exit requires us to use the matrix 
(ai;) inverse to (b,;). 

vy = AyyT1 + ike 

Lo = Geli + Azote 

and changing the sign of the currents (x, and x's) yields 

Ly = Ayt1 — Aree 
7 

Lig = —Ag1X1 + Aoote 

Therefore, the matrix R = (rj) is given by 

Ti. Tig) _ Gir —A12\ Doe ps) 2 

("= rs) -( a) ~ (}e: bit (52.3) 

on making use of |a| = 1 and Eq. (50.6). Evidently, , eo ong 

[ris] = lau] = [ba] = 1 (52.4) 

The elements of the matrix of the reversed four-terminal are 
equal to elements of the matrix of the direct four-terminal, so the 

construction of the reverse of a given four-terminal will not 
involve negative resistances except as they occur in the direct 
four-terminal. 

We call a four-terminal reversible if it is identical with its 

reverse; 7.e., a four-terminal is reversible if 

R=B | (52.5) 

on an (52.6)
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Since the determinant of B is unity, 

| bi = be = V1 + bib | (§2.7) 

so that the matrix of a reversible four-terminal is 

V/1 ¢ bieber bre ) 

RK (v V/1 + bieber ( ) 

53. Four-terminal Matrices and the Group C, 

The remarks that we have made in the previous sections are 
sufficient to show that the matrices arising in the theory of four- 

terminals form a group of two-rowed complex matrices of 

determinant one. The conditions that must be fulfilled in 

order for a set of matrices to form a group of the above type are 
1. The matrices must be two-rowed complex matrices with 

determinant one (see Sec. 50). 
2. Each matrix must possess an inverse matrix that is an ele- 

_ ment of the group. Evidently each four-terminal must have an 
inverse, since the number of equations involved is equal to the 
number of independent variables, and hence the matrix is non- 
singular and possesses an inverse (see Sec. 50). 

3. Two matrices multiplied together must give a matrix 

in the group (see Sec. 51). 
4, There is a unit matrix, 7.e., 6 (see Sec. 51). 
The group composed of matrices of four-terminals is at least 

-a@ subgroup of the group Cs. . The group C2 is well known to 

mathematicians and is an integral part of the theory of electron 
spin and relativistic quantum mechanics. We shall find these 
matrices appearing in a similar fashion in the next chapter on 
the propagation of waves along lines composed of infinitesimal 
circuits. 

Matrices have been introduced in the preceding sections in 

connection with the electrical problem of four-terminals. It is 
important to compare these definitions with the standard 
geometrical definitions given by mathematicians: In a plane, two 
coordinates x; and x2 define a vector P, while x’; and 2’, yield 
P’, The fundamental linear relations (50.7) show that the 
matrix A transforms any arbitrary P’ vector into another P, 

while the inverse matrix B brings the transformed P back to P’. 

This geometrical representation is perfectly adequate when
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the z’s are real numbers. In our electrical example, we always 
deal with complex numbers, and Fig. 53.1 must be considered 
only as a geometrical visualization of the matrix properties. 

Multiplication of matrices was explained in Sec. 51 as repre- 
senting the connection of two four-terminals in cascade. Look- 
ing at Eqs. (51.1) and (51.2), we notice that they represent two 
successive transformations of the vector P first from P to P’ 

by matrix C and then from P’ to P” by matrix D. 
The reversed four-terminal defined in Sec. 52 is typical of the 

electrical problem. Its geometrical counterpart was never con- 

sidered in the theory of matrices. It can, however, be stated 
this way: We take P; to be the reflection in the 2; axis of P’, 

Soy Bat Xo CUVTEA , . , 

P(x) Ko 

  

  
Fra. 53.1. 

and P’; the reflection in the 2; axis of P. The R matrix (52.3) 
represents the transformation from P; to P’; A reversible 
four-terminal is represented by a matrix built in such a way that 
R is identical with B where R transforms P, into P’,. 

The next. step in the geometrical description of matrices is to 
look for the axes of the matrix, which are defined by the condition 
that P and P’ lie in the same direction. 

Pp’ = ~P 

wy = fe, = bits + dirs (53.1) 
ve = Exe = bert + boowe 

These two linear equations can be solved only if their deter- 
minant is zero. 

bi ™ g Die 

bet bes — & =0 (53.2)
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This is known as the equation for the proper values of the matrix, 
and it yields two é coefficients, one corresponding to each of the 
axes of the matrix. The orientations of the axes are obtained 
when the & values of Eq. (53.2) are used in Eq. (53.1). Their 
slopes are given by the condition -S 

nls Sc ad 
ey / 

_ bar + bee 
S= bir + bi2S (53.3) 

bizS? + (b11 — be2)S — ba = (53.4) 

We shall soon discover the physical meaning of these quantities 
and find that they correspond to very important definitions i in the 
theory of electric four-terminals. 

AXIS 2 %2 OWN an 
    

    

SLOPE Sp\ . 

“PROPER VALUE 

bo 

P 

        
    

\ 
\ SLOPE Si 

   

   

jE Gs 
Y1 x 

2% — Yaftege 
Fia. 53.2. 

  

    

Once the axes of the matrix and the proper values have been 
determined, the matrix transformation acquires a simple geo- 
metrical meaning. A vector P is decomposed into its com- 
ponents Y, and Ye along the axes. Then each component is 
multiplied by the corresponding proper value, yielding 

Y", = &Yi, Y's = £Y2 (53.5) 

which represent the components of the transformed vector P’, 
as shown in Fig. 53.2. 

This was just explained for the matrix (6), of which (a,,;)is 
the inverse matrix. Matrix (a;) has the same axes as (b,,;), but 

its proper values are £;-! and &7~!, and the (a,)) transformation 
carries P’ into P,
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The relation between (Y1,¥2) and (21,2) is easily obtained. 
Let us state 

S1 = tan 61, So = tan 02 
Then 

%1 = Y, cos 6:1 + Ye cos 02 

= Y, sin 6, + Yo sin 4% (53.€) 

which we can also write 

Lo = Yi + Y2, yr = Yi sin 61 

_ il (53.7) I 

1 _ 
5, Yi + 3 Y2, Y2 ¥s sin Bo 

We shall use these last formulas for a comparison with the four- 

terminal problem. 
The geometrical representation gives a very simple explanation 

of the following theorem, which says that two matrices C and D 
whose axes | comncide are commutative, in the sense of Eq. (51. 3). 

C-D=D-C (53.8) 

  

This results directly from the fact that after the decomposition 
along the common Y, and Y» axes the transformation, reduces to 
usual multiplication. ye. 

Y'; = cto Yi = EvécV1 

  

and the same is true for Yo. 

54. Surge, Iterative, or Characteristic Impedance of a Four- 
terminal 
    

In Chap. V we discussed the characteristic impedance of a one- 
dimensional mechanical lattice in some detail. The character- 

istic impedance of the lattice was taken equal to the mechanical 
impedance offered by a single cell with its particles vibrating 
as if a single wave were propagating through an infinite lattice. 
We shall define the impedance of an electrical line composed of 
four-terminals in a similar fashion. 

We take the impedance connected at the exit of a four-terminal 
to be 2’; #.e., 

ey = 2a’, 2’ = output impedance (54.1) 

~ 
ro m
t
 ta
t
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Substitution of this relation in Eq. (50.2) yields 

x1 = (A112' + G12) 2's = (bo22’ — bie)x’s (54.2) 

i (212' + G22) x’ 2 = (— ber" + bi) 2x’s J . , 

upon making use of Eqs. (50.4) and (50.6). Now a four-terminal 

with its exit shunted. by an impedance z’ has an impedance z 
at the entrance given by 4 

2= v1 _~ basa! — dis _ 

vs — aw! + bu 

A similar calculation may be made for the reversed four- 

terminal. We take ¢ and ¢’ for the input and output impedances, 
respectively (Fig. 54.1). — 

input impedance (54.3) 

  
  

  

          

  
  

_ __ burg! — die 
w= bef’ — bee (54-4) 

from Eq. (52.3) for the matrix of a reversed four-terminal. 

Xo : Xo" 

zi Xy > "Ee e < ‘f 

DIRECT REVERSED 
Fre. 54.1, 

The four-terminal will have two iterative, surge, or character- 

istic impedances, obtained by the condition that 

or c=¢ (54.5) z= 2! 

These two conditions are equivalent. The two roots of 

bez? + (boe — bir)Z — biz = 0 | (54.6) 

are z and —{¢. Equation (54.6) is obtained from Eq. (54.3). 
The analogous equation obtained from Eq. (54.4) has roots .—z 
and ¢. . 

Comparing Eq. (54.3) with Eq. (53.3), we note the relation 

eat, rat 
Sy Se 

The characteristic impedance is the inverse of the slope of the 
axis of the matrix (Fig. 53.2). Equation (54.6) is thus similar 

to Eq. (53.4). The choice of 2 and —¢ as characteristic imped-
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ances would yield two positive numbers in our geometrical 
representation instead of a positive and a negative one. It is 

just a matter of conventions and is connected with the definition 
| of the reversed four-terminal. 

The two impedances z and ¢ are called the surge or character- 
isitc impedances in the direct and in the reverse senses, respec- 
tively. They are often denoted by k, and ke <A reversible 
four-terminal is characterized by bi: = bez and hence 

ki=he, 2=¢ (54.7) 

The axes. in Fig. 53.2 are symmetrical with respect to the v1 
and x2 coordinate axes ‘in this case. 

One of the characteristic impedances corresponds to the 
situation obtained in a row of identical four-terminals when a 

pure wave is propagating from left to right along the row. The 

      

    

                

      

X2n—1 X2n —) Xone, Xant2 
PT Tt Rr 
Xin-1 n=] - Xan n Xin n+l Xi n+2 

L | 

Fie. 55.1. 

other characteristic impedance corresponds to a wave propagat- 

_ ing from right to left. “This will be explained in Sec. 55. 

55. Propagation along a Line of Four-terminals 

We start by assuming an infinite number of four-terminals 

connected in cascade, as in Fig. 55.1. Later we shall see how to 
terminate the line without disturbing the propagation of waves 
along it. . 

A single wave that propagates along this infinite line is char- 
acterized by the fact that the electromotive force and current are 
multiplied by the same complex factor £ as the wave passes from 
four-terminal n to four-terminal ‘(n + 1). 

Lin+1 = fos | 55.1 

£2 mt = ELo.n ( ‘ ) 

Equation (55. 1) together with Eq. (50.5) gives us two linear 
homogeneous equations in #1,, and 22,n: 

Ein = Oiiin + Diete,n | 
: EXen = boili.n + beaten . (55.2)
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which can be solved only if the determinant of the coefficients 

vanishes. 

bi — & baz 9 | _ 
=2—(buitbeaée+1=0 (55.3) 

bor bee — & 

where we make use of the fact that the determinant |b,,| = 1. 
Thus the complex factor £ is determined by the constants of the 
four-terminal circuit. 

The equation (55.3) is well known in the theory of matrices. 
The solutions for & are the proper values of the matrix (b;;), or 
the diagonal elements if the matrix is reduced to diagonal form, 
as explained in Eq. (53.2). The two solutions are 

£1, = 1 (bu + bax) + V4 (O11 + Bo2)? — 1 (55.4) 

Let us take 

éE = ey= extiB 

Then, since ££ = 1 from Eq. (55.4), we may write 

= pm? == ee iB 
f=evr=e it® = cosh y = 5 (On + bee) (55.5) fo = ev = extiB 

If « = 0, then |é:| = |&| = 1 and 

f, = e718, Ey = ei (55.6) 

In this case one obtains propagation of waves without attenua- 

tion, and the two solutions given in Eq. (55.6) correspond to 
propagation in opposite directions: £1, gives propagation to the 

right and & to the left. 
If a £0, attenuation is present. a is the attenuation con- 

stant and 6 the change in phase per four-terminal. When 

a > 0, & and & give propagation to the right and left, respec- 

tively, as before. 
Bi | Let us compute the ratio of electromotive force to current at 

the entrance to four-terminal n. From Eq. (55.2), we obtain 

Lin bin = E — Daeg (55.7) 

which is a constant complex number that we may call z. There 
are two values of z, 21 and Zz, corresponding to &, and && A 

simple calculation shows that these two solutions are the two
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characteristic impedances corresponding to the directions of 
propagation associated with & and &. Thus in the notation 
of the last paragraph of the previous section 

a. = ki, Zo = —kye = —f 

We may ask how to terminate the line at four-terminal n in 

such a way as to avoid reflection of waves coming from the left. 

This is done by using an output impedance i, on the right side 
of four-terminal n. In the same way we terminate a line on the 

left side and prevent reflection for waves coming from the right 

by using an impedance ky on the left of the last four-terminal. 

An arbitrary wave propagating along a line of four-terminals 
may be split up into a sum of two simple waves traveling in 

opposite directions. Evidently, from Eq. (55.1), the matrix of 
each four-terminal is diagonal for the simple waves. This 
procedure of splitting the vibration up into two waves is anal- 
ogous to taking the principal axes for a transformation in matrix 

theory. Thus we may take the current to be y; for propagation 
to the right and y2 for propagation to the left. Then the total 
electromotive force will be given by the sum of the electromotive 

forces z:y1 and zZ2y2 for the two currents, and the total current 
will be the sum of yi and ye We add a subscript n to the 

y’s to indicate the four-terminal under consideration. Then 

if we take n = 0 for the first four-terminal, 

1,0 = 21Y1,0 + 292,05 2,0 = Y1,0 + ¥2,0 (55.8) 

These equations are identical with those for the reduction of the 
matrix to its axis, given in Eq. (53.7). Equation (55.8) holds 
for any n since we assume a stable condition in the line. Equa- 
tion (55.8) may also be written in the form 

1,0 — 22%2,0 
41,0 = Zi — Za 

_ 1,0 + 212%2,0 (55.9) 

Y2.0 Z1 — 22 

These equations will be of use shortly. 
Now to obtain the current and electromotive force at four- 

terminal n, we merely note that 

Yin = §1"Y1,0, Yon = Eo™Yo,0 (55.10)
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where 

(55.11) 
Ey = Emmy == e—matis) 
£,” = ey = en(at+i8) 

We have taken a positive when the propagation to the right is 
represented by £1. In this case £" becomes negligible for very 
large n while £” is large. 

If we have an arbitrary impedance {9 = —21,0/%2,0 placed 
at the beginning of the line, the impedance at the nth four- 

terminal will be, for very large n, 

. — Lan £2"Y2,0 

since from Eqs. (55.8) and (55.10) the exact solution is 

Lin = 21£1"Y1,0 + 22€2"Y2,0 
Lon = E1"Y1,0 + §2"Y2,0 

t= — Tie — Mao (55.12) 

(55.13) 

and é," is negligible for very large n. This means that, except 
for the first few four-terminals, the impedance for very large n 
does not depend on the impedance at the end. This impedance 
is one of the characteristic impedances of the four-terminals that 
make up the line; the other one 2; is obtained by reversing the 

. condition. 
Substitution of Eqs. (55.9) and (56. 11) into Eq. (55. 13) yields 

the relations 

  Lin = [(temy + ze-"Y) 24.9 — Qre(sinh ny)-x2,0] 

° . ‘ (55.14) 

Tan = 5 Ht z(-2(sinh my)r,0 + (em + fe") 20,9 
where we have set 

Z1 = %, Z2 = —f (55.15) 

Equation (55.14) is called the canonical form of the line equa- 
tions: They contain only three constants: the two character- 

_ istic impedances of the four-terminal and the propagation 
constant y. 

56. Application of the Theory to a Reversible Four-terminal 

Equation (54.6) gives us the characteristic impedance of a 
four-terminal in terms of the constants of its circuit. A reversible 

four-terminal is characterized by the condition bi, = be.; hence,
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for a reversible four-terminal we have 

2=f=, 2 (56.1) 
bei 

This value is the geometric mean of the impedances of the four- i # 
terminal with open circuit and with short circuit. For the open’! 
circuit 2’ = ©, and z = —(bee/be1), while for the short circuit 
z’ = Oand z = —(bi2/b11) [Eq. (54.3)]. The impedances 

_ Ore dee _ {bra Or 
n= Jeb, 2d a = Ale bg = 08-2) 

are called the image impedances. They are the geometric mean 
of the impedance z on open circuit and short circuit for the four-. 
terminal and the reversed four-terminal, respectively. They 

  
  

                  
  

  

Fre. 56.1. 

are the same and equal to the characteristic impedance in the 
case of a reversible four-terminal. This coincidence disappears 
for other cases. 

Equation (55.14) becomes for a reversible four-terminal 

(2 = 6) 
Lin = (cosh ny)x1,0 — (2 sinh ny) 22,0 

Lon = (- , sinh nm) 1,0 -+- (cosh NY)X2,0 (56.3) 

The image impedances. (56.2) are not directly connected with the 
properties of the row of similar four-terminals. This is better 
shown by proving that they represent the surge impedances of a 
row of symmetrical reversible four-terminals obtained by joining 
a given four-terminal B to its reverse R. Figure 56.1 shows a 

row of alternate R and B four-terminals. It can be considered 
either as a row of cells in the order (B,2) or as a row of cells in 

the order (A,B). 
Let us take the first case and write down the corresponding
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matrix [Eq. (51.2)], which is simply the ‘product: of R and B 
matrices in this order: 

a. (B,R) four-terminal | 

i [rub + rieder - Tibia + risbdes 

M . R-Ba=(™u w20a1 T1912 “TF ) 
atrix (ae + roober Teibie + reader] (56 4) 

When the 7, coefficients from Eq. (52.3) are substituted, 

: birbos + Bieber = 2drebee 
R-B= . (babe ~— bubsa + sub) (56.5) 

This represents a reversible four-terminal since the two diagonal 
elements are equal [Eq. (52.6)]. It has only one surge impedance, 
which, according to Eq. (56.1), is given by the square root of the 
ratio of the nondiagonal elements, and this is just 2;,, the first . 

image impedance. The second combination yields z;,. Electri- 

cal engineers have frequently paid too much attention to these 
image impedances, which correspond to no essential property 
of the B matrix itself. | 

67. Passing Bands and Attenuation in a Line of Four-terminals 

Whether the waves propagating along a line of four-terminals - 

are attenuated. or not is determined by a [Eq. (55.5)]. Ifa = 0, 
then there is no attenuation and the waves will be passed by 
the line. This condition yields 

f= = cos 6+ jsin 6 . (57.1) 

If we ‘set b= LY (b11 + bee), then Eq. (55.4) becomes 

f= bt + +f? 4 =btjvi-B (57.2) 

Comparison of Eqs. (57.1) and (57.2) shows that 

_cos B = 6b real, —-1<b<l . (57.3) 

This is the general condition for propagation of waves without 
attenuation. It can be obtained also from (55.5) since a = 0 
leaves us with — | 

cosh y = cos 8 = b = (bir + dae) 

If our four-terminal circuits contain no resistance, the ¢% of 
Eq. (48. 14) and the x, and the 2, of Eqs. (49.3) and (49.4) 
are all pure imaginary. It follows that a; and a, of Eq. (49.8) 
are real and b and c of Eq. (49. 8) are > pure imaginary. Hence, the
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matrix elements for a four-terminal without resistance are | 

bit, bis, bat, bee , 

with Die = B12 and . bet = jBor (57.4) 

where 611, be2, Biz, and $2: are all real. Thus for this case the 
conditions that propagation without attenuation occur are 

bi, bee ‘ real : 

—2 Ss bu + boo <2 
(57.5) 

If resistances are present, the first of these conditions is replaced 

by Eq. (57.3), which says that the sum of bi; and bz: shall be real, 
1.¢., that bi: and bes be complex conjugates. This is equivalent 

to saying that, in general, we may have propagation without 

attenuation if |b1: + bes| S 2 and either the circuit contains zero 
resistance, or ‘positive and negative resistances occur so that the 
net resistance is zero (b11 = beo*). 

For a reversible four-terminal, the characteristic impedance is 
given by Eq. (55.7). 

— ~1fi : ; ys) Z2= ips = Bas 3 (61 _ bee) + J 4 _ i (b11 + bn) (57.6) 

on using Eq..(57.2). For a reversible four-terminal bi: — bes = 0 

and hence . 

  g= t+ j V1 ~~ MY (bu + bee)? 

be 
(57.7) 

If Eq. (57.8) is satisfied, both numerator and denominator of 
Eq. (57.7) aré pure imaginary, which means that zis real. -Thus 
zis real in a passing band and pure imaginary for other frequen- 

cies for a reversible four-terminal. The statement cannot, of 
course, be extended to nonreversible four-terminals. 

