































































































62 The Active Nerve Membrane

{Compton and Langrmuir, 193]; M. L T. ,1943), space—charge limited
flow is also observed in the conductors of solid-state electronics
(van der Ziel, 1957). For current flow between two electrodes in
which the velocity of the charge carriers depends on the veoltage

as
velocity = kva (3.2.12)

Poisson's equation and the assumption of a “virtual cathode” near
one electrode leads to a generalized form of Child's law

] = E-(—a——:—lz)— % ST (3. 2. 13)
fa+1) &

where 6 is the electrode separation. Thus Landowne writes the
jon currents in the form

5= gt (3. 2. 14)

where K is a constant. The iransit time, 7, is inversely propor-
tional to carrier velocity and is thus approximated as

o AV O (3. 2. 15)

where A is another constant. From {3.2.14) the jonic conduc—
tances should be given by

G =KV (3.2.16)

i

Landowne has used (3.2.15) and (3. 2.16) to normalize the Hodgkin

Huxley conductance data in Fig. 3-8. He writes

Gi(t)-G.(D)

G = —— (3,2.17)

t' = L (3.2.18)

with the following choice of constants:
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Potassium Scdium
K =
1.3 0.21 mmho/cm2
A=
49 49 (m\J’)a sec
a= 0.6 1.0 -

Then the curves A, B, D i
: , B, D, and F of Fig. 3-8c appear i i
3-l4a, while the curves of B, C, D, F, and G fF;g P'as Eibh
appear as in Fig. 3-l4b. T ™ He. 37ER
y d’\f\fbether this normalization is mere happenstance or, as
r:n ewne s;.lggests, .a clue to the dominating physical m’echanism
m;nams to be detef'm.med. The choice of a = 1,0 for sodium ion
they appear somewhat disturbing since (3. 2.13) then implies that °
bc;onsLant K should equal zero. But K is found to be consid
zraldybsmailer for the sodium ions than for potassium, and anSl i
ou. e changed by a few percent in (3 ' w
c . (3.2.17) a i
out 1gtroducmg a great change into Fig. 3-14) pe . 2. 18) weiza-
. thetiir;dk;i'g .(1976) has taken a more direct physical approach
1 struction of a phenomenological theory., For both the

- sodi t i i
um and the potassium ions he assumes two ensembles of

state i

e fn (conduc‘tmg end nonconducting), each distributed over en-

oroy da guasicontinuous manner, Such a distribution of ener
oes not seem unreascnable because the large protein rr?c};rl

B U C 1 nduction have m ny egrees ee—
e 10ni1c
: ecules that fa ilita cond Q a a d g e}

tr
trandberg shows under rather general assumptions that po-

tassium conductance
should be eXpeCtEd to vary with applled volt-

G
G, = E
K- l+exp{-[ AE+AF(v)] /kT} (3. 2. 19)

here AE i

i andlrsl the unper‘laurbed mean energy difference between con-
< Contribufoncondu‘ctmg conformational states and AF{v) is

1 ion to this difference from the external voltage. With

Gg = 22.5 mmho/cm‘2
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AE = 23 meV

AF(v) = [0. 8%

12—9. 4 exp (—vlz/l L9)] mev

a rather good fit to the Hodgkin-Huxley steady-state potassium
conductance [ see (3. 2. 3)}]

4

Gy = c_;KnO (v) (3. 2. 20)

is obtained. The point of Strandberg's work, however, is not sim-
ply to introduce a new parameiric representation of old data. Dy-
namic effects can be treated as relaxations between the steady-
state distributions that obtain at different voltages, and the tem-
perature dependence of the rates may suggest acceptable theories
: for the nature of the conduction process., Furthermore, (3. 2. 19)
o implies a temperature dependence of steady-state conductance

: that varies with voltage in a rather complex way. In particular,
as Gg —G,,, it becomes insensitive to temperature, which is in
rough agreement with the observations of Landowne (1973) and by
Cohen and Landowne (1974). Predictions of: {(a) entropy genera-
tion and heat flow, (b) pressure dependence of membrane free en-
i ergy, (c) effects of dissolved inert gas, (d) extra low frequency
(ELF) electrical polarization, and {e} membrane impedance, all
would seem to be feasible from this thermodynamic approach.
Many new opportunities thus arise for the classical physicist to
contribute to the solution of the membrane riddle.

uxley conductance

Normalization of the Hodgkin—H

F 3-14. :
FavE data in Fig. 3-9 by Landowne {1972); b y-E
{a) potassium conductance: Q-4 A- B{,)_ J A,‘ ;
{b) sodium conductance: 0-B,0-GC, R \

v-G.
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The Nerve Fiber

our senses have widened. Membranes, webs
of nerves that lay white and limp, have filled and
spread themselves and float round us 1ike filaments,
making the air tangible and catching in them far—away

sounds unheard before.

Virginia Woolf

begin the discussion of level 3, namely,
n theory from membrane dynamics and
Our first problem is to understand the

r action potential (see Fig. 1-3}

We are now ready to
the development of neuro
electromagnetic theory.
propagation of a solitary wave ©
along one of Galvani's oily tubes. Thase solitary waves are sta-
ble spatiotemporal entities that arise as solutions 1o the diffusion
eqguation (2. 30} when it is rendered nenlinear through a suitable
representation of the ion current iy

In retrospect, it seems that applied mathematicians forewent
an unusual opportunity to make important scientific contributions
by ignoring the study of the nonlinear diffusion equation. One ex-
ception to this generalization was the work by Kolmogoroif,
Petrovsky, and Piscounoff {19 37) with the equation*

(4. 1j

6, - 0, = F@

related to the biological problem of genetic diffusion. These

e ————

* pquation 4. 1) should perhaps be called the K. P. P. equation.

66
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authors showed how st i initi
! eplike initial condition i
a solitary wave solution of the form  would evolve dnto

ofx,t) = ¢T(x—ut), u =const (4. 2)

developed phase-plane te i
chniques for determinin
] s s g a N
rived explicit formulas for the traveling-wave veloc?gz, und Ei[‘Eis
, UL

© import i i
portant contribution was completely overlooked by electrophysi-

ologists in the United Stat i
: es; indeed, it is not even i

. Stat noted
?;cliqlir:glsfe exhéustlve bibliography of,the book by Cole (19 618? thC[(?h
) cac;ni?;lled ma‘;hematicians to undertake a timely study: of °

. e ascribed to technical ineffici i
&, . . efficiency in the £
(lgoa)eno;rﬁous ma.thematlcal difficulties” envisaged by H:r(r:r‘laaOf
devrie.s (lggsstudlesby Boussinesq {1872) and by Korteweg andrm
levees } of the hydrodynamic solitary waves described b
‘: llussell (18:}4) indicate that there was ample underst d'y

c()fgr;?)n;;ear PDE's even before the turn of the century Asaréol;g
7 b s suggest‘ec.l, the difficulty may have been thé a-ssum t"en
hZVior O;nléthemztlfilans that the diffusive and nonpropagatingpblgn

inear diffusion e i i
havior of 1 quations would carry over to the non-

Yet one need not turn t
o Hermann's line i
- ‘ : of burnin owd
reeriasiarie:.e incense rlnentloned by Kato {1924} for a c(lgezr phersioral
li:;hLin nta vlon of nonlinear diffusion; the ordinary candle hag bec
dow; tg scientific study tables for centuries. Diffusion of he ter1
R i:;nd[i- relelases wax to the flame where it burns to szp—
ply the 20 % . L: is th@j power (J/sec) necessary to support the
e () 1;; et}fhirlmcal energy stored per unit length of the
n the flame i i '

e ,for en th: (nonlinear wave) will travel at the

P=ub (4. 3)

The ra i a : I

whichtii f; Y:rglch une‘rlgy is "eaten” (uE) must equal the rate at

than podaco .1gelskteld by the flame (P}. Equation (4. 3} is of more

mulas forihglca mter.est; when we turn to the development of for-

use (4. 3) toeficnzlcullanon of nerve-pulse propagation velocity Wre
. solutions of i . ?

acter indicated in (4. 2). {4, 1) with the traveling~wave char-

Nonli

ses: a) Omeear -wave problems can be divided into two main clas-

7 pen systems for which solitary traveling waves imply a
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balance between rate of energy release by the nonlinearity and its
consumption as is indicated by (4. 3) and (b} closed systems for
which energy is conserved through a conservation law

€t+ mng (454)

where £ is energy density and ¢° is the power flow. Wave
problems of class b} include the hydrodynamic waves that were
studied by Boussinesq (1872) and by Korteweg and devries {1895).
In this case solitary waves involve a balance between the effects
of nonlinearity and dispersion, and the propagation velocity is an
adjustable parameter in a family of solutions. Such energy—-con-
serving sclitary waves sometimes exhibit and infinite number of
conservation laws and the nondestructive collisions characteris—
tics of "solitons.” Nothing further will be said here about class
b); the interested reader is referred to the paper by Scott, Chu,
and McLaughlin (197 3) for a review of this research. Although the
present discussion concentrates on nonlinear wave problems of
class a), it should not be assumed that conservation laws are un-
jmportant. Indeed, we find in Chapter 5 that an approximate con-
gervation law for electric charge can be useful in determining the
conditions necessary to stimulate a nerve fiber to the threshold of
excitation, and also in Chapter 6 that a conservation law for puls-

es may help to analyze the evolution of a pulse burst along a fiber,

1. THE HODGKIN-HUXLEY BXON

Let us consider the nonlinear dynamics of the nerve fiber
shown in Fig. 2-2a. The firsi~order partial differential equations
are (2.21), together with (3. 2.4). Combining (2. 21b}y with (2. 29)
we can write these as

(4, 1. la~c)
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m__;m_—r? )]

at 'Tm(V)

8h h—ho(v)

ot = - Th(\.; (4. 1. 1d, e)

;vhere ij in (.4, 1 1b) is the membrane ion current per unit length
rom lillere on it is typographically convenient to use the voltage
variable v = v{; = Vp defined in {3, 2, 2); evidently this makes

no difference on the left-hand sides of
(2. 2. 3) of {4.1.1a) and (4. L 1b). From

— 4
. - 3
j,=g,n (v+Vv_ -
;7 9y ( R VK) G a™ h(v+VR— VNa) +gL(v+VR— VL)
(4. 1. 2)
where gli: 2maGy, Una = 27CGpg, and g7, = 2maGp.
The "average axon" chosen for numerical study by Hodgkin

and Huxley. (119 52) had the following parameters in addition to
those specified in the previous section:

Resting Axoplasm

1 Axon

Potential Conductivity Radius Cl\é.fpegékﬁggg e
VR:—65mV o = 2.9 mho/m a=.238mm C:lp.fd/cm2

- O.ne approach to the analysis of these equations is to seek
traveling-wave solutions where all dependent variables (v,i,h
m, and h) are functions only of a moving spatial variable’ T

. £=x-ut (4.1.3)

Thi . .
dhls can be considered as a special case of the more general in-
ependent variable transformation
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il o /
P 8. .8 eventuall i
x —£ = x-ut o Py event ﬁf returns tg 1’t (as £ —+w). Such a trajectory is some-~
. @ 1.4) b called hgmocllnlc , while a heteroclinic trajectory passes
t - o . . N atween two different singular points.
T = 3t aT 13

Assuming independence with respect to T in the (g ,7) system
we can replace (a/8x) by (d/d¢) and (8/8t) by fu d/dg ), where-
upon (4. L. 1} become the ordinary differential equations

u
v ri
g =~ s
A cui-
dg =~ s ¢!
n-n
dn _ o (4. 1. 5)
dg Ll‘Tn
dm M7 %o
dg =~ uty
dh _ h-ho to)
dg uTh 7 {k)

FIGURE 4-1. (a) . Phase-space trajectory corresponding to (b) an
action potential. The phase space has five dimen-

sions, but n, m, and h are indicated along a
single axis.

This is an autonomous set of equations (Hurewicz, 1958; Lefschetz,
1962) since the derivatives are uniquely defined as functions of
the dependent variables, Thus phase—space techniques can be
helpful in understanding the structure of solutions (Kolmogoroff,
Petrovsky, and Piscoundoff, 1937). Itis important to note, how—
ever, that u [ the velocity of the moving spatial coordinate in
{4.1.4)] appears as an adjustable parameter in (4.1,5). In gen-
eral, one can expect the topological character of the phase-space
trajectories to depend on the value chosen for the velocity u.
Only those trajectories for which the dependent variables are
bounded are of physical interest here. 1n particular, & trajectory
corresponding to the action potential shown in Fig. 1-3 should
have the qualitative character indicated in Fig. 4-l. The values
v=20,1=0, and (n,m,h) = (35 .06, . b) are a solution of
{4.1.1) so the carresponding peoint in the phase space of (4. 1. 5) is
a singular point at which all the £ -derivatives are equal to zero.
The task of finding & pulse-like traveling—-wave solution for {(4.1.1)
involves determining the proper value of the velocity u at which
a trajectory emanating from this singular point at £ = - )

s A homoclinic tr&jectory was determined by Hodgkin and Huxle
tgilr;g a ha?d calculator) in 1952. Voltage and membrane conduc Y
ce are plotted as a function of time £ i 4
. . rom this calculation in Fi
;l 2 to ob.tam the proper value of u equal to 18. 8 m/ sec TEiFslg.
aién satlifactoiy agreement with the measured value of 2'1 2 m/ sec

, @s shown by & comparison of Fi 1- ] ;
the waveforms v(t) and Gf(t}. g8 173 snd 472, 50 also are
SOlut’Ji?koleofretlcally, the discovery of a pulse-like traveling-wave
pOlOgyr; or (4.1. 1) from an investigation of the phase-space to

v associated with (4. 1. 5) does not i )
poo : <L imply that the pulse i
VOlvleeS té)egzrt;rbatlons of its shape., Such waveform instabili;sir in-
ndence on 7, and {4.1, 5) was deri i
e aesumbion of s . L s derived with the speci-
independence with res
’ . A pectto 7. (We stud i
choens 1L study this
on in detail in Chapter 5.) BAnother form of instability that
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u = 18.8 meters /sec

G{mmhos/cm?) —=

TIME {m sec) —

FIGURE 4-2. Wwaveforms of the action potential and membrane
conductance calculated from (4. 1. 5) at 18. 50C
(redrawn from Hodgkin and Huxley, 1952d).

appears in these calculations is numerical instability during the
integration of (4.1, 5). This arises because the assumed pulse
velocity, u, is an adjustable parameter in the analysis. Choosing
u slightly too small or too large may cause the computed wave-
form to diverge (see Fig. 4-1)., As we see later, such numerical
instability of a solutionto (4. L 5} seems to be a necessary condi~
tion to avoid a waveform instability in the corresponding solution
of {4.1.1).

Machine computations for the space clamped membrane were
first reported by Cole, Antosiewicz, and Rabinowitz (1955), and
for the propagating axon, by FitzHugh and Antosiewicz (1959} and
Huxley (1959). Huxtey demonstrated the existence of a second
pulse solution (shown in Fig. 4- 3) that propagates with only 30%
of the velocity of the full action potential. This pulse has an un-
stable waveform; it will either decay to zero or rise to the full ac-
tion potential and thus represents a boundary or threshold state of
the fiber. Huxley (1959) also indicated the possibility of aperiodic
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wave train that v‘vould correspond to a closed cycle in the phase
i};ascgoi?etched in Fig. 4-1. The observation of a threshold pulse
was oo (4J_rrlned by Cooley and Dodge (1966) through direct integra-
LD, .who extended the result by assuming that the ef-
fect of a narcotic agent would be to lower Gy and Gw b ° ef 3
tor m. The results are plotted in Fig. 4-4 w?w.ere it cgn by “een
that no attenuationless propagation or thre s’hold effect obta?nssefec?r

- m <, = .26l is ' i
m<T At smaller values of this “"narcotization factor” a

”decrem‘ental " pulse (Lorente de No and Condouris, 1959)

ggtes w1'th slowly diminishing amplitude as shown ’in Fi Iilfoéla‘
_S:mce this pulse is not a function only of the argument i,c - u 8"

is not represented by solutions of {4. 1. 5} and requires th o
plete set (4. 1.1) for its description, : P e e

80

-u=18.8 meters/sec

70~
80~

50

u =5.66 meters / sec

vimy) —=
n
o)
T

30

20

1
T T T } J1 1
1

5
T IME {msec) —=

FIG - i

URE 4-3. {a) A full-sized action potential and {b) an unstable
threséhold pulse for the Hodgkin-Huxley axon at
18. 5°C  {redrawn from Huxley, 1959).

dicatlerr;p:fatnche bridge measurements by Cole and Baker {1941) in-
at the membrane appears to have an inductive current

co
mponent at small ac amplitudes between 30 Hz and 200 kHz
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Viox (MV) —=
u {m/sec) —

4
06 ce i
n —

FIGURE 4-4. Amplitude and velocity for a travelixllg Wav.? pulse. on—
a Hodgkin-Huxley axon plotted against a narcotiza
tion factor, " m, which reduces the sodium and po-

tassium conductances (redrawn from Cooley and

Dodge, 1.9 66},

nting 1 cmz of mem—

ivalent circuit represe
Tor the membrane equiva A 100 o,

i i -5 found C =
ne shown in Fig., 4-58, they ‘ : )
2rrlad 1, = 0.2 H Hodgkin and Huxley {1952) investigated the (iyin
namical relation between small changes in voltage and ct;rrin— o
(3. 2.3) and directly calculated the values OR = 8?,0 Q an atu-;e .
H' with a threefold increase in L for a 10 fall in tempetrl W.ith
Such an inductance is much too large to have a.ny‘connec 1<c)1nl
maghetic fields, and a physical interpretation 11% flllLis;:a:cEe el:l_
i 5 i inge the experimental 1ac atm
Fig. 4-5b that is contingent cn . :
bllrgne conductance [ G in (3,1,12)] remains constant tfor 2,126155 of
1961), If the current cu
the order of <100 psec {Mauro, N s
in i i larization, a sudden change
concave in the directlon of depo , @ o
[ jated with a change o VO
ent from to ], must be assocla
z;rer f?om v] 1}) V5. g The voltage will then slowly relax toward &
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smaller difference Vs, These conditions are met by the n and h
dependencies in (3. 2. 3), both of which contribute to the induc-
tance indicated in Fig. 4-5a. Extensive studies of this "phenom-
enological® inductance include those by Chandler, FitzHugh, and
Cole (1962) and Mauro, Conti, Dodge, et al. (1970). Recently
Guttman, Peldman, and Lecar (1974) have measured squid mem-
brane response to various levels of white noise from which they

_ have computed the cross correlation of input with response, Again

a parallel RLC representation of the membrane seemed appropriate
(Fig, 4~-5a) with a resonant frequency varying from aboui 100 Hz
at 10°C to 250 Hz at 20°C. This approach has the experimental
advantage that response is measured simultaneously at all fre—
quencies, thus eliminating errors caused by axon fatigue.

The phenomenological inductance also influences the propa-
gation of alternating subthreshold waves on the axon; this is evi-
dent from the "overshoot" in the return to rest of the action poten-
tial in Fig. 4-2. Subthreshold oscillatory propagation has been
studied in detail by Sabah and Leibovic (1969), and Leibovic and
Sabah {1969}, and Leibovic {1972) using Laplace transform tech-
niques and by Mauro, Freeman, Cooley, et al. {1972), who use
both numerical analysis of {4.1.1) and experimental observations
on squid axons to show that phase velocity of an oscillatory sub-
threshold wave is rather closely related to the pulse velocity of an
potential. Opatowski (1950) has also studied this relation. In
electronic jargon the squid axon resembles a low Q, bandpass
filter tuned to about 100 Hz when it is stimulated by a subthres-
hold, oscillatory current.

Cooley and Dodge {1966) also computed the response of a
Hodgkin-Huxley axon to a steady stimultation by longitudinal cur-
rent [i(0, t) = const in Fig. 2-2a]. For a steady current around
3.4 pA, a periodic train of spikes was generated with a frequency
rather insensitive to the stimulation, This result is in contrast to
the real axon, which generates a burst of spikes. TitzHugh (1969)
has suggested that the real axon exhibits an "adaptation” effect
that tends to decrease excitability with a time constant of the or-
der of a second. Such an effect, which is not represented by the
Hodgkin-Huxley equations, may be connected with slow changes
In ion concentraticn or in temperature.
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to consider approximate forms that are amenable to analytic in-
vestigation. Physical motivation for one such approximation stems
from the following observations (see Fig. 4-2):

1. The most rapid dynamical change occurs on the leading
edge of an action potential.

2. This leading edge transition carries the membrane poten-—
c ; ] tial from its resting potential to approximately the sodium
: diffusion potential, V5.

where the ion current through the membrane (4. 1. 2) becomes sim-
ply a function of voltage j; = j(v) with

L 3. The velocity of the leading edge determines the velocity
of the entire action potential.
For the squidl gia‘nt axon the functions ng, mg, hg »Tas Tme and
Ty, are sketched in Fig. 3-12a from which it is evident that the re-
{a) ] laxation time, 7., for sodium turn-on is about an order of magni-
| tude less than Th and 7 for potassium turn-on and sodium turn—
J 4 off, respectively. Thus it is interesting to consider the approxi-
# * ] mation (FitzHugh, 1969)
- Tm=0 Ty F TR
S
» y3bbe—_——
5
)
(=1
@
(=]

W) = gKng (V) + Vo = V) + ENams @) h (Ve +V =V )

Na

\

tg v r V= V) (4.2.1)

(b) This approximation is valid only for dynamic processes that occur

in times long compared with Tm and short compared with 7, and
Th, but, as reference to Fig. 4-2 indicates, the leading edge

transition comes close to jfulfilling these requirements. Equation
{2.30) then takes the form™

i 1 equivalent circuit

GURE 4-5. (a) Membrane small signa :
& measured by Cole and Baker (1941); {b) physical
explanation for the phenomenological inductance.

VXX - rsc Vt = I'S] (v) 4. 2.2)
2. PROPAGATION OF THE LEADING EDGE

Comparison of numerical results reported.in the previius sec~
tion with corresponding experimental data indllcates thatlt e e
Hodgkin-Huxley eguations {4. 1. 1) are of con.su:llerable v? ‘uielrr;St
scribing the facts of electrophysiology, but it is also of 1n

From this point on in the present text the conventional subscript

notation for partial differentiation is used wherever it is typo-
“graphically convenient,
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which is the K. P. P. equation for nonlinear diffusion. Together
with (4. 2. 2) it is convenient to write (2.21) in the form

(4. 2. 3a,b)
i tev, = - i)

as an eguivalent set of first-order FPDEs.

Equation (4. 2.1) does not have a particularly convenient an-
alytic form, but we expect it to go through zero at the origin (the
resting potential) at a higher voltage Vp = VNa ~ VR, and at a
voltage, Vi, somewhere between. With this in mind, letus apply
the transformation {4, 1. 4) discussed in the previous section to
(4. 2. 3) with the assumption that (8/87) = 0. Then the set of
ordinary egquations that are equivalent to (4. L. 5) becomes

dv _ -r i
dg~ s
. (4.2.4a,b)
di _ _ s
ot = r oui jlv)

Singular points in the (v s i) phase plane for this set occur where
{=0 and jlv) = 0, thatis, at v=0, V) and V. If we define

glv) E%j; (4.2.5)

then g{0) and g(vy) will be positive and g({v]) will be negative
(see Fig. 4-6a). From this one can show (Scott, 1962) that the
singular points at {i,v) = (0,0) and (0] ,VZ) are saddle points,
while the intermediate singular point at (o, Vl) is an inward {out-

ward) node or focus for u>0 (<0). FKunov (1967) used uBendixon’s
negative criterion® (Andronov, Vitt, and Khaikin, 1966) to show that

{4.2,4) has a homoclinic trajectory, corresponding to & "pulse-
like" solution of (4. 2.3), only for zero velocity. Thus the basic
solutions with nonzero velocity are the "level-change" waves
shown in Fig. 4-6b, From the phase-space point of view, the
velocity of such a transition is fixed by the condition that an iso~
lated trajectory leaving oné saddle point {at & = ~w} must become
an isolated trajectory approaching the other saddle point (as E—'°°)-
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Yoshizawa {1971) has demonstrated that these waves can either
charge the membrane capacitance when area #Ap 1is greater than
area A, or discharge the capacitance for A} > A;. In either
case the power balance condition (4. 3) must be satisfied.

£=x-ut

€D} (b)

FIGURE 4-6. ({(a) A representation of j(v) as in {4.2.1);
{b) propagating waves that change the voltage level.

?f A = B;, these velocities are equal to zero, which is a
special case of the zero velocity pulse indicated in Fig. 4-7 for
the case A, > A;. From {4. 2. 4} with u = 0, it is easily seenthat

a pulse like solution is obtained b ity ti i
v substituting int
homoclinic trajectory ’ o 2 2a) the

z 1
i::t[r_sofj(v‘)dv']z (4. 2. 6)

Although this solution is unstable, as we see in the following

paragraphs, it is of interest b i ifi

: , ecause it specifies the condition fo
. t}llreshold stimulation of a fiber. )
shown the pulse velocity to be nonzero for a tapered fiber.

Lindgren and Buratti {1369) have
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n=2m-1 (4.2.9)
The case m = 2 implies n = 3 so j(v}) must be approximat-
4,, ed by a cubic polynomial (Nagumo, Yoshizawa, and Arimoto, 1965 ;
— v FitzHugh, 1969)
2
jv) = Bvlv - Vl) (v - VZ) (4. 2. 10)
where B is a constant (with units of mho/VZ) chosen to make
Y i(v) approximate CLEV from Fig. 3-10a or {4.2,1). Since m= 2,
2 a suitable quadratic trajectory is
vy
i= Kv(v- vz)
Ay
which on differentiation gives
i(U) /; .
: i = 2Kv ~ KV
(b} dv 2
{a) i
_ ‘ . ~ A,; (b) stationary pulse However, (di/dv) can also be evaluated by dividing left- and
FIGURE 4-7. (a)l i(gzl with AZ 1 : right~hand sides of {4, 2. 4) to obtain
solution.
. —Cll:cuﬁ—%(v-v)
A family of analytic solutions for the wave forms &nd veigc;z) dv r 1
ties indicated in Fig. 4-6 can be obtained by writing (Scott, s
Thus K = - (B/er)2 S0
%: T{v} (4.2.7)
{_B
u = J > (VZ - ZVl) {4.2.11)
i T st satisfy
where (4. 2. 4) requires that mu erc
. J'(V)_r cu (4. 2. 8)
T =17 s

and {4. 2. 4a} can be integrated to the logistic function

For u = 0, the pulse-like trajectory of (4. 2. 6}). MNow suppose
u#0 and

V2

V= I (4. 2.12)
1+exp [(Brs/z)z(x—ut—xo]

j{v) is a polynomial of order n, and

. Note that the velocity given by (4. 2. 11) changes sign as V) be-
comes greater than (VZ/Z). This corresponds to the area condi-
tion indicated on Fig. 4~éb, Similar results have been obtained

Tlv) is a polynomial of order m

Then T' is of order (m-1) and from (4, 2.8)
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for other nonlinear wave systems simulating the nerve axon by
Il'inova and Khokhlov (1963) and by Parmentier (1969).

Another approximation for jv} that permits an analytic solu-
tion for (4. 2.4) corresponds to the case m = 1, so from (4. 2.9)
n = 1 and we have & piecewise linear curve indicated in Fig. 4-8,
Below a voltage V) the membrane 1is assumed to remain in a rest-
ing state with low conductance; above vy it is assumed to switch
into an active state of much higher conductance. Such an approx-—
imation is certainly suggested by geveral of the curves pletting Ip
against vz 1D Fig, 3-10. Using the notation of Tasaki (1968), we

write

itv} =gV for v <V,
(4.2.13)

The discontinuity at V] is acceptable because (4. 2.2) and {4,2.3)
do not involve derivatives of jlv). With j i) approximated as in
(4. 2.13), (4.2, 2) is linear both above and below Vj. Thus the
nonlinearity in the problem manifests itself only where Vv = Vl'

To simplify the discussion we begin by assuming that gp = 0.
Equation {4. 2. 4) can be written

2
d v dv

dv v cu=c-r jlv}=0
diz 5 d& s

which becomes

+r cu 2% - g for - v < Vl (4. 2. 14a)

and

2
g—y'-krcu’cl!—rg(V—V):O for v>V (4, 2. 14b)
d‘g‘z s d s7a 2 1

If, for convenience, we choose £ = 0 tobe where v =V, @
leading edge that makes a fransition between zero and VZ (see
Fig. 4-6) and satisfies (4. 2. 14) is easily constructed.
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Thus

v = Vle for v <V (4. 2. 15a)

and

v, 6

v=V, - - 2
5 (VZ Vl)e for v > Vl (4. 2. 15b}

where =
) yp = T ou and Y, = (rscu/z){—l+ {l+4g_/r czuz)%] The
. > s a :
Ez ggigui£§§opagtitlon is not yet determined in S(4 2.15) but may
in either of two ways {(Scott, 196 (a)
: it 2): {a) b i
th :c,\?siif};ci:nves bimg roduced by j(v) e,md absorbed b§ erqua;i:a?“
the w CapaCitarc; zcViu, tl.le power being absorbed by the mem-
o longitudinalC:uiterlo'CItY u, or (b} demanding continuity in
‘ nt, i, at £ = 0. Approach@)i
: . is e
Zi:g;abpower balance idea behind (4. 3). The leading edglglriymtent
2 Saminf;"?g .(f[al.ec;rlcal energy in the membrane capacitanc2§3 at
it is being produced for a stead i
: : ‘ vy travelin
izfizntApgoach (b) is equivalent to (a) and somewhat I?]O‘/r":‘;lz 2
venien 1.’angeo;n 24;26 15) and (4. 2, 4a), i(£) is easily calculateg
and £ <0, and current continuity at £ = 0

implies vz {V, = Vj) = y1¥ 2o -
city as 2 1 v1V), which is readily solved for the velo—

I/ ga % (VZ— Vl)

u =
\_ 2 1
rc 2
s v, v)

4. 2.16)

The case g.#0 hasb i
r een studied in detail by Kunov {1966
Vorontsov, Kozhevnikova, and Polyakov (1967), who fi(nd ) and by

(Vz - )
u = Vl ga gr
v (V. - . _ 1 (4- 2, ].7)
. CZ 2( 2 V]_) (VZ Vl J 2
+
v v e
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1t can be seen that a necessary : shown in Fig. 4-2, TFrom the Hodgkin-Huxley axon parameters

(see also Kompaneyets, 1971). mfrom v =0 to V, Is given on page 69 and taking Gy = 33 mmho/cm?Z from Fig. 4. 2,

iti itio
condition for a steady wave of transi ! :
V., - Vl)z'g > Vlfzgr. This again implies agaln that the areas Ay
anzéi Al in aFig. 4~8 must satisfy the inequality

the factor (ga/rscz)z is equal to 33.7 m/sec. Taking Vo = Vg~
Vg = 115 mV and (from Fig. 3-10) V; = 30 mV gives u = 48 m/sec,
which is more than a factor of two higher than that calculated by

(4. 2. 18} ] Hodgkin and Huxley. The main source of this error is the assump-
AZ > Al \ tion made at the beginning of this section that 7. = 0. This as-
‘ sumption implies that sodium current will begin to flow fully as
f " otization”, discussed in the previous section soon as the membrane voltage changes by 30 mV. But inspection
The effect o B8te0 o 4 'is to reduce g,. Eventually the in- of Figs. 3-12 or 4-2 indicates that this is not so. The time de-
in COF:;CEO; Té;higlgi'olate,d and only decrerarllental conductance : lay associated with sodium turn on requires the membrane voltage
equali . 2.

tc change by about 60 mV before the membrane conductance rises
can take place. to half of its full active value. Taking V) = 60 mV gives

u = 22 m/sec
Ho) which is satisfactory considering the nature cf the approximations
’ that have been made.

A more flexible procedure for taking account of the sodium
turn on delay has recently been developed by Rissman {1877). He
assumes T(v) defined in (4. 2.7) to have the form

Slope =gy v

V2

T(v}) = A sin (4, 2.19}

which ensures a transition wave of amplitude V, as indicated in
Fig. 4~6. Then from (4. 2. 8) the form of j(v) can easily be com-
puted as

i) = K sin? +K, sin%]ﬂ (4.2.20)
2 2

Slope = Gq

where the adjustable constants Kl and K, are related to the un-
known constants A and u by

2

o VK, K
FIGURE 4-8, “Piecewise linear” approximation for 3{v) 1 A= T adus Jeme (420218D)

; 2K r
(Tasaki, 1968). : 2 s VZ

Now K| and X, can conveniently be chosen to fit (4. 2. 20} to the
experimental measurement of ion current plotted against membrane

The value of (4. 2. 16) can be assessed by using it to calculate‘
the velocity of the action potential for the Hodgkin~Huxley axon
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voltage as obtained from Figs. 1-3 or 4-2. Rissman finds in gen-
eral that the ratio

(KZ/KI) = 0.6

gives good fit to such data. Their magnitudes, of course must be
adjusted to account for the axon circumference. For the Hodgkin-
Huxley axon with a maximum ion current per unit length of L0O7 X
10”2 A/m he calculates

u = 23. 7 m/sec

A somewhat similar (piecewise linear) model for jlv) has recently
been studied by Pastushenko, Chizmedzhev and Markin (1975a}.

Donati and Kunov (1976) have discussed the application of
velocity formula (4, 2.17) to measurements on eight squid giant
axons. They assumed Vp = VNa - Vgp, and took Vi to be at the
point of maximum rise on the leading edge. Values for V| ranged
between 52z mV and 69 mV with an average of 57 mV. Since the
active state conductance, dg, is difficult to measure, this equa-
tion is not particularly useful for an absolute estimate of the con-
duction velocity. However, it is quantitatively useful in predict-
ing small changes in velocity due to changes in such parameters
as external lonic concentrations, temperature, and drug content.
Donati and Kunov, for example, use calculations of the change of
membrane conductance in the wake of & pulse together with (4.2.17)
to predict the conduction velocity of a second pulse. The agree-
ment that they display between predicted and measured velocity
changes 1s quite impressive.

The importance of time delay in the conductance rise was €m=
phasized by Offner, Weinberg, and Young (1940), who developed a
velocity formula similar to (4. 2. 16) shortly after Cole and Curtis
(1939) recorded the waveforms displayed in Fig. 1-3. This delay
is also of theoretical importance since (4. 2.16) and (4. 2. 17) imply

1
2
( ga VZ ~]
u - > —-£ | o as Vl—>0 (4. 2.22)
LTS 1
but with 75 # 0, the effective value of V] cannot reach zero.
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Thus an infinite propa i ity i
gation
A velocity is prevented by the nonzero
; Eariy a.ttempts to calculate the propagation velocity of an ac-
{i;ZOI;Otvg'tlal have been reviewed by Offner, Weinberg, and Youn
fos) ,Rosmiei thE;t time, additional approaches have béen develos
enblueth, Wiener, Pitts, et al. (19 i
s . 48), Huxley (1959
;Z?.:;r(cl)iéz)h Kompaneyets and Gurovich {1965}, ’Balakhovskii (1568)
_Markm andnmiap;fxld(liw),( Smolyaninov {1969), Pickard {1966} and’
zmadzhev (1967), of which the last 4
: . two refere
relate propagation velocity to the rate of rise on the leading :ggz

of the action potential. Such i i i
o 15a) oinoe a relation is easily obtained from

av dv
ot = -u- =y uVv
max de [E=0 e
Thus
1
v z
u = t, max I
4.
—z—————rs Cvl (4.2.23
as is readily verified for the waveform in Fig. 4-2. This is th
. . T e

formula used by Zeeman (1972},

bave%gf rfcently Past.ushenko, Chizmedzhev and Markin {197 5b)
1 cated how sodium turn-on delay can be included in a vel-

. T Yy C ntinue as T = = a 0Ox~
OCILY formula he ontin (0} sume n Tj = 0 but PPRIrox

imate m. (v) as a st i n Th
o ep function and take 7, = * n
. : m = const.
they integrate the third order system {v,i,m) to firi:i o )
2 2

(s}
n

1
= 1
Na B0V, -V)|?

