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Abstract — A large number of multidimensional scaling (MDS) and related models,
methods, and computer programs (for all of which we use the generic term “MDS
procedures”) have been developed over the years at Bell Laboratories. This paper
focuses on probably the most widely known and used subset of Bell Labs MDS
procedures involving spatial (as opposed to tree structure, overlapping or non-overlapping
clustering, or other “discrete and hybrid”) models. These are: the MDSCAL and KYST
family, for two-way (metric or nonmetric) MDS of proximities (e.g., similarities or
dissimilarities); INDSCAL, SINDSCAL and IDIOSCAL, for three-way MDS,
primarily of proximities (but also applicable to more general multiway data, in a manner
to be described); MDPREF, for “internal analysis” of preference (or other
“dominance”) data for different individual “subjects” (or other data sources) in terms of
a vector model; and the PREFMAP family for “external analysis” of such data (where
the “stimulus” or other “object” dimensions are externally provided by prior analysis or
theory, only “subject” vectors, ideal points and/or other parameters being determined
from preference/dominance data). A number of these Bell Labs MDS procedures are
applied to some ecological data on seaworm species due to E. Fresi and collaborators.

INTRODUCTION

In this paper are presented descriptions of some of the major models, methods, and
computer algorithms for multidimensional scaling (MDS) and related techniques
developed at Bell Laboratories. Most of the computer programs implementing the
procedures described in this paper are available in one of two tapes available at a
nominal cost from the AT&T Bell Labs Computer Information Library. These two
tapes are referred to as the MDS-1 and MDS-2 tapes. These programs are all written in
FORTRAN. Most of those on the MDS-1 tape are written for IBM equipment, while
those on the MDS-2 tape should be machine independent. (It should be emphasized
that no guarantee is implied that any of these programs will continue to be distributed
on this basis by AT&T Bell Laboratories.) All of the programs discussed here, except
SINDSCAL, and PREFMAP-3 are on the MDS-1 tape (which has already been very
widely distributed). SINDSCAL is on the MDS-2 tape. It is hoped that PREFMAP-3

will soon be available.
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While this paper is explicitly limited to procedures for which programs are (or are
hoped soon to be) available through the Bell Labs computer information library, a large
number of other MDS and related procedures have been developed at Bell Labs which
are not so available (and thus are not described here). A supplementary bibliography
citing papers relevant to such other procedures developed (totally or in part) at Bell
Labs is available by request from the author. Space limitations also require omission of
many of the programs included in the Bell Labs package of MDS programs. These
include a procedure for maximum likelihood nonmetric 2-way MDS appropriate for
proximity data collected by a certain ranking process, called MAXSCAL4.1 (Takane
and Carroll 1980, 1981); SIMULES (SIMultaneous Linear Equation Scaling) (Carroll
and Chang 1972b, Chang and Carroll 1972c); MONANOVA (MONotonic ANalysis Of
VAriance, which implements a procedure for fitting an additive conjoint measurement
model to data from a factorial design) (Kruskal 1965, Kruskal and Carmone 1968);
Categorical Conjoint Measurement (CCM) (Carroll 1969, Chang 1971); CANCOR
(Generalized CANonical CORrelation Analysis) (Carroll 1968, Chang 1971); PROFIT
(PROperty FITting) (Carroll and Chang 1964, Chang and Carroll 1968); PARAMAP
(PARametric MAPping of nonlinear data structures) (Carroll 1965, Shepard and
Carroll 1966, Chang 1968); POLYFAC (POLYnomial FACtor Analysis) (Carroll 1969);
HICLUS (HlIerarchical CLUStering via ultrametric tree models) (Johnson 1967),
MAPCLUS (A MAthematical Programming method for fitting the ADCLUS
overlapping CLUStering model) (Arabie and Carroll 1980a,b); INDCLUS (/Ndividual
Differences CLUStering) (Carroll and Arabie 1982, 1983); and others. (Most of the
programs on the MDS-1 tape, including all of those just named with the exceptions of
MAXSCAL4.1, MAPCLUS and INDCLUS, which are on the MDS-2 tape, and
MONANOVA, are synopsized and described briefly in Chang, 1971. This paper also
includes brief synopses of early versions of MDSCAL, as well as INDSCAL,
INDSCALS, NINDSCAL, MDPREF and PREFMAP, all of which are discussed in the
body of this paper) We focus here on two-way and three-way (or Individual
Differences) MDS methods for proximity data, and on methods for individual differences
preference (or other dominance) data. (For a general discussion of MDS, including
many of those models and methods not discussed in detail in the present paper, see
Carroll and Arabie 1980.)
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The procedures to be discussed here are organized under 3 general headings. These
are: I. Two-Way (Nonmetric or metric) Multidimensional Scaling (MDS) procedures;
II. Three-Way Multidimensional Scaling (MDS) procedures; IIIl. MDS Analysis of

Preference (or other Dominance) Data.

A complete outline of the text of this paper follows, including names of programs and

their authors.

I. Two-Way MDS of Proximity Data (Theoretical references: Shepard 1962a,b;
Kruskal 1964a,b).

ILA. MDSCAL-5 (Kruskal and Carmone 1969) and KYST, KYST2 and
KYST-2A (Kruskal, Young and Seery 1973).

I.B. Some ecological data on 88 species of seaworms analyzed by KYST-2A.
II. Three-Way MDS of Proximity (and other) Data.

ILA. INDSCAL (Carroll and Chang 1969, 1970; Chang and Carroll 1969) and
SINDSCAL (Pruzansky 1975).

II.LB. IDIOSCAL (Carroll and Chang 1972a; Chang and Carroll 1972a; Carroll
and Wish 1974a).

II.C.  An application of three-way MDS to the ecological data on seaworms due

to Fresi et al.
III. MDS and Multidimensional Analysis of Preference (or other Dominance) Data.
III.LA. MDPREF (Carroll and Chang 1964; Chang and Carroll 1968).

III.LB. PREFMAP and PREFMAP-2 (Carroll and Chang 1967; Chang and
Carroll 1972b) and PREFMAP-3 (Meulman, Heiser and Carroll 1986).

III.C. MDPREF analysis of the Fresi et al. seaworm data, and relation to
previous analyses via KYST-2A and SINDSCAL.
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I. TWO-WAY MDS OF PROXIMITY DATA

I.LA MDSCALS, KYST, KYST2 and KYST-2A

The multidimensional scaling (MDS) programs, known as MDSCALS, KYST,
KYST2 and KYST-2A, most closely associated with J. B. Kruskal, are highly versatile
in the sense that they can be used for a large variety of scaling problems. These
programs have gone through several versions so far, and the discussion below relates to
the fifth version of MDSCAL, and to all three versions of KYST. The original
theoretical discussion of the procedure can be found in Kruskal (1964a,b). Detailed
documentation of these programs can be found in Kruskal and Carmone (1969) or in
Kruskal, Young and Seery (1973). A complete discussion of the computational method
used is given in Kruskal (1977).
Discussion of Computational Procedure

The problem attacked by Kruskal (1964a,b), following Shepard’s (1962a,b)
pioneering work in this area, and known generically as nonmetric (or, with use of certain
options, metric) two-way MDS, is that of deriving a configuration of objects in a
prespecified number of dimensions, given a set of proximity data among pairs of objects.
Let &;; represent the original measure of dissimilarity between pairs of objects i and j.
Assume for the moment that the dissimilarities can be strictly rank ordered. (The way
that ties are handled by the program will be discussed later.) The objective is to
represent the n objects by » points in an r-dimensional space, such that the rank order of
distances between pairs of points best reproduces the rank order of the &’s. Let the
coordinates of the i-th point in that space be defined by a vector x; = (x;;, ..., x;).
Let d;; denote the distance from x; to x;. Let X be the matrix whose i-th row is x;;

thus, X = (x;), fori = 1,2 - - - n (objects) and ¢t = 1,2 - - - r (dimensions).

The criterion is that of minimizing the function called “Stress” given by one of two

alternate formulas. The one now known as Formula 2 is:

STRESSFORMULA?2 = _\/ 3 Wy —d)* 13 [y - D2 > (LA.1)
ij ij

where d is the average of all the d;;’s. The one known as Formula 1 is:

TRESSFORMULA1 = p : A.
STRESS U _\/2 @y~ d)? /3 dj (LA2)
ij ij
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The problem, then, can be expressed as that of finding the matrix X such that

r
Euclidean distances, defined as d;; = /E (Jc,~,—xj,)2 computed from that matrix,
t

best match the §;;’s. The d;;’s are a set of numerical values chosen to be as close to
their d;; counterparts as possible, subject to being monotone with the original §;;’s. The

d;j’s are simply fitted values in the monotone regression procedure.

The two formulas above will be abbreviated here as S2 and S'1, respectively. S2 is,
in MDSCALS, the “normal” or default option. In the various versions of KYST, S1 is
the default option. It should be mentioned that the two Stress formulas differ only in

the normalizing factor in the denominator. In all cases the 3 implies summation over
ij

all values of i and j for which there are data. For example, if a half-matrix option with

diagonal absent is used, the sum would be only over that off-diagonal half-matrix, while

if, say, the whole matrix option with diagonal present is used, summation is over all n?

values. If there are missing cells the summation skips these cells. Furthermore, in the

case of S2, d is the average over these same values of i and j.

The procedure used for obtaining the x’s is the method of steepest descent. Briefly
stated, the method involves improving the starting configuration a bit by moving it
slightly in the direction of the negative gradient, or direction of steepest descent. The
direction of steepest descent is the direction in the configuration space (the space defined
by all n-r parameters of the X matrix) along which stress is decreasing most rapidly.
This direction corresponds to the (negative) gradient which is defined by evaluating the

partial derivatives of the function S (S'1 or S2, depending on which option is used).

Letting S stand for either S'1 or S2, then the gradient will be a vector of n-r

components whose general entry is

_5 G=1,2,...,n;t=1,2,...,r).
Xit

The n - r components of this vector can be “packed” into a matrix G of the same row

and column order as the X matrix; thus G = [—i . On each iteration a step size a

ax,‘t
is defined in a way described in Kruskal’s original paper [1964b] and « times G is added
to X to get an “improved” estimate of X. Using a subscript I for the I-th iteration, the
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iterative process can be described as follows:

Given X; = (x;,), the I-th estimate of X,

1. Compute G; = [—:—S] (evaluated at X = X,),

Xit
2. Compute oy (as described in the above-cited Kruskal paper), and then,
3. Define X,H = X, + aIGI-

X/ +1 is, then, the improved estimate of the X matrix corresponding to iteration 7 + 1.
This iterative process continues until convergence occurs, as determined by convergence
criteria specified in detail in Kruskal and Carmone (1969) or Kruskal, Young and Seery
(1973). The X, matrix defines the “initial configuration,” (corresponding to the 0-th
iteration) which may be defined in a number of different ways. One option is to
generate a starting configuration by a procedure that puts all points along the coordinate
axes in a systematic way (but one that results in an “essentially random” placement of
the points along these axes). This is the one that is sometimes referred to as the “L
shaped” starting configuration because, in two dimensions, the configuration does,

indeed, resemble an “L.”

A second option involves a more fully random configuration (“filling” the space more
completely) which can be used by providing a “seed” number for a random number
generator. The configuration, in this case, is generated by choosing points randomly
from a spherical multivariate normal distribution. By choosing different seeds for the

random number generator, of course, different random starts can be used.

A third option is for the user to provide a starting configuration. This may be a
“rational” start provided by using some other procedure, an a priori configuration of
some kind, or one provided by a previous run of the same program which requires

additional iterations.

As a fourth option, if one is securing solutions in several dimensionalities in one run,
the first » dimensions of the (r+1)st dimensional solution can be used to define the

starting configuration for the r-dimensional solution.
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All of the options listed above are available in both MDSCAL-5 and in the various
versions of KYST. KYST, KYST2, and KYST-2A have an additional option for the
starting configuration, which is probably the most important algorithmic distinction
between the KYST and the earlier MDSCAL family of MDS programs. This option
entails using an adaptation of the classical metric MDS technique associated with
Torgerson (1958) or Gower (1966) to derive a starting configuration. This starting
configuration is similar to, but not quite identical with, that in programs by F. W.
Young called (generically) TORSCA (Young and Torgerson, 1967, Young, 1968). In
the variant of this “TORSCA” starting configuration used in KYST, KYST2 and
KYST-2A, a linear transformation of the data is implemented to assure the data values
are all positive and that the ratio between the smallest and largest values has a
reasonable value. (This provides a practical solution to what is sometimes called the

“additive constant” problem in metric MDS methods.)
Special Features of the MDSCALS and KYST Programs

The MDSCALS and KYST programs can cope with a variety of problems arising in

the original dissimilarities data. We shall discuss them in this section.

Missing Data — the program can be set to identify missing observations by reading in a
cut-off value below which data will be treated as missing. The Stress function is
modified by simply omitting, both in the numerator and denominator, the terms which

correspond to the missing cells.

Nonsymmetry - either because of inherent nonsymmetry of measurement procedures or
errors in measurement, the values of §;; and §;; may not be equal in some cases. In such
a situation the Stress function is computed over all cells (i.e., i, j and j, i) and

minimized in the algorithm.

Ties — two approaches are possible for resolving ties between dissimilarities (a tie arises

wherever §;; = d,). These are called primary and secondary approaches.

In the primary approach, when é;; = 6;, no restriction is placed on the corresponding
d’s. Thus, if 6;; = dx¢, d;j may be greater than, less than, or equal to dj,, without a
necessary penalty in the Stress function (since d;j may be greater than, less than, or

equal to 2,(,).
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The secondary approach is appropriate when 6;; = &y, is taken to mean that
2,-]- = ‘}ke- Then if d;; # di,, the terms (d,vj—(},-j)z and (dkg—:ikg)z cannot both be
zero so that Stress might be lowered by making a correction to the configuration, tending
to bring d;; and dy, more nearly into agreement (at least those two components of
Stress would be lowered, although, of course, other components may be increased at the

same time).