58. Reflected Waves in a Line Terminated by an Impedance b 

Let us assume z and ¢ are the characteristic impedances of a 
line of four-terminals, and { is the impedance at the left end, 
terminated by four-terminal 0. Then . 

—f =— 58.1 So Zana (58.1) 

A wave propagated to the left will be partly reflected. With the 
notation of Sec. 55,
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p = coefficient of reflection = 22° 

  

X10 — 21% 2,0 —fo —- 21 Sote2 

since 2 = —f¢. Evidently, if >) = ¢, there will be no reflection. 
From this it follows that, to connect two lines of four-terminals 

without reflection, the characteristic impedances of the two must 
be equal. In all other cases there will be at least partial reflec- 
tion (for frequencies in the passing band of the line that receives 
waves) and total reflection for waves in the stopping bands of the 
receiving line. The lack of reflection when the characteristic 
impedances are equal is very closely connected with the theorem 

explained at the end of Sec. 53 [Eq. (53.8)]. -Four-terminals 

having the same characteristic impedances are represented by 
matrices whose axes have the same slope and coincide. Such 
matrices are commutative. This corresponds to the possibility 
of reversing the order of the four-terminals without changing the 
properties of the line. Now if the four-terminals C and D 
taken in either order, (C,D) or (D,C) give the same result, it 
certainly means that there is no reflection at their junction. 

All these properties of four-terminal lines and their character- 
istic impedances represent a systematic generalization of the 
simple problems discussed in the first chapters. 

2,0 
_ 2X10 + 22%2,0 _ & + £0 _ § = fo (58.2) 

59. A Continuous Line Loaded with Two-terminals 

In this section we shall consider a line loaded with. two- 

terminals as an example of the power of the matrix method. 

  

  

  

22 22 

a {____}+-—— 

22| 1 | 32 
Fie. 59.1. 

Such a line is shown in Fig. 59.1. The line consists of impedances 
_.. °* Vz spaced a distance J from one another on each of the upper and 
* lower wires of the line. This is very similar to the line loaded 

je —-with uniformly spaced equal self-inductances discussed in Sec. 11. 

Cv ie Here, however, we do not specify the elements contributing to 
the impedance 14z except to assume that there is no resistance; 
2.€., 21s pure imaginary. 

ral 2= jz’, 2’ real (59.1)
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The impedance 2’ of any arbitrary two-terminal can be shown 
to vary with the frequency according to the general law — 

  ) _ (a = a2) (w® — we?) ++: / 
os (o? —_ 1) (w? _ w3”) so Lw (59.2) 

where w = 2rv and w1 < wz < w3 < ws... Equation (59.2) 
is valid as long as the two-terminal contains only a finite number 

of circuit elements and no portions of a continuous line.. A 

typical curve of z’ as a function of w is plotted in Fig. 59.2. The 

  

  

  
Fre. 59.2. 

points w; and ws correspond to points of antiresonance, and we 
and w, correspond to points of resonance. ‘The number of such 
points can be increased at will by properly choosing the arrange- 

ment of the two-terminals, since this determines the number of 
branches in the (Z,w) curve. An impedance law (59.2) can be 
obtained with a number of different circuits, some examples of 

which are shown on Fig. 59.3. In Fig. 59.3a, Zs is the self- 

inductance at very high frequencies; and the circuit LC, has a 
proper frequency w1, while L;C’; has a proper frequency ws. 

LC yw? = 1 LC aw” = 1 

Frequencies we and a, lie between w: and ws and above ws. 
Another type of circuit is shown on Fig. 59.3 where. 

Lo = Ty + Ds + Ls, LisC owe” = 1, LC iw? = 1 

We shall find different types of passing and stopping bands in 
the continuous line loaded with two-terminals, some of them 
being characteristic of.the two-terminal and some others of the 
loaded structure. The frequencies w1, we, .w3, w4... are char- 
acteristic of the two-terminals used for loading. In the neigh-
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borhood of we and w,, 2’ = 0 and the line works as if it were not 

loaded at all; hence we find passing bands. In the neighborhood 
of w,; and w; we find 2’ = o, hence stopping bands. These 

bands are referred to as two-terminal bands. In addition, the 
arrangement of the two-terminals may yield further bands, and 

these we refer to as structure bands. These latter bands depend 
principally on the distance of separation of the two-terminals. 

  

Lo 

Li Ls 

af" [yb TE 
Ci C3 [ Cy 

4 

(a) (b) 
Fig. 59.3. 

Now let us apply the theory of matrices to this line to obtain 
further information on these bands. There will be two parts 
of the line to be considered: the two-terminals themselves and the 
lines jointhg them. The matrix for the lines is obtained from 
Kq. (55.14) or (56.3). In this case the two values of the char- 
acteristic impedance ¢ and z are to be set equal: 

and we assume zero resistance so that y, the propagation con- 

_ stant per unit length, is given by 

y = j@ (59.4) 

Then the matrix is obtained from Eq. (56.3), where we substitute 
1 for n, assuming vy to correspond to a unit length of the line. 

cosh yl —k sinh yl 
(ps is) = 1 (59 5) 

bei bee —. E sinh yl cosh yl ‘ 

From inspection, we see that the matrix for the two-terminal 
itself is 

Bb’ O's2\) fl 2 (Pe i) = (j ; ) (59.6)
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Then the matrix for a complete section of the line is given by 

(3 3°) _ (Pa a) (?s ps) 
Boy Bos b’e1  B’e2/ \bar bas 

cosh yl + ; sinh yl —z cosh yl — & sinh yl 
= (59.7) 

— r sinh 71 cosh yl 

To investigate the passing bands of our line loaded with two- 
terminals, we refer to Eq. (57.5). According to this equation, 
the line will pass frequencies whenever 

\Bir + Boo| S 2 (59.8) 

The other conditions in Eq. (57.5) are automatically satisfied 
because of our assumption that z and y are pure imaginary. 

Using Eqs. (59.7) and (59.8), we obtain the condition 

        

if 

\cos B| = |cosh yl + ~ sinh yl| = |cos Bl — 2 sin Bll <1 (59.9) 
2k 2k 

The limits of the passing bands are given by © 

‘ |ecos B| = Jcos Bl — sr sin Bl) = 1 (59.10) 

  

  
There are two cases to be considered, corresponding to the two 
types of bands mentioned earlier: 

1. Two-terminal Bands.—Two-terminal bands contain the 

point 2’ = 0, since for this case Eq. (59.9) is always satisfied. 

There will be a certain range of values for z’ including the point 

z’ = 0 for which Eq. (59.9) is satisfied, and this range comprises 
the two-terminal passing band. 

2. Structure Bands.—A structure passing band will have for 

one of its limits 
wl w 

Bl = 7 = Na where 8 = 4, 

since this gives 

sin Bl = 0, cos Bl = +1 (59.11) 

and condition (59.10) is satisfied. The width of the band can 
be obtained in the following way: If one limit of the band cor- 
responds to cos B; = +1 (when B; = Nz), the other limit is 
found for cos B; = £1 and B. = (N+ 1)z. Let us assume, 
for instance, |z’| > > k; the second limit is obtained for
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Bl = Nar +e e small 

cos (NV + 1) = — cos Na = cos a sin pl 
a 

= cos (Nr + «) — sin (Nx + e) 

x cos Ne — cos Ne- € 

Hence — 

Se
 

e= (59.12) 

This gives the width of narrow bands, assuming that z’ is approxi- 
mately constant throughout this passing band, and |z’| >> k. 

Let us apply this theory to two simple cases: a line loaded with 

inductances, and a line loaded with capacitances. — 

‘a. A line loaded with inductances.—In this case 

2! = Low 

where Ly is the value of the inductances. 2’ = 0 only for w = 0. 
The corresponding two-terminal passing band is the well-known 

low-frequency band. The structure passing bands are found 

for high frequencies. One of the band limits is 

_ New 

l 
  (59.13) 

and the band width is given by 

Ak Akl 4 DL, 
°“Tw  IoNeW Nel, ‘9-44 

since, if L, and C, are the inductance and capacity per section | 
of the line, 

  

7 Ly l 
k = = Ww So : 59.15 

C, / LCs ( ) 

Figure 59.4 shows the curve of w vs. — 

gl 
= —1 — B = cos™! |cos Bl 55 2 Bli. 

b. A line loaded with condensers.—In this case we obtain 

1 1 Ah _ | = — ‘== AkC ow (59.16) 

where Cy is the capacity of the condensers and ¢ the width of the
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structure bands. The two-terminal band disappears since 
z' = Oonly forw = o. The upper limits of the structure bands 
again appear at 

wo =X ov . (59.17) 

  

Figure 59.5 shows the frequency as a function of B.
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60. A Continuous Line Loaded with Four-terminals 

In this section we shall treat a problem similar to that of the 
last section except that we replace the two-terminals with four- 
terminals. Then the matrix (b’,) for the four-terminals has the 
general form given in Eq. (55.14). The matrix (6,;) for the line 

    
  

  

              
  

  
  

  

  

      

  

  

[ie Q ee : 2 ——- 

—) l ey] 

— 
Fie. 60.1. 

connecting the four-terminals i is given by Eq. (59.5). Multiply- 
ing these matrices as we did in the last section, we obtain for 
one section of the line (see Fig. 60.1) 

(> 11 ra 

b’s1 a0 

  

fev. te ze — Qzee sinh vy! q | 

; =(* 2-sinh “y ze’ + te-v ); +E (60.1) 

(8) hs) 
ber Bae _ | 

cosh yl —ksinh yl\ | 

~% * sinh vy cosh. yl (60.2) 

(3 rr B *) . 

Buy a) 

(> ub *) (? hs) 
b’ a1 b’ oe bai bos 

2 inh 7’ sinh yl + cosh yl(ze-Y + fer) 

—2 sinh y’ cosh yl - ( e7~Y + fe) sinh yl 

1 

e+e 
  

~k sinh yl(ze-7 + tev) — 2e¢ sinh +’ cosh yl 
| (60.3) 

2k sinh y’ sinh yl + cosh yl(zev’ + fe-7) 

where k is the characteristic impedance and y the propagation
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constant of the line net unit length, z and ¢ are the character- 

istic impedances, y’ is the propagation constant of the four- 

terminal, and / is the distance between four-terminals. 
We assume that the four-terminals contain no resistance that 

gives the condition 

, b’ 11, b’o9 / real 

b’12, b’21 ~~ ~=pure imaginary 
| (0) 

In a passing band of the four-terminals, 7’ = j6’ is pure imaginary, 
and this together with condition (60.4) tells us that. 

.g= fF . (60.5) 

In a stopping band of the four-terminals. 

7’ = a’ real, z and ¢ pure imaginary _ (60.6) 

If the four-terminal is reversible, we know that z and ¢ are equal. 
and hence real in the passing bands, a result obtained in Eq. (57.7). 
Now the condition for a passing band in the line as a whole is 

given by 

loos Bl = 5 |Bu + Bas 

= |cosh 7’ cosh yl + ieee sinh y' sinh yi] <1 (60.7) 

Again we shall find that we can divide the passing bands into two 

classes: (1) four-terminal bands due to the four-terminals, and (2) 
structure bands due to the spacing of the four-terminals. 

To obtain the four-terminal bands we must consider fre- 
quencies in the passing bands of the four-terminal. Bothy = jé 
and y’ = j@’ must be pure imaginary. We set 

z= 2 + Jz; tan ie. (60.8) 

on using Eq. (60.5). 2, and z; are the real and imaginary parts, . 
respectively, of zand ¢. This gives on referring to Eq. (60.7) 

he + 2,2 + 2? 
2kz, 

  

lcos B| = |cos p’ cos Bl — sin #’ sin Bl] S$ 1 (60.9) 

Passing bands will include points for which 

2 2 2 bite’ te +1 cos B= cos (6 + Bl) (60.10) 2kz,
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holds. To obtain further results, we must know the character- 
istic impedances of the: four-terminal as functions of the fre- 

quency. If the four-terminal is reversible, z; = 0, and condition 
(60.10) reduces to 

= +k (60.11) 

The condition (60.11) means that the loaded line has passing 
bands containing all frequencies (in the passing bands of the 
four-terminals) for which the characteristic impedance of the 
four-terminal equals that of the line (no reflection at their junc- 
tion). For frequencies in a stopping band of the four-terminal, 

z= je’, t= jc (60.12) 

Equation (60.7) becomes 

— z¢' 

wat +) 
In general, Eq. (60.13) is not satisfied. However, there will be 
a.structure passing band around the frequency for which the 
cos Bis zero. This is given by 

2 c’ —_ k? , 

k(z’ + tanh a (60.14) 

In connection with this problem it is interesting to note that 
the matrix method greatly simplifies some of the computations 

discussed in Chap. VIII. For a reversible four-terminal, 
Eq. (60.7) becomes 

|cos B| = jcosh a’ cos Bl + 7—>—=——n sinha’ sin fl) $1 (60.13) 

cot Bl = 

<1 (60.15) 

  

cosh y’ cosh yl + (3 + ‘) sinh y’ sinh yl 

since 2 =f. This problem corresponds exactly to the one 

discussed in Sec. 44, and if we set 

(60.16) 
y' = Xabi, yl = Xale 

k= X1) &= X2 

we obtain Eq. (44.12). The direct computation given in Sec. 44 
led to a fourth-order determinant that is equivalent to the 
determinant of the matrix in Eq. (60.3). The theory developed 

in this chapter thus appears as an important generalization of 

the problem of Sec. 44. 
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CHAPTER X 

CONTINUOUS ELECTRIC LINES 

61. Transition from a Line of Four-terminals to a Continuous 

Line 

In the previous sections we discussed lines composed of four-— 
terminals. Each four-terminal was characterized by a matrix. 

that produced finite changes in the current and electromotive 
force. We may think of .thése four-terminals as becoming 

very small so that their matrices produce very small changes 
and in the limit these changes will be zero. Thus, if dz is an 
infinitesimal portion of the line, we may take the matrix (b,j)  (?02 

to be PCB P, fo a 
. \ a Pun 

. 1+ endz e€1. dz i : “ 
(by) = (61.1) 

€91 dz 1 + €92 dz 

which differs very little from the unit matrix. Equation (61.1) 72;-% 
may be written S hj oo 

(by) = ebedd =I) (e;)dz + -:: (61.2) 

where we neglect terms in dz higher that the first and OQ ae 
Mae oo tA, \len ©. g “a ds 4 
Prey Moyes 

| . ~ we at 

( € ) _ { €11  €12 . 
af -— Coat eo 4g “ ay 

€91. €22 fo , eepy ed q = ~ 

: ee ofS, 

Now the determinant of (b;;) must be equal to one; This 
oD 8 ae we Pam HOE Eh: 
Kage pre? p 4 

Den = en (61.3) 

Since our transformation is now an infinitesimal transforma- 

tion, it follows that 

v1 = biti + bite = 21 + dt, = 21+ (e101 + €12%2)dz (61 4) 

we = bey + baste = 22 + dre = X2 + (e910 4 + €222) dz " 

227
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. . 7 c | 
from which we obtain A p |  /@ 2 Vp | 

.. Vda ax Wf 0 ml V5 | 
v 8 r ae We = €41%1 + 12% : 

Rees €22 = —€11 (61.5) 

“ yi des, L1 + €n0k “hy ’ dz 2104 22% 

For the special case of a reversible four-terminal, bi: = bee or 
€11 = ég2. This result combined with Eq. (61.3) yields 

frovs 4 
(eee not af 4 (evens! iste com €11 = €22 = 0 (61.6) 

An 1 example i is given by a telegraphic cable.) Let the cable have 

“series ; resistance, series self-inductance, shunt conductance, and 

shunt capacity per unit length given by R, L, G, and C, respec- 

tively. Then 

IMO «dV = (R+ieL)del, dl = @ + twC)deV 
which in the usual notation becomes 

  

(14 
eet AT 

he edien. Hate SS de d | tode get an, Wate. og ( 1 2a (61.7) 

A j at 
tases nye antitiynathare vaiepasundsssaan sen 

i R + tol 

eu G22 0, €1 = G+ ial 

The first of Eqs. (61.8) shows that the cable is composed of 
reversible four-terminals. The four-terminals are, of course, 
infinitesimal. 

Y We may obtain equations for the propagation of waves along 
XO? a line composed of nonreversible infinitesimal four-terminals by 
Yay, plitting the waves up into two simple waves propagating in 

a) opposite directions, as before. If we let y be the propagation 
constant (attenuation and phase shift) per unit length of the 
line, a single wave propagating j ina given direction i is represented 

(61.8) 

by 4a ‘srt afte AM a IA, rod yr Ae ge . + Bin fe A 

5, t t wv, 
a uy S os8 oe a = Yr; ae = Vo (61.9) 

e ie Combining Eq. (61.5) with Eq. (61. 9), we obtain 
aby & 

c. a (e11 — Y)t1 + €12%2 = 0 iN 61.10 
¥ fot és101 — (y + €11)%2 = 0 ( ) 

The condition that Eq. (61.10) be soluble for 2; and x2 is that the 

determinant of the coefficients vanish, The resulting equation
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for y is kul by a 

y? — e112 — €12€21 = 0 Gaye pres by ~~ 

| & 
or eT cet o 

}. Y= + err? + erzeei a | acanal (61.11) 

The values of y given by Eq. (61. 11) ‘are the p: proper values of the 6 

matrix (e;). They are, in general, complex. For the case of 

  

  

reversible four-terminala js or abn YectTNe d, & rr sn be 

Lt = + Jaw " =e 

and A ye A + 8 

} t\ poop [ (61,12)? f 
v2 Y €24 . 

k is the characteristic impedance of the line and has the samex “S 

value for the two directions of propagation given by ty. The 

characteristic impedances i in the general case are different. & 

( + Se -E _ 1 €12 v + en. (61.13) % 

a Le ry 1 €21 | RB 

62. Examples of Four-terminal Representation of Continuous 
Lines 

A line of infinitesimal four-terminals may be used to repre- 
sent certain continuous lines. In this section we shall discuss 

some particular exampies of this. 

1. A Line with Coefficients Varying Exponentially.—In a num- , 

ber of practical problems (exponential electric line, exponential Pe 

horn for a loud speaker, etc.) one has to deal with continuous ~ 
lines whose coefficients vary exponentially with the distance. 

There is a close connection between such exponential lines 

and our general type of (¢;,) line. Let us start from the equa- 
tions of Sec. 61 and make the following transformation: 

Xi = x16, m= X 16%, Yq = X 9¢7 8H, 

. X_ = re (62.1) 

Ara = €19¢7 7, Aoi = €21€7¢"* 

Then our general equations (61.5) yield 

xX d 
at = eT ez (@ — an) = €y909e 61# = ArX¢ 

ae \ae (62.2) 
7s = gee (e + cut) = e970" = Ao X1
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These are the equations of propagation of X , and X, along the 

exponential line characterized by Aie and Agi. 
The solution obtained in Eq. (61.9) for a wave (21,22) on the 

(e,;) line was 

, Yi = 4X1, eet”, Le = Xo, oe 

where v is the propagation constant (61.11); hence the solution 

for the exponential line is 

Xi = Xi gece ve Xo = X 2, oe (ent v2 (62.3) 

The plus and minus signs before y correspond to the two direc- 
tions of propagation. Thus a finite length of exponential line © 
behaves as a finite length of (e) line terminated by a transformer 
of ratio e~?, 

As an instance of an exponential line, let us consider an electric 
line with the following values of L and C per unit length: 

L = Loen?#, C= Cer 
where e1: is any real number. Calling X, the voltage amplitude 
and X., the current amplitude and dropping the common ett, 
we obtain the usual line equations 

ON = iwLX,, 1 = iwCX, 

which are similar to Eq. (61.7) when R=G@=0. These 
équations of the exponential line have exactly the same form 
as Eq. (62.2) and possess solutions of the type (62.3). Sub- 
stituting Eq. (62.3) in the line equations gives 

(—e11 + y)X1 = tw X » 

tw X , = (E14 + y)Xe 

which are two simultaneous linear equations whose determinant 
must be zero in order to yield a nontrivial solution; hence 

y? = en? — WLC = a1? — wLCo (62.4) 

which is exactly the same as Eq. (61.11). The interesting point 
here is the frequency dependence. The exponential line behaves 
like a high-pass filter with a lower cutoff frequency at wo. 

LC owe? = €11?
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since 

w < wo, y? = LoCo(wo? — w’), y real: attenuation 

@ > wo, ¥? = —LoCo(w? — wo”), y pure imaginary: propagation 

This result is familiar to electrical engineers and was given here 

as an example of the general theory. The characteristic imped- 

ance of the line varies exponentially as e~**»*, The phase 

velocity above cutoff is 1/ VLC ol — wo?/w?). 

