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PREFACE TO THE THIRD GERMAN EDITION

HEREAS the second edition (September, 1920) differed
essentially only in the mathematical notes from the first
edition, the third edition is a complete revision.

My aim was, above all, to promote order in the general series
spectra. In the earlier editions these, together with the hydrogen
spectrum, received mention rather through incidental comparisons
in the argument of the fourth chapter; now they have been set
out in detail in Chapter VI. T attach particular importance to
the introduction of the inner quantum numbers (Chap. VI, § 5),
and to the systematic arrangement of the anomalous Zeeman
effects (Chap. VI, § 7). The regularities that here obtain through-
out are primarily of an empirical nature, but their integral character
demands from the outset that they be clothed in the language of
quanta. This mode of explanation, just like the regularities them-
selves, is fully established and is unique. Even at the present
early stage it has shown itself in many respects to be fruitful and
suggestive. Doubts can arise only with respect to the interpreta-
tion in terms of the models. This interpretation has been attempted
in Chapter VI on the basis of Paschen’s thesis that the term-
multiplicities arise from an intra-atomic magnetic field. “The
Law of Displacement” and ¢ The Law of Exchange ” or * Cross
Law’ (these terms are used synonymously in the English text)
have been carried further in the new account (§ 6) than before.
The explanation of the various series terms by means of the intra-
atomic electric field (§2), of course, constitutes as before the
foundation of the theory.

The band-spectra, too, which before were sketched only in the
notes, are now treated, with due regard to their importance, in
Chapter VII. Following on them are the continuous emission
and absorption spectra (Chap. VII, § 7).

Fortunately the systematic structure of Rontgen spectra has
recently been investigated both experimentally and theoretically
so far that the possible energy levels and the rules of selection
that govern them have been made quite clear. Various gaps and
errors in the second edition have been removed. Here, too, the

v
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vi Atomic Structure

account is developed along quantum lines, but it is essentially
empirical and culminates in an attempt to sketch a complete table
of all Rontgen terms (Chap. VIII, § 6) which would in a certain
sense represent the consummation of practical Rontgern spec-
troscopy. As before, the general and the more simple questions
are treated first in the third chapter, and the finer questions in
§§5 and 6 of the eighth chapter. For the present, however, the
interpretation of the Rontgen spectra on the basis of models has
been left out almost entirely. Whatever the further researches of
Bohr may reveal to us concerning the shell structure of the atom,
I feel certain that nothing will be changed in the laws of Rontgen
spectra here described.

The last chapter of the previous edition, ‘“ Wellentheorie und
Quantentheorie,” has now become the fifth chapter. This was
done to make the rules of selection and polarisation available for
the sequel, and in order to allow the use of the normal Zeeman
effect of the Balmer lines as a model for the anomalous Zeeman
effects of the doublet- and triplet-systems. The fine structure and
its relativistic basis, which was formerly treated in Chapter V,
has now been placed at the conclusion of the book to crown the
whole.

Will the view-point of the classical wave theory adopted in
Chapter V and the idea of the continuous spherical wave stand
the test of time? It is possible that we are even now passing
through a critical period in the history of the wave theory. Yet
in this as in other scientific revolutions we shall certainly take
much of the older view over into the new one.

The following changes of detail deserve special mention. I
order not to introduce the quantum theory too late the photo-
electric effect and Einstein’s law for its maximum velocities have
been included in the first chapter on introductory facts. Through
this the chief doctrine of the quantum theory is first introduced
purely empirically. In Chapter II the former discussions of
molecular models and atomic volumes have been thoroughly
pared down. To balance this, § 6 on nuclear physics and §§5
and 7 on isotopes and sub-atomic chemistry have been added.
In Chapter III the crystal structures so far known have been
tabulated. The last section of Chapter IV, which deals with
spatial quantising, also broaches the still rather involved question
of the magneton. In Chapter V we have added §7 on the
adiabatic hypothesis, its historical origin and its manifold ap-
plications. As the most direct confirmation of the general
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Preface vii

foundations of Bohr’s theory we have appended in § 3 of Chapter
VI the method of electronic collision so far as present results take
us. The manuscript of this part was kindly checked by Messrs.
J. Franck and H. Rau. In Chapter VIII, § 4, in dealing with the
pictures of the fine structure of A = 4686, I am happily able to
make known for the first time a curve obtained by photometry
which still further strengthens the final conclusions here to be
drawn. The mathematical addenda have in. part been reduced
and in part been reinforced (contact transformations, principle of
correspondence, adiabatic invariance of phase integrals).

The object of the book remains the same as before, namely, to
give a comprehensive account, not however too difficult, which
will also allow the non-academic reader to enter into the new
physics of the atom and to grasp the meaning of spectral lines.
Hence inordinately abstract mathematical developments had to be
avoided or left to the notes at the end. An endeavour has been
made to render the account throughout as vivid as possible. I
hope that the rather more systematic points of view developed by
Bohr in latter years (degenerate systems, etc.) have not been
pushed too far into the background.

All things considered, I have a somewhat easier conscience in
presenting this edition than when the first appeared. At that time
much still seemed unripe and uncertain. Even now the subject
matter is still in a state of violent ferment, but in the course of the
years that have elapsed since the first edition much has already
separated out as a definite residue. In particular, the way in which
the facts of Rontgen spectra, of term multiplicities, of Zeeman
effects, have been put together, half empirically and half by means
of the quantum theory, will presumably remain unaffected by later
developments. Bohr’s recent far-reaching ideas will, indeed, add
much that is new, but will not throw doubts on what now appears
to be established.