Non-Euclidean Distances — the user of the MDSCALS5 or KYST programs can choose
any Minkowski-p metric, by specifying the value of p (>1.0), thus causing the program

to use the following formula for computing d;;:

, 1/p
2 |x,~, —xﬂlp (I-AB)
t=1

d,..-

This option enables one to use this specific class of non-Euclidean distances. The
Stress and gradient formulas are changed accordingly. (While p is usually restricted to
be > 1.0, values between 0 and 1 can in fact be used, and may be meaningful in some
circumstances. If the “1/p” power is omitted, this formula does, in fact, yield a metric.

For discussion of this, see Carroll and Wish 1974a.)
Definition of Gradient

It is possible to write a general equation for the (negative) gradient of S'1 or S2 for
any of the Minkowski-p metrics (recalling that p = 2 corresponds to the Euclidean

case). Letting S,(a=1 or 2) stand for either S'1 or S 2, this equation is:

(1.A.4)
95, 2 diy — aik - S (dy —d,)
. = = —x; |72 ey = x) s
8it ax,-, Sa E (djk _ da)z % d}f—]) |xkt xn‘ Xkt — Xip
jk
where p is the parameter of the Minkowski p metric, and where
dl =0
do=d (I.A.5)
2=4a,

while d;; is the current “estimate” of d;; derived from a least squares monotone
regression (or from some other least squares regression procedure, options for which have

already been described).
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Both the definition of Stress and of the gradient are necessarily different for the
various “split data” options, which will be described in the section on splitting data

below.
Options for Regression
Four basic options exist for performing the regression of d;; on §;;. These are:

1. Regression-Ascending — for performing monotone regression when the original data

are dissimilarities.

2. Regression-Descending — for performing monotone regression when the original

data are similarities.

3. Regression-Polynomial — specified integer (degree of polynomial) for performing
polynomial regression. If the degree of polynomial is equal to one, it becomes
linear regression. An integer from 1 through 4 can be used. In the linear case one
has the option of including or excluding a constant term (i.e., the linear function

may be non-homogeneous or homogeneous).

4. Regression-Multivariate — integer (number of variates) for performing a
prespecified regression by supplying a separate FORTRAN subroutine for same.

This option, in principle, allows essentially any linear regression function of the

~ C
formd = 3 a.g.(8) (C < 5) to be used, so long as an algorithm is available in

c=1
the form of the above-mentioned FORTRAN subroutine for computing the
functions g.(8).

Options for Data Input
The input matrices can be in one or more of these forms:
1. Full, matrix, diagonal present
2. Lower half matrix, diagonal present
3. Lower half matrix, diagonal absent

4. Upper half matrix, diagonal present
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5. Upper half matrix, diagonal absent
6. Lower corner matrix*
7. Upper corner matrix*

* A corner matrix is a rectangular (MXN) matrix which is treated as an off-diagonal
submatrix of a larger (M +N) X (M +N) full (square) matrix with the remaining

entries handled as missing data.

Initial Configuration — the user may supply a starting configuration for scaling the
objects. If not, two varieties of a random start can be used, as discussed above. Also, as
discussed earlier, other options exist if solutions in more than one dimensionality are
obtained. Finally, as discussed earlier, in the KYST programs, the “TORSCA”-like

start is another option.

Splitting Data - four options exist for using parts of the data as separate sublists and

then performing separate regressions for each of these sublists. They are:
1. Split by rows
2. Split by groups
3. Split by decks

4. Split no more (a control phrase used to indicate that no more “split” options are to
be specified).

The first three options make each row of every data deck, each group of rows (see

Kruskal and Carmone 1969, for explanation of this) or each data deck a separate sublist,

respectively. The “split no more” option is relevant only when several data decks are

used. It causes all subsequent data decks to be joined into a single sublist until further

indication.

In case any of the “split data” options are used, it is necessary to redefine Stress as

S*, = /1\}_3 §s3,, , (1.A.6)

where b stands for a data “block” (which may be a row, group, or deck, depending on

follows:
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options used), Np is the number of such blocks, while S%, is S1 or S2 (for @ = 1 or 2,
respectively) defined on block b. S*, is then the overall Stress (of type a), defined

simply as the root mean square of the individual Stresses.

The gradient can be defined easily. Dropping the “a” from S and S*, the overall

gradient is simply:

L 55, Gy. LA.7)

* =
@ = SN, 2

Data Saving - it is possible to use the same data for performing different methods of

scaling by using the option called “Save Data.”

Weighting of Data - the MDSCALS5 and KYST programs allow for differential
weighting of the original data values. This can be done either by supplying a matrix of
weights in the same way as the data are laid out or by using a FORTRAN subroutine
for generating weights internally. The standard weights are taken as 1.0 for each
observation. Further details on this and other aspects of these programs can be found in
Kruskal and Carmone (1969) or Kruskal, Young and Seery (1973). More information
and a general introductory overview of “two-way” multidimensional scaling generally (as
well as a brief summary of “three-way” MDS) can be found in Kruskal and Wish
(1978).

LB Some Ecological Data on 88 Species of Seaworms Analyzed by KYST-2A

Some ecological data collected over a period of two years at 5 sites in the harbor of
Ischia in the Bay of Naples are described in detail in a later section (I1.C) of this paper.
Also described in that section is the computation of a number of different proximity
(derived dissimilarity) matrices (one for each of the 5 sites, a number for various time

periods, and an “overall” dissimilarity matrix).

While leaving details of this measure for later, we will describe briefly here the
results of applying KYST-2A to the “overall” dissimilarity measure calculated for the
Fresi et al. data. Before KYST-2A could be applied to this data, a subset of the
seaworm species had to be eliminated. The reason for this is that our version of KYST-
2A would handle only 60 objects (in the present case, the species of seaworms).

Inspection of the original data in the Fresi et al. (1983) paper indicated that 33 species
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were observed only twice in the entire study (i.e., at any one of the sites in any one of

four time periods). Thus these 33 were eliminated, leaving a total of 55 species to be
analyzed by KYST-2A.

Table 1. Biological names of 88 seaworm species in data from Fresi et al. (1983). These marked with asterisks
were the 55 most frequent species in that data, which were analyzed via KYST2-A.

-
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Lepidonotus clava (Montagu)
Pholoe synophthalmica (Claparéde)
Paleontus debilis (Grube)

Eteone sp.

Phyllodoce (cfr.) vittata Ehlers
Eulalia sanguinea Oersted
Eulalia viridis Linneo
Hesionidae gen.sp.

Syllis (cfr.) vivipara Krohn
Syllis gracilis Grube

Syllis hyalina Grube

Syllis armillaris (Miiller)

Syllis prolifera Krohn

Syllis spongicola Grube

Syllis cirropunctata Michel
Syllis amica Quatrefages

Syllis cornuta Rathke

Syllis kronii Ehlers
Trypanosyllis zebra (Grube)
Odontosyllis ctenostoma Claparéde
Odontosyllis fulgurans Claparede
Pionosyllis sp.

Eurysyllis tuberculata Ehlers
Brania clavata Claparéde

Brania pusilla Dujardin

Exogone verugera (Claparéde)
Exogone gemmifera Pagenstecher
Exogene sp.

Sphaerosyllis hystrix Claparéde
Sphaerosyllis claparedi Ehlers
Autolytus aurantiacus Claparede
Autolytus prolifer (Miiller)
Autolytus sp.

Syllidae gen.

Platynereis dumerilii Audouin et Milne-Edwards
Platynereis coccinea Delle Chiaje
Nereis zonata Malmgren

Nereis persica Fauvel

Nereis sp.

Ceratonereis costae (Grube)
Perinereis macropus (Claparede)
Perinereis cultrifera Grube
Nereidae gen. sp. |

Nereidae gen. sp. 2

* * w0

-

P A

Nereidae gen. sp. 3

Lysidice ninetta Audouin et Milne-Edwards
Lumbrinereis coccinea (Renieri)
Lumbrinereis funchalensis (Kinberg)
Lumbrinereis inflata (Moore)
Lumbrinereis sp.

Arabella geniculata (Claparéde)
Arabella iricolor (Montagu)
Dorvillea rudolphii (Delle Chiaje)
Polydora ciliata (Johnston)
Polydora caeca (Oersted)
Polydora sp.

Spio filicornis (Miiller)
Dodecaceria concharum Oersted
Cauleriella bioculatus (Keferstein)
Cirratulus cirratus (Miiller)
Cirratulus chrysoderma Claparéde
Cirriformia filigera (Delle Chiaje)
Ctenodrilus serratus (O. Schmildt)
Cirratulidae gen. sp. 1
Cirratulidae gen. sp. 2

Theostoma oerstedi (Claparéde)
Capitellidae gen. sp.

Streblosoma hesslei Day

Thelepus cincinnatus (Fabricius)
Nicolea venustula (Montagu)
Amphiglena mediterranea (Leydig)
Potamilla tarelli Malmgren
Mixicola aestetica (Claparéde)
Fabricia sabella (Ehrenberg)
Oriopsis (cfr.) eimeri (Langerhans)
Sabellidae gen. sp.

Pileolaria sp.

Pomatoceros triqueter (Linneo)
Hydroides pseudouncinata Zibrowius
Hydroides elegans (Haswell)
Hydroides dianthus (Verrill)
Serpula concharum Langerhans
Vermiliopsis striaticeps (Grube)
Vermiliopsis sp.

Filograna implexa Berkeley
Spirobrancus polytrema (Philippi)
Protula sp.

Serpulidae gen. sp.
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Table 1 indicates the names of all 88 seaworm species analyzed in this paper. The
sequential numerical code on the left is actually used in the various plots in this paper.
Asterisks indicate the 55 most frequent species analyzed by KYST-2A. The “regression
ascending” option was used, with the primary option for ties, and STRESSFORMULAI.

Analyses were done in 6 down to 1 dimension(s).

In MDSCAL or KYST analyses, a plot of STRESS vs. dimensionality is often used

as an aid in deciding on the most appropriate dimensionality.

0.25

stress
0.15 0.20

0.10

0.05

0.0
-

dimensionality

Figure 1. Plot of STRESS (formula 1) vs. Dimensionality for
KYST-2A analysis of Fresi et al. data.

Figure 1 shows this plot. One often looks for a clear “elbow” in such a plot; that is, a
dimensionality after which STRESS falls off only minimally (and more or less linearly)

with dimensionality. While inspection of Figure 1 does not yield an absolutely clear



78

dim 3

85

dim 1

24

Figure 2. The dimension one-three plane of the four dimensional
KYST-2A solution for the 55 most frequent of the 88 seaworm
species from the Fresi et al. data. “Overall” derived dissimilarity
matrix used as input.

“elbow,” it was decided that the most appropriate dimensionality was four.

For reasons to be discussed later, the four dimensions were plotted in two planes, the

plane defined by dimensions one and three (in Figure 2) and that defined by dimensions

two and four (in Figure 3).

dim 2

dim 4
85
71
80
74 58 59
75 27 #F61 49
29 35 24 B3 e
47
13 41% 38 10
42 62
54

Figure 3. The dimension two-four plane of the four dimensional
KYST-2A solution for the 55 most frequent of the 88 seaworm
species from the Fresi et al. data.
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The 55 seaworm species included in this analysis are shown in these figures, using the
sequential coding indicated in Table 1. Since the present author is not a biologist, and
has no knowledge whatever about these particular species of seaworms, we leave
substantive interpretations of these (and other dimension plots to be seen later) to

subject matter experts.

Il. THREE-WAY MDS OF PROXIMITY (OR OTHER) DATA

Before a detailed discussion of three-way (and possibly even higher-way) MDS or
other data analysis models and methods, some terminology is needed. Because of our
psychological roots we often speak of “stimuli” and of individual “subjects”. A more
neutral pair of terms, however, is “objects” (which can be entities — of any type
whatsoever — one is interested in studying; e.g., species of seaworms, variables, sites,
times, countries in Western Europe, epistemological theories, numerical ecologists,
monads, Hilbert spaces, or brands of soap) and “data sources” (which, as the phrase
suggests, comprise any source of data about these objects; e.g., individual numerical
ecologists, who may make judgments of similarity among various species of Polychaetes,
different times — say in a longitudinal study — in which measures of correlation over
species are computed to provide measures of proximity among various variables — with
species and variables comprising “objects” in these two examples, respectively). Clearly,
what may be a “stimulus” or other “object” in one context may be an “individual” or

other “data source” in another!

We also often speak of the number of ways of a data array, as when we refer to
two-way, three-way, or higher-way models and methods, for two-way, three-way or
higher-way data. The simplest “way” (pardon the ambiguity!) to think of this use of the
term “way” is that it is the number of indices, or subscripts, necessary to index the data.
The Fresi et al. data to be described in detail shortly can be viewed as four-way data
(species X sites X months X years) since we would need four indices to keep track of these
four different modalities. If, however, one were to argue (as one well may) that months
and years should readily be thought of as a single mode, and thus a single way of the
data array (indexed by only one subscript, ranging systematically — say sequentially in
time — over all month-year combinations) then it might as easily be formalized as a

three-way data array.
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Our point here is that the number (and nature) of “ways” in a data array is largely
“in the mind of the beholder” (or, more to the point, is dependent on the aims of and/or
conceptual structure imposed by the data analyst/researcher trying to understand a

particular batch of data).

Another term often used in reference to data arrays, already alluded to tangentially
above, is “modes”. A data mode is a type or category of entity (e.g., the “species”
mode, “time” mode, “site” mode, or “variable” mode) which may or may not correspond
to the “ways” of the data array. In general, the number of “ways” will be at least as
great as the number of “modes”, but may be greater (because two or more different
“ways” of the data may correspond to the same “mode”). The best example of the
latter phenomenon is the case (already considered in Section I) of a two-way, but one-
mode n X n (usually, but not necessarily symmetric) matrix of proximities (similarity or
other proximity measures among seaworm species, for example, or correlation coefficients

among variables).