2. 11, €12, €21 Arbitrary Functions of z.—As in the first example, 

we express 21 and 2x2 in terms of 11: 

xy = Xe", te = Xe? (62.5) 

where 

e= fF ende (62.6) 

The coefficients Aiz and Asi become 

Ais = €12€7?*, Aor = e216" (62.7) 

and Eq. (61.5) yields 

ans = A,(z)Xe, an = Asi(2)X4 (62.8) 

To obtain a four-terminal corresponding to a finite length of 

the line, we write 

Increasing the length of dz yields (from the rule for the multipli- 

cation of matrices to obtain the effective four-terminal resulting 

from two four-terminals connected in cascade) 

b(z + dz) = b(z)b(dz) = [1 + (e)dz]b(z) (62.10) 

on substitution of Eq. (61.2). Equation (62.10) may be written 

explicitly 

d 
ou = e411 + e1ebei, dois = e11bi2 + erabee 

2 da (62.11) 
dbo1 dbae 
——— = €93b113 + eoob ——- == €91D €900 dz 21011 + €22 a, dz 7 ©! 12 + €22b22 

Equations (62.11) consist of two sets of equations of the type 
(61.5). The four-terminal equivalent to a length z of the line is 

obtained by integrating these equations.
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3. A Line with Constant ¢ Coefficients—We have already seen 
that such a line gives propagation with the propagation constant 
vy of Eq. (61.11) and the characteristic impedances ky; and kg of 
Eq. (61.13). Then the matrix (b,) at 2 = 0 is just the unit 
matrix 

fi 0 

b(0) = ( i) . 

1 

bi = ke + hes (koe + kye7*), 

The matrix elements 

—kiks 
  Dis = (ev _ e~7) 

, ko 1 | hi + ke (62.12) 
bo Ee | 

bee = ki + bee + Is (ser + ke") 

satisfy the initial conditions and the relation (61.13). Further, 
(bs) has determinant one and, in general, represents a finite 

nonreversible four-terminal. The matrix (¢,;) may be found by 
taking the 2 derivatives of the matrix (b,;) at 2 = 0. 

ke — It hike 
  

  

a1 = Y €1 = 2y 
k ky’ ki + ke 
erin yO at + ka (62.13) 

If ki = ke, we have é11 = 0, which means that the four-terminal 
is reversible. The line will have zero resistance if 

eis realy —_€12,€01 pure imaginary (62.14) 

Equation (62.12) is identical with Eq. (55.14) of Chap. IX. 

63. Application of Hill’s Equation to a Continuous Line 

The most general example of a continuous periodic line is 
given by assuming eé11, e12, and 2: periodic functions of z, with a 
common period L. The general wave solution is given by a 
superposition of the two particular solutions (Floquet’s theorem): 

xi(2) = et Vf, (z) (63.1) 

X2(Z). = | et ” 2(2)
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where fi and f, are two periodic function, each with period L. 
Equations (63.1) are of the same form as the solutions for 
Mathieu’s and Hill’s equations, discussed in Chap. VIII. Hill’s 
equation is the appropriate one if we take 

€11 €12 | 0 c¢ 

( «:) ~ * FQ) 0} | (63.2) 

where F(z) is periodic in z with period L. Mathieu’s equation 

is obtained by taking F(z) a sine or cosine function. Equation 
(61.5) then becomes 

dx _ di _ 1 
. dz = CX2, dz = oP@n 

so that | 
d? Gn 1 : 

qe 7 F@e ill) (63.3) 

Equation (63.2) implies, evidently, that we are dealing with 
reversible circuits that may, if desired, contain positive and 
negative resistance, since ¢1; = €22 = 0 but é12 is not pure imag- 

inary. Resistances are avoided by taking c¢ = 1. 
We may reduce more general examples to Hill’s equation. 

_ To do this, we set, as in Eq. (62.5) to Eq. (62.8) 

dX, 
e = fedz, dz = AwXe 

Ai = €12€~*¢, os = AwX1 (63.4) 

_ 2p 
Aa = €91€7*, 

where €11, €12, and €2; are assumed periodic with period L in z. 
Increasing the length of the line by L gives 

o@+L) =z) +I where = I "ede (63.5) 

where I will be zero only if €,, has an average value of zero. 

Ay and As, will be multiplied by e~*’ and e”, respectively. 

Then Eqs. (63.4) become 

dXe_ da 1 dX =_ , 
Xe a (1 Bs) AnXs 

_and if we set 
. = fA dz (63.6)
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we obtain 
a?x, _ Ao 

As Xi (63.7) 

Equation (63.7) is Hill’s equation if 

= Aa = ea 4p —Fe en’ (63.8) 

is periodic. This is the case only if I is zero; 7.e., only if ey 
has an average of zero. This means that we may reduce the 

equations for a periodic line of nonreversible infinitesimal 
four-terminals to Hill’s form only if a section L as a whole 

‘ appears as a reversible four-terminal. If this is the case, the 
corresponding continuous periodic line may be reduced to a 
line of identical reversible four-terminals. 

64. Normalization of the Matrix (e,;) and the Pauli Matrices 

We have been led in the study of continuous lines to 
introduce matrices of the form 

€iq E12 €11  €12 
f) = = 4.1 

(e i) («: =) (s: =) (6 ) 

The square of the matrix (e,;) is diagonal. 

)2 me eu” + e12€21 0 | ) —_ (5! 0 ) 

(<a) (; €11” + €12' 21 0 —_ lexi (64.2) 

where |e;| is the determinant of (e;). We may introduce a 
normalization factor H(z) so that the square of (e;) is 1. Assum- 

ing this to be done, we may write 

1 0 
(ej)? = (; t) leg| = —1, 

_ V1 = ener er ) (ez) = (v JT ene (64.3) 

If we assume (e:;) to be normalized, the factor £(z) will appear 

explicitly in the other equations. 

dx I 

dz 
axe 

dz 

= E) (€1421 + e122) 

(64.4) 

= H(z) (e141 — €11%2)
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Tf we let z represent a column matrix, with elements x; and x2, we 

may write Eq. (64.4) symbolically as follows: 

ax 
| a E(2) (ei) (64.5) 

From Eq. (64.3) it follows that 

(eq)? = 1; (eu) = (es) | (64.6) 
Hence Eq. (64.5) becomes 

1 dx 
EG (ei) a = % _ (64.7) 

or 

  

1. ( dz ts) 
ér—- tens J HK 1 

E(z) dz dz (64.8) 

1 dx _ dx, _ , 

E@ \ a ~ ae) ~™ 
From Eq. (64.7) it follows that we may write the operator 

equation 

  

1. .d | | 
ii (e:;) “an 1 | (64.9) 

If we now assume F and the e,; to-be constant and not to depend — 
upon 2, the matrix operator (¢,;) and the differential operator 
d/dz become independent and hence commute on squaring 

Eq. (64.9). 

1 dj jl d 1 d 1 @ 
E (es) 4] li (ej) “| = i (ej)? de Bde (64.10) 

Then . 
1 ad 
Ga = (64.11) 

which is the usual wave equation after the time-dependent part 
of the solution has been separated out. We assume 2; and 22 
both periodic in é with the same frequency w. 

We may now generalize to the three-dimensional wave equation. 
We take the three space variables to be 21, 22, and 23 and intro- 
duce the three constant matrices (e)1, (e)2, and (€)3 and a con- | 
stant H such that | 

» On = Ex (64.12)
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The operator equation analogous to Eq. (64.9) is 

Yog =z 

a3 = EP (64.13) 

and squaring yields 

provided that 

(e);? = 6; (e):(e)x + (e)z(e); = 0, 1A#k (64.14) 

The first set of conditions is analogous to. the normalization 

condition (64.3) for one dimension. The second set requires 

that the matrices anticommute. Three solutions satisfy Eq. 
(64.14) and are the Pauli maatrhees 

A zt Rect prael = pro col 

(ei = ot 0) (e)2 = -(° \ (os ~ ( i) (64.15) IN yn Ne Fetatable 2 A ant wo prco® Ke -I 
It can be shown that any ‘other : set of solutions is reducible to 

a linear combination of the solutions (64.15). 
The Pauli matrices are Hermitian symmetrical, a type that 

we encounter for the first time in this discussion. The first two 

matrices are reversible, and the third ts not. This corresponds 
to the fact in the Pauli theory of electron spin that these matrices 

refer to the magnetic moment of an electron having its spin 

directed along the 23 axis, a special feature that introduces an 
asymmetry along the 23 axis. 

The method that we have employed is based on Dirac’s 
method for the linearization of the relativistic wave equation 

of the electron. Dirac’s problem involves four-rowed matrices 
instead of the two-rowed matrices that we have so far encount- 
ered. In the next section we discuss a problem closely connected 

with Dirac’s. 

65. Three-phase and Polyphase Lines 

Matrices with more than two rows occur in polyphase lines. 

For instance, a six-terminal inserted in a three-phase line, as in 
Fig. 65.1, will have four variables at the entrance and an equal 
number at the exit. We let
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/ t= 0 vy =v 

Xe = 14 ve=t 

ty = V z's = V' (65.1) 
mal v,= I’ 

where the variables are as in Fig. 65.1. Then the matrix for 

the six-terminal will have four rows and four columns. The 

elements will be defined by 

= > bir (65.2) 

k 

It is a general rule that a 4n-terminal in (n + 1) parallel lines 

will require a matrix with 2n rows and 2n columns. 
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Fie. 65.2." 

The determinant of the matrix (6,) for the six-terminal is 
no longer unity as for the four-terminal. There are six con- 
ditions resulting from the circuit theory, and their form is 
quite different and leads to consequences different from the 
four-terminal. 

The diagonal form of the matrix (6,;) corresponds to the super- 
position of two simple waves traveling in opposite directions 

for the four-terminal. The same general statement is true 

for the six-terminal except that there will be four simple waves 

to be superposed instead of two. It does not appear possible, in 
general, to obtain a simple relation among these four waves. 

We shall consider a particular type of six-terminal, built 
up out of two four-terminals as in Fig. 65.2. Then we may
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write Eq. (65.2) in terms of the matrices of the component 
four-terminals. 

/ . 

Hy = M111 + Qi2Ve x3 = Pi1t3 + P12 

x's = Gait + qao%e x’, = Parts + Poors (65.3) 

so that the matrix for the six terminal is 

dit iz 0 0 

(b;;) = d21 G22 0 0 0 0 pu pm (85.4) 
: 0 O per Pree 

Another matrix may be obtained for the six-terminal al by making 
the connections as in Fig. 65.3. . 

0 O pu P12 

yo O O por pre 
(by) = mq 0 0. | (65.5) 

\921 22 0 0 

If we let the four-terminals making up the six-terminal become 
infinitesimal, we have 

(P11 Poe _ 1+ 711dz2 wi. dz 

Por P22 121 dz 1 + woe dz 

| qu Q@ua\ fl txudz x12 dz 
(3 a) ( dz 1 + x22 dz (65.6) 

so that Eq. (65.4) becomes 

1 0 0 0 X11 X12 0 0 
ee 010 0 X21 X22 0 0 

(63) = 0010 + dz 0 0 rn (65.7) 

0001 0 0 T21 Wee
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The four-terminals (and hence the six-terminal) will be reversible 

if 

X11 = Ti = X22 = To = O (65.8) 

We may use the expansion (65.7) in Eq. (65.2) to obtain four 

linear differential equations of the first order for x1, #2, %3, and 24. 
These four equations are of the same form as the Dirac equations 
for the relativistic electron provided we make the generalization 
to three dimensions. A set of four-rowed matrices will occur 
in the theory. There are four possible independent choices 

for these matrices, and all these matrices are made up of the 
Pauli matrices. All the matrices are Hermitian and have the 

following diagonal form: 

vi 0 0 
0 v2 0 

0 0 ¥s 

“yn 0 0 (65.9) 
0 —-y2 O--- 
0 O -y3-°: 

In other words, for each wave with propagation constant ¥:, 

there is a wave with propagation constant —7; These two 

waves will propagate in opposite senses.? 

1 BrIiouw, L., J. phys., 7, 401 (1936).
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The reader must be aware of the fact that the whole discussion 

of wave propagation in periodic structures rests on a general 

Theorem which was first stated for one-dimensional problems on 

p. 17, then generalized for two dimensions (pp. 103-104) and 
finally for three dimensions (pp. 137-144), with the help of the 

reciprocal lattice. | . 
Most of the examples discussed in this book are dissipationless. 

‘There are usually no losses or very small ones in crystal lattices 

and it is a reasonable approximation ‘to ignore these losses in a 

first discussion. In technical problems of filters, the losses cannot 
be ignored since their contribution to the attenuation factor is of 
importance. Losses have been considered in the discussion of 
Chap. [X and it should be emphasized that losses can be included 
without disturbing the general theorem stated above. The vector 
k is complex in these problems, but it is still determined only 

with modulus 27 along each of its components, and the frequency. 
vy of a wave must always be a periodic function of the vector k 

with periods 27. The importance of the reciprocal lattice and 
the role played by the zones still retains its value even in the case 

of dissipation. 

_ A great many examples could now be added to the special ones 

discussed in this book. The invention of linear accelerators lead 
to the discussion of a variety of structures yieldmg a low velocity 

of propagation for electromagnetic waves. Most of these struc- 
tures are periodical and represent direct examples of our general 

theory. See, for instance: - 

Cuu, E. L., and W. W. Hansen: J App. Phys., 18, 996 (1947), 20, 280 
(1949). oe 

_ Britiovurn, L.: J. App. Phys., 19, 1023 (1948). 
Suater, J. C.: Rev. Modern Phys., 20, 473 (1948). 

(A rather complete bibliography i is found in this paper. ) 

Coun, 8. By: Harvard Ph. D. Thesis (1948). 

Three-dime nsional lattices with metallic obstacles or metallic 

strips have been used to build artificial media that would propagate 

241
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electromagnetic waves in space, with a low velocity. These struc- 

tures represent actual large scale models of crystal lattices, and 
should be discussed according to the general rules of our Chap. VII. 

These ‘artificial dielectrics’ were applied to build lenses for 

electromagnetic waves. See: 

Kocr, W. E.: Metallic Delay Lenses Bell Syst. Techn. J., 27, 58 (1948). 
Coun, 8.B.: J. App. Phys., 20, 257 (1949), 21, 674 (1950), 22, 628 (1951). 
Brown, J.: J. J. Hl. #., 97 (IID, 45 (1950). 
Wicuer, E. R.: J. App. Phys., 22, 1327 (1951). 

In cur discussions we mostly considered wave propagation in— 

an infinite medium. The problem of reflexions on a boundary 
was investigated in Chap. V, in connection with the definition of 

a characteristic impedance. We also discussed in Chap. VII 
Bragg’s reflexions and their relation to the theory of zones. 

Oscillations on a finite line of coupled circuits were discussed 

in a very elegant way by M. Parodi [Memorial des Sc. Physiques, 
47 Gauthier-Villars, Paris (1944)], who was able to solve directly 

the complete system of simultaneous equations and to obtain the 

whole set of proper vibrations for a finite line of circuits. 
Applying his very powerful method to electric filters, M. Parodi 

showed the connection with the usual definition of characteristic 
a ee 

  

_impedance along the. line. 

~ We explained (p. 158, 159) the difficulties of reflexion problems 
in three dimensions and introduced the very useful method of 

“cyclic boundary conditions” of M. Born. A few simple examples 

may be in order, and help visualize the physical meaning of these 
eyclic conditions. Let us consider an electric filter comprising n 
similar cells with the output terminals directly connected back to 

the input terminals. This is a typical case of cyclic structure. 

For instance, we might investigate a closed circuit with all the 

coils of the stator of an alternator connected in series. Oscillations 
in such a circuit would be given by cyclic conditions. A similar 

example is found in the oscillation of a cold magnetron with n 
cavities. The rising sun magnetron is a case similar to a NaCl 

one-dimensional lattice (Chap. IV) with cyclic conditions. A 

mechanical problem leading to similar results is found in connec- 
tion with the natural frequencies of turbine blades, or the oscilla- 
tions in a merry-go-round. All these examples could serve as 

typical problems of wave propagation in a periodic structure with 

cyclic conditions.



APPENDIX 243 

The theory of the zones obtains very important applications in 

the theory of metals, alloys and semi-conductors. In the case of 

alloys, it yields a very direct explanation of the Hume-Rothery 

rule [Hume-Rothery, “The Metallic State,’ Oxford, (1931)]. 

These problems are very carefully discussed in the book of Mott 

and Jones (see Preface). Modern developments were recently 

analyzed by L. Pauling and F. J. Ewing in a paper on the role 

of valence electrons in metals and intermetallic compounds (Rev. 

Mod. Phys., 20, 112 (1948)). 

‘As for the theory of semi-conductors, the reader’ will find it 

brilliantly presented in the book of W. Shockley, “Flectrons and - 

Holes in Semi-Conductors,’”’ Van Nostrand, New York (1950). 

Some interesting problems resulting in splitting the zones have 

been discussed by Slater: 

Suater, J. C.: Phys. Rev., 84, 179 (1951). 
Katz, E.: Phys. Rev., 85, 495 (1952). 

The actual basic cell of a crystal lattice may happen to be an 

integral multiple of the “naive” basic cell. This is the case if 

certain refinements in the law of interaction between atoms are 

taken into account, as for instance spin coupling. Doubling the 

size of the lattice cell means dividing by two the volume of the 

zone and splitting in two the energy bands. This is the type of 

problem investigated by Slater, who discussed some interesting 

applications of this remark. We now want to conclude with a 

few words on the theory of the zones and its connection with group 

theory. This discussion contains the proof of the statement given 

on p. 107, that the volume of each zone must be equal to the 

volume of the elementary cell in the reciprocal lattice. We shall 

be satisfied with a summary of the problem, which the reader will 

find completely discussed in the following papers: 

Boucxarrt, L. P., R. Smozvcnowsx1 and E. WieNrr: “Theory 

of Brillouin Zones and Symmetry Properties of Wave Functions in Crystals,” 

_ Phys. Rev., 50, 58 (1936). 

BIEBERBACH, L.: “Weber die Inhaltsgleichheit der Brillouinsche Zonen,” 

Monatshefte fiir Math. und Physik, 48, 509 (1939). 

I owe to G. Deschamps the principle of the following discussion. 

Let us consider a problem in two dimensions. The extension to 

_ three dimensions offers no special difficulty. The reciprocal lattice 

in the plane is defined by two non-parallel translations T, and
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T, , corresponding to the two vectors 6, and b, of Chap. VII. All 
the translations 

T = TIT? (A.1) 

where n, p are positive or negative integers, constitute a free 
abelian group G. When these translations are applied to the point 
O at the origin, one obtains a point lattice R which is the re- 
ciprocal lattice. 

In order to obtain the zones around point O, we draw the per- 
pendicular bisectors on all the vectors joining O to the successive 
points of the lattice R. Some points in the plane can be reached 
from O in a continuous way without crossing any perpendicular 
bisector. These points belong to the first zone. The second zone 
contains all the points that can be reached after crossing only 
one bisector. If two bisectors have to be crossed, the points 
belong to the third zone, and so on. These definitions correspond 
to the drawing shown on Fig. 27.4 (p. 106). We now want to 
specify the properties of points belonging to the successive zones 
or to their boundaries. Let us choose an arbitrary point M in 
the plane and a certain point P of the reciprocal lattice. We 
define two functions jp(M) and kp(M) in the following way: we 
draw a circle (M) of center M passing through the lattice point P. 
This circle contains 7 — 1 points of the reciprocal lattice R and 
there are k + 1 points of this lattice R lying exactly on the circle 
(M). 

_ We now consider first the functions j,(M) and k)(Mf) attached 
to the origin O of the lattice R. It is obvious that k)(M) repre- 
sents the number of bisectors upon which point M happens to be. 
It is zero within a zone, and equal to 1 if M is on one bisector, 
2 if M is at the intersection of two bisectors and so on. In general, 
ko(M) is different from zero when point M is on a boundary line 
between zones. 