In this edition, too, my collaborators have rendered friendly
and valuable assistance, A. Kratzer in the band spectra and in
reading the proof sheets generally, W. Pauli in the mathematical
addenda and in reading a great part of the manuscript, G. Wentzel
in the Rontgen spectra, and in making the index. How much of
their own ideas has passed over into my account is not manifest in
the text. My hearty thanks are due to them for their help as well

as to the publishers.
A. SOMMERFELD

MunNicH
January, 1922
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EXTRACT FROM THE PREFACE TO THE
FIRST GERMAN EDITION

FTER the discovery of spectral-analysis no one trained in

physics could doubt that the problem of the atom would

be solved when physicists had learned to understand the
language of spectra. So manifold was the enormous amount of
material that had been accumulated in sixty years of spectroscopic
research that it seemed at first beyond the possibility of disen-
tanglement. An almost greater enlightenment has resulted from
the seven years of Rontgen spectroscopy, inasmuch as it has
attacked the problem of the atom at its very root, and illuminates
the interior. What we are nowadays hearing of the language of
spectra is a true ““ music of the spheres” within the atom, chords
of integral relationships, an order and harmony that becomes ever
more perfect in spite of the manifold variety. The theory of
spectral lines will bear the name of Bohr for all time. But yet
another name will be permanently associated with it, that of
Planck. All integral laws of spectral lines and of atomic theory
spring originally from the quantum theory. It is the mysterious
organon on which Nature plays her music of the spectra, and
according to the rhythm of which she regulates the structure of
the atoms and nuclei.

Septemnder, 1919
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TRANSLATOR'S NOTE

HE English rendering of Professor Sommerfeld’s book

departs from the German original of the third edition only

in minor details. It was the expressed wish of the author
that the translation should not be too literal, and that omissions
and alterations were to be left to the discretion of the translator.
It is hoped that the exercise of this privilege has caused no change
in sense whilst conferring freedom of idiom. I wish to take this
opportunity of thanking Professor Sommerfeld for his repeated
assistance and courtesy. No physicist can fail to be grateful to
bhim for embodying the most important of recent developments in
spectroscopy and atomic physics in this easily intelligible form.
He, himself, and his collaborators have contributed no mean share
to these results, indeed more than is outwardly apparent in this
book.

Since the appearance of the last German edition—on which
this translation is modelled—new important facts have been dis-
covered tending to confirm certain ideas put forward here. Chief
among these is the confirmation of the magnetic moment of the
silver atom by Gerlach and Stern (Zeitschrift fiir Physik). It is
strong evidence in favour of the theory in Chap. IV, § 7 concerning
directional quantizing in the magnetic field, and opens up new
regions of research which may lead to undreamed-of consequences.
From their measurements Gerlach and Stern have deduced that,
within the limits of .error of their experiments, the magnetic
moment of the normal silver atom in the gaseous state is one
Bohr magneton (see page 249). In a recent issue of the Zeitschrift
fiir Physik Einstein and Ehrenfest have discussed the important
question as to how the magnetic atoms of silver can alter their
directions at all under the influence of a magnetic field. Difficulties
appear to arise akin to that of the ““time of accumulation” of
energy quanta for Rontgen rays (see page 44).

The experiment itself consisted in sending a stream of silver
atoms in a high vacuum (10-* to 10~° mm. of Hg) very closely past

1X
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X Atomic Structure

the edge of the wedge-shaped pole of an electro-magnet, that is,
the silver atoms were made to pass through a very strong hetero-
geneous magnetic field. They were finally deposited as a thin
invisible layer on a glass plate. This layer was developed photo-
graphically, and it was then found that the silver atoms were
separated into two discrete rays, showing that some of the atoms
had been attracted towards the pole and others repelled from it.

Another new result is the proof of the existence of N-radiation
(see Coster, Phil. Mag.). Then there is the discovery of Hafnium
(Atomic Number 72).

It is perhaps not inappropriate to add a few words about the
English equivalents of certain German terms. In cases where a
suitable English expression has not readily suggested itself, I have
considered it advisable to quote the German original (both in the
text and in the index). It was felt that this would be of service
to those who wish to pursue the subject further in original papers.
In doubtful or difficult cases I have conferred with other physicists
and have adopted whatever was favoured by the consensus of
opinion. Only in two instances have expressions been used
synonymously and indiscriminately: (1) the Law of Exchange
= the Cross Law (Wechselsatz), page 379 et seq.; (2) the zero
line = the null line (Null-linie), page 419. It is hoped that con-
fusion will be averted by mentioning them here specifically.

Much help in reading and correcting the proofs and in offering
fruitful suggestions was rendered, above all, by Mr. H. O. Newboult,
B.A. (Scholar of Balliol College), also by Mr. H. F. Biggs, M.A.
(Trinity College), and Mr. V. A. Bailey, M.A., D.Phil. (Queen’s
College), to whom I here wish to tender warm thanks. No effort
has been spared to make the text accurate, and it is hoped that
there will at least be no errors such as would make the reading
irksome.

HENRY L. BROSE

Curist CHURCH, OXFORD
March 25th, 1923
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ATOMIC STRUCTURE AND
SPECTRAL LINES

CHAPTER I
INTRODUCTORY FACTS

§ 1 Retrospect of the Development of Electrodynamics

of a series of disconnected elementary laws formed analogously to

Newton’s Laws of Gravitation; they asserted the existence of
direct action at a distance, which, starting from the seat of an electric
charge or of magnetism and leaping over the intervening space was sup-
posed to act at the seat of a second electric or magnetic charge.

Opposed to this there arose in the second half of the nineteenth cen-
tury a view which followed the course of the continuously extended
electromagnetic field from point to point and moment to moment ; it
was called the “ Field Theory” in contradistinction to the ‘ Theory of
Action at a Distance.” It was propounded by Faraday, worked out by
Maxwell, and completed by Heinrich Hertz. According to this view
the electromagnetic field is represented by the course, in space and time,
of the electric and magnetic lines of force. Maxwell's equations teach
us how electric and magnetic lines of force are linked with one another,
how magnetic changes at any point of the field call up electrical forces,
and how electric currents are surrounded by magnetic forces. The inter-
vening medium, even if non-conducting, is supposed to have a certain
transparency (permeability) and receptivity (dielectric capacity) towards
magnetic and electric lines of force; hence it acts at every point of
space on the distribution of the electromagnetic field according to its
constitution at each point.