Another case in which the number of “ways” exceeds that of “modes” — which we
shall soon encounter — will be a data set that is two-mode (seaworm species — the
“objects” — by “data sources” derived, as will be described, from data corresponding to
various combinations of sites, months and years), but three-way (species X species X data
source). As will be seen in detail shortly, we shall begin with a data array that is either
four-mode and four-way, or three-mode and three-way (depending on whether one feels
“month” and ‘“year” should be treated as separate modes/ways or as a single
mode/way), and derive from this another data array that can be conceived as being
two-mode, three-way data of proximities among the 88 seaworm species (“objects™) for

14 different “data sources”.
IILA INDSCAL

The INDSCAL approach, standing for INdividual Differences SCALing of proximity
(or other) data by means that retain information on individual differences, was
developed by Carroll and Chang (1970). Two basic options exist in the INDSCAL
program: a) INDSCAL analysis per se (called INDIFF in the program) — for scaling
stimuli (or other objects) for which symmetric matrices of proximity measures are

available for a number of individuals or other data sources, in terms of a weighted
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Euclidean model often called the INDSCAL model and b) CANDECOMP analysis —
for scaling stimuli (or other objects) for which (for example) measurements are available
on a number of variables (i.e., the input matrices are, in general, rectangular and non-
symmetric) in a number of different conditions (e.g., observational contexts,
experimental variations, times, sites, or other “modes” or scenarios distinguishing the
various object X variable matrices). The CANDECOMP part of the algorithm uses
Carroll and Chang’s method of canonical decomposition of N-way tables. INDSCAL
analysis (option a) actually corresponds to using symmetric CANDECOMP with pre-

and post-processing, to be described below.
The INDSCAL Model

The INDSCAL model of individual differences is based on two major assumptions
which are stated below. While (since this model was originally devised in a
psychological context) we will refer to “stimuli” and “individuals,” and to individual
differences in perception as reflected in similarity judgments, this model can be applied
to individual differences, among any type of data sources, in similarity or dissimilarity
measures defined on all pairs of objects (e.g., species), from domains other than that of

psychological “stimuli.”

Assumption 1 — a set of r dimensions or “factors” underlie the n stimuli. These
dimensions are assumed to be common for all m individuals making similarity
judgments, i.e., they are sufficient to account for (except for ‘“noise” or error) the
similarity judgments (or other proximity values) associated with all m subjects, or other
data sources. Let X = (xj) represent the matrix of stimulus coordinates in the
common, or group space; xj, is the coordinate value for the j-th stimulus on the z-th

dimension; j =1,2,...,nandt=1,2,...,r.

Assumption 2 — the similarity judgments for each individual are related in a simple way
to a “modified” Euclidean distance in the group stimulus space. In particular, the
relationship is assumed to be linear (in the metric version) or monotone (in a quasi-
nonmetric version). We shall describe the metric version which is the one used
predominantly. (The quasi-nonmetric version is implemented in a program called
NINDSCAL, available on the MDS-1 tape, but this will not be discussed further here.)

We assume that the dissimilarity measure, 67, provided by the i-th individual for the
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pair of stimuli j and k, is related to a modified or weighted Euclidean distance, d}f,), by:

L® [a};’)] =49 (ILA.1)
where L@ is a linear function with positive slope. The subscripts j and k (for stimuli or
other objects) range from 1, 2, ..., n and the superscript i (for individuals or other
data sources) ranges from 1, 2, ..., m.

The “modified” Euclidean distance for the i-th subject is given by the formula:

. r
d}’k) = 2 W,,(xj,—xk,)z . (II.A.2)

=1
This formula differs from the usual Euclidean distance formula only in the presence of
the weights w;,, which represent the saliences or “perceptual importances” for the i-th
individual of the t-th dimension of the group perceptual space, represented by the matrix
X. Another way to express the dj(}c) ’s are as ordinary Euclidean distances computed in a

“private” space for individual i/ whose coordinates are:
yj(f) =wi? xj. (I1.A.3)

This is a space that is like the X-space except that the configuration has been expanded
or contracted (differentially) in directions corresponding to the coordinate axes. This
can be seen to be a linear transformation with the transformation matrix restricted to be
diagonal (the diagonals being square roots of the w’s). This class of transformations is

sometimes referred to as a “strain.”

The above model is sufficiently general to accommodate individuals with widely
divergent perceptions of a set of stimuli in terms of a common perceptual space. For
example, consider a two-dimensional perceptual space of a set of automobile brands
whose axes are identified as luxuriousness and sportiness. Let us now imagine two
individuals, P and Q, who view the brands entirely differently, individual P considering
the brands only on one dimension (luxuriousness) while individual Q views the brands
only on the other (sportiness). The INDSCAL model has the capability of
accommodating the judgments of both persons P and Q, by allowing dimension weights
of (1,0) for P and (0,1) for Q.

The same basic model, but without a method for fitting the model to data, was
proposed independently by Horan (1969). Alternative methods of fitting the INDSCAL
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model (sometimes called simply the “weighted Euclidean model”) to data have been
proposed by Bloxom (1968), Takane et al. (1977) and Ramsay (1977).

Estimation of Parameters

We now briefly discuss the procedures by which the parameters of the model,
namely, the n X r elements of the X-matrix and the m X r elements of the matrix
W = (w;,) are estimated from dissimilarity judgments on all possible n (n —1) /2 distinct

pairs of stimuli by m individuals.

The first step in the method of estimation is to convert the dissimilarities into
distance estimates. In view of the linearity assumptions made above, this is done using
the standard procedure described in Torgerson (1958). This method entails estimation
of an additive constant which converts the comparative distances (i.e., the original
dissimilarity judgments) into absolute distances between pairs of stimuli. The method
estimates the smallest value of the constant which guarantees satisfaction of the triangle

inequality for all triples of points. This can easily be shown to be
c,‘,';z,, = m,zcilx [6,(') - 6}5‘) - 6;:}] This constant guarantees that the triangle inequality
j

will be satisfied for all triples of points, with the inequality being a precise equality for at
least one triple (the one for which the expression above attains its maximum). It is as
though these three points lie precisely on a straight line in the multidimensional space.
This is why this scheme is sometimes called the “one-dimensional subspace” method of
estimating the additive constant. Any constant larger than c,(,‘;{,, would certainly suffice
also, but c,‘,ﬂn is, as its name implies, the smallest constant guaranteeing this. While
there are a number of other schemes of estimating the so-called additive constant (see
Torgerson 1958), this one is one of the simplest (both conceptually and numerically) and
most assumption-free. Having estimated ¢® in this way, distance estimates, 3;}2, are

calculated as d;}c) =6 +c@.

The distance estimates are then converted for each subject to scalar products between

the points represented as vectors issuing from an origin at the centroid of all the points.

Arn12
This is done by double centering the matrix whose entries are —1/2 [df}() . The

resulting numbers, b;f‘), can be regarded as the estimated scalar products between the

@) @) @)

vectors y ) = (pY, yj(‘f »---»Y57), and y£?. This step is the same as in the “metric”
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phase of the TORSCA (Young, 1968) algorithm, and in generating the “TORSCA”
starting configuration in KYST, KYST2 and KYST-2A (Kruskal, Young and Seery,
1973).

The derivation below shows that these numbers are, in fact, estimated scalar
products. (Readers not interested in this derivation are advised to skip to the section
entitled “Scalar Product Form of INDSCAL Model.”)

Derivation of Scalar Products from Distances
Given exact squared Euclidean distances

,
d% = 3 O —xp)? (ILA.4)
-1

assume:

n
> xp=0 forallt=1,2,...,r (ILA.5)
j=1

(We may do this without loss of generality, since the origin of the x space is arbitrary,

and this just fixes it at the centroid of all n points.) Expanding (I1.A.4),

d}k - 2(x}, - 2xﬂxk’ +xi,) (I1.A.6)
t
= x}l =23 XXy t+ Exlzct
t t t

=é’}+£i—2bjk

where
o} =3 x% (ILA.7)
1
and
bjx = 3 xji Xy, (the scalar product) (IL.A.8)
Because of I1.A.5
b.y="5bj.=b..=0 (I1.A.9)

12 1 1
(e.g., b.k - ; Ebjk - —szj,xk, = —2 xk,zxj, = O).
j nje "
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From (II.A.6) and (II.A.9) we have

dy = 0% + ¢} (I1.A.10)
d}. =} + & (ILA.11)
d2 =202 (I1.A.12)
where
2 _ 1 & 2
0=—3 ¢ (II.A.13)

Then (IL.A.6), (IL.A.10), (IL.A.11) and (IL.A.12) together imply that
dy —dy —d}. +d = —2by (ILA.14)

Multiplying both sides by —1/2 gives the desired result.

Note that we didn’t have to know anything about geometry to derive this result. The

law of cosines, for example, was never mentioned.

Note also that this is an exact result for deriving exact scalar products (about an
origin at the centroid) from exact Euclidean distances. In practice, of course, we derive

estimated scalar products (b’s) from estimated distances (d's).
Scalar Product Form of INDSCAL Model

A scalar product form of the INDSCAL model can be devised by substituting
vectors yj(-i) and y;,") in the “private space” for individual i into the definition of the
scalar product, as follows:

bR = 3 39 vl = 3 wixjixia (ILA.15)

t=1 t=1

Thus, the three-way matrix of individuals by stimulus pairs, where general entries are
the values of bf‘k) derived from the dissimilarity data, can, if the INDSCAL model holds,
be decomposed into the trilinear form in equation (IL.A.15). The problem now is one of
estimating values of the X-matrix and the W-matrix where elements enter into the
right-hand side of equation (I.A.15). This estimation (in a least squares sense) can be
achieved by a procedure called “canonical decomposition of N-way tables” (now usually
abbreviated CANDECOMP). In this particular case, N = 3, since there are three ways,
two for stimuli and one for individuals. The CANDECOMP procedure, for the general
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N-way case (N > 3) is described in detail in Carroll and Chang (1970).

CANDECOMP is actually designed to analyze data in terms of a more general
trilinear model (or multilinear, in the N-way case for N > 3) which (in the 3-way case)
is of the form:

ik = 3 aybjci (ILA.16)

t=1

where z;;; represents data, the a’s, b’s and c’s are parameters to be estimated and “=”
here implies least squares estimation. The CANDECOMP procedure provides least
squares estimates of these parameters (the a’s, b’s and ¢’s) via what is now called an
Alternating Least Squares procedure but was originally called a NILES (Nonlinear
Iterative Least Squares) or NIPALS (Nonlinear [terative PArtial Least Squares)
procedure (see Carroll and Chang, 1970).

The INDSCAL special case is obtained by making the following identifications:
Zijk = b};c)
Ay =Wy (I1.A.17)
bje = cjr=xj

However, when CANDECOMP is applied to a 3-way table of scalar products (which
are symmetric in the j,k indices), no special constraint is imposed to make “matrix 2”
[B = (bj)] equal to “matrix 3” [C = (¢f,)]. This will be true (up to the class of
admissible transformations, namely that of a “strain,” or linear transformation given by
a diagonal matrix) when the iterative process has converged. That it be exactly true is
guaranteed by setting them equal in a final stage of the program. For a general
discussion of CANDECOMP, including theory and applications of its higher (than
three) way generalizations, and an extension called CANDELINC enabling linear
constraints on parameters, see Carroll and Pruzansky (1984). Carroll, Pruzansky and
Kruskal (1980) provide a general discussion of CANDELINC.

Normalization of Data and Solution

In the algorithm for the INDIFF part of the program (the part that does the actual
INDSCAL analysis using CANDECOMP as a subroutine), the original data and final

solutions are normalized. In the case of the original data, the scalar product matrices
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are normalized such that the sum of squares of the scalar product matrix is set equal to
unity for each subject (or “data source”). In the case of INDSCAL analysis, the final
stimulus space is normalized such that the variance of projections of stimuli on the
coordinate axes is equal to unity and the centroid is at the origin. The appropriate

companion normalization is applied to the subject-matrix.

The combination of these two different procedures has one interesting outcome: the
square of the Euclidean distance of a subject’s point from the origin can be
(approximately) interpreted as the (proportion of) total variance accounted for in the
scalar products data for that subject. If the dimensions of the stimulus space are
orthogonal, then the square of the Euclidean distance of the subject’s point will exactly
equal the proportion of variance accounted for. No normalization of the data is done for
the CANDECOMP option; there is, however, a normalization of the solution.
Specifically, all matrices but the first are normalized to have unit sums of squares for
each dimension. All the differences in sums of squares are then absorbed in the final
matrix. When using CANDECOMP the origins of the various spaces are not

constrained at all.
Input Parameters
The various input parameters of the INDSCAL program are enumerated below:

Data Input Options — these are controlled by a parameter called IRDATA. Eight
alternatives are provided in the program, corresponding to integer values of 0 to 7 for
IRDATA.

IRDATA  Input Option

Rectangular matrices (this is the CANDECOMP option)
Lower half of similarities matrix without diagonal

Lower half of dissimilarities matrix without diagonal
Lower half of Euclidean distance matrix without diagonal
Lower half of correlation matrix without diagonal

Lower half of covariance matrix with diagonal

Full symmetric matrix of similarities

Full symmetric matrix of dissimilarities

N Wnm AW -0

In cases 1-5 the matrix can also be read in as an ordered vector.
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The user can obtain either a simultaneous or a successive r-dimensional solution. In
the simultaneous case all dimensions in the matrices are computed at one time, whereas
in the successive case, as the name indicates, only one dimension is estimated at a time.
In general, unless there is good reason to do otherwise, a “simultaneous” solution should
be obtained. The user can control stringency of convergence of the iterative process by
two parameters, namely, maximum number of iterations and another specifying a

convergence criterion based on changes in the fit measure from iteration to iteration.