The jo function can vary only when one or more points of 
lattice R enter into the circle (4) or get out of it, which means 
that M crosses one or many bisectors. More precisely, jy in- 
creases by a number of units exactly equal to the number of 
bisectors crossed by M when moving radially away from O. Since 
jo equals 1 in the first zone, we see that j.(M) simply yields the 
number of the zone where M happens to be (provided of course 
M is within a zone and not on a boundary, k)(M) being zero).. If
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PB, perpendicular bisector on OA 

j, (M) = 2 
k,(M) = 
k ° (M) would be 1 if circle (M) happened to pass on A and M would 

be on bisector PB. 

ky)(M) = 0, it is easy to see that M is on the boundary of all zones 

We now prove the following Theorem: 

Any point M can be brought into a certain zone Z; or on its 
boundary, by a G translation (A.1). In the first case there is 
only one possible translation, in the second case there are at least 

two possible translations. 
Let us define the G translation by a vector PO where P is a 

point of the reciprocal lattice BR.
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. This translation brings point M into another position N. It is 

then obvious that 

jo(N) =je(M) kN) = kp(M) (A.2) 

Point N will be in zone Z; if 

jp(M) =i kp) =O (A.3) 

and point N will be on the boundary of Z; if 

jp(M) <i<je(M)+h(M) with k(M)#0 © (AA) 
Therefore the problem of finding the G translation is reduced to 

discovering points P satisfying conditions (A.3) or (A.4). In order 

to do that, we sort all the points of lattice R and order them ac- 
cording to increasing distances from point M. If many points 

are found to have the same distance from M, we order them in 
any arbitrary way. 

Let P; be the point number 7. If there is no other point with 

the same distance from M, 

MP,.. < MP; < MP,,1 (A.B) 

then point P; satisfies condition (A.3) and is the only solution. 
We say that M is a regular point of order 7. In such a case there 

is only one G translation bringing M into the zone 2; . 
Another case obtains when P; is in a set of & + 1 equivalent. 

points with equal distances from M 

MP;-1 < MP; = MP; 41 cS MP j++ < MP 54441 (A.6) 

with 7 <iSg+k 
Here we have 

jre(M) =j kpM) =k 

for every point P of this set. This is equivalent to conditions 
(A.4). We say that point M is a singular point of order 7. There 

are exactly k + 1 translations of group G bringing point M on 
the boundary of the Z; zone. 

We may now consider an elementary cell D of the lattice R, 
for instance the cell of the parallelogram built on the two vectors 

b,b, originating in O. The cell includes the parallelogram and its 

boundary lines. Any point in the plane can be brought, by aG
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translation back into the cell D. This applies for instance to the 

points of the Z; zone. Vice versa, according to our theorem, any 
point of cell D, if regular of order 7, can be brought into Z; by a 
certain G translation. There is a one to one correspondence be- 

tween the points in the Z, zone and the regular points of order 7 

in the cell D. 

Let us now discuss the case of singular points of order 7 in the 

cell D. They are distributed along a finite number of segments 

of straight lines belonging to perpendicular bisectors on couples 
of points of the lattice R. These straight segments divide the 

cell D into a finite number of polygonal areas containing regular 

points. Each one of these regular areas can be translated as a 
whole in the Z; zone by a given G translation, since point P; of 

order 7 associated to M cannot change unless M becomes singular. 
This proves that the areas of the Z,; zone and of the elementary ; / 

cell D must be equal, Q. E. D. 

We may describe the results in a slightly different language. 

Let us define the distance (PM) between an arbitrary point M in 

the plane and a certain lattice point P. The definition of distance 

will be based upon the functions jp(M) and kp(M). Hf P is the 

only lattice point on circle (14), we take 

kp(M) =0 (PM) = jr(M) 

and (PM) — 1 is the number of lattice points inside the circle. 

But, in addition to P, we may have kp(M) other points lying 
just on the circumference of the circle (1). 

In such a case we say that (PM) is a multi-valued function. 

kp(M) # 0 (PM) = jr(M), jr(M) +1 --+ je) + ke) 

With these definitions, the zone Z; of order 7 is simply the set of 
all points which are at the “distance” 7 from the origin 

(OM) = jo(M) = 1 

(OM) is single-valued for the points M which are within a zone 

and multi-valued for the points on the boundary of a zone: 

double-valued if the point is on a perpendicular bisector, triple- 

valued at the intersection of two bisectors &. In the discussion 

of the Theorem, we simply sorted all the points P of the lattice 
R according to increasing distances (PM) from point M and we
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used the vector PO to bring the point M into the zone, or on the 
border of the zone if (PM) be multi-valued. As for the ele- 

mentary cell D of the lattice R, it represents a fundamental 
domain for the group G, and any point M in the plane can be 

brought, by one and only one G translation, back into the cell D.
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Lord Rayleigh. Complete coverage of experimental, mathematical aspects of sound theory. 
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Lindsay. Total of 1040pp. 97 figures. 538 x 8. . 

$292, $293, Two volume set, paperbound, $4.70 

THE DYNAMICAL THEORY OF SOUND, H. Lamb. Comprehensive mathematical treatment of the 
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apertures in optical systems, photometry, optical instruments etc.; 2) 9 chapters on physical 

optics—interference, diffraction, polarization, spectra, the Rayleigh refractometer, the 

wave theory of light, etc.; 3) 23 instructive experiments based directly on the theoretical - 

text. “Probably the best intermediate textbook on light in the English language. Certainly, 

it is the best book which includes both geometrical and physical optics,’”” J. Rud Nielson, 

PHYSICS. FORUM. Revised edition. 102.problems and answers. 12 appendices. 6 tables. Index. 

270 illustrations. xi +489pp. 536 x 84. $341 Paperbound $2.50 
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made. Chapters on Radiation, The Eye and Vision, Photo-Electric Cells, The Principles of 
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Photometry, The Photometric Laboratory, etc. Third revised (1958) edition. 281 illustrations. 

10 appendices. xxiv + 544pp. 544 x 9i4, §319 Clothbound $10.00 

EXPERIMENTAL SPECTROSCOPY, R. A. Sawyer. Clear discussion of prism and grating spectro- 

graphs and the techniques of their use in research, with emphasis on those principles and 

techniques that are fundamental to practically all uses of spectroscopic equipment. Begin- 

ning with a brief history of spectroscopy, the author covers such topics as light sources, 

spectroscopic apparatus, prism spectroscopes and graphs, diffraction grating, the photo- 

graphic process, determination of wave length, spectral intensity, infrared spectroscopy, 

spectrochemical analysis, etc. This revised edition contains new material on the production 

of replica gratings, solar spectroscopy from rockets, new standard of wave length, etc. 

index, Bibliography. 111 illustrations. x + 358pp. 5% x 8%. $1045 Paperbound $2.25 

FUNDAMENTALS OF ELECTRICITY AND MAGNETISM, L. B. Loeb. For students of physics, chem- 

istry, or engineering who want an introduction to electricity and magnetism on a higher level 

and in more detail than general elementary physics texts provide. Only elementary differential 

and integral calculus is assumed. Physical laws developed logically, from magnetism to 

electric currents, Ohm’s law, electrolysis, and on to static electricity, induction, etc. Covers 

an unusual amount of material; one third of book on modern material: solution of wave equa- 

tion, photoelectric and thermionic effects, etc. Complete statement of the various electrical 

systems of units and interrelations. 2 Indexes. 75 pages of problems with answers stated. 

Over 300 figures and diagrams. xix +669pp. 53 x 8. : $745 Paperbound $2.75
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MATHEMATICAL ANALYSIS OF ELECTRICAL AND OPTICAL WAVE-MOTION, Harry Bateman. Written 
by one of this century’s most distinguished mathematical physicists, this is a practical 
introduction to those developments of Maxwell’s electromagnetic theory which are directly 
connected with the solution of the partial differential equation of wave motion. Methods of 
solving wave-equation, polar-cylindrical coordinates, diffraction, transformation of coordinates, 
homogeneous solutions, electromagnetic fields with moving singularities, etc. Index. 168pp. 
5% x 8. $14 Paperbound $1.75 

PRINCIPLES OF PHYSICAL OPTICS, Ernst Mach. This classical examination of the propagation 
of light, color, polarization, etc. offers an historical and philosophical treatment that has 
never been surpassed for breadth and easy readability. Contents: Rectilinear propagation of 
light. Reflection, refraction. Early knowledge of vision. Dioptrics. Composition of light. 
Theory of color and dispersion. Periodicity. Theory of interference. Polarization. Mathematical 
representation of properties of light: Propagation of waves, etc. 279 illustrations, 10 por- 
traits. Appendix. Indexes. 324pp. 5% x 8. $178 Paperbound $2.00 

THE THEORY OF OPTICS, Paul Drude. One of finest fundamental texts in physical optics, 
classic offers thorough coverage, complete mathematical treatment of basic ideas. Includes 
fullest treatment of application of thermodynamics to optics; sine law in formation of 
images, transparent crystals, magnetically active substances, velocity of light, apertures, 
effects depending upon them, polarization, optical instruments, etc. Introduction by A. A. 
Michelson. Index. 110 illus. 567pp. 53@ x 8, $532 Paperbound $2.45 

ELECTRICAL THEORY ON THE GIORGI SYSTEM, P. Cornelius. A new clarification of the funda- 
mental concepts of electricity and magnetism, advocating the convenient m.k.s. system of 
units that is steadily gaining followers in the sciences. Illustrating the use and effectiveness 
of his terminology with numerous applications to concrete technical problems, the author 
here expounds the famous Giorgi system of electrical physics. His lucid presentation 
and well-reasoned, cogent argument for the universal adoption of this system form one of 
the finest pieces of-scientific exposition in recent years. 28 figures. Index. Conversion tables 
for translating earlier data into modern units. Translated from 3rd Dutch edition by L. J. 
Jolley. X + 187pp. 542 x 8%. $909 Clothbound $6.00 

ELECTRIC WAVES: BEING RESEARCHES ON THE PROPAGATION OF ELECTRIC. ACTION WITH 
FINITE VELOCITY THROUGH SPACE, Heinrich Hertz. This classic work brings together the 
original papers in which Hertz—Helmholtz’s protegé and one of the most brilliant figures 
in 19th-century research—-probed the existence of electromagnetic waves and showed experi- 

- mentally that their velocity equalled that of light, research that helped lay the groundwork 
for the development of radio, television, telephone, telegraph, and other modern technological 
marvels, Unabridged republication of original edition. Authorized translation by D. E. Jones. 
Preface by Lord Kelvin. Index of names. 40 illustrations. xvii + 278pp. 53% x 84. 

$57 Paperbound $1.75 

PIEZOELECTRICITY: AN INTRODUCTION TO THE THEORY AND APPLICATIONS OF ELECTRO- 
MECHANICAL PHENOMENA IN CRYSTALS, Walter G. Cady. This is the most complete and sys- 
tematic coverage of. this important field in print—now regarded as something of scientific 
classic. This republication, revised and corrected by Prof. Cady—one of the foremost con- 
tributors in this area—contains a sketch of recent progress and new material on Ferro- 
electrics. Time Standards, etc, The first 7 chapters deal with fundamental theory of crystal 
electricity. 5 important chapters cover basic concepts of piezoelectricity, including com- 
parisons of various competing theories in the field. Also discussed: piezoelectric resonators 
(theory, methods of manufacture, influences of air-gaps, etc.); the piezo oscillator; the 
properties, history, and observations relating to Rochelle salt; ferroelectric crystals; miscel- 
laneous applications of piezoelectricity; pyroelectricity; etc. ‘‘A great work,” W. A. Wooster, 
NATURE. Revised (1963) and corrected edition. New preface by Prof. Cady. 2 Appendices. 
‘Indices. Illustrations. 62 tables. Bibliography. Problems. Total of 1 + 822pp. 536 x 84. 
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MAGNETISM AND VERY LOW TEMPERATURES, H. B. G. Casimir. A basic work in the literature 
of jow temperature physics. Presents a concise survey of fundamental theoretical principles, 
and also points out promising lines of investigation. Contents: Classical Theory and Experi- 
mental Methods, Quantum Theory of Paramagnetism, Experiments on Adiabatic Demagnetiza- 
tion. Theoretical Discussion of Paramagnetism at Very Low Temperatures, Some Experimental 
Results, Relaxation Phenomena. Index. 89-item bibliography. ix + 95pp. 536 x 8. 

$943 Paperbound $1.25 

SELECTED PAPERS ON NEW TECHNIQUES FOR ENERGY CONVERSION: THERMOELECTRIC 
METHODS; THERMIONIC; PHOTOVOLTAIC AND ELECTRICAL EFFECTS; FUSION, Edited by Sumner 
N. Levine. Brings together in cne volume the most important papers (1954-1961) in modern 
energy technology. Included among the 37 papers are general and qualitative descriptions 
of the field as a whole, indicating promising lines of research. Also: 15 papers on thermo- 
electric methods, 7 on thermionic, 5 on photovoltaic, 4 on electrochemical effect, and 2 on 
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Douglas, Jaumot, Post, Austin, Wilson, Pfann, Rappaport, Morehouse, Domenicali, Moss, 
Bowers, Harman, Von Doenhoef. Preface and introduction by the editor. Bibliographies. 
xxviil -+- 451pp. 646 x 91%. $37 Paperbound $3.00
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SUPERFLUIDS: MACROSCOPIC THEORY OF SUPERCONDUCTIVITY, Vol. [, Fritz London. The 
major work by one of the founders and great theoreticians of modern quantum physics. 
Consolidates the researches that led to the present understanding of the nature of super- 
conductivity. Prof. London here reveals that quantum mechanics is operative on the macro- 
scopic plane as well as the submolecular level. Contents: Properties of Superconductors 
and Their Thermodynamical Correlation; Electrodynamics of the Pure Superconducting State; 
Relation between Current and Field; Measurements of the Penetration Depth; Non-Viscous Flow 
vs. Superconductivity; Micro-waves in Superconductors; Reality of the Domain Structure; 
and many other related topics. A new epilogue by M. J. Buckingham discusses developments 
in the field up to 1960. Corrected and expanded edition. An appreciation of the author’s 
life and work by L. W. Nordheim. Biography by Edith London. Bibliography of his publica- 
tions. 45 figures. 2 Indices. xviii + 173pp. 554 x 8%. S44 Paperbound $1.45 

SELECTED PAPERS ON PHYSICAL PROCESSES IN IONIZED PLASMAS, Edited by Donald H. 
Menzel, Director, Harvard College Observatory. 30 important papers relating to the study of 
highly ionized gases or plasmas selected by a foremost contributor in the field, with the 
assistance of Dr. L. H. Aller. The essays include 18 on the physical processes in gaseous 
nebulae, covering problems of radiation and radiative transfer, the Balmer decrement, 
electron temperatives, spectrophotometry, etc. 10 papers deal with the interpretation of 
nebular spectra, by Bohm, Van Vleck, Aller, Minkowski, etc. There is also a discussion 
of the intensities of ‘‘forbidden’’ spectral lines by George Shortley and a paper concern- 
ing the theory of hydrogenic spectra by Menzel and Pekeris. Other contributors: Goldberg, 
Hebb, Baker, Bowen, Ufford, Liller, etc. viii + 374pp. 64% x 944. $60 Paperbound $2.95 

THE ELECTROMAGNETIC FIELD, Max Mason & Warren Weaver. Used constantly by graduate 
engineers. Vector methods exclusively: detailed treatment of electrostatics, expansion meth- 
ods, with tables converting any quantity into absolute electromagnetic, absolute electrostatic, 
practical units. Discrete charges, ponderable bodies, Maxwell field equations, etc. Introduc- 
tion. Indexes. 416pp. 53% x 8. $185 Paperbound $2.00 

THEORY OF ELECTRONS AND ITS APPLICATION TO THE PHENOMENA OF LIGHT AND RADIANT 
HEAT, H. Lorentz. Lectures delivered at Columbia University’ by Nobel laureate Lorentz. 
Unabridged, they form a historical coverage of the theory of free electrons, motion, 
absorption of heat, Zeeman effect, propagation of light in molecular bodies, inverse Zeeman 
effect, optical phenomena in moving bodies, etc. 109 pages of notes explain the more 
advanced sections. Index. 9 figures. 352pp. 53@ x 8. $173 Paperbound $1.85 

FUNDAMENTAL ELECTROMAGNETIC THEORY, Ronold P. King, Professor Applied Physics, Harvard 
University. Original and valuable introduction to electromagnetic theory and to circuit 
theory from the standpoint of electromagnetic theory. Contents: Mathematical Description 
of Matter—-stationary and nonstationary states; Mathematical Description of Space and of 
Simple Media—Field Equations, Integral Forms of Field Equations, Electromagnetic Force, 
etc.; Transformation of Field and Force Equaiions; Electromagnetic Waves in Unbounded 
Regions; Skin Effect and [tnternal Impedance—in a solid cylindrical conductor, etc.; and 
Electrical Circuits—Analytical Foundations, Near-zone and quasi-near zone circuits, Balanced 
two-wire and four-wire transmission lines. Revised and enlarged version. New preface by 
the author. 5 appendices (Differential operators: Vector Formulas and Identities, etc.). 
Problems. Indexes. Bibliography. xvi + 580pp. 5% x 8%. $1023 Paperbound $2.75 

Hydrodynamics 

A TREATISE ON HYDRODYNAMICS, A..B. Basset. Favorite text on hydrodynamics for 2 genera- 
tions of physicists, hydrodynamical engineers, oceanographers, ship designers, etc. Clear 
enough for the beginning student, and thorough source for graduate students and engineers on 
the work of d'Alembert, Euler, Laplace, Lagrange, Poisson, Green, Clebsch, Stokes, Cauchy, 
Helmholtz, J. J. Thomson, Love, Hicks, Greenhill, Besant, Lamb, etc. Great amount of. docu- 
mentation on entire theory of classical hydrodynamics. Vol |: theory of motion of frictionless 
liquids, vortex, and cyclic irrotational motion, etc. 132 exercises. Bibliography. 3 Appendixes. 
xii + 264pp. Vol Il: motion in viscous liquids, harmonic analysis, theory of tides, etc. 112 
exercises, Bibliography. 4 Appendixes. xv -- 328pp. Two volume set. 536 x 8. 

. $724 Vol | Paperbound $1.75 
: $725 Vol I! Paperbound $1.75 

The set $3.50 

HYDROBYNAMICS, Horace Lamb. internationally famous complete coverage of standard refer- 
ence work on dynamics of liquids & gases. Fundamental theorems, equations, methods, 
solutions, background, for classical hydrodynamics. Chapters include Equations of Motion, 
Integration of Equations in Special Gases, !rrotational Motion, Motion of Liquid in 2 Dimen- 
sions, Motion of Solids through Liquid-Dynamical Theory, Vortex Motion, Tidal Waves, Surface 
Waves, Waves of Expansion, Viscosity, Rotating Masses of liquids. Excellently planned, ar- 
ranged; clear, lucid presentation. 6th enlarged, revised edition. Index. Over 900 footnotes, 
mostly bibliographical. 119 figures. xv + 738pp. 64a x 94%. $256 Paperbound $3.75
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HYDRODYNAMICS, H. Dryden, F. Murnaghan, Harry Bateman. Published by the National 
Research Council in 1932 this enormous volume offers a complete coverage of- classical 
hydrodynamics. Encyclopedic in quality. Partial contents: physics of fluids, motion, turbulent 
flow, compressible fluids, motion in 1, 2, 3 dimensions; viscous fluids rotating, taminar 
motion, resistance of motion through viscous fluid, eddy viscosity, hydraulic flow in channels 
of various shapes, discharge of gases, flow past obstacles, etc, Bibliography of over 2,900 
items, Indexes, 23 figures. 634pp. 53% x 8. $303 Paperbound $2.75 

Mechanics, dynamics, thermodynamics, elasticity 

MECHANICS, J. P. Den Hartog. Already a classic among introductory texts, the M.I.T. profes- 
sor’s lively and discursive presentation is equally valuable as a beginner’s text, an engineering 
student’s refresher, or a practicing engineer’s reference. Emphasis in this highly readable text 
is on illuminating fundamental principles and showing how they are embodied in a great 
number of real engineering and design problems: trusses, loaded cables, beams, jacks, hoists, 
etc. Provides advanced material. on relative motion and gyroscopes not usual in introductory 
texts. ‘‘Very thoroughly recommended to all those anxious to improve their real understanding 
of the principles of mechanics.’? MECHANICAL WORLD. Index. List of equations. 334 problems, 
all with answers. Over 550 diagrams and drawings. ix + 462pp, 5% x 8. 