2 v, (x)

where v is the positive real root of

2,2 2
v iy +ally + Za)(v2+3a) - 6a”

ch
a = F h
mYNa o(Vz - Vl)
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Note that in the limit 7, —0, ¥ ~1 and the velocity formula {¥)
becomes similar to (4. 2.16). Tor the Hodgkin-Huxley axon at

18, 5°C, they take Vp = ll5mV, Vi =30mV, 7m = L 31 x 107% sec
and aNa = .12 mho/cm2 (see Tig. 3-12a) together with the para-
meters listed on page 3. Then a = .045 and

y=.295 so U= 19 m/sec

We now turn our attention briefly to the effect of magnetic
fields, which are associated with the longitudinal currents and
represented as the inductors £; t 1, = fg in Tig. 2—-4b, on the
propagation velocity. This guestion arises because it has been
suggested (Lieberstein, 1367a, b, 1973; Brady 1970, Isaacs 1870,
Lieberstein and Mahrous 1970, Lieberstein, 1973} that (2. 30) could

be augmented to the form™

2 2 3

9 v a v av i

by _, Y L —+ 4.2.24
2 1% 27 s (C 8t+]i)+ﬂs at (a.2.24)
ox at

Then they erroneously assume that the numerical instability dis-—
cussed in connection with Fig. 4-1is related to physical instabi-
lity, and they set both sides of (4. 2.24) to zero at a velocity

(S

u = [£.c] (4. 2. 25)

To examine this guestion {see Scott, 1971b) we again ignore
turn-on delay and assume T = 0. The first-order PDEs corres-

ponding to Fig. 2-4b and (4. 2. 24) become
v =—-fi ~-ri
st s

X
{4. 2. 26)

i = -ov, - i)
Taking j{v} as in Fig. 4-8 with g, = 0 and assuming a steady
wave of propagation, v(x-ut) = v{£), then yields (Scott, 1963, 1970)

e

" Van Der Pol (1957) has proposed a similar model for propagation
on a nerve fiber.

from the membrane.
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1
2 2
g -
o ||V
2 Vv
. r.c i2
l_gazs w (4.2.27)
rsc VZ

This implies that seri {
. eries inductance will ha igi
on velocity if it satisfies the inequality Ve @ neglizible effect

(rsc)( - )

! << | —_—

s - 4.2
9, J\V,- v (4.2.28)

The left- i
eft-hand side of {4. 2, 28) can be evaluated from (2. 12} and

{2.14), using small
argument i i
tions, as approximations for the Bessel func—

1 [
z 4z, o 4y —2
1752 v 5 Tiw g [1-2 log (Ba)] (4. 2. 29)

the second term of whi i
ich gives the series
the T O e
ic fields both inside and outside the fiber ’ '?Ewiasnce From magnet

I-LO
ﬂs = u [1-2 log (pa)]

where pgo (=47 x 1077 H/m) is i
?If/glc‘mn}igen::itiﬁtifterialls./ %akin;heﬁi\ﬁfioElzag?n?;llcie}?ser?eibliéi}g
o T ineq?lalit arlid 51d§ O.f (4. 2. 28) is greater than 108 H/m;
ot 3; is satls‘fled by eight orders of magnitude an’d
pegne propagg}[riosnor?ge w1ll‘ have no measurable effect on the
ther auopem tho an ac’.uon potential. This conclusion is fur-
510y somtionys ofe(zumerlcal studies of Kaplan and Trujillo
for which peons of f. 2.24) at the velocity given in (4, 2 25)
more o 1 ‘o the gquation go to zero represent no.thi
ecoupling of high~frequency electromagnetic wa o
Although this may have been what Newto‘;es

(1718) had in mi
- n mind when he S
do posed his "twenty- ) .
:G0es not correspond to normal nerve activityY fourtn question, * it

s
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3. THE FITZHUGH-NAGUMO EQUATION

gactions 4-1 and 4-2 have bracketed ‘(in the 5eerjff§e?f a;haer
tilleryman) the representation of a propaga‘:lm&zg)nerive . fai,rly e
dgkin-Huxley eguations (4.1.1) and 4.1. 2}, ¢ Spnindt
chl?raie description of spike propagation but arepsuir;lfw Tahte éonlin_
i i automatic com 2 o
. an?flfyze'ownltetzl:{?_lu;ti?f ia.dzo.fZ?nis simple enough for analytical 1[;—
o ‘%1 U'Sln and vields some useful results [e. g., (4. 2..17 )'forlt e
Ziiggca;tilc?n V(-aloc_:;ty] , but it fails to reproduce the gualitatively

T i repeated
jmportant feature of pulse recovery that is necessary for rep

firing of the fiber. 1In this situation FitzHugh {1961} and Nagumo,

Arimoto, and Yoshizawa (1962} proposed § @odlf}ca’ii?t;fbiiearllﬁ)rzv
linear d’iffusion equation that would reltaln 1ts[3151m§l R e
the action potential to return to a resting level. bpe Writ{en

en units of space, time, and voltage, (.4' 2. ;)hc&r; Chara_cter .
Vg, - Vi = FV), where F(V) is a function V\Tl‘ta e
d)i%{ated in Fig. 4-6a or 4-8. Augmenting this equa

urecovery” variable R 1O {FitzHugh, 1969)

y -V =FV}+R (4. 3.1a,D)
XX t

where

R = e(V+a=-DbR)
L
i i ts
ields the desired effect. To see this note that R in (?3.1;) ac
Zs an outward ion current tending to deire?{siltiienar;ua}deé D e
i e to the Hodg -
rigs. 4-ba or 4-8. With reference
‘I;j.lc?rfs {4.1.1} and (3, 2. 4a), there is a correspondence between

R~n

b~ «T
€ n

~xn T
eV oTn

o indicated in (3. 2.6). The
i “remperature factor indicate 2.6
e i ) can be abscrbed into the definition of R

f generality in setting it to zero.
ly assumed egual to zero. Since €

where «
constant a in (4. 3,~-1b
and F so there is no loss ©
constant b is often arbitrari

The
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is proportional to «, it can be considered as a parameter that in-
creases with temperature,

Eguations {4. 3. 1) are beginning to assume the role with re-
spect to nerve-fiber propagation that the equation of Van Der Pol
(1926, 1934} has played with respect to oscillator theory., "Van
Der Pol's equation” displays the qualitative features of many os—
cillators (spontaneous excitation, limit cycle, continuous transi-

- tion between sinusoidal and blocking behavior, etc.) without ne-

cessarily being an exact representation of any particular dynami-
cal system. As recent studies (Cohen, 1971; Hastings, 1972;
1976a), Greenberg, 1973) indicate, such a model is very stimulat-
ing and useful for the applied mathematician. Equations (4. 3.1)
are often called "Nagumo's equation” (McKean, 1970; Greenberg,
1973}, although FitzHugh (1363) refers to it as the "B. V. P. equa-
tion" in recognition of the introduction by Bonhoeffer (1948) of
phase-plane analysis to study the passive-iron nerve model, and
of Van Der Pol. The reference to Van Der Pol, however, is some-
what unfortunate for in 1957 he introduced his own modification for
application to nerve problems that failed to emphasize the diffu-
sive character of a nerve fiber. Thus the term "FitzHugh~Nagumo
equation” assigned by Cohen (1971); Rinzel and Keller {1973}, and
Hastings {1976b) seems most appropriate.

The general utility of (4. 3,1} can be appreciated by consider-
ing the design of a neuristor or electronic analog of the active
nerve fiber proposed by Crane (1962). Eguations (4, 3.1) describe
the most natural technique for achieving pulse return in an .elec~
trenic neuristor (Nagumo, Arimoto, and Yoshizawa, 1962; Crane,
1962; Scott, 1962, 1964; Berestovskii, 1963; Noguchi, Kumagai,
and Oizumi, 1863; Yoshizawa and Nagumo, 1964; Sato and Miya-
moto, 1967) and are closely related to the dynamical equations for
active superconducting transmission lines that employ tunneling
of either normal electrons {Giaever type) or superconducting elec-
trons (Josephson type) {Scott,1964, 1970; Parmentier, 1969, 1970;
Johnson, 1968; Nakajima, Yamashita, and Onodera, 1974; Naka-
jima, Onodera, Nakamura, and Sato, 1974; Reible and Scott, 1975;
Nakajima, Onodera, and Ogawa, 1976}, Considered as a model

for the nerve axon, (4. 3.1) neglects: (a} turn-on delay for the

sodlum current, (b} the fourth-power dependence of potassium
current on n, and {c) the dependence of Tpn on v. More exact

:second-order systems have recently been considered by Krinskii

and Kokoz (1973), A good general survey of these problems is
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given in the thesis by Kunov (19656), and a particular example is
presented in Section 4-8.

The analysis of (4. 3. 1) was begun by Nagumo, Arimoto, and
voshizawa (1962), who considered the ordinary differential equa~
tions for traveling-wave solutions of the form Vo= Vix-ut) = V{E)
and R = Rix~- ut) = R(E) as indicated in (4. L 3). Thus V and R

must then satisfy

av _
dg“w

gdlg = F(V) + R - uW (4.3.28,b,)

dR & Y=
dg_u{bR V- a)

Nagumo and coworkers assumed F{V) to be cubic, took b=20
and obtained numerical evidence for the existence of two homo—
clinic trajectories for sufficiently small values of . Ata criti-
cal value, ¢, thesé solutions merged and for € > e no homo~
clinic orbits were found, just as in Fig. 4-4. Such results sug-
gest the axistence of two pulse—like {raveling-wave solutions to
(4. 3.1) {as in Fig. 4-3), and experiments on an electronic analog
indicated only the pulse with higher velocity to be stable. These
results were confirmed by FitzHugh (19 69) through numerical stud—
jes of (4.3.1) and {4, 3. 2) with b#0 and

P(V)=%V3-V {4.3.3)

velocities of the two branches are plotted against the "tem=~
perature parameter” € in Fig. 4-9. FitzHugh also made & motion
picture entitled "Impulse propagation in a nerve fiber" ¥ based on
numerical integration of (4.3.1). Bome selected frames from this
film are reproduced in Fig. 4-10, which shows the propagation of
two pulses away from a point of stimulation. In the fully develop~

ed pulses (Figs. 4-10f - h) the recovery variable, R, follows behind--

the voltage, V. These pulses correspond to the upper velocity (&)

e

" pvailable on loan from the National Medical pudiovisual Center
(Annex) Station K, Atlanta, Georgia 30333,

FitzHugh-Nagumo Equation 23

at ¢ = 0.08 in Fig. 4-9.

e The lower velocity pulse (B') is un-

The locus of allowed aVEllllg wave velocities in the
ir

(l €) P )

ane indicates where the power balance condition (4 3) is

satisfied. For e >
. 3 only de i
o cremental conduction i i
on is possible
. ... Uniform
Lo conduction [gec;emeptul
oes 4\ @ anduction
" S’Ob!e A
Lp oo J
unsmb\e
. O]
o]
v ; ! t 1
€ —»

FIGURE 4-9. i i
, Propagation velocity for traveling wave pulse solu-

tlﬁ;f Zf theA FitzHugh-Nagumo equations (4. 3. 1)
Z: Oe7 against the "temperature parameter" ¢ for
.7 and b= 0.8 (redrawn from FitzHugh, 1969).

Arima a
ot e n e e . With mesrerie rocnietions on B G i
O S O% ;h { ) With suitable restrictions on F, G, and
o SooTness of | e initial data, they show that a unique’so,l -
o s tle alf space ]x] >0 and t> 0. Expandin t;'
o . guti (1963) showed that solutions of (4. 3. 1) wi b oA
’ , and VF > CVe tend uniformly to zero ) e e

A related result

was obitai i
s opta %Edbif Y;)(\sjguzawaband Kitada (1969), who consider (4.3.1)
; a cubic polynomial .y
ence of a threshold b B
howing th 5 {
horho Y S g that every solution i i
od of zero converges to zero with increasing tiilesome nelan”

They confirm the exist-

The exi ini
stence of homoclinic trajectories (which begin and end

at the sam i ]
e singular point) for (4. 3. 2) has been studied in detail
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the computer movie of FitzBugh show-
nof (4.3.1) 5%
a= 0.7, and b= 0.8.

GURE 4-10. Frames from . .
- ing results of & local stimulatio

above threshold with ¢ = 0.08,

and important an-
Cohen, and Lager-
Censider Fig. 4~

(1974, 1977a)} and Hastings {197 &b);
been cbtained by Casten,
lar perturbation methods. ‘
oclinic orbits in the limit e = O,.lmp.ly—
ing (4.3 2¢} R = const. Orbit B corresp?nds to point B meFl;gc,itY
4—g€J ar';d ‘is just the trajectory given in (4. 2. 6) for tkTe zero v oy
#+hreshold pulse” shown in Fig. 4-7. Orbit A, Whlc};tcizn;izpsmgﬂ
int A in Fig. 4-9, is somewhat more complex. [t c

tolali'oé?bit approached as e —~ 0 of a family of homocl‘mlcbor klward
l‘jhat correspond to the pulse shown in Fig. 4-12. Golng dac

by Carpenter
alytical results have
strom {L975) using singu
11, which shows two hom
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in £, or forward in time, this pulse can be described as follows
{encircled numbers correspond to branches in Figs. 4=1la and 4~12)

@ The "leading edge" involves a rapid transition between
the outer zeros of F{V} as was discussed in detail in the
previous section. :

@ A "slow relaxation” from R = 0 to a new value Ry deter-
mined by {4. 3. 2c) with the condition F{V) + R ~ 0.

® Arapid downward voltage transition between the two cuter
zeros of F{V) + Ry. The value of Rz must be such that
this trailing edge will have the same velocity as the lead-
ing edge {see Fig. 4-6).

@ Finally, there is a slowrelaxation from R= Ry back to zero.

The velocity, ug , of the singular orbit A is just that velocity
discussed in the previous section. Assuming a = 0, b# 0 and
¢« >0 we can write

A 2 A
U=u. +tel +e u, +---

0 1 2
2
Vo= Vo teV e v, e (4. 3. 4a, b, c)
2
R = RO+eRl+e R2 toee

and equate powers of ¢ to obtain

2

a*v, av,

tu, — -[FV)+R]=0

e? oae o’ *

2
d“v

l+u~—~dvl—fP'(v)—R— 2y 5
ge? 0ag T N TR g (4.3, 5a,b, c)
drR, bR -
B B

5 =

3 U,

Ry (€) is readily obtained from integration of (4. 3. 5¢c). Then



FitzHugh-Nagumo Eguation 97

o)
"

€50

i
R+ F(V)= %

€=0,u=0 R

7K

(b)

FIGURE 4-11. Stereoscopic phase space sketches of homoclinic
trajectories for {4.3.2) with e = 0.
(a) u=ug>0;: ® u=0.

96

&= x-ut
@

FIGURE 4-12, Voltage pulse corresponding to orbit @ in
Fig. 4-illa with ¢ > 0.

ulA can be determined in the following way. Note that (4, 3. 5b)
can be written in compact form as

LVi =f (4. 3. 5b"}

where L= (d /d& +u, (d/dg) - F (VO) is a linear operator and

f=R -u A(dVO/dg) is an inhomogenéous term. Define an inner
product of two square integrable functions as

o

v,w) = [ viEIw(g)dt

~00

and recall that the adjoint (L) of an operator L satisfies the
condition

{Lv,w) = (v, Ew) {4.3. 6)
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Then the left-hand side of {4. 3, 5b) must be orthogonal to a func-

tion ¢ that satisfies

Te=0

To prove this, check that (LVl,‘c;) = (Vl,ig) = (v1,0} =
(dVO/dg) is a square

differentiation of (4.3. 5a) it is seen that ¢ =

integrable sclution of the homogeneous equation Leé = 0.
is easily shown to be 2 solution of the ad-
Thus the right-hand side of

This condition, (§,f) =

3 = (dVg/dE) exp (ugé)
joint homogeneous equation (4.3.7).
(4. 3. 5b) must also be orthogonal to &.

4.3.7)
0. From

Then

[exp (agt) dVO/dg), (R; - ulAdVO/dg)] = 0, determines ulA as
w| dv
LA I 1 et
: 5 ﬁj (v, (€1 - bRy (E7)dE" | 5 explighlds
ul = 7 (4. 3. 8)
Yo w (v,
S TR (u,€)dE
—C0
where it has been assumed in integrating {4.3.5c) that Rl—*O as
£ — 4o, From Fig. 4-9 it is seen that the approximation
umuo-}-ule (4.3.9)
is useful over a substantial portion of the upper {stable) branch.

In computing ulA from (4. 3. 8) it is convenient to choose

£ =0 along the leading edge of
4-12). The weighting function, exp (uoi),
tributions to the integrals from branches

gingular orbit. Furthermore, since Ry =
constant b |intreduced in (4. 3.1b)] does not enter
culation of ulA. As an example of
F(v) to be as in Fig. 4-8 with g
the normalizations in (4. 3. 1) imply, Ig = i and
from (4. 2.16), upg =
from (4. 2.15) into (4. 3. 8) gives (4.3.9) as

the pulse (@ in Figs. 4-1la and
then eliminates all con-
@, ®, and @ of the
0 along branch O , the
into the cal-
the application of (4. 3. 8), take
=1 and gr= 0 and note that
c = 1.
(V- Vl)/(VZVI}E, and substitution of Vg (&)

Then,

FitzHugh-Nagumo Egquation 39
2
V' -3V V
B _Ze 1 1 2 2
u=u,-mo b 51t 0k (4. 3. 10)
uO 4V
2
4 ¥

This expansion is useful only if ¢ <<uy
For the orbit ® in Fig. 4-11, ug = 0 and (4. 39) cannot be

used. In this case Casten, Cohen, and Lagerstrom (1975} write
V= .
Vot e v+
_R:\feRl+--- (4. 3.1la,b, ¢}
b B
to obtain
2
d v
—4_ Fiv)=0
dgz 0 (4.3.12})
2
d V1 dav
1 . B 0
VEWV)=R -u, —F
2 3
e 1 0 . | G (4. 3.13)
dR -
1 : VO (4. 3. 14)
de "B
1

The left-hand side of (4 i
of (4. 3.13) is now orthogonal to (dVO/dg), S0

1

[ve]
2 2

J vt
ul - +-_°°_0______
17 4, 3.15

fco av 2 ( )

dg
o L dE

* Note that in (4. 3.10) V
in Fig. 4-8.

and V, are constant voltages defined




100 The Nerve Fiber

Again we se¢€ that the approximation

u o Ve u]f (4, 3. 16)

is useiul over much of the lower pranch in Fig. 4-9,

Closed trajectories satisfying (4. 3- 2) correspond to the peri-
odic wave solutions originally suggested by Huxley (1959) for the
Hodgkin—Huxley equations. The existence of such closed orbits
for the Fitz Hugh-Nagumo equation has been studied by Hastings
(1974) and by Carpenter (1974, 1977a} using the concept of "“isolat-
® (Conley and Easton, 1971) around & singular orbit.

Hugh~-Nagumo equation can be
g. 4-13, which is closely

ing blocks
Periodic solutions for the Fitz

readily appreciated with reference to Fi
related to Fig. 4-7. It is assumed that R= 0, ¢ = 0 and u=120
so (4.3.2a,b) imply

dv W

= Ty 4, 3. 17

aw = EW) (4.3.17)
which can be solved for the trajectory

v L
w = [2) Fv)av'] z (4. 3. 18)

just as in (4. 2. 6}. Then from (4. 3. 2a), V({x) can be expressed as

the elliptic integral

x= [ — (4. 3.19)

-

(2 Fv)av')®

where simple zeros of

v.
[ F)av

lead to turning points in the function Vy (x) defined by (4.3.19).
This situation is sketched in Fig. 4-13, where the necessary 2eros
are insured by equal positive and negative areas under F(V) be-
A closed trajectory coire sponding to one

tween the turning points.
¢ in Fig.4-

of a family of such periodic solutions is indicated as
ilb. For the case ¢ >0, the perturbation technique of Casten,

‘,branches @ and @
~and 7,71 i

FitzHugh-Nagumo Egquation 101

Eggzné} agldl Lagerstrom (I975) can again be applied. From egua-
left hand éiél télfr(}(igg (143')3? 14) it is easily demonstrated thatq;?e
; ) . 3. is orthogonal )
integration is over a period, x , o? VZ (xt)o (dvy/dx), where the

as indicated in {4. 3.16) with Thus u varies with «

)\'2
i

U BN (4. 3. 20)
dx
3 dx

nzel and Keller (1873) have studied periodic solutions of
(4.3 2) with ¢ = . 05, a = O, b = 0, and

FWV) = V for \/'<'\,7l

V-1 for V>V
!
This is the function of Fi
. 1g. 4-8 with g, = =1
spa.ce Kequatlons are linear except alonga thegr la so the phase-
periodicity defined by plane V= V;.

(4.3, 21)

For a

V(E)= V(E + 1) (4.3. 22}

o) i
Shrcr)lvinm;r;;r;;:jj‘ values for ‘velocity, u, and amplitude, A, are
S e thlgni of A in Fig. 4-14. There are twé w,aves for
Current,ly i iss ow:fzer wavg keing unstable.
- I_I()dgkm_HUXIEo grea.t interest to extend such results to the
Cinany Gl v equ,atlons (4.1, 1) or to the corresponding or- E
dinary differenti (lgquatlons for traveling-wave solutions {4, 1, 5) !
frens and Sheni 70) hayel ;hown that (4. 1.1) has a unique. s.olu'— |
Semdonoa e hry‘ o.u}'lded ml‘tlal conditicns with continuous de-
n the initial conditions. Carpenter (1974, 1977a) heas

‘extended the concept of isolati
t of iselating block hi dimensiona
- deh ] : g blocks to the higher di i
. dha eisszace associated with (4. 1. 5) and indicated inr]?‘iql 5‘4 o
do th he takes m to be a fast variable so that v, i 'and l;n
bl b

To

vary along b
g branches & and @ andonly n and h vary along
The small parameters are then 7, 7,7
m» n H

a .
, and both homoclinic and periodic orbits are established
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3. Pericdic bursting, which is a periodic activity where the
appez%rance of arbitrary numbers of pulses is separated by
long intervals of rest. More precisely, given any se-
quence of positive integers {k;}, solutions of equations
of Hodgkin-Huxley type can be constructed with ‘k-
pulses in the ith burst. :

{a} (b}
FIGURE 4-13. Construction of periodic orbit € in Fig. 4-11b: ¥ OO 2500 1 l ]
(a) "cubkic" nonlinearity; (b) the periodic wave. 3 ’ 400 600 800
(a)
The analysis by Hastings (1976a), which does not assume T to o i
be small, is probably closer to physiological reality as we saw in

the previous section.

Quite recently Carpenter (19772, 1977b} has shown that the
Hodgkin-Huxley equations can exhibit traveling-wave solutions
that are gqualitatively different from those of the FitzHugh-Nagumo
equation. This arises because the Hodgkin-Huxley equations have
two slow variables {n and h) instead of one (R} for FitzHugh-
Nagumo. These snew" solutions include:

0.06Y=0.0
inite p i i o : | i
1. Finite pulse trains, where a fixed number (I <k <) of % o5 s sol_o 8010 E
pulses can propagate together. In the phase space of i
Fig. 4-la, this corresponds to & homoclinic orbit that ) NP
"loops around” k times before returning to the singular point. (b)

2. Two periodic solutions for the same traveling—-wave velo-
city. This differs from the FitzHugh-Nagumo case of Fig.
4-14, which implies a single periodic solution for any

particular value of the traveling-wave veloctty.

FIGURE 4-14. (a) Velocity and (b) amplitude plotted against pulse
spacing, A, for periodic solutions of the FitzHugh~
Nagumo eguation with ¢ = 0.05, a=0, b= 0, and F(V)
as in (4. 3. 21) (redrawn from Rinzel ar;d Kell,er,1974).
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There is, of course, no @ priori reason to expect these exotic
soluticns to exist when Tn ,'rn_I, and TRl are set at values
appropriate for a real nerve membrane, However, the recent ob-
servations by Donati and Kunov {197 6) indicate that such effects
are at least plausible. Donati and Kunov found that two pulses on °
a squid fiber becomse "locked together” when they are separated by
a time interval of about 7 msec. The reason for this effect can be
appreciated from an examination of the structure of the stable
Hodgkin-Huxley pulse (a) shown in Fig. 4-3. On the wake of this
pulse, the voltage vip passes from a value below Vg (which
would impede a trailing pulse) to a value above VR {which would
accelerate a trailing pulse) at a time of about 7 msec. This oscil-
lation is, in turn, related to the "shenomenclogical inductance”
discussed in relation to Fig. 4-5. Such a locking effect should
permit any number of Hodgkin-Huxley pulses to be hitched togeth—
er {like railroad cars) in the ways indicated by Carpenter.

4. THE MARKIN-CHIZMADZHEV MODEL

An interesting technique for analyzing the structure of a nerve
pulse was introduced by Kompaneyets and Gurovich (1966) and dis-
cussed in detail by Markin and Chizmadzhev (1967). This approach
reproduces several of the qualitative features of the FitzHugh-
nagumo equation but ig even more simple. Markin and Chizmad-~
zhev start with the nonlinear diffusion equation (2. 30) and immed-
iately assume the lon current jj to be the following function of
time

0 for t <0

J'i(t)

—]'1 for 0 <t<T

(2.4.1)

= +I2 for 7y <t <~rl+'r2

=0 for t>'rl+72

Next the membrane voltage is raken to have the traveling-wave
form v = v{x - ut) = v{§). Equation (2. 30) is linear within each
of the four regions indicated in Fig. 4-15. General solutions with-
in these regions take the forms: @ Ajexp (-rg cu £) + BL,
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@ A, exp fFrgoué)+B,-JjE/cu, @ Azexp (-rgouf)+ Ba+]p£/cu
and @ Ayexp (—rS cuf) + By. The requirement v(§) —0 as !gi
approaches infinity implies By = 0 and A4 = 0. Continuity of
v{€} and its first derivative at the boundaries between regions

fi.xes the other six constants. The corresponding analytic expres-
sions for v(&} are:

Region @ :
| 2 )
v({E) ~rsc2u2{ll+12 exp{-u re (Tl+'rz)]—(]l+jz)exp (-u rsCTl)}exP(_ursc€)
{4.4.2)
Region @ :
1 2 J.€ i)
v(E) = - -1}~ _ . o 1
L a2 "Jz[exp( u rSC'rZ) 13-, bexpl rscu(g-ru"rl)] -t T
s rcu
(4. 4. 3)
Region @& :
J
2 z J 7, {147, i
vig)= exp|-u T elr 47, )~ ZZ L A 2
uzr CZ ol 72) urscg] + ucg + - ——
s ure
(4. 4. 4)
Region @ :
I
ol 22
vie) = c : {4, 4. 5)

From (4. 4. 5) the condition for pulse return to its starting value is

7= 1,7, (4. 4. 6)

(see Fig. 4-15).
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which is sketched as a function of pulse velocity in Fig. 4-16, It .
is evident that, for a sufficiently small value of Vy, there aretwo
values of pulse velocity that satisfy the condition

V() =V (4. 4. 8)

If the upper value of pulse velocity, uz, is slightly increased,
v(0} becomes less than the critical value, V|, and the pulse
slows down, Thus this faster pulse appears stable. In a similar
way, the lower value of pulse velocity, ug, is for an unstable
pulse. Thus the two intersections in Pig. 4-~16 correspond to the

two branches of the velocity parameter curves in Figs. 4—-4 and
4-9,

v (o)

(b)

FIGURE 4-15. {a) Membrane ionic current; {b) membrane \{oltage
assumed for a propagating pulse in the Markin-
Chizmadzhev model,

FIGURE 4-16. Construction for stable (uA) and unstable (uB)

. o ified in (4. 4. 2)-
The velocity of propagation is not yet specified in { ) pulse velocities in the Markin-Chizmadzhev model,

{4. 4. 4). It can be determined by the consistency condition that
at £ = 0 (when inward ion current starts to flow) v should equal

indi i i - 4-8. From
the thresheld value V; as indicated in Figs. 4-é6a or

An approximate expression for the upper velocity, up, can be
{4, 4.2)

determined under the assumption that 71 1is sufficiently large that
. 5 : the exponentizl terms in (4. 4. 7) can be neglected. Then
1 vl . -
v(0) = {1y +1, ol r ol )= Oyl e Ty }
u’r o (4. 4.7)
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I
U, 1 (4. 4. 9)
A 2
V. rc
l's
Assuming, on the other hand, thatthe exponential terms in (4, 4. 7)

are close to unity and also that (4.4, 6) holds gives

2\71

rsIlTl(Ti+TZ)

The condition to be satisfied for both these approximations is

Vv (4. 4. 10)

lc << Il’rl

In a more recent paper, Undrovinas, Pastushenko, and Markin
(1972) have indicated how membrane leakage current can be added
to this model to account for the hyperpolarizing dip that appears
at the end of the action potential in Figs. i-3, 4-3, and 4-10.

5. THE MYELINATED AXON

Ixamination of (4. 2, 16) reveals a major design difficulty of
the smooth nerve fiber. Since gy = 2raGy, ¢ = 2maC, arfd rg =
(wazcrl)'l, where a is the radius of the fiber, the conduction

velocity is proportional to (Hodgkin, 19 54)

[N

uca (4.5. 1)
or to the fourth root of the cross-sectional area. [ See FitzHugh
(1973) for a careful application of dimensicnal analysis to nerve
problems. | In order to double the velocity, the area (and hence
the volume) of the fiber must increase by a factor of sixteen; to
triple the velocity requires a factor of eighty-one. Since the '
giant axons of the squid transmit "escape signals” (generated in
forward nerve cell complexes) to the appropriate muscles (located
aft}, there is evolutionary pressure to increase the spec-ed, and
this probably explains the unusually large size of the fllber. But
clearly the fibers can't get much faster without occupying an
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unacceptable fraction of the squid's cross-section, and only a
single bit of information ("leave” or "stay") is being transmitted
at any instant of time. Eguation (4. 2.16) also indicates a solu-
tion to this dilemma. 1f the fiber is partially covered by an in-
sulating material so only a fraction, f, of the active membrane re-
mains exposed, {gz/c}) and rg would remain the same., But c
would be proportional to f so the conduction velocity should de-
pend on the exposed fraction roughly as

4.5.2)

Thus the velocity can be increased without changing the cross-~
sectional area by making f small.

Something like this takes place in the design of the moior
axons of vertebrates. The structure of the fiber appears as in
Fig. 4-17, where the fiber is covered almost everywhere by a rela-
tively thick insulating coat of myelin consisting of a couple of
hundred layers of cell membrane {Hodgkin, 1951, 1964), Only at
small active nodes (nodes of Ranvier) can the membrane function
in the normal way and these are spaced apart by a distance D ~
1 mm. In this manner the diameter of the fiber can be as small as
10 while the conduction velocity is as large as that on the squid
fiber. The frog nerve studied by Helmholtz (1850) and shown in
Fig. 1~1 is actually a bundle of many axons myelinated as in Fig.
4-17. Young (1951) has prepared a graphic comparison of the squid
giant axon and the sciatic nerve of a rabbit {see Fig. 4-18), The
conduction velocity is nearly idential in both cases, so the mye-
linated nerve bundle can carry at least two orders of magnitude
more bits of information per unit time. This rapid information rate
permits the fine muscular control that is one of the siriking fea-
tures of higher animals.

D
2g /Myelin i
T‘{z ) V4 TIZ T \j

Active nodes

FIGURE 4-17. Structure of a myelinated nerve fiber (notto scale).
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The role of isolated active nodes in increasing conduction
speed was first recognized by Lillie {1925, 1936) in connection
with his experiments on the "iron wire—acid”" analog for the nerve
fiber. He showed that the conduction velocity on this model was
greatly increased when the wire was enclosed in a glass tube
broken into segments, and he noted that the excitation seemed to
“jump” quickly from one opening in the glass tubing to the next,

. an effect called "saltatory” conduction by physiologists. * Short-
ly thereafter Osterhout and Hill (1930) demonstrated that conduc-
tion in Nitella that had been blocked in fresh water by chloroform
could be restored by introducing a salt bridge around the block,
and Kato {1934) isolated in the conductable state a single fiber
from the sciatic nerve of the Japanese toad. Building on these
results, Tasaki (1939) demonstrated that conduction jumped from
node to node in a single Japanese toad fiber. For general surveys
of myelinated fibers the reviews by Tasaki {1959), Hodgkin {1951,
1964), and Waxman (1972) are suggested in addition to the discus-
sion by Cole (1968). Here we list (Table 1) some representative
data on the frog myelinated fiber collected by Hodgkin (1964).

TABLE 1. Data on frog myelinated fiber

Fiber radius (a) 7R

Myelin thickness {(b) 2

Distance between active nodes (D) 2 mm

Area of active node 2.2 X 10“7 cm2
Internal resistance per unit length 140 MQ/cm
Capacity of myelin per unit length 10-16 pf/cm

*.gj
<X .
(RS -

Conductance of myelin per unit length 2.8 -4 X 10_8 mho/cm

R o

FIGURE 4-18. Comparison of cross sections for the squid giant Capacity of active node 0.6-1.5pF
axon (top) and the sciatic nerve bundle controlling Resting resistance of node 40 - 80 MQ
the calf muscle of a rabbit (bglow). Thgre are Conduction velocity 23 m/sec
about 400 myelinated fibers in the rabbit nerve,
each conducting pulses at about 80 m/sec.
{Young, 1951). From Doubt and Certainty in Science * Saltare is the Latin and modern Italian verb "to jump. ” For

by J. Z. Young, published by Oxford University Press.

discussions of recent work on acid-wire nerve models, see
110

Suzuki (1967) and Markin and Chizmadzhev (1974, Section 7. 1}.
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it is interesting to note how close his average conduction velocity
is to the value of 27 m/sec measured by Helmholtz in 1850.

Equations (4. 5. 1) and (4. 5. 2) can be used to estimate the
ratio of conduction velocity on the squid fiber (us) to that of the
frog fiber {ug). First of all, the square root of the (Hodgkin-
Huxley) sguid fiber radius (238} to the frog fiber radius in Table
1 (7p) is 5.83. The fraction of exposed area, from Table | is
2.53 x 167% so

I

ol

= 62.9
Taking only these two factors into consideration would indicate

u
f:o.os
£

whereas in fact the two velocities are about equal. One rather

obvious additional correction is the extra internode (myelin) ca-
pacitance of the frog fiber. This increases the capacitance per

unit length by the ratio

=~ to - or 4.33 to 3.13

and, from (4, 2. 16} decreases the zero—order estimate of uy by the
same factor. This gives an estimate of the velocity ratio in the
range

=

=0.3 to 0.4

=]
=

which is still substantially less than unity. There are various ef-
fects that might be invokedto explain this discrepency -~ such as
a difference in axoplasm resistivity or, from Fig. 3-12, & differ-
ence in membrane dynamics -- but one additional correction must
necessarily be made. This is to account for the concentration of
the active membrane at isclated points.

Such a correction can be effected by noting, from the consid-
erations of Chapter 2, that the myelinated fiber is closely approx-—
imated by a linear diffusion egquation that is periodically loaded by
the active nodes (Pickard, 1966; Markin and Chizmadzhev, 1967).
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This picture can be further simplified by lumping the internode
capacitance of the myelin together with the nodal capacitance.
This leads to the equivalent circuit indicated in Fig. 4-~19, where

R = 28 MQ

C=2.6-4.70pF

i

and I(k) is the ion current calculated at the kth node from (3.2.3)
and (3. 2.4) using the data in Fig. 3-12b. Eguations (4.1.la,b)are
then replaced by the difference differential egquations (DDEs)

Vk - Vk—l = _lkR
dvk (4.5. 3a,b)
Loy " +C ETa -1k}

which may also be written as second-order DDEs for the node
voltages

dvk
Viql T 2V TV T RC = RItk) (2. 5. 3")

This is a DDE analog of the nonlinear diffusion eguation (2. 30).
In order to determine a conduction velocity the traveling-wave
assumption displayed in (4. L. 3) and (4. 1. 4} must ke replaced by
a search for soluticns that satisfy the condition

vk_l(t) = v, t-1)
(4. 5. 4a, b)

i t-1

where T is a section delay. If T can be found, the conduction

velocity for the myelinated fiber is evidently

{4. 5. 5)

In scolving for the section delay, it is interesting to begin by
assuming I{k) = I(vk), where
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FIGURE 4-19, Differeace~differential representation of the
myelinated nerve fiber.

} =20 for vy <Vl

y for v, >V

= Gy -V PR

2

as we did in (4. 2. 13) for the smooth axon. Then {4. 5.3') becomes
a DDE analog of the K. P. P. equation (4.1). If colnditiorns ?re
such that vy - v <<vg, the second difference in (4. 5. 3"} can
be approximated by a second derivative. Then (4. 2. 16) can be
used to calculate the section delay, Ty, as

1

2
TG [RG V|V, ]
c v, -V

(4. 5. 7)

where we have used (4. 5. 5) and noted that g z (G/D), rg = (R/D},
and c * (C/D). Since (C/G} is the membrane time constant,the
condition for validity of (4.5.7)1is (IG/C) <<l or RG << 1. The
problem is to determine T as a functicn of R,C,G,V| and V;
when this approximation is not valid. In (4. 5. 3'} time can benor-
malized to RC and node voltage, to Vj. Then the right-hand
side can be written as a function of the two parameters, RG and
(Vo - V|)/V5. Thus the ratio of velocity on a myelinatediaxon,
Uy, to the corresponding velocity on a smooth axon, ug= {D/TO),
can also be expressed as a function v{ 5-) of the same two

parameters
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!
3
<
1
<3

m 0 2 1
u T = V|RG, Ty (4.5.8)

The determination of this function was considered in detail by
Kunov and Richer at the Electronics Laboratory of the Technical
University of Denmark during 1964-65. A detailed description of
this work is included in the thesis by Kunov {1966) from which
some of the salient points have been published (Kunov, 1965;
Richer, 1965,1966). Xunov's thesis describes a variety of analyti-
cal studies including: {a) numerical integration of (4. 5.3) for a
finite number of sections, (b) an iterative computation to find
solutions with the form (4. 5. 4), (¢} a Laplace transform solution
and {d}) measurements on an electronic analog (Kunov, 1965),
Their numerical results are summarized in Fig. 4-20.

For the frog axon the data in Fig. 3-12b give G = 0. 57 pmho
so that RG = 16, and in Section 4-2 the value of V|, which seem-
ed to account for the delay in sodium turn-on, was about 60 mV.
Thus (V3 = V])/V; = 0. 5. From Fig. 4-20 these two values indi-
cate a reduction in velocity of the myelinated fiber over that of a
smooth axon by the factor vy = 0.4, whereas our rough estimate
obtained above by comparison of squid and frog fibers was 0.3 -
0. 4. This is a rather fortuitous agreement, considering the un-
certainty in the capacitance C and the indication in Fig. 3-12b
that the frog membrane responds somewhat more rapidly than that
of the squid, Furthermore, the appropriate value for G may not
be as large as 0. 57 pmhos since potassium and leakage currents
flow in the opposite direction and, in addition, leakage current
through the myelin and the resting conductance may have a notice-
able effect as indicated in (4. 2. 17) (Kompaneyets, 1971).

Richer (1966) has made an important contribution to this prob-
lem by finding an exact sclution for the case G =, which he
calls "switch-line, " This solution gives an implicit relation be-
tween normalized section delay, To/RC, and (V- V(}/V; as

V, -V /2 T

2 1 s -
Ty exp —df F(a,ﬁé—)ctnada 4. 5.9)

where
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(4.5.13) is
ingccurdte in
this region
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FIGURE 4-20. Ratio of myelinated conduction velocity {up) to
that of the corresponding smooth fiber (uo) given
by (4.2.16). Dashed lines indicate extrapolated
values (Kunov, 1966).
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Floy 50 =

2T
-1 2
£ tan | (ctne) tanh (‘—S sin" g} | (4. 5. 10}
o RC
Equation (4. 5. 9) appears a bit unwieldy, but fortunately it can be
approximated by the much simpler expression

E. Vl

=T (4.5.11)
RC VZ Vl

which is found to be asymptotically correct for both large and
small values of TS and overestimates TS by about 10% at TS/RC
equal to unity. Since (4. 5.7) can be written in the form

1
2
T, [V)V,/RG]

= (4.5.7")
RC V2 Vl

a simple interpolation between (4. 5.11) and (4. 5. 7') is

{ :
o e W h @ 5 12)
= V _ . D
RC 5 Vl Vz RG VZ
This equation agrees well with digital computer solutions for a

long but finite system and also with the results of analog simula-

tion {Kunov, 1966). From (4. 5. 8) a simple approximation to the
numerical curves in Fig., 4-20 is

u
m . -

“m . 1
u, VITRGV /Y, 4. 5.13)

This eguation gives a fair representation of Fig. 4-20 in the
range RG >1. For example, with RG = 16 and (Vo-V)}/V; =
0.5 [or {V]/Vp) = 0.5], {4.5.13) indicates y = 1/3, whereas
Fig. 4-20 indicates vy = 0.4. In the range RG <2 and
(Vo-v)) /v, > 0.5 [or (V]/Vp) <0.5], {4 5.13) is qualitatively
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incorrect, It indicates vy —1 as V] — 0, whereas Fig. 4-20 in-
dicates y — 0.

Richer (1965) has also considered the addition of resting con-
ductance as in Fig. 4-8 and has shown that only a positive or
negative level change can propagate {not a pulse) just as in the
smooth axon. Tt is interesting to note that he finds an intermed-
iate range for which neither wave can propagate.

Although the qualitative behavior of the function v, ) =
(U /uO) has been fairly well charted, an exact soluticn feor the
DDE (4. 5. 3') with I(k) = I{v)} has notyet been found. This

Stable wave

problem remains as & challenge to applied mathematicians. > Unstable wave
Kunov {l966) considers recovery models or discrete FitzHugh- ~

Nagumo systems and Markin and Chizmadzhev (1967) discuss pro- @

cagation when the internodes are described by the linear diffusion s

egquation. FitzHugh (19 62} computed the initiation and conduction &

of pulses on a linear diffusion equation pericdically loaded with @

Hodgkin-Huxley nodes and improved computations have recently
been reperted by Goldman and Albus {1968}.