An option exists for not setting matrix 2 equal to matrix 3. In the general
CANDECOMP analysis this option must always be chosen since, in general, the input
matrices are different. In the case of INDSCAL analysis, however, matrix 2 is set equal
to matrix 3 since, by symmetry, these input matrices should be equal. When done in the
latter fashion, we refer to the CANDECOMP analysis (say of the derived scalar
products) as symmetric CANDECOMP.

The INDSCAL program can also be used in solving for the weights assigned by
subjects to a prespecified configuration. The program also has the ability to use a
prespecified configuration as a rational start even in the case in which all matrices are to

be solved for.

More complete details of how to use the INDSCAL program can be found in Chang
and Carroll (1969).

SINDSCAL

SINDSCAL (Pruzansky, 1975) is another computer program that implements the
procedure of Carroll and Chang (1970) for fitting the INDSCAL individual differences
model for multidimensional scaling. It is a modification of the more general INDSCAL
program of Chang and Carroll (1969) described above. (See also INDSCALS described
in Chang (1971).) INDSCAL was written to allow as input either rectangular or
symmetric matrices of proximities. Since almost all of the applications of INDSCAL to
date have used similarities or dissimilarities, Euclidean distances, correlations or
covariances, SINDSCAL was written to handle only these symmetric data. It is also

limited to the three-way case.
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The method of analysis used in SINDSCAL is essentially the same as the method of
Carroll and Chang (1970) used in INDSCALS (Chang 1971). Therefore, the final
stimulus and weights configurations should be identical (except for possible differences
due to different convergence criteria, starting configurations, or other numerical details).
The principal differences between SINDSCAL, INDSCALS or INDSCAL used with

three-way “INDIFF” options lie in the computational procedure and user options.
Modifications in the internal program structure have yielded:

(1) a considerable reduction in memory requirements achieved by storing the input
data in symmetric storage mode. (An n X n stimulus matrix in symmetric storage

mode is reduced to a vector of length n(n +1)/2.)

(2)  considerable simplification of the computational algorithm in the main

computation subroutine, called CANDE.
(3)  some reduction in computation at various stages in the procedure.

These changes along with the use of the global optimization feature of the Fortran-
IV compiler result in significant savings in computer charges. Additional savings may
result because SINDSCAL uses dynamic storage allocation. Small data sets may be run

with proportionately smaller computer memory and, therefore, some savings in cost.
Some user-oriented changes include:

(1) a reduction in the number of input parameters required,

(2)  additional plotting and printing options,

(3)  provision for a user-supplied subroutine to preprocess the input data,

(4)  sufficient printout throughout the computation so that most of the information

from a run can be recovered if the program gets cut before completion,

(5)  no limitation on the number or size of the input matrices due to the use of

dynamic storage allocation,

(6)  access to the program in both batch and time-sharing modes.
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Since most features of SINDSCAL have already been described in the discussion of
INDSCAL above, we highlight only those features in which it is most distinct from that

earlier program/procedure.
Input Data Type

The input to SINDSCAL consists of many different matrices, corresponding to
different individuals or other “data sources”, but all pertaining to the same stimuli or
other “objects”. Thus SINDSCAL deals only with two-mode but three-way data! Since
each matrix is assumed, in SINDSCAL, to be symmetric, only a half matrix need be

provided (and stored) in each case. These matrices may be:

(1)  similarities, dissimilarities, Euclidean distances or correlations, represented as

lower-half matrices without diagonals;

(2)  covariances or scalar product matrices in the form of lower-half matrices with

diagonals;

(3)  full symmetric matrices of similarities or dissimilarities. The program ignores the
values on the diagonal. In this case, although the upper half of each matrix is
(redundantly) provided as input, only a half matrix is stored, thus allowing the
greater efficiency in memory storage and computation which is the principal
hallmark of SINDSCAL.

Maximum Number of Iterations

SINDSCAL uses the same basic iterative procedure as is used in INDSCAL to
estimate parameters. The program ends when convergence is achieved, or the maximum
number of iterations has been reached; the reason for ending the analysis is printed on
the standard output. The convergence criterion is based on the difference between the fit
on the current iteration and the previous iteration. When this difference is less than a
certain value, the process is considered to have converged. An important advantage of
the INDSCAL model, as already discussed, is that the orientation of coordinate axes is
uniquely determined. However, the solution must have reached a global minimum for
the axes to be in the correct orientation. Since it is relatively inexpensive to run
SINDSCAL (as compared to running the INDSCAL program using the “INDIFF”

options), it is recommended that, if possible, a very large number, such as 200, be used
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for this option in order to prevent the program from stopping before convergence has

been reached.
Plot Options

The program generates plots of all possible planes (defined by pairs of SINDSCAL
coordinates) of the final group stimulus space and weights space. The points may be
numbered or the user may supply either the stimulus or subject labels or both sets of

labels. It is also possible to suppress all plotting.
Relaxation Factor

A “relaxation” factor was introduced in the parameter estimation procedure
(subroutine CANDE). This technique was originally described by Harshman (1970).
Its effect is to move the parameters being estimated in a direction beyond the value
which is optimum for the current iteration and, hopefully, towards the final overall
optimum value. In practice, the number of iterations generally is reduced by at least
one-half, and the final solutions are identical to solutions obtained without the relaxation

factor.

For a description of preprocessing and normalization options available for certain
data types, output options, and other details of SINDSCAL, see Pruzansky (1975), or
Arabie, Carroll and DeSarbo (in press).

IL.LB IDIOSCAL

IDIOSCAL (Individual Differences In Orientation SCALing), is a generalization of
INDSCAL allowing IDIOsyncratic reference systems as well as an analytic
approximation to INDSCAL. Equations originally formulated in the 1970 Carroll-
Chang Psychometrika paper describing INDSCAL and CANDECOMP (the method of
canonical decomposition of N-way tables on which INDSCAL is based) have been
implemented in a computer program called IDIOSCAL. This amounts to a
generalization of INDSCAL in which each individual (or “data source”) is allowed an
idiosyncratic orthogonal rotation of the coordinate system prior to differential weighting
of this (rotated) reference system. A classical example of (conceptual) rotation of such
a coordinate system is provided by the debate in the early part of this century among

educational psychologists about the factors or dimensions underlying intelligence. (To
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simplify matters, let us suppose for now that all agreed that there were exactly two
dimensions of intelligence.) One school proposed a first (primary) dimension (often
called “G”) corresponding to “General Intelligence”, with a second (and secondary)
dimension contrasting verbal with quantitative ability. A second school countered that —
quite to the contrary (they felt) — there were two independent, sovereign and equally
theoretically valid dimensions — one a dimension of verbal and a second of quantitative
intelligence! From the perspective of our modern sophisticated multivariate point of
view, replete with manifold degrees of rotational freedom, we see quite clearly that these
two schools were arguing, quite vociferously as it happens, about nothing more than
different rotations of coordinate systems describing the same space of intellectual
“objects” (e.g., specific “abilities” measured by equally specific tests; or, in a dual
manner, specific individuals exemplifying different degrees of these abilities, as measured
by their respective “factor scores). To derive the IDIOSCAL model as a description of
the perceptual structure of intelligence for these different educational psychologists, we
need only add the assumption that, within each of these “schools” different adherents
attached different saliences, or “perceptual importances”, to the two dimensions
characterizing the particular “school” to which that particular scholar subscribed. In
practice, the IDIOSCAL model means that each individual is allowed a generalized
Euclidean metric defined by a positive definite quadratic form. Another (seemingly
different, but mathematically equivalent) interpretation of this quadratic form is possible
in terms of different “subjective intercorrelations” of the same set of coordinate axes.

This latter interpretation is favored by Tucker, Harshman and others.

The model includes as special cases Tucker’s (1972) Three-Mode Scaling, based on
three-mode factor analysis, the PARAFAC-2 model and method of R. Harshman
(1972), and a generalization of INDSCAL proposed by Sands and Young (1980). The
method of solution is closely related to one proposed by P. Schénemann (1972), based on
earlier work of Meredith’s (1964).

Inspired by Schonemann’s (1972) “Analytic Solution” for the INDSCAL model
(which provides an exact solution in the errorless case, but has uncertain properties with
errorful data), we have incorporated a second phase that allows an analytic
approximation to INDSCAL based on a modification of Schonemann’s procedure.

Basically, it differs in that, rather than choosing some arbitrary particular subject to
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define a rotation of axes, we define a kind of composite (different from the arithmetic
average) of the actual subjects, which is used to determine a more nearly optimal

orientation. This seems to work well in cases of both real and artificial (errorful) data.

A third “phase” of the IDIOSCAL program assumes no individual differences
whatever, forcing all individuals to have the same axis orientation and weights (except
for a possible overall scale factor). This is tantamount to a scaling of the averaged data

(but averaged in the more appropriate way outlined by Horan, 1969).

Thus the three phases of IDIOSCAL are very closely analogous to the first three
phases of PREFMAP (for PREFerence MAPping of stimulus spaces) which will be
discussed at a later point in this paper. To carry this analogy further, approximate F
tests have been incorporated, as in PREFMAP, which may be useful for distinguishing

between models, and may even help in judging dimensionality.

We now describe, in fairly cursory mathematical notation, the hierarchy of models
(and related “phases” of analysis) involved in IDIOSCAL. To those familiar with
PREFMAP (See IIL.B for a description) this hierarchy can be seen to be closely
analogous to the hierarchy of decreasingly general “unfolding” models in that approach

to external unfolding analysis.

In each case we begin description of the relevant model, assuming we have already
(via assumption and/or appropriate preprocessing) obtained data values we believe to be

approximate squared Euclidean distances between stimuli (objects), j and k, for each
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subject (data source) i, which we shall call [65}3 , and state the model assumption for

these values.

“Phase I"” of IDIOSCAL — The general model.
[aj-k]z = [d}-;?]z = 6P -y P -y, (ILB.1)
where
v =x;T;, (ILB.2)
so that

(4%)" = 6y =Xy —x0)" = 6 ~x)R,(x;=x0)',  (LBY)



where

> (o) = o). (ILB.4)

Defining [552]2 =
[51(2]2 = [‘1}' ]2 = ,L— > [d}i’]z = (x;—xR.(x;—x)',  (LB.S)

with

SR, (ILB.6)

-
—

Without loss of generality, we may assume
R =1, (IL.B.7)

so that

[552]2 = [d,‘-;)]z = (x;—x) (x; — x)". (ILB.8)

2
That is [65,3] is approximately an ordinary squared Euclidean distance defined in

terms of coordinates x. This fact allows us to obtain an approximate solution for
X = (x;), the matrix of x coordinates, using the “classical” metric MDS approach (see

ILA for details). Writing Eq. (I.B.3) in summational notation, we have

[éff?] (4%)" - 2 o= xa)r Gejer = xe) (IL.B.9)
rr+1) 2 N
= > & Agoan .
(")
where
iy = Q=8,) rP (11.B.10)
and
Aoy ey = Ocje = xpe) (g = xpe") (ILB.11)

(while 9, is the “Kronecker delta;” 9, = 1 if t = ¢', 0 otherwise). Let
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= (1o, o, oty ). (18,12

So r*; is a row vector of [';1] components and
A= Qgow)), (IL.B.13)
an [;] X ';l] matrix, while

al2 = [[dgg]z, [df?]z, [dgg]z,..., [d{f,)_l),,]z]'. (IL.B.14)

So, d!?! is a column vector of [;] components. Eq. (I1.B.9) can be written in matrix
form as:
d? = Ar¥, (ILB.15)
where dP] and A are known, and r¥*; is to be solved for. The least squares solution is
i =d? a@a). (ILB.16)

Having solved for r*; the entries can be “unpacked” in the appropriate way into R; (a

square symmetric matrix). R; can then be factored into T;T;. One way is to factor

~

R; = U;B{Uj, (ILB.17)
with U; orthogonal and 87 diagonal, and define
’ii =U;B;. (I1.B.18)

U; can be interpreted as an orthogonal rotation to a new coordinate system, and B8; as

weights applied to that new coordinate system.

[Tucker (1972), Harshman (1972) and others prefer to factor ﬁ,— into

R, = W2C,W)”2 (IL.B.19)

with W)/ diagonal and C; defined to have unit diagonals. C; is then interpreted as a
matrix of cosines of angles between dimensions, and W}”2 as weights applied to these
oblique dimensions. Harshman’s PARAFAC-2 assumes C is constant over subjects, but
W; differs, thereby guaranteeing a unique orientation of coordinate axes. Tucker’s

Three-Mode Scaling, however, has no such uniqueness of orientation property.]
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Phase II of IDIOSCAL: Modification of Schonemann’s ‘“Analytic Solution” to
Determine Analytic Approximation to INDSCAL. If the INDSCAL model holds
(exactly) then

R, = TW,T', (I1.B.20)

for some T (in general, nonorthogonal), and with W; diagonal. The essence of
Schonemann’s (1972) analytic solution seems to be that, if Eq. (I1.B.20) holds for any
two i (say i = 1 and 2) with W; nondegenerate (that is, all diagonals nonzero) for both,
we can solve exactly for T (that is guaranteed at least to “fit” those two). This is
because two square symmetric matrices are always simultaneously diagonalizable by a
matrix T, which is not, however, orthogonal (in general). Since clearly T is only defined
up to post-multiplication by a diagonal, we may, without loss of generality, assume T to
be so defined that

W, =1. (IL.B.21)
Thus
R, =TT'. (IL.B.22)
T can be decomposed as
T =UgV', (IL.B.23)

with U, V orthogonal and 8 diagonal, so that

R, = UB?U'. (11.B.24)

Thus, factoring R, yields U and 82 (and thus 8). We may then define
R*, = 871U'R,UB™! = 8~ 1U'TW,T'UB™! (I1.B.25)

= g~ 1U'UBVW,V'BU'UB™! = VYW, V'

(since U'U, and thus B~'U' VB, =1I). Thus, factoring R*, yields V (and, incidentally,
W), although that is of no real interest). Having thus obtained U, 8, and V, they may
be put together, according to Eq. (I.B.23), to define T (which may be further post-
multiplied by a diagonal matrix, if desired, for normalization purposes). Schonemann
chooses the two subjects, in effect, to be the “average subject” whose R matrix is the

average of those for the real subjects, i.e.,



97

R = R;, (I1.B.26)

L
m

~M3

plus one of the “real” subjects (apparently arbitrarily chosen). Using the average
subject is sensible, from a statistical point of view, and is also correct mathematically
since it is easy to show that, if Eq. (I1.B.20) holds for all i, then

R . =TW.T, (IL.B.27)

showing that Eq. (I.B.20) also holds for this average subject, with W, replacing W;.
The weakness of Schonemann’s (1972) solution from a statistical point of view is the
choice of the second subject as some arbitrary real subject. Bad choice of this second
subject could result in a very bad solution. Our modification of Schonemann’s procedure
rests essentially on a more representative choice of the two subjects (or pseudosubjects,

since both are composites of the “real” ones).