, $754 Paperbound $2.00 

THEORETICAL MECHANICS: AN INTRODUCTION TO MATHEMATICAL PHYSICS, J. S. Ames, F. BD. 
Murnaghan. A mathematically rigorous development of theoretical mechanics for the ad- 
vanced student, with constant practical applications. Used in hundreds of advanced courses. 
An unusually thorough coverage of gyroscopic and baryscopic material, detailed analyses of 
the Coriolis acceleration, applications of Lagrange’s equations, motion of the double pen- 
dulum, Hamilton-Jacobi partial differential equations, group velocity and dispersion, etc. 
Special relativity is also included. 159 problems. 44 figures. ix -+ 462pp. 538 x 8, 

: $461 Paperbound $2.25 

THEORETICAL MECHANICS: STATICS AND THE DYNAMICS OF A- PARTICLE, W. D. MacMillan. 
Used for over 3 decades as a self-contained and extremely comprehensive advanced under- 
graduate text in mathematical physics, physics, astronomy, and deeper foundations of engi- 
neering. Early sections require only a knowledge of geometry; later, a working knowledge 
of calculus. Hundreds of basic problems, including projectiles to the moon, escape velocity, 
harmonic motion, ballistics, falling bodies, transmission of power, stress and_ strain, 
elasticity, astronomical problems. 340 practice problems plus many fully worked out examples 
make it possible to test and extend principles developed in the text. 200 figures. xvii + 
430pp. 538 x 8. $467 Paperbound $2.00 

THEORETICAL MECHANICS: THE THEORY OF THE POTENTIAL, W. D. MacMillan. A comprehensive, 
well balanced presentation of potential theory, serving both-as ‘an introduction and a refer- 
ence work with regard to. specific problems, for physicists and mathematicians. No prior 
knowledge of integral relations is assumed, and all. mathematical materia! is developed as it 
becomes necessary. Includes: Attraction of Finite Bodies; Newtonian Potential Function; 
Vector Fields, Green and Gauss Theorems; Attractions of Surfaces and Lines; Surface Distri- 
bution of Matter; Two-Layer Surfaces; Spherical Harmonics; Ellipsoidal Harmonics; etc. “The 
great number of particular cases . . . should make the book valuable to geophysicists and 
others actively engaged in practical applications of the potential theory,’’ Review of Scientific 
Instruments. index. Bibliography. xiii + 469pp. 536 x 8, . 3486 Paperbound $2.50 

THEORETICAL MECHANICS: DYNAMICS OF RIGID BODIES, W. D. MacMillan. Theory of dynamics 
of a rigid body is developed, using both the geometrical and analytical methods of instruc- 
tion. Begins with exposition of algebra of vectors, it goes through momentum principles, 
motion in space, use of differential equations. and infinite series to solve more sophisticated 
dynamics problems. Partial contents: moments of inertia, systems of free particles, motion 
parallel to a fixed plane, rolling motion, method of periodic solutions, much more. 82 figs. 
199 problems. Bibliography. Indexes. xii + 476pp. 536 x 8. S641 Paperbound $2.50 

MATHEMATICAL FOUNDATIONS OF STATISTICAL MECHANICS, A. I. Khinchin, Offering a precise 
and rigorous formulation of problems, this book supplies a thorough and up-to-date exposi- 
tion. [t provides analytical tools needed to replace cumbersome concepts, and furnishes 
for the first time a logical step-by-step introduction to the subject. Partial contents: geom- 
etry & kinematics of the phase space, ergodic problem, reduction to theory of probability, 
application of central limit problem, ideal monatomic gas, foundation of thermo-dynamics, 
dispersion and distribution of sum functions. Key to notations. Index. viii. + 179pp. 53 x 8. 

$147 Paperbound $1.50 

ELEMENTARY PRINCIPLES IN STATISTICAL MECHANICS, J. W. Gibbs. Last work of the great 
Yale mathematical physicist, still one of the most fundamental treatments available for 
advanced students and workers in the field. Covers the basic principle of conservation of 
probability of phase, theory of errors in the calculated phases of a system, the contribu- tions of Ulausius, Maxwell, Boltzmann, and Gibbs himself, and much more. Includes valuable 
comparison of statistical mechanics with thermodynamics: Carnot’s cycle, mechanical defini- 
tions of entropy, etc. xvi + 208pp. 536 x 8. $707 Paperbound $1.45
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PRINCIPLES OF MECHANICS AND DYNAMICS, Sir William Thomson (Lord Kelvin) and Peter 
Guthrie Tait. The principles and theories’ of fundamental branches of classical physics 
explained by two of the greatest physicists of ail time. A broad survey of mechanics, with 
material on hydrodynamics, elasticity, potential theory, and what is now standard mechanics. 
Thorough and detailed coverage, with many examples, derivations, and topics not included 
in more recent studies. Only a knowledge of calculus is needed to work through this book. 
Vol. | (Preliminary): Kinematics; Dynamical Laws and Principles; Experience (observation 
experimentation, formation of hypotheses, scientific method); Measures and Mietrumants: 
Continuous Calculating Machines. Vol. 1! (Abstract Dynamics): Statics of a Particie— 
Attraction; Statics of Solids and Fluids. Formerly Titled ‘‘Treatise on Natural Philosophy.’’ 
Unabridged reprint of revised edition. Index. 168 diagrams. Total of xlii + 1035pp. 5% t BY, 

. Vol. 1: $966 Paperbound $2.35 
Vol. Il: S967 Paperbound $2.35 

Two volume Set Paperbound $4.70 

INVESTIGATIONS ON THE THEORY OF THE BROWNIAN MOVEMENT, Albert Einstein. Reprints 

from rare European journals. 5 basic papers, including the Elementary Theory of the 

Brownian Movement, written at the request of Lorentz to provide a simple explanation. 

Translated by A. D. Cowper. Annotated, edited by R. Firth. 33pp. of notes elucidate, give 

history of previous investigations. Author, subject indexes. 62 footnotes. 124pp. 5% x 8. 
$304 Paperbound $1.25 

MECHANICS VIA THE CALCULUS, P. W. Norris, W. S. Legge. Covers almost everything, from 

linear motion to vector analysis: equations determining motion, linear methods, compounding 

of simple harmonic motions, Newton’s laws of motion, Hooke's law, the simple pendulum, 

motion of a particle in 1 plane, centers of gravity, virtual work, friction, kinetic energy of 

rotating bodies, equilibrium of strings, hydrostatics, sheering stresses, elasticity, etc. 550 

problems. 3rd revised edition. xii + 367pp. 6 x 9. $207 Clothbound $4.95 

THE DYNAMICS OF PARTICLES AND OF RIGID, ELASTIC, AND FLUID BODIES; BEING LECTURES 

ON MATHEMATICAL PHYSICS, A. G. Webster. The reissuing of this classic fills the need for 

a comprehensive work on dynamics. A wide range of topics is covered in unusually great 

depth, applying ordinary and partial differential equations. Part | considers laws of motion 

and methods applicable to systems of all sorts; oscillation, resonance, cyclic. systems, etc. 

Part 2 is a detailed study of the dynamics of rigid bodies. Part 3 introduces the theory of 

potential; stress and strain, Newtonian potential functions, gyrostatics, wave _and vortex 

motion, etc. Further contents: Kinematics of a point; Lagrange’s equations; Hamilton’s prin- 

ciple; Systems of vectors; Statics and dynamics of deformable bodies; much more, not easily 

found together in one volume. Unabridged reprinting of 2nd edition. 20 pages of notes on 

differential equations and the higher analysis. 203 illustrations. Selected bibliography. Index. 

xi -+ 588pp. 5% x 8. $522 Paperbound $2.45 

A TREATISE ON DYNAMICS OF A PARTICLE, E. J. Routh. Elementary text on dynamics for 

beginning mathematics or physics student. Unusually detailed treatment from elementary defi- 

nitions to motion in 3 dimensions, emphasizing concrete aspects. Much unique material im- 

portant in recent applications. Covers impulsive forces, rectilinear and constrained motion in 

2 dimensions, harmonic and parabolic motion, degrees of freedom, closed orbits, the conical 

pendulum, the principle of least action, Jacobi’s method, and much more. Index. 559 problems, 

many fully worked out, incorporated into text. xiii + 418pp. 53% x 8. 
$696 Paperbound $2.25 

DYNAMICS OF A SYSTEM OF RIGID BODIES (Elementary Section), E. J. Routh. Revised 7th edi- 

tion of this standard reference. This volume covers the dynamical principles of the subject, 

and its more elementary applications: finding moments of inertia by integration, foci of 

inertia, d’Alembert’s principle, impulsive forces, motion in 2 and 3 dimensions, Lagrange’s 

equations, relative indicatrix, Euler’s theorem, large tautochronous motions, etc. Index. 55 

figures. Scores of problems. xv + 443pp. 5% x 8. $664 Paperbound $2.50 

DYNAMICS OF A SYSTEM OF RIGID BODIES (Advanced Section), E. J. Routh. Revised 6th edi- 

tion of a classic reference aid. Much of its material remains unique. Partial contents: moving 

axes, relative motion, oscillations about equilibrium, motion. Motion of a body under no 

forces, any forces. Nature of motion given by linear equations and conditions of stability. 

Free, forced vibrations, constants of integration, calculus of finite differences, variations, 

precession and nutation, motion of the moon, motion of string, chain, membranes. 64 figures. 

498pp. 5% x 8. . $229 Paperbound $2.45 

DYNAMICAL THEORY OF GASES, James Jeans. Divided into mathematical and physical chapters 

for the convenience of those not expert in mathematics, this volume discusses the mathe- 

matical theory of gas in a steady state, thermodynamics, Boltzmann and Maxwell, kinetic 

theory, quantum theory, exponentials, etc. 4th enlarged edition, with new materia! on quan- 

tum theory, quantum dynamics, etc. Indexes. 28 figures. 444pp. 644 x 914. : 
$136 Paperbound $2.65 

THE THEORY OF HEAT RADIATION, Max Planck. A pioneering work in thermodynamics, provid- 
ing basis for most later work, Nobel laureate Planck writes on Deductions from Electro- 

dynamics and Thermodynamics, Entropy and Probability, Irreversible Radiation Processes, etc. 

Starts with simple experimental laws of optics, advances to problems of spectral distribu- 
tion of energy and irreversibility. Bibliography. 7 illustrations, xiv + 224pp. 5% x 8. 

$546 Paperbound $1.75
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FOUNDATIONS OF POTENTIAL THEORY, 0. D. Kellogg. Based on courses given at Harvard this 
is suitable for both advanced and beginning mathematicians. Proofs are rigorous, and much 
material not generally avaliable elsewhere is included. Partial contents: forces of gravity, 
fields of force, divergence theorem, properties of Newtonian potentials at points of free 
space, potentials as solutions of Laplace’s equations, harmonic functions, electrostatics, 
electric images, logarithmic potential, etc. One of Grundiehren Series. ix + 384pp. 536 x 8. 

. ; $144 Paperbound $1.98 

THERMODYNAMICS, Enrico Fermi. Unabridged reproduction of 1937 edition. Elementary in 
treatment; remarkable for clarity, organization. Requires no knowledge of advanced math 
beyond calculus, only familiarity with fundamentals of thermometry, calorimetry. Partial 
Contents: Thermodynamic systems; First & Second laws of thermodynamics; Entropy; Thermo- 
dynamic potentials: phase rule, reversible electric cell; Gaseous reactions: van’t Hoff reaction 
box, principle of LeChatelier; Thermodynamics of dilute solutions: osmotic & vapor pressures, 
boiling & freezing points; Entropy constant. Index. 25 problems, 24 illustrations. x + 160pp. 
5% x 8. $361 Paperbound $1.75 

THE THERMODYNAMICS OF ELECTRICAL PHENOMENA IN METALS and A CONDENSED COLLEC- 
TION OF THERMODYNAMIC FORMULAS, P. W. Bridgman. Major work by the Nobel Prizewinner: 
stimulating conceptual introduction to aspects ot the electron theory of metals, giving an 
intuitive understanding of fundamental relationships concealed by the formal systems of 
Onsager and others. Elementary mathematical formulations show clearly the fundamental 
thermodynamical relationships of the electric field, and a complete phenomenological theory 
of metals is created. This is the work in which Bridgman announced his famous ‘thermo- 
motive force’? and his distinction: between ‘driving’ and ‘working’? electromotive force. 
We have added in this Dover edition the author's long unavailable tables of thermo- 
dynamic formulas, extremely valuable for: the speed of reference they allow. Two works 
bound as one. Index. 33 figures. Bibliography. xviii + 256pp. 536 x 8. $723 Paperbound $1.65 

TREATISE ON THERMODYNAMICS, Max Planck. Based on Planck’s original papers this offers 
a uniform point of view for the entire field and has been used as an introduction for 
students who have studied elementary chemistry, physics, and calculus. Rejecting the earlier 
approaches of Helmholtz and Maxwell, the author makes no assumptions regarding the 
nature of heat, but begins with a few empirical facts, and from these deduces new physical 
and chemical laws. 3rd English. edition of this standard text by a Nobel laureate. xvi + 
297pp. 5% Xx 8. $219 Paperbound $1.75 

THE MATHEMATICAL THEORY OF ELASTICITY, A. E. H. Love. A wealth of practical illustration 
combined with thorough discussion of fundamentals—theory, application, special problems 
and solutions. Partial Contents: Analysis of Strain & Stress, Elasticity of Solid Bodies, 
Elasticity of Crystals, Vibration of Spheres, Cylinders, Propagation of Waves .in Elastic Solid 
Media, Torsion, Theory of Continuous Beams, Plates. Rigorous treatment of Volterra’s theory 
of dislocations, 2-dimensional elastic systems, other topics of modern interest. “For years 
the standard treatise on elasticity,’ AMERICAN MATHEMATICAL MONTHLY. 4th revised edi- 
tion. Index. 76 figures. xviii + 643pp. 64% x 914, $174 Paperbound $3.25 

STRESS WAVES IN SOLIDS, H. Kolsky, Professor of Applied Physics, Brown University. The 
most readable survey of the theoretical core of current knowledge about the propagation of 
waves in solids, fully correlated with experimental research. Contents: Part |~~Elastic Waves: 
propagation in an extended plastic medium, propagation in bounded elastic media, experi- 
mental investigations with elastic materials. Part I|—Stress Waves in Imperfectly Elastic 
Media: interna} friction, experimental investigations of dynamic elastic properties, plastic 
waves and shock waves, fractures produced by stress waves. List of symbols. Appendix. 
Supplemented bibliography. 3 full-page plates. 46 figures. x + 213pp. 536 x 81. 

$1098 Paperbound $1.75 

Relativity, quantum theory, atomic and nuclear physics 

SPACE TIME MATTER, Hermann Weyl. ‘‘The standard treatise on the general theory of rela- 
tivity” (Nature), written by a world-renowned scientist, provides a deep clear discussion of 
the logical. coherence of the general theory, with introduction to all the mathematica! tools 
needed: Maxwell, analytical geometry, non-Euclidean geometry, tensor calculus, etc. Basis is 
classical space-time, before absorption of relativity. Partial contents: Euclidean space, 
mathematical form, metrical continuum, relativity of time and space, general theory. 15 dia- 
grams. Bibliography. New preface for this edition. xviii +. 330pp. 5% x 8. 

$267 Paperbound $2.00 

ATOMIC SPECTRA AND ATOMIC STRUCTURE, G. Herzberg. Excellent general survey for chemists, 
' physicists specializing in other fields. Partial contents: simplest line spectra and elements 

of atomic theory, building-up principle and periodic system of elements, hyperfine structure 
of spectral lines, some experiments and applications. Bibilography. 80 figures. Index. xii 
+ 257pp. 538 x 8. $115 Paperbound $2.00
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THE PRINCIPLE OF RELATIVITY, A. Einstein, H. Lorentz, H. Minkowski, H. Weyl. These are 
the 11 basic papers that founded the general and special theories of relativity, all trans- 
lated ‘into English. Two papers by Lorentz on the Michelson experiment, electromagnetic 
phenomena. Minkowski’s SPACE & TIME, and Weyl’s GRAVITATION & ELECTRICITY. 7 epoch- 
making papers by Einstein: ELECTROMAGNETICS OF MOVING BODIES, INFLUENCE OF GRAVI- 
TATION IN PROPAGATION OF LIGHT, COSMOLOGICAL CONSIDERATIONS, GENERAL THEORY, and 
3 others. 7 diagrams. Special notes by A. Sommerfeld. 224pp. 5% Xx 8. 

$81 Paperbound $1.75 

EINSTEIN’S THEORY OF RELATIVITY, Max Born. Revised edition prepared with the collabora- 
tion of Gunther Leibfried and Walter Biem. Steering a middle course between superficial 
popularizations and complex analyses, a Nobel laureate explains Einstein’s theories clearly 
and with special insight. Easily followed by the layman with a knowledge of high school 
mathematics, the book has been thoroughly revised and extended to modernize those sec- 
tions of the well-known original edition which are now out of date. After a comprehensive 
review of classical physics, Born’s discussion of special and general theories of relativity 
covers such topics as simultaneity, kinematics, Einstein’s mechanics and dynamics, relativity 
of arbitrary motions, the geometry of curved surfaces, the space-time continuum, and many 
others. {ndex. IHustrations, vii + 376pp. 53% x 8. $769 Paperbound $2.00 

ATOMS, MOLECULES AND QUANTA, Arthur E. Ruark and Harold C. Urey. Revised (1963) and 

corrected edition of a work that has been a favorite with physics students and teachers for 

more than 30 years. No other work offers the same combination of atomic structure and 

molecular physics and of experiment and theory. The first 14 chapters’ deal with the origins 

and major experimental data of quantum theory and with the development of conceptions 

of atomic and molecular structure prior to the new mechanics, These sections provide a 

thorough introduction to atomic and molecular theory, and are presented lucidly and as 

simply as possible. The six subsequent chapters are devoted to the laws and basic ideas of 

quantum mechanics: Wave Mechanics, Hydrogenic Atoms in Wave Mechanics, Matrix Mechan- 

ics, General Theory of Quantum Dynamics, etc. For advanced college and graduate students 

in physics. Revised, corrected republication of original edition, with supplementary notes 

by the authors. New preface by the authors. 9 appendices. General reference list. Indices. 

228 figures. 71 tables. Bibliographical material in notes, etc. Total of xxiii + 810pp. 

5% X 8%. $1106 Vol. | Paperbound $2.50 
$1107 Vol. 1] Paperbound $2.50 

Two volume set Paperbound $5.00 

WAVE MECHANICS AND ITS APPLICATIONS, N. F. Mott and f. N. Sneddon. A comprehensive 

introduction to the theory of quantum mechanics; nota rigorous mathematical exposi- 

tion it progresses, instead, in accordance with the physical problems considered. Many topics 

difficult to find at the elementary level are discussed in this book. includes such matters 

as: the wave nature of matter, the wave equation of Schrédinger, the concept of stationary 

states, properties of the wave functions, effect of a magnetic field on the energy levels of 

atoms, electronic spin, two-body problem, theory of solids, cohesive forces in ionic crystals, 

collision problems, interaction of radiation with matter, relativistic quantum mechanics, etc, 

All are treated both physically and mathematically. 68 illustrations. 11 tables. Indexes. 

xii + 393pp. 5% x 8%. $1070 Paperbound $2.25 

BASIC METHODS IN TRANSFER PROBLEMS, V. Kourganoff, Professor of Astrophysics, U. of 

Paris. A coherent digest of all the known methods which can be used for approximate or 

exact solutions of transfer problems. All methods demonstrated on one particular problem 

—Milne’s problem for a plane parallel medium. Three main sections: fundamental concepts 

(the radiation field and its interaction with matter, the absorption and emission coefficients, 
etc.); different methods by which transfer problems can be attacked; and a more general 
problem—the non-grey case of Milne’s problem. Much new material, drawing upon declassi- 
fied atomic energy reports and data from the USSR. Entirely understandable to the student 
with a reasonable knowledge of analysis. Unabridged, revised reprinting. New preface by 
the author. Index. Bibliography. 2 appendices. xv + 281pp. 5% x 81, 

$1074 Paperbound $2.00- 

PRINCIPLES OF QUANTUM MECHANICS, W. V. Houston. Enables student with working knowl- 

edge of elementary mathematical physics to develop facility in use of quantum mechanics, 

understand published work in field. Formulates quantum mechanics in terms of Schroedinger's 

wave mechanics. Studies evidence for quantum theory, for inadequacy of classical me- 
chanics, 2 postulates of quantum mechanics; numerous important, fruitful applications of 
quantum mechanics in spectroscopy, collision probiems, electrons in solids; other topics. 