The greatest triumph of this view occurred when Hertz succeeded in
connecting light, the phenomenon of physical nature with which we are
most familiar, with electromagnetism, which was at that time the most
perplexing phenomenon. After Maxwell had already surmised that light
was an alternating electromagnetic field (he succeeded in calculating the
velocity of light from purely electrical measurements made by Kohl-

1

IN the first half of the nineteenth century Electrodynamics consisted
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2 Chapter I. Introductory Facts

rausch), Hertz produced his ‘“rays of eleotric force,” which, just like
light, are reflected, refracted, and brought to a focus by appropriate
mirrors, and which are propagated in space with the velocity of light.
The electric waves produced by Hertz had a wave-length of several
metres. From them an almost unbroken chain of phenomena leads
by way of heat rays and infra-red rays to the true light rays, whose
wave-lengths are no more than fractions of x. The greatest link in
this chain came later as a direct result of Hertz’s experiments, namely
the waves of wireless telegraphy, whose wave-lengths have to be reckoned
in kilometres. (Nauen sends out waves having a wave-length of 12 kilo-
metres, or 74 miles) ; the smallest and most delicate link is added at the
other end of the chain, as we shall see, in the form of Rontgen rays, and
the still shorter y-rays which are of a similar nature.

Hertz died on 1st Jan., 1894, at the age of thirty-seven years. It would
be natural to conclude that the later years of his short life and the work of
his followers were occupied with an elaboration of his wave experiments
and of bis theory of electromagnetic fields. But the last experimental
work of Hertz, * Concerning the Passage of Cathode Rays through Thin
Metallic Layers,” already pointed in a new direction.

The field theory had diverted attention from the origin of lines of
force, and had chiefly served to illuminate their general course in a
regular distribution of the field. The next question was to study the
singularities of the field, the charges. The best conditions for doing so
are offered by cathode ray tubes, which have a very high vacuum exceed-
that of the so-called Geissler tubes (which were investigated by Pliicker
and Hittorf). Here we have electricity in a pure form, unadulterated by
ordinary matter, and, in addition, moving in a straight line at an ex-
tremely high speed; cathode rays are corpuscular rays of negative
electricity. It was not, of course, Hertz himself but his eminent pupil
Lenard, who was instrumental in getting this view of cathode rays
accepted ; but Hertz had recognised the important value of the in-
vestigation of cathode rays for the future. Thus he had in this way
helped personally in attracting workers from the field of physical know-
ledge just opened up by him towards pioneer work in a new field. In
the sequel, the greatest interest became centred not on the propagation of
the lines of force but on the charges, as the origin of these lines of force.
The original theory of Maxwell which had been perfected by Hertz
retained its significance for phenomena on a large scale, such as in
electrotechnics and wireless telegraphy, and gave an easy means of
determining the mean values of the electrical phase quantities (i.e.
quantities that define the state of the field). But to render possible
deeper research leading to a knowledge of elementary phenomena, &
deepened view became necessary. Maxwell's Electrodynamics had to
give way to Lorentz’s Dynamics of the Electron; the theory of the con-
tinuous field became replaced by the discontinuous theory, that of the
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§ 2. The Atomicity of Electricity. Ions and Electrons 8

atomicity of electricity. So the theory of action at a distance and the
theory of action through fields was succeeded by the atomistic view of
electromagnetism, the theory of electrons, which still holds to-day.

§ 2. The Atomicity of Blectricity. Ions and Electrons

The theory of the atomicity of matter has existed ever since there was
a science of chemistry; it is indispensable if the fundamental chemical
law, that of multiple proportions, is to be intelligible. Nevertheless there
has been no lack of opponents to atomicity. Goethe was one of them.
It was repugnant to him to destroy the beautiful appearance of phe-
nomena by dismembering it and adding human elements. The eminent
scientist and philosopher Ernst Mach regarded the * Atomic Hypothesis ”
as merely transitory. He favoured the description of events in terms
of continuously distributed matter and continuously acting laws. The
last opponent of atomic theory was the keen-witted author of works
on Energetics, Wilhelm Ostwald (who has now been converted to
a belief in atoms). Objections to the theory have died into silence
in the face of its sweeping successes in all branches of physical know-
ledge. The perfect explanation of the Brownian molecular movements
which confirms by ocular demonstration in the case of fluids the branch
of atomic hypothesis concerned with the theory of heat has contributed
much to this acceptance. No less impressive is the confirmation of the
atomic structure of solid bodies which was given by Laue's discovery
and which will be discussed in Chapter III.

A necessary consequence of the atomicity of matter is the atomicity
of electricity. This was stated simultaneously by Helmholtz and Stoney.
Helmbholtz remarked in his Faraday Lecture * of 1881, as a result of the
laws of electrolysis which Faraday discovered and expressed in figures :
“If we assume atoms of chemical elements, we cannot escape from
drawing the further inference that electricity, too, positive as well as
negative, is divided into definite elementary quanta that behave like
atoms of electricity. Each ion,t as long as it is moving in the liquid,
must remain associated with an electrical equivalent for each of its
valency units.”

Faraday's Law of Electrolysis actually states: One and the same
quantity of electricity, in discharging through various electrolytes, always
sets free chemically equivalent quantities of the dissociated products. In
the case of univalent elements quantities are called chemically equivalent
when they are in the ratio of their corresponding atomic weights, thus

1 grm. of H 355 grms. of Cl 107-9 grms. of Ag.

* Helmholtz, Vorirdge und Reden, Bd. 2, S. 272. The parallel work of Stoney
bears the title: * Physical Units of Nature,” and appeared in February, 1981, in the
Proceedings of the Dublin Phil. Soc., and in Vol. 11 of Phil. Mag.

+ As is well known, ions are the ‘‘ wandering " constituents of electrolytes during
electrolysis, the cation being the positively charged constituent which moves in the
direction of the positive current, ‘ downwards,” so to speak, the anion being the nega-
tively charged constituent which moves ‘ upwards.”

Go gle



4 Chapter I. Introductory Facts

To dissociate these quantities, we always require, according to Fara-
day's Law, to make the same quantity of electricity pass through the
electrolytes, namely the electrochemical equivalent :

F = 96,494 coulombs * = 9649-4 c.g.s. units.