We have pursued two approaches to this. The first is to use a kind of crude
clustering procedure to group the subjects into two groups of about equal size so that the
profiles in the two groups are maximally different. “Average subjects” are then defined
for each of the two groups, and those two group averages are used as the basis for

finding the appropriate T.

In the second approach the first subject is, as in Schonemann’s approach, the
“average subject,” as defined in (II.B.26). Using the U and 8 found for that subject, we
define the matrices R*; as in (I1.B.25). Since R*; = VW,V', (with V orthogonal and W;
diagonal), it follows that

(R*)? = R*R*} = VW?V', (I1.B.28)
so that
< )}
Q=3I kR¥)? =vW2V', (I1.B.29)
i
where
m
WP = 3 k,w? (I1.B.30)
i

(the k;’s being weights for the different matrices).
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Q, then, defines the second “pseudosubject”. Note that Q is of the same general
form as R*; so that factoring it should yield V exactly (in the exact case) or
approximately (in the more usual case of noisy data). Q, however, provides a composite

of all the subjects, but a different one than provided by R.

We have tried two different ways of defining Q, differing in definition of the weights.
One is essentially the unweighted case, in which k; = 1/m for all i. In the other case, k;

was defined as:

r

tr (R*,’)z ’

where r; is the correlation between d2’s and predicted d2’s in “Phase I” (in which the
general IDIOSCAL model of Eq. (IL.B.3) is fit).

Finding the weights for the INDSCAL model. Once the T yielding the correct
orientation of axes is found (or a hopefully reasonable approximation thereto, as
described above), we may find the INDSCAL weights as outlined below. (The x’s below
have presumably been defined by use of this T and so correspond to the “correct”
dimensions). Recalling the INDSCAL model:

12 N2
9)" = [4®)" = = wiGje—xu)? (I1.B.32)
t
in matrix form, this can be written as:
812 = gl = A*xw;, (11.B.33)

where dP] is defined as before (in Eq. I1.B.14), 652] is the analogous column vector with

[6}}2]2 replacing [d}i)]z, while W; is the row vector (of r components) with general
entry w;,, and A* is the [g] by r matrix
A* = (A* o)) , (I1.B.34)
with
A* () = (xjy = xp)?. (I1.B.35)
Much as before, the least squares solution for W; is:
W, = 32 Ax(axar)! (I.B.36)

which immediately yields estimates of the weights.
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Estimation with and without constant term. The estimation schemes above have
involved no additive constant terms for the d2’s. It is conceivable, however, that better
fits could be obtained by adding such constant terms. This means that Eq. (ILB.3) is
modified to become:

[6§§3]2 = (x; — xR (x; —xp)" + ¢; (ILB.37)

while Eq. (I1.B.32) becomes:

22
[5}5()] = 3w xj, —-xp)? + ¢ (IL.B.38)
t

It is straightforward to alter the regression schemes for estimating the R;’s or the
w;,’s, as the case may be, to incorporate such a constant. This is done by simply adding
an extra independent pseudovariable (whose values are all 1) to the regression scheme.
This will, of course, change the estimates of the R’s and w’s to some degree. Inclusion of
this constant has advantages for interpretation of the F ratios to be described later. As
will be seen subsequently, it also seems to improve the fit in Phase II (corresponding to
the INDSCAL approximation).

Phase III of IDIOSCAL. Phase III corresponds to a model assuming essentially no
individual differences, so that all subjects are assumed to be equivalent to the average
subject. An overall scale factor is allowed for each subject, however, and (possibly) an

additive constant.

Thus the models are either

[5}2’]2 = g, —x) (X —xz)", (11.B.39)
or

)2
[6}5)] = a;(xj—x) (x; —x1)" + ¢, (11.B.40)
where the X matrix is the one derived for the average subject.

Approximate F tests for comparing the three phases. Since the model in the three
phases are fit by using least-squares linear regressions (with appropriately defined
pseudo-variables), it is possible to define approximate F tests for comparing models in
the three phases (as well as for assessing goodness of fit in each independently). This is

very closely analogous to similar approximate F tests in the PREFMAP, PREFMAP-2
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and PREFMAP-3 procedures, for those familiar with this (Sec. IIL.B.). This is most
appropriate when the constant term has been included, since otherwise the residual mean
square is not an unbiased estimate of error variance. The approximate F’s and their

degrees of freedom are defined below. (See Table 2).

The “F’s” must, of course, be taken with a large grain of salt since, first of all the
required normality assumptions cannot be taken seriously, and, secondly, the
configurations (which define the “independent” pseudovariables) have been fitted to the
data. Since, however, these F’s are computed for each subject separately, and since each
subject plays only a small part in determining the configuration in each case, this second
objection can presumably be ignored as the number of subjects grows “large”. Possibly
some adjustment of degrees of freedom would correct for it when the number of subjects
is small. Presumably a “jackknife” procedure could be used, even for small numbers of
subjects, but this would be expensive computationally. Analogous approximate F ratios
(called Pseudo-F’s) could be calculated to test “significance” of added dimensions in
INDSCAL or IDIOSCAL. This could conceivably lead to a way of objectively assessing
dimensionality in individual differences scaling. (A somewhat related approach based on
a “leave one out” procedure has recently been investigated by Weinberg and Carroll
1986.)

II.C Application of Three-Way MDS to Some Ecological Data on Seaworms

We now consider applications of Three-Way MDS methods to ecological data,
illustrating this with a specific application to the data in the article by Fresi et al.
(1983). (Some multivariate analyses are reported by Fresi et al. in that paper.) The
Fresi et al. data involve frequencies of observation of 88 varieties of seaworms in samples
taken from five sites in the harbor of Ischia in the Bay of Naples, over four time periods
(February 1975, July 1975, February 1976 and July 1976). There are many ways in
which these three-way (or even “higher way”) methods could be applied to these data.
The data array, which is presented in the Fresi et al. paper as a rectangular data table,
is more appropriately formulated as a  general three-way array
(seaworms X sites X time periods), or even possibly as a four-way array
(seaworms X sites X months X years). A direct analysis, for example by the general
three-way CANDECOMP procedure (see equation I1.A.16 and related discussion), or
the closely related PARAFAC procedure proposed by Harshman (1970) would be
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Table 2. Pseudo-F’s for assessing and comparing models fitted in the IDIOSCAL

procedure.
Effect Pseudo-F df, df,
{ d \
Phase I Td;_z- r}/(1=r}) rr+1) 2 [g]—r(r+1)/2—1
1
)
Phase II %f— 2 1(1-r}) r [g] -r—1
(af,)
Phase 11 i Pl =r3y) 1 [g] -2
Ph |2, 2 n
ase I-Phase II o rf=r{)I0=r7)  r(G=DN2 5|7 (r+1)/2—-1
l /
{ d W
Phase II-Phase III Lk rt=rfp/1Q-rp) r-1 ["] -r—1
(4f1 ) 2
Ph )., , 2 n
ase I-Phase 111 e ri—rt) 1Q=rp)  rG+1)2-1  |5|=r(+1)/2-1
1

NOTE: r;, ri; and ryy represent correlations (between d? and 22) calculated by
IDIOSCAL for a particular individual in phases I, II and I1I, respectively.

possible. Since CANDECOMP generalizes straightforwardly to the 4 or higher way
case, an analysis of the 4-way table mentioned could be subjected to 4-way
CANDECOMP analysis (see Carroll and Pruzansky 1984). A number of questions
arise as to how best to normalize the data in this case, however; furthermore it is not at
all clear that the rather strong and specific model(s) assumed in this
CANDECOMP/PARAFAC type of analysis is (are) appropriate to these data. On the
other hand, the general IDIOSCAL model/method seemed foo general. For these and
other reasons it was decided to pursue an exploratory INDSCAL analysis, using the
Pruzansky (1975) SINDSCAL program, in a way to be described below. (This was
based to some degree on the general approach used by Wish in his analysis of a large
battery of data on perception and subjective ratings of nations, reported in Wish and
Carroll 1974.) The Fresi et al. data were frequencies, as indicated earlier. The

marginal frequencies of the 88 species of seaworms over the 20 sites X time periods
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ranged from 1 (for over a dozen of the species) to well over a thousand. Because of this,
our first impulse was to normalize these data by converting to relative frequencies so that
the normalized data for all species would sum to one. While this seemed to us like a
wise first step in normalizing these data, it did not lead to readily interpretable results in
any of the further analyses we attempted. We therefore abandoned this normalization of
the data, and attempted instead an alternate transformation of these data, suggested by
Pierre Legendre, which should have the effect of somewhat more nearly equalizing the
total weight of resulting data values for the various species, as well as reducing the

skewness of these distributions. This transformation was of the form:
Zjimp = log (fjlmp +1) arc.n

where fjim, is the frequency of seaworm species j at site / for month m in year p, and
Zjimp 18 the corresponding transformed value. Data transformations are discussed in
some detail in section 2 of Gower’s paper in this volume. After this initial
transformation, we then further normalized the data to have zero mean and unit
variance within each site X month X year, so that the final “normalized” data were of the

form

z; Z]
Zitmp = Zimp_ (ILC.2)

Yijimp = Stmp

where zj,,, is the mean and sy, is the standard deviation of the z’s over all 88 species

for site / on month m in year p.

Given this normalized (four-way) data array Y = (yj,,), we then proceeded to

compute a number of derived dissimilarity matrices as follows.
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Number of matrices

1 (Overall) D;:  dY = 333 Wjimp = diimp)?
I m p
5 (Site 1) Dgy': d;'p = > Wirmp — dit'mp)
m y
'=12,...,9
) (Month m')  Dygp,: d}'fc"‘) = >3 @iy —dklm'p)2
I
(m'=F,J) !
2 (Year p') Dy, dﬂ') = > @jimp: _dklmp')2
I
(' =75,76) "
4

(t' = F75,J75,F16,J76) (Timet)  Dp: d% = _\/z(y,-,,,,,,,,,,—y,,,,,,,.p,.)2
/

(where m,’ and p,’ are the month and year, respectively, associated with time period ¢').

In the above, the sites are encoded as simply S1 through S5, the months as F (for
February) and J (for July) the years as 75 (for 1975) and 76 (for 1976) and the 4
“times” as corresponding combinations of the month and year codes. Obviously, these
various matrices are far from independent of one another. (In fact, just to take one
example, the square of the overall dissimilarity for j and k is just the sum of the squares
of the five site dissimilarities (or of the four “time” dissimilarities). However, as a “first
start” on an exploratory data analysis for these data, we used the resulting 14 matrices
[1 overall + 5 sites + 2 months + 2 years + 4 times (months X years)] as input to an
INDSCAL analysis, using the SINDSCAL program. In this case the seaworm species
comprised the “stimuli,” and the 14 derived dissimilarity measures defined the data
sources. Since each of these dissimilarity matrices was, in fact, defined as a Euclidean
distance matrix, we used the option in SINDSCAL specifying that the data were
Euclidean distances. Thus the total input to SINDSCAL comprised 14 matrices, each a
symmetric half matrix of Euclidean distances among the 88 worms (so each of the 14
matrices had 88-87/2 = 3828 entries, for a total of 14-3828 = 53592 data values).
Needless to say, this was a rather large data array, at least for so computationally
intensive a procedure as SINDSCAL! Analyses were done in 1 through 6 dimensions.

The fit measures (VAF in the derived scalar products) are given in Table 3. Based on
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Table 3. Fit measures (Variance accounted  Table 4. Variance accounted for in dimensions from
for in derived scalar products) for SINDS-  KYST2-A and MDPREF analyses when mapped into four
CAL solutions in 6 down to 1 dimension(s) dimensional SINDSCAL solution.

for 14 dissimilarity matrices derived from

Fresi et al. data. Solution/Dimension R? (VAF) by four
Code SINDSCAL dimensions
k4-1 .988
Dimensionality | Total Variance k4-2 990
k4-3 .809
1 .594 k4-4 .603
2 178 k3-1 985
3 .833 k3-2 985
4 872 k3-3 718
5 .900 k2-1 976
6 922 k2-2 972
k1-1 .840
mdl 1.000
md2 .999
md3 941
md4 .880

the pattern of these fit measures, and on inspection of the results, it was decided to
report the 4-dimensional INDSCAL solution (although it was somewhat debatable

whether the 4 or the 5-dimensional solution should be chosen).

Interpreting these results, since the present author knowns little of the biology of the
88 species of seaworms, we focused on the pattern of the 14 different data sources in the
“subject (or source) space.” The weights for the 14 data sources on the four dimensions
are displayed graphically in Figures 4 and 5. (As can be seen in the Figures, some of
the source weights are slightly negative, a condition which should not occur in
INDSCAL, since all subject or source weights should be zero or positive. These are only
very slightly negative, however, and so can probably be plausibly interpreted as
essentially zero weights, which have become slightly negative due to error in the data.