The high velocity (stable) and low velocity (unstable) pulses
that appear in Figs. 4-4 and 4-9 for the Hodgkin-Huxley and ] .
PitzHugh- Nagumo equations can be appreciated on the myelinated B Stimulus {s)
fiber by considering the *Nasonov diagram” (Averbach and Nasonov,
1950; FitzHugh, 1969) in Fig. 4-21. If it is assumed that: (a) each
node has a "sigmoid" stimulus-response Curve and (b} afraction,
l/a, of the response for each node is presented as a stimulus to
the next, then stationary levels of activity occur where the sig-
moid curve intersects the line R = aS. The lower amplitude in-
tersection is unstable since a small increase in § leads to a
larger increase in R, and so on. The upper intersection, on the
other hand, appears to be stable. As the parameter o 1s in-
creased, these two intersecticns eventually merge,and above this
critical value of o only decremental conduction obtains.

At the beginning of this section it was noted that the conduc-

v

FIGURE 4-2]. Nasoncv diagram for a myelinated nerve fiber.

For myelinated fibers there is evidence that conduction velocity is
proportional to the radius itself. Rushton (1951) explains this cb-
servation with the assumptions of: (&} constant nodal length,
which implies that G« a and Ce«<a and (b) interncdal distance
(D) proportional to radius, which implies R a~l. Then from

(4. 5, 12) the internodal delay (T) is independent of the radius; and
from (4. 5. 5)

tion velocity for a smooth fiber is proportional to the square root Um = kZa {4. 5. 14b)
of the fiber radius. Thus Using the frog fiber data of Table 1
}; b
u_ =k, a’ (4. 5. 14a) k. = 3.3m/secp.

2

where for the Hodgkin-Huxley axon Rushton (1951) suggested that equations (4. 5. 14a,b) imply a cri-
tical radius (ac) above which the conduction velocity will be

faster for a myelinated fiber. This critical radius is determined

-

k) = 1. 43 m/sec p?
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by seiting ug = Uy, where

K 2

1

a :( ) = 0.18 {4.5.15)
kZ

for the above mentioned values for kj and k,. Waxman and
Bennett {1972) have recently reexamined the data originally used
by Rushton (19 51) on small smooth and myelinated fibers of cats
and kittens. They find evidence for a critical radius of ag & 0.1,
Thus one might suppose that if speed of conduction is the impor-
tant design criterion, then fibers with diameters less than 0.2 -
0.4p should not be myelinated. Waxman and Bennett suggest,
howewver, that conduction speed may not be the only criterion in
the mammalian central nervous system. Waxman, Pappas, and
Rennett (1972) have found a functionally significant variability in
the size and spacing of active nodes on the neural electric organ
of the knife fish. In a study of the kangaroo rat's brain, Waxman
and Melker {1971) ocbserved certain fibers with ratios of interncdal
distance to diameter {including myelin) as low as 18:1. {For the
frog fiber in Table 1 this ratio is 110 :1.) Waxman and Melker in—
dicate that the occurrence of closely spaced nodes in mammalian
brain, and particularly in reticular formation, suggests that vari-
ations in the geometry of the central myelin sheath may provide a
mechanism for *velocity matching” or more complex transforma-—
tions of neural information in the axons of mammalian integrative
neurons.

6. FIBERS WITH CHANGING DIAMETER

In Chapter 2 we observed that if the dimensions of a fiber
change slowly cver a distance equal to the length of its action
potential then {z. 21) should be approximately correct with the local
values of rglx), clxj and jilx,v,m, n,h). Suchan approxima-
tion might, for example, be appropriate for calculations of pulse

propagation onthe large dendrites of the Mauthner cell of the gold-

fish (Bodian, 1952} shown in Fig. 4-22. Letus begin the study of
gradual tapers by assuming (Lindgren and Buratti, 1969) that the
parameters vary exponentially as
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S oYX

rS = rO e
= “Yx

c=cge 4. 6.13,b, )
= j 2

4 ]0 e

whe
re rnp and Cp are constants and jy is independent of x

T ar diffusion latd Ires 1 2.3 -
en the nonline I eq on corre pond ng to ( 0) be

2
v av

IR -A av
. B
o2 Vax 0% ot = Tolptrmi b 4. 6, 2)

Using the FitzHugh-Na
: ‘ gumo model and izi i
this equation can be approximated by normalizig as in 4. 3. H

Vxx—y\fx—vt: F(V)+R

Rt = ¢ (V - bR) (4 6. 33, b)

and the perturbation cal i
culation of Casten, Coh
{(1975) can be carried through just as in Sec,:tiofl zfé o e

the pulse velocity is In particular,

A
u 3
Yp T YT e . 6. 4)

wh i i
ere up is the pulse velocity that would be calculated for R =

0 and y= 0 usin
. g the concepts outlined i i
linear coefficient in ¢ becomes f in Section 472 The

® oo Qv uk
n_ 1 P O
_fw gf ANCORENC ))d; 2

2
oo (d
fla) e

(4. 6. 5)

1
H
i
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- . Thus {4, 6. 4) and (4. 6. 5} c'an
1] as for the fast wave. The pri-

i i ease the
mary effects of the (inward) exponennal taper. arehtodi?;:étion hy
zero-order term for pulse velocity in (4. 6. 4)(in t ea o O e
increasing series resistance)and to decrease the mag

first-order term.

which remains finite when u
be used for the slow wave as we

Axon

club. endings

Lateral Dendrite

L___l_O_O—E__-l

Ventral Dendrite

i thner's cell in the gold-
4-22. Tapered dendrites of Mau >
FGUR fish: (g) small dendrites; (e} small endbulbs;
{h) axon hillock, (LE) large enc?bulbs;
(m) myelin sheath on axon (Bodian, 13 52).

Changing Diameters 123

The exponential variation assumed in (4. 6. 1) is not realistic
if rg is almost entirely determined by the inside component and
therefore inversely proportional to radius (a) squared as indicat-
ed in {2.19)." This is because both ¢ and jij should be propor-
tional to a. Equations {4. 6.1) might be appropriate when the ex-
temal current flow is restricted, as in (2. 25), and the dependence
of rg on the radius is weakened.

Rall {1962a) has presented an interesting analysis of the tap~
ered fiber that approaches an eguation similar to {4. 6. 3) by trans-
forming the spatial coordinate, He assumes internal resistance
to dominate so that (2. 21a) becomes

Y -1 4
i1=-rwa crl o (4. 6. 6)
and {2. 21b) becomes
8i. - dAa -l
N} =-{ el L ) (4. 6.7)

where (dA/dx) is the change in membrane area with increase in
x. For a cylindrical membrane (dA/dx) = 2wa just as in (2. 21b).
But when the radius is a function of x, a differential application
of the Pythagorean theorem implies

1

da _ day2 |?
ax = zwa[ﬂ(dx) ] 4, 6. 8)

Differentiating (4. 6. 6) with x and substituting into (4. 6. 7) then
gives
a ’BZV o) d 2
gV 9v.a
1 2+Bx(dx log a™) (4. 6. 9)
1+ (g-@)2
dx

2
—(;l“N W)=
21 ox
At this point Rall! defined a new spatial variable

z = z{x) ’ (4. 6.10)

so that
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gy _ v dz

X gz dx
and
2 2
aZV— dz av_l__aiﬂ(ﬁ_logié)
2T lax 2 " 8z dz \dx dx
8x _0z

gubstituting these derivatives into (4. 6.9}

dz 2
a(7>) 2 d 2 dz
R ﬂ(@z tog (a2 98
7,2—1N(v)=—,——*—1— ) 5 T 52 \dz dx logfa oy
1 (da)Z‘\E “
+ dx’

Then if the transformation z(x) is chosen such that

1
e
dz -3 da |2
ax - 0 [1 (!
(4. 6, 11) can be writien
2
g v 1K 8v 2 N (v)
2 o
0z 1

where

1
1 K 3/2 da.2 4}
= a2 [1 + (——gi)z] r& log {a / [1 + () } (4. 6.15)

Evidently ¥ =0 if & varies such that

(4. 6.11)

(4. 6,12}

(4. 6.13)

4. 6. 14

Changing Diameters 125

1
4
az’/2 [l + (%}%)Z:] = const {4. 6. 16)

and K = const. if

z « log (a2 % )} 4. 6.17)

In a more recent analysis of tapered fibers, Goldstein and
Rall (1974) assume the taper is sufficiently gradual so that

da .2
() <=1 (4. 6. 18)
Then from (4. 6. 12}
4 -3
ax = @
and (4. 6.17) can be written
z= - log (a3/2)
Y
where vy is a constant. Then
K=-vy (4. 6. 19)
and
3_ X2
a= (ao— 3x) (4. 6. 20)

where ag is the fiber radius at x = 0.

Thus for aradius variation as in (4. 6. 20) and assuming v<<l
so that (4. 6.18) is satisfied, (4. 6.13) is formally identical to
@.6.2) or {4. 6. 3) where z is related to x by

X

3 x) (4. 6. 21)

3 1
z=-"log@? -~

v 0
We can also suppose that the fiber diameter changes abruptly (see
Fig. 4-23a). In this case we should consider the effect of higher

modes, which are necessary to match electromagnetic boundary
conditions at the discontinuity.
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AN

FIBER OF RADIUS g, c L FIBER OF RADIUS a,

{c)

varicose discontinu-

FIGURE 4-23. (a) Abrupt discontinuity; (b)
discontin-

ity; (¢} lumped equivalent circuit for a

uity.

remember that equations (2.12) for
series impedance of the fiber were derived from (2. 8) which assume
the lowest order TM mode of propagation. This mode is expect
ed to dominate when the radius is changing slowly with x, but
generally, there is an infinite number of such modes correspond-
ing to higher order Bessel functions and more complex radial de~
pendence. The selected assortment of these higher modes which
match boundary conditions at the discontinuity will absorb energy
from the wave. In microwave calculations the higher modes are
often represented by an equivalent admittance that appears at the
discontinuity [ see Ramo and Whinnery (1953} pp. 477~485 for an

To appreciatethis problem
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izﬁzduvtt:;r; ta; th;-se representations] . But for nerve fiber prob-
magn,eti(; penet;aatilstances are small compared with the electro-
e apprOXimor;depth I see (4.15)], it can be assumed that
o e ca ion t‘?e electrical potiential satisfies Laplace's
iber ae indicated in Fig, 453, Then the discontimtty soutn.
can be represented by a series s-greazlijntghfe(:;zsgrzuenuny reoton

a_ —a

R 2 1
N 4,
mo (4. 6, 22)
plus the shunting effect of the extra membrane of area
2 2
A= -
-rr(az a ) (4. 6. 23)

presenied ai the discontinui
. 1 ty. Thu i
equivalent circuit of Fig. 4-23 are s the shuat elements 1 the

I,
i

C

il

j A (4. 6. 24)

CA (4. 6. 25)
Th : P ,
e discontinuity in Fig. 4-23a can be considered as a special

case of the VaIlCOSlty ! 1g - v
a. .O in Fig. 4~23b for whi
! ) for hich the equi alent

aa_ +a,a, — 2a,a

R oy13 23 1°2
s 2
mo aaa, (4. 6. 26)
and
2
= nl2a_ + - af gt
g t2ab-a’-a)) (4. 6. 27)

for o, ~3 mh
1 mho/m and a; = .23 :
the time constant l 8 mm (the Hodgkin-Huxley axon),

a
2z 6
R C {al )" x 10 sec
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tance should be negligible when
R.C is less than 10~4 sec or for discontinuities in which

(az/al) <10. In this case it is not unreasonable to include the
shunt elements with the description of the larger fiber and ignore
nonuniformity at the discontinuity altogether. Under this assump=
tion Markin and Pastushenko {19 69) have obtained a simple and
important boundary condition on pulse velocity. From {2.21a) con—
tinuity of axial current at the discontinuity implies

The series spreading resis

v _ 5 8v+
—_—=a. 4, 6,28
A Tox T2 ax ( )
where the “+" and n_s  guhscripts refer to respective values just

to the right and left of the discontinuity. Continuity of membrane
voltage at the discontinuity implies

- +
—_— = 4. 6.
at at ¢ 29)

Defining pulse velocity, u, for a point of constant voltage ampli-

tude as
v /ot
= - 4.6.
v av/ox ¢ 30)
implies
u_ u,
—az— =" (4. 6. 31)
1 %2

Thus pulse velocity should be discontinuous at the discontinuity.
We noted at the beginning of Section 4~5 that pulse velocity on
a smooth fiber is proportional to the square root of the radius. I
we define uj {u,) as the pulse velocity far to the left (right) of

the discontinuity, then

u u
—L.—= @. 6. 32)
aE aE

1 2
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Goldlstein and Rall (1974} have recently presented so i
stu.dles that illustrate the relation between (4.6 3l)m:n2u(rzeglcal
Ers;r;g a TOd.El 'tlhat simulates the squid axon, .thf'ey compute 'th.eSZ)’
A;; thevelocrcy , u,, fora pljllse.in the vicinity of a discontinuity
o 41_)1.214:23 aplirzachels a widening (az/al > 1) it slows down '
. . qualitativ is i
preyious consideration of tapgr;vc?ii;helrss;litoisbie?;;?aie\?;e; e .O‘Jl‘
Z{;lffetaﬁler that [ through (4. 6. 4}] tends to reduce the velrozizvyld—
vemcng jfn? psatsseslthrough the discontinuity at x = 0, its pe'ak
T ps to a large value, as should be expected from (4. 6
o heventually falls back to the value regquired by (4. 6 32). )
2;‘) cei,oeso;;v;vgr, that the discontinuity at x = 0 shown .in .Pig .4—
24 doas not axsctly maich that Implled by (. 6. 3). Tis may be
: . or a point
Sillt;:;’ wkgekre‘as the data of Fig. 4—p24 ngecsgni[tjﬁ;c\i]?ézaf;eaz;k
pe é;jed(;?;loar results were obtained by Berkinblit, Vvedenps)—
kin_ﬁuxle ok , etal, (1.970) for an abrupt widening of the Hodg-
.y iber. For a five fold widening the velocity of th :
of the.actlon potential falls from 19 m/sec to about 2 . © ook
then rises sharply to about 54 m/sec as the action m/séc ond
eg through the discontinuity. potertial pass-

10
8_ —
6

» O @O
T
1

a1 ! L1l | P | o1 ‘ -
-2 -1 0 +t +2 +3 - 20 o +JI +J2 13
: +

x{cm) — x{em)
{a} {b)
Change of peak velocity of an action potential as

it approac?hes: (a) abrupt enlargement; (b) abrupt
construction {redrawn from Goldstein and Rall 1974)
, .

FIGURE 4-24,
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In Fig. 4-24b are plotted some corresponding data for a pulse
that approaches & constriction (az/al <1). Here the pulse gains
in velocity as it approaches the discontinuity, which is to be ex—
pected since Y is positive for a constricting taper. Then, as
(4. 6. 31} implies, the pulse velocity falls rapidly upon passing
through the discontinuity and cventually rises to the value re—
quired by (4. 6. 32).

Khodorov, Timin, Vilenkin, ot al. (1969} have studied the pro-
pagation on & Hodgkin—Huxley axon that was abruptly increased in
radius by factors of three, five, six, and ten. For the five—fold
increase, an action potential did propagate through the discontin—
uity but with considerable delay {~0.8 m/sec). Wwith a six-fold
increase, conduction was blocked. Waveforms for the case of
marginal conductance are displayed in Fig. 4-25, which shows the
enlarged portion of the fiber to initially propagate a pulse that is
close to the threshold pulse (Fig. 4-3). This Jow-amplitude in-
itial pulse eventually increases into a fully developed action po-
tential. Berkinblit, Yyvedenskava, Gnedenko, et al. (1970) have
extended this study by considering the effect of a tapered widening
on the conditions for pulse blocking., Again the initial pulse was
propagating on a Hodgkin-Huxley axon that widened over a taper
distance an n-fold increase in radius. Their mamerical observa-
tions are indicated in Table 2.

TABLE 2. Critical diameter ratio as a function of taper length
(Rerkinblit, Vvedenskaya, Gnedenko, et al.,1970)

Length of Taper Diameter Ratic

- ——

(cm) Blocking Passage
0. 088 5, 5:1 531
0. 785 61l 5. 5:1
1.76 8:1 7:1
3. 81 >10:1 10:1
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2a,=104q;

H I : i : W/
i 15 2 25 3

TIME {msec)—-

I = .
GURE 4-25. Membrane voltage (v), total membrane current

density (Ij;), and ionic current density (7:) for
the Hodgkin-Huxley action potential approjéching
an abrupt five—fold enlargement (redrawn from
Khodorov, Timin, Vilenkin, et al., 1969).

modja;fmsihi?ko jn;i Markin {1369) have used the simple nerve
ction 4~4 to estimate the diameter rati i

: ; tio at which block-
in i i ]

g of an action potential is observed. A critical parameter in tiis

d - o
tslleslspﬁent is the ratic of maximum pulse voltage, V to the
old voltage, Vi. For large values of this sta’bil?*_f_yaxf,actor

v
max

vy (4. 6. 33)

b
1}
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they find that the condition for the enlarged fiber to be brought a-
bove its threshold level is

5 \3/2 N

= < & + 1 11k? - 169 (4. 6, 34)

a

1
From the stable and threshold waveforms for the Hodf;kin—Huxl?y
axon shown in Fig. 4-3, k = 5 which implies blecking for a dia-
io greater than 3. 22.

mete;}i:glc?rgv, Timin, Pozin, et al. (1971) have (Tilsolconsidered the
propagation of a pulse train through an abrupt.W1denmg o.f the
Hodgkin~Huxley axon. Some examples of thejlr com;:utatlons arle )
presented in Fig. 4-26, FPor an abrupt widemng. of 5:1 anc.l an in
coming temporal period of 2. 5 msec, only the first pulse will pEss
(see Fig. 4-26a), If the widening ratio is reduged to 3:1 a{ld t r.el
temporal period 1is increased to 3.3 msec the fifth pulse‘wﬂl fai
but the sixth will again pass (see Fig, 4-26b). Calculations of
this sort are reviewed in the recent book by Khodorov (1974) and
can be summarized as follows.

LOOmV

2
e
8
3
<
Py

~
(=]

DISTANCE (em)
5 %

DISTANCE (cm)

n
i

vz 4 | s 3456789 0uLk 4 & 1B 20
TiME (msec) —— TIME (msec}——

() (b}

FIGURE 4-26. Propagation of a pulse train through an abrupt .\Nid—
ening of the Hodgkin-Huxley axon: (a) widening of
5:1 with an incoming temporal periodof 2. 5 msecs;
(b) widening of 3:l with aperiodof 3.3 msecs (re—
drawn from Khodorov,Timin,Pozin,and Shmelev,lS?l).
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TABLE 3. Blocking of pulses in a periodic train (Khodorov, 1974)

Temporal period (msec)

Abrupt 2.5 3 3.3 3.5
widening n
ratio Number of blocked pulses
1.5:1 None None None None
B b
3:1 2,4,6, ..., 3,5,7, ..., 5,9,..., --
.. 2
5:1 2,3,4,5,..., 2,3,4,5,..., 2,3,4,5 ..., 2,3,4,5...,
6:1 All All All All
a

Figure 4-26a.

o

Figure 4-26b,

It is evident from Figs. 4-25 and 4-26 that marginal passage
of a pulse through a widening leads to time delays of the order
0. 5-1msec. This would seem significant for the processing of
auditory information. These delays can be induced by "varicesi-
ties” as indicated in Fig. 4-23b, and Bogoslovskaya, Lyubinskii,
Pozin, et al. {I1973) have shown that such varicosities are clearly
evident in the dendrites of cochlear neurons of certain animals
{see Fig. 4-27). This leads one to suspect that the dendrites may
play an important role in the processing of pulse frain information.
We return to this idea in Chapter 6.

On the axcnal side Revenko, Timin, and Khodorov (1973)have
recently investigated the propagation of an action potential from
a myelinated fiber into a nonmyelinated terminal section. This is
a region of low safety factor because the exposed fraction of the
membrane, f in (4. 5. 2), jumps from a low value on the myelinat-
ed fiber to unity on the terminal section, To ensure conduction,
a narrowing of the fiber diameter by a factor of about three is re~
quired; even in this case frequency reduction similar to that dis-

played in Fig. 4-26 should be expected.

7. DECREMENTAL CONDUCTION

We have seen in Fig., 4-4 that the effect of multiplying gy
and gg by a “narcotizing factor” n <1 is to reduce the speed




134 The Nerve Fiber

gt

c
\
g shp
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FIGURE 4-27. Cochlear neurons of: (a) monkey, (b) hedg’ehog'3
(c) owl, and {(d) bat (Bogoslovskaya, Lyubinskii,
Pozin, et al. 197 3).

and amplitude of the fast traveling-wave solution and to incre‘a.se
the speed and amplitude of the slow threshold pulse. At .a critical
value of narcotization ne = 0. 261, these two pulse solutlon§ of
the Hodgkin-THuxley equations merge. For 7 <’qc.,no "Lravellngf
wave pulse solution has been found. If the axon 15 suitably stim-
ulated with n <mg, 8 ugecremental " pulse is observed that pro=
pagates with diminishing amplitude. Figure 4-28, for E}fample,
presents numerical calculations of decremental propagation on the
Hodgkin-Huxley axon with n = 0. 25 by Cooley and Dodge {1966);
similar results have been obtained by’ Leibovic and Sabah (1969)
and by Khodorov, Timin, Vilenkin, et al. (1970) [ see also the re-
cent bocks by Leibovic (1972} and Khodorov (1974)] .
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FIGURE 4-28. Propagation of a decremental pulse on a Hodgkin-
Huxley axon narcotized by a factor of 0. 25.
Curves are voltage waveforms at lcm intervals
(redrawn from Cocley and Dodge, 1966).

These numerical studies are of considerable interest because
the possibility of decremental conduction was sericusly challenged
a half century ago by Kato {1924). His argument had a theoretical
foundation which he recently summarized as follows (Kato, 1970):

The decrement theory and the decrementless theory can be
said to rest on fundamentally different theoretical stand-
points, The former seems to hold that an impulse is con-
ducted by its initial energy supplied only at its start which,
being consumed as it propagates and having no supply of
new energy during its conduction, gradually diminishes,
in other words, suffers decrement... but the latter theory
postulates that the impulse is conducted by means of new
energy necessary for conduction produced locally as it is
propagated, so it can be conducted in a decrementless
manner. What is important here is that, while those sup-
porting the decrement theory held that the nerve {a living
tissue in general) would change its nature qualitatively
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when condition changed, we, in our decrementless theory,
inferred that it would remain unchanged in its nature under
changed conditions, and only be subject to quantitative
change. Therefore, our way of thinking was fundamentally
different from theirs, not being concerned merely with the
phenomenal fact as io whether conduction is decremental
or decrementless (nondecremental). In this sense the
discussion on the right or wrong of our theory came to
exert a great influence on the fundamental thought in the
biological world.

To establish the validity of his perception, Kato prepared an ex-—
perimental demonstration for the 1926 International Physiological
Congress in Stockholm. Using sciatic nerve muscle preparations
(see Fig. l-1} from Dutch frogs (his Japanese toads had perished
during the long trip across Siberia), he first showed that the ex-
tinction times under narcotization were almost exactly egual for
1.5 cm and 3.0 cm of nerve. Next he demonsirated a threshold
effect for stimulation in the narcotized region. Finally came the
crucial “cut experiment” designed to demonstrate that such grad-
ed responses as were evident from stimulation in the narcotized
region were due to clectrical leakage rather than decremental con-
duction. It was a terminal experiment since the narcotized region
was to be cut precisely at the point of electrical stimulation in
order to show that mechanical stimulation would not produce the
same effect. Thomas Kuhn {1962) has not described a more dramat-
ic example of the establishment of a scientific paradigm than that
moment so vividly recalled by Kato (1970).

When Dr. Uchimura, just after applying the electrical
stimulation, took a cutting pose, there came a voice

from far behind of the room, "No muscle state can be

scen from here! " Indeed, many of the observers wanted
to witness whether the muscle would contract or not with
their own eyes. 1t was Dr. Buytendijk, Professor of the
University of Groningen, Holland, who offered to announce
if the muscle moved or not, because he was nearest o the
taple, Dr. Uchimura tock up scissors once again and
brought them near the nerve to cut it. But his hand was
trembling; that might cause some sort of straining on the
nerve to make the muscle contract. I had no courage to
see the cutting instant. Seconds fled. Suddenly sounded,
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“Kt.eine Zuckung!! No twitch!!” It was Prof. Buytendijk's
voice. And then followed another voice, “Revocluticn der

Physiologie! ", from whom I could not identify. Scholar

after scholar they presented me with congratulations and
handshakes,

Thirty-three vears later Lorente de NS and Condouris (1959)

were ‘to lt’:tment the premature demise of the decremental conduction
doctrine in the face of these objections.

It Seems unbelievable, but it is true, that although the
objections were soon proved tc be unjustified by a number
of authors frefs. }, the doctrine of decremental conduction
disappeared from the literature and there remained, te mold .
the t.hinking of neurophysiologists, only the all—or’—nomin
law in the generalized, inflexible form given to it by Katog. ces

' The theoretical objections posed by Katc to the qualitativel
dlffer.ent aspect of decremental conduction disappear when one !
consllders nonlinear pulse propagation on the nerve fiber to be
dominated by the power-kbalance ccndition

P = ukE “4.7. 1)

where P is the power (J/sec) consumed by the pulse, E is the
stored energy (J/m) released by the pulse, and u is ’the ulse
velocity (m/sec). The curves in Figs. 4-4 and 4-9 indic;)te those
val1:1es of the plotted parameters for which a traveling-wave pulse
satisfying (4. 7. 1) does exist. Since the upper branch is stagle and
the l.ow.er branch is unstable it seems reascnable to speculate that
the inside @ region is where pulse solutions can be found with
uE>P. Conversely, in the outside &) region we expect uE<?P
for .all pulse solutions, For n slightly less than we expect
to find a decremental pulse for which uE is slightP; iess thaljl CP
As an example, take the FitzHugh-Nagumo equation (4. 3 1) with .
i = O. and b = 0. Putting "conservative" terms on the ieft and
dissipative” terms on the right, this can be written

-V - = B -
t eV F(V)Vt \'

ext (4.7.2)

The i i
conservative terms are recognized because they can be derived
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by substituting the Lagrangian density %(e V2 - Vzt) into the Euler
equation [ Scott (1970)]. Then the corresponding energy density is
1ve + VE) so the total energy is

o0
2 2
E= i [V +v)dx (4.7.3)
—c0
Differentiating (4. 7. 3) with time and substituting (4. 7. 2} gives
3€ < 2 2
= "V 1.
. _({ (v + F' (V) Jax (4.7.4)

Along the traveling-wave locus in Fig. 4-9, the right-hand side
integral must be zero. In the & region, the right-hand side is
negative and in the & region it is positive. Perturbative tech-
niques would seem to be appropriate for estimating the right-hand
side near the traveling-wave locus. Scome problems for which such
a perturbative approach might be useful are listed below, and the
corresponding critical parameter is indicated.

1. For the FitzHugh-Nagumo equation, the critical parameter
might be ¢ (as in Fig. 4~9) or a perturbation of F{v)
that reduces the negative area (A, in Fig. 4-6).

2. For the Markin-Chizmadzhev model (see Fig. 4-16) the
critical parameter might be V], Or from {4. 4. 7) rg or c.

3. The amplitude of the Markin-Chizmadzhev pulse as de~
termined by (say) J| in (4. 4 7) might be chosen as the
critical parameter. Then the description would apply to
the decrement for pulses below the threshold level.

4, The parameter o for the representation of myelinated
propagation indicated in Fig. 4-2L

5. Various real experimental parameters, such as tempera-
ture, ionic concentrations, and narcotic concentrations,
which would modify the constants in the Hodgkin-Huxley
expression (4. L. 2) for ionic current.

6. The wavelength, », for periodic traveling-wave solutions

such as those by Rinzel and Keller (1373} shown in Fig. 4-l14.

In view of all these possibilities for application, the develop-
ment of a formal perturbation theory for decremental conduction is
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of grea*.c current interest. To introduce the fundamental ideas it is
convenient to return to the K. P. P, equation

Ve T Vp T FWl =0 (4. 7. 5)

and add a small perturbation, §, so it becomes

Ve TV T Fv) = 6 - (4.7, 6}
F'ol%ow!ilng the notation of Whitham (1974) (pp. 493-497) for “two
timing* and *double crossing" we write

v = Vo 6,X,T) + 0V 6,X, T+ - (4.7.7)

where X = §x and T = §t are slow space and time variables, It

is assumed that v depends on fast space and time {x and t)
through

0=6 e, (4. 7. 8)

and for notational convenience we define

kX, T)= @, and v(XT)= @

X (4. 7. 9)

T
Then to first order in &

2 2
v = k
o VO 06 + 8tk Vl

? H]

+2kV
0,0%x *xV0, ¢’

E

638

v,o= vV +
£= Vo 0 VOV gt Vg o)

3

Thus equating coefficients in (4. 7. &) £ i i
e . 7. 6) for the first two orders in 6§

0,69 0,6 0 (4.7.10)

6 kT~ vV PV V. = +V _
17 66 1,9 O) 1 O’T ZkVQ’QX kXVU g

b

{a.7.11)
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Equation {4.7.11) is & linear, nonhomogeneous ordinary differen-
tial equation for Vi. It must have a solution for the perturbation
expansion (4. 7.7) to be valid. To investigate this requirement,
suppose it is written in the abbreviated form

LV1 =f (4.7.11")

Here L is the differential operator

A
T S A (N (2. 7. 12)
2w 0

and f is the inhomogeneous term that can be calculated from VU'
Using the notation for an "inner product” of two functions [ say

v({@) and wO)]

(v,w) = [ vie)wlo)ae (4. 7.13)

—00

recall that (if v and w —0 as g —~+00} the "adjoint" (f) of an
operator (L} is defined by the requirement

(v, Lw) = (v, w) (4. 7. 14)

Suppose next that ¢ is a solution of the adjoint homogeneous
equation

16 =0 (a.7.15)
which satisfies the condition ‘c; -0 as 6 —+%. Then the inner

product ($,f) must equal zero for {4.7.1l) tohave 2 solution. To
see this, suppose (§,£) # 0. Then from {4. 7. 11"

G,6) #0

1

(4, LVl)
= (Lo, v) =0
which is a contradiction.

Thus in order for (4. 7. 11) to have a soluticn, the zero-order
solution, Vg, must evolve in such a way that the condition
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,0) =0 ' (4. 7. 16)

is satisfied., This condition can be used to determine the behavior
of VO -

The first obstacle in using this result is to find an appropriate
solution for the adjoint homogeneous equation (4, 7.15). To effect
this, note that if ¢ is a solution of the homogeneous equation
Ly = 0, one can use integration by parts to show

(31908 - [6T3d0 = K- (o - §'9) - vao (@. 7.17)

Since the left-hand side is zero, we find 'd: = ¢exp(—k‘lé‘9). Thus
: . 3 ’
if welknow a solution of L¢ = 0, we can immediately write a
solution for L¢ = 0. A solution for L¢ = 0 is readily obtained
by noting that differentiation of (4. 7. 10} gives

2

KTV, )

0,6 vV

- F (Vo)vo,e =0 {4.7.18)

66 0,9)9

Thus ¢ = VO,G is a solution for Lo = 0 and the corresponding
solution of the adjoint equation is

Py Vo o exp(-Lze) - {4, 7. 19)

’ k

Since the adjoint homogeneous equation is second order, it has
two independent solutions. From the asymptotic form of’ T as

& — + @, however, it is seen that the other sclution does not ap-
proach zero as 6 — x%. Thus there is only a single secularity
condition implies by (4. 7.15). Itis

0]
[ v exp(=FeoMi+V, -2kV, . -KV ,1d5=0
0,0 P! 2 0.0 2KV gx T p pld0 =0 (47.20)

—co 7

To see that this condition implies for the functional behavior of
Vp, consider a specific example, Let

F{V) = V(V-a){v-1} {4. 7. 21)

Then using the technigues of Section 4-2 [in particular, (4. 2. 11)
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and {4.2.12)], it is readily shown that (4. 7.10) has the soluticn

\Y :—'r];——’— (4. 7. 22)
0 l+explEAN2k)

with traveling-wave velocity

l-z2a (4.7.23)

If §= 0, this is an exact traveling-wave sclution of (4.7.6). I
5+ 0, then v and k vary with X and T. Bow do they vary?
The secularity condition (4. 7.22) must be satisfied and also the
requirement

= (4.7, 24)
vy T Ry

for integrability of @. ‘We can assume that k is independegt pf
T and v a constant {say -1) without violating (4. 7.24). Bince

¥y has explicit dependence only on € and k, 4. 7. 20} and
(4, 7. 24) can be solved for

[+
f Vv Qexpf:vz g) dé
o O k (4.7.25)

X E9

Vv
-5 + d
[ v, gexe"500v, 4 2k 5190
-0 2 k El

Then Vg evolves according to (4.7.22) with a velocity u(‘)l() =k l,
where k is obtained from integration of (4. 2.25). In the "un-
stretched” distance scale

kx = 5}<X (4. 7. 26)
Thus Vj speeds up or slows down if & is increased from zero in
one direction or the other.

The recent numerical studies of decremental conductance by
Khodorov and his coworkers have been much more detailed. Their
approach is to use the Hodgkin-Huxley equations in orAder to Felate
pulse propagation through a decremental region with biochemical
manipulation. For example, Khodorov, Timin, Vilenkin, et al. {1370
have modeled an increased concentration of Gatt by a shift in
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voltage for ap, Bp,em, and fBm (see 3. 25}, as is implied by the
measurements of Frankenhaeuser and Hodgkin (1957). With a 7mV
shift toward depolarization, the traveling-wave amplitude is
reduced to 82 mV, but a 15 mV shift toward depolarization results
in decremental conduction. Khodorov and Timin (1970, 1971) have
modeled the effects of such influences as cooling, tetrodotoxin,
and narcotics, on the propagation of pulse trains over segments of
decremental paths. In general they observe a variety of rhythmical
variations qualitatively similar to those displayed in Fig, 4-26 for
widening tapers. This appears to be a most fruitful research area
for future collaboration between biochemists and electrophysiolo-
gists.

8. A SUPERCONDUCTIVE NEURISTCR

Before concluding our study of pulse propagation on a nerve
fiber it may be appropriate to consider briefly an electronic analog:
the neuristor. GCoined by Crane (1962), this generic term implies
a class of nonlinear transmissicn lines that share three critical
properites of the active nerve fiber: (a) attenuationless propaga-
tion of a traveling-wave pulse, (b} threshold for excitation of the
pulse, and (¢} mutual pulse destruction on collision. The partic-
ular realization to be discussed here is a superconductive neuris-
tor (Scott, 1964b; Parmentier, 1969). Pulse propagation on this
gsystem differs in an interesting way from that found from the
Hodgkin-Huxley or FitzHugh~Nagumo models of a nerve fiber.

Figure 4-29 is a photograph of the currently available device
(Reible and Scott, 1975}, which consists of a layer of sputtered
niobium film overlaid with a narrow strip of tin (see Fig. 4-30a).
These two layers are separated by a thin (~ 50 A} insulating bar-
rier of nicbium oxide through which electrons canpass via quantum-
mechanical tunneling {Giaever and Megerle, 1962). The corres-
ponding TLEG is sketched in Fig. 4-30b and, briefly, the elements
of the system are as follows:

¢ - the capacitance of the insulating barrier per unit length in
the direction of propagation;

i(v) - the nonlinear conduction current through the barrier per
unit length;

r ~ the resistance per unit length for normal electron current
flow parallel to the barrier;
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Superconductive neuristor (length 35 cm) on a glass
substrate consisting of a tin strip (width 0.0064 cm)
over a niobium line {(width 0.048 cm) with an insu-
lating barrier of niobium oxide.

FIGURE 4-29.

insulating barrier
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{_'dlj

jlv)dx

{b)

{a} Sketich of the superconductive neuristor, and
(b) equivalent circuit.
144

FIGURE 4-30.
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£ - the inductance per unit length for superconducting current
flow parallel to the barrier;

v ~ voltage across the barrier;
1) = superconducting current parallel to the barrier;

i3 - normal current parallel to the barrier.

The total nonlinear tunnel current through the insulating bar-
rier, IT(V), varies with voltage as shown in Fig, 4-3l, but an ad-
justable bias current, Ig, can be introduced through appropriate
terminals so that

I (v)-1
T B
jv) = W (4.8. 1)
If the bias current is sufficiently large, j{v) becomes zero at three

values of voltage, as in Fig. 4-8a, and energy can be released in
support of a traveling-wave pulse.

—py ey Y vy Par ey gt ey

FIGURE 4~3]. Plot of total Giaever type tunneling current against

veltage for a 35 om tin—nicbium neuristor at 2.7°K.
Vertical scale: 20 mA/div; Horizontal scale:
0. 5 mV/div,
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The TLEC in Fig. 4-30b implies the PDEs

(4. 8.2a,b,c]

which are rather closely related to the FitzHugh—-Nagumo equaltlons
(4, 3.1). Assuming the variables v,ij, and i, to depzng)otn ihoen
the moving spatial coordinate § = x - ut, reduces (4. 8. o]

ODEs

dv _ =-ri
d€ 2
di
~‘—2=—rcu(l— Vi - ifv} (4. 8. 3a,b)
d& 2
fcu
In the limit
1 _ 4
£

(4. 8, 2) and (4. 8. 3) reduce to the corresponding I.JDEs.and QDEs
for the simple nonlinear diffusion (K. P, P.) equation given in
(4.2.3) and (4.2.4). Thus in the case

1 >0

4
the traveling-wave solutions 1o (4. 8. 3) wil.l correspond dlrecdtli/_to
those given by (4. 2. 4) and illustrate‘d in Plg.s. 4r-8,4 4;94)ar}£hen
15. If uy is the velocity of a certain splutlon of (4. Al
the corresponding scolution of (4. 8. 3) will have a velocity, u,

given by
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or

‘ u :%[uai\/uaz+4/fzc:1 (4.8.4)

For typical superconductive neuristors, l/\fE is measured to be
about 1/20 the velocity of light (Yuan and Scott, 1966} while u
is the order of magnitude of the pulse velocity on a nerve fiber.
Thus the inequality

a

1
Nic >> Lla (4. 8. 5)

is satisfied by several orders of magnitude and (4. 8. 4) reduces to

|
um T T (4. 8. 6)

Referring back to Figs. 4-6 and 4-7, appropriate values for ug
are xu) and *u, for the prepagation of level changes and 0 for
the pulse. Trom (4. 8.1), however, the ratio of areas 4] and Ay
can be changed by a simple adjustment of the bias current, For
convenience we can define I, as the critical value of bias cur-
rent at which A; = A,. Then

IB>Ic:>A2>A1

IB <IC => AZ <Al

as indicated on Fig. 4-32. This figure shows the velocity, from
(4. 8, 6), plotted against the bias current for the traveling-wave
solutions on the neuristor, which correspond to those in Figs. 4~ 6
and 4-7.