- “One of the most rewarding features ... is the interlacing of problems with text,” Amer. 
J. of Physics. Corrected edition. 21 illus. Index. 296pp. 5% x 8. $524 Paperbound $2.00 

. # 
PHYSICAL PRINCIPLES OF THE QUANTUM THEORY, Werner Heisenberg. A Nobel laureate dis- 
cusses quantum theory; Heisenberg’s own work, Compton, Schroedinger, Wilson, Einstein, 
many others. Written for physicists, chemists who are not specialists in quantum theory, 
only elementary formulae are considered in the text; there is a mathematical appendix 
for specialists. Profound without sacrifice of clarity. Translated by C. Eckart, F. Hoyt. 18 
figures. 192pp. 5% x 8. $113 Paperbound $1.25
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PHYSICS, HISTORIES AND CLASSICS 

A HiSTORY OF PHYSICS: IN ITS ELEMENTARY BRANCHES (THROUGH 1925), INCLUDING THE 
EVOLUTION OF PHYSICAL LABORATORIES, Florian Cajori. Revised and enlarged edition. The only 
first-rate brief history of physics. Still the best entry for a student or teacher into the. ante- 
cedents of modern theories of physics. A clear, non-mathematical, handy reference work which 
traces in critical fashion the developments of ideas, theories, techniques, and apparatus from 
the Greeks to the 1920’s. Within each. period he analyzes the basic topics of mechanics, 
light, electricity and magnetism, sound, atomic theory and structure of matter, radioactivity, 
etc. A chapter on modern research: Curie, Kelvin, Planck’s quantum theory, thermodynamics, 
Fitzgerald and Lorentz, special and general relativity, J. J. Thomson’s model of an atom, 
Bohr’s discoveries and later results, wave mechanics, and many other matters. Much biblio- 
graphic detail in footnotes, Index. 16 figures. xv + 424pp. 534 x 8, 1970 Paperbound $2.00 

A HISTORY OF THE MATHEMATICAL THEORIES OF ATTRACTION AND THE FIGURE OF THE EARTH: 
FROM THE TIME OF NEWTON TO THAT OF LAPLACE, I. Todhunter. A technical and detailed review 
of the theories concerning the shape of the earth and its gravitational pull, from the earliest 
investigations in the seventeenth century up to the middle of the nineteenth. Some of the 
greatest mathematicians and scientists in history applied themselves to these questions: 
Newton (‘Principia Mathematica’), Huygens, Maupertuis, Simpson, d'Alembert, etc, Others dis- 
cussed are Poisson, Gauss, Plana, Lagrange, Boit, and many more. Particular emphasis is 
placed on the theories of Laplace and Legendre, several chapters being devoted to Laplace's 
‘‘Mécanique Céleste’’ and his memoirs, and several others to the memoirs of Legendre. Impor- 
tant to historians of science and mathematics and to the specialist who desires background 
information in the field. 2 volumes bound as 1. Index. xxxvi + 984pp. 53@ x 8, 

$148 Clothbound $7.30 

OPTICKS, Sir !saac Newton. In its discussions of light, reflection, color, refraction, theories 
- of wave and corpuscular theories of light, this work is packed with scores of insights and 
- discoveries. In its precise and practical discussion of construction of optical apparatus, 

contemporary understandings of phenomena it is truly fascinating to modern physicists, 
astronomers, mathematicians. Foreword by Albert Einstein. Preface by 1. B. Cohen of Har- 
vard University. 7 pages of portraits, facsimile pages, letters, etc. cxvi + 414pp. 5% x 8. 

$205 Paperbound $2.25 

TREATISE ON LIGHT, Christiaan Huygens. The famous original formulation of the wave 
theory of light, this readable book is one of the two decisive and definitive works in the 
field of light (Newton’s ‘Optics’ is the other). A scientific giant whose researches ranged 
over mathematics, astronomy, and physics, Huygens, in this historic work, covers such 
topics as rays propagated in straight lines, reflection and refraction, the spreading and 
velocity of light, the nature of opaque bodies, the non-spherical nature of light in the 
atmosphere, properties of Iceland Crystal,.and other related matters. Unabridged republi- 
cation of original (1912) English edition. Translated and introduced by Silvanus P. Thompson. 
§2 illustrations. xil + 129pp. 5% x 8. $179 Paperbound $1.50 

FARADAY'S EXPERIMENTAL RESEARCHES IN ELECTRICITY. Faraday’s historic series of papers 
containing the fruits of years of original experimentation in electrical theory and electro- 
chemistry. Covers his findings in a variety of areas: Induction of electric currents, Evolu- 
tion of -electricity from magnetism, New electrical state or condition of matter, Explication 
of Arago’s magnetic phenomena, New law of electric conduction, Electro-chemical de- 
composition, Electricity of the Voltaic Pile, Static Induction, Nature of the electric force 
‘or forces, Nature of electric current, The character and direction of the electric force of 
the Gymnotus, Magneto-electric spark, The magnetization of light and the illumination of 
magnetic lines of force, The possible relation of gravity to electricity, Sub-terraneous electro- 
telegraph wires, Some points of magnetic philosophy, The diamagnetic conditions of flame 
and gases, and many other matters. Complete and unabridged republication. 3 vols. bound 
as 2. Originally reprinted from the Philosophical Transactions of 1831-8. Indices. Illustra- 
tions. Total of 1463pp. 536 x 8. $783-4, Clothbound $17.50 (tentative) 

REFLECTIONS ON THE MOTIVE POWER OF FIRE, Sadi Carnot, and other papers on the 2nd 
law of thermodynamics by E. Clapeyron and R. Clausius. Carnot’s ‘‘Reflections’’ laid the 
groundwork of modern thermodynamics. Its non-technical, mostly verbal statements examine 
the relations between heat and the work done by heat in engines, establishing conditions for 
the economical working of these engines. The papers by Clapeyron and Clausius here reprinted 
added further refinements to Carnot’s work, and led to its final acceptance by physicists. Selec- 
tions from posthumous manuscripts of Carnot are also included. All papers in English. New 
introduction by E. Mendoza. 12 illustrations. xxii -- 152pp. 5% x 8. 

$661 Paperbound $1.50 

DIALOGUES CONCERNING TWO NEW SCIENCES, Galiteo Galilei. This classic of experimental 
science, mechanics, engineering, is as enjoyable as it is important. A great historical docu- 
ment giving insights into one of the world’s most original thinkers, it is based on 30 years’ 
experimentation. It offers a lively exposition of dynamics, elasticity, sound, ballistics, 
strength of materials, the scientific method. ‘‘Superior to everything else of mine,’’ Galileo. 
Trans. by H. Crew, A. Salvio. 126 diagrams. Index. xxi + 288pp. 536 x 8. 

$99 Paperbound $1.75
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TREATISE ON ELECTRICITY AND MAGNETISM, James Clerk Maxwell. For more than 80 years 
a seemingly inexhaustible source of leads for physicists, mathematicians, engineers. Total 
of 1082pp. on such topics as Measurement of Quantities, Electrostatics, Elementary Mathe- 
matical Theory of Electricity, Electrical Work and Energy in a System of Conductors, General 
Theorems, Theory of Electrical Images, Electrolysis, Conduction, Polarization, Dielectrics, 
Resistance, etc. ‘“‘The greatest mathematical physicist since Newton,’’ Sir James Jeans. 3rd 
edition. 107 figures, 21 plates. 1082pp. 5% x 8. $636-7, 2 volume set, paperbound $4.00 

A HISTORY OF THE THEORY OF ELASTICITY AND THE STRENGTH OF MATERIALS, I. Tedhunter and 
K. Pearson. For over 60 years a basic reference, unsurpassed in scope or authority. Both a 
history of the mathematical theory of elasticity from Galileo, Hooke, and Mariotte to Saint 
Venant, Kirchhoff, Clebsch, and Lord Kelvin and a detailed presentation of every important 
mathematical contribution. during this period. Presents proofs of thousands of theorems and 
laws, summarizes every relevant treatise, many unavailable elsewhere. Practically a book apiece 
is devoted to modern founders: Saint Venant, Lamé, Boussinesg, Rankine, Lord Kelvin, F 
Neumann, Kirchhoff, Clebsch. Hundreds of pages of technical and physical treatises on specific 
applications of elasticity to particular materials. Indispensable for the mathematician, 
physicist, or engineer working with elasticity. Unabridged, corrected reprint of original 3- 
volume 1886-1893 edition. Three volume set. Two indexes. Appendix to Vol. I. Total of 2344pp. 
53% X 8%. $914-916 The set, Ciothbound $15.00 

DE MAGNETE, William Gilbert. This classic work on magnetism founded a new science. Gilbert 
was the first to use the word “electricity’’, to recognize mass as distinct from weight, to 
discover the effect of heat on magnetic bodies; invent an electroscope, differentiate 
between static electricity and magnetism, conceive of the earth as a magnet. Written by 
the first great experimental scientist, this lively work is valuable not only as an historical 
landmark, but as the delightfully easy to follow record of a perpetually ‘searching, ingenious 
mind. Translated by P. F. Mottelay. 25-page biographical memoir. 90 figures. lix -+368pp. 
5¥ x 8. $470 Paperbound $2.00 

ASTRONOMY 
THE INTERNAL CONSTITUTION OF THE STARS, Sir A. S. Eddington. Influence of this has been 
enormous; first detailed exposition of theory of radiative equilibrium for stellar interiors, 
of al] available evidence for existence of diffuse matter in interstellar space. Studies quantum 
theory, polytropic gas spheres, mass-luminosity relations, variable stars, etc. Discussions of. 
equations paralleled with informal exposition of intimate relationship of astrophysics with 
great discoveries in atomic physics, radiation. Introduction. Appendix. Index. 42ipp. 5% x 8. 

$563 Paperbound $2.75 

PLANETARY THEORY, E. W. Brown and C. A. Shook. Provides a clear. presentation of basic 
methods for calculating planetary. orbits for today’s astronomer, Begins with a careful expo- 
sition of specialized mathematical topics essential for handiing perturbation theory and then 
goes on to indicate how most of the previous methods reduce ultimately to two general 
calculation. methods: obtaining expressions either for the coordinates of planetary positions 
or for the elements which determine the perturbed paths. An example of each is given and 
worked in detail. Corrected edition. Preface. Appendix. Index. xii + 302pp. 5% x 8¥2, 

$1133 Paperbotind $2.25 

CANON OF ECLIPSES (CANON DER FINSTERNISSE), Prof. Theodor Ritter von Oppolzer. Since 
its original publication in 1887, this has been the standard reference and the most exten- 
sive single volume of data on the calculation of solar and lunar eclipses, past and future. 
A comprehensive introduction gives a full explanation of the use of the tables’ for the 
calculations of the exact dates of eclipses, etc. Data furnished for the calculation of 8,000 
solar and 5,200 lunar eclipses, going back as far as 1200 B.C. and giving predictions up to 
the year 2161. Information is aiso given for partial and ring eclipses. ‘All calculations based 
on Universal (Greenwich) Time. An unsurpassed reference work for astronomers, scientists 
engaged in space research and developments, historians, etc. Unabridged republication, with 
corrections. Preface to this edition by Donald Menzel and Owen Gingerich of, the Harvard 
College Observatory. Translated by Owen Gingerich. 160 charts. Ixx + 538pp. 8% x 11%, 

$114 Clothbound $10.00 

THEORY OF THE MOTION OF THE HEAVENLY BODIES MOVING ABOUT THE SUN IN CONIC 
SECTIONS, Karl Friedrich Gauss. A landmark of theoretical astronomy by the great German 
scientist. Still authoritative and invaluable to the practicing astronomer. Part | develops the 
relations between the quantities on which the motion about the sun of the heavenly bodies 
depends—relations pertaining simply to position in the orbit, simply to position in space, 
between several places in orbit, and between several places in space. The calculation meth- 
ods of Part Ii based on the groundwork of Part | include: determination of an orbit from 
3 complete observations, from 4 observations (of which only two are complete), determina- 
tion of an orbit satisfying as nearly as possible any number of observations whatever, and 
determination of orbits, taking into account the perturbations. Translation of ‘‘Theoria 
Motus’’ and with an appendix by C, H. Davis. Unabridged republication. Appendices and 
tables. 13 figures. xviii + 376pp. 612 x 914. : $1056 Paperbound $2.95
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THE GALACTIC NOVAE, C. Payne-Gaposchkin, Prof. of Astronomy, Harvard Univ. A work that 
will be the standard reference source for years to come. Gathers together all the pertinent 
data, results recorded by countiess observers of galactic novae over the centuries, in order 
to formulate a valid starting point for an interpretation of the nova process. Covers informa- 
tion and statistics on known novae, their variations in luminosity, distribution in the sky, 
spectral changes, etc.; symbiotic novae; frequently-recurring variables of the U Geminorum 
and Z Camelopardis. class; supernovae; comparison of spectral changes; theories and inter- 
pretations of these phenomena, etc. ‘‘A comprehensive summary of everything that is now 
known about these stars,” SCIENCE. Bibliographical references. Preface. Indices. 49 figures. 
6 plates. 101 tables. x + 336pp. 53% x 8%. $1170 Paperbound $2.45 

BINARY STARS, R. G. Aitken. Still the definitive work in the field of double star astronomy. 
Written by the director of the Lick Observatory (considered the father of the modern study 
of binary star systems), this book sums up the results of 40 years of experience in the 
field, plus the work of centuries of research. Includes historical survey of major discoveries 
and contributions of the past, observational methods for visual binary stars, the radial 
velocity of a star (by Dr. J. H. Moore), eclipsing binary stars, known orbits of binary 
stars, some binary systems of special interest, the origin of binary stars. Much information 
on methods of spectrum analysis, orbit plotting, use of the telescope, and other practical 
matters. Useful for classroom study and advanced hobbyists, etc. Revised edition, cor- 
rected and with additional notes by Prof. J. T. Kent. New preface. 50 tables, 13 figures, 
4 full-page plates. Bibliographies. Appendix. Indices. xii + 309pp. 5% x 84. 

$1102 Paperbound $2.00 

THE NATURE OF COMETS, N. B. Richter. An authority on comets presents a concise, but 
thorough survey of the state of our present-day knowledge of comets and cometary activity. 
Based on over 20 years of research, this is a middle-level account that even the layman 
can appreciate, providing a fund of information on historical theories (from 1700 to the 
present); statistical research on total number of comets, orbital forms, perturbations caused 
by Jupiter, comet groups, etc.; the structure of a comet; comets as processes of cosmic 
decay; origin and formation of comets; etc. Also: a lengthy introduction on modern theories 
by Dr. R. A. Lyttleton, much technical data and observational material of specific comets, 
supplementary tables, and the like. Revised (1963) edition. Translated and revised by Arthur 
Beer. 69 illustrations, including 54 photographs of comets, tails, spectra. 41 tables. Bibliog- 
raphy. Index. xli + 221pp. ; $1111 Clothbound $10.00 

CELESTIAL OBJECTS FOR COMMON TELESCOPES, Rev. T. W. Webb. Classic handbook for the 
use and pleasure of the amateur astronomer. Of inestimable aid in locating and identifying 
thousands of celestial objects. Vol. I, The Solar System: discussions of the principle and 
operation of the telescope, procedures of observations and telescope-photography, spectros- 
copy, etc., precise location information of sun, moon, planets, meteors. Vol. Il, The Stars: 
alphabetical listing of constellations, information on double stars, clusters, stars with un- 
usual spectra, variables, and nebulae, etc. Nearly 4,000 objects noted. Edited and exten- 
sively revised by Margaret W. Mayall, director of the American Assn. of Variable Star 
Observers. New index by Mrs. Mayall giving the location of all objects mentioned in the 
text for Epoch 2000. New Precession Table added. New appendices on the planetary satel- 
lites, constellation names and abbreviations, and solar system data. Total of 46 illustra- 
tions. Total of xxxix + 606pp. 536 x 8. Vol. I: T917 Paperbound $2.25 

Vol. Il: T918 Paperbound $2.25 
Two Volume Set Paperbound $4.50 

ASTRONOMY AND COSMOGONY, Sir James Jeans. A modern classic which is still of enormous 
value to everyone in astronomy, etc., this is Jean's last and most famous exposition. The 
summation of a lifetime’s devotion to science, it presents his final conclusions on a host 
of problems ranging over the whole of descriptive astronomy, astrophysics, stellar dynamics, 
and cosmology. Contents: The Light from the Stars, Gaseous Stars, the Source of Stellar 
Energy, Liquid Stars, The Evolution of the Stars, The Configuration of Rotating Masses, The 
Evolution of Binary Systems, The Ages of the Stars, The Great Nebulae, The Galactic Systems, 
Variable Stars, etc. New preface by L. Motz, Columbia U. 16 full-page photographic illustra- 
tions. xv -- 428pp. 556 x 8%. $923 Paperbound $2.45 

ASTRONOMY OF STELLAR ENERGY AND DECAY, Martin Johnson. Middle level treatment of 
astronomy as interpreted by modern atomic physics. Part One is non-technical, examines 
physical properties, source of energy, spectroscopy, fluctuating stars, various models and 
theories, etc. Part Two parallels these topics, providing their mathematical foundation. 
“Clear, concise, and readily understandable,’’ American Library Assoc. Bibliography. 3 indexes. 
29 illustrations. 216pp. 5%. x 8. $537 Paperbound $1.50 

MATHEMATICAL THEORIES OF PLANETARY MOTIONS, Otto Dziobek. Translated by Mark W. 
Harrington and William J. Hussey, Lucid account of the principles of mathematical astronomy. 
It examines that part of celestial mechanics which deals with the motions of heavenly bodies 
considered as material points. Contents: Solution of the Problem of Two Bodies; Formation 
of the General integrals for Problem of n Bodies . . . including discussions of elliptic, 
parabolic, and hyperbolic orbits, the solution of Kepler’s equation, etc.; and sections headed 
The General Properties of the Integrals and The Theory of Perturbations . . . which deals 
with the theory of absolute perturbations, analytical development of the perturbing function, 
the variation of the elements, the secular variation of the mean longitude, etc. vi + 294pp. 
5% X 84. $129 Paperbound $2.00
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A COMPENDIUM OF SPHERICAL ASTRONOMY, S. Newcomb. Long a standard collection of basic 
methods. and formulas most useful to the working astronomer, and clear full text for students. 
includes the most important common approximations; 40.pages on the method of least squares; 
general theory of spherical coordinates; parallax; aberration; astronomical refraction; theory 
of precession; proper motion of the stars; methods of deriving positions of stars; and much 
more. Index. 9 Appendices of tables, formulas, etc. 36 figures. xviii + 444pp. 536 x 8, 

. $690 Paperbound $2.25 

PRINCIPLES OF STELLAR DYNAMICS, S. Chandrasekhar. A leading astrophysicist here presents 
the theory of stellar dynamics as a branch of classical dynamics, clarifying the fundamental 
issues and the underlying motivations of the theory. He analyzes the effects of stellar en- 
counters in terms of the classical 2-bedy problem, and investigates problems centering about 
Liouviite’s theorem and the solutions of the equations of continuity. This edition also includes 
4 important papers by the author published since ‘‘Stellar Dynamics,” and equaily indispens- 
able for all workers in the field: ‘‘New Methods in Stellar Dynamics” and ‘‘Dynamical Friction,” 
Parts |, Il, and III. Index. 3 Appendixes. Bibliography. 50 illustrations. x + 313pp. 53 x8. 

$659 Paperbound $2.25 

AN INTRODUCTION TO THE STUDY OF STELLAR STRUCTURE, Subrahmanyan Chandrasekhar. Out- 
standing treatise on stellar dynamics by one of world’s greatest astrophysicists. Uses classical 
& modern math methods to examine relationship between loss of energy, the mass, and 
radius of stars in a steady state. Discusses thermodynamic laws from Carathéodory’s axio- 
matic standpoint; adiabatic, polytropic laws; work of Ritter, Emden, Kelvin, others; Stroemgren 
envelopes as starter for theory of gaseous stars; Gibbs statistical mechanics (quantum); 
degenerate steilar configuration & theory of white dwarfs, etc. “Highest level of scientific 
merit,’ BULLETIN, AMER. MATH. SOC. Bibliography. Appendixes. Index. 33 figures. 509pp. 
5¥% xX 8. $413 Paperbound $2.75 

STATISTICAL ASTRONOMY, Robert J. Trumpler and Harold F. Weaver, University of California. 
Standard introduction to the principles and techniques of statistical astronomy, a field of 
rapidly growing importance in this space age. An extensive section, ‘Elements of Statistical 
Theory,” provides the astronomer with the tools for solving problems of descriptive astron- 
omy, observational errors, constitution of -extra-galactic nebulae, etc. Procedures used in 
statistical astronomy are related to basic mathematical principles of statistics such as 
unvariate distribution, integral equations, general theory of samples, etc. Other sections 
deal with: Statistical Description of the Galactic System; Stellar Motions in .the Vicinity of 
the Sun; Luminosity—Spectral Type Distribution; Space Distribution of Stars; and Galactic 
Rotation. List of symbols. Appendix (10 tables). 2 Indexes. Extensive bibliography. 31 tables. 
97 figures. xxi + 644pp. 5% x 814, $301 Paperbound $3.00 

AN INTRODUCTORY TREATISE ON DYNAMICAL ASTRONOMY, H. C. Plummer. Unusually wide con- 
nected and concise coverage of nearly every significant branch of dynamical astronomy, stress- 
ing basic principles throughout: determination of orbits, planetary theory, lunar theory, pre- 
cession and nutation, and many of their applications. Hundreds of formulas and theorems 
worked out completely, important methods thoroughly explained. Covers motion under a 
central attraction, orbits of double stars and spectroscopic binaries, the libration of the moon, 
and much more. Index. 8 diagrams. xxi - 343pp. 556 x 8%. $689 Paperbound $2.35 

AN INTRODUCTORY TREATISE ON THE LUNAR THEORY, E. W. Brown. Indispensable for all 
scientists and engineers interested in orbital calculation, satellites, or navigation of space. 
Only work in English to explain in detail 5 major mathematical approaches to the problem of 
3 bodies, those of Laplace, de Pontécoulant, Hansen, Delaunay, and Hill. Covers expressions 
for mutual attraction, equations of motion, forms of solution, variations of the elements in 
disturbed motion, the constants and their interpretations, planetary and other disturbing 
influences, etc. Index. Bibliography. Tables. xvi + 292pp. 546 x 8%. 