The constant ratios of weight 1 grm. H, 355 grms. Cl, and 107'9
grms. Ag become intelligible to us on the supposition of the atomicity
of matter: 1 grm. of H is composed of just as many atoms of H as
355 grms. of Cl contains Cl atoms, or 107'9 grms. Ag contains Ag
atoms. The equivalent charge F which is the same for each then
becomes clear to us in the same way if we accept the atomicity of
electricity : the equivalent charge F consists of just as many atoms of
electricity or “ elementary charges ¢,” as 1 grm. of H contains H atoms,
or 355 grms. of Cl contain Cl atoms, and so forth. There is associated
with every univalent atom (or more generally with every univalent ion)
an elementary charge e, whilst there are associated with every divalent
atom or ion two elementary charges, and so forth for atoms of higher
valency. Just as the atomicity of matter is a direct outcome of
fundamental chemical facts, so the atomicity of electricity is a direct
outcome of fundamental electrochemical facts.

For the sake of brevity of expression we shall define two further
terms. Following Ostwald we shall take a mol to be that number of
grammes which is given by the number expressing the molecular weight of
the substance in question. Thus 1 mol of H,O = 18 grms., and 1 mol
of H, = 2 grms. (In the case of monatomic elements we use the term
grammatom instead of mol, e.g. 1 grammatom of H = 1 grm.) Further-
more, Loschmidt’s number L denotes the number of molecules (or atoms,
respectively) contained in one mol (or grammatom, respectively) of the
substance in question. For example, in the case of water, or dissociated
hydrogen, this number will be defined by the equations:

18 grms. = Lmiyy, and 1 grm. = Loy respectively,

whereby my denotes the mass, measured in grammes, of a hydrogen atom,
and my,, denotes the mass, similarly measured, of a molecule of water.
With regard to this term it must be mentioned that recently, in German
physical literature, the expression ‘* Avogadro’s number ™ is often used in
place of ““ Loschmidt's number,” for the reason that it also plays a part
in Avogadro’s law of gases. But as Loschmidt was the first to determine
this number successfully (by means of the kinetic theory of gases), it
seems more in keeping with the facts to associate his name with it. The
fact that he made his calculations for the cubic centimetre and not for
the mol, is a mere matter of form. If necessary the number L as defined
above could be called * Loschmidt’s number per mol.”

The equivalent charge F contains, as we saw, just as many elementary

* A coulomb = 4, of the so-called absolute unit of charge, that is the unit of charge
defined in the c.g.s. system and measured electromagnetically.
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§ 2. The Atomicity of Electricity. Ions and Electrons 5

charges e as 1 grm. of hydrogen contains atoms of my, or, as we may
now say, the electrochemical equivalent contains L elementary charges e.
We therefore write :

96494 c.g.s. units = Le 1 grm. = Lm,
e _, €.g.8. units 1 grm.
whence = 9649-4 grms. = L. . (1)

The ratio of the charge to the mass is called the specific charge of the
ion in question. In the case of the positive hydrogen ion, this specific
charge is thus 9649-4, whereas for the divalent positive copper ion it is

2¢  2.96494
m., 636
and for the univalent negative chlorine ion, it is
—e 9649-4

my = = 355 and so forth.

Electrolysis shows, as Helmholtz pointed out, that positive as well
as negative electricity is composed of elementary quanta * e. But there
is a great difference between positive and negative electricity in a certain
respect. We know positive electricity only as an ion, that is, associated
indissolubly with ordinary matter: as we saw above, negative electricity
also presents itself in electrolysis in the form of ions. But we also know
the latter in its free state, dissociated from all ordinary matter, as abstract
‘electricity, so to speak. This is an all-important result of the researches
on cathode rays, to which we have already referred in the preceding
paragraph, and to which we shall again refer in the next.

The special position occupied by negative electricity, its occurrence as
pure atoms of electricity calls for a special name. Following the example
of Stoney,* we shall call the negative atom of electricity electron.

In saying that the electron is not encumbered by ordinary matter,
we do not imply that it is devoid of inertia. On the contrary, the mere
presence of electric charges, or, generally, of energy of every kind, entails
a certain mass effect. The mass which is associated with the electron
in this way used to be called *electromagnetic” mass. This term is,
however, as the newer developments of fundamental physical conceptions
compel us to recognise, too narrow : not only electric charges produce a
mass effect, but so does the cohesive energy (gravitational energy?) that
keeps the charge together and prevents it, in a way as yet unknown to
us, from exploding. Therefore we nowadays prefer to speak outright of
the electronic mass m, and to regard it as a fact presented by our experi-
ments with cathode rays.

A great gap divides the electronic mass, as regards its magnitude,
from the ordinary masses of atoms and ions. The electronic mass m is

* Cf. Trans. Dublin Phil. Soc., Bd. 4, 1891. In the mathematical development of
the theory of electrons by H. A. Loreutz (4dn Attempt at a Theory of Electrical and

Optical P henomena in Moving Bodies, Leiden, 1845) the word electron does not occur :
Lorentz retains the word ion in this essay.
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6 \ Chapter I. Introductory Facts

about 1800 times as small as the mass m, of the lightest atom. Accord-
ingly, the specific charge of the electron, the ratio of the elementary charge
e to the electronic mass m, is in the same proportion greater than the
specific charge of the hydrogen atom. The most exact value* of this
ratio at present known, is

Z-1769.10 . . . . (@©
But it is not the researches on cathode rays that have led to a know-

. e . .
ledge of this value of e A more accurate value of the ratio was derived

from optical experiments, measurements of spectral lines, to which we
shall return in Chapter IV, and of spectral lines separated by magnetic
fields, to which we shall return in Chapter V. (The value given above is
taken from spectroscopic measurements made by Paschen.t) The general
course of the refraction of light in passing through transparent bodies
(solids and gases), as calculated on Drude’s Theory of Dispersion, gives

e . . .
us values of _ of the same order of magnitude. But in the conduction of

currents along metals, we see electrons at work, as also in radioactive
processes, in the production of Réntgen rays (X-rays), in the photo-electric
effect, and so forth. From this we conclude : the electron s a universal
element of structure of all matter. Whether it is flowing along slowly in
an electric current, or hastening through space at an extremely high rate
as a cathode ray, whether it is emitted in radioactive disruption or in a
photo-electric process, whether it is vibrating in our lamps (or, as we
should nowadays prefer to express it, “ jumping " in our lamps), whether
it effects the course of light in telescopes, it is always the same physical
unit, proving its identity by exhibiting the same charge and the same
mass,} in particular by keeping the ratio of charge to mass constant.