The puise solution is shown in Section 5-1 to be unstable
{Lindgren and Buratiti, 1969), Measurements by Reible on an
eighty-two-section electronic analog of (4. 8. 2} show that such a
pulse either decays to zero or grows to a metastable pulse in
which the leading edge travels slightly faster than the trailing
edge {see Fig. 4-33). From such data the relative velocities of
the leading and trailing edges can be readily measured and plotted
as a function of bias current. As shown in Fig. 4-34, such mea-
surements confirm {4, 8. 6) and Fig. 4-32.
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Ay> Ay 1g

Aa < By Ie

FIGURE 4-32. Plot of velocity (u) against bias current (IB) for

traveling-wave solutions of (4. 8. 2).

Thus the dynamic behavior of (4. 8. 2) for the superconducting

neuristor presents an interesting contrast to that of the FitzHugh-
Nagumo equation. The “center of mass"” for the metastable pulse
has the same velocity as that of the unstable pulse. It absorbs
the exira energy necessary to satisfy the power—balance condition
{4.3), P = ul, not by going faster, but by growing fatter!

Pulse Amplitude (voits)

Distance (Sections)

FIGURE 4-33, Evolution of a pulse waveform for a bias level of
Ig = 1. 31 measured on an eighty-two—section

electronic analog of (4. 8. 2).
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URE 4-34, Leaimg-. and trailing-edge velocities for pulses
on the eighty-two-section analog plotted against
current (data confirms the predictions of Tig. 4-33)
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Stability and Threshold

Companion of my griefs! thy sinking frame

Had often drooped, and then erect again

With shews of health hag mocked forebodings dark;
Watching the changes of that guivering spark,

1 feared and hoped, and dared to trust at Jength,
Thy very weakness was my tower of strength.

Mary Woll stonecraft Shelley

In Chapter 4 we sought traveling wave solutions for various
types of nonlinear diffusion eguations, and we expect that such
solutions will help us to understand the "level 3" relation between
neuron behavior and membrane electrodynamics. We found station-
ary solutions in the form of both solitary and pericdic waves. Qur
analytic technigue was to assume that dependent variables are
functions of x and t only through the argument £ = X~ ut as
indicated in (4. L. 3). This is eguivalent to introducing the inde-
pendent variable transformation (4. 1. 4) and then assuming no de~
pendence on T (1.e. a/ar = D). Having found such traveling=
wave solutions, it is important to know whether or not they are
stable with respect to perturbations that might reasonably be ex-
pected to arise in an experimental situation, To study the time
evolution of such perturbations, it is necessary to consider the 7
dependence.

However, it should not be assumed that unstable traveling—
wave solutions are uninteresting. An unstable solitary wave, for
example, can be expected either to grow into a stable solitary
nder the influence of small perturbation.

wave or collapse to zero u
vqivide" from which the

Since it thus represents a swatershed” or
system can flow toward one of two stable states; the unstable

150

. turbation.
- been made in going from {5.1.1) to (5. 1. 5).

Stability and Threshold 151

SOJ.U.tl‘OD. determines the thresh: 1tlons neces
shold conditi i
. C sary to induce

1. WAVEFORM STABILITY

To i e s
we inselsrzroducv the basic ideas of waveform stability analysis
gate the K. P, P, form of the nonlinear diffusion equatizjn

(6. 1),

Vxx - Vt = F{V) (5.1.1)

flél;a;iecl);nlgl-zvzve sol.utions for {5.1.1) were considered in detail in
e 14— ssuming a cubic form for the fu i
P Ve nction TF(v). Equation
i v simple for exposition and the r

‘ 1 ' esults to b
?{bta;il;'d serve as a basis for stability investigation of the Pitz—e
Hug " agumo and Hodgkin—-Huxley traveling waves

Under the transformation {4.1.4), {5, 1.1) becomes

V +uV, - =
ee £ V’T FV) {5.1.2)
where V is now considered a function of £ (space in a coordi~

I;atet )system moving with velocity u) and 7 (the same time scal
5 . The traveling-wave solution VT(E,) must satisfy ©

VT’ . + UVT, £ = P(vT) (5. 1. 3)

and i I
. ae\tﬂ;gfneral solution IOf {5.1. 2) can be considered as the sum of
tr ing-wave solution and a perturbation VP(E, 7). Thus
s The

Vg, T) = VT(é) + VP(E,,‘T) (5.1.4)
Substituting (5. 1. 4} into {5. 1. 2) gives

V —
P,§§+UVP,§ VP ;= P(Vp—!-VT)—F(VT) (5. 1. 5)

b

as a nonli
nlme?r. ar}d £ dependent PDE for the evolution of the per—
t is important to recognize that nc appreximations have

Investigation of (5. 1, 5) for the evolution of Vp(€, 7} subject
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to prescribed initial and boundary conditions constitutes the
swaveform stability problem” for a traveling-wave solution of
(5. L. 2) with velocity u. This equation has been studied in con-
nection with the propagation of: (a) flames (Zeldovich and Baren-
blatt, 1959; Kanel’, 1962), (b) “Gunn effect” domains in bulk
semiconductors {(Knight and Peterson, 1967; Elecnskii, 1968), and
{c) traveling waves on "heuristors"” and electronic analogs for the
nerve fiber (Parmentier, 1867, 1968, 1968, 1970; Buratti and Lind—
gren, 1968; Lindgren and Buratti, 1969; Maginu, 1871).

One approach to the study (5. 1. 5) is to assume the perturba-
tion small enough so that the right-hand side can be approximated

by

! s _ )
F(VP + VT) - }(VT) ~ ] X VP_G(VT)VP (5.1.6)
V=V,
T
whereupon (5. 1. 5) is "linearized" to
- = 5. 1.
Ve g * Wy Vp GL V(8] Vp (5. L.7)

Elementary solutions to (5. 1. 7) will either decay exponentially
with time, grow exponentially with time, or remain constant.
Thus, with respect to the linearized equation, we can say the
system is: (a) asymptotically stable if all elementary solutions
decay, ib) unstable if any elementary solution grows, and

{c) stable if both {a) and (b} are not satisfied.

This is a neat scheme but we must be wary of drawing con-
clusions from (5.1.7) that are not relevant to the application of
(5.1, 5) in a real situation. While we might conclude asymptotic
stability with respect to (5. 1. 7), for example, it may not be rea-
sonable to assume perturbations sufficiently small for (5.1.7) to
apply. As Eckhaus (1965) puts it, vinfinitesimal disturbances are
certainly unavoidable, but not all unavoidable disturbances may
be considered infinitesimal. ™ * On the other hand, if (5. L. 7) in-
dicates elementary solutions that grow, these may eventually be
bounded by the nonlinear character of {5.1.5). Such a bound may
be so close to the original solution that the system is, in a prac-
tical sense, stable. With these caveats in mind, let us proceed

to the analysis of (5.1 7).

* Those who experiment with real nerve fibers will probably agree.

’1971; Evans, 1972; Sattinger, 1976},
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I VP 1ls con cted L
structed from elemEnta.ty pI()(iuc solutions of the

- ~ ST
Vp~o(E)e (5.1 8)

then ¢ must satisfy the eigenvalue equation
+ —
‘I’gg qu‘g i {s G[VT(E)] Jo=10 {5.1.9)

The condition for as i i
: ymptotic stability is that a i
s, twhlchhare allowed for solutions (5. 1 9) musltl ggseelger'l:'alues’
NG ; . L positi
;enta TS 115 w"ouldrrequue the magnitude of the correspondi:; éfea—l
certaigyseo ution (5. L. 8-) to decay exponentially with time
nse asymptotic stability is never possible Thi's can b
. n be

seern by dlffEI'elltlatlllg 5.1. 3) fo e traveli —~wave s
(,-. '
) g=w, lution

In a

vV, .) +u (VT,

T, ¢ ” g) - G(VT)VT,g =0 {5. L. 10)

3

gnd g(})lting that‘ this is the same equation cbeyed by ¢ whe
R us the eigenfunction of (5. 1. 9) with zero eigenvalue ir; ’

6=V f =
T, ¢ or 5 =0 (5. 1.11)

ic N
finitesimal tr a[lSlathIl’ Q, of VT a].oIlg the E“ axlis. Since

VT(g ta)= VT(E) + aVT’ ¢ (5. 1. 12)

this i i i
1s equivalent to adding an infinitesimal amount of the s = 0

:‘elgenfunction, 1

But we expect a translation perturbation to neither

grow nor i
decay. The observation that the perturbation eigenfunc—

. Hen corr i i
esponding to zero eigenvalue is the derivative of the trav-

s ((aglrigl;«rave is quite general and not at
5, L 1),

all restricted to soluti
. . 1 tions
Many investigators avoid this situation by defining s‘ca—Of

bility wi i
" ¥ TEh rlesp(?ct to a metric that permits arbitrary translations
with £ (Ze dovich, and Barenblatt, 1959; Kanel', 1962; Maginu
s ;
2

Next it i i
ot eig:; 1tlls qf 1F1terest to determine whether s = 0 is the low-
value; if it is not, (5. 1. 8) indicates instability. We
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make this determination with respect to the boundary conditions

s -0 as & - (5.1.13)
1f the change of dependent variable

¢ ={exp- (%)&Nf (5.1.14)

ig introduced into (5.1.9) (parmentier, 1967), y must satisfy the
Schradinger equation
2

Ve ¥ {s —%l——c;[vT(g)] W= 0 (5.1.15)

for which the eigenvalues are real and bounded from below [Morse
and Feshbach (1953) pp. 766-8]. I s5<0, G—-G >0 as £ —~
+ow, and G -Gy >0 as £ ——o0, Y must also satisfy the bound-
ary condition (5.1.13). Then s = 0 is the lowest eigenvalue if
the corresponding eigenfunction, (dVT/dE,), has no zero crossings.
This condition is satisfied for the #1gyvel change” waves in Fig. 4-
6 but not for the pulse wave in Fig. 4-7. Thus the smoocth level
change waves are stable with respect to the linearized equation,
but any solution for‘which Vo is not monotone increasing or de-
creasing with § will have eigenvalues s <0, and, from (5. 1. 8},
will be unstable. This conclusion is independent of the form of
the function FP{V} in (5. L 1). }

This result has been extended to perturbations that are not in-
finitesimal by Maginu (1971). He expresses the right-hand side of
(5.1, 5) by & Taylor series so that

2
- ] 'l‘ " V..
T A L U A (5. 1. 16)

for Vp within the appropriate range of convergence.
a set of functions

{n)
Vo }

with the property thatas 7 —

S & dvT
P n. din

Then he finds
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Th aSyIilp’EOt cp
1s 1 IOpeIt'y' is established by requiring the paltlal

(L}
VP +V£2)+ +V£}n)

to satisfy (5.1.16) wh
- en the Taylor i i
terms of n series is approxi ;
order . Then, taking Vp as the ii}i‘ig)i{tl?zted P
U

P (5.1, 17)

it is seen that .

VP — VT(E, + @) - VT(E,) as T - {5.1.18)

This is asym { i
ptotic nonlinear stabili
ility with res
pect to a metric that

permiles translations in the g_dlle on e 0 STIrilc on or
cti
. N Th nly re i
VP is that it must lie within the range of convergence 1n (:J, L 16).

To see how this ar
gument goes i
d note firs
emonstrated [ through analysis of (’5. L7} th;tth{i;;(vlv}e ha‘{,e already
’ —~aVr £ for

7 ¢ as long as Vg i
R 15 a mono i ,
function of £. T tone increasing or decreasing

To second order, VP(Z) must satisfy

2) (2)
v LGN B
P et +u P ¢ VP’T = F (VT)VP(,Z) +ip" (VT(VS))Z (5.1.19)

ntiatin (5 . ) t C th res ct to
Differe ating 1.3 WlCce wl e ect 1ves

v, +aV, = p
T, eE68 " 7 T, EEE F (VT)VT’ £t + F"(VT)Vi ¢ (5.1.20)
The variable ,
_..(2) 2
w=v' -1
P 2% Vr g (5.1 21)

ob i
eys the equation [ (5, 1. 19) - %az (5.1.20)] or

W, +uw, - = F Lpr ’ 7
gt W~ = P w +iE (vT)[(vg)) - otV o G122)
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But, as T %, this approaches

ng +uw§ - Wg = F'(VT)W (5.1.23)

which is identical to (5.1.7) so W — o)V x
Then from (5. 1. 21) ’

vg) + vg) @tV eV (5. 1. 24)

as T —w. The addition of @] t© @ in the first term constitutes
a gecond-order correction to the translation caused by the initial
perturbation. It can be absorbed by redefining o a8 (¢ + o) in
(5.1.21) and (5,1, 22). Higher-order estimates are treated in a
similar manner.

Consider finally the nonlinear bounds on those traveling
waves, VT(g), that are not monotone increasing and hence unsta-
ble with respect to the linearized equation (5.1. 7). These will
grow no further than the stable, monctone increasing transition
wave and will decay no further than zero. It seems reasonable to
suppose that these are the bounds of interest,

It should be emphasized that these conclusions do not apply
to transition waves between 0 and Vp in Fig. 4-7. ®Since the
singular point at vy corresponds to negative differential conduc-
tance of the membrane, it is unstable even under space-clamped
conditions. The stability of such waves is studied in connection
with a problem of genetic diffusion where the dependent variable
must be less than or equal 1o its value at the singular point
(Fisher, 1937; Kolmogoroff, petrovsky, and Piscounoff, 1937;
Canosa, 1973; Rosen, 1974). Aronson and Weinberger {1975) have
compared the asymptotic behavior of (5. 1. 1) for F(V) equal to
v{l - V) with that for F(V) equal to V(- VIV - VL

Lindgren and Buratti (1969) have investigated the stability of
traveling-waves on an exponentially tapered version of the non-
linear diffusion egquation. Trom (4. 6. 38)

-~ ~ = L2
v Wx \/ft F(V) (5. 1. 25}

XX

where v is the tapering exponent indicated in (4. 6. 1), Traveling-
wave solutions identical to those indicated in Pigs. 4-6, 4-7, and :
4-13 are readily obtained. The only difference is that the traveling-:
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wave velocity is

u =
Up Y (5.1, 26)

where i ity t

g indisateés.the velocity that would be calculated for no taperin

28 Indicar (Sml (4. 6, 4). TIxpressing a perturbation of a travelin ?
. 1. 5), the correspending PDE for its evolution is ’

v + (u - -
bzt (u y)VP,g VPT:P(VP+VT)—F(VT) (5. 1. 27}

E

Lindgren and Buratti expre-ss the right-hand side of {5.1. 27) as

I-‘(VP + VT) - F(VT) = G(VT)VP +elg, VP)

(5.1.28)
where the “remnant” ¢ (g, Vp) has the property
e (g, v
lim s =0
vpﬁo }VPI_ (5. 1. 29)
Then they define the Liapunov functional {Hahn, 1963)
$)
® 2
L) = 2 [ wlew?
P 2_{0 €IV (g, 7)ag (5.1.30)

where WI(£) is ana i

ppropriate weighting fi i
A C ! g function to be d i
SS;.m‘ing.the initial perturbation, Vp(g,0), to have fini etermined.
stability is ensured if L = (dL/dt) <0 ’f0; e inite energy,

stability requires L <G. Asymptotic

Differentiating (5. 1. 3 ]
130w ;
(5. L 27) vields ) with respect to time and substituting

co

L= [ wiv v -
_{o plVp ge + =YV SGUV —c v laE  (5.0.3)

For a linear stabili

: e ity analysis, the rem .

after i ) f remnant ¢ is negl 4
integration by parts, {5.1. 31) assumes the formg ected and,
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W, W, 2 5
- 3 lag  (5.1.32)
i--f Slamy) o ) eI

- (5.1.33)
Y=WV,

ose the welghting function WI{£) so

it i i to cho
Now it 1s convenient /W) i %(u N o

1 is minimized. Thus (Wg -
o 2N I
W = exp[3(u - yIE]

and (5.1, 2) becomes

L= —fw{wz+[%(u—y)2+G(VT)H/2}dE (5.1.35)

eg not become positive.

onsider the variational
straint

' o
For stability we must ensure that L d

To investigate this poss(;ibilli;g)wigjaer;:to S eray con
imizing 5. L. s
problem of maxl

fml,!/zdg = const (5.1.36)
-0

or thi 1 S
F S COlldlthﬂ (MOISE alld Peshbach, 1953) w must satl fy the

Fuler equation

s [s-Llu-yi-Gl)lw= 0 (5.1.57)

Vee

ratin A 35 I arts a S b 5 { VES lhe
I ting ( 1 ) y P t nd stituting ( 13 ) g
ntegra P

maximum value for L as

¢}

io- [ syt

—00

{(5.1.38)

Thus if (5.1, 37} has only positive eigenvalues,

the linear stability
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analysis would imply absolute stability. The corresponding com-
putation for nonlinear stability assumes e (&, Vp) # 0, where

Ls-[lstet, VP)/VPH/2 dg (5. 1. 39)

From the property of the remnant as Vp — 0 that was expressed in
(5.1. 29}, it is clear that linear absolute stability [L <0 from
{5. 1. 38}] implies nonlinear absolute stability [L <0 from (5. L.
39)]. Itis only necessary to choose Vp sufficiently small
enough so that !e/Vpl <s for any eigenvalue of (5. 1. 37},

However, as we noted above in connection with (5. 1. 9), there
is an eigenfunction of (5.1, 38) with s = 0, and perturbation with
this elgenfunction simply translates V along the £-axis. But if
we define Vp as the difference between V(¢ ,7T) and a translated
traveling-wave Vp £+ e where o is adjusted to minimize the
difference, then the s = 0 eigenfunction disappears from the
analysis. 'With this definition of Vp the transition waves in Fig.
4-6 are stable, whereas the pulse wave in Fig. 4-7 and the peri-
odic waves in Fig. 4-13 are unstable.

For the superconductive neuristor described in Section 4-8,
Lindgren and Buratti (1969} choose the Liapunov functional as the
sum of electric and magnetic energies or

o0
_ 1 2, gl 5
L=13f (cvp + 40 )de (5.1, 40)

—00

where v and ilp are perturbations of v(§) and ij{£) which
satisfy (4. 8. 3). Then

rel = ~_fw {Vi,g +rGLv(g)] vs}dg . L 41)

“with G[v(§)] defined as in (5. L. €). The form of (5. 1. 41) is iden—

tical to that of (5. 1. 35}, so a corresponding stability argument can
be developed, In particular the transition wave-forms on the slop-

‘ing branches of Fig. 4~-32 are stable, whereas the pulse on the
- horizontal branch is unstable,

A corresponding stability investigation for a traveling-wave
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solution of the Pitz Hugh~Nagumo equation (4. 3. 1} is considerably
more difficult hecause the linearized problem is of third order.
Thus the eigenvalue problem, corresponding to (5.1.9), cannot be
made self-adjoint and the eigenvalues are generally complex. The
eigenfunction for s = 0 is still Vq ¢ but there is no simple re-
lation between the number of zero crossings of the eigenfunctions
and the order of the real parts of the corre sponding eigenvalues.
However, wWe have already shown branches @ and ® of the
singular orbit @ in Fig. 4-1la to be stable, which is consistent
with the numerical results of FitzHugh {1969) and Rinzel and Keller
(1973} indicating stability along the high-velocity branch for par-
ticular functions V).

In a series of papers Evans
jzation, of the Hodgkin—Huxley equations

py FitzHugh (1969)

(1972} has investigated a general-
with the form suggested

(5. 1. 42)

v -V = }"O(\],Wl, ..-,wn)

2
1

Pi(v,wl,"',wn) L=5rt0

where the T values are twice continuously differentiable. This
get reduces to: {(a) the K. P. P equation for n = a, {b) the
FitzHugh~-Nagumo equations with n = 1, and {c) the Hodgkin-
Huxley equations with n= 3. Writing W = col (V,wy), """ s¥n
and assuming a traveling-wave solution of the form Wix, t) =
Wrlk-ut) = welE), a general solution can pe written WiE, T) =
wrlE) + WP(g,T). The linearized equation for Wp is then [ as in

{(5.1.7)]

Vp, £¢

(5.1, 43)

where A is an (n+1) X {n+l) matrix with elements obtained by
differentiating the F values with their arguments and evaluating

at Wp. Evans shows:
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1. The solution f
or (5.1.42) deca
. : ys exponentiall
) th(er Srcr)ll:tlsmtably small initial perturbation)yizoa:gr( o
ion for (5. 1. 43) decays exponential y
N ally to WT £
>

The sclution for () 1 43 de(:ays exponen a]]y (0 I
o e }
if and Oflly if the associated elgellvalue eguarion

%0,¢
0
0 +u@§+(s—A)§D:O (5.1 )
| L1 44
LO A
where
&= colloy, ¢, """, )

has no ei nvalues gativ o] ; = T g
ge es with ne i
) ) ative rea arts:and @ W,
is the Olllz elgeIlfUﬂCtiOn for s 0
-

imi e g
As ila sult has q 1ite rece Y bee
( centl n ohtainec }Jy Satti ar
) gen Y m that allows the uncti
976 or a ore eneral syste F ctions in

(5. 1. 42) to de
. end
js) on the w; .. The zero eigenvalue of the linea
r

operator must be isola d
ted at th igil
operator mus ' e origin of the complex
ot plagnzlgegjaalueégmu)st lie within a certaIiJn paf;ggleé 'anfh
. ns 75) h i thar
et 5) has extended his w
s fie an lj.lmstable pulse as well as a stabloerk t(lj Show that
we have restricted notion
remporal ins > ! . ed our attention to the i
b D tte;lblll.tv, that is, an unbounded growth wIil;:l’?'n Y
omtia instab'f-t is bounded in space. We might als 1m? e
shora-lns bolmll’g:d &‘m u.nbounded growth with space%fcznsmer
Stainnd 1o aom ed in time. For a propagating pulse th P‘_Erthba‘
o he distl[jrgach z.ero as x —zx w0, these two notio e
e moak (o) W;l[ice‘ is bgunded in both space and time; gr?dare o
time is equivalent to growth with ’spa grogth of
ce. Rinz-

el (1975a,b) h
. s 1as recently emphasi
simple for periodic traveling—Wavlezsed o the marter 18 not <o

From a numerical study of

- ations Q NAV sea in conn t th
e the period' i action w,
(6] aves discus d i
| pert]lrb g . .
: }lg' i 14’, l,le has shown that the conditions for S[)atl‘al and tem-~
E oral Stablllty do not necessar ll}’ coincide

Furthermore, for
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ments in which a fiber ig stimulated by a peri-
litude at a fixed point (by an eleciro-
spatial instability is of primary

“signaling” experi
odic disturbance of fixed amp
physiologist or a sensory input),

interest. _ .
- The condition for spatial instability is simply stated for the

eriodic waves in Fig. A-14 with reference to the c?rresponamg
'I?frequency—wave aumber® plot shown in Fig. 5—61‘. \He;?:r\,rqeusinccc}:
e is 1/, where T and | , a
f= 1/T and wave number is , Wi : : X
tiveh// the temporal and spatial periods of the wave, Evidently
the tréveling wave velocity is given by

u = fi (5.1, 45)

lity to spatial instability occurs

iti from spatial stabi .
f i ' This is the frequency at which

at the maximum frequency, Tmax-
AL (5. L. 46)
1
2y =0
at)

Larger velocities are spatially stable and smaller v?lilils;szity
i i b) found temporal i
ally unstable. Rinzel (19753, ‘ !
e for ¢ = .05 with several values of Vi, as defined in

at fmax

Q
o
o

o
&

[=3
0
0

oz

Frequency (f) —

o .0z 04 06 o8 A Jd2 14 A 18

Wove number (—k)———

inst wave number for periodic
URE 5- 1. Plot of frequency againsi \ : r
He traveling—-wave solutions of the FitzHugh-Nagumo

equation with F(v) defined as in {4.3.21), e = 0. 05,

a=0. and b= 0 (redrawn from Rinzel, 1975).
»
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(4. 3, 21). Furthermore fax does not occur at the minimum value
of M so a certain portion of the upper branches of the curves in
Pig. 4-14 will be spatially unstable,

The stability investigation of waveforms on myelinated fibers
is vet to begin. Beyond the speculations associated with Nasanov
diagrams {see Pig. 4-21), there is only the work of Predonzani and
Roveri (1968), which treats equilibrium stability of a lossless
transmission line that is pericdically loaded with active bhipoles.

Thus much remains to be done before the study of waveform sta-
bility is complete.

2. THRESHOLD FOR A SPACE-CLAMPED MEMBRANE

Although we are primarily concerned with the excitation of a
propagating action potential on an active nerve fiber, it is inter-
esting to begin with a brief consideration of threshold effects on
the space~clamped membrane indicated in Pig, 3-7. A classical
threshold experiment is to measure the relation between the
strength and the duration of a stimulation just sufficient to induce
an action potential on the membrane. For convenience let us sup~
pose that the total membrane area in Fig. 3-7 is 1 cm? and assume
that llz(t) is a square pulse with the form

Ilz(t}:o for 0>t>7T
=1 dfor 0<t<7T

The point of the strength~duration measurement is to increase 1
and/or T until the action potential is cbserved and then record
the relation I(7).

A rough idea of what should be expected can be found by con-
sidering the equivalent circuit for the membrane in Fig., 4-5. This
linearized representation should be appreximately correct below
threshold, where the effects of nonlinearities have not yet become
dominant. Since Ilz(t) is a step function at t = @, it is conven~
ient to use the Laplace transform technique (Gardner and Barnes,

1942} to find the resulting membrane voltage as a function of time.
The membrane impedance is

1 s + R/L
h 2
s + Rs/L+1/1C

(5.2.1}
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The Laplace transform of a cur—

{ lex frequency.
where s is comp /s so below threshold the Laplace

rent step with amplitude I is I
transform of the voltage will be
1 s + R/L
© s(sZ+Rs/L+l/LC)

(5. 2. 2}

Dlvit)]

and the voltage across the membrane as a function of time cs{n l?e
cbtained by inverting this transform., If it is asslumed 1'415}‘& 1 15—
a threshold voltage above which the membrane will exhibit an a% .
tion potential, the strength-duration curve for threshold can be de
termined by setting

Lvir) = v, (5. 2. 3)
The limiting cases for long and short values of 7 are easily d?—
termined since large values of t correspond to small values of s

and vice versa. Thus for short times (5. 2. 2) becomes approxi-

mately

o&[v(t)]“% (5.2.4)

S

Q

or

(5.2. 5)

Setting v equal to the threshold voltage (Vl) and t equal to ’Ehf
duration of stimulation (r} as indicated in {5, 2. 3) yields the rela
tion

Ir 'VlC {5. 2. 6}
for 7 <<L/R. The fixed quantity of charge appea.ring. on the right-
hand-side of (5. 2. 6} is the charge that must be supplied to the .
membrane capacitance in order to change its voltage by an amount
equal to the thresheld voltage. If, on the other hand, 7 >> L/R,
then (5. 2.2) becomes approximately

Livit)] = 2

s

(5.2.7}

|
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or

v = IR (5. 2. 8)
Requiring that v = ¥} in (5. 2. 8) implies a "rhecbase” current
equal to {V}/R). But overshoot in the voltage response to a cur~
rent step | which was clearly indicated by Hodgkin and Huxley
(1952d) and reemphasized by Muro, Conti, Dodge, et al. (1970)]
will permit the voltage to reach threshold at stimulating currents
less than (Vi/R). Thus (V}/R) should be considered as the rheo-
base when current is slowly increased.

This discussion greatly oversimplifies the dynamics involved
during excitation of a real active membrane. For a survey of the
history of strength-duration measurements and a thorough discus—
sion of current research problems, the reader is referred to Chap-
ters 6 and 7 of Khodorov's The Problem of Excitability, which has
recently been published in English. Particular problems which re-
quire more careful consideration include the following:

a. Definition of Threshcld Voltage.

As Khodorov (1974) has emphasized, there is not an unambigu-
ous definition for the threshold voltage. In general the time deriv-
ative of the membrane voltage is

@ - (5.2.9)

where 1;, is controlled by the experimenter (see Fig. 3-7) and I
is the ion current that should, in principle, be calculated in some
precise way such as through the Hodgkin-Huxley equations (3. 2, 3).
For a very short stimulating pulse, 112 = 0 when the threshold is
reached, so the condition can be defined as

I <0

i (5. 2.10)

or

INa > IK + IL (5.2.11}

Tor a very long pulse, however, I);# 0 and the threshold voltage
might be defined as the point where upward curvature of voltage
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begins. This implies ] the duration {r) Fig. 5~3 takes the form

dv
>>0 (5.2.12) : Ir=Q, {5.3.1)

wher.e Qp is a constant threshold charge just as (5. 2. 6). In this
section we shall be primarily concerned with the computation and

dI 41 a1 physical understanding of this charge.

Na K L )
N . (5. 2. 13) To begin let us proceed as in the previous section and repre—

dt dt dt sent the shunt admitta
dmittance per unit length of th i h -
1 s ( i, 197 3a) e fiber below thres

or

Defined in this way, the threshold vcliage can vary by several

millivelts as the strength of the stimulating current is changed. £ SZ ir 5/1 N 1/1
] 1 Cc
y=c¢ R
b. Accomodation. s + rl/g (5.3.2)
If has long been an established experimental fact that a slow Then the voltage at the input terminals, v{(0, 1) .
turn-on of the stimulating current leads to the observation of a k3 the input current by the characteristic ;mpec’i;n’ Wllé be I'ElEfil'ced to
- ce, Zy, of the fiber.

higher rheobase current. Although this effect is gqualitatively pre-
dicted by analysis of the simple membrane eguivalent circuit in
Fig, 4-5, some related effects are not. In particular a "minimum
slope” for increase of the current stimulation with time is often
observed (Khodorov, 1974). Below this minimum slope no action
potential is observed at any level of stimulating current. Typical
values for the minimum slope are often of the order of 0.1 rheo-
base units per millisecond. This effect is predicted by the com—
plete Hodgkin-Huxley equations, and it comes about because with
a slowly increasing voltage the sodium turn—-off (see hgy in Fig.
3-12) can hold the inward sodium current to a sufficiently low
value. There are other adaptation effects (FitzHugh, 1969} with
time constants of the order of a second that are not represented at
all by the Hodgkin-Huxley equations.

T%lis is the sguare root of the series impedance per unit length di-
vided by the shunt adm_ittance per unit length (Scott, 1970). Thus

to CRO
V“’

Sali water

leass

it1) \EIicfrode 7
$

C)i“) /l W’

T t L
{a)} Nerve Fiber

(b)

3. THRESHOLD FOR AN ACTIVE FIBER

An experimental arrangement for measuring the strength dura-
tion curve for threshold excitation of a propagating action poten-—
tial on a nerve fiber is indicated in Fig. 5-2. Computations by
Cooley and Dodge (1966) of strength~duration curves for the Hodg~
kin-Huxley axon are presented in Fig. 5-3, and these agree well
with experimental results {Noble and Stein, 1966; Cole, 1968;
Khodorov, 1974). It is important o notice that for amall values of

FIGURE 5-
GURE 5-2. (a) Strength (I) and duration (r) for a threshold

[?easgrement; {b) experiment to measure strength-
duration curves for a nerve fiber.
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FMIGURE 5-3. Calculated strength- duration curves for the Hodgkin—
Huxley axon (Cooley and Dodge, 1966).

(5. 3. 3)

(5.3.4)

s2 +—l‘s + L
£ fc

Again the Laplace transform of a current step of amplitude 1 is
i/s, so the transform of the voltage at the input terminals

Z
o]

Livie, 0] =17 (5. 3.5)

The inverse of this transform can be obtained from tables (Roberts
and Kaufman, 1966) by convolving
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-1 £ _
O win L

to obtain

r
elh) g

ofpm );o/f*t

\,@c s

where the symbol & denotes convolution or

[>e]

[ ayiplt - y)dy

—00

alt) @ bt

= bit) ® alt)

The error function is defined as

2 A -
EI‘f(Z)E*T—Tfey
0

(5. 3. 6)

and J, is the zeroth order Bessel funciion as defined by Watson

(1962).

Now if we attempt to derive a strength duration curve
(5.2.3), by setting

v{0,7) = Vl

the axial current

, asin

(5.3.7)
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10, 7) :—f—vx(o,ﬂ (5.3.8)
s

is being neglected. For small values of 7, this means that the

. sodium component of membrane current must supply not only the
potassium and leakage components, as indicated in (5. 2. ll), but
also the axial current. If 7 is long enough, then vy will be
small at the input end. This critical value of 7 should be of the
order of VI¢ (see Fig. 4-5), which is the time necessary for ion
current to begin to flow through the membrane. Thus (5. 3. 7) is
applicable only for stimulations of duration

T >+lc (5.3.9)

To plot solutions of (5. 3. 7} it is convenient to normalize as

—T
Tn T IS
(5. 3. 10a, b)
Nrr
I =1 s !
n Vl
and thus the strength-duration curve {5. 3. 7) becomes
'Tn e—AY N ( AZ( ))Jd -1
Co= -3 - 1-2A (v - v
1= [ | v et A | [exp(-sal -V, Y
(5. 3. 11}
where
A=r s (5. 3.12)

(which is the reciprocal of the membrane Q") and the restriction
{5. 3. 9) becomes

T >1 (5. 3.13)
n

Active Fiber Threshold 171

Strength—-duration curves for various values of the constant A
in (5. 3.11) are plotted in Fig. 5~4. The following points should
be noted:

1. Comparison with Fig. 5-3 shows that (5. 3. 11) is clearly
incorrect when the ineguality {5. 3. 13} is violated. In-
deed, (5.3.1l) implies W7 = constant for small T rather
than the condition (5. 3. 1).

2. The dashed linesg in Fig. 5-4 indicate the actual values
plotted from (5. 3. 11). According to (5. 3.7), however,
threshold is reached when the highest value of voltage
reaches the threshold, V). Thus the solid lines in Fig.
5-4 are drawn with the assumption that firing takes place
on the voltage "overshoot. "

3. The observation by Maurc, Freeman, Cooley, et al, (1972)
on squid fibers indicates a larger voltage overshoot for a
lower temperature. In terms of the simple membrane
equivalent circuit {Fig. 4~5 ), this implies a larger mem-
brane *Q" at lower temperature or, from (5. 3.12), a
smaller value of A. Thus Fig. 5-4 qualitatively explains
the "cross-over” of the threshold curves displayed in
Fig, 5-3.

4, The increase in rheobase for a slowly increasing stimula-~
tion is indicated on Fig. 5-4 for the curve A = 0.3. If
the fiber is stimulated with a step of current, there will
be a considerable overshoot and the rhechase will ke
Rh 1. If, on the other hand, the stimulating current is
slowly raised (e.g., as a linear ramp function), the over-
shoot will not occur and the larger rheobase (Rh 2) will
be observed. Of course the caveats outlined in the pre-
vious section concerning the qualitative nature of this
representation still apply. In particular, (5. 3.11) does
not predict a minimum gradient for excitation.

But how are we to calculate the strength—-duration curve when
7 1is short; so that longitudinal current away from the input cannot
be neglected and {5. 3. 7) does not apply? What is the physical
significance of the threshold charge Cg that appears in (5. 3. 1)?
In order to answer these gquestions it is helpful to turnour atten-
tion briefly toward the threshold problem for the superconductive
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TIGURE 5-4, Normalized strength-duration curves calculated from
{5. 3.11), which assumes threshold is achieved when
the input terminal voltage changes by a fixed value
(Vl). This assumption is only valid for , > 1.

neuristor which was introduced in Section 4-8. Equations (4. 8.2a)
and (4. 8. c) can be combined into the conservation law

B(ei)
2, L _y {5, 3. 14)
9% ot

where v is the flow of the conserved quantity and £% is its
density. Thus the cons erved quantity is the magnetic flux

[+9]
=1 i) dx (5. 3.15)
—o0

From a physical point of vicw it 1s not at all surprising to findl
magnetic flux conserved in a region between two superconduct‘mg
boundaries, but analytically it is rather convenient. If the stimu-
lation is a voltage pulse of strength V and duration 7, the
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magnetic flux introduced by the source is just Vr. To achieve
threshold this flux must be sufficient for the unstable pulse indi-
cated on the horizontal line of Fig. 4-33. Calling the flux of the
unstable pulse @pllp), the threshold condition on strength (V)
and duration (r) is simply (Scott, 197 3a)

vr = 2(1) (5. 3. 16}

If this much flux is supplied, the pulse can grow into the stable
leading and trailing edges as indicated in Fig. 4-32. Threshold
levels of strength are plotted against duration in Fig. 5-5 from
measurements on the eighty-two-section analog of {4. 8. 2) dis-
cussed in Section 4-8 (Reible and Scott, 1975). Evidently (5.3.16)
is well satisfied. The decrease in ®p with increasing bias cur-
rent (IB) arises because the ratio AZ : Al increases {see Figs.
4-7 and 4~-31), which reduces the amplitude of the unstable pulse.

@
= o .
Z os|- 4
& ggl-  Blos Level B
2 20961c
= pab o 1.031c N
E‘ oI5l
<
& 02 B
=1
a.
> Of | i L1 f 1 | L

! 2 4 6 810 20 40 &0 BO 100

T - Pulse Width (g5}

FIGURE 5-5., Plot of strength (V) against duration (v} for thresh-
old excitation of the superconductive neuristor dis-
cussed in Section 4-8, Measurements were made on
the eighty-two-section electronic analog of (. 8, 2).
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Now we can use the same concept to understand (5. 3.1). To
see this, note that the second Hodgkin-Huxley equation {. 1. 1b})
can be written as the approximate conservation law

Bi alv) g (5.3.17)
8x at

as long as the ion current density through the membrane is small
compared with the displacement current density. From (4. 1. 1b)
this requires

] <s }c%g (5.3.18)

Inspection of the many computations of threshold stimulation by
Rhodorov {1974), and in particular the 2. 05-cm point in Fig. 4-25,
shows that the inequality {5. 3.18) is satisfied during the estab-
lishment of a threshold pulse on the fiber. For the approximate
conservation law (5. 3. 17), i is the flow of the conserved gquantity
and cv is its density. Thus the conserved quantity is electric
charge, which is just what we wish to determine for (5. 3.1}, In-
tegrating the flow over time on the leading edge of a threshold
pulse gives

Q, = [ iat {5, 3. 19)
LE

which from (4.1, la) can be written

1 v
Q :——'—'f == dt
& g™

Now the threshold pulse is a traveling wave of the form v(x-uBt),
where up is the velocity on the lower funstable)} branch of Iig.

4~4, Thus

by L ov
9% uB t
and (5. 3. 20}
v
QQ_ r ]131
s B
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Wher? Vg isr thel amplitude of the threshold pulse. The accuracy
of this equation is easily checked. For the Hodgkin-Huxley axon

B b
r. = 1.94 x 10~ ohm/m
whereas from Fig. 4-3 (curve b) at 18. 5°C

Yr

5. 66 m/sec

Vo 18 x 10 v

B

i}

Thus (5. 3. 20} gives

Q= L6 x 1077 ¢ at1s. 5°C

wheresas the corresponding value from the Cooley and Dodge {1966)
calculations in Fig. 5~ is

Qy= 133X 167° ¢ at18. 59

Considering the simplicity of (5. 3. 20} this is rather good agree-
ment.