" S666 Paperbound $2.00 

SPHERICAL AND PRACTICAL ASTRONOMY, W. Chauvenet. First book in English to apply mathe- 
matical techniques to astronomical problems is still standard work. Covers almost entire 
field, rigorously, with over 300 examples worked out. Vol. 1, spherical astronomy, applications 
to nautical astronomy; determination of hour angles, parallactic angle for known stars; 
interpolation; parallax; laws of refraction; predicting eclipses; precession, nutation of fixed 
stars; etc. Vol. 2, theory, use, of instruments; telescope; measurement of arcs, angles in 
general; electro-chronograph; sextant, reflecting circles; zenith telescope; etc. 100-page 
appendix of detailed proof of Gauss’ method of least squares. 5th revised edition. Index. 15 
plates, 20 tables. 1340pp. 5348 x 8 Vol. 1 S618 Paperbound $2.75 

Vol. 2 $619 Paperbound $2.75 
The set $5.50 

RADIATIVE TRANSFER, S$. Chandrasekhar. Definitive work in field provides foundation for 
analysis of stellar atmospheres, planetary illumination, sky radiation; to physicists, a study 
of problems analogous to those in theory of diffusion of neutrons. Partial contents: equation 
of transfer, isotropic scattering, H-functions, diffuse reflection and transmission, Rayleigh 
scattering, X, Y functions, radiative equilibrium of stellar atmospheres. Extensive bibliog- 
raphy. 3 appendices. 35 tables. 35 figures. 407pp. 556 x 8%. $599 Paperbound $2.25
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GEOLOGY, GEOGRAPHY, METEOROLOGY 

PRINCIPLES OF STRATIGRAPHY, A. W. Grabau. Classic of 20th century geology, unmatched in 
scope and comprehensiveness. Nearly 600 pages cover the structure and origins of every kind 
of sedimentary, hydrogenic, oceanic, pyroclastic, atmoclastic, hydroclastic, marine hydroclastic, 
and bioclastic rock; metamorphism; erosion; etc. Includes also the constitution of the atmos- 
phere; morphology of oceans, rivers, glaciers; volcanic activities; faults and earthquakes; and 
fundamental principles of paleontology (nearly 200. pages). New introduction by Prof. M. Kay, 
Coijumbia.U. 1277 bibliographical entries. 264 diagrams. Tables, maps, etc. Two volume set. 
Total of xxxii + 1185pp. 5% x 8. S686 Vol | Paperbound $2.50 

- $687 Vol Il Paperbound $2.50 
: The set $5.00 

TREATISE ON SEDIMENTATION, William H. Twenhefel. A milestone in the history of geology, 
this two-volume work, prepared under the auspices of the United States Research Council, 
contains practically everything known about sedimentation up to 1932. Brings together all 
the findings of leading American and foreign geologists and geographers and has never 
been surpassed for completeness, thoroughness of description, or accuracy of detail. Vol. 1 
discusses the sources and production of sediments, their transportation, deposition, diagene- 
sis, and lithification. Also modification of sediments by organisms and topographical, climatic, 
etc. conditions which contribute to the alteration of sedimentary processes, 220 pages deal 
with products of sedimentation: minerals, limestones, dolomites, coals, etc. Vol. 2 continues 
the examination of products such as gypsum and saline residues, silica, strontium, manga- 
nese, etc. An extensive exposition of structures, textures and colors of sediments: stratifica- 
tion, cross-lamination, .ripple mark, oolitic and pisolitic textures, etc. Chapters on environ- 
ments or realms of sedimentation and. field and laboratory techniques are also included. 
Indispensable to modern-day geologists and students. Index.. List of authors cited. 1723- 
item, bibliography. 121 diagrams. Total of xxxiii + 926pp. 5% x 8A. 

. Vol. J: $950 Paperbound $2.50 
Vol. 11: $951 Paperbound $2.50 

Two volume set Paperbound $5.00 

THE EVOLUTION OF THE IGNEOUS ROCKS, N. L. Bowen. Invaluable serious introduction applies 
' techniques of physics and chemistry to explain igneous rock diversity in terms of chemical 

composition and fractional crystallization. Discusses liquid immiscibility in silicate magmas, 
crystal’ sorting, liquid lines of descent, fractional resorption of complex minerals, petrogenesis, 
etc. Of prime importance to geologists & mining engineers, also to physicists, chemists 
working with high temperatures and pressures. ‘‘Most important,” TIMES, London. 3 indexes. 
263 bibliographic notes. 82 figures. xviii + 334pp. 536 x 8. $311 Paperbound $2.00 

INTERNAL CONSTITUTION OF THE EARTH, edited by Beno Gutenberg. Completely revised. 
Brought up-to-date, reset. Prepared for the National Research Council this is a complete & 
thorough coverage of such topics as earth origins, continent formation, nature & behavior 
of the earth’s core, petrology of the crust, cooling forces in the core, seismic & earthquake 
material, gravity, elastic constants, strain characteristics and similar topics. ‘‘One is filled 
with admiration... a high standard ... there is no reader who will not learn something 
from this book,’’ London, Edinburgh, Dublin, Philosophic Magazine. Largest bibliography in 
print: 1127 classified items. Indexes. Tables of constants. 43 diagrams. 439pp. 64% x 934. 

, $414 Paperbound $3.00 

HYDROLOGY, edited by Oscar £. Meinzer. Prepared for the National Research Council. De- 
tailed complete reference library on precipitation, evaporation, snow, snow surveying, 
glaciers, lakes, infiltration, soil moisture, ground water, runoff, drought, physical changes 
produced by water, hydrology of limestone terranes, etc. Practical in application, especially 
valuable for engineers. 24 experts have created ‘the most. up-to-date, most complete. 
treatment of the subject,’’ AM. ASSOC. of PETROLEUM GEOLOGISTS. Bibliography. Index. 165 
illustrations. xi + 71l2pp. 6¥e x 914. | $191 Paperbound $3.25 

SNOW CRYSTALS, W. A. Bentley and W. J. Humphreys. Over. 200 pages of Bentley’s famous 
microphotographs of snow flakes—the product of painstaking, methodical work at his Jericho, 
Vermont studio. The pictures, which also include plates of frost, glaze and dew on vegeta- 
tion, spider webs, windowpanes; sleet; graupe! or soft hail, were chosen both for their 
scientific interest and their aesthetic qualities. The wonder of nature’s diversity is exhibited 
in the intricate, beautiful patterns of the snow flakes. Introductory text by W. J. Humphreys. 
Selected bibliography. 2,453 illustrations. 224pp. 8 x 10%. 7287 Paperbound $2.95 

PHYSICS OF THE AIR, W. J. Humphreys. A very thorough coverage of classical materials and 
theories in meteorology . . . written by one of this century’s most highly respected physical 
meteorologists. Contains the standard account in English of atmospheric optics. 5 main 
sections: Mechanics and Thermodynamics of the Atmosphere, Atmospheric Electricity and 
Auroras, Meteorological Acoustics, Atmospheric Optics, and Factors of Climatic Control. 
Under these headings, topics covered are: theoretical relations between temperature, pres- 
sure, and volume in the atmosphere; composition, pressure, and density; circulation; evapo- 
ration and condensation; fog, clouds, thunderstorms, lightning; aurora polaris; principal ice- 

’ age theories; etc. New preface by Prof. Julius London. 226 illustrations. Index. xviii + 
6/6pp. 53% x 8p. $1044 Paperbound $3.00
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BOOKS EXPLAINING SCIENCE AND MATHEMATICS 

General 

WHAT IS SCIENCE?, Norman Campbell. This excellent introduction explains scientific method, 
role of mathematics, types of scientific laws. Contents: 2 aspects of science, science & 
nature, laws of science, discovery of laws, explanation of laws, measurement & numerical 
laws, applications of science. 192pp. 5% x 8. $43 Paperbound $1.25 

THE COMMON SENSE OF THE EXACT SCIENCES, W. K. Clifford. Introduction by James Newman, 
‘edited by Karl Pearson. For 70 years this has been a guide to classical scientific and 
mathematical thought. Explains with unusual clarity basic concepts, such as extension of 
meaning of symbols, characteristics of surface boundaries, properties of plane figures, 
vectors, Cartesian method of determining position, etc. Long preface by Bertrand Russell. 
Bibliography of Clifford. Corrected, 130 diagrams redrawn. 249pp. 53% x 8, 

T61 Paperbound $1.60 

SCIENCE THEORY AND MAN, Erwin Schrédinger. This is a complete and unabridged reissue 
of SCIENCE AND THE HUMAN TEMPERAMENT plus an additional essay: ‘‘What is an Elementary 
Particle?”’ Nobel laureate Schrodinger discusses such topics as nature of scientific method, 
the nature of science, chance and determinism, science and society, conceptual models for 
physical entities, elementary particles and wave mechanics. Presentation is popular and may 
be followed-by most people with little or no scientific training. ‘‘Fine practical preparation 
for a time when laws of nature, human institutions . . . are undergoing a critical examina- 
tion without parallel,’’ Waldemar Kaempffert, N. Y. TIMES. 192pp. 536 x 8. 

T428 Paperbound $1.35 

FADS AND FALLACIES IN THE NAME OF SCIENCE, Martin Gardner. Examines various cults, 
quack systems, frauds, delusions which at various times have masqueraded as science. 
Accounts of hollow-earth fanatics like Symmes; Velikovsky and wandering planets; Hoer- 
biger; Bellamy and the theory of multiple moons; Charles Fort; dowsing, pseudoscientific 
methods for finding water, ores, oil. Sections on naturopathy, iridiagnosis, zone therapy, 
food fads, etc. Analytical accounts of Wilhelm Reich and orgone sex energy; L. Ron Hubbard 
and Dianetics; A. Korzybski and General Semantics; many others. Brought up to. date to 
include Bridey Murphy, others. Not just a collection of anecdotes, but a fair, reasoned 
appraisal of eccentric theory. Formerly titled IN THE NAME OF SCIENCE. Preface. Index. 
X + 384pp. 5% x 8. 7394 Paperbound $1.50 

A DOVER SCIENCE SAMPLER, edited by George Barkin. 64-page book, sturdily bound, contain- 
ing excerpts from over 20 Dover books, explaining science. Edwin Hubble, George Sarton, 
Ernst Mach, A. d’Abro, Galileo, Newton, others, discussing island universes, scientific truth, 
biological phenomena, stability in bridges, etc. Copies limited; no more than 1 to a customer, 

FREE 

POPULAR SCIENTIFIC LECTURES, Hermann von Helmholtz. Helmholtz was a superb expositor 
as well as a scientist of genius in many areas. The seven essays in this volume are models 
of clarity, and even today they rank among the best general descriptions of their subjects 
ever written. ‘“‘The Physiological Causes of Harmony in Music’’ was the first significant physio- 
logical explanation of musical consonance and dissonance. Two essays, ‘‘On the Interaction 
of Natural Forces’? and ‘“‘On the Conservation of Force,’”’ were of great importance in the 
history of science, for they firmly established the principle of the conservation of energy. 
Other lectures include ‘On the Relation of Optics to Painting,'’ ‘‘On Recent Progress in the 
Theory of Vision,” “‘On Goethe’s Scientific Researches,” and ‘‘On the Origin and Significance 
of Geometrical Axioms.” Selected and edited with an introduction by Professor Morris Kline. 
xii + 286pp. 5% x 81. 7799 Paperbound $1.45 

BOOKS EXPLAINING SCIENCE AND MATHEMATICS 

Physics 

CONCERNING THE NATURE OF THINGS, Sir William Bragg. Christmas lectures delivered at 
the Royal Society by Nobel laureate. Why a spinning ball travels in a curved track; how 
uranium is transmuted to. lead, etc. Partial contents: atoms, gases, liquids, crystals, metals, 
etc. No scientific background needed; wonderful for intelligent child. 32pp. of photos, 57 
figures. xii + 232pp. 5% x 8. T31 Paperbound $1.50 

THE RESTLESS UNIVERSE, Max Born. New enlarged version of this remarkably readable 
account by a Nobel laureate. Moving from sub-atomic particles to universe, the author 
explains in very simple terms the latest theories of wave mechanics. Partial contents: air 
and its relatives, electrons & ions, waves & particles, electronic structure of the atom, 
nuclear physics. Nearly 1000 illustrations, including 7 animated sequences. 325pp. 6 x 9. 

T7412 Paperbound $2.00
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FROM EUCLID TO EDDINGTON: A STUDY OF THE CONCEPTIONS OF THE EXTERNAL WORLD, 
Sir Edmund Whittaker. A foremost British scientist traces the development of theories of 
natural philosophy from the western rediscovery of Euclid to Eddington, Einstein, Dirac, etc. 
The inadequacy of classical physics is contrasted with present day attempts to understand 
the physical world through relativity, non-Euclidean geometry, space curvature, wave me- 
chanics, etc. 5 major divisions of examination: Space; Time and Movement; the Concepts 
of Classical Physics; the Concepts of Quantum Mechanics; the Eddington Universe. 212pp. 
5% x 8. . T491 Paperbound $1.35 

PHYSICS, THE PIONEER SCIENCE, L. W. Taylor. First thorough text to place all important 
physical phenomena in cultural-historical framework; remains best work of its kind. Exposi- 
tion of physical laws, theories developed chronologically, with great historical, illustrative 
experiments diagrammed, described, worked out mathematically. Excellent physics. text 
for self-study as well as class work. Vol. 1: Heat, Sound: motion, acceleration, gravitation, 
conservation of energy, heat engines, rotation, heat, mechanical energy, etc. 211 illus. 
407pp. 5% x 8. Vol. 2: Light, Electricity: images, lenses, prisms, magnetism, Ohm’s law, 
dynamos, telegraph, quantum theory, decline of mechanical view of nature, etc. Bibliography. 
13 table appendix. Index. 551 illus. 2 color plates. 508pp. 5% x 8. 

- Vol. 1 $565 Paperbound $2.00 
Vol. 2 S566 Paperbound $2.00 

The set $4,00 

A SURVEY OF PHYSICAL THEORY, Max Planck. One of the greatest scientists of all time, 
creator of the quantum revolution in physics, writes in non-technical terms of his own 
discoveries and those of other outstanding creators of modern physics. Planck wrote this 
book when science had just crossed the threshold of the new physics, and he communicates 
the excitement feit then as he discusses electromagnetic theories, statistical methods, evolu- 
tion of the concept of light, a step-by-step description of how he developed his own momen- 
tous theory, and many more of the basic ideas behind modern physics. Formerly “A Survey 
of Physics.”’ Bibliography. Index. 128pp. 536 x 8. $650 Paperbound $1.15 

THE ATOMIC NUCLEUS, M. Korsunsky. The only non-technical comprehensive account of the 
atomic nucleus in English. For college physics students, etc. Chapters cover: Radioactivity, 
the Nuclear Model of the Atom, the Mass of Atomic Nuclei, the Disintegration of Atomic 
Nuclei, the Discovery of the Positron, the Artificial Transformation of Atomic Nuclei, Artifi- 
cial Radioactivity, Mesons, the Neutrino, the Structure of Atomic Nuclei and Forces Acting 
Between Nuclear Particles, Nuclear Fission, Chain Reaction, Peaceful Uses, Thermoculear 
Reactions. Slightly abridged edition. Translated by G. Yankovsky. 65 figures. Appendix includes 
45 photographic illustrations. 413 pp. 5% x 8. $1052 Paperbound $2.00 

PRINCIPLES OF MECHANICS SIMPLY EXPLAINED, Morton Mott-Smith. Excellent, highly readable 
introduction to the theories and discoveries of classical physics. Ideal for the layman who 
desires a foundation which will enable him to understand and appreciate contemporary devel- 
opments in the physical sciences. Discusses: Density, The Law of Gravitation, Mass and 
Weight, Action and Reaction, Kinetic and Potential Energy, The Law of Inertia, Effects of 
Acceleration, The Independence of Motions, Galileo and the New Science of Dynamics, 
Newton and the New Cosmos, The Conservation of Momentum, and other topics. Revised 
edition of “This Mechanical World.” Illustrated by E. Kosa, Jr. Bibliography and Chronology. 
Index. xiv + 171pp. 5% x 8%. : : T1067 Paperbound $1.00 

THE CONCEPT OF ENERGY SIMPLY EXPLAINED, Morton Mott-Smith. Elementary, non-technical 
exposition which traces the story of man’s conquest of energy, with particular emphasis on 
the developments during the nineteenth century and the first three decades of our own 
century. Discusses man’s earlier efforts to harness energy, more recent experiments and 
discoveries relating to the steam engine, the engine indicator, the motive power of heat, the 
principle of excluded perpetual motion, the bases of the conservation of energy, the concept 
of entropy, the internal combustion engine, mechanical refrigeration, and many other related 
topics. Also much biographical material. Index. Bibliography. 33 illustrations. ix ++ 215pp. 
53% x 814, T1071 Paperbound $1.25 

HEAT AND ITS WORKINGS, Morton Mott-Smith. One of the best elementary introductions to the 
theory and attributes of heat, covering such matters as the laws governing the effect of heat 
on solids, liquids and gases, the methods by which heat is measured, the conversion of a 
substance from one form to another through heating and cooling, evaporation, the effects of 
pressure on boiling and freezing points, and the three ways in which heat is transmitted 
(conduction, convection, radiation). Also brief notes on major experiments and discoveries. 
Concise, but complete, it presents all the essential facts about the subject in readable style. 
Will give the layman and beginning student a first-rate background in this major topic in 
physics. Index. Bibliography. 50 illustrations. x + 165pp. 536 x 814%. 1978 Paperbound $1.00 

THE STORY OF ATOMIC THEORY AND ATOMIC ENERGY, J. G. Feinberg. Wider range of facts 
on physical theory, cultural implications, than any other similar source. Completely non- 
technical. Begins with first atomic theory, 600 B.C., goes through A-bomb, developments to 
1959. Avogadro, Rutherford, Bohr, Einstein, radioactive decay, binding energy, radiation 
danger, future benefits of nuclear power, dozens of other topics, told in lively, related, 
informal manner. Particular stress on European atomic research. ‘‘Deserves special mention 
. . . authoritative,” Saturday Review. Formerly ‘‘The Atom Story.’’ New chapter to 1959. 
Index. 34 illustrations. 25ipp. 5% x 8. T625 Paperbound $1.60
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THE STRANGE STORY OF THE QUANTUM, AN ACCOUNT FOR THE GENERAL READER OF THE 
GROWTH OF IDEAS UNDERLYING OUR PRESENT ATOMIC KNOWLEDGE, B. Hoffmann, Presents 
lucidly and expertly, with barest amount of mathematics, the problems and theories which 
led to modern quantum physics. Dr. Hoffmann begins with the closing years of the 19th 
century, when certain trifling discrepancies were noticed, and with illuminating analogies 
and examples takes you through the brilliant concepts of Planck, Einstein, Pauli, de Broglie, 
Bohr, Schroedinger, Heisenberg, Dirac, Sommerfeld, Feynman, etc. This edition includes a 
new, long postscript carrying the story through 1958: “Of the books attempting an account 
of the history and contents of our modern atomic physics which have come to my attention, 
this is the best,’’ H. Margenau, Yale University, in ‘American Journal of Physics.” 32 tables 
and line illustrations. Index. 275pp. 5% x 8. T518 Paperbound $1.50 