If we now wish to form a picture of the electron in accordance with
the foregoing statements, only scant material offers itself. An electron is,
like every negative charge, essentially nothing more than a place at
which the electric lines of force from all directions end. In the case of an

* In electromagnetic c.g.s. units. The power of 10 that is added denotes, as we
know, by how many places the decimal point is to be shifted to the right; in the case
of a negative index the decimal point is to be shifted by so many places to the left, as
is indicated by the index number. This method of representation is to be recommended
not only for its brevity, but also because, without it, we should be compelled to add
after the number given four zeros which would not be founded on experience and which
would violate the physicist’s respect for truth.

In general, it must be remarked that in the following pages the data of experiments
will be given to just that degree of accuracy which is known to be justified. We do
this for the purpose of keeping before the notice of the reader that even in the boldest
speculations of modern theory, we are concerned with things that have an exact
numerical counterpart in experience.

t+Cf. L. Flamm, Physikal. Zeitschr., 19, 518 (1917).

+The ¢ same mass " is more correctly expressed by the * same statical mass,” i.e.
mass which is not moving with respect to the system of reference, cf. § 4, equation (2)
of this chapter.
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§ 2. The Atomicity of Electricity. Ions and Electrons 7

electron at rest, these lines of forces are straight lines that come in uniformly
from all directions. But the same picture holds, according to the ideas of
the theory of relativity, for an electron moving in any way whatsoever,
as long as the picture of the lines of force is regarded as being conceived
by an observer moving with the electron, that is if the lines of force are
drawn in a space that participates in the motion of the electron. In other
cases, when the electron moves with regard to the observer who is mapping
out its field, the electric lines of force would still, indeed, be straight lines,
but would become compressed towards the central plane which is per-
pendicular to the direction of motion, and, moreover, would be adcom-
panied by magnetic lines of force.

From the point of view of our present ideas, it is better to refrain from
endeavouring to give the electron a definite volume or size. This could
be calculated only on the assumption that the whole mass effect is electro-

—_— ————— ——
VAN YARN
Fi1c. 1a. Fic. 1B.
Electron. H-ion.
¢ = 1769.10 £ = 96,494
m My
e = 1591 .10-2 e =1591.10-
m = 0:899.10-% my = 1.649 .10~
L= 1 - 0606.10¢
My

magnetic in origin, and this assumption is, on account of the necessity
for a cohesive energy (vide above), not justified. Moreover, we should be
compelled in this case to make the arbitrary assumption that the electronic
charge e occupies uniformly, either the volume or the surface of a sphere,
for which there is no support in our experience. Nevertheless it is worthy
of remark that in whatever way the detailed calculation is carried out we
arrive. at/a.—ﬁfb;qtomic value for the extent of the electron, an extent that -
is about 10-° times as small as that of an ordinary atom.

Wé of an ion, for example, of the positive hydrogen ion, shows
itsel quite similar to that of the electron. As the lines of force
start out from positive charges, they are to be furnished with arrows in
the reverse direction to that for electrons; they are likewise rectilinear
and uniformly distributed, if we here also suppose the observer to be at
rest relatively to the ion. In contradistinction to the electron, shown in
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8 Chapter I. Introductory Facts

Fig. 1a, the ion has, in general, a definite size, which is indicated in
Fig. 18. It happens that in the special case of the hydrogen ion, which
is reduced to a mere nucleus (cf. Chap. II, § 3, No. 2), this size becomes
illusory and, as in the case of the electron, assumes sub-atomic dimen-
sions. The subscription of Fig. 1B refers to the hydrogen ion, but the
figure itself has been drawn for any arbitrary spatially extended ion.

‘We have furnished our drawings with the characteristic values of the
specific charge, as well as with the values of the absolute charge and the
mass, so that they may serve as a reference note for the properties of the
electron and of the ion. The origin of these numbers will be explained
in part in the next paragraph.

§ 3. Cathode Rays and Canal Rays

The cathode of a vacuum tube is, according to the terminology that
we explained in connexion with the word cation (cf. note on p. 3),
the electrode to which the positive current flows, that is from which the
negative current emerges. The fact that the cathode rays start from the
cathode is already an indication that we are dealing with a flow of negative
electricity. In the case of a high vacuum and a sufficiently high potential
difference, this flow does not follow the form of the tube as in the case of
the ordinary Geissler tubes, but spreads out rectilinearly from the cathode
along the normals of the latter. Assuming the results of the decades of
research * on cathode rays ranging from Hittorf to J. J. Thomson and
Lenard, we shall speak of cathode ray particles, or rather, of cathode ray
electrons. These electrons owe their velocity to the potential gradient at
the cathode, so that the kinetic energy of the electron is equal to the work
that the drop in potential does on the electron. Inasmuch as the kinetic
energy is proportional to the electronic mass m, and the amount of work
is proportional to the electronic charge e, we see that the velocity v of the

electron is determined by its specific charge % and by the voltage drop

of the vacuum tube t V (volts multiplied by 108). The formula (which is
nothing more than the law of the conservation of energy) is :

2
=V, 1;=«/g;\7 ¢ )
It is justifiable to say that the experiments with cathode rays are the
simplest and most perfect confirmations of the principles of mechanics,
more perfect than experiments with projected stones, and simpler than
the motion of heavenly bodies. As we shall later have to apply the
principles of mechanics frequently to the electronic motions in the atom,

* Details may be found in the excellent account by Kaufmann, Miiller-Pouillet,
Vol. 4, fifth book; a still more elaborate description is contained in the work of
Tenard: Quantitatives iiber Kathodenstrahlen aller Geschwindigkeiten, Heidelberg,
Verlag Winter, 1918.