It is interesting to compare the charge required to bring a fib-
er to threshold with the charge stored in the leading edge o} a ful-
ly developed action potential, Q. Just as in (5. 3. 20) this lead-
ing edge charge can be computed as

o
1
—
(831

L3020

where VA and up are the amplitude and velocity of a fully devel-
cped action potential., From Hodgkin and Huxley (1952d} at 18.59C

V, = 90.5mV sothat Q= 2.48 X w?lc

u, = 18. 8 m/sec

whereas at 6. 3°C

Vy=102.1mV sothat Q= 4.14 X 0% ¢
Uy, = 12. 7 m/sec
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3/2

From the Cooley and Dodge (1966) calculations in Pig, 5-1
—2 < & (5. 3. 25)
&

QQ: .73 x 10 J C at 6. 3°C
ere L 1is the factor by which the incoming pulse increases its
ng.edge charge as it approaches the discontinuity. )

+ is interesting to compare this result with (4. 6. 34) obtained
stushenko and Markin {1969). To estimate ¢ we can assume
acoming charge is proportional to the pulse amplitude and in-
Iy proportional to its velocity, as indicated in (5. 3- 21). For
gkin-Huxley axon at 20°C, Berkinblit, Vvedenskaya,

eriko, et al. (1970) report:

Thus, in general, we can write
QQ s Qo (5.-3"
where for the Hodgkin-Huxley axon

o= 0.5 at 18.5°C

at  6.3°C

il
=]
W
|3V

The abrupt widening of a nerve fiber (more than 5.5 times)
eads to blocking of the impulse. Widening less but close to
ritical leads to a sharp drop in the amplitude of the a. p. (to
0-30 per cent of the initial value) and sharp slowing of the
peed of conduction (from 18 m/s to 2 m/s) which determines
he considerable delay in conduction on passage of the im~
julse through the widening.

This axon carries on the leading edge of a fully developed acti
potential about twice the amount of charge required to excite a
threshold pulse,

These considerations are pertinent to the problem of block
of the action potential at a point of abrupt widening {see Sectio
4-6). The pulse should fail to pass when the leading edge cha
carried into the discontinuity by the smaller fiber is insufficien
to supply the threshold charge requireq by the larger fiber. Sin
pulse velocities are proportional to az (where a is the fiber
radius) and the series resistance is proportional to a"z, the |
ing edge charge in (5. 3, 21} can be expressed as

‘implies ¢ % 3. Taking @« = 4, (5. 3. 25) then indicates

ng at a critical ratio greater than 3. 3 which is in agreement
the result of Pastushenko and Markin (4. 6, 34) but somewhat
than the actual ratio of 5. 5,

suming « = % and a critical expansion ratio of 5. 5, (5.3.25)
57 = 6,44, which does not appear to be inconsistent with
erical results of Berkinblit, Vvedenskaya, Gredenko, et al.
Further studies would certainly be of value., We return to
nsiderations in Chapter 6 when we consider conditions for
ing of impulses at the branching of an active fiber.

3/2

Q = ka / (5. 3.
o

where k 1is a factor that is independent of fiber diameter. Lik

wise the threshold charge can be written :

(:_)‘9 = a'ka3/2 (5. 3.2

where the factor « is approximately equal to % and relatively’

insensitive to temperature for the Hodgkin-Huxley axon. Howev:
the leading edge charge that an action potential carries intc a di
continuity will be greater than that given in (5. 3. 23) because, &
we saw in Section 4-6, the pulse slows down on approaching an
enlargement. Thus the condition for passage of a pulse can be
pressed as




Pulse Interactions on
the Multiplex Neuron

Visible, invisible,
a fluctuating charm
an amber-tinctured amethyst
inhabits it, your arm
approaches and it opens
and it closes; you had meant
to catch it and it quivers;
you abandon your intent.

e

Marianne Moore

In Chapters 4 and 5 we have considered the natulre of. propa—
gating nerve impulses, how they interact with rllonuruformltles of
a nerve fiber, and the conditions necessary to induce them.' We
are now in a position to augment this discussion of level 3 in tf?e
scientific hierarchy by investigating the interactions of pulses in
and between neurons. Those of us with a background in tklle phy-
sical sciences often underestimate the functional complexity of a
single nerve cell, describing it as a simple device tha‘t'.compares"
a weighted sum of dendritic (input) signals with some "threshold

* From The Complete Poems of Marianne Moore. Copyright © 1959
by Marianne Moore. Reprinted by permission of the Viking Press

and of Faber & Faber Ltd.
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level above which an output pulse is transmitted along a branching
axon. No better introduction could be suggested to the variety of
structures exhibited by real nerve cells than a few hours with
Ramén y Cajal's Histolegie du Systeme Nerveux. From this clas-
sic work the present author extracts only one drawing, namely,
the Purkinje cell of the human cerebellum shown in Fig. 6-1, The
vast aborization of the dendritic fibers accepts some 80, 000 syn~-
aptic inputs (ECCles, 1973} from "parallel fiber”" axons of the
granule cells {a) in Fig, 1-2. Studies with the electron microscope
{Hamlyn, 1963; Poritsky, 1969} indicate a very complex encrusting
of cell bodies and even axons with synaptic contacts as is indi-
cated in Fig. 6-2, On the axonal (output) side it is often assumed
that the "parent” fiber excites all "daughters” at each branching
point so that the signal travels without interrupticon to every distal
{distant) twig, but experiments by Barron and Matthews (1935),
Krnjevid and Miledi (1959), Chung, Raymond, and Lettvia {(1970),
Parnas (1972), and Grossman, Spira, and Parnas (1973} cast doubt
on this simple picture. In these studies, the branch points of
some axons emerge as regions of low safety factor where high-
frequency blockage, alternate firing, and other forms of informa-
tion processing can occur. Branch-point conductance might be
influenced by small changes in local geometry and electric coupl-
ing, thus providing locations for modification of neural transmis—
sion or learning. On the dendritic {input} side of the nerve cell
body, the situation is even less clear. There are experimental
results indicating that information proceeds through the dendritic
trees of some neurons by purely passive means (Purpura and
Grundfest, 1956; von Euler, Green, and Ricci, 1956; Grundfest,
1958), and a corresponding mathematical theory of passive den-
drites has been developed (Rall, 1959, 1962a,b, 1964, 1967;
Pokrovskii, 1970) that essentially involves a linearized diffusion
equation with space dependent coefficients. But experiments in-
dicating passive dendritic conductance are open to various inter—
pretations (Bishop, 1958; Eccles, 1960; Rall and Shepherd, 1968;
Rall, 1970:; Bogdanov and Golovchinskii, 1970), and there have
been several studies implying that action potentials can propagate
at least on the larger branches of some dendritic trees. Lorente
de N& (1960}, Arshavskii, Berkinblit, Kovalev, et al. (1965),
Llinds, Nicholson, and Precht, (196%), Pastushenko, Markin, and
Chizmadzhev (1969 a, b}, Gutman (1971), Berkinblit, Dudzyavichus,
and Chailakyan (I1371), Scott {(1973b), and Gutman and Shimoliunas

. (1973) have pointed out that the dendrites should be able to perform
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elementary logical operations at branching points if they can pro-
pagate action potentials or even decremental pulses. In simple
terms, the branch may act as a logical "OR" if a pulse on either
daughter can supply sufficient charge to excite a pulse on the
parent; otherwise, it may act as an "AND",
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FIGURE 6~1. Purkinje cell of the human cerebellum (Ramdn v Cajal,
1952).
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FIGURE 6-2.
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(a) Reconstruction of a Procion-
neuron by Barrett and Crill (19743?; (b) i
contacts on the cell body of a cat's motoneuro

(Poritsky, 1969).

synaptic

181




182 The Multiplex Neuron The Multiplex Neuron 183
Schmitt, Dev and Smith {1976) have recently suggested that ] 4. The synaptic outputs, whicbh can be modified by input

the current state of knowledge concerning neuronal circuitry is contacts from other cells, ™

undergoing a “quiet revolution. * In their words:

The new view of the neuron, based primarily on recent
electron microscope evidence and supported by intracelle- ¢ . S/
lar electrical recording, holds that the dendrite, far from \4 |
being only a passive receptor surface, may also be pre- )
synaptic, transmitting information to other neurons through
dendrodendritic synapses. Such neurons may simultaneous-

PO

ly be the site of many electrotonic current pathways, in- ] INTIAL S (& NERVE BODY
volving components as small as dendritic membrane patches ] SEGMENT— [}~~~ ————
or individual dendrites. Electrotonic currents, originating

in various loci, flow through a vast network; the informa- MYELIN SHEATH. (3 THE AXONAL TREE
tion-processing product of these currents is transmitted to ]

other brain regions by projection neurons-- that is, neurons E ACTIVE NODES 1

with long axons.

Thus we are led to consider a nerve cell to be at least
as complex as the "multiplex neuron" suggested by Waxman _
{1972} and reproduced in Fig. 6~3. Waxman describes four -
distinct regions cof information processing in a single cell as  %. & bSA& S
follows: 2 3

FIGURE 6-3. The multiplex neuron, Shaded regions have low
thresholds and may perform logical operations.
Redrawn with permission of Dr. 8. G. Waxman,
Harvard Medical School; from Brain Res. 47:269
(1972).

1. The dendritic region in which both excitatory and inhibi~
tory synaptic inputs are summed and (possibly) logical
decisions are made at branches {shaded).

2. The nerve body and initial axon segment as shown in
Fig. 6-2b. Even the initial segment{or “axon hillock ™)
receives synaptic input to assist in its decision to fire
the axon.

In the present chapter we consider some of the ways in which
pulses can interact while propagating aleng the fibers of a multi-
plex neuron. The intent is not to exhaust the subject but to in-
troduce a class of problems that should be of increasing interest
3. The axonal tree, which is often coversd by a myelin during the next few years.
sheath that restricts membrane current to active nodes
and thereby speeds conduction. These nodes can receive
inputs and, again, information processing may occur at
branches.

In the jargon of integrated circuit technology, a nerve cell may
be more like a "chip® than a single "gate".
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1. SINGLE FIBER INTERACTIONS

The well-established experimental fact that two oppositely
directed nerve pulses will annihilate each other on collision is
readily understood for the FitzHugh-Nagumo nerve model from our
previous development of leading~edge dynamics. Consider the
interaction of two oppositely directed leading-edge transitions
shown in Fig. 4~6. If the approximate conservation law (5. 3.17)
is assumed, then together with (4. L. la) the leading—edge inter-
action is governed by a linear diffusion equation that can be
written

2
-y
ox

PULSE AMPLITUDE

. 8 _
2) RO (v VZ) 6. 1. 1)

Thus we expect a relaxation toward v = VZ for j{v) as indicated 4 4 5 5 2 3z 5
in Fig. 4-6a if (6. 1. 1) remains valid until the voltage rises above & | DISTANCE ( SECTIONS)

V). As soon as (v - V,) lies within the range of convergence for
the Taylor series expansion for j(v) about V,, v must decay to 1 FIGURE 6-4. A destructive collision on the line described in
V,. Interms of (5 3.21) we can say that the nef approximately Section 4-8,

conserved charge for the leading edges is zero. Referring back to
Pig, 4~12 for the action potential of the FitzHugh~Nagumo equation,
we expect next a slow relaxation with a time constant 7, (3. 2.4a).
The third stage is the interaction of the trailing edges which, ac- Ig =131
cording to the same argument employed for the leading edges,
should bring the voltage to a negative value followed by a slow
relaxation toward zero,

For the superconductive neuristor which was discussed in
Section 4-8, the dynamics of pulse collisions is somewhat more
complex. If, as in Fig, 6-4, IgmIs {so A} mAp in Fig., 4-6),
pulse destruction is observed on the electronic analog of {4. 8. 2).
If Ig> 1.2 15, the pulses return to their full amplitude as shown
in Fig. 6-5.

PULSE AMPLITUDE

2. PARALLEL FiBER INTERACTIONS

94

1 Il L
4 i0 18 2!6 312 40
DISTANCE { SECTIONS)

No more than a glance at Fig. 4-18b should be necessary to
justify an interest in the interactions of pulses on parallel fibers.
Indeed, as early as 1882 Hering used nerves from Kaltfrsche
(frogs that had been kept in a cellar at about 0°C for several

FIGURE 6-5. A nondestructive collision on the line described in
Section 4-8,

185
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months) to unambiguously demonstrate the excitation of action po-
tentials by-those on an adjacent fiper. Since that time, this
"ephaptic conduction” has been confirmed by many other investi-
gators (Jasper and Monnier, 1838; Arvanitaki, 1940, 1942; Rosen—
bleuth, 1941; Renshaw and Therman, 1941) as long as care was
taken to enhance the excitability of the second fiber (Granit,
Leskell, and Skoglund, 1944), A more subtle effect is the influ-
ence on the threshold of & fiber by an action potential cn.an adja-
cent fiber (Otani, 1937; Kaiz and Schmitt, 1939, 1940, 1942; Blair
and Frlanger, 1940; Renshaw and Therman, 194]; Marrazzi and
Lorenie de NG, 1944; Grundfest and Magnes, 1951). Functionally
significant nalectrotonic” interaction between giant axons of poly-
chaete worms has been described by Bullock (1953) and between
dendrites of electromotor neurons in the mormyrid fish by Bennett,
Pappas, Aljure, et al (1967). Whether such effects are important
in the operation of the large cortical mass of cells in the mamma-
lian brain (see Fig. 1-4) remains an open question.

Working with a pair of naturally adjacent, unmyelinated fibers
from the limb nerve of a crab (see Fig. 6-6), Katz and Schmitt in—
roduced a reference pulse at AR on fiber @ and at a later time
measured the threshold for fiber @ at CD. The result is record-
ed in Fig. 6-6b and can be interpreted as a stimulation of fiber @
that is roughly proportional to the second derivative of the mem-
brane voltage [or, from (2. 30), the membrane current] in fiber Q.

To state this point in more physical terms, the total membrane cur— . ]

rent is outward when the action potential on fiber (T, begins to
rise; this tends tc hyperpolarize fiber @, which increases its
thresheld. Near the peak of the action potential membrane current
is inward (mostly Nat) on @ , which tends to depolarize @ and
decrease its threshold. Finally on the falling phase of the action
potential on @ , its membrane current is outward (largely k)
which tends again to hyperpolarize fiber @ .

Katz and Schmitt also observed the effects of mutual inter—
action between impulses simultaneously initiated on the two fib-
ers. This effect produced various combinations of speeding or
slowing, depending on the phase relation. In particular, synchro
nization of the pulses could be observed if their independent ve-
locities did not differ by more than about 10%. All interaction ef-
fects could be increased by reducing the conductivity of the inter-
stitial fluid. Similar effects have been observed by Crane (1964)
on neurisiors and by Kunov (1966) on electronic analogs for nerve
fibers.
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(a) Experiment of Katz and Schmitt (1939) to measure
pulse interacticn between parallel fibers; (b) change

in threshold on (@ caused by the presence of a
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FIGURE 6-6.

o Recl?ntly- Mar‘kin {1970a,b) has developed a nonlinear theory
tWr para el‘flber 1n.teractions. Starting from a TLEC representing
o unmyelinated fibers that share the external medium (Patlak

3

1955), he derived a pair of : , :
with 3Lhe form P coupled nenlinear diffusion equaticns

A6 4
Y 2z rSVl,xx
(6. 2. la, b)

1
Tl v - - j
T B I R e AR

where i
. Iy, €, i), and wv) are the series resistance/length shunt
bl

capaci 2 i
br:fecztailcu/lengtl?, membrane ion-current/length, and transmem-—
Stitialvo tlage for fiber O and similarly for fiber @ . The inter~
resistance/length i = t
/length is ry and y=rr; +1rg +rprg; S0 as
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ro —~ 4, (6. 2. 1) become two uncoupled equations with the form

(2. 30).
For an analytical study of the interaction effects, Markin uses

the Markin-Chizmadzhev (19 67) representation for nonlinear pulse
propagation which was introduced in Section 4-4. Each fiber is
assumed to carry a “piecewise constant” ion current as indicated
in (4. 4.1) or Fig. 4~15a. The corresponding pulse voltages are re-=

solved into two components as

v.o=v () +v _(£)
1 11771 12772 (6.2.2a,b)
VZ: V22(€2)+ Vzl(gl)
where
E’ = x-~-1u,t
1 ! (6.2.3a,b)
gz = X - U.zt + 8

The components vy and vy, are the inherent pulses on fibers
O and @ traveling at velocities uj and up, respectively. The
components vj; and vp; are the induced voltages from @ to
(@ and vice versa. The parameter § is the distance which the
inherent pulse on @ lags behing the inherent pulseon .
Assuming vy = 0 and making approximations corresponding
to those in (4. 4. 9), Markin (197 0a) shows that the stable velocity

on @ is

I ro+r
1 2 3 (6. 2. 4)

)= 2|lrr 4r.r, +rr
Vlcl rz2 23 '3

The maximum depolarization potential induced on @ 1is

AW c
"21‘ - (1_2) (Té_r—) (EJ—) Vi (6. 2.9)
max 1/ %2 73 2

are the piecewise constant ion current levels

where J; and J;
In a more detailed

assumed for fiber (D just as in Fig. 4-15a.
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study that proceeds from electromagnetic theory, Clark and Pl
.ey {1970} confirm that parameters affecting ry ére of partic lons—
importance in determining fiber interaction. Since both the l;'ar
t.wo falctors appearing on the right of (6. 2. 5) are less than u l'rtSt
mduc.tlon of an action potential on @ is not possible for 'dm Y',
cal fibers (Cl = c). If the radius of fiber ) is made o Larg
er than that of fiber @ so A e fara-

c

c_l‘ >>1

2

the situation is not grea’tl a rkin 970a) s es that
a Y ch ngd. Mar} 1pposes a
in the limit of large a] )

r,xr <<r

T a
- B
lmax (Il a f (6. 2, 6}

fl_Consequ.u?ntly, " he concludes, “the transmission of excitation
fa?;T Onihflbtir tohanother is possible only if by virtue of certain
ors the threshold of itati i i
e excitation of the second fiber is heavily
A key idAea in the Markin-Chizmadzhev model for perve pulse
grgpagatmn 1slthat conduction velocity is determined by the con-
(‘; ;or;s t.h?jt. raise ’Fhe }eading edge potential to the threshold level
1) as indicated in Fig. 4-16, Markin (1970b) uses this concept

to study the synchronizatio i
o study n of pulses. Such synchronization will

so {b. 2. 5) becomes

U =u, = (6.2.7)

in (6. 2. 3), but this need not be the velocity of a pulse on (0 when

. . .

il;egoe is none on @ or vice versa. The effect of a pulse on @&

ol el—speled.up (slow down) a pulse on (I} when vip depolarizes
perpolarizes) the leading edge. Either effect can he obtained

q : )
.-depending on the distance & by which @ lags behind O. When

§ is i
N ir?creased from zero, the effect of vpp is first to decrease
crease, then decrease again the velocity of a pulse on ®,
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in a manner which is qualitatively similar to the Katz—Schmitt
curve of Fig. 6-6b. As § is decreased from zerc, the interaction
V]2, hag the same effect on the velocity of pulse (. These ef-
fects are sketched in Fig. 6-7. At the intersections of the two

curves, (6.2. 7} is satisfied and synchronized pulse transmission

is possible.

8a o 8 5

FIGURE 6-7. Diagram related to the parallel fiber interaction of
two Markin-Chizmadzhev pulses (see text for de—

tails).

The intersection {c) in Fig. 6-7 occurs at 6= 85> 0, which
implies that the pulse on @ is ahead of the pulse on . This
is a stable situation because if § Increases slightly, u; be-
comes greater than uj and § tends to decrease. Intersection
{c) occurs at a combined velocity ug su] S0 that the pulse on @
is "pulling" the pulse on @ along at a velocity close to its nat-
ural velocity.

The intersection (a) is also stable at 8 = 84 < (0 which means
that the pulse on @ is ahead of the pulse on . The combined
velocity uy ®up SO that the pulse on @ is "holding back " the
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pulse on @.

.In a similar manner, it is readily demonstrated that the int
sectlgns {b) and (d) are unstable and hence do not correspo dn .
eXperimentally observable pulse synchronizatic;ns pond e

In ’.the nerve fiber bundle of Fig. 4-~18b, it is‘also interesti
to cot?s1der the possibility of action potenti’als traveling in o 1_“9
chro.msm on several fibers and exciting an additional actionsyn—
tential on an adjacent fiber. This problem has been studied EO
Clark and Plonsey (1971) in an electromagnetic analysis that 'Y i
céte‘s that membrane capacitance plays the primary{olﬁ i ad -
mining the induced transmembrane potential. Iess forr:la?l e
Marki{l {(1973a, b) supposes that n excited fibers have a czl’nbi d
ccjapac1tance ncy, series resistance (rl/n) and membrane cur rlet
nljl. Then assuming that the series resista,nce of the un i e
fiber, r,, satisfies the inequalities prelted

r_ >>
2773

>> rl/n

and also v, <<vy, (b.2.1) assume the form

vl XX
—t— -,V = j
ry +ar, 1',t 7 )
] . (6. 2. 8a,b)
v —C.Vv = j =
r, g czzi laTr
where
nr
- 3
B {6.2.9
1’l +nr3 )

;\isgntf;geg}s] ’Etéla; p;zg):ag‘;’fe sync(l';ro;ize)d action potentials are re-
. 16, 2. , Whereas (6. 2. 8b) represents a single fi
Iialziisifiiatllgn of Which.is Ibeing considered. Choosing t?)e fifllf;r,
g va thH anc‘i assigning membrane parameters corresponding
oo of tt'a squilc‘i {for lgck of more appropriate data), Markin
from (6 t stimulation of fiber @& should occur for ¢ ~ 0. 5 or

.2.9), nw {r] /r4). If the radius of fiber ) is increasec,l

]
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r; becomes smaller and the coupling term in (6. 2. 8h) increases
correspondingly.

The theory of coupled nonlinear diffusion equations can alsc
be applied to study wave propagation in cardiac tissue. Two com=
ponents of propagation can be taken as activity on both muscle
and Purkinje fibers. Each of these activities can be represented
as solutions of nonlinear diffusion equations that are strongly
coupled through close packing of the two types of fibers. Assum-
ing different refractory periods {r;) for the two waves, Markin
and Chizmadzhev (1872) show that stimulation by three pulses
(which are separated by a time less than one refractory period and
greater than the other) should induce the propagation of a "rever—
berator. * This reverberator has the following properties:

(a) it travels at a velocity much less than that of a normal coupled
wave, (b) it emits coupled waves periodically in both the

forward and backward directions, and {(c) itis destructable.only
through symmetric collision with another reverberator. Markin and
Chizmadzhev suggest that the reverberator may be related to fi-
brillation states of the heart (see also Tsetlin, 1973).

3. CONDUCTION AT BRANCHING POINTS OF AXONS

Let us consider first the situation shown in Fig. 6—-8 where
an axonal “parent" fiber of radius aj bifurcates into “daughters”
of radii a) and ajz. What will happen to an action potential on
the parent when it reaches the branch peint? In answering this
question it is useful to return to Rall's analysis of a tapered fiber
discussed in Section 4~6. He showed (Rall, 1962a) that if the
spatial variable is transformed as

z = z{x) 3.0

where z(x) is determined by

S
i 214
,%i L4 l} N (fﬁi) } (6. 3.2)

the PDE for pulse transmission is invariant as long as the depen-—
dence of the fiber radius on x satisfies
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1
3/2 da)2 |’
a 1:1 + (dx) } = const (6. 3. 3)
and, more generally, for n fibers that
1
na3/2 1 £a I
+ ax = const (6. 3. 4)

For a branching fiber (as in Fig. 6-8) {da/dx) is zero everywhere
except at the branch point where it is undefined. Neglecting

fields associated with this discontinuity, condition (6. 3. 4) be-
comes o

3/2

na = const (6. 3. 5)

‘for an undisturbed continuation of the PDE across the branch. This
is reasonable from a physical point of view because, as was point-

ed out in -connection with (5. 3. 3), the characteristic admittance
Y, of a fiber is (Scott, 1970)

1
_— shunt admittance/length |2
o series impedance/length (6. 3. 6)
Shunt adm.ittance/length is propecrtional to fiber radius; and, if in-
ternal r‘651stance dominates, series resistance/length is ini/ersely
proportional to radius squared. Thus (6. 3. 6} can be written

3/2
YO = ma (6.3.7)

wherala .m is a factor which is independent of fiber radius. The
condition (é. 3. 5} requires that characteristic admittance be un-

disturbed across the branch.

. Ina .recent numerical study, Goldstein and Rall (1374) empha-
size the importance of geometric ratio {GR) at a branch.

Fig. 6-8 it is defined as o

3/2 . a3/2
1 2
372 (6.3.8)

a
3

a
GR =
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and, more generally, as the sum of the outgoing characteristic ' "

admittances divided by the sum of the incoming characteristic £ = (——A . A (6. 3. 10)
)

admittances. For GR = l, an action potential proceeds through VA A max o

the branch in an undisturbed manner. For GR <1, longitudinal
current is constricted as the pulse approaches and it accelerates
on approach as indicated in Tig. 4-24h. For GR > 1, the pulse
slows down on approach as in Fig. 4-24a and blocking of conduc—

tion is possible.

Blolcking of a Hodgkin~Huxley axon occurs at a critical expansion
ratio of 5. 5, which, from (5. 3. 25}, implies

¢t~ 6,44

as we noted in Section 5-3.

The condition feor block of a pulse into daughte; @ in Fig.
6-8 carll be calculated by noting that the fraction of input charge
Qi which enters daughter QO is equal to

Y
0l

Y
o1 T Yoz

the ratio of the characteristic admittance of daughter (0 to the
to'Fal characteristic admittance of all the daughters. From ({5.3.24)
this charge must be less than o

maa/'2 3/2
(gka3/2) ] <aka)
3
maf/z +ma§/z

FIGURE 6-8. Geometry of a branching axzon.
for block. This condition can be written

L. i 3/2 2 3/2
o a 17 (6.3, 11)

3 3

To investigate the conditions for block, we canuse the con-
siderations of Section 5-3. if the leading edge charge carried in-
to the branch by the action potential on the parent is insufficient
for the thresholds of the daughters, block will occur. The incom~

ing onarge 1s and it is the same as the condition for block into daughter @

For daughters of same radius this blocking condition hecomes

2 (AE_{ )2/ ’
S ¢ (6. 3.12)

B 3/2
Qj_ - Eka3 (6.3.9)

where ¢ 1is the factor by which leading edge charge increases as
it approaches the branch. If up and Vp are, respectively, the
changed values of pulse velocity and amplitude as the pulse ap-

proaches the branch, then from (5. 3. 21) Taking o = 3 and ¢ = 6.44 gives the condition az <0.28a
. 1s

which is not usually satisfied for a real axon. Thus it can be
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concluded that isclated pulses should propagate outward without
block on an axonal tree.

Under normal physiological conditions, however, the axons
usually transmit pulse trains rather than individual pulses. As
the calculations by Rinzel and Keller (1973) in Fig. 4-14 indicate,
pulse trains of sufficiently high frequency will block even on a
uniform fiber. At frequencies approaching this maximum, a GR
even slightly greater than unity should lead to blocking of certain
pulses at a branch. Such effects have been observed by Barron
and Matthews (1935), Krnjevid and Miledi (1959), Chung, Raymond,
and Lettvin (1970), Parnas {1872), Grossman, Spira, and Parnas
(1973). Although this simple theoretical picture implies that all
daughters will fire or fail together, it is based on several ideal-
ized assumptions (both daughters of circular cross section with
negligible external component of series resistance, etc. ), which
are probably not valid for branches in a real axonal tree. Once a
particular daughter has fired, of course, it will be less sensitive
to an immediately following stimulation. Thus there are several
possible explanations for preferential firing among the daughters.

Chung, Raymond, and Lettvin (1970) suggest a functional
significance for partial conduction through an axonal tree. If only
a subset of the distal branches are activated by a single pulse,
the axonal tree could translate complex temporal messages into
spatial patterns. They conclude as follows.

Several important shifts in perspective stem from the
recognition of the complexity of the process of axonal
conduction in arborizations and the possible significance
such conduction has in spatially structuring interspike
interval patterns. Among the most obvious is that
“spontaneous” activity and bursty discharge ought not
to be regarded as “noise”. It is not obvious what any
neuron is trying to say, and given the possibility that
burstiness may itself be meaningful, we have no basis
a priori to decide what is noise and what is message.

To do so would imply a prior knowledge of the intentions
of the system and its modes of operation or, to use
yon Neumann's phrase [1¢58], “the language of the brain’.

That areas of low safety factor are very sensitive to
extracellular currents raises a second issue. The points
of low safety factor present in branched axons imply that
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neighboring regions in the central nervous system must
interact profoundly. The notion that cross talk will
degrade the performance of the nervous system is not
necessarily true. The degree of interaction that exists
suggests that information handling may be aided rather
than hampered by cross communication.

Finally, if every pulse arriving at a cell embodies
in its spatial distribution an instantaneous statement
about the recent history of events, the physiological
basis exists for a kind of "short-term memory”.
Moreover, there is the intriguing possibility that the
relative diameters of branches might be structually
altered by activity, thereby rendering the system capable
of imbedding prior experiences. )

4, SYNAPTIC TRANSMISSION

On the schematic diagram of a multiplex neurcon in Fig. 6-3
the axonal endings are indicated as enlarged "synaptic outputs i
which make contact with other neurons. Some appreciation for the
variety of such ceonnections in real tissue may be had from a
glance at the Mauthner cell of the goldfish (Fig. 4-22) or the
motoneuron of the cat (Fig. 6-2b). Since the advent of the electron
microscope, these structures are becoming increasingly well under~
stood and several excellent references are available. Katz's
Nerve, Muscle, and Synapse is recommended as a clear and pro-
vacative introduction to The Physiology of Synapses by Eccles.
In addition to presenting & comprehensive review of research re-
sults up to 1563, Eccles's book includes an interesting historical
survey of the competition between chemical and electrical theories
for synaptic transmission. More recent research is discussed in
the book by McLennan (1970).

A schematic diagram for a synaptic connection is sketched in
Fig. 6~9. Purely electrical transmission of an action potential
from the axon ending to the region extending outward from the
Dgstsynaptic membrane should be difficult in view of the extreme
wldening and the fact that a double layer of membrane must be de—
polarized in the region of the synaptic cleft. Chemical effects
contribute in the following way. The end bulb of the axon stores
a large quantity of synaptic vesicles {~ 500 in diameter) ,
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such as acetylcholine and nor-

containing chemical substances, e eamLty

adrenaline, with the ability to sel.ectively alter 1orfx,1.c crmeas
in the postsynaptic membrane. With reference to 1g.1 Ol,arize
increase in sodium ion permeability (Gnal te‘ndf;, to i—ep artee.
the postsynaptic membrane and induce tra.nsm.lssmn o a}:ﬂit )
potential, whereas an increase in potassium 1or'1 ile;r.rlzatran;;nis_K
hyperpolarizes the postsynaptitc? me mgr;;e”;élsnizmln 1Of depola;iza_

i t the synaptic junction. -
fi]-s:ll ;?rr?;s:rpolariyzation is associated with thel rele:’:‘tisel of chem
jcal transmitter substance from a single synaptic vesicle.

Axon ending
/

/ End bulb

Presynaptic
membrane

L =
2004 Poslsgnupﬁc

membrane

FIGURE 6-9. Schematic diagram of a synaptic contact.
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If the synapse depolarizes the postsynaptic membrane, it is
sald to induce an "excitatory postsynaptic potential” (EPSP). In
the motoneuron, the EPSP appears with a time delay of about 0. 3
msec that is attributed to the liberation of a chemical transmitter
substance and its diffusion across the synaptic cleft. After this
delay, the EPSP rises to a maximum in about 1-1. 5 msec and then
decays exponentially with a time constant of about 5 msec.

Hyperpolarization of the postsynaptic membrane is described
as an "inhibitory postsynaptic potential” (IPSP). In a motoneuron,
the typical initial delay is about 1. 5 msec, the initial rise is
1.5 - 2 msec and the time constant for exponential decay is about
3. 3 msec.

: But several variations on this simple description of synaptic
k 1 transmission have been observed. For example, Robertson,
! Bodenheimer, and Stage (1963) have reported results of an electran
microscope examination of the Mauthner cell of the goldfish (see
Fig. 4-22) that indicate the possibility of electrical transmission
at the “club endings. " Furshpan and Potter (1959a) have studied
electrical transmission through the giant motor synapse of the
crayfish using glass microelectrodes as indicated in Fig. 6~10a.
The time delay observed was very small {(usually about 0.1 msec)
which is an indication of electrical transmission. Their observa—
tions could be explained by assuming the contact area to function
as the diode rectifier indicated in Fig, 6-10¢, and they could not
be explained by assuming a chemical mechanism. This electrical
transmission was distinguished from a slow IPSP (Furshpan and
Potter, 1959b} which appears to be chemical in nature,

Transmission across the septal {dividing) membranes (see
Fig. 6-10a} of the crayfish lateral giant axon appears to be entire~
ly electrical {Watanabe and Grundfest, 1961). The voltage current
characteristic is linear at least over the range *=25mV and may
be represented by a simple series resistor, Rg. Transmission of
impulses across a septated axon has been investigated by Markin
~and Pastushenko {I973) using the analytic technique outlined in
Section 4-4. They show that the pulse speeds up while approach-
- ing the septum and slows down on leaving, as might be expected
by comparison with Fig. 4~24b. The net pulse delay is approxi-
mately

R
—8.
ru

s

T &

{6, 4. 1)
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for small values of Rg. For a typical crayfish giant lateral axon
with a diameter of 100p, Rg = 3 X 1059, rg = L2Xx 1089/m and
u = 15m/sec so 7 is calculated from (6. 4. 1) to be about 0. 17
msec. This is compared (Markin and Pastushenko, 1973) to an
observed value of about 0.1 msec, The difference in these two
values can be partially explained by the neglect of displacement
current through the membrane in deriving (6. 4,1). Markin and
Pastushenko also show that the critical value of R_. for propaga-—
tion through the septum may be overestimated by a factor of two
from dc arguments.

FPinally, Furakawa and Furshpan (1963) have observed an elec—
trical inhibition of the axon hillock region of the Mauthner cell
(see Fig. 4-22) by the "spiral synapse, * which is followed by a
slower chemical inhibition i. e., (IPSP).

Thus it appears that a variety of electrical {fast) and chemical
(slow) output mechanisms are available to the multiplex neuron,
which may be either excitatory or inhibitory in nature.

! ) Postéiber j% 5, LINEAR DIFFUSION ON DENDRITES
Prefiber
;S The dendritic trees of a multiplex neuron are in a position to
T # sense many complex spatiotemporal signal patterns on the input
~é2,_,_ synapses. Just how a particular neuron recognizes and responds

.60 50 -40 -30 -20 -0
n l 1 1 L +

0 20 30 40 (mv)

{c)

to a particular input pattern is as vet unclear, but a glance at the
dendrites of the Purkinje cell in Fig. 6-1 should convince the
reader that it may be a rather sophisticated process. In principle,
each branch should be described by a nonlinear diffusion equation
(2. 30) with appropriate continuity conditions at the branching
points and 80,000 synaptic inputs appearing throughout the trees.
Clearly, some simplifying assumptions must be introduced in order
to proceed with an analytical description. The danger in any sim-
plification, of course, is that the essence of the object under
study may be lost in the quest for a simple model.

Nonetheless, an interesting possibility is to describe the

- branches by linear diffusion eguations of the form

Ve T TgC Vy T I OV {6, 5.1}

FIGURE 6-10. (a) Diagram showing the giant motor syr}apse of the
crayfish; (b) rectifier-eguivalent circuit; (¢} volt=
ampere characteristic of the rectifier (redrawn from
Furshpan and Potter, 19 59b).
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where g is the conductance per unit length of a dendritic branch
below its firing threshold. This is essentially the assumption
that action potentials do not develop on dendritic membranes. As
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Rall and Rinzel (1973) have recently emphasized, this may be a
reasonable assumption for the cat motoneuron (Fig. 6-2) since the
combination of two typical EPSPs yields a response which is
equal to or somewhat less than the sum of the individual responses
(Burke, 1967; Rall, 1967). Such a sublinear response does not sug-
gest the onset of an action potential, and it can be explained as
an interference between chemical depolarizations at adjacent re-
gions of postsynaptic membrane (Kunc and Miyahara, 1969).

Even with the assumption of a linear membrane, however, the
analysis of a particular dendritic structure is a rather difficult
problem. The basic reason for this additional difficulty is that
reflections may occur at each of the branching points. The sum of
all signals (reflected, reflected, and reflected again) must be ac-
counted for to cbtain an analytic solution. As Rall {1962a,b, 1964,
1967) has suggested, the reflection problems disappears if it is
assumed that characteristic admittance is continuous across a
branch from daughters to parent and alsc that all the daughter
branches are stimulated in unison. As a simple example, consid-
er the bifurcation sketched in Fig. 6~11. If the sum of the charac-
teristic admittances for branches A and B equals the character-
istic admittance of branch C, and if

1,0 = i) (6. 5,2)
then A and B can be considered as components of a single
branch that is continuous and uniform across the crotch. If the
external component of series resistance can be neglected in com-
parison with the internal component, then rg is inversely pro-
portional to radius squared (2. 19) and characteristic admittance is
proportional to a as was discussed above in connection with
(6. 3. 7). The condition on the radii in Fig. 6-1l is then 2a 3/2 2
a,”’“. More generally, when the dendritic trunk (of radius at)
has branched into n daughters of radius a,

1r1a3/2 = a:/z {6. 5. 3)

is the condition for reflectionless diffusion.

Recently Rinzel and Rall (Rinzel and Rall, 1974; Rinzel, 1976)
have indicated how the reflectionless response of the parent {C}
to stimulation of a single daughter (say A} may be obtained. They
assume a symmetrical bifurcation as in Fig, 6~11 and supposefirst that
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it

FIGURE 6-1l. Geometiry of a symmetrical branching dendrite.

B0 = i) = 110 (6. 5. 4)

Then, with the admittance matching condition (6. 5. 3), the corres-
ponding current is readily calculated from the linear diffusion

(6. 5. 1) throughout the branch, and, in particular, is{t). Next
they assume an antisymmetric stimulation as

i, = - 16 = S0 (6. 5. 5)

and again calculate current throughout the branch. Evidently, the
antisymmeiry condition requires the current to be zero along
branch C 1in this case. Since the PDE (6.5.1) is linear, the re-
sponse to an input that is the sum of those in both (6. 5. 4) and

(6. 5. 5) will be the sum of the individual responses, But the sum
of the symmetric and antisymmetric inputs yields

iA(t) = ii(t) and iB(t) =0 (6. 5. 6a, b)

while the sum of the responses on branch C is just the one that
was computed for the symmetric input (6. 5. 4).