We will henceforth interpret these, in fact, as though they are zero.)

Figure 4 shows the dimension one vs. two plane of the source space. Dimension one
has very high weight for sites 4 and 5, and for the 1975 time periods. Since only sites 4
and 5 have very large weights on this dimension and the 1975 time periods have large

weights on it, we may label dimension one (sites 4 and 5; 1975). The corresponding
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Figure 4. Dimension one-two plane of source space for SINDSCAL

solution for Fresi et al. data.
variable seems to be one that was particularly prevalent in sites 4 and S5, somewhat in
sites 3, and not at all in sites 1 and 2, and quite salient in 1975, but very weakly present
in 1976. Dimension two, on the other hand, seems to be very strongly weighted in site 3,

very slightly in sites 4 and 5, but not at all in sites 1 or 2.

Whatever dimension two taps was especially prevalent in 1976. Thus dimension two
will be labeled (site 3; 1976). One interesting point in these results is that sites 4 and 5
seem to occupy essentially the same location in all four dimensions. Thus these two sites

were, insofar as these analyses are concerned, virtually indistinguishable.

We now look at the plane defined by the remaining 2 dimensions, dimensions 3 and
4, in Figure 5. What “jumps out” at us in this plane is that site 2 has high weight on
dimension 3 and virtually zero weight on dimension 4, while site 1 reverses this pattern,
having almost identically zero weight on dimension three but a very large weight on
dimension four. Sites 3, 4 and 5 have essentially zero weights on both these dimensions,
while the matrices relating to the various time periods (as well as the “all” matrix

corresponding to overall dissimilarities over all sites X time periods) generally have
moderate weights on both. Thus dimension three seems to correspond to whatever
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Figure 5. Dimension three-four plane of source space for
SINDSCAL solution for Fresi et al. data.

distinguishes site 2 from the others, while dimension four corresponds to the variable

most prevalent in site 1.

While they must be taken with a fairly large “grain of salt,” distances among the
source points have a certain interpretation in these INDSCAL subject (source) space
plots. Without actually doing the computation we can see from inspection of these two
planes that sites 4 and 5 are exceedingly close, and in turn are relatively closer to site 3
than to either sites 1 or 2. Conversely, sites 1 and 2 are by far closer to one another

than to any of the other three sites.

The variables corresponding to these dimensions are defined in a sense by the
coordinates of the points corresponding to the species of seaworms on these dimensions.
These can be seen graphically by inspection of Figures 6 and 7, which show these 88
points plotted also in the plane of dimension one versus two and that of three versus
four. It should be kept in mind that, despite the “z = log (f+1)” transformation that
was used, the relative size of the distribution of variables for these species were quite
different, and so frequency effects are clearly affecting these results. Thus, the seaworm
species “farthest out” on these dimensions tend to be those whose overall frequencies

were greatest. Table 2 gives the actual species of seaworm corresponding to the 88
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dim 2

dim 1

Figure 6. Dimension one-two plane of stimulus (species) space for
SINDSCAL solution for Fresi er al. data. Vectors are from
mapping of KYST and MDPREF dimensions into SINDSCAL
space, using PREFMAP.

points shown in these figures, for the benefit of those knowledgeable about these species.
(It should be commented that we have reflected some of these dimensions so that the

positive values always tend to imply greater frequency.)

In Figures 6 and 7 vectors are shown indicating the direction best corresponding to
the dimensions derived from the one through four dimensional KYST2-A solutions
shown in Figures 2 and 3. Since there were a total of ten such dimensions (4+3+2+1
for the four through one dimensional solutions, respectively) there are a total of ten
vectors indicated corresponding to these. These are encoded “kr-t” where “kr” stands
for the KYST r-dimensional solution, while ¢ indicates the " dimension in that solution.
Since, in the case of KYST, the solutions for different dimensionalities do not have any
necessary correspondence, these ten dimensions are all distinct, although it will be noted
that the /" dimension in solutions for different dimensionalities do tend to correspond
fairly closely, though certainly not perfectly . In addition to these ten dimensions from
the various KYST solutions, four other vectors, labelled mdl through md4 are also
shown. These are four dimensions from another MDS analysis, called MDPREF, which

will be described in section III.
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dim 4

13
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dim 3

Figure 7. Dimension three-four plane of species space for
SINDSCAL solution for Fresi et al. data. Vectors are as in Figure
6, except projected into three-four plane of SINDSCAL space.

Table 4 gives figures which indicate how well these fourteen dimensions (ten from the
one through four dimensional KYST solution plus four from the four dimensional
MDPREEF analysis) from the other analyses “fit” into the four dimensional SINDSCAL
space. The values in Table 4 are squared multiple correlations (R?’s), which can be
interpreted as proportions of variance accounted for in these fourteen dimensions from
KYST and MDPREEF via the four SINDSCAL dimensions. (Since the KYST analyses
had to be done on only a subset of 55 of the seaworm species, these R2’s were
necessarily based only on this subset of 55 of the total 88 species, however.) In fact, the
procedure used for determining these best fitting directions (or vectors) was the
PREFMAP-3 procedure described also in section III. The particular analysis done in
these cases involved fitting the vector model, with linear regression options. In the case
of this particular set of options, PREFMAP is equivalent to the use of multiple linear
regression. Thus we may view these vector directions as being defined by the regression
coefficients from a multiple linear regression. In fact, the projections of these vectors
onto the SINDSCAL coordinate axes are, in the present case, proportional to the Beta

coefficients for these regressions.
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The point to be drawn from these PREFMAP/multiple regression analyses is that the
four SINDSCAL dimensions capture quite well essentially all the dimensions emerging
from the other MDS analyses. The fact that the vector directions best representing
these other dimensions do not coincide directly with the coordinate axes indicates,
however, that the SINDSCAL dimensions do not correspond in a simple one-one fashion
with these KYST and MDPREF dimensions. Rather, each of these alternative
dimensions corresponds to a different linear combination of the SINDSCAL dimensions.
Since the SINDSCAL dimensions have a unique orientation, while those in the other
solutions are defined only up to arbitrary rotation (or linear transformation), we feel it
appropriate to treat the SINDSCAL solution as defining the “reference space” in terms
of which the others are defined. As already seen, the SINDSCAL dimensions do have a
particularly simple association with the various derived dissimilarity matrices —
particularly with those defined for the five different sites. This suggests that these
dimensions may correspond to variables characterizing the species having especially
meaningful relations to the geographic variables distinguishing sites (as well as,

secondarily, to variables related to the four different time periods).

To correct for the frequency effect we present another pair of plots in which the

following transformations have been effected.

(1)  The origin of the space was first transformed so all the coordinate values were
non-negative (by subtracting the smallest algebraic coordinate value on each

dimension from all the coordinates).

(2)  After this translation to a “more or less” rational origin (such that essentially all
the very low frequency species are at or very close to that origin) we now multiply
all coordinates of each species point by the reciprocal of its marginal value in the
“z=1log (f+1)” scale. This tends to convert all values to something
approximating a relative frequency scale. The coordinate value on each
dimension after this transformation can be interpreted as the relative value of the
species on that dimension (relative to its overall frequency in the samples taken
from all 20 sites X time periods comprising these data). While these plots, shown
in Figures 8 and 9, are no more interpretable to us than were the earlier figures
(6 and 7) we hope they may help ecologists or other biologists in interpreting

these dimensions.
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For general discussions of two- and three-way MDS and related models and methods
for proximity data, we refer the reader to Carroll and Wish (1974a,b), Wish and Carroll
(1974), Kruskal and Wish (1978), Carroll and Arabie (1980), Shepard (1980), Carroll
and Pruzansky (1980, 1986) and Arabie, Carroll and DeSarbo (in press).
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Figure 8. Transformed  dimension one-two  coordinates  of
SINDSCAL species space for Fresi et al. data.
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Figure 9. Transformed dimension three-four coordinates of
SINDSCAL species space for Fresi et al. data.
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III. MDS (AND OTHER MULTIDIMENSIONAL ANALYSES) OF PREFERENCE
(OR OTHER DOMINANCE) DATA

IIILA MDPREF

MDPREF (Carroll and Chang 1964b), standing for MultiDimensional PREFerences
scaling, is a model and method implemented in a computer program by Chang and
Carroll (1968) to perform an “internal” analysis of m subjects’ preferences (or any type
of dominance) data. The program utilizes a vector preference model and develops
simultaneously the vector directions for the subjects (or the site X time “variables” in our
“seaworms” example) and the configuration of stimuli (or objects “seaworms” in the
present case) in a common space. A theoretical discussion of this and other methods of
internal analysis of preference (or proximity) data is provided by Carroll (1972, 1980)
or Heiser (1981). By an “internal” analysis, we mean that both stimulus (object) points
and subject (variable) parameters (vectors in this case) are determined entirely from the

preference (dominance) data.
Theoretical Discussion

Since MDPREF was originally developed for individual differences preference
analysis, we will often refer to it as though it is an analysis of preference judgments by
different subjects. However, it can be applied to any kind of “dominance” data, in
which each of m “variables” measure the relative dominance of each of n “objects” in
some respect. In MDPREF the dominance judgments can be either paired comparisons,
rankings, or ratings of stimuli or other objects. The following discussion is for the latter
case; the development is quite similar for the former two, except that in the case of
rankings the ranks are substituted for preference (dominance) scale values, while if the
data are paired comparisons, preference (dominance) scale values are derived by
methods described by Chang and Carroll (1968). See also Carroll (1972, 1980).

The model assumes that stimulus (object) points are projected onto subject (variable)
vectors, with preference (degree of dominance) being determined by the relative size of
these projected values (the larger value being preferred). Let x; = (x;;, ..., x;,)
represent an r-dimensional stimulus point for the j-th stimulus and y; = (y;;, ..., ;)
represent the vector for subject i in the same r-dimensional space. (For simplicity, we
now speak simply of preference of subjects for stimuli; the reader can make the

necessary substitution of terminology if desired.) Then §,j, the estimated preference
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scale value of stimulus j for subject i, is defined by the scalar product:
Sij = yi X}, (IIL.A.1)

(the expression on the right being the scalar product in matrix notation). This can be
written, more generally, in matrix notation as follows:
Let X = (x;) be the n X r matrix of stimulus coordinate values and Y = (y;;) be the

m X r matrix of the termini of subject vectors, then

S=Gy)=YX. (IILA.2)

The problem is to determine the matrices Y and X' from the set of paired comparison
judgments such that é accounts for the paired comparisons data as well as possible in
some statistically well-defined sense (realized by minimizing an “objective function”
embodying the statistical criterion to be optimized). Carroll and Chang (1964b)
describe procedures — one iterative and one utilizing an Eckart-Young (1936)
decomposition — that accomplish this task. [In more modern terminology, the “Eckart-
Young decomposition” is frequently called, or closely related to, the “‘singular value
decomposition” (svd).] It is the latter that is implemented by MDPREF, and that is
described below.

If the input data are already scale values of preference (this matrix S is called the
“first score matrix”) the program proceeds to decompose S by the Eckart-Young
procedure, which involves computing eigenvalues and eigenvectors of the matrix S'S or
SS' (whichever is smaller). If the input data are paired comparisons, they are first
converted to a “first score matrix” of scale values by summing over rows and/or columns
of each paired comparisons matrix. Monte Carlo analyses by Carroll and Chang have
indicated that the simpler, Eckart-Young, procedure works as well with errorful data as
the iterative one. This is the reason MDPREF utilizes only the Eckart-Young
procedure. This overall procedure can be shown to have certain least squares properties.
Among other properties, in the case in which the original data are paired comparisons, it
provides a least squares fit in a certain sense to the original paired comparisons data,
schematized as a matrix of plus and minus ones (and possibly some zeros). See Carroll
(1972, 1980) for details.
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Input Options

As noted earlier, MDPREF has two input options, namely, paired comparisons and
direct judgments of preference scale values. In the case of paired comparisons, options
exist for reading in weight matrices specific to each subject and for handling missing
data. In the case of direct preference judgments (e.g., rankings) two options exist for
normalization — either: a) subtracting row means or b) subtracting row means and then

dividing entries by the standard deviation of values for that row.
Output Details
The following are the major output categories entailed in a typical run of MDPREF:
1. First score matrix normalized according to alternative chosen from above options.
2. Cross-products matrix of subjects.
3. Cross-products matrix of stimuli.
4. Eigenvalues of the first score matrix.

5. Estimates of the first score matrix after factorization. (This is sometimes called

the “second score” matrix.)

6. Coordinates of stimuli and vector directions for subjects in the user-specified

dimensionality.

7. Plots of some or all pairs of dimensions, including both stimuli and subjects.
(Many different versions of MDPREF exist, with different details regarding this
and other options). See Chang and Carroll (1968) for further details on the
specific version of MDPREF available on the MDS-1 tape.

III.LB PREFMAP, PREFMAP-2 and PREFMAP-3

PREFMAP (PREFerence MAPping) is a procedure that analyzes preference (or
other dominance) data in terms of a set of multidimensional preference models,
developed by Carroll and Chang (1968), which include and generalize the ‘“vector
model” first proposed by Tucker (1960) and the basic Coombsian unfolding model of

preference (Coombs, 1964). Collectively, these are called the linear-quadratic hierarchy
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of models. PREFMAP utilizes a known configuration of stimuli and attempts to portray
an individual’s preference data via this hierarchy of models. PREFMAP is called an
external analysis, since the stimulus (object) space is (externally) given, and only the
subject (variable) parameters (e.g., ideal points or vectors) are to be determined.
Specifically, PREFMAP consists of four phases, corresponding to analysis in terms of
four models. The phases are referred to as Phases I, II, III and IV. As one goes from
Phase I to Phase IV, the underlying assumptions become stronger and model complexity

is therefore considerably reduced.
Theoretical Discussion
PREFMAP starts out with the following assumptions:

1. A group of individuals share the same perceptual configuration of r dimensions
for a set of n stimuli. Let X=(x;) j=1,2,...,mt=1,2,...,r represent the
common perceptual space. Generally X will be externally defined (i.e., given a priori as
input to the PREFMAP procedure).