+ The potential difference expressed in volts is converted into absolute electro-
magnetic ¢.g.s. units by multiplying by 108,
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§ 8. Cathode Rays and Canal Rays 11

the direction of motion. In Fig. 2B. the magnetic lines of force run
from the front to the back, so that the centripetal force in question lies
in the plane of the page. We see the beam of cathode rays become
curved under its influence into a circle (or into a spiral, if the initial
direction of the cathode rays and the direction of the magnetic field are
not exactly perpendicular to one another: in our case we should then
get a curve of variable curvature because the magnetic field is not
homogeneous). It is pretty to see how the circle increases or decreases
as the magnet moves away or approaches. Expressing this in a formula
we find that if H denotes the intensity of the magnetic field, p the radius
of the circle (more generally the radius of curvature of the curve), then
v?

evH=m: . . . . . (2)
p
On the left is the centripetal force due to the magnetic field, on the right

is the inertial resistance of the electron, or, expressed shortly, the

centrifugal force. In this case, too, as we see, the ratio ;i occurs as a
determining factor. From (2) we get
e
v=—_pH . . . . . 2
P (2a)

3. In a homogeneous and parallel field of force, as, for example, is
represented by gravity on the earth’s surface, @ body describes a parabola,
the form of which depends on the value g of the acceleration in falling, or,
more generally, on the acceleration in the field of force in question. In
our tube we generate the necessary field of force as an electric field hy
charging the anti-cathode negatively, as by connecting it with the
cathode by hand. The field that results in this way is confined to the
neighbourhood of the anti-cathode, and is tolerably homogeneous there.
The cathode rays that previously disappeared at the anti-cathode are
now bent backwards into a parabolic shape (cf. Fig. 2c, p. 12). (Above
the anti-cathode there is a kind of dark space that somewhat disturbs
the regularity of the parabola.) If ¥ is the field intensity, then we get
for the accelerative force that acts in this case:

e «
g = hF . . . . . (3)
These and similar experiments clearly lead to determinations of

;—z by various methods. We may, for example, combine (1) and (2a),

. . . e e
eliminate v, and determinate — from the thrge measurable quantities
m

p, H, V. This value, when it was first discovered, led to the discovery of
the electron. TFor as it was almost 2000 times greater than the value of

£ _ that was derived from experiments in electrolysis, it pointed to the
H
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§ 8. Cathode Rays and Canal Rays 18

vanishingly small fraction of the space apparently occupied by matter is
really impenetrable (at least for rapid cathode rays); the electrons
can fly without obstruction through the whole intervening space.
The impenetrable centres are called dynamides by Lenard.* They are
regarded as electric fields of force and exercise an attraction on the
electrons, which are no longer effective for great velocities at a moderate
distance from the centres of force. In the case of small velocities the
range of action of th» attraction increases up to the extent of the range of
action given by the kinetic theory of gases. Lenard has to set the number
of dynamides per atom proportional to the mass of the atom, that is to
the atomic weight, to get the law of absorption for rapid cathode rays.

The whole method of representation developed by Lenard as early as
1903 coincides strikingly with the nuclear theory that Rutherford built up
in 1913 from a totally different set of facts (vide Chap.II, §2). We
need only replace dynamide by nucleus, and number of dynamides per
atom by nuclear charge, to translate Lenard’s results into the language
now in use. In addition, the sub-atomic size of the dynamides, as
calculated by Lenpard, is in approximate agreement with the order of
magnitude of the nuclei, as deduced by Rutherford. Proportionality
of the number of dynamides with the mass of the atom then de-
notes proportionality of the nuclear charge with the atomic weight (cf.
Chap. IT, § 2). A difference which is essential for the fruitfulness of the
picture consists in the circumstance that, in the case of an element whose
atomic number is Z (and which, in some cases, then has the atomic
weight 2Z), Lenard assumes Z individual dynamides, generally separated
in space, whereas Rutherford assumes a single nucleus carrying a charge
Z. For the rest, our comparison of these two sets of ideas merely con-
firms the observation, which often forces itself on us, that important
scientific facts, when once ripe for discovery, present themselves to various
investigators independently.

The antithesis electron and positive ion is analogous to that of cathode
rays and canal rays.t The canal rays also obtain their velocity as a result
of the potential drop at the cathode, but they run backwards in the
direction opposite to that of the cathode rays (Goldstein, 1886). They
are thus oppositely charged to the particles of the cathode rays; they are
accordingly positive rays. To enable them to pursue their paths back-
wards from the cathode, the latter has to be pierced with holes (“ canals ).
The canal rays, like the cathode rays, follow rectilinear paths. They are
likewise deflected by magnetic or electric fields, but in a direction opposite
to that of cathode rays, corresponding to their reversed charge. Besides
this, the deflection is considerably less than in the case of cathode rays.
For if these deflection experiments are used to determine the specifie

* Ann. d. Physik., 12, 714 (1903).

t+ A comprehensive account is to be found in Handbuch der Radiologie, Bd. 4.
Leipzig, 1917, W. Wien,
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14 Chapter I. Introductory Facts

charge of the particles in the canal rays, we find a value having the order
of magnitude of the electrochemical equivalent, and indeed we get the

exact value ;’eb—, as given in § 2, Fig. 1B, in the case of canal rays of
H

hydrogen, that is when the tube is filled with hydrogen; we get a value
200 times as small in the case of canal rays of mercury (atomic weight of
mercury = 200), that is when the tube contains mercury, and so forth.
It may be mentioned that in the latter case, we also get multiples of this
value, a fact that points to a multiple charge of the mercury atom (to the
number of eight elementary quanta, according to J. J. Thomson). In the
former case we observe in addition to the full equivalent charge, also half
of this quantity, and this points to the formation of positively  charged
hydrogen molecules (mol-ions as contrasted with atom-ions).

Altogether, the conditions in the case of canal rays are not so typically
simple and easy to grasp as in the case of cathode rays. This is due to
the frequent transference of charges among the ions of the cathode rays
(W. Wien). They become neutralised after a short distance by taking up
electrons, and become positively charged again through the loss of one or
more electrons in subsequent collisions (sometimes they become negatively
charged owing to the absorption of electrons). For this reason the
phenomena in the case of canal rays are, on the other hand, much more
manifold and instructive, inasmuch as the canal rays, as ions, possess the
power of emitting light of their own (J. Stark). The luminescent phe-
nomena of canal rays (ef. Chap. V, the Stark effect) have furnished
modern physics with invaluable material in just the province that
concerns us here.