Rall and Rinzel (1973) discuss some of the evidence for assum-
ing that the sum of a3/2 for daughters equals a3/2 of the parent,
For the motoneuron the "geometric ratio" of these quantities
seems to lie within the range 0. 8 to 1. 2 with a gradual decrease

toward the tips of the tree. It should be mentioned, of course,
that external resistance probably cannot be neglected for the
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closely packed cells of real nervous tissue so a modified defini-
tion of this ratio may be more appropriate. But assuming, with
Rall and Rinzel, cylindrical fibers and a geometric ratio of unity
at each branch point, (6. 5.1} can be normalized as follows. Time
is measured in units of the membrane response time

7= (6.5.7a)
g
so the dimensionless time variable is
t
T =2t (6. 5. 7b)
c

Distance is measured in units of the diffusion length

ol

A= [rsg]—

Since this changes with position along the dendritic fiber, an ap-
propriate dimensionless space variable is generated by the differ-
ential relation

dx

d.X=)\

1
The diffusion length A « a2 and, from {6. 5. 3}

al/z = n—l/a ai/z

Thus the dimensionless space variable can more conveniently be
defined as

ni/3dx
ax = &9 (6.5.8)
A
t
where
-1
_ 2
}\‘t - [rstgt] (6. 5. 9)

is the diffusion length at the trunk of the dendritic tree. Then the
differential change of membrane area with x is

d(Surface area) = 2randx = 21 at)udX
L
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or the circumference of the trunk multiplied by ApdX. With this
normalization, {6. 5.1) reduces to

VKX - VT =V (6. 5. 10)
and the "electrotonic length, " A, of a dendritic iree can be de-
fined as

end of twigs
A= de
base of trunk

For a typical motcneuron the electrotonic length of a dendritic tree
appears to lie between 1 and 2 with an average of abhout 1. 5
(Barrett and Crill, 1974a).

Assuming linearity, it is possible to express the voltage re-
sponse at some point in the dendritic structure (say vy (t) at
point @ ) to the current input at some other point (say ift) at
point (D) as the Green's integral

t
_ : _ ot 3
v, (1) ~_£ - ) E () at (6.5.11)
where le(t) is the voltage response at @ to a unit impulse of
current injected at (. The task is to calculate le between

points'of interest. Rinzel and Rall (1974) do this in general for
the dendritic model indicated in Fig. 6-12, where;

N 1is the # of dendritic trees;
M 1is the # of symmetrical branchings of each tree;

A is the "electrotonic” length of each tree.

The electrotonic lengths of the branches are assumed equal. Each
}iranch is assumed to be symmetric and satisfying (6. 5. 3} so the
reflectionless® calculation discussed above (in connection with
Fig. 6~11) can be employed throughout. The membranas of the
nerve body and the axon are neglected in comparison with the
dendritic membranes.

Of particular interest is the voltage response at the nerve

body (point @ in Fig. 6-12) to a unit impulse of current at the
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e e_t/T . n 2 t
M=2 =& o _lom L
H 2 r——(1+2 ), ) exp (A} . (6. 5. 13)
t n=l
1 (® The physical implication of (6. 5.13) can be appreciated by suppos~
'/® ) ing that
\ i Lt = Q 60
— where &{t) is a unit impulse function {or a Dirac "delta function”
| ‘ of unit area). Then from (6. 5. 11)
v, (t) = Q H, (6. 5. 14)
. Using the approximate expression (6. 5. 13) for H, {t} we find
TIGURE 6~12. General dendritic model for passive-response 2
calculation. /
_ ] ~t/7
v, 1) = AN o e [1+ R(t)] (6. 5.15)
end of a single branch (point (D). For these points Rinzel and where
Rall obtain x 2
n nm t
Rit) =2 ), D)"exp[-(3F) -] (6. 5. 16)
n=1

~-t/7 o
A Fexp( -LEnzl 2,
127 T WrtT P 4t

= ~o 6. 5. 12) Since NAX c; is just the total membrane capacitance of all the

dendrites, {6.5.15) implies that the input charge will be evenly
distributed over the dendrites as soon as Rt} <<1. As we noted
above, A ~ 1.5 is a reasonable electronic length for the dendrit-
ic free of @ motoneuron. Then inspection of (6. 5. 16} {plus the
numerical studies of Rinzel and Rall) indicate a uniform charge
distribution for t> 7. More generally, we can begin to neglect
R{t) in (6. 5.15) when

In making this calculation (see Fig. 6-12), each of the N-1
unstimulated trees is considered as a uniform cylinder of length
A in the normalized space variable X. The trunk of a dendritic
tree is characterized by:

the series resistance per unit length;

st

. A2
¢, = the capacitance per unit length; RS (TT_) . (6. 5. 17)
gt = the membrane conductance per unit length.

For such times, the effect of a charge, Qg , briefly introduced at
the twig of a dendritic tree will be to induce a voltage at the cell

The membrane time constant 7 defined in (6. 5. 8) is (ct/gt).
body equal to

The series (6. 5.12) is convenient when t —0. For larger

values of t it becomes
v {t) =— < e (6. 5,18)
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where Cigtal 15 the membrane capacity of all the dendrites. Tor
small values of time we must return to (6. 5. 12), which implies
Hjz{t)—0 as t—0.

It may be helpful at this point to recapitulate the assumptions
made in the derivation of (6. 5.13). These were:

1. A geometric ratio of unity is preserved at each branching
as implied by (6. 5. 3),

2. The suriace area of the cell body is much smaller than
that of the dendrites,

3. Input current is injected at a twig (distal branch) of a
dendritic tree, and, of course,

4. Membrane voltage evolves according to the linear dif-
fusion equation (6. 5. 1).

For more realistic dendritic geometries, the analytic expressions
for response to an impulse of synaptic current can be quite com=~
plex. Many additional analytic and numerical results are avail-
able in the studies by Jack and Redman (1971 a, b} on the transient
response of a single fiber loaded with a parallel R-C circuit at
one end to simulate the nerve body and stimulated at an arbitrary
point. The recent book by Jack, Nobkle, and Tsien {1975) provides
an excellent summary of these calculations. Butz and Cowan
(1974) have developed a simple graphical calculus that generates
analytic expressions for the Laplace transform of the impulse re-
sponse [Hij defined in {6. 5.11)] for arbitrary dendritic and ceil
body geometry, This calculus should facilitate an automatic com-
putation of linear dendritic response.

The application of such models to real motoneurcons is dis-
cussed in detail by Jack, Miller, Porter, et al. (1871) and also by
Barrett and Crill (1974a). The latter investigators pay particular
attention to the fact that the EPSP inducedcon a dendrite is not pro-
portional to the time course of the conductance change, Gft), of
the postsynaptic membrane (Barrett and Crill, 1974b). To appre-
clate this effect, consider that the induced current is given by

il(t) = Gt {VO + Vl(t)] (6. 5. 19}

where V( 1s the difference between the resting potential across
the membrane and the diffusion potential [i e. (VR - Vya) for

Linear Diffusion 209

sodium ions as in {4,1.12)]. The EPSP and the injected current
are vy and i;, respectively. Assuming an impulse response,
Hll(t), calculated for the point of current injection, (6. 5.11) be-
comes

t
vl&):_£ GEN[V, + v 6] Hp (e~ t')dr (6. 5. 20)

This is a linear Volterra integral equation for v, (t} {Rinzel and
Rall, 1974), which implies that the EPSP will be less than that
which would be calculated under the assumption™

v << VO (6. 5. 21)

To account for this effect Barrett and Crill (1974b) define a “charge
injection factor”

f GOV, + v (0] dt
i= - (6. 5.22)
J G v, dt

which is the ratio of charge injected to that which would be under
{6. 5. 21). At a distal branch, the effect of a quantal conductance
change due to the discharge of a single synaptic vesicle of chemi-
cal transmitter into the postsynaptic membrane (see Fig. 6-9) is
estimated to yield an EPSP of 16~20 mV with a charge deficit
(l-71) of 14~19%,

If the inequality indicated in (6. 5. 21} is not satisfied, v, may
approach the threshold for an action potential on the dendr,itié

rmembrlane. When this occurs (6. 5.1) and (6. 5. 20) will no longer
- be valid because membrane conductance will depend on v as we

dlsc.ussed in Section 3-2, but the qualitative effect will be regen-
erative (J > 1) with increasing v leading to increasing G lead-

--Ing 1o increasing v,---, as in Fig. 3-11, This situation will be

considered in the following section.

B e

rNote that V0 is negative while v, s positive.
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6. NONLINEAR INTERACTIONS AT BRANCEING POINTS OF 1 If either pulse A or pulse B can induce a pulse C
DENDRITES 3 write , we can

To find solutions for nonlinear dendritic models that corres-
pond to the linear diffusion calculations discussed in the previous
section would be a difficult task as Pickard {1974) has recently
emphasized. But it is interesting to consider the suggestion

C=2A (CR) B (6. 6, 2)

while if neither A nor B can induce/apulse C

{Lorente de N&, 1960; Arshavskii, Berkinblit, Kovalev, et al. 1965) C=20 (6. 6. 3)
that the branch points of active dendrites may serve to process the :

information carried by dendritic action potentials. The previous In these Boolean (cr logic) equations, the variables (A,B, and C)
section and this one correspond, in a way, to the two main sim- i ) Canlassume only the values 0 and 1. The correspond,ing,[ arith-
plifications of modern electronics: linear system analysis and metic is:

switching theory. In the first approach, nonlinearity is dealt with-

by assuming that it does not exist, and often this is arranged to be 0 (AND) 0 =0 0 (OR) 0=0

so. In the case of switching theory, nonlinearity is desired for

the increased technological possibilities it infroduces. The non- 0 (AND) 1 =0 0 [OR) 1=1

linearity is rendered analytically tractable by assuming it tc be so

strong that dependent variables can take only one of two states. 1 (AND) 0 =0 1 (OR) 0 =1

Then the two element field of Boolean algebra can be used to de-

scribe those response functions that are of interest, Here we dis~ 1 (AND) 1 =1 1 (OR} 1=1

cuss the possibility that dendritic branchings can provide the ele-
mentary "AND, * "OR, " and "NOT" functions necessary for the
synthesis of an arbitrary Boolean function. But the present author
does not wish to leave the reader with the impression that Sections
6-5 and 6-6 present antagonistic theories for dendritic function
one of which must eventually be proven "true" and the other "false."
Rather, they should be considered as polar extremes on a specirum
of possibilities for dynamic activity that may be employed by real
dendrites.

The first analytical study of nonlinear interactions between
spikes at the branching points of dendritic trees was published in
1969 by Pastushenko, Markin, and Chizmadzhev, and the geometry ~
of the simple bifurcation they considered is sketched in Fig. 6-13.
Basically they were interested in finding the conditions under
which an action potential incoming on one or both daughters would
induce an outgoing pulse on the parent fiber. If both A and B
on daughters () and @ are required to induce a pulse C on the
parent, the branch can be described by the Boolean equation

& nonlinear diffusion equation (2. 30) was used to describe

each of the three fibers (Pastushenk . .
1969, b) ushenko, Markin, and Chizmadzhev,

C =4 {AND) B (6. 6. 1)

FIGURE 6~13. General geometry for a branching dendrite.
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BZV

k=1,2,3 (6. 6. 4)

e oo M
2 sk k 8t
Bxk

where the three distance coordinates (X1=X2 ,x3) increase away
from the junction. Using (2. 21a), Kirchhoff's current law at the

junction becomes

Tsk Tk

T TR A R W
rg Bx o rg, B, Ty 8%

=0 (6. 6. 5)

Pastushenko and coworkers used the Markin-Chizmadzhev model
{see Section 4-4) to describe the incoming pulses, demonstrating
once again the remarkable usefulness of that simple description.
As ig indicated in (4. 4.1), the membrane ion currents (jj;,Jjp and
}13) remain zero until the membrane voltage passes a threshold
level V] after which they jump to Jlk for a time Tk, then jump
to a level Jpp fora time 72k, then refurn to zero (see Fig. 4-15}
The voltage pulse returns to zero if the net ionic charge transfer
is zero which requires

Tk ™ Tk Tak k=123 (6. 6. 6)

As a further simplification, they assume

Iy i Ty Jae
C = o] and C - &)
1 2 1 ‘2

—

which is to be expected if both daughters have identical mem-
branes.

The condition for an action potential to appear on the parent
fiber is simply that the voltage VE(D, t} must exceed the thresh-
old value V). Thus only a linear diffusion calculation of the sort
outlined in Section 5-3 is required. However, the admittance
matching conditions {gecmetric ratio equals unity) is not_satisfied
for the incoming pulses on the daughters, so reflections by the
junction from each of the daughter pulses will affect both daugh-

ters. Pastushenko, Markin, and Chizmadzhev account for this by:

defining pulse velocities u; and u, for those points on the
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incoming waves that first reach the threshold w
) ol
coordinates 1 and L, defined by tage V. The

vl(Ll’ t) = V’1 = VZ(L2 , 8 (6. 6.7)
move as
L1 = = ult
(6. 6, 8a, b)
L, = —uz(t -7} ’

where 7 is a time delay between the incoming pulses. It is im-
portant to note that the velocities u; and u, are onl. const o
when the pulses are far from the junction (L, L —»—00]; Ass tint
approach the junction, the above mentioned %e,fléctions .will =
change the velocities by influencing the condition (6. 6. 7)

. As a first problem, Pastushenke and Markin con;id.er -onl a
single pulse coming in (say) on daughter (). Neglectin ex‘;y -
nal series resistance, the junction has a geometric ratiog .

GR=="37 (6. 6.9)

Flrorrl1 the results of Section 4-6 on propagation through a discon-
tinuity, we should expect a pulse to form on the parent.and th
other daughter whenever this GR <1. For GR>1 andrsuffi ‘e t-
ly large, on the other hand, blocking of conduction should ogizi?-

Inagreement with (4. 6. 34), P
re . 6. astushenko and cowork i
condition for a pulse on thza parent to be ere find the

3/2 3/2
a
Sz te%5 i
63/2 <k +1L1lgx°~1 69 (6. 6. 10)
! _

[

ggtlil;:\r;r;g the idleas presented in Section 6-3 we can use the con-
S, Simai;iprommate c.:onservation for leading edge charge to ob-
e ar expre.ssmn. From (6. 3. 9} the incoming charge

o § on the leading edge of pulse A (daughter @D}, is {,kaf’/z
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where ¢ indicates the factor by which this charge increases as
the pulse slows down [ see (6. 2.10)]. This incoming charge will
divide between the parent and the other daughter in a ratio deter—
mined by the corresponding characteristic admittances [ see
(6.3.7)]. Thus the parent receives a fraction [a33/2/(a23/2 +
a33/2)] of the input charge, and it requires a charge aka23/2 to
achieve threshold [ see (5. 3. 24)]. Then the condition for a pulse
on the parent is (Scott, 1973b)

43/2
3/2  3/2
aZ + 33

gkaf/z >aka§/2

or

=2 3 & (6. 6. 11)
&

The relation between (6, 6,11) and (6. 6. 10} is exactly the same
as that found between (5. 3. 25) and (4. 6. 34}). Following the nota-—
tion of Pastushenko and coworkers we can denote the right—hand
side by K. Thus

i
K=+ 1.11k? =169 or

R o=

(6. 6. 12)

depending on which theoretical point of view is being assumed.
For fibers which correspond to the Hodgkin-Huxley axon, blocking
occurs for

GR {5.5)3/Z =X
Suppose now that both daughter fibers have the same radius
{a] = ap) in Fig. 6-13. Then (6. 6. 10) and (6. 6. 11) indicate that
the condition to avoid block of a single input pulse is

a

1

SR cor
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If this condition is satisfied, the branch functions as an "OR"
junction defined by (6. 6. 2). If it is not satisfied, the condition
for an AND" junction, from (5. 3.25), is

a
(x - )2/3 <-a—3 <@2x)¥/? (. 6. 14)
1

The YAND* condition is defined in (6. 6. 1). If the ratio faz/ap)
is too large to satisfy (6. 6. 14}, then the junction is representéd
by (6. 6. 3},

Consider next the “tufted” branching indicated in Fig. 6-14
that Ramon-Moliner {1962} described as typical for dendrites of
sensory neurons. We assume that n daughters of equal radius
a) branch from a single parent with radius 33, and ask what is
the threshold number, 8, of daughters that mus’,t be simultaneousiy
active in order to induce an action potential on the parent. Again
the concept of approximately conserved leading edge charge is
converéient to apply. The incoming charge on 8 daughters is
93@,56\1 , and the fraction of this charge that enters the parent is
a / /[(n—Q}al3/2 + af/ij ;. The charge required to bring the par-
ent to threshold is aka, Thus 8 1is datermined by the equa-

tion

J3/2

3/2 :
Qékal/ ‘;/2 - aka’/?
(n-Bla +a / ¢
1 2

which implies

3/2

el
N +n
0= L
P (6. 6. 15)

where, as in (6. 6. 12}, K= /o,

An important advantage of the analysis by Pastushenko,
Markin, and Chizmadzhev over the concept of approximate charge
conservation is that it permits study of nonsynchronous pulse in-

puts. For 0 < 7 < in (6. 6, 8b) they show (1969a) that an effect

of pulse interaction is to bring the two pulses into closer syn-

Ch 0 I3 . N
. fonism since the second pulse to arrive is decelerated less than
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n

FIGURE 6-14. Geometry of a tufted branching dendrite.

the first. In a later work (1969b) they study the voltage v{0, t)
which appears at the input to the parent fiber and show th{c it has
two maxima for sufficiently large values of 7. Defining t as
the value of t at which

2
dv(0,1) g ang 4v0O,0 <0
dt ~ 2 T

t=1 dt t=1

the situation is qualitatively as shown in Fig. 6-15., For 7T <7,
there is only one peak of voltage presented to the parent fiber.
for T>Ty, there are two maxima indicated by two branches in
t(r). The larger maximum is shown as a solid line and the smaller
by a dashed line. A 7 = To s the larger maximum becomes small-
er and the smaller becomes larger. This is indicated by a discon-
tinuity in the solid line on Fig. 6-15. Thus Pastushenkc and co-
workers suggest the possibility of a rather sensitive control of
delay operating along the following lines. Suppose the parent
f'i\'ber"diameter is adjusted so it will just fire at the first maximum
(t = t)) when 7= 1. Thena slight inhibition in the vicinity of
the junction {at t = Tl) could cause the parent not to fire on the
first maximum but fire instead on the second. The "slight inhibi-
tion*” would then be able to introduce a signal delay eqgual to

*'E'Z —"El (see Fig. 6-~15}.
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v’
4
; P

t2 — / /— Smaller moximum

Larger maximum

—

T, T, T

FIGURE 6~-15, Diagra}m related to the calculation of nonlinear
pulse interaction at a dendritic branch by
Pastushenko, Markin, and Chizmadzhev (see
text for details).

Simplpitgitht-it ils certainly of great value to have the relatively
ytical results developed by Pastu
shenko and cowork
we must remember that the Marki i e
n-Chizmadzhev model for ne
. ‘ ' 1 rve
113;11516 propa.gatllon 15 an approximation. Thus the numerical stud-
br:noygllBerklnb%lt, Vvedenskaya, Gnedenko, et al. (1971) of a
o I?Ioélr;gj;{i(asHm 1Flg‘ 6-13) where the fibers are represented by
n-Huxley equations are also ti i
Iy _ : most interesting, The
p:ist casithey consider is the effect of nonsynchronous pulse in-
e ?nSt e daughter fibers, They assume radii ratios )18, ag =
p:acé ?Eh t Pr.om the results discussed in Section 4-6 we canz-ex—3
at a single pulse should not fire but both together should

“This i i i
s 1s essentially the condition for an "AND" junction given by

{6.6,14 in Fi
). As shown in Fig. 6-16, Berkinblit and coworkers have

“com i i
e til:ﬂuete; ;che voltage at the junetion, v(0,1t), for various values
: elay, 7, between the incoming pulses. Evidently syn-

hroni i
sm of the input pulses to within about one msec is required
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to insure perfor
lay of the input
output pulse is

confirm the discontinuity in
by Pastushenkec, Markin, an

on Fig. 6-15.

ima are shown in Fig. 6-17. In Fig.
input pulses is zero, whereas in Ti
leading pulse is slowe
the prediction by Pastushen
that such an interaction ten

synchronism.

40

FIGURE 6-16.

pulses from 0. 9 to 0.85 ms

mance as an"AND” junction. For a change in de-
T -
increased by about a millisecond. -
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ec, the delay of the 2‘
This seems to

output delay around 7 = Tg, predicted
4 Chizmadzhev, (1969b) and indicated

X 5 (em)—m

The "space-time” trajectories for the voltage max— o e
t-17a the time delay between _87
g.b—l?b,T:O.Smsec. The 0"-"7%6‘[1.,“1_
d much more in the second case confirming 3 1 2 3 | >
TIME {msec) T5s TIME {msec)

ko, Markin, and Chizmadzhev, (1963a)
ds to bring the pulse peaks into closer

— X, X,

2~ AandB

FIGURE 6-17. tS.pace—tillne plots of pulse maxima for the calcula-
f1on of Fig. 6-16, \'Nhere distances are measured
rom the branch point: (a) synchronized input
pulses; (b} pulse input on daughter B delgyed b
0. 8 msec {redrawn from Berkinblit, Vvedensk Y
Gnedenko, et al., 1971). ’ e

The i
o . ase.c;oncj Pixallm5ple5dlscussed by Berkinblit and coworkers is
i8yi84 = 1:L5:5. In this case a
oo . pulse con daughte
¢ ule is unable to induce an action potential on the pafent z«:h@f
J.uﬁctisoe on daughter @ alone can. In Fig. 6-18 is shown th o
n potential for varying degrees of delay of pulse B (oi

© } behind pulse A
on s .
ot that for {fon @ ). Here it is most interesting to

I.7 msec <7 < 2. 8 msec (6, 6. 16)

the pUlSe A inhibits the foﬂﬂatlon of a pUlSe on the parent. When

7 lies within this ra ge
8} t j an
V i ; e Boolean character of the junctionc

TIME {msec)

Plot of voltage against time at a dendritic branch
with ratios @) : 8z 9337 1:1:5 described by the
Hodgkin-Huxley equations, Delay between in-
coming pulses (in msec): (1), 0.6; (2), 0.8;

(3), 0.9; (4), 0.95; and {s), 1.0 (redrawn from
Berkinblit, Vvedenskaya, Gnedenko, et al., 1971)

C = B(AND) NOT(A4) (6. 6.17)
wh e initi
-ere the definition of the Boolean function NOT{-) is

NOT(0) = 1 and NOT{l) = 0 (6. 6. 18)
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Thus have Berkinblit and coworkers demonstrated how a simple bi-
fureation using a physiologically reasonahle (Hodgkin-Tuxley)
description of the fibers can perform the logical operation of
inhibition. Corresponding space-time plots for trajectories of the
pulse maxima are presented in Fig. 6-19 for values of 7 that are
too short (a} and too long (b) to satisfy the inhibit condition

(6. 6.16). In these cases a pulse B on @ induces a pulse A
on the other daughter @O as well as on the parent, Berkinblit
kers indicate how this effect might be applied to make a
"ring oscillator” and a "motion detector”. TFinally, they consider
a simple bifurcation with the radii ratics @;: 3;:35 = l:1:5.
Here each input alone can excite a pulse on the parent s0 the
Boolean "OR” function expressed in (6. 6. 2) is realized. For 7 <
1. 4 ‘msec the incoming pulses are essentially synchronized and a
pulse travels outward only on the parent fiber. TFor 7> 1. 5 msec
the pulse A on D induces an outward pulse on the parent and
also outward on daughter @ . This outward pulse destroys by
collision (see Section 6-1) the incoming pulse B on @ .

and cowor

+ 40

+20

TIME (msec]

- 40}

Plot of voltage against time at a Hodgkin- Huxley

=

FIGURE 6-18.

(2), 1.6 (3), & (4), 2.8 (5), 3 (redrawn from

Berkinblit, Dudzyavichus, Chailakhyan, &t al., 1971

dendritic branch with ratios &;:a;:ag= 1:1.5:5.
Delay between incoming pulses (in msec): (1), L. 5

)
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r 05, ¢

I [ - 7

e b

s N

= B
L

i JE2 TIME =3
3.7 TME (msec) 23

Xy P>

X, Xz

2l

i ~ o
igure 6-19. Spac%\, time plots of pulse maxima for the calculations
of Fig. 6-18. The pulse delay in (a) is too long

and in (b} too short to satisfy the "inhibit* condition

cessicsi;iu;itibe céear t.hat the pessibilities for information pro-
’ﬂstudy Has et vel endrites have not been exhausted; indeed the
5 Shyorolon i) ce if}beguln. But it is important to note that some
D 2! COF 1rm:a‘t10n of. these effects is also available,
Dropagars leera studies which indicate that action potentials do
Loroni S s ai’;sn‘ the larger branches of some dendritic trees
Kuffler o f' . 7; Fragg and Hamlyn, 1855; Fyzaquirre and
Tasaki, 19621 Aidt, 1957; Spencer and Kandel, 1961; Hild and
'k'yar’lov 1570. ;rson, Holmquist, and Voorhoeve, 1966;

y i Korn and Bennett, 1971, 1972} and, in particular

b
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those of cerebellar Purkinje cells {see Fig. 6-1) (Llinds, Nichol-
son, Freeman, and Hillman, 1968; Nicholson and Llinés, 1571;
Llinds and Nicholson, 1971}, In addition, Tauc and Hughs (1963)
have demonstrated both "OR" and “AND" operation of branches
during antidromic . (backward) stimulation of mollusc axons. The
sketch of these experiments is indicated in Figs. 6=-20 and 6-21,
Inputs are presented toc two branching axons and the output is re-
corded through a microelectrode in the cell body., [From previous
studies by Tauc {1962a, b} it was possible to distinguish between
the large output pulse from firing of the cell body and the smaller
pulse associated with firing of the axon. It was not difficult to
fire the axon but not the cell body. The BOR" function (6. 6. 2}

is demonstrated in Fig. 6-20. Stimulation of either branch results
in firing of the axon. The “AND" function {6, 6.1) is demonstrat-
ed in Fig. 6-21, Stimulation of both branches with pulses suffi-
ciently synchronized (see Fig. 6-16) is necessary to fire the axon.
Tauc and Hughs conclude with the observation: "It follows from
this study that a molluscan nerve cell may assume the functions
of saveral neurons if these are considered in their classical sense

as units of nervous activity. ”

Demonstration of the “"OR"™ function at a branching
mollusc axon by Tauc and Hughs (1963). [The large
peak in (3) is caused by firing of the cell body. ]

FIGURE 6-20.
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Pemonstration of the "AND” funtion at a branch-
ing mollusc axon by Tauc and Hughs (1963).

FIGURE 6-21,

7. PULSE-TRAIN DYNAMICS

g ingr;;ikélllsafha[?ter we are primarily concerned with the interaction
pulses. This is essentiall i ifyi
; hi y a simplifying assumptio
:rlglce nolr‘rmal neural activity involves the propagation of pulsap o8
_‘t }ns. .-he present author anticipates that the dynamics of pulse
al;il}’li will b.ecome of increasing interest in the near future As;
: pre;r;ézdruct.lon to such studies, consider the propagation of com-
egions on a ner i i i

ress ve pulse train that is approximately peri-
- no\gﬁ;tham (1974) has developed a technique for finding solutions
o frequgar wajf/e problems that are almost periodic, but for whic‘h
e ncy wavelength, ) i it z.

arying functi’ons’ of space anéi tiéeanasaml‘?hlmde’ Bt
p— ! . ne. uch almost periodic solu-
- coiie not s;nusolldal (often they are elliptic functions}, and
oo o esppndmg dispersion equation is of the form f = I;(K A)

i O%ta.snmear equations for the slow evolution of f, A an’d A
,verageaéned from variation of a Lagrangian density tha,t h’as been
,énsity C;ﬂvir a cyc.le of the periodic wave. Such a Lagrangian
ir e e{obtamed from an energy-conservation law (4. 4)

: tion is conservation of wave crests -

A
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+2E g (6.7.1)

For nerve fiber problems, we do not have conservation of
energy: propagation is governed instead by the power balance con-
dition (4. 3). Furthermore, as the results obtained by Rinzel and
Keller indicate (see Fig. 4-14}, the frequency, amplitude and
wavelength for a stable periodic wave are fixed by the local prop-
agation velccity

—_— (6.7.2)

Thus f = f{u), » = Afu), and A= A() so only (6. 7.1} is needed
to describe the slow evolution of f, %, and A. Conservation of
wave crests becomes

du su
gt T UG = 0 (673
where
Ul = df (6.7.4)
a6 )

is a nonlinear group velocity. For the periodic waves in Fig. 4-14,
typical plots of f against 1/x were presented in Fig. 5-1. Itis
interesting to note that the boundary for spatial instability found
by Rinzel (5. 1. 46) is simply

U=20 {6.7. 5)
Along the stable (high velocity) branch it is clear that
T <u (6.7.6)

as was noted by Rinzel and Keller (1973). Thus (see Fig. 6-22) a
compressed region in a pulse burst should drift to the rear. This
is because pulses are arriving at the rear with a speed greater

than that of the compressed region., Eventually (6. 7. 3) predicts
the onset of rear end “shocks” which must, of course, be inter—
preted as an indication that the primary assumption of a slowly

“about 15 em (7. 5 msec).
~and 20 cm, the second would travel faster than the first, but with
3
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FIGURE 6-22. A slowly varying train of nerve pulses.

varying x_/va.l\(e train is no longer valid. But the question of "rear
t-EHdt collhlts%onxs" (Crane, 1964) may be important for a nerve fiber
iz: (é\fhimlasml? l5197(:;))1"113spond.mg study of automobile traffic dynam-
Some progress toward the understanding of such effects ha
been Feported by Donati and Kunov (1976} in connection with th S‘
experimental study of double pulse propagation along a squid e'lr
axon. To predict the ratio of the velocity of the second quls gtlarlt
that of the first {leading) pulse, they calculated the char? e 'e °
membra.me conductance in the wake of the first pulse due “?o ;To
Potassmm turn-off, This change in effective resting potential o
1rI1troduced into (4. 2. 17) in order to calculate the change in lV\iaS
city of the second pulse. Substantial agreement was obtain‘;ii?) -
tween predicted and observed velocity ratios for the two ulse )
For a particular axon they found a "locking" effect at a sgacin;.of
If the pulse spacing was between 15 cm

closer spacing than 15 cm the second pulse would propagate more

‘siowly.

Telesnin {1969) has studied the stability of an arbitrary num-

be i i
1'nr of pulses propagating on ring (or lcop) of active fiker. Assum-
g an enhancement to follow the refractory phase of each pulse
2

o .
shows that the pulses will be equally spaced for a short ring

but should travel i i ac
} n a single com t gr i i i
Should . g jal group for a ring which is
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8. THE McCULLOCH-PITTS NEURON

In 1943 McCulloch and Pitts proposed that neurons might be
approximately describad by the following physical assumptions:

1. The activity of the neuron is an “all-or-none” process.

Z. A certain number of synapses must be excited within the
period of latent addition in order to excite a neurcn at

any time.

3. The only significant delay within the nervous system is
synaptic delay {Th

Under these assumptions McCulloch and Pitis began the de-
velopment of a calculus of neural nets [ see McCulloch (1965) for
a carefully edited collection of the important papers] . Analytical
implementation of the ideas expressed in assumptions 1- 3 can be
performed in several ways. Under assumption 1 it is inviting to
represent the activity of a neurcn as a logical proposition and
write the neuron output as

T+ ) = o[ a0 -0)] (6. 8. 1)
i

where

rix] = +1 for =>0
(6.8.2)

=~-1 for x<0

is the signum function. In (6. 8.1) ¥ takes values of +1, where-
as the synaptic weights (ai) and the threshold {8) are real num-
bers. The "synaptic delay” is represented by 7 and often it is
convenient to assume time to be quantized in units of 7. Equa-
tion (6. 8.1) fails to express the possibility that a firing decision
might depend on inputs at times more remote than 7 {dendritic
memory), but this can be included by writing

t

v =c |, [ w - t)e ()ar - 6 (6.8. 3)

i —ee
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where w;(t) is a {real) function that: (a) is zero for i
argument, (b) rises to a maximum in a time of order B
{c) ev.entually falls back to zero as t -®. QOnal o ar'ld‘
scale it is often of interest to consider the.neuron aosngiratrtl;]lig

processor ol information ex (S e
e press ed as cra ol i
! tes of pulse trains.

F(t) = 8[); @ %, ()] (6. 8. 4)

-

Here F and the f; are iti
i real positive functions of time r
: th epre -
ing average firing rates and S[-] is a ”sigmoid” t o *sent
increasing function. Ype monotene
In their initial stud
v, McCulloch and Pitts (1943) i
' n tl ‘ empha
the distinction between neural nets with "circleg” (. e pclossleszd
causeAal Liatt}‘s for logical feedback) and those without. .“’Nets with-
(;;l;: cmcl es lan?k the capacity for reverberatory activity and thus
; tana vzed with much less difficulty., In the survey of approach-
h.s o neural net ‘analysm presented in Chapter 7, nets without
circles are considered first. But (6. 8.1), (6.8 3’) ad (6
are approximate re i ‘otions 1- N
: representations of assumptions 1- 3, which. in
tti:;?e,xsneem an outrageously oversimplified descriptio:n of the, mul-
eurcon in Fig. 6-3. One j ifi i i
. justification is to su i
ppose a sin-
g}l:l rneeal neuronT;tlo be represented by several hundred or more for-
urons. is net of formal neurons t i
. o describe a real
may be without circles; but co i i oty
; unting is affected and th i
quoted number of 1010 cortical e e
neuron i
preted as 1013 “formal neurons. " " conld perhaps be inter-
difficS:?tc?e tl?e objegicive in Chapters 7 and 8 is to suggest some
ies in establishing a “calculus of mi "
mind, ” the formal -
ron of McCulloch and Pitts i ' T con
is accepted a i
servative assumption. g s an sppropriately con-

i
i
i
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W :(al,az,"',an,G) {(7.1.1)

and an augmented pattern vector

Pz(q;l,q:,z,---,(pn,—l) (7.1.2)
‘Fhe threshold condition (at which the argument of o[-] is zero)
is
WP =0 (7.1, 3)

Ne“ral Networks » This is evidently an {n-1) dimensional hyperplane in the space
B ] of the ol values that attempts to divide those regions for which
¥ should be +1 from those where ¥ should be -1.

. ’ As a simple
example ceonsider Fig. 7-la, where n = 2 and \IfAis the predicate

i cry no quarter of my age and call

on coming wits to prove the truth

of my stark venture into fates cold hall

where thoughts at hazard cast the die for sooth

\IfA = +1 if the pattern has property A

warron 5. MeGuiloch = -1 if the pattern doces not
In this case there is a one-dimensional hyperplane (a,¢, +a by =
8) that discriminates the patterns with property A. Al :slligh%cly2
more complex situation is indicated in Fig. 7-lb, where a single
hyperplane that can discriminate property A doés not exist. How-
ever, using the two predicates ¥) and ¥, indicated on th-e fig-
ure, it is clear that ¥, can be logically computed as

1. NETS WITHOUT CIRCLES

The study of neural nets without closed causal loops was
vigorously pursued from the late 1950s to the mid 1960s. One
focus of this activity was the "Perceptron” idea that was begun
at Cornell University as an attempt to construct computing ma-
chines that mimic brains (Rosenblatt, 1958, 1962; Block, 1962;
Block, Knight, and Rosenblatt, 1962). A second was the ADALINE
{acronym for ADAptive LiNear Element) developed at Stanford Uni-
versity to implement some of the ideas on reliability of computa-
tion that had concerned von Neuman fwidrow and Angell, 19 62
Nagano, Ohteru, and Kato, 19 67) and the related Lernmatrix intro
duced by Steinbuch {961). An extensive bibliography of this work
is included in the excellent book Learning Machines (1965) by
Nilsscn (of which only the most elementary concepts are cited means that
here).

Suppose the &; values in (6. 8. 1) are coordinates in an n=
dimensional pattern space and ¥ is to indicate which regions
satisfy a certain condition (¥ = +1) and which do not (¥ = -1}
Defining a weight vector

‘I’ =

o \Ifl (AND) 11/2 (7. 1. 4)
Often it is %nteresting to "train” (7. 1.1) to classify comrectly

Let us suppose it does not. That is tc say there is some augment-

_ed pat‘Fern Py with property A for which ¥=~1 or W -P <o

. _Changmg the weight vector to '

W W' = W+cPl (7.1. 5)

Which is greater than zero if ¢ satisfies the ineguality

228
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1 (7.1. 6)

Note that the threshold condition W - Py = 0 isa hyperplalne per-
pendicular to 51 in the space of the weight W Thus a c‘langt(?1
of W in the direction of P1 is the shortest d%s’.tance to cross the
threshold and, in this sense, (7.1, 5) is lar% efficient schemePfoi
weight adjustment. The fundamental tralnlgg theorem for a Per o
is essentially that, assuming a discriminating hyperr.?lan.e to e><j'1s1:,
one will be found by iterating the weight adjustment indicated in

(7.1. 8). A satisfactory hyperplane is, of course, not necessarily
unigque.
qbi
$,
@, |
a!/u22
%,
B
B T
A 84, ¢
w7
FIGURE 7- 1. Discriminant hyperplanes for pattern recognition by

Perceptrons.
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These ideas are so simple and appealing that it is difficult to
avoid becoming overly enthusiastic. Thus the careful evaluation
of the Perceptron concept by Minsky and Papert (1969) is an im-
portant contribution which should be carefully studied by all who
are interested in this subject. Choice of the ¢ functionsisacru-
cial consideration, so Minsky and Papert restrict themselves to
the situation sketched in Fig. 7-2. Patterns are presented to a
“retina” of R points each of which may be black or white, and
each ¢ is computed from a certain subset of the retinal points.

A Perceptron is defined as follows. Consider a pattern, X, a
property or pradicate ¥ (e.g. , convexity, connectedness, the
letter A, etc.), and a family of functions

2= oy, by, 0,0 ) (7.1.7)

The predicate ¥{X) is linear with respect to & if there exist real
numbers ep,...,%; and 9 such that T(X) is "true” (i.e., +1)
if and only if

@ )+ ta b (X) >0 (7. .8)
We can then write
AV = -
x) c‘{?&icpi(x) 6] (7.1.9)
which constitutes a Perceptron for the predicate o (X), If pattern

X has the property ¥, U(X) = +1; if not, ¥{X) =

-1

The repertory of a set o, L(@), is defined as the set of all
predicates that can be computed as in (7. 1. 9) with appropriate
choice of the weights, The “game” of Minsky and Papert is to
put restrictions on 2@ to see what can be learned about the corres—

ponding L(®). They are particularly concerned with the following
problems:

1. Considering the retina as an R-dimensional space of 2R
pattern vectors obscures the real geometrical properties
of patterns on R. There are meaningful geometric pro-
perties that cannot be computed by Perceptrons.

Size range for the weights is an important consideration.
Predicates in L(®) requiring an impractically large range
of the a values are of limited interest,
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Time of convergence must be con sidered in evaluating the
learning scheme. A Perceptron can always “learn" by
cycling through all weight vectors, but this is impracti-

cal,

Minsky and Papert define diameter limited Perceptrons for
which the inputs to any ¢ function lie within a fixed distance and
order limited Perceptrons for which the number of points in the
retina seen by each ¢ functionis bounded. Typical negative results
obtained for computation of “connectedness” are {a) no diameter—
limited Perceptron can compute connectedness and (b) an order
limited Perceptron must be of order R (i.e., some ¢ function must
look at every point in the retina) to compute connectedness. Typ-
ical positive results are that simple gecmetrical figures (triangles,
rectangles, alphabetical letters, ete, } can be computed by dia-
meter limited Perceptrons and by Perceptrons limited to low order.