2. Further, the preference value for the jth stimulus of any individual, say the i th,
is (at least) monotonically related to the squared “distance” between the individual’s
ideal point and the location of the stimulus in space. Let the matrix S = (s,'j)
i=1,2,...,m; j=1,2,...,n represent the scale values of m individuals’
preferences for the n stimuli. Each row of the S-matrix represents the scale values for
individual i’s preferences for the n stimuli. (For convenience, we assume that smaller
values represent higher preferences.) In general, PREFMAP assumes F; (sij) = d,zl

The models differ in definition of d,~2j, and in that of F;.

Two versions of PREFMAP models may be distinguished — metric and nonmetric.
In the metric version the function F; is assumed to be linear, while a general monotonic
function, not specified a priori, is permitted in the nonmetric case. Thus, the preference
scale values are assumed to be defined on at least an interval scale in the metric version
while only their ordinal relationships are utilized in the nonmetric version. We discuss
the metric version of the PREFMAP algorithm first and then describe the nonmetric

case.
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Metric Version of the PREFMAP Algorithm

In the metric version of the PREFMAP algorithm, it is assumed that the scale values
of preference are linearly related to squared distance, that is, that F; is linear.

Assuming F; has nonzero slope, we may invert it and write:

sij = ad}; + b (I1L.B.1)

where a and b are constants (@ > b) and = denotes approximate equality (except for

error terms not expressed).

Let x; = (xj;, ..., x;,) represent the row vector of coordinates of the j % stimulus
(j=1,2,...,n) and y; = (i, ..., ;) represent the vector of coordinates of the
ideal point for the i'" individual (i =1, 2, ..., m). Given the above relationship and
input data for x; and s;;, the PREFMAP method solves, for each individual, for
estimates of the coordinate values of the vector y;, and, depending on the model, possibly

for additional parameters associated with individuals.

In model IV the squared distances are defined in a special way which corresponds to
the special case when the ideal point is infinitely distant from the stimuli, so that only its
direction matters. In this special case, the squared distance is actually defined by a
linear equation, and can also be viewed as equivalent to projection on a vector in the
appropriate direction; thus the name “vector model”. This equivalence of the linear, or
vector, model to the unfolding model with ideal points at infinity is demonstrated in
Carroll (1972, 1980).

Four alternative models for relating preference data to a given stimulus space, called
models I, II, III and IV, are included in the hierarchy proposed by Carroll and Chang.
The four models correspond, in the obvious fashion, to the four phases of PREFMAP, in
a decreasing order of complexity. Phase I fits a highly generalized unfolding model of
preference (model I); Phase II utilizes a more restrictive model assuming weighted
Euclidean distances analogous to those assumed in the INDSCAL model discussed
earlier; Phase III is the “simple” or Coombsian unfolding model in which ordinary
(unweighted) Euclidean distances are assumed; and Phase IV is the linear, or “vector”,
model. Phases I, II and III differ in the way the term d,zj is formulated, i.e., in the
definition of the metric, while Phase IV can be viewed as putting certain restrictions on

ideal point locations, as discussed earlier.
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All four phases utilize regression procedures (quadratic or linear) to estimate
coefficients which are then reparametrized to provide estimates of parameters associated
with the corresponding model. This is described in detail in Carroll (1972, 1980).

Phase I

One way to describe the model assumed in Phase I is to assume that both x; and y;
are operated on by an orthogonal transformation matrix T; — which is idiosyncratic for
each subject — and weighted squared distances are then computed from the transformed

values. Thus, one defines:
X; = Xj Ti (]IIBZ)
and

yi =viTi, (11L.B.3)

and then computes the (weighted) Euclidean squared distances d7; by the formula:

r
d} =3 wy & —yi)?. (111.B.4)

t=1
Geometrically, this corresponds to an orthogonal, or rigid, rotation of the coordinate
system, followed by differential stretching of the new (rotated) coordinate system.

Different rotations and different patterns of weights are allowed for each individual.
Phase I1

Phase II differs from Phase I in that it does not assume a different orthogonal
transformation for each individual, although it allows differential weighting of
dimensions, so that squared distances are computed simply by

2 < 2
dij = 3 wi & —yi)*. (I1L.B.5)

t=1
Phase 111

Phase III is the “simple” unfolding model, but it allows the possibility that some or
all of the dimensions have negative weight, making Phase III equivalent to Phase II,
with weights w;, = £ 1 for each individual. To be precise, the weights w;, = =+ §,, where

each§, = = 1.
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Phase 1V

Phase IV utilizes the vector model in which preference values are related to
coordinates of the stimulus space by an equation (excluding the error term) of the form:
r
Sij = 2 bit Xﬂ + Ci. (IIIB6)
=1
This equation contains only linear terms, so least squares estimates of the b;’s can be
derived immediately by multiple linear regression procedures. Having estimated the
coefficients b;y,b;7, . . . , bj,, the direction cosines of the vector for the i th individual are

obtained by normalizing the vector of estimated coefficients b; = (b;) to unit length by

dividing each I;,-, by /255 Parameters of the other models are also fit by regression
t

procedures, although these are more complex. The reader is referred to Carroll (1972,

1980) for a more detailed exposition of this.

In Phase II, much as in INDSCAL, the orientation of coordinate axes is critical.
Since the axis orientation of the a priori space may be essentially arbitrary, an
approximate solution is provided for the appropriate orientation. This will automatically
be provided in either PREFMAP or PREFMAP-2 if Phase I precedes Phase II.
Otherwise, Phase II can be entered directly, but with an initial solution for what is
called the “canonical rotation”. In Phase III the problem is a little more involved still,
since a general linear transformation may be required. This can be viewed as entailing
an orthogonal transformation followed by a differential weighting of dimensions. This,
called the “canonical rotation and canonical weights”, can also be solved for. In
PREFMAP-3 it is optional whether the “canonical rotation” and/or “canonical weights”
will be solved for. In some cases the orientation may be assumed to be correct as given
and only the canonical weights asked for. PREFMAP, PREFMAP-2 and PREFMAP-3
all differ in how the canonical orientation and/or canonical weights are solved for. In
fact, in PREFMAP-3 it is possible to solve for “canonical weights” without necessarily
solving for the “canonical rotation.” See Chang and Carroll (1972) or Meulman, Heiser
and Carroll (1986) for details.



18

Nonmetric Version of the PREFMAP Algorithm

It may be recalled that the nonmetric version of PREFMAP fits monotonic functions
relating the preference scale values and the squared Euclidean distances between a
subject’s ideal point and the stimulus points. This is accomplished by the procedure
described below.

1. Solve for the parameters of the appropriate regression equation (quadratic or
linear) to predict the s;;’s. This step is essentially the metric version of PREFMAP.
The “predicted” values (from the model) will be called s,-(}) i=1,2,...,m

j=1,2,...,n

2. Estimate the monotone function M,(” for subject i that best predicts the

OB
J

estimates (the 5;;"’s) from the original s;;’s, using the procedure described by Kruskal

(1964b) for least squares monotone regression. Define 3,(}) = MO (si5).

3. Replace s;; with 3,-j to compute a new set of predicted values, 3,82) .

4. Using the new set of Eij’s, compute a new monotone function M,Q) and a new set

of 5;;’s, namel 52
ij Y Sij

5. Continue this iterative procedure until the process converges (i.e., until no more
changes occur in the monotone function or regression coefficients). Specifically, the
process is terminated by reference to a parameter called CRIT. If the sum of squares of
differences in the predicted &;;’s for the I and (I —1)* iterations is less than CRIT, the

process stops at the I™™ iteration.
Input Parameters

In all the PREFMAP programs, the preference data can be expressed in one of two
ways: a) smaller values indicating higher preferences or b) larger values indicating
higher preferences. The programs can start with any prespecified phase and can work
their way down to any model of lower complexity. PREFMAP-3 actually allows

different models to be fit for different subjects in the same analysis.

Other options include: a) normalization of original scale values versus leaving them
as initially defined and b) computing each subject’s scale values for each new phase or,

alternatively, using the estimates of the previous phase as the original values for the
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following phase. There are also various options concerning whether or not the canonical

rotation and/or weights are computed prior to entering a particular phase.
Output Details
A typical run of PREFMAP produces some or all of the following output:
1. Listing of all input parameters selected and the original configuration of stimuli.

2. For each subject the printout of the original scale values, regression coefficients
and estimates of d,zj (or 3,-]-, where §,~j = aq; d,~2j + b;, or equals projection of stimulus j on
vector for subject i in the case of the “vector model”) for each phase and for each

iteration in the case of the monotone (or nonmetric) version.
3. For Phase I (only) the direction cosines of each subject’s idiosyncratic rotation.

4. Coordinates (or direction cosines for Phase IV) of ideal point and weights of the
dimensions specific to each subject. In Phase I, the orthogonal rotation matrix may also
be printed for each subject. Depending on options selected, the canonical rotation matrix

and/or canonical weights may also be provided as output.

5. Plot showing the relationship between the monotone transform of the scale values

and original scale values (optional).

6. Plot showing the positions for ideal points or vector directions of all subjects as

well as stimulus positions.

7. A summary table showing the correlation coefficients for each subject by each
phase and corresponding F-ratios, including F-ratios for testing the statistical
significance of the improvement in fit associated with moving from a simple to a more
complex method. Such an F is associated with every pair of models (IV versus III, II or
I; III versus II and I; and II versus I). In each case, it can be taken as assessing
whether the more complex model (with a lower Roman numeral) fits the data
significantly better than the simpler (higher numbered) model. These tests are possible
because of the hierarchical embeddedness (or nested structure) of these models; that is,
the fact that each “simpler” model is a special case of each more complex one. In terms
of the algebraic structure of the models, each more complex model includes all the

parameters of any simpler model, plus additional parameters. The situation is formally
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equivalent to testing significance of additional terms in a stepwise regression scheme.

PREFMAP-2 has the additional feature of allowing definition of a so-called
“internal” stimulus configuration directly from the preference data itself. For further
details on PREFMAP and PREFMAP-2 see Chang and Carroll (1972). PREFMAP-3
does not allow generation of such an “internal” stimulus configuration, but does have
many other options. PREFMAP-3 is much more flexible in the mix of models fit to
different subjects. In a single analysis different subjects may be fit by different models
in the hierarchy of models described here. These models are simply called, in
PREFMAP-3, G for General Unfolding), W (for Weighted Unfolding), U (for simple
Unfolding) or V (for Vector model). Greater flexibility also exists in PREFMAP-3 in
“metric” vs. “nonmetric” fitting for different subjects. See Meulman, Heiser and Carroll
(1986) for details on PREFMAP-3.

It would seem in principle to be very interesting to apply the entire family of models
in the PREFMAP hierarchy to the Fresi et al. data. For example, it would seem quite
appropriate to fit model II (the simple unfolding, or “ideal point” model), using each of
the site X time period variables as a pseudo-subject, seeking an ideal point in the four
dimensional space of seaworm species determined by INDSCAL/SINDSCAL such that
the frequency of species for that site X time period is inversely related to distance from
that ideal point. One could think of this “ideal point” as the species of seaworm most
ideally suited to that particular site/time period combination. Time constraints did not
allow for a thorough analysis of these data via the PREFMAP hierarchy of models,
however. We therefore opted for an internal analysis of the site X time period variables,
using the MDPREF vector model approach. MDPREF, as discussed earlier,
simultaneously determines a space for the “stimuli” (species in this case) and the
“subjects” (sites X time periods) in terms of a vector model. A vector model can
actually be thought of as an unfolding or “ideal point” model with the ideal points all
infinitely distant (or, in practice, very far) from the stimuli (species), so that the vector
direction simply corresponds to the direction of the ideal point from the centroid of the
stimuli (species). It is of interest both to see how well MDPREF accounts for these
data, and also how the structure of the species space relates to that determined by the
three-way INDSCAL/SINDSCAL analysis.
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III.C MDPREF Analysis of the Fresi et al. Seaworm Data

We attempted an analysis of the Fresi et al. data on seaworm species using
MDPREF. As indicated earlier, dominance relationships can be attributed to variables
much more general than preference judgments (narrowly construed). More generally,
dominance data are any data indicating the tendency of objects to dominate one another
in some respect or context. Thus the relative frequency of the various seaworms at the §
sites and the 4 time periods can be taken as dominance data for these species at these
sites X time periods. (In fact, dominance data, broadly defined, can be viewed as

encompassing essentially any variety of multivariate data.)

We thus applied MDPREF to these data, treating the seaworm species as “stimuli”
and the 20 sites X months X years as “subjects.” The “total and marginal” variance

accounted for (VAF) for dimensionalities from 1 through 20 are displayed in Table 5.

Table 5. Variance accounted for (VAF) and commulative
VAF for MDPREF solutions in dimensionalities 1 through 20,
for Fresi et al. data.

Dimensions  Variance | Cumulative Variance
Accounted For
1 0.490 0.490
2 0.201 0.691
3 0.053 0.745
4 0.048 0.794
5 0.036 0.830
6 0.028 0.858
7 0.025 0.884
8 0.020 0.904
9 0.019 0.924
10 0.014 0.938
11 0.013 0.952
12 0.010 0.962
13 0.008 0.970
14 0.008 0.978
15 0.004 0.983
16 0.004 0.988
17 0.003 0.992
18 0.003 0.996
19 0.002 0.998
20 0.001 1.000

(In MDPREF, as mentioned earlier, the unrotated r—1 dimensional principal axis

solution is simply the r dimensional one with the least important — in VAF terms -
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dimension dropped. Because of this ‘“nesting” property, this calculation is
straightforward). Based on the VAF figures, and on interpretability criteria, once again

it was decided to report the four dimensional solution.