The opposite character possessed by ions and electrons manifests
itself, too, in the velocities of canal rays and cathode rays. The relatively
large mass of the ions of canal rays, for a constant voltage of the tube,
assumes a much smaller velocity than the small mass of the electron of
cathode rays. The corresponding velocities are theoretically in the ratio
of the square roots of the masses of the electrons and the ions, since
equation (1) remains valid for velocities that are imparted to the ions of
canal rays. In the case of cathode rays we get for a tension of 30,000

c

volts, for example, a velocity of 10! cms. per sec. = 3; in the case of
canal rays we scarcely get beyond 2. 108 cms. per sec. = 1—;0

So far, in the case of both the ion and the electron, we have been
concerned only with the measurement of the specific charge. On the
other hand, we also mentioned the absolute value of the elementary charge
e at the end of the preceding section as being an equal, invariable, and
universal quantity for ions and electrons. We must therefore complete
our account by stating how the elementary charge itself may be deter-
mined. It is obvious that if we know the absolute charge then (by
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§ 4. a- and B-rays 15

comparing it with the specific charge) we can also find the electronic
mass m and the absolute mass of the hydrogen atom m,, as well as the

Loschmidt number ;3—» and the mass of all other atoms. The values of
H

m, my, and L found in this way are also noted at the end of the pre-
ceding section.

There are many ways of deriving the elementary charge e. From our
discussions about the theory of spectral lines we shall get a spectroscopic
determination of e which promises to give us the most accurate values
(cf. the final paragraph of Chap. VIIL). At present, however, the surest
road seems to be that which has been followed with particular success by
Millikan.* -

A macro-ion, that is a charged particle of matter composed of many
atoms, preferably a drop of oil, on account of its shape, is kept suspended
by balancing an electric field against its weight, or it is allowed to drop
slowly by altering the field or its own charge. By means of radiation
from radioactive bodies or Rontgen rays (X-rays) the charge may be
varied to the extent of one or several units of charge e. By noting the
times taken to fall in the case of one and the same particle, we get the
data necessary for calculating both the size of the particle and also ity
charge. The result of measurements repeated by Millikan over a span of
several years is:

e = (4774 £-004)10-1 . . . . @
In (4) the elementary charge is given in so-called electrostatic units
(E.S.U.). We may express its value in electromagnetic units (E.M.U.),
which are usual in the case of the specific charge, by dividing the above
value by ¢ = 3.101:
e = (1'591 + -001)10-2¢ E.M.U. . . . )
This was the value noted at the end of the preceding section.

§ 4. a- and B-rays

Not only are canal rays and cathode rays produced artifically, but
they also occur naturally, being emitted during the disintegration of radio-
active elements.t The positively charged «-rays correspond to the canal
rays, and the negatively charged [-rays correspond to the cathode rays.
These natural corpuscular rays are much more violent and tempestuous
than those produced artifically. In this way they testify directly to the
immense stores of energy available in the interior of the atom, with
which even those released in our modern evacuated bulbs are ridiculous
in comparision. As the fields of force in the interior of the atom are

* Phil. Mag. (6), 34, 1 (1917).

t+For general information on radioactive radiations vide St. Meyer and E. V,
Schweidler, Radioaktivitdt, Leipzig, 1916, and E. Rutherford, Radioactive Sub-
stances and their Radiations, Camb. Univ. Press.

Go 3lc



16 Chapter I. Introductory Facts

later to be subjected to a special investigation, it will be good to get at
this early stage an idea of their elemental power.

The velocity of the a-rays of radium C amounts to 2. 10? cms. per sec.
It is about ten times as great as the velocity attained by canal rays. It
follows from equation (1) of the preceding section that the energy that is
necessary to produce this ten times greater velocity is 100 times greater
than, or, if we take into account the carriers of the a-rays (vide below),
even 400 times greater than the canal rays of hydrogen. Hence, whereas
we work a canal ray tube by means of a potential difference of 30,000
volts, i.e. 30 kilo-volts (KV), we should require a voltage of about 12,000
KV to produce the energy of a-rays. A comparison of cathode rays with
B-rays gives similar results. We may produce artificial cathode rays
having a velocity ranging from % to %, whereas natural B-rays are
known whose velocities differ by only 1 per cent and less from ¢. Since,
as we shall see later, the velocity of light, ¢, represents an unsurpassable
limit for every velocity of material particles, a limit which may be
approximated to only when the energy applied is increased without limits,
we see that to a velocity which approaches to within 1 per cent of ¢,
there corresponds a voltage of the same order of magnitude as was just
given for a-rays.

For cases in which the velocities of the 8-rays approximate so closely
to the velocity of light, it is clearly convenient to express these velocities
by giving their ratio to ¢ instead of giving their absolute values v in cms.
per second. This ratio, which is always a proper fraction, is usually
denoted by the letter B, thus:

B=§’ 0<B<l. . . . .@
From experiments on the deflection of a- and B-rays the specific

charge has been found to be half the value of the equivalent charge;,%——
'H

in the case of a-rays, and considerably greater in the case of B-rays,
namely, of the order of magnitude of the specific charge of the electron, ;z

The latter discovery confirms our above statement that B-rays are par-
ticularly rapid cathode rays. But the former discovery set physicists
before a triple choice from which experiments on deflection offered an
escape only after the effect of each single a-particle could be successfully
demonstrated, that is, after a means of counting a-particles had been
discovered. A decision had to be pronounced in favour of one of the
three following possibilities, all of which were compatible with the value
of the specific charge of the a-rays particle :—

1 ';n,i’ i.e. the a-particles, are singly charged hydrogen molecules

HZ

(that is molecules, each of which carry a unit charge).
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§ 4. a- and B-rays 21

it shattered the time-honoured dogma that mass is constant. But
Kaufmann wished to read still more from his negatives. He wished to
learn from them the law according to which the mass of the electron alters
with the velocity. In this connexion there were two opposing theories
which led to different forms for this law, namely, the older theory of the
absolute ether (the original theory of Lorentz, elahorated in particular
by Abraham for the questions here under consideration), and its younger
rival, the theory of the relativity of motions (founded by Einstein). The
latter theory gives rise to a particularly simple form of the law govern-
ing the change of mass with motion, namely to the formula :

m,

m = m . . . . (2)

In it B is the velocity, as explained in equation (1), expressed in terms
of the velocity of light ¢; m, is the mass at rest or “statical mass,”
corresponding to the velocity 8 = 0; m is the mass of the moving
electron. The theory of relativity asserts that this is true not only for
the electronic mass m. but also for any arbitrary mass of matter. This
means that every arbitrary mass must increase as B increases and must
become nfinitely great when B = 1. From this the thesis, stated right
at the beginning of this section, that the velocity of light represents for
all velocities of material bodies a limit that cannot be exceeded, i.e. that
the velocity of light can only be approached asymptotically but never
passed, would already follow as a natural consequence.