CAN HAVE AN ARBITRARILY
LARGE (R} # OF POINTS

RETINA

FIGURE 7-2. Diagram of a Perceptron,
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Perceptron ideas have been used to train a digital computer to
play checkers {Samuel, 1959), and recently it has been suggested
independently by Marr (1969) and Albus (1971) that the Purkinje
cell of the cerebellum (see Fig. 6-1) may be essentially a Percep~
tron that mediates muscular activity. However, one should not
jump to conclusions. Considerably greater computing power would
be obtained {see Fig. 7-1b) if logical decisions were made at den~
dritic branches (see Fig. 6-3). Marr (1970) has extended his pic-
ture of the cerebellum to a detailed discussion of information pro-
cessing in the cerebral cortex. Here, however, it is necessary
to consider also the influence of reverberatory activity.

2. REVERBERATORY NEURAL NETS

In 1949 Hebb published his classic Organization of Behavior
in which he attempted to bridge the gap between neurophysiclogy
and psychology by postulating the existence of a new hierarchical
entity that he termed the cell assembly. A carefully developed in-
troduction to this concept is contained in his textbook (Hebb, 1972)
but the central notion is that: .

Any frequently repesated, particular stimulation will lead
to the slow development of a "cell assembly, " ..., capable
of acting briefly as a closed system, delivering facilitation
to other such systems and usually having a specific motor

facilitation. A series of such events constitutes a "phase
sequence” - - the thought process. Each assembly action
may be aroused by a preceding assembly, by a sensory
event, or -~- normally -~ by both. The central facilitation
from one of these activities on the next is the prototype of
"attention”.

Hebb, a psychologist himself, marshaled substantial psy-
chological evidence to support this view against the conflicting
claims of "field theory, ¥ which denied the importance of individ-
ual neural connections and "switchboard theory, ¥ which, in turn,
sserted direct connections between sensory and motor neurons
hroughout the cortex. As the electrically induced experiential
esponses described in Chapter | indicate, something like the
hase sequence is a palpable fact of thought. It can also be
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) s I i f profile and A sphere appears in my dream ... and becomes a ball
fegiirtiz:vesdiiSP?caJsusIg}‘jsmlgg 3?b Tat;\;ifir;éj irfclev?;;iog—sﬂsiégse Walter : a familiar childhood toy I had forgotten. At once the dream
(Fig. 7-3). [For a survey of the relation between art and per~ : begins to hea;? up associations ”around T‘lbls ball. It plays
ceptual dynamics, Arnheim's Art and Visual Perception (1954} is . exuberantly with the worc} ‘ball ... with every possible
highly recommended. ] Another easily experienced phase se- ‘ : rhyme, pun, slang connotation, homonym. Suddenl.y, there

is the thought train of dreaming, a vivid example of which ; are elegant people dancing on and around the ball; 1t. has

quence ls t 9 ! ¥ become a fancy-dress ball ... where people are having a
; ball... balling the jack ... drinking highballs ... getiting
drunk to the eyeballs ..., . Balls: a man's balls ... to
have balls ... to be on the ball. Ball: to ball a woman .
to ball up the job ... to bawl like a baby. Ball: bald.
Ball: fall ... as hair falls ... leaving you bald as a
billiard ball. People named Ball: John Ball ... George
Ball ... Lucille Ball. Ball: Baltimore,.. the Baitimore &
Ohio ... highballing down the line ... And the dream plays
toc with the form of the ball, until it reflects every sort of
round, rolling, bouncing thing .., globes, planets, wheels,
balloons, bubbles, circles, eggs, oranges, coins, fireballs,
goof balls, golf balls, footballs ... a baseball which is
"the old apple" ... forbidden fruit ...

has recently been given by Roszak (197 3).

Hebb viewed the cell assembly as a "closad solid cagéwork,
or three-dimensional lattice, with no regular structure, " and sup-
posed it to develop under the following conditions.

When an axon of cell A is near enough to excite a cell
B and repeatedly or persistently takes part in firing it, some
growth process or metabolic change takes place in one or
both cells such that A's efficiency, as one of the cells
firing B, is increased.

Although Hebb (1949) favored a strengthening of synaptic con~
tacts as a mechanism for learning, the above assumption is not
specific. It does, however, consider only an increase in firing
efficiency. In 1955 Frankel reviewed several approaches to the
realization of machines to mimic mammalian brains and suggested
@ design along the lines of Hebb's theory as most promising. Since
he difficulties of dealing analytically with such a system appeared
ﬁnmanageable, he proposed a computational investigation. Rochest-
T, ‘Holland, Haibt, et al. (1956) presented the results of such a
est that modeled 99 neurons as indicated in (6. 8. 3) with no in-
hibitory interconnections and assumed the time to be quantized in

v

FIGURE 7-3. Picasso's "Marie-Thérése Walter. * With practice,
either mirror image can be viewed in front or profile,;
but practice with (b) - - the original -~ doesn't
help with (a). (From Goodbye Picassc by David
Douglas Duncan. Used by permission of Grosset
and Dunlap, Inc.)
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discrete steps of a “synaptic delay, " o They found a diffuse
reverberation with a period of the order of the refactory time but
could not demonstrate the growth of cell assemblies. Rochester,
Holland, Haibt, et al. (1956) then talked with Milner who was
revising Hebb's learning assumption to include inhibition as a
decreasing efficiency of firing (Milner, 1957). They { Rochester,
Holland, Haibt, et al. {1956)] subsequently modified their program o
include inhibition in 512 neurons with six "external® neurcns excit-
ed every ten time steps by organized signal plus noise. Cell as~
semblies were found to develop with excitatory contacts between
cells in the same assembly and inhibitory contacts between adja-
cent assemblies.
flop" that mimics oscillation between the two perceptions in Fig.
7-3. Qriffith (1967) has demonstrated that an "habituation” effect
that gradually raises the threshold of a neuron during activity can
change such a flip-flop into the “multivibrator” indicated in Fig.
7-4. When assembly A {(“mode A" in Griffith's terminology)

it inhibits assembly B, but eventually the thresholds for
neurons in assembly A rise and.it becomes extinguished. This
removes the inhibition from sssembly B permitting it to fire. A
significant aspect of this study is the extermely rapid “turn-on"

of usually only one or two time increments.
60

4
T T
50 U (el B8O

fires,

[
30-

20

< 10
: R ST
10 20 30 a0

m 10~

Y

T
I
1T

\Jj

-

30—

FIGURE 7-4.
assemblies with inhibitory interaction and habitua-

tion. From A View of the Brain, by J. 8. Griffith,
published by Oxford University Press, 1967.

Thus two such assemblies could act as a Uflip- -

Free-running "multivibrator” oscillation of two cell
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Hebb (1349) discussed a hierarchical organization of cell as—
semblies, making particular reference to visual perception Al—s
though we consider this concept in greater detail in the te;;:t that
follows,it seems appropriate to introduce the gist of it here. Not-
ing that neural mapping from the retina to area 17 of the visllal °
cort‘ex (see Fig. 1-4) is topological, he proposed lines and angle
positioned through eye movement as the first level cell assemgl' .
{subassemblies} localized in area 17. Since the connections fr .
area 17 to area 18 are no longer topoleogical but diffuse, this ar;);n
can serye as a location for assemblies that organize li’nes and
angles into perceived geometrical figures such as triangles, rec-
tangles, circles, and so on. This notion receives some su’ ort
frolm the studies by Hubel and Wiesel (1962) of the functiong? ar-
chitecture of the feline visual cortex. They conclude: ’

It is suggested that columns containing cells with com~
r.non r.eceptive—field axis orientations are functional units
‘m whlchl cells with simple fields represent an early stage,
in organization, possibly receiving their afferents directly
from lateral geniculate cells, and cells with complex fields
are of higher order, receiving projections from a number of
cells with simple fields within the same column.

In 1961 Caianiello proposed a detailed analysis of neural sys—
trrnes composed of elements as in (6. 8. 3} paying particular attey—
tlo.n to reverberatory states and their relation to thinking and cgln—
sciousness. Calaniello, de Luca, and Ricciardi (1967) investigat-
_fad the reverberatory character of N formal neurons described g
in (6. 8.1) with every @ (threshold) equal to zero, a normal s sfe
VTlme was assumed to be quantized in units of the’synaptic defa ™
7; and a real variable, v, was introduced to represent signal "
strength before processing by the signum function. Thus the input
to the firing decision for neuron h at time t+ 7 is related t fﬁl
-states of all neurons in the net at time t by e

v (t+7) = Z_,ahkcr[vk(t)j (7.2.1)

T ; N
ntroducing a vector description of the states of the N neurons at
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(v {m7) -
1 . Y .
Im K+1l,m
_ Vz(m'r)
Ty v
v_=var) = (7.2.2) Zm YK+2,m
vxln = and alse V" = (7. 2. 6a,b)
v__(mT)
N ; v
| VKm Nym o
permits (7. 2. 1) to be written in matrix form as
(7. 2. 3) can be written
v = Ad[V 7. 2. v ‘ pet
Vo4l cr[vm] (7.2.3) Vil B : BA 1 cr{vm]
. =l T _ (7.2.7)
where A=[ap, ] isthe N X N matrix of interconnection m+l MB IMBA Cr{";;l]
strengths. Areverberation is defined as a sequence of states ™ :
B
Vm ”Vmﬁ-l — Vm+R: Vm (7. 2. 4) -, - =
Vm+l = E[o—{vm] +A(T[Mvr'n]] (7.2.8)

and Rr 1is the period.
a neural system has 2N states, and a reverberation that cycled
through all of these states would have a period of 2N7 sec.
Taking N = 100 neurons and 10~ 3 sec implies a period of
about 1019 years, which is much longer than the age of the uni-
Cataniello, de Iuca, and Ricciardi showed how the rank

f]

verse!

(k) of the connection matrix could be used to establish an upper
By partitioning the matrix |

bound on the pericd of a reverberation.

A as
B : BA |} K rows
A=s|---~- ;~ - - {7.2.
MB ! MBA } (N -K) rows

K columns (N-K) columns

and defining a reduced vector ;;11 as

Even this greatly oversimplified model for

In other words, the reduced vector at time m+l depends only on
the reduced vector at time m. At any time ?7;1',1 = Mv},, and
clearly o[v,] has just 2K states. The signum function has the

property o [xy] oi{x] - afy]. Thus we can write

O'[Mvrln] :U{M}g[v;n] (7.2.9)
+if we assume that the matrix M has only a single element in each
row and column. Then the period of a reverberation is bounded by

K

R< 2

7.2.1
5 { 0}
Without assuming quantized timse or zero threshold, Caianello,
de Tuca, and Ricciardi also showed that the reverberatory system
would have (N-K} constants of the motion. To see this rewrite
(7.2.3) as

vit) = Ac[vit-7)] -8 (7.2.11)
where 6 = col (61, ...,0y) is a threshold vector. Taking the sca-

f product of (7. 2, 11) with a constant, N component vector Y
ves
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gft) =5 V({t) = - Ao[Tlt-7)] -7+ B
If vy is chosen so

0} (7.2.12)

then
c=-7-0 (7.2.13}

For A an N X N mairix of rank X there are (N-K) independent
vectors, y, which satisfy (7.2.12) and give (N-K] constant val-
ues for g in {7, 2.13). See Alello, Burattini, and Caianiello
(1970) for further discussion of constants of the motion and learn~
ing invariant rank.

A system of N neural elements and, therefore, 2N states
can also be described in terms of a state diagram that indicates
the evoluticon that the system undergoes as time increases. For
three elements there are eight states of the vector (nl, nj, n3)
where n; = 1, and each of these can be designated by a point
(see Fig. 7-5). Only one arrow leaves each state indicating the
unique state for the next time increment, but any number of arrows
can enter a state. Thus emerges a basic nerve net property,
namely, irreversibility in time. Reverberations are related to the
closed cycles, and "transients” to paths not included in cycles.

Thus if the system is initiated in state {111} it will go through state

{~111) before entering a reverberation of period 2. Kitagawa {1973}
and Ishihara and Sato (1974} (see also Sato and Ishihara, 1974)
have recently discussed the application of graph theory to the
study of shifts and stability of reverberations.

In general each of the N, neural elements may be an arbi-
trary Boolean function with N, inputs. Since there are 272 in-
put combinations and the output can be +1 for each, there are

N

A
5 2

Boolean functions of NZ inputs. FEach of the N; neural elements

can be any of these functions so there are

Ny = lez (7.2.14

The ratio
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- 24
FIGURE 7-5. One of the 2 state diagrams for a logic machine
with three elements.

possibilities for the system. If we restrict the neural elements to
the threshold calculation indicated in (6. 8. 1), not all of these
possibilities can be realized. The simple state diagram of Fig.
7-5, for example, demands that the first element decide -1 when
the inputs are {l11) and (-1-1-1), but must decide +1 for other
inputs. As was indicated in Fig. 7-1, this decision cannot be
made by a threshold element. The number of threshold logic func~
tions of N, inputs is not exactly known, but for large N, it is
approximately (Yajima, Ibaraki, and Kawano 1968) i

kN2

2 2

4
2_<k_<l

The corresponding number of N, element threshold systems is

then

T (7.2.15)

i quT/qlB) falls rapidly to zero as Nl and N2 increase:
TNy = N, = 7 neural elements it is 0. 548 x 10-200, Thus it is
portant to know whether a neuron computes an arbitrary Boclean
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function (as might be inferred from the "multiplex neuron” of Fig.
¢-3) when making numerical estimates of the dynamical possibili-
ties for a neural system. -

Consider next an N neuron system for which only m < 2N
of the state transitions are specified. Yajima and coworkers de-
fine R{m , N) as the ratio of threshold systems to the total num-
ber of Boolean systems with this specification and show that

R@N,N}) -0 for a>2
-1 for e<2

as N —o, Thus threshold logic imposes little restriction on the
realization of an N element system as long as less than 2N
transitions in the state diagram are specified.

These considerations may be useful for extending and evalu-
ating the discussions by Ishihara (1971a, b} of the interactions be-
tween reverberations. Referring to Fig. 7-6 he describes Pavlov's
classical conditioned reflex experiment in the following manner.
The food-salivation mechanism is assumed to be established as a
reverberation A in area 19, where the loop of dots represents a
sequence of states (as in Fig. "7-5) rather than the successive
firing of individual neurons., When the bell is repeatedly rung, a
corresponding train of pulses projects to areas 4] and 42 of the

temporal lobe (see Fig. 1-4) eventually establishing reverberatory -

activity B in area 22. Simultaneous stimulation by the bell and
the meat leads to the development of an interaction between as-

semblies A and B, eventually permitting stimulation of A by the
bell via B without the presence of the meat. Ishihara has been

primarily concerned with the representation of such an interaction
in the context of Caianiello's neuronic equations (7. 2. 3}. In the
text that follows we consider more physical descriptions of how
such a long-range interaction could occur.

The computational difficulty of dealing with a dynamic syste
as complex as at least one hundred formal neurons led Shimbel
and Rapoport (1348) to consider the development of a statistical
neurcdynamics, and Rapoport (1952} used this approach to study
the "ignition"” phenomenon in a neural network (see also Trucco,
1952). Smith and Davidson (1962) presented a simple description:
of this effect which assumed a network of N neurons, each ha
ing e excitatory connections coming randomly from the other
neurons. Time was assumed to be quantized and inputs were
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FIGURE 7-6. Schematic representation of Pavlov's classical

conditioning experiment (redrawn from Ishihara
1971b). '

summec.i ‘over s time units. Calling the activity or fraction of
cell‘s fl.rmg F, the probability of a cell receiving i units of
excitation over the previous s time units on e inputs is®

(se)!

it (se - i)

Pi(l ~ F)se—iE (sie)fk(l~ F)se~i

The probability of firing, 8, is the sum i i
i of this quantit
i> 6 (the threshold) so’ ’ a ity for all

se

S(F) :ize (5 r - pset (7. 2. 16)

“An-equilibrium condition for sustained activity is

S(F)=F (7. 2.17)

hlclh is ealsily shown to be satisfied for F = ¢ {(no activity) and
1 (maximum actvity). If 1 <8 < se, S(F} has the sigmoid

hape indicated in Fi
n Fig. 7- i i i ilibri
hict Fig. 7-7 so there ig an intermediate equilibrium

any craps shooter should know.
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ds

ar > 1 (7. 2.18)

Thus a slight increase (decrease) in F causes a greater increase
{decrease) during the next time increment and the intermediate
equilibrium point is always unstable. Ashby, von Foerster, and
Walker (1962) saw this effect as "something of a paradox" hecause
the brain does, indeed, exhibit intermediate states of activity.
Confusion arises here because a completely statistical represen-
tation of a nerve net fails to distinguish between {say} one per-
cent of the neurons firing at maximum rate and all the neurons
firing at one percent of the maximum rate. Thus in the context of
Hebb's discussion, the paradox can be resolved by supposing that
(7. 2.16) and Fig. 7-7 apply to the neurcns of a particular cell as-
sembly with inhibitory connections to neighboring assemblies,
Statistical neurodynamics might be considered as a procedure
for establishing the "laws of thought” from network dynamics
{level 5 in Chapter 1} just as statistical thermodynamics derives
the gas laws from molecular dynamics. For careful freatments see

Stable —__

Unstable equilibrium
point

s (F)

o]

0~ Stable

FIGURE 7-7. Solution plot for equation (7.2.17).
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Rozonoér {1969), Amari (1971, 1974), and alsc the combined numer-
ical and analytic studies by Burattini and Liesis {1972). Cowan
{(1970) has discussed the possibility of establishing a Hamiltonian
formulation for neural activity, but the corresponding restrictions
on neural interconnections may be too severe, The work of
Ventriglia {1974) is alsoc motivated by an analogy with classical
physics. He considers the neural system to be composed of two
types of “particles” (necurons and impulses) enclosed within a
three—-dimensicnal space. The neural particles are in fixed posi-
tions while the impulses form a surrounding “gas. " Impulse-
impulse collisions are neglected, but the total number of impulses
is assumed to change after an impulse-neuron collision, A kine-
tic equa_tion is developed for evolution of the distribution function
for impulses. The difficulty, of course, is that the organization
of a neural mass into (say) cell assemblies determines which as~
pects of the mass may be treated statistically, and it is just this
organization that is not evident from the study of neural nets.
Some ad hog notion, such as the cell assembly, seems necessary
as a working hypothesis in order to proceed.

White (1961) was among the first to consider the dynamics of
cell assemblies in relation to the "ignition" phenomena displayed
by random neural nets. For a net with N neurons he began with
a simple version of the equilibrium conditions (7, 2. 17) in the form

F= S(P+ BNF) (7. 2.19})

where P is an external input to the net and $ is a coefficient
which expresses interconnectedness. Inhibition is included by
supposing B to be originally negative; it gradually becomes posi-
tive as the net develops into an assembly under repeated stimula-

tion by P. Rewriting (7. 2.19) as

S—l(F) = P + BNF (7.2.20)

_nd.rfaferring to Figs. 7-8a,b, it is clear that for B negative or
ositive but less than the minimum slope

as”! §3]

dF min

ere 1s only one firing state and F will return to zero as P is
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reduced to zero, However, if repeated stimulation by P increases
B so it satisfies the inequality

-1
ds ~ (D) (7.2.21)
B>—3r

min

there can be two firing states. Increasing P _ sufficiently;r%d
then reducing it again will leave the network in the upper Liring

gtate as shown in Fig. 7-8c. o (
For two cell assemblies, N} and N, equilibrium eguations

can be written

st

~—
n

N F
Pyt BN F RN

(7.2.22a,b)
s (F) = P2+ ﬁZlNl Fl + sZZNZ P2

Let us assume that B 1 and [322 b.otl? s:atisfy t.he ‘1r1edqua;‘ilt;rn y
(7. 2. 21) so the assemblies can be 1nd1§f1duall3./ 1g.n1te . e
ﬁ?,l(plz) is also positive, it is impossible Fo 1.gn%te assembly 2
without also stimulating assembly 2{1). This 1sl11n agreement \.'\2.
the computer studies by Rochester, Holland, Ha.mt,. let. al. (1956)
and Griffith (1967) indicating the need for son‘.ie ll’lhlbltl(?n betfween
assemblies. If B and Py are both negative, a variety ©

e ——nstable

g» 457
dF imin~

p

—— - ]

F

Resting State
{a} (b} te)

TIGURE 7-8. Formation of a cell assembly described by equatio
(7.2.20): (&) mutual inhibition; {b) yveak mutual
excitation; (c) strong mutual excitation.

Reverberatory Neural Nets 247

solutions to (7. 2. 22} can be obtained involving the ignition of one
or both assemblies.

Following an initial attempt by Harth and Edgar (1967) to mod-
el the cortex as a mass of association neurons which were highly
damped so reverberations would not occur, Harth, Csermely,

Beek, et al. (1970) turned to the idea of cell assembiies (called

netlets). They begin with a careful review of the biological evi-

dence supporting Hebb's theory, which includes: (a) experiential
response to electrical stimulation of the cortex [ described in
Chapter I of Penfield and Perot (1963})], {(b) Mountcastle's (1957)
observation of radial columns of neurcns in the somatosensory
cortex of the cat that appear to act as “elementary units of organi-
zation, " (c) the previously cited suggestion by Hubel and Wiesel
(1962} of a functional hierarchy for cell pools in the cat's visual
cortex, and (d) intracortical microstimulation of the cat’s motor
cortex by facilitating currents as low as 2 pA (Asanuma, Stoney,
and Abzug, 1968), which indicates that "the basic design of motor~
sensory cortex includes radially arranged colonies of functionally
related neurons. " Since the cortex contains some 1010 neurons,
any attempt at an holistic description must greatly reduce the
number of parameters considered. Cell assemblies might serve as
appropriate “macrostates” that are random in the small and organ-—

ized in the large. Harth and coworkers stake out their position as
follows:

It should by no means be taken for granted that such
rneuronal macrostates must exist, nor that their description
can be made sufficiently simple to be of practical value.
However both will be assumed here, It is difficult to see
how significant progress in understanding the brain can
ever be achieved unless these twe assumptions are justified,

They then describe the ways in which cell assemblies could inter~
act in the cortex to process information and to model the condi-

tioned reflex. Learning is assumed to proceed according to

Caianiello's (1961) adiabatic learning hypothesis, according to

which the coupling coefficients [the @p, in (7. 2.1)] change

slowly on the time scale for reverberatory activity. The detailed

-mathematicai analysis is described in a companion paper by

: , Beek, Csermely, et al. (1970). They assume a "“refrac-
Ty period, ¥ r, which is related to the firing delay, 7, by
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T <r <27 (7.2.23)

This means that at each time step only those neurons that fired on
the previous step would be unavailable for refiring. Equation
(7. 2.17) then becomes modified to

Flt + 7} = [1- F)]S[F)] (7. 2.24)

which leads to a high probability of cyclic activity between two
states as in Fig. 7-4. A formulism is developed, involving macro-
scopic coupling coefficients, for systems containing an arbitrary
number of assemblies. Numerical results from applicaticn of this
formulism to a system of two assembllies is discussed by Harth,
Cseremely, Beek, st al. (1970). In a series of subsequent papers,
Anninos (1972a,b, 1973) and his associates [ Anninos and Elul
(:974), Cyrulnik, Anninos, and Marsh (1974)] present a variety
of numerical results on the dyhamical behavior of single-cell as-
semblies {see alsc Dunin-Barkovskii, 1970).

In a more analytical discussion, Wilson and Cowan (1972}
consider two subpopulations of neurons; excitatory and inhibitory,
for which the fraction firing per unit time are described by two de~
pendent variables E{t} and I(t). After a cell fires, it is assumed
to be refractory for a time r, so the fraction of excitatory cells
ready to fire at time t is

t
1- | E()dt sl - rEG)
t-r

with a corresponding expression for the inhibitory cells. Assum-

ing the delay time for firing to be a value 7, Wilson and Cowan
write a dynamic equation

Eft +7) = {1 - rE@] 5 [ B EW) - 6, It) + P{t)] {7.2.25

where S, isa sigmoid response curve for the excitatory neurons,
P(t) is an external input to the excitatory neurons, and both B -
and B, are positive interconnection constants. Using the appro

imation

Ll +7) - BT} _ dF
T BT
. dt

.Pa favor the format
Fig. 7-9a over the oscillatory behavior in Fig, 7-9b
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(7. 2. 25) becomes an oréinary differential equation for Et)

dE
TS S LRyl -
” (L= rE)S [ BE~ BT+ P] (7. 2. 26a)
and similarly for I{t}, the inhibitory subpopulation
T s T4 (1= -
at { rI) Si{ (33E B4I + Q] (7. 2. 26b)

where Q is an input specifi i
ts cally directed to the inhibi
rons. Equilibrium conditions from {7.2.26) can benwiiltteoriy e

B1=8E4+ P-gt(—Lm dE
- e (ITrp) for gi=0
L (7.2, 27a,b)
B.E=pI- (—— al
35S Pl QS () for hs 0

From (7.2.27b) E is a monotone increasing function of I along

. the locus {in the E- I phase plane) where (dI/dt) = 0. TFrom

(7.2.27a), however, I i
K , er, 1s not necessarily a monotone in i
function of E along the locus where (dE/dt) = 0. Two (;I:sassimg

‘bilities are displayed in Fig. 7-9, where the directions of tra~

sztoriets a(#ong tig)e equilibrium lines can be established from ref
nce to {7. 2. 26). A smaller valu .
eof B) and a lar
: ot ger value
ion of stable equilibrium points indicated ?rif

1:;: lo.nil equilibrium point to the other in Fig, 7-9a canTLGth—lons
hroi 1hst§d by rTlovmg I"the {dE/dt) = 0 locus" right and leftc
I g{l & eéxcitatory input P or by moving the "(dI
bcus™ up and down with Q. ) /A =0
. Tzl'lga) l;toloagl;ically criented reader will notice that equations
cﬁc.m ol e c‘osely related to the Volterra equations for the inter—
e Iiesges. ~Recently Lin and Kahn {1976) have used the
s fo.r eXieSteond of K(ijloff and Bogoliuboff {1947) to find condi-

‘ ce and amplitude of limi
pear sinusoidal oscillation. e eyeles when the system
- Grossberg (1973) has investigated the

EVXcitatOIy 12Uror [e) a
j. ‘
vl joje)s] tions from a m

interaction of inhibitory
. ore theoretical poi
; ‘ nt of
acﬁon, uasmg a theor(?m—proof’ format). He assumes that the
; parameters are identical for both components so a
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i i ici scribe
ingle activity variable {let's call it Fj} is sufflcleélt to ljlleation
‘fhegactivity of the ith cell population, and thatl eac acp;é)rding »
excites itself as it inhibits neighboring populations

o ) P (7.2.28)
—L o -ar s (B-E)S(F) - T SIE) R
dt . k#i

i i - egua-
It is interesting to compare (7. 2. 28} with the WHFS())E(IS?WE(EZ °
tio_ns in (7. 2. 26). The excitatory process, (B~ Fy i),
form different from the inhibitory process,

- F, ), S(E)
Y

hecause a recurrent "on-center, off~surround” interconnecpon N
sc;eme ie assumed in which the cell population, Fj ,Thexcnietsipoli v
ithi i lo e mu -

i inhibi ighbors within a certain halo.
itself but inhibits neigh : ; R el

i 2 inhibitory interaction 1s t
cative character of the in . . e
ing” hi as heuristic value in assembly
in effect, which h . ~on pe
re(lgative le\;els of the inhibiting assemblies are preserve i
an external input tc the ith assembly.

™(7.2.27b)

Unstabla

Stable
Equilibrium
Points

‘timi! Cycle

«{7.2.270}

“T7.2.274)

(b)
(o)}

FIGURE 7-9. Phase-plane trajectories for excitator%r and mrzul:;g
torv neural subpopulations from equations (7. 2.

as the
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The objective of Grosé;berg's work is to analyze the dyvnamic
properties of (7.2, 28) with various assumption on the character of
the function S{.). 1In particular, a sigmoid character leads. to
edge enhancement of patterns and to localized reverberation or
short-term memory. More complex applications of thig approach
to processing of pattern information are discussed in Grossberg
and Levine (1$75), Ellias and Grossberg (1975), and in Levine and
Grossberg (1976). Here influences on pattern processing of spa-
tiotemperal parameters in excitatory and inhibitory cell popula-
tions are considered.

Having suggested the notion of a cell assembly as an atomis—
tic entity, it is interesting to consider how many assemblies
might exist in the human brain. This is a difficult question, but
Legéndy {1967) has obtained some results from a very simpie mod-
el. He assumes that the brain is already organized into subas—
semblies and discusses their organization intc assemblies, The
assembly and one of its subassemblies variously represents "a
setiing and a person who is part of it, a word and one of its let-
ters, an object and one of its details. * Interconnections are ags—
sumed evenly distributed over the brain to avoid the complications
of spatial organization. Subassemblies and assemblies are like
neurons in that a threshold of excitation must be exceeded for
ignition, but they are also bistable. As indicated in Fig. 7-8c,
they may remain in an active state {subject to the constraints of
habituation) as well as in a resting state., Whereas the threshold
for a subassembly is assumed io be a certain number of active
neurons, the threshold for an assembly is a certain number of ac—
ive subassemblies. Assembly storage has two additional advan-
tdges over neuron storage:

1. Physical damage will not destory specific assemblies,
but degrade many by roughly equal degrees.

2. The growth of interconnections is much more plastic for
a@ssemblies than for neurons.

Legéndy considers the subassemblies to be formed through
sak" contacts and assumes assemblies to develop from sub-
mblies through the development of "latent" into "strong" con-
s between neurons. 1In his notaticn:

B = number of neurons in the brain;
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= maximum number of assemblies in the brain; E | lower bound of 108 bits {(about equal to the informati
, . : : 1 ion content
of the Encyclopedia Britannica estimated at one bit per character)
and an upper bound of 101l bits {corresponding to an average rate

- number of subassemblies in an assembly; of 50 bits/sec for 60 vears). He feel
; ¥ - : . s that ar
& lies in the range from 109 to 1010 bits easonable value

number of neurons in a subassembly;

o < = Q
"

= number of strong (latent) ceontacts per neuron.
Legéndy further assumes that‘half of the strong {latent) co{ltacts 5. SPATIAL EFFECTS
make output {axonal) connections and the other half make input
{dendritic) connections. " Then he defines

Upk to this point we have ignored spatial organization of th
neural interconnections. This organization is evident from Fi :
1-4, and such points as: how an auditory reverberation in arega{ 22
could communicate or interact with an optical reverberation in
are.a 19 are now considered here. Beurle (1956) initiated the anal-
ysis of wave effects by assuming the "neural medium™ to be o
posed of p threshold elements per unit volume and for whicl‘f‘om—

m = maximum number of strong contacts from an as sembly
to one of its subassemblies.

The number of output contacts from an assembly is ($ Nvya) and
those connecting to a subassembly reach a fraction N/B of the
neurons in the brain. Therefore

ﬁ(x)dx = the average number of connections from one csll to

n infi s} distance x
a 1Te ane o lickness dx and
away;

2
N ya
m=—g (7.2.29)

The maximum capacity of the brain is reached when about one half
of the latent contacts have become strong; thus

c -2 (7. 2. 30}

2my

F = the "'activity” or the fraction of cells becoming
active per unit of time; -

R = the fraction of cells that are sensitive, (i, e., not
refractory}; o
Substitution of {7.2.29) into (7. 2. 30) gives an estimate for the

maximum number of assemblies that can be stored in the brain as @ = the probability of a cell being stimulated above

threshold per unit time;

o ) 2.3 7T = the operating {synaptic} delay.

ateA?suming tha.t the cells after firing remain in a refractory

o Of\.ltr;labl@T to fire) for a time period that is longer than the dura-

o ‘e disturbance being considered, each firing diminishes
raction of sensitive cells, R, Thus

This estimate 1s insensitive to the maximum number of strong co
tacts assumed for each neuron and to the number of subassemblies
Taking B = 1010 neurons in the brain, N = 104 neurons/sub-
assembly and v = 30 subassemblies/assembly gives C =10
assemblies.

Considering how much more complex the “multiplex neuron”
of Fig. 6-3 is than the simple representation employed by Legénd
this may be a conservative estimate for "the number of elementa
things the brain can know", but, as he points out 109 is the n¥
ber of seconds in 30 years. Griffith (1971} has reviewed variou
egtimates for the storage capacity of the brain that indicate a

- T F (7.3.1

The firi i
‘—sere] f‘ll‘.lng rate at. t+7 is equal to R times the probability
! sitive cell being stimulated above threshold. Thus

Pt +7) = Rt} 3(t)
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or, as in {7.2.26) a4
ur —7 = F(l - mR)
T%E = Ra- P (7.3.2) dg (7. 3. 6D)
t or
Partial derivatives are indicated in (7. 3. 1) and (7. 3. 2) because :
dependence on distance (x) is considered as well as on time {t). : —TéiRE =1-mR (7. 3. 7)

Beurle assumed PBlx) to be an exponentially decreasing probabil-

ity of interconnection and showed : )
which can be integrated over R to obtain the parabolic trajectory

®=mF (7. 3.3} _ m 2
'TP—K+R—2R (7.3.8)

where m is arealp ()pnruonallty constant. ore gen sket . . 1>
t i Vile)s Y Given a valu R ion of
era e ched in Ilg 7-10d. v e, for the fraction o

sensitive cells ahead of the wave, the corresponding value in the

oo wake is
o= plo-1)[ Flx', plk-x")dx’ (7.3.4)
o R o2
2 m R (7.3.9)
=pE-NF®B (7. 3.4 as indicated in Fig. 7-10d, but it is unstable against growth to

--R| or collapse to zero. This instability appears just as in Fi
7-7, because no inhibitory interconnections have, been assume(cgi.
and it is related to the fact that the velocity {u). at which the ’

: Wave of information propagates, is not determin’ed by the calcula-
‘tion leading to (7. 3. 8). This velocity is limited by the spatial
extent of the interconnection probability, B(x), divided by r;and
’ Smolyaninov {1970} has discussed techniques %or calculatin 'Ith -
velocities of rectangular pulses of activity through nets wi‘i vaeri-
us forms for B(x). More recently, Pastushenko {1975) has used
_varl1 ‘analysis similar to that described in Section 4~4 to find velo—
ities for both a stable wave (higher velocity) and an unstable

where ® indicates the convolution operation in (7. 3. 4) and
p{e - 1) is the probability of a cell being just one input pulse be-
low threshold. If p{e - 1) is assumed constant and the spatial
extent of B(x) is small compared with that of the disturbance be-
ing considered, (7. 3. 4) reduces to (7. 3. 3) with m equal to p
times the area under B(x).

Here we assume (7. 3. 3) and suppose F and R to be the
traveling wave of information with velocity u shown in Fig. 7-10.
Then

P(x,t) = Flx - ut) = F§)
vave (lower velocity).
Rl 1) = R - ) = RE)  Beurle (1956} indicated how a nonlocal (i, e. multiple maxima)
: haracter of B(x} might stabilize a wave. and \A;ent on to consid~
e r me‘chanisms for storing time—sequential, memories, such as those
. - flslcrzbed by Penf%eld and Perot {1963}, in a neural r;ass. As Fig.
a shows, the intersection of two waves will be a moving re-

é?tziif)l;g?‘]ielxlctgvlty along which, it is assumed, the threshold of
‘ipatn . 1 be ’re.c%uced for those particular neurons which par-
& ‘exb' e ac’.uvmy. Eventually (Fig. 7-1lb), wave Wj alone
cite a replica of wave Wp. In Fig. 7-llc a schematic
hanism is indicated wh ereby an external wave, W in in-
l;cseg ﬂn’ough inc?ming sepsory fibers, Gegt - ’ Thiesxsv’ave prop-
€ Cross the neural medium and, between planes H and T
]

is the space coordinate in a frame moving with the assumed vel
city u. FEquations (7.3.1) and (7. 3. 2} then become

dR _ ¢ @.3.

udg
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is encoded onto specific internal feedback fibers, R. These re-
introduce an internal wave, W;,,, which interferes with a sub-
sequent Weyp (Fig. 7-1ia) to inscribe an appropriate engram of
lowered threshold for particular cells located near the line L.
Eventually, it is proposed, the wave Wipy will excite a replica

of the subseguent wave W, ., justas Wy excites a replica of
Wp in Fig. 7-11b. This Wy, will then stimulate Wint, which

in turn stimulates a following W{ .., and s0 forth. In this man-
ner the neural mass could "sing out” a temporal sequence of

commonly experienced activity.

Ford

R®

(c] foxot

FIGURE 7-10. Propagaticon of a simple wave of information in 2
neural medium.

ot oY
travetiing peak of activity high proportion of cells
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c - )
URE 7-11, (Ia) Interaction between two traveling waves of

information; {b) excitation of a replica of Wp by

Wa; {c) schematic neural mechanism of a tir?]e
sequential memory (see text f i

oo ey or details). (From

B 1]
ioerllzsrlsfs”ﬁgiposals.a{]e(somewhat similar to more recent dis-
o To6s, B(igraphlc information storage in the cortex (van
-Pri,bra ; Blum, 1967; Longuet-Higgens, 1968; Gabor, 1968a.b
: m, 1969, 1971; Borsellino and Poggio, 1972). I"hese ’
?

bl
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in turn, are related to gquasiharmonic modzl representations of cell
assemblies developed by Green (1962) and by Ricciardi and Umez-
awa (1967) and experimentally demonstrated by Scott {1971}, An-
other approach to the problem of wave propagation in the neural
mass was taken by Griffith {1963a,b, 1965, 1971), who pointed out
that if only a small fraction of the cells are activated by a wave,
its propagation might be described by a linear operator, L(F), sup-~
ported by a nonlinear (sigmoid) source term, S{(F). Thus he in-
vestigated the eguation

L(F) = S(P) (7. 3. 10}

with the linear operator arbitrarily chesen to be a second-order
differential operator of the form

2
_82__ +d
ot

2
o,
5t

P
ox 2 2

L:a+b“a'+c
at
o0z

(7.3.11) -
oy )

A much more detailed analysis has recently been published by
Wilson and Cowan (197 3) that assumes subpopulations of excita-
tory and inhibitory neurons to be described by the firing rates
E(x,t) and I(x,t). The result of their study was an augmentation
of (7. 2.26) to the form

BE

T

=-E+ (-rB)S [p E® oot - pd @ ﬁie(XHP]

{7.3.124,

= -1+ (1-10) Si{peE ® ﬁei(x) - piI ® ﬁii(x) + Q]

in which Byy(x), Biel), Beil®), Biilx) are the "axcitatory-excitdy
tory, " and so forth, interconnection probabilities and @ stand
for the convolution coperation defined in (7. 3.4). Egquations (7.3
evidently reduce to (7. 2. 26} when the B functions have a spatial
tent that is small compared with the disturbance under congider@
tion.