THE EVOLUTION OF SCIENTIFIC THOUGHT FROM NEWTON TO EINSTEIN, A. d’Abro. Einstein's special and general theories of relativity, with their historical implications, are analyzed in non-technical terms. Excellent accounts of the contributions of Newton, Riemann, Weyl, Planck, Eddington, Maxwell, Lorentz and others are treated in terms of space and time, equations of electromagnetics, finiteness of the universe, methodology of science. 21 dia- grams. 482pp. 536 x 8. T2 Paperound $2.25 

THE RISE OF THE NEW PHYSICS, A. d’Abro. A half-million word exposition, formerly titled 
THE DECLINE OF MECHANISM, for readers not versed in higher mathematics. The only thor- 
ough explanation, in ‘everyday language, of the central core of modern mathematical physical 
theory, treating both classical and modern theoretical physics, and presenting in terms 
almost anyone can understand the equivalent of 5 years of study of mathematical physics. 
Scientifically impeccable coverage of mathematical-physical thought from the Newtonian 
system up through the electronic theories of Dirac and Heisenberg and Fermi’s statistics, 
Combines both history and. exposition; provides a broad yet unified and detailed view, with 
constant comparison of classical and modern views on phenomena and theories. “A must for 
anyone doing serious study. in the physical sciences,” JOURNAL OF THE FRANKLIN INSTITUTE. 
“Extraordinary faculty .. ..to explain ideas and theories of theoretical physics in the lan- 
guage of daily life,” ISIS. First part of set covers philosophy of science, drawing upon the 
practice of Newton, Maxwell, Poincaré, Einstein, others, discussing modes of thought, experi- 
ment, interpretations of causality, etc. In the second part, 100 pages explain grammar and 
vocabulary of mathematics, with discussions of functions, groups, series, Fourier series, etc. 
The remainder is devoted to concrete, detailed coverage of both classical and quantum 
physics, explaining such topics as analytic mechanics, Hamilton's principle, wave theory of 
light, electromagnetic waves, groups of transformations, thermodynamics, phase rule,. Brownian 
movement, kinetics, _ Special relativity, Planck’s original quantum theory, Bohr’s atom; 
Zeeman effect, Broglie’s wave mechanics, Heisenberg’s uncertainty, Eigen-vaiues, matrices, 
scores of other important topics. Discoveries and theories are covered for such men as Alem- 
bert, Born, Cantor, Debye, Euler, Foucault, Galois, Gauss, Hadamard, Kelvin, Kepler, Laplace, 
Maxwell, Pauli, Rayleigh, Volterra, Weyl, Young, more than 180 others. Indexed. 97 illustra- 
tions. ix -+- 982pp. 5% x 8. T3 Volume 1, Paperbound $2.25 

T4 Volume 2, Paperbound $2.25 

SPINNING TOPS AND GYROSCOPIC MOTION, John Perry. Well-known classic of science still 
unsurpassed for lucid, accurate, delightful exposition. How quasi-rigidity is induced in flexible 
and fluid bodies by rapid motions; why gyrostat falls, top rises; nature and effect on climatic 
conditions of earth’s precessional movement; effect of internal fluidity on rotating bodies, 
etc. Appendixes describe practical uses to which gyroscopes have been put in ships, com- 
passes, monorail transportation. 62 figures. 128pp. 536 x 8. T416 Paperbound $1.00 

THE UNIVERSE OF LIGHT, Sir William Bragg. No scientific training needed to read Nobel 
Prize winner’s expansion of his Royal Institute Christmas Lectures. Insight into nature of 
light, methods and philosophy of science. Explains lenses, reflection, color, resonance, 
polarization, x-rays, the spectrum, Newton’s work with. prisms, Huygens’ with polarization, 
Crookes’ with cathode ray, etc. Leads into clear statement ot 2 major historical theories 
of light, corpuscle and wave. Dozens of experiments you can do. 199 illus., including 2 
full-page color plates. 293pp. 5% x 8. 3538 Paperbound $1.85 

THE STORY OF X-RAYS FROM RONTGEN TO ISOTOPES, A. R. Bleich. Non-technical history of 
x-rays, their scientific explanation, their applications in medicine, industry, research, and 
art, and their effect on the individual and his descendants. Includes amusing early reactions 
to Réntgen's discovery, cancer therapy, detections of art and stamp forgeries, potential 
risks to patient and operator, etc. Illustrations show x-rays of flower structure, the :gall 
bladder, gears with hidden defects, etc. Original Dover publication. Glossary. Bibliography. 
Index. 55 photos and figures. xiv + 186pp. 536 x 8. T662 Paperbound $1.35 

ELECTRONS, ATOMS, METALS AND ALLOYS, Wm. Hume-Rothery. An introductory-level explana- 
tion of the application of the electronic theory to the structure and properties ot metals 
and alloys, taking into account the new theoretical work done by mathematical physicists. 

. Material presented in dialogue-form between an “Old Metallurgist” and a “Young Scientist.” 
Their discussion falls into. 4 main parts: the nature of an atom, the nature of a metal, 
the nature of an alloy, and the structure of the nucleus. They cover such topics as the 
hydrogen atom, electron waves, wave. mechanics, Brillouin zones, co-valent bonds, radio- 
activity and natural disintegration, fundamental particles, structure and fission of the 
nucleus,etc. Revised, enlarged edition. 177 illustrations. Subject and name indexes. 407pp. 
5¥% x Bir, $1046 Paperbound $2.25
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TEACH YOURSELF MECHANICS, P. Abbott. The lever, centre of gravity, parallelogram of force, 
friction, acceleration, Newton’s laws of motion, machines, specific gravity, gas, liquid 
pressure, much more. 280 problems, solutions, Tables. 163 illus. 271pp. 6% Xx 4%. 

: Clothbound $2.00 

MATTER & MOTION, James Clerk Maxwell, This excellent exposition begins with simple par- 
ticles and proceeds gradually to physical systems beyond complete analysis: motion, force, 
properties of centre of mass of material system, work, energy, gravitation, etc. Written with 
all. Maxwell's original insights and clarity. Notes by E. Larmor. 17 diagrams. 178pp. 5% x 8. 

$188 Paperbound $1.35 

SOAP BUBBLES, THEIR COLOURS AND THE FORCES WHICH MOULD THEM, C. V. Boys. Only com- 
plete edition, half again as much material as any other. Includes Boys’ hints on performing 
his experiments, sources of supply. Dozens of lucid experiments show complexities of 
liquid films, surface tension, etc. Best treatment ever written. Introduction. 83 iltustrations. 
Color plate. 202pp. 53% x 8. 7542 Paperbound 95¢ 

MATTER & LIGHT, THE NEW PHYSICS, L. de Broglie. Non-iechnical papers by a Nobei laureate 
explain electromagnetic theory, relativity, matter, light and radiation, wave mechanics, 
quantum physics, philosophy of science. Einstein, Planck, Bohr, others explained so easily 
that no mathematical training is needed for all but 2 of the 21 chapters. Unabridged. Index. 
300pp. 5% x 8. 735 Paperbound $1.85 

SPACE AND TIME, Emiie Borel. An entirely non-technical introduction to relativity, by world- 
renowned mathematician, Sorbonne professor. (Notes on basic mathematics are included 
separately.) This book has never been surpassed for insight, and extraordinary clarity of 
thought, as it presents scores of examples, analogies, arguments, illustrations, which ex- 
plain such topics as: difficulties due to motion; gravitation a force of inertia; geodesic 
lines; wave-length and difference of phase; x-rays and crystal structure; the special theory 
of relativity; and much more. Indexes. 4 appendixes. 15 figures. xvi + 243pp. 5% x 8. 

7592 Paperbound $1.45 

BOOKS EXPLAINING SCIENCE AND MATHEMATICS 

Astronomy 

THE FRIENDLY STARS, Martha Evans Martin. This engaging survey of stellar lore and science 

is a well-known classic, which has introduced thousands to the fascinating world of stars 

and other celestial bodies. Descriptions of Capella, Sirius, Arcturus, Vega, Polaris, etc.—all 

the important stars, with informative discussions of rising and setting of stars, their num- 

ber, names, brightness, distances, etc. in a non-technical, highly readable style. Also: 

double stars, constellations, clusters—concentrating on stars and formations visible to the 

naked eye. New edition, revised (1963) by D. H. Menzel, Director Harvard Observatory. 23 

diagrams by Prof. Ching-Sung Yu. Foreword by D. H. Menzel and W. W. Morgan. 2 Star 

Charts. Index. xii + 147pp. 5% x 8%. T1099 Paperbound $1.00 

AN ELEMENTARY SURVEY OF CELESTIAL MECHANICS, Y. Ryabov. Elementary exposition of 

gravitational theory and celestial mechanics. Historical introduction and coverage of basic 

principles, including: the elliptic, the orbital plane, the 2- and 3-body problems, the dis- 

covery of Neptune, planetary rotation, the length of the day, the shapes of galaxies, satel- 

lites (detailed treatment of Sputnik |), etc. First American reprinting of successful Russian 

popular exposition. Elementary algebra and trigonometry helpful, but not necessary; presenta- 

tion chiefly verbal. Appendix of theorem proofs. 58 figures. 165pp. 5% x 8. 
7756 Paperbound $1.25 

THE SKY AND ITS MYSTERIES, E. A. Beet. One of most lucid books on mysteries of universe; 

deals with astronomy from earliest observations to fatest theories of expansion of universe, 

source of stellar energy, birth of planets, origin of moon craters, possibility of life on 

other planets. Discusses effects of sunspots on weather; distances, ages of several stars; 

master plan of universe; methods and tools of astronomers; much more. “Eminently readable 

book,’ London Times. Extensive bibliography. Over 50 diagrams. 12 full-page plates, fold-out 

star map. Introduction. Index. 54% x 74. T627 Clothbound $3.50 

THE REALM OF THE NEBULAE, E. Hubble. One of the great astronomers of our time records 

his formulation of the concept of “‘island- universes,” and its impact on astronomy. Such 

topics are covered as the velocity-distance relation; classification, nature, distances, general 

field of nebulae; cosmological theories; nebulae in the neighborhood of the Milky Way. 39 

photos of nebulae, nebulae clusters, spectra of nebulae, and velocity distance relations 

shown by spectrum comparison. “One of the most progressive lines of astronomical re- 

search,” The Times (London). New introduction by A. Sandage. 55 ilustrations. Index. iv + 

201lpp. 5% x 8. $455 Paperbound $1.50
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Technological, historical 

A DIDEROT PICTORIAL ENCYCLOPEDIA OF TRADES AND INDUSTRY, Manufacturing and the 
Technical Arts in Plates Selected from “L’Encyclopédie ou Dictionnaire Raisonné des Sciences, 
des Arts, et des Métiers” of Denis Diderot. Edited with text by GC. Gillispie. This first modern 
selection of plates from the high point of 18th century French engraving is a storehouse 
of valuable technological information to the historian of arts. and science. Over 2000 
illustrations on 485 full-page plates; most of them original size, show the trades and 
industries of a fascinating era in such great detail that the processes and shops might 
very wéill be reconstructed from them. The plates teem with life, with men, women, and 
children’performing all of the thousands of operations necessary to the trades before and 
during the early stages of the industrial revolution. Plates are in sequence, and show 
general operations, closeups of difficult operations, and details of complex machinery. Such 
important and interesting trades and industries are illustrated as sowing, harvesting, bee- 
keeping, cheesemaking, operating windmills, milling flour, charcoal burning, tobacco process- 
ing, indigo, fishing, arts of war, salt extraction, mining, smelting, casting iron, steel, 
extracting mercury, zinc, sulphur, copper, etc., slating, tinning, silverplating, gilding, 
making gunpowder, cannons, bells, shoeing horses, tanning, papermaking, printing, dyeing, 
and more than 40 other categories. Professor Gillispie, of Princeton, supplies a full com- 
mentary on all the plates, identifying operations, tools, processes, etc. ‘This material, pre- 
sented in a lively and lucid fashion, is of great interest to the reader interested in history 
of science and technology. Heavy library cloth. 920pp.9 x12. 1421 Two volume set $18.50 

CHARLES BABBAGE AND HIS CALCULATING ENGINES, edited by P. Morrison and E. Morrison. 
Babbage, leading 19th century pioneer in mathematical machines and herald of modern 
operational research, was the true father of Harvard’s relay computer Mark |. His Difference 
Engine and‘ Analytical Engine were the first machines in the field. This volume contains a 
valuable introduction on his life and work; major excerpts from his autobiography, revealing 
his eccentric and unusual personality; and extensive selections from ‘‘Babbage's Calculating 
Engines,” a compilation of hard-to-find journal articles by Babbage, the Countess of Lovelace, 
L. F. Menabrea, and Dionysius Lardner. 8 illustrations, Appendix of miscellaneous papers. 
Index. Bibliography. xxxviii + 400pp. 5% x 8. T12 Paperbound $2.00 

HISTORY OF HYDRAULICS, Hunter Rouse and Simeon Ince. First history of hydraulics and hydro- 
dynamics available in English. Presented in readable, non-mathematical form, the text is made 
especially easy to follow by the many supplementary photographs, diagrams, drawings, etc. 
Covers the great discoveries and developments from Archimedes and Galileo to modern giants— 
von Mises, Prandtl, von Karman, etc. Interesting browsing for the specialist; excellent intro- 
duction for teachers and students. Discusses such milestones as the two-piston pump of 
Ctesibius, the aqueducts of Frontius, the anticipations of da Vinci, Stevin and the first book 
on hydrodynamics, experimental hydraulics of the 18th century, the 19th-century expansion of 
practical hydraulics and classical and applied hydrodynamics, the rise of fluid mechanics in 
our time, etc. 200 illustrations. Bibliographies. Index. xii ++ 270pp. 534 x 8. 

/ $1131 Paperbound $2.00 

BRIDGES AND THEIR BUILDERS, David Steinman and Sara Ruth Watson. Engineers, historians, 
everyone who has ever been fascinated by great spans will find this book an endless 
source of information and interest. Dr. Steinman, recipient of the Louis Levy. medal, was 
one of the great bridge architects and engineers of all time, and his analysis of the great 
bridges of history is both authoritative and easily followed. Greek and Roman bridges, 
medieval bridges, Oriental bridges, modern works such as the Brooklyn Bridge and the 
Golden Gate Bridge, and many others are described in terms of history, constructional prin- 
ciples, artistry, and function. All in all this book is. the most comprehensive and accurate 
semipopular history. of bridges in print in English. New, greatly revised, enlarged edition. 
23 photographs, 26 line drawings. Index. xvii + 401lpp. 5% x 8. T431 Paperbound $2.00 

Prices subject to change without notice. 

Dover publishes books on art, music, philosophy, literature, languages, 
history, social sciences, psychology, handcrafts, orientalia, puzzles and 
entertainments, chess, pets and gardens, books explaining science, inter- 
mediate and higher mathematics, mathematical physics, engineering, 
biological sciences, earth sciences, classics of science, ete. Write to: 

Dept. catrr. 
Dover Publications, Inc. 
180 Varick Street, N.Y. 14, N.Y.
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Technological, historical 

A DIDEROT PICTORIAL ENCYCLOPEDIA OF TRADES AND INDUSTRY, Manufacturing and the 
Technical Arts in Plates Selected from “L'Encyclopédie ou Dictionnaire Raisonné des Sciences, 
des Arts, et des Métiers” of Denis Diderot. Edited with text by C. Gillispie. This first modern 
selection of plates from the high point of 18th century French engraving is a storehouse 
of valuable technological information to the historian of arts. and science. Over 2000 
illustrations on. 485 full-page plates, most of them original size, show the trades and 
industries of a fascinating era in such great detail that the processes and shops might 
very wéil be reconstructed from them. The plates teem with life, with men, women, and 
children’performing all of the thousands of operations necessary to the trades before and 
during the early stages of the industrial revolution. Plates are in sequence, and show 
general operations, closeups of difficult operations, and details of complex machinery. Such 
important and interesting trades and industries are illustrated as sowing, harvesting, bee- 
keeping, cheesemaking, operating windmills, milling flour, charcoal burning, tobacco process- 
ing, indigo, fishing, arts of war, salt extraction, mining, smelting, casting iron, steel, 
extracting mercury, zinc, sulphur, copper, etc., slating, tinning, silverplating, gilding, 
making gunpowder, cannons, bells, shoeing: horses, tanning, papermaking, printing, dyeing, 
and more than 40 other categories. Professor Gillispie, of Princeton, supplies a full com- — 
mentary on all the plates, identifying operations, tools, processes, etc. This material, pre- 
sented in a lively and lucid fashion, is of great interest to the reader interested in history 
of science and technology. Heavy library cloth. 920pp. 9 x 12. T421 Two volume set $18.50 

CHARLES BABBAGE AND HIS CALCULATING ENGINES, edited by P. Morrison and E. Morrison. 
Babbage, leading 19th century pioneer in mathematical machines and herald of modern 
operational research, was the true father of Harvard’s relay computer Mark I. His Difference 
Engine and* Analytical Engine were the first machines in the field. This volume contains a 
valuable introduction on his life and work; major excerpts from his autobiography, revealing 
his eccentric and unusual personality; and extensive selections from ‘‘Babbage’s Calculating 
Engines,” a compilation of hard-to-find journal articles by Babbage, the Countess of Lovelace, 
L. F. Menabrea, and Dionysius Lardner. 8 illustrations, “Appendix of miscellaneous papers. 
Index. Bibliography. xxxviii + 400pp. 536 x 8. . 712 Paperbound $2.00 

HISTORY OF HYDRAULICS, Hunter Rouse and Simon Ince. First history of hydraulics and hydro- 
dynamics available in English. Presented in readable, non-imathematical form, the text is made 
especially easy to follow by the many supplementary photographs, diagrams, drawings, etc. 
Covers the great discoveries and developments from Archimedes and Galileo to modern giants— 
von Mises, Prandtl, von Karman, etc. Interesting brewsing for the specialist; excellent intro- 
duction for teachers and students. Discusses such milestones as the two-piston pump of 
Ctesibius, the aqueducts of Frontius, the anticipations of da Vinci, Stevin and the first book 
on hydrodynamics, experimental hydraulics of the 18th century, the 19th-century expansion of 
practical hydraulics and classical and applied hydrodynamics, the rise of fluid mechanics in 
our time, etc. 200 illustrations. Bibliographies. Index. xii + 270pp. 534 x 8. 

/ $1131 Paperbound $2.00 

BRIDGES AND THEIR BUILDERS, David Steinman and Sara Ruth Watson. Engineers, historians, 
everyone who has ever been fascinated by great spans will find this book an endless 
source of information and interest. Dr. Steinman, recipient of the Louis Levy. medal, was 
one of ihe great bridge architects and engineers of all time, and his analysis of the great 
bridges of history js both authoritative and easily followed. Greek and Roman bridges, 
medieval bridges, Oriental bridges, modern works such as the Brooklyn Bridge and the 
Golden Gate Bridge, and many others are described in terms of history, constructional prin- 
ciples, artistry, and function. All in all this book is. the most comprehensive and accurate 
semipopular history of bridges in print in English. New, greatly revised, enlarged edition. 
23 photographs, 26 line drawings. Index. xvii + 401lpp. 5% x 8. 1431 Paperbound $2.00 

Prices subject to change without notice. 

Dover publishes books on art, music, philosophy, literature, languages, 
history, social sciences, psychology, handcrafts, orientalia, puzzles and 
entertainments, chess, pets and gardens, books explaining science, inter- 
mediate and higher mathematics, mathematical physics, engineering, 
biological sciences, earth sciences, classics of science, ete. Write to: 

Dept. catrr. 
' Dover Publications, Ine. 
180 Varick Street, N.Y. 14, N.Y.
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(continued from front flap) 
Elementary Metallurgy and Metallography, Arthur M. Shrager. $2.25 Selected Papers on Human Factors in the Design and Use of Control Systems, edited by H. Wallace Sinaiko. $2.75 Microwave Transmission, John C. Slater. $1.50 Applied Mathematics for Radio and Communications Engineers, Carl Smith. $1.75 

- Fluid Mechanics Through Worked Examples, D. R. L. Smith and J. Houghton. Clothbound $6.00 

Bridges and Their Builders, David B. Steinman and Sara R. Watson. $2.00 Rayleigh’s Principle and Its Applications to Engineering, George Temple and William G. Bickley. $1.50 
A History of the Theory of Elasticity and of the Strength of Materials, Isaac Todhunter and Kar] Pearson. Clothbound. Three volume set $17.50 
Basic Theory and Application of Transistors, U. S. Department of the Army. $1.25 Wo 

mo Basic Electricity, U. S. Navy Bureau of Personnel. $3.00 Basic Electronics, U. §. Navy Bureau of Personnel. $2.75 The Schwarz-Christoffel Transformation and Its Applications: A Simple Exposition, Miles Walker. $1.25 
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