Since we are focusing, in our attempt to interpret these solutions, on the structure of
the variables (sites X time periods), we present the positions of the vectors for these 20
variables separately from the species points in Figures 8 and 10. In these Figures we use
the same coding for these variables as in the Fresi et al. paper; a three symbol (number,
letter, number) code. The first number (1-5) denotes the site, the letter denotes the
month (F = February, L = July), while the third number denotes the year (5 = 1975,
6 =1976). (We used an “L” rather than a “J” here to encode “July” to maintain
consistency with the coding used by Fresi et al.). MDPREF does not, like
INDSCAL/SINDSCAL, produce unique dimensions, so that rotation of coordinate axes
is usually necessary to attain an optimally interpretable set of dimensions. In the present
case, however, perhaps fortuitously, the orientation of axes originally obtained appears to
lead to a quite interpretable structure (without rotation) for these 20 variables. (This is
not entirely a happenstance, no doubt; the principal axis orientation in which MDPREF
dimensions emerge is certainly more likely than a purely random orientation to yield

interpretable structure.)

In the interest of grouping the dimensions in a fashion enhancing interpretability, we
did permute their order. Thus Figure 10 shows the plane defined by dimensions one and
three. Dimension one can be seen, from the fact that all variables have positive
projections on that dimension, to be a “consensus” dimension, reflecting whatever factor
is most nearly shared in common by all sites X time periods. Figure 11 shows the 88
seaworm species in the same plane. The projections of the seaworms onto the dimension
one axis would probably correspond very closely to the mean value of the twenty
variables (i.e., with the mean of the log of the frequencies +1). This dimension could be
interpreted, then, as overall “abundance” of the species, and the loading of a variable on
that dimension simply indicates the extent to which that variable reflects this overall
“abundance.” (As in factor analysis, the size of that loading can be viewed as a direct
measure of the correlation of that variable with this first dimension.) Except that sites 1
and 2 seem to have very slightly lower weights on this dimension than do sites 3, 4 and

5, however, there seems to be nothing “interpretable” about this dimension vis a vis these
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Figure 10. Termini of vectors projected into one-three plane for 20
site X time period variables for unrotated MDPREF solution for
Fresi et al. data.

dim 3

(1] g8

40 37

4953 _
P— g —dim 1

1

5%34

B

10

Figure 11. One-three plane of unrotated MDPREF stimulus
(species) space for Fresi et al. data. Four vectors show result from
mapping of dimensions from four dimensional KYST-2A solution
into unrotated MDPREF space.

site X time variables. Dimension three is more interesting, however. Note that almost
all the variables involving the year 1975 (those whose code ends with “5”) weight

positively on that dimension, while those involving 1976 tend to exhibit negative weights.
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In fact almost all the variables with a final “5” are in the upper right quadrant, and
almost all those with a final “6” in the Jower right quadrant. The most glaring exception
is “1L5” (site 1, in July 1975) which appears just below “1L6’ in the lower right hand
quadrant. We have no definite explanation for this anomaly, although a partial
explanation may be that there is something special about site 1 as a whole on this
dimension. We note that, in general, the variables involving site 1 for a given time
period seem to have systematically lower values on this dimension than do those for the
other four sites. For example, 1F5 has a much lower value than do 2F5, 3F5, 4F5 and
SF5 all of which are at the extreme positive end of dimension 3, while 1F5 is almost at
the zero point. Whatever dimension three corresponds to in its effect on the 88 species
of seaworms, it is a factor that was positive (tended to increase the abundance of those
species at the positive pole of that dimension) in 1975, and negative in 1976. A more
explicitly descriptive way of stating the same thing is that those species at the positive
end tended to be relatively more abundant in 1975, those at the negative end to be

relatively more so in 1976.
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Figure 12. Termini of 20 variable vectors projected into two-four
plane of unrotated MDPREF solution for Fresi et al. data.
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We now shift to the remaining plane of this four-dimensional MDPREF solution,
shown, for the sites X times, in Figure 12. This is the plane defined by dimensions two
and four. This plane distinguishes among the five sites to a remarkable degree. (It is
dubious that a technique such as discriminant analysis, specifically geared to doing this,
could do a significantly better job of separating these five groups.) As it is, we see that
dimension two makes the most clearcut separation; that between sites 1 and 2 at the left
(negative) end and sites 3, 4 and 5 at the right (positive) end. Then dimension four
separates site 1 from 2 on the one hand, and site 3 from an amalgam of sites 4 and 5 on
the other, so that site 1, 2, 3 and (4,5) wind up following neatly in a clockwise fashion
(more-or-less) in the lower left, upper left, upper right and lower right quadrants,
respectively. A map of the harbor of Ischia is given in the Fresi et al. paper. One can
see from inspection of this map the reason why sites 1 and 2, located in open sea and
separated by the harbor entrance from the other three sites, might be so clearly
distinguished from those other sites, both in this representation and in the
INDSCAL/SINDSCAL (source space) representation. This map also suggests some
hypotheses as to why sites 4 and 5 may be so nearly indistinguishable. Site 3 is closer to
the strait providing the harbor entrance, and separating sites 3, 4 and 5 from sites 1 and

2, so that it may be more affected by water flowing through that strait, while its ecology
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Figure 13. Two-four plane of unrotated MDPREF species space for
Fresi et al. data. Vectors are as in Figure 11, except projected into
two-four plane of unrotated MDPREF space.
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may also more closely resemble that of 1 and 2 than does that of sites 4 and 5, which lie
more distinctly in the harbor area. Figure 13 shows the dimension two-four plane of the
stimulus (species) space, indicating how the seaworm species array themselves on these
dimensions separating the various sites. (Again, it should be noted that overall

frequency of the species has not been normalized here.)

It might be noted, by comparing Figures 1 and 2 to Figures 11 and 13, that the
dimensions emerging from the KYST-2A analysis of the “Overall” dissimilarity matrix
are essentially the same as those (for the seaworm species) in the unrotated MDPREF
analyses. This is true despite the fact that the KYST-2A analysis omitted 33 of the 88
species, and also despite the marked difference in types of analysis. KYST-2A is a
nonmetric technique aimed at accounting for rank orders of these derived dissimilarities,
while MDPREF is a metric technique aimed at accounting for the values of the 88
species on the 20 site X time variables. This congruence of the dimensions in these two
analyses is shown directly by using PREFMAP-3, in a manner essentially identical to
that described in section II.C, to “map” the dimension from the four dimensional
KYST-2A solution into this MDPREF species space. The four vectors representing
these four KYST dimensions (k4-1, k4-2, k4-3 and k4-4), respectively correspond very
closely, as can be seen, to the corresponding dimensions (one through four, respectively)
of the MDPREF solutions. The VAF’s (or squared multiple correlations) were: .989,
991, .806 and .854 respectively. It is not unusual, however, for these two quite different
analyses to produce highly comparable results. The reasons for this probably are
twofold:

(1) The theoretically nonmetric KYST analysis is, in fact, essentially equivalent to a
metric one, since the function relating input dissimilarities (distances) to recovered
distances is almost perfectly linear and, in fact, goes very nearly through the origin,
indicating that the input distances are very nearly ratio scale estimates of the derived
distances. It should be emphasized, as spelled out in more detail below, that this might
not have happened!

(2) The KYST-2A solution is rotated to principal components orientation, while the

MDPREEF solution is essentially a principal components solution.
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The only seemingly important difference between these two solutions vis a vis the
“worm” stimuli is in the scaling of these dimensions. Even this is not of any real
significance however. It merely reflects the fact that, in MDPREF the stimulus
(seaworm species) space is arbritrarily scaled to unit variance on all dimensions (and
zero covariance — i.e., a “spherical” distribution), while the differential VAF (Variance
accounted for) is absorbed in the vectors, while in KYST the differential VAF is
reflected in the scaling of the stimulus (worm) dimensions. Thus, in this case at least,
the simple metric MDPREF analysis has recovered essentially the same struture for the
seaworm species as did the more complex and sophisticated KYST-2A procedure, while
MDPREF has also extracted information about the “subjects” (sites X times) in the
form of the 20 vector locations, such that projection of stimulus points onto subject

vectors yields approximations to the original dominance data.

It should be stressed, however, that this simple relationship between these two types
of analysis will not always be exhibited. Particularly in the case of strong nonlinearities
in the data, KYST-2A can yield a lower dimensional, more parsimonious representation
of the stimuli (or other objects) than MDPREF (or other principal components/factor
analytic type models and methods).

Rotation of the MDPREF Solution to Congruence with SINDSCAL

As mentioned, MDPREF does not yield unique dimensions, but rather is subject to
rotational indeterminacies. In fact, more generally, a linear transformation of the
stimulus space can be effected, as long as the appropriate companion transformation,
given by the “inverse adjoint” transformation, is applied to the subject vectors.
However, we shall restrict ourselves in the present case to orthogonal transformations,
with possible overall dilations, or scale transformations. Since the inverse adjoint of an
orthogonal transformation is the same orthogonal transformation, this leads to a
particularly simple form (which has other advantages as well). Since the stimulus
spaces in both MDPREF and SINDSCAL are scaled to have equal variances of
projections of stimuli (species) on coordinate axes, restricting the class of

transformations to be orthogonal seems appropriate in this case.

Figure 14 shows the dimension one versus two plane of the transformed species space

superimposed on the same planes of the SINDSCAL space. In this representation the
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Figure 14. One-two plane of the MDPREF species space rotated to
optimal congruence with one-two plane of SINDSCAL species space
(two solutions superimposed, with “arrows” connecting corresponding
points).
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Figure 15. Same as Figure 14, but three-four plane of rotated
MDPREF species space superimposed on same plane of SINDSCAL
solution.

two points representing the same species are connected with one arrow. The terminus
(arrowhead) of the arrow shows the position of the species point in the SINDSCAL
representation, while the origin (shown by an asterisk) shows the point in the MDSCAL
representation after rotation to optimal congruence with the SINDSCAL representation.
In this case, the SINDSCAL configuration provides the “target,” and the MDPREF
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solution is rotated to best congruence in a certain least squares sense (specifically, so that
the sum of squares of the arrow length is minimized). The specific procedure used was a
variant of one originally proposed by Clff (1966), which is closely related to the
“orthogonal procrustes” approach described by Gower in section 9.1 of his paper in this
volume. Figure 15 shows a similar plot for the dimension three-four plane. (It should
be kept in mind that the dimensions referred to here are those from the SINDSCAL
solution, so the one-two plane should be taken as corresponding to those dimensions from
the SINDSCAL analysis, not from the MDPREF solution first described. Since the
MDPREF coordinate system has been completely transformed in this process, there is no
necessary one-one correspondence with those dimensions.) Figures 16 and 17 show the
rotated MDPREEF solution in those same two planar projections, but this time with the
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Figure 16. One-two plane of MDPREF space rotated to optimal
congruence with SINDSCAL solution. Site X time period vectors as
well as 88 seaworm species points are shown, in joint space
representation.

(rotated) vectors shown simultaneously (and, in fact, with lines connecting them to the
origin to make their vectorial nature more evident). In Figure 16, showing the
dimension one-two plane of this rotated MDPREF joint representation, we see that all
the vectors for sites 3, 4 and 5 when projected into that plane have substantial lengths,
while those for sites 1 and 2 have lengths, when projected into this plane, that are very
near zero. Thus these two dimensions are accounting for virtually all the reliable
variance for sites 3, 4 and 5, and essentially none for site 1 and 2. This is consistent

with the fact that, in the SINDSCAL representation, the derived dissimilarity matrices
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dim 4

7+—dim 3

Figure 17. Same as Figure 16, except that three-four plane of joint
MDPREF representation, after rotation to optimal congruence with
SINDSCAL solution, is plotted showing both species points and
variable vectors.

for sites 3, 4 and 5 had high, clearly non-zero, weights on the corresponding INDSCAL
dimensions, while those derived for sites 1 and 2 had near zero weights. The opposite
pattern shows up in the plane for dimension three and four of this rotated MDPREF
representation shown in Figure 17; the lengths of the vectors for sites 1 and 2 projected
in this plane are substantial, while those for sites 3, 4 and 5 are near zero. Again, this is
consistent with the INDSCAL results. We can also see in this three, four plane a clear
separation between sites 1 and 2, with site 1 having higher weights on dimension four
than three, and site 2 the opposite pattern. In the one, two plane we can see some, but
not as clear, differentiation of site 3 from site 4 and 5. These three sites are much more
“mixed up” in this representation than in others we have seen. There is some hint of the
differentiation based on year (1975 versus 1976) in the vectors for sites 3, 4 and 5 in this

plane, however.

In a sense this representation provided by the MDPREF solution after rotation to
optimal congruence with SINDSCAL provides the most cogent and succinct
representation of all for these data. What it shows is an overall four dimensional
representation, but one neatly partitioned into two two-dimensional subspaces. The one-
two subspace seems to account for most of the variance in the variables related to sites 3,
4 and 5 while the three-four subspace accounts for most of that in variables related to

sites 1 and 2. A further “nice” aspect of this representation is that almost all the vectors
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lie in the positive quadrants of these two planes, so the weights of these four dimensions
are almost all positive or zero. This suggests that the use we have made of SINDSCAL
in this case may provide a very effective basis for rotation of an MDPREF type

representation to a special kind of generalized “simple structure.”

It now only remains for ecologists and biologists to “interpret” the dimensions in
terms of their effects on the seaworm species. We happily defer that privilege to these
experts. To aid such experts in this creative endeavor, however, we provide a final table,
Table 6, in which the coordinates for the 88 seaworm species on the dimensions of the

four different configurations discussed in this paper are presented.
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