As Wilson and Cowan have pointed out, an unsatisfactory
feature of (7. 3.12} is the inclusion of only cne space dimensio
rather than the two dimensions, which seem appropriate for the
description of activity on the cortex surface. Nonetheless, nu
merical studies of (7. 3.12) with physiologically reasonable as
sumpticns for the constants and connection probabilities have
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already vielded a variets i
v of interesting results i
are reproduced from Wilson and Cowan {1973) i; ;?;1570i;’vh10h

In Fig. 7-12a a locali
. calized transient i .
to the localized stimulation nt is observed in response
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(b) c)
1(\_T{umerical solutions of the Wilson-Cowan equation
.3.12): (@) local disturbance; (b) example of bi—S

nocular fusion: (c) wav i
‘ . H e of excitati a inhibi
tion {(Wilson and Cowan, 1973). on and dnhiois
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P(x,t) = 0 for x < 200p
x> 800n

t>tl 3
= PO for 200p <x <800p

O<t<tl

This transient exhibits a 1atent-edge enhancement offect.
In Fig. 7-12b the steady-state response is observed for local-

ized inputs at two adjacent points. Once a double response has

formed it can be maintained at a much smaller input separa-

tion @ than originally at @ This "hysteresis" effect closely
simulates that observed by Fender and Julesz (1967) of binocular

fusion.

In Pig. 7-12¢ Q has been set to a constant positive level
and a localized input is observed to stimulate cutward traveling
waves. These waves are qualitatively similar to FitzHugh-Nagumo
waves shown in Fig. 4-10 with 1(x,t) playing the role of "recov-
ery variable. * They differ from Beurle's waves (Fig. 7-10) be-
cause the refractory time {r) is short compared with the duration
of the disturbance; thus a single neuron can fire many times dur-

ing passage.

4, THE ELECTROENCEPHALCGRAM (EEG)

Elul {1972) has indicated in his recent review that the ele~
mentary generators of the EEG are not yet known, although there
is substantial evidence that it derives from wave activity of neu-
rons in the cortex. He states:

Analysis of the relationships between the gross ELEG
and the wave activity of individual nerve cells indicates
that the gross activity is produced through summation of
the synchronized activity of a comparatively small fraction
of the cerebral neurcnal population. Although the rest of
the population also is active, their contributions are not
synchronized and therefore summate much less effectively,
probably not reaching the limit of resolution of EEG re-

corders (i.e., 1-2 pv). There is only sketchy information

~ ness.
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on th i
o iemr?:lchanlims of synchronism, but it is clear that
1volve subcortical drives and i
. . ! entail sequentia
activation of different groups of cortical neur?)ns :

In view of this uncertainty in the el
Eilxzszii;t(o rlngzlel the EEG using the lineare;ilgf?lt;ilrgnssgfl?‘z;i’ o
tenar] fo) (Ni%{éﬂ&nnm;s and Raman, 1975) or a linearized version
of 13,00 p_romi Z,’ 1 7‘4a, b) sl?ould be considered with caution
Mueh more pro ts.mg, in my opmion, are numerical studies in ‘
N orse Gp' is made to model physiological data. Studies
oy o, illow, and Rudjord (1966) and by Lopes da Sil

ocks, Snluts, et al. (1974) may help to clarify the rol tha

thalamus in generation of the alpha rhythm ole ofthe
ol ](Ziugi;;) ;E;l’le ;Zzt?rmlttent s.ynchfonization of cortical neurons
pa e t..p izes t‘ha‘_c it may be inappropriate to treat the’
o stationary statistical process. "But," he concludes
e;alm}?y zot be alflaogemer unrealistic to hope tf’lat an array of . -

Is :Cm reFi cortical electrodes may provide not only a det ‘lsev
map of .cor‘tlcal potential distribution in space and time E e
a meaningful physiological correlate of perception and ::onitc?cilslz

u
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degree with which they can imitate the more fundamental levels
Psychology and sociology, for example, are often considered .
1| "soft” studies because they lack simple basic laws from which
i all relevant phenomena can be derived. For those who feel that
all knowledge will eventually be related to the logical foliation of
a few fundamental laws (characterized, perhaps, by a parsimon-
ious and aesthetic appeal that reflects their divine nature) these
soft studies are simply incomplete, As they mature, many feel,
they will increasingly assume the character of “real " science.
But there is an ingenuous air surrounding this point of view that
is difficult for many scientists to accept {(Weyl, 1948; Bohr, 1950
1958; Bronowski, 1966; Platt, 1966; Elsasser, 9 58, £966 1968;
Blackburn, 1971: Mehra, 1973; Wheeler, 18974; Welzenbaum ,
1976). One obvious reason for the successes of classical physms
is that eighteenth- and nineteenth-century physicists directed
their attention toward the simplest outstanding problems; they
chose the easy paths and claimed these to be fundamental. It ig
unfortunate, in my view, that this attitude tends to set the style
for scientific efforts at other levels.

General scientific activity can be resolved into inductive and
deductive components. Inductive science is creative. It requires
the imagination of new "paradigms" (perceptions, notions or be-
liefs) that are more acceptable than former ones 7(Kuhn 1862). 1In
classical science, most of the professional activity is’ deduetive'
the logical implications of currently accepted ideas are exhaus- ‘
t%vely explored. At levels 6 and 7 of the hierarchical scheme out—
lined in Chapter 1, however, no widely acceptable paradigms are
available; thus the activity must remain primarily inductive.

Suppose that our aim is to induce a theoretical basis for level
6 that is based on classical physics. There are at least two im~
pediments that we must evaluate and try to overcome; namely in-
determinacy and complexity. Let us take them in order.

Knowledge of the Mind

For the green of the leaf that fluttered down on my
hand chlorophyll had to be substituted, and this, like
all that which was said to me of the biochemical find-
ings about the life of the tres, drew me into the world
of x where there existed only that which could not be
realized. FEven the space in which the linden was fixed
was unrealizable mathema. But I put up with it, T ac-
cepted the thing or unthing, which had become property-
less and uncanny, the thing that had waited for me in
order to become once again the blooming and fragrant
linden of my sense world. I said to the sense-deprived
linden-x what Goethe said to the fully sensible rose:
“So it is you. "

Martin Buber

1. TOWARD AN INDUCTIVE STRATEGY

in Chapter 1 was mentioned the hierarchical structure exhibit

ed by modern scientific knowledge. The fact that this structure i
a present-day phenomenon must be accepted; whether it will ne- =
cessarily remain as scientific knowledge continues to evolve is
a question for which scientists provide no unified answer. There
is certainly a tendency to consider some levels of knowledge as
mere “fundamental” than others, Such levels are generally those
in which the reductive and analytical techniques of classical sci
ence have proven most successful. Sclentists working at other
levels of the hierarchy often evaluate themselves accoerding to th
262

Indeterminacy.

{lpredictive theory of dynamic behavior requires that it be
ssible (in principle, at least) to make measurements of initial
ta.from which the future course of events can be computed, Dif-
culties arise, however, when a prediction is made of the behavi-
nof a cognltwve system that in turn, learns of the prediction.
Ince the prediction then becomes part of the initial data, it is not
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necessarily valid. For instance, if I decide to prove a behavicr=
ist wrong, any “prediction” he makes of my future activity can
serve as & key element in my choice. A “prediction" of social
catastrophe may induce compensating countermeasures. "Seli-
fulfilling prophecies" may fool the developmental psychologists.
A second source of indeterminacy at level 6 can arise from
linguistic ambiguity. An example of the sort of logical contradic~
tion that appears in linguistic systems is given by the statement;
“This statement is false," If we assume it is false, then it

is bbviously true; but if we assume it is true, it is easily proven
to be false. The coniradiction arises because the statement refers
to itself. Bronowski (1966) has emphasized that any reasonably
rich linguistic system contains self-references and is, therefore,
potentially self-contradictory. This observation is closely relat-
ed to a skeleton in the closet of twentieth-century science, name-
ly, Godel's (1931) incompleteness theoren. This theorem demon-
strates that arithmetic cannot be given a satisfactory axiomatic
basis. If such axioms are assumed to permit the proof of all true
theorems, it will be possible to prove false theorems; and if the
axioms are restricted so that no false theorems can be proved, then
there will always be true theorems that cannot be proved. Although
the implications of Gddel’s theorem for the "man-machine"” con-
troversy have probably been overemphasized (Nagel and Newman,
1958; Arbib, 1864; George, 1972), the implications for the style of
scientific endeavor have been almost completely ignored. We
must admit that the various languages employed in human inter-
course are as rich as arithmetic and are riddled with self-reference.
Since the idea that all truth can be developed from a few postu~
lates does not even apply to arithmetic, there is very little justi-
fication (beyond a vaguely sentimental desire for certainty in the
midst of chaos) to expect the knowledge of life to be organized in
this way.

Predictive indeterminacy is not unfamiliar to physical scien-
tists. To compute the trajectory of a classical particle {a base-
ball, rocket ship, planet, etc. } it is necessary to measure both
its position and its velocity at some instant of time, But for very
small particles (e.g., electrons) measurement of position destroy$
knowledge of velocity and vice versa. This palpable failure of
classical science has been elevated by physicists to the "Heise
berg principle of indeterminacy. ¥ According to Herman Weyl {1949)

. initial data,
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Niels Bohr was;:

inclifuajd to widen the domain of uncertainty by addi
specific biological principle of indeterminacy (the -~ a‘
content of which is still unknown) to Heisenberg'si);elcll—se
established quantum~mechanical principle of indeterrzina
He has pointed out in this connection that an observati CY.f
the §taFe of the brain cells exact enough for a fairly d (f}'n 'O
prediction of the victim's behavior during the next ?e e
sfefconds may involve an encroachment of necessarilyvjethal
EOherc;;— Em.d thereby ma.ll(e the organism predictable indeed.
Dohr | %n ?ms that in thlS. way analysis of vital phenomena
Y D ysmai concepts has its natural limits; just as one had
tolqu‘up with complementarity as expressed by Heisenb !
principle of indeterminacy in order to explain the stab'l"?rg ’
of atoms, so are further renouncem ents demanded of himl Y

who tries to account for the seli-s abiliza on o v
£ t . PR
f ng

Skinner makes the point {and I agree) that

n
"behaviorism" Tovere oY and

. 7ic should be considered as distinct lev i
scientific hierarchy, and the cognitive difficulties :fliriz :Le 1
not be- permitted to impede the other. Yet even in terms of thou ¢
be‘hamorvist, “complete initial data® implies knowledge o? lle
stimulations and conditionings throughout the lifa ;f the or%—anism

Although it is certalnly possible to predict something with limited

substantial data difficulties
( , S are necessari i
in the prediction of everything. As Bohr (1958) put it'rlly veived

The decisive point ig that, if we attempt to predict wh
another person will decide to do in a given situation n(‘;vt =
?f?ly must we ‘stnlve T‘:o know his whole background includin
tr‘i story of his life in all respects which may have, con- °
Wl uted to. form hls‘character, but we must realize that what

e are ultimately aiming at is to put ourselves in his place

In response to such diffi i
n: ifficulties, Skinner (1969) I;
dications of technical progress in ’t ( ) i5rs 2 domen

: he experime i
ehavior over the past 35 years. : e s of

These include the followings:

R :
Experiments last, not for an hour
2

but for many h
ours
days, weeks, or even months, * ’
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diagrams functionally irrelevant. But, on the other hand, we
might be in the position of not knowing how the neurons in the
boxes are connected and wishing to understand the dynamics of
the corresponding state diagrams. If we are not allowed to cpen
the boxes, the only recourse is to investigate and record its dy-
namic behavior, Statistics on investigated boxes would tell little
about those that have not been studied.

Perhaps a comment is appropriate here on the definition of a
"machine. * The word is often used to imply a causal and deter-
minate system of known structure for which the behavior can ke
predicted. But when the term appears in a phrase such as "The
brain is merely a meat machine, ¥ it seems to imply no more than
a dynamical system of undetermined pradictability and complexity.
The present author has no quarrel with either usage if the intent
is clear, butitis a long leap to assume that rejecting belief in
magic automatically eliminates mystery. Nowadays, indeed, dy-
namical systems constructed by engineers are not necessarily
understandable in times sufficiently short to be of practical in-
terest (Wiener, 1960; Welzenbaum, 1972).

Let us return to the problem of constructing a predictive theory™
for the mind of a particular human subject. In addition to isolat-
ing the subject from all knowledge of our predictions, we must
communicate in a language that has been purged of inconsisten-
cies. The ambiguity of poeiry (Empson, 1947) would be tabu, and
even puns might cause difficulty. Finally, of course, we would
have to investigate the behavior of the subject in some nonde-
structive way. Can we expect an immense number of interesting
behavioral sequences? To answer this, suppose the subject to
have C cell assemblies, each representing a particular face,
word, picture, idea, and so on. Consider the counting of phase
sequences in which n assemblies are activated:

n=0 | state (comatose}
n=1 C states leach representing the activation of a
single assembly)
For n = 2 we must form all possible pairs of assemblies. With

each assembly, (C-1) others can be paired, but the product
C{C-1) counts each pair twice. Thus:

~to be one of an immense set.
--sented at the end of this book.
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_ L
n=2 2C(C—l) sequences {similes, metaphors)
_ 1
n=3 —"-2_ 3 C{C-1){C-2) triplet sequences
" G: _ . C
ooy Con) = (n) n-fold sequences

The sum of all of these sequences
C
-, C
Z: (p) = Zc
n=1

is immen‘se for C > 365 assemblies; but this is not an important
observation because thought trains involving large numbefs fr1
perceptual elements are impractical. One must sleep Muci
interesting is the guestion regarding how many assem;alies we o
must inc.lude in a phase sequence for the number of sequences to
beco.me immense. For what n is ( y}> M? This question is
readily asnwered since for n << C )

C c,n
(2~ (%)
Por C = 109

as was esti C) is i
Br G210 [ stimated from (7. 2. 31)], (}) is immense

Thus Roszak's thought train (quoted above} appears
A more significant example is pre-

The difficulties besetting those attempting to esatblish psy-
hology as a classical science are analogous to the problemz Y
F\ced by physicists in developing a dynamics for subatomic -
lciels,‘ This analogy is more than superficial, as Deluca anlzlar
z?vt:;ln(i?l) have §mphasized; there is "a véry strong relation
; quanm; new fleplgtemsloglcal problems raised by cybernetics
Yﬁamjcal th:Oec anics, In both ca‘ses the aim is to construct a
'bscured by migt at fa level o‘f the scientific hierarchy that lies
e A has o buncertamty. The theory should predict those
batomte b lve een and can be observed. Por families of
Soide prente f eks, however, Athe corresponding mass spectra

oad e e };m nown nu‘merlcal ratios that are appropriate the—
Ao d. ‘y dynamlcla% theory with stable stationary states
1zed by fixed quantities that exhibit the ratios of a known

i5s i ifi
Spectrum would be of scientific interest, Psychological
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theorists, on the other hand, do not have a finite set of numbers
to predict. Their analog of the mass spectra should be the full
range of human behavior. Although this includes the facts of ex~
perimental psychology, it is not limited to them.

2. A SCIENCE OF THE MIND?

Over the past decade Stephen Grossberg has published an ex-
tensive series of papers attempting to provide a mathematical
structure for some experimental facts of psychology. Those un-
familiar with this work are advised to consult three carefully writ-
ten reviews {Grossberg, 196%a, 1574, 1975), from which a brief
introduction to his basic ideas is cited here.

Grossberg (1969a) begins by considering the problem of teach-
ing a list of letters of "events” to a "learning subject” M. He
emphasizes the observation of "behavioral atoms" as follows:

If we wish to understand our usage of such simple verbal
units as A, we must take seriously our impression that A
is a single unit that is never decomposead in actual speech.
We do this by assuming that A is represented in M by a

single state.
Thus given any n simple behavioral units ry, i=1,2,...
he defines n points v; in M to represent these units as fol-

lows.

2 2 (8.2.1

Grossberg's units are taken to be cell populations, single cells,
or patches of membrane {see Schmitt, Dev and Smith, 1976), de
pending on the context. He proves theorems about learning in
essentially arbitrary anatomies in which arbitrary sensory data
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processing, signal generating rules, and decay laws exist, The
theorems describe the interaction of short-term memory (STi\/I) >
traces x;(t) and long~-term memory (LTM) traces =z, (t). Th
traces represent the activity of i " an ey
: : vity of the behavioral units, and the LTM
ul”aces encodﬁe associations among the units. Differ’ential equa
ticns of the following form describe their dynamic interacti d

ing a learning experience: o

n
X, = A i
L= Ax Tkz‘:l B, 7 + Ct) (8.2.2)
z., = D,
ik jkzjk + Ejkxk (8. 2. 3}

where i, j, k =1, 2 n. Th
s +a ey N e terms A;, B D,
‘ i and E.
lcan ble chosen quite generally without preventing ]En,lbié}ée,d patter]rll(
earning. These terms have the following heuristic interpretations:

1. The Aixi ir} (8. 2. 2) represents the decay of an unstimu-
lated behavicral unit; for example, choose A; a nega-
i

tive constant {~-1 -1
oo o { sec™* if the v; are cell assem-

2. }C{J‘i(t) Cin (8. 2, 2) is the experimenter's input to stimulate
K - A(t), for example, might represent visual or audi-
tory presentation of the letter A,

n

3. The term r
o .m Zk:l Bkizki represents a sum of signals from
. unllts to vj. Each summand BypjzZp; represents a
;lg?}? By i Afrom v to wj that is gated, or shunted
z he L-TM T_rf'ice Zy before it reaches vi- Bk' car; be
;: osep in various ways; for example, it can be allinear
-UHCthl'l of x{t - 7c;) above a signal threshold 6
in By () = aypo [ %l - 7ep) P
N i .kl i Tii) = ekiJ . Note that @y is
ot necessarily equal to ajy . '

Ezljjé(t) }ian (8. 2. 3) measures the slow growth of an inter—

ction between behavioral unit ;
St em e its v; and v, as aresult

™ . .
Cﬁz Dsz.Jk term‘ in (8. 2. 3) represents spontaneous
nges in 2z;. in the absence of learning; for instance
s

exponential decay of LT i i i
Sxponent % M strength if Dj; is & negative
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The term Ejkxk in (8. 2. 3) implies a growth in inter-
action strength between the behavioral units v, and
V). . The term Ejk describes a signal from Vi that
drives this learning process; for example, choosing Ejk
proportional to Bjy suffices in simple cases, but Ejk
can have a lower threshold, different time lag, and so
on, than By without invalidating the theorems about
pattern learning.

Equation (8. 2. 2) might be considered as a representation of
(7. 2. 26) or of the dynamic equations developed by Anninos, Beek
and Csermely (1970) for the statistical interaction of cell assem-~
blies. With (7.2, 23), the activity of the itth assembly at time
t+7 is given by

Pi(t +7)=[1- Pi(t)} Si[Ei(t + 7], Fi(t)l

where Ei(t +7) is the net excitation from other assemblies and
Si[-,-] is evaluated by summing from & - Lj rather than 5 as
in (7. 2.16). Anninos and coworkers assume

E(t+7) = JZKij F

where the X;; are linear coupling coefficients between assem-
biies. To date they have only discussed pairs of assemblies.

Grossberg's analysis shows how such systems can learn spa-
spa

tial patterns; that is, input vectors of the form Cj(t) = aiC(t),
where each «; >0 and - His theorems describe
how the stimulus sampling probabilities

-1
2y = ij( . zjm)

converge to the pattern weights @) as a result of learning.
is a generalized version of the Perceptron.

Grossberg also discusses aspects of how M can learn a
serial list {v{,va,...,vn}.
and the chain {v],v,,.
of M's alternatives, ¥ For this reason, Grossberg callg it the
theory of embedding fields. Using this theory [i. e., (8.2.1-3)

=1 arkzl.

n
}‘
)
m=

Thi

H

{8.2.4)

{8.2.5)

Then Zjp mZp3 =--- “Zn-l,n B .l'/
..,Vvn} has been "embedded intc the fiel
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he has been able to display several phenomena of behavioral psSy—
chology {Grossberg, 1974, 1975) including: (a) bowing, skewing
chaining, and chunking in the serial learning lists and ’(b) many’
aspects of operant conditioning. The heuristic technique used to
develop his theory is called “the method of minimal anatomies"
and is described by CGrossberg (1974) as follows:

Given specific psychological postulates we derive the
minimal network of embedding field type that realizes these
postulates. Then we analyze the psychological and neural
capabilities of this network. An important part of the anal-
ysis is to understand what the network cannot do. This
knowledge often suggests what new psychological postulate
is needed to derive the next, more complex network. In
this way, a hierarchy of networks is derived, corresponding
tc ever more sophisticated postulates, This hierarchy pre-
sumably leads us closer to realistic anatomies. and pro-
vides us with a catalog of mechanisms to use i,n various
situations.

Since each network is “"embedded®
another sense of the term appears (Grossberg, private communica-
‘tion), The basic concept embodied in {8. 2. 1) seems consistent
with the reverberatory neural theory outlined in Chapter 7; in par-
ticular, the v; of M can be considered to represent cell assem-
lies. The problem is to understand the extent of possible com~
rehension of the ultimate dynamics of their activity,

Behavioral psychologists tend to assume a rather precarious
tance in relation to this problem. In his recent book Beyond
Freedom and Dignity (1971), Skinner boldly asserts (p, 192) “Man
s ‘much more than a dog, but like a dog he is within range of
Cientific analysis. ¥ To this the eminent neuroscientist John G
cles (19?3, pP. 233) responds “"Skinner's theory and the techni;que
f operant conditioning were developed from his experiments on
eons:, and rats. Let them be the beneficiaries! ” Clearly the
tter is in some doubt. But it should not be assumed that the
who wish to turn us into social insects;

Y are motivated by concern for the problems faced by human
d As Skinner (p. 3) puts it:

intoc the next evolutionary stage,



274 Knowledge of the Mind

What we need is a technology of behavior [italics added. ]

We could solve our problems quickly enough if we could
adjust the growth of the world's population as precisely
as we adjust the course of a spaceship, or improve agri-
culture and industry with some of the confidence with
which we accelerate high-energy particles, or move to-
ward a peaceful world with something like the steady
progress with which physics has approached absolute
zero (even though both remain presumably out of reach).
But a behavioral technelogy comparable in power and
precision to physical and bioclogical technology is lack-
ing, and tho se ‘who do not find the very possibility ridi-
culous are more likely to be frightened by it than reas-
sured. That is how far we are from "understanding human
issues” in the sense in which physics and biology under-
stand their fields, and how far we are from preventing the
catastrophe toward which the world seems to be inexorably
moving.

From the viewpcint of natural philosophy, however, the issue is
not what we want or even what we need but what we can have.
Angels, too, could solve our problems guickly enough,

To appreciate the complexity of real mental activity, letus
take a very simple example. We return to the notion of a phase
sequence of serially excited cell as semblies {Hebb, 1949) and
consider how an infant might learn to perceive the triangle EFG
shown in Fig. 8-la. The constituent sensations of the vertices .
E, F, and G are first supposed to be centered on the retina by
eye movement and topologically mapped onto area 17 of the corte.
{see Fig. 1-4). Corresponding cell assemblies ® , ® , and
@ then develop in area 18 through diffuse (nontopological} co
nections with area 17. The process of examing the triangle in-
volves a phase sequence of the form

@*@*@*@*@—*@*@»@—»@—»(et

Gradually the subassemblies @& , @® and @ will fuse into a
common assembly for Gestalt perception of the triangle @

@ +0®+@=0

with, perhaps, intermediate perceptions of double vertices suc
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as ® + @. Thus the
. . phase sequence experience .
ing the triangle eventually becomes (say) d on examin-

@ ~D-®+9 -0 +0-0 -0 —~6

T -0 -0 -0 -@ ~® —fetc)

With further development of th
e assembly ® (which red i1
threshold through strengthening of the internal connectio;sc,:)e SalT-S
?

glance at a corner plus a cou .
ple of pe C
as, for example peripheral cues can ignite @) ;

©~®:+0-0+9 -0

The perception (@ is then ready

. to serve as one of t .
in Grossberg's theory. f the points vy

(a} (b

tel td)

JRE 8-1, Dia
. grams related to Hebb's discussi
: ssion i
perceive a triangle, of fearning to
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Those who consider this discussion an unnecessary compli-
cation of a simple perceptive event should read von Senden's
Space and Sight (1960). Originally published in 1932, this unique
sccount of sixty-five cases, in which congenital blindness from
cataracts had been corrected between the ages of 3 and 46 years,
provided much of the experimental basis for Hebb's theory. One
of the few uniformities in these cases, writes von Senden, is that
the process of learning to see uig an enterprise fraught with in-
numerable difficulties, and that the common idea that the patient
must necessarily be delighted with the gifts of light and colour
bequeathed to him by the operation, is wholly remote from the

facts. © Subjects who were entirely dependent on tactile impres-
sions before the operation had an awareness of space {(if it can be
so called) that was totally different from a normal visual aware-
ness. At first, "The patient feels visual impressions io be some-
thing alien, intruding on his mind without action on his own part,”
and later, "Given that attention is present, the stimuli impinging
on the visual organ from an objective shape merely occasion the
act of perception as such, but do not determine its outcome ....
The final development up to the fully formed idea of shape involveg
a series of transitional forms as intermediate stages, which de-
velop one from another, and are liable to vary between individuals,
since it is the individual who himself creates them. " :
. As constituted in (8. 2.1-3}, Grossberg's theory might be ap-
plied to describe the growth of an assembly from its subassem-
blies. The development of © from & , ® and @ , forex-
ample, could be interpreted as a learning of the list E, F, and G,
in any order. Buta fundamental difficulty is this: after the as-
gembly @ has been formed, a corresponding point [ see (8. 2.1}
should be added to the description of M. In this sense, Gross-
berg's early theory lacks the structural dynafnics proposed by
Hebb; how it could be embedded into an augmented theory that
would eliminate this problem is not entirely clear. In the spirit og
the method of minimal anatomies, (8. 2.1-3) can also be criticizet
because they include only interactions between pairs of assem-
blies. An early paper (Grossberg,1969b) discusses the possibiil
of using higher-order LTM functicns that would compute product
of the activities in three or more assemblies, rather than just in
pairs of assemblies, as in (8. 2. 3). Such a mechanism creates.
enormous numbers of pathways with no addition in the number of
behaviorally coded units, and severe noise problems result. La

-Itial constraints cease to be im
-+~ ity of an interaction.

which consciousness i
limited by any predete
objectives is to suggest
its primatives,

‘understanding ¢
eyes to

N s y - ries
mathern a al I , 1 :
ul lIlifOl'vement with pnysics

ultraintelligent machine
b
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work abandons this approach and focuses

T ndons on mechanisms ier-
) of hier

reinforcement, STM
i ; , and attention,
c()lrde{i,cl;ifZa) arebde5cr1bed anatomiefs in which cerr*zainh;l _G;OSSbefg
assemblies will fire only i hod.
orier ce. . Y 1n response to pre i
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. ese higher-order cell i o
; assemblies
order patt code the -
Ijismspof reerin.? In Grossberg (1971, 1872b) are describedllcw)lwe;
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n tr. . echanisms of reinforcement and moti i l?S
act with drive levels to regulate overt . L e e dnter

{GrOSSberg’ performance, and recently
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secondary interest.

In considering the spectrum ©
interactions we should not forget the complex capability for in-
formation processing that is available to a single neuron. On the
axonal side, Chung, Raymond, and Lettvin (1970) have suggested
that temporal pulse trains may be mapped onto a subset of the dis-
tal branches as a meaningfu! spatial pattern. And on the dendritic
unctions of the spatiotemporal input pat-

side, arbitrary Boolean f
terns may be computed. 1f individual neurons "speak with mean-

d also participate in cell assembly activity, the assembly
A vast arena emerges for

f possibilities for cell assembly

ing"” an
interaction could be very sophisticated.
Teubconscious” mental activity.

Hebb's theory, it should be emphasized, is descriptive rather
than computational, He has proposed a reasonable development
of the concepis of psychology from the elements of thought; name-
ly, a sketch for level 6. He makes a careful distinction between .
the concepts of sgensation” and "perception. ¥ Sensation is an
automatic neural response to sensory input such as, for example,
the excitation that appears in area 17 after the vertex L is cen-
tered on the retina, whereas perception involves the activation of
an appropriate cell assembly. Sensation is determined while per-
ception (see Fig. 7-3) is often ambiguous. This concept of per-
ception should be compared with that of the Perceptron, discusse
in Section 7-1, which can rather easily recognize simple geometri
cal forms (i. e., circle, square, triangle, letters of the alphabet)
but has great difficulty with the same figures appearing in the co
text of other lines and angles. *

In 1949 Hebb suggested that a phylogenetically significant
aluating the nature of animal brains is the ratioc o

parameter for ev
a or A/8 ratio of the cortex. For'

association area to sensory are
lower creatures, such as insects (and currently available com-

puters), this ratio is essentially, zero, but with higher species:
the A/S ratio grows, bringing both a useful ability to modify mcf
tivation accoerding to perceptions and a potentially dangerous ten
dency to confuse those perceptions with the external world. Thu
it seems naive to extrapolate to human behavior from that of 2 do

* Perhaps the Perceptron should better have been named the

H

¥Sensatron.
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3, CONCLUDING REMARKS

faCtSA;izthctthheervlig:veel; of the :?cientific hierarchy, psychological
Bty ) oe viowes as sg:atlotempgral entities that form in a
is vastly more complei. thTaAnetl?IanrloeI;ré?rfg ECheml'iStry,'” i
: 1 rom i t
;ir;zirwsfnizr‘z of cytology. In each person's ;eidat;;zlz lei:gn;ean
number of niirll'dajfseamflllﬁs; perhaps a billion (or even more) could
these will vary from perlsgoriytc??)Veert%iEdfrmdi‘ﬁduaL e nature of
: : , from time to time, a
Iillglf:roeb::uc;;ltmg{l the‘ ways in whiS:h they might interact, arzdeffrs;n
more o from. o l'rl minds are exotic gardens and each may grow
itrere Cu!tu.re . eeelxt. Indeed, Aone of the important functions of
training and talif c::_ ‘Eﬁebgotiiitliﬂfoiﬁion (f’f o ety hzoua
: 5 chaos of human i
By means of this order 58y " tios of hum
life can unfold themselx(zz‘oshli‘é égjvi)y vl\féillifscitr})e‘zft:;ltiélities D o
pects of its unlimited richness and variety, * In tsht'o conse we
h?ﬁe had many “"technologies of behavior” .since thjassstsizeawe
xorffii]m?éeig’ manklrlld now faces a challenge to develog;a
worid eutture appropriate local variations that will permit us
nd prosper. Although we scientists (particularly the

. behavioral psycholegists) may have something to contribute to—

ward this development, we have not yet shown an a eciation
) e tyets preciati o]
. p i
the complexity of human nature that would qualify - for
o us to take

A fri .
rightening example of such technological insensitivity is

. .
the pIOpOSal to bul.ld a COIIlputlllg machine that exceeds human

«_Zery would be cut by cool-eyved engineers
~ax i TR 5 X
,Wiifji;t;ont otf this proposal is given by Good (1965}, who opens
; statement: “The survival of ma :
, n depends
-construction of an ultraintelligent machine ? " upon e ey

In this way the Gordian knot of human mys-
A carefully prepafed

ith the opinion: and concludes

It i
cenh: is more pro.bablev than not that, within the twentieth
o Wﬂiyf, a‘r;1 ulltramtelllgent machine will be built and that
e the last invention thatm
will Loas e 188t : an need make, since it
telligence explosi " is wi
o a to @ . piosion. This will trans-
v in an unimaginable i
i . : way. The {first ultraintel~
machine will need to be ultraparallel, and is likely
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to be achieved with the help of a very large artificial
neural net. The required high degree of connectivity
might be attained with the help of microminature radio
transmitters and receivers,

Would such a machine really help us understand human experience?
Or would it become emotionally unstable? Or attempt to reduce us
to slaves? Those who propose such a machine should read again
Mary Shelley's Frankenstein {or a Mcdern Prometheus), where at
the end her creature laments:

I have destroyed my creator, the select specimen ot
all that is worthy of love and admiration among men,. ..
There he lies, white and cold in death.

What we face in the investigation of human nature are dynam-
ic processes that (although we suppose them to be entirely natural)
are so uncertain, so complex and, at the same time, so interest-
ing that they must be individually experienced. Maslow (1968) has
courageously directed his colleagues toward the depths of these
mysteries with his emphasis on the “positive psychology" of fully
functioning and healthy human beings. In his Psychology of
Science he presents a strong appeal for scientists to reestablish
the primacy of experience as the "basic coin in the realm of
knowing.” The aim of human knowledge should not be prediction
and control but understanding and seli-realization, As Rogers
(1961) put it, the emphasis should be On Becoming a Person. Just
as the elementary particle physicists is forced to renounce the po
sibility of predicting and controlling trajectories, the behavioral
psychologists must admit that important areas of human activity
lie beyond his ken. Behaviorism is not wrong but simply incom-
plete and irrelevant for understanding such psychic phenomena as
the peak experiences of "being cognition"” studied by Maslow.
Although the reality of such experiences is atiested by every hon-~
est poem, there is perhaps no better description than that given by
Martin Buber (1970) in recalling his perception of the linden tree:
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I can accept it as a picture: a rigid pillar in a flood

of light, or splashes of
green traversed by th
of the blue silver ground. 7 e gentleness

I can feel it as movement: the flowing veins around
the stt,}rdy, striving cere, the sucking of the roots the
breatl?mg of the leaves, the infinite commerce Wiﬂ,'l earth
and air -- and the growing itself in its darkness,

) I can alssign it to a species and observe it as an in-
stance, with an eye to its constructicn and its way of life

) I can overcome its uniqueness and form so rigorous?
that I recognize it only as an expression of the law -~ v
those llaws according to which a constant opposition of
forces is continually adjusted, or those laws accordin
to which the elements mix and separate, :

i
ca issolve 1t into a n ber into a pure Ielatlon
um bl
betVVeeIl IlUIIlbeI S’ and eternalize it,

. ‘Throughout all of this the tree remains my object and
has its place and its time span, its kind and condition

" But it can also happen, if will and grace are joined
that as [ contemplate the tree I am drawn into a relation’
E

and the tree ceases to be
an It, The power of ive-
ness has seized me, erelusive

This does not require me to forego any of the modes
of contemplation. There is nothing that I must not see in
grder tt? see, and there is no knowledge that I must forget
i:ther 1s everything, picture and movement, species and '

stance, law and number included and inseparably fused

e Whatevler be.longs to the tree is included; its form and
mechanics, its colors and its chemistry, its conversa-

tion with the element i
s and its conversatio i
all this in its entirety, 7 the stars -
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Perturbation theory, 138-142
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Phase sequence, 233, 235, 269
Phase space, 70, 71, 78, 96
Phenomenological inductance,
7376, 104
Poisson's equation, 62
Pore, 37, 52
Positive feedback, 48, 52-53
Positive psychology, 280
Potassium
battery, 45
conductance, 45, 57, 63~
65
ion current, 48
turn on, 53
Power balance condition, 67,
83, 93, 137, 148
Prediction, 264
Protein domains, 29
Pulse
annihilation, 184~185
inhibition, 213-220
locking, 104, 225
recovery, 90
synchronization, 186-191,
215-219, 223
trains, 196, 223-225
train blocking, 132-133
Purkinje cell in carebsllum,
5, 179180, 201, 222
Furkinje fibers of heart, 50,
58, 192

Q

Quantum mechanical indeter—
minacy, 265, .269

Quantum of synaptic action,
198 . i

Quasiharmonic neural models;
258

R

Ralilroad cars, 104
Rear end collisions, 224~225
Recovery variable {R}, 90
Reductonist, 12
Refractory period, 247-248, 253
260
Resting
conductance, 82
potential, 36
voltage, 39-40, 42
Retina, 231-232
Reverberation, 238-239
Reverberatory neural nets, 233~
251
Rhecobase, 165~171 :
Rhythmical variation, 132, 133,
143 '
Ring—osci},lator, 220
Rotation symmetry, 22

?

5

Saddle point, 78
Saltatory conduction, 111
Scattering of TM waves, 23,125
Schrddinger’s. equation, 154
Sciatic nerve, 2, 4, 24, 109~111
frog, 111-112, 115-116
* rabblt, 110
Scientific paradigm, 8, 136137,
263 :
Section delay, 113~117
Sensation, 278
Septal membrane, 139~201
Series impedance/length, 167
Series inductance of an axon,
88-89
Short term memory, 197, 271-277
Shunt admittance/length, 167

Shunting interaction, 250
Sigmoid
function, 227, 243-246,
248~251
response, 56, 58-39, 61,
118
"Sighaling” experiment, 162
Signal velocity, 2
Signum function, 226, 231, 237-
240, 271
Singular perturbation method,
94~95, $7-101
Singular point, 70
Soap bubbles, 30
Sodium
battery, 45
conductance, 45, 64
ion current, 48
pump, 43
turn-off, 53, 56, 58, 60
turn-on, 53
turn-on delay, 85-88
Solitary wave, 67-68
Solitons, 68
Space charge limited lonic
current, 60, 62, 63
Space clamping, 43-50, 163~
166
Spatial instability, 161-163
Spike burst, 75
Spike train, 75
Spiral synapse, 122, 201
Spreading resistance, 127
Squid giant axon, 4, 5, 42, 110
Stability factor, 131
State diagram, 240-242
Statistical neurndynamics,
242-245
Steady state current, 48-50
Steady state ion flow, 33
Storage capacity of brain,
251-253
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Strength duration relation; 163~
173
Subassembly, 251-252, 274-275
Subthreshold waves, 75
Superconductive neuristor, 143~
149, 150, 172-173, 134~
185
Superconductive tunneling, 91
Switchboard theory, 233
Switch~line, 115,117
Synaptic
cleft, 197-198
contacts, 179, 181-183
delay, 226-227, 236-237,
253
transmission, 197-199
vesicles, 197-198
Synihetic social relaiions, 266

T
Tapered fiber, 120~125, 130,
156~159
Telegraph, 26
Temperature
dependence of permeability,
60

factor, 55, 80-81

parameter, 92~93
Temporal lobes, 8
Tetrodotoxin, 143
Thought train, 235, 268
Threshold

charge, 167, 174-176, 194~

195

condition, 228

flux, 173

hyperplane, 229-230

pulse, 94, 174

vector, 238-240

voltage, 164~166
Time

delay, 130, 133, 217-218
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irreversibility, 12, 240
sequential memory, 255~
257
Training, 2.29—230, 271272
Transit time, 62
Transmission line eguivalent
circuit (TLEC), 24~26,
143-145
‘Transverse magnetic {TM}
mode, 16, 17, 126
Traveling wave velocity, 67
Tufted dendrite, 215-210
Turning points, 100
"Two~timing ", 139

u

Ultraintelligent machine, 277,
279-280

v

Van der Waal's attraction, 29

Van Der Pol's equation, 91

Varicosity, 127, 133, 134

Velocity matching, 120

Velocity of leading cdge, 83

Velocity of light, 24

Virtual cathode, 62

Visual cortex, 7, 10, 237,
274-276

Voltage clamping, 43~50

Voltage overshoot, 165, 171

Volterra equations, 248

Volterra integral equation, 209

w

Wave
instability, 71, 255
of information, 254~260,
277.

number, 162

stability, 151-163
Weight vector, 228-230
White noise response, 75

X

Xenopus lasvis, 58