It can easily be grasped from this that the deflection experiments of
B-rays were regarded for a long time as the experimentum crucis which
was to decide for or against the doctrine of the relativity of motions, and
that they were thus to determine our fundamental views of space, time,
motion, and the ether. As far as Kaufmann’'s experiments are con-
cerned, it has been proved that they were not sufficiently accurate to
give a decisive answer. Later experiments have established more and
more definitely the correctness of the relativistic formula for mass (2).
In our spectroscopic discussions later we shall likewise arrive at a con-
firmation of this formula by a method that far exceeds all others in
accuracy (see the final paragraph of Chap. VIII).

We might well close our brief survey of corpuscular rays here, were
it not that we have still to discuss several general questions dealing with
the nature of electricity. Are we to regard electricity as unitary or
dualistic? Is it made of matter or of energy, of substance or of force ?

The question as to whether it is of one kind or of two kinds has been
proposed long ago particularly with reference to Voltaic currents. Does
only one type of electricity or do two contrary types, in opposite
directions, move along a conducting wire? The battle resolved into one
of words, as no decisive experiments on this point could be suggested.
Even nowadays we have really advanced no further in this question as

Go gle



22 Chapter 1. Introductory Facts

far as current electricity is concerned, but by adducing other evidence
about electrons we are justified in asserting that what flows in a
conducting wire can only be negative electricity ; and that even a current
of electricity in metals is a current of electrons. In this field our view is
thus unitary.

In the realm of atomic physics, however, we are inclined to take the
dualistic view. A positive charge signifies more than the absence of a
negative charge. Positive electricity is always assoctated with ordinary
matter. We have thus to deal with two types of electricity that differ
not only in sign but also in nature. As representatives of negative and
positive electricity we have the electron and the positively charged
H-atom.

There is no reason why we should not claim these two representatives
as megative and positive electroms, respectively. Just as all negative
electricity consists of the ordinary negative electrons, so all matter,
according to the old hypothesis of Prout and the newest results of
Aston (cf. § 5 of the next chapter), very probably resolves into positive
hydrogen ions. Hence, as the fundamental elementary constituent of
matter and of positive electricity, the positive hydrogen ion deserves the
name of positive electron. In using the term ‘ positive and negative
electron,” we have already adopted the dualistic view, even if not the
dualism of two elements of a like type, but of two that differ radically in
respect of mass.

In the following respect, too, there is a difference of type between
negative and positive electricity. We can picture an atom (or a body)
as highly charged negatively as we like, that is, we can add to it any
number of negative electrons. But we can increase the positive charge
only to a certain maximum amount so long as we do not considerably
alter the mass. For we can abstract from the atom only just as many
electrons as it possesses from the outset. In the case of the He-atom,
as we shall see, this maximum limit is already reached when it has two
positive charges, in the case of the H-ion when it has only one. A
further increase in the positive charge could be effected only by simul-
taneously increasing the mass, that is, by adding positively charged
matter.

This really furnishes us at the same time with the answer to the second
question, as to whether we are to imagine electricity as a substance. To
us nowadays negative electricity certainly denotes a substance. It is one
of two universal and fundamental substances of which positively charged
matter is the other; both are equally entitled to being called such. If
we regard an unalterable constitution as the characteristic of substance,
then the charge (positive as well as negative) is more truly a substance
than matter (electronic mass or ordinary mass). As a matter of fact we
saw, as an inference from Kaufmann's experiments, that every mass
varies according to its state of motion at the time under consideration
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§ 5. Rontgen Rays and ry-rays 23

(more correctly, according to the state of motion relative to the observer
in question). In the case of the theory of relativity, too, no change' in
the electric charge enters into question. In comsequence of its absolute
smmutability the charge, in contradistinction to the mass, proves itself to
be true substance. The charge and the mass are hereby indissolubly as-
sociated with one another, the negative charge with the electronic mass, the
positive charge with the hydrogen mass.

§ 5. Rontgen Rays and y-rays

Rontgen’s discovery was made in the year 1895. He was working
with a highly evacuated cathode ray tube and observed the presence of
penetrating rays that started out from the part of the tube at which the
cathode rays struck the glass wall. These rays propagate themselves in
all directions in straight lines from their source and are not deflected by
a magnet.* For this reason Rontgen himself had looked on his “ X-rays”
as wave-radiation. At first it remained undetermined whether they were
longitudinal or transverse in character. As we know, improvements
in the construction of X-ray tubes have brought it about that the X-rays
are no longer produced at the glass wall but at an anti-cathode placed in
the path of the beam of cathode rays: it is found preferable to make the
anti-cathode of a metal with a high melting-point (e.g. platinum, tungsten,
molybdenum, ete.). The cathode rays that strike it are thus brought to
rest. By giving the cathode the shape of a soup-plate the focal point of
the beam of cathode rays is made as small as possible.

The question whether the rays were longitudinal or transverse was
decided by Barkla ten years after Rontgen’s discovery. KEven in the
original researches of Rontgen it had been ascertained that all bodies,
especially metals, on which X-rays impinge, serve as sources of new
(“secondary”) X-rays. In the same way secondary X-rays generate
tertiary X-rays. Now, Barkla discovered that primary X-rays are
partially polarised, sccondary X-rays are wholly polarised in certain
directions. He succeeded in proving this with the help of tertiary X-rays,
that is with the help of the secondary rays produced by secondary rays.
For reasons to be given later, Barkla used as the generator of secondary
rays not metals, but substances that are composed only of light atoms
(charcoal, paraffin, paper). We must parenthetically mention another
product of the action of impinging X-rays, namely secondary cathode rays
which were discovered in 1900 by Dorn. They occur simultaneously
with secondary X-rays and are similar in velocity to the primary cathode
rays that produced these X-rays.

Polarisation signifies that a ray favours a certain plane passing
through it more than the one perpendicular to this plane. In the case

* The older developments of the work with which we are coucerned in this section

have been collected together by R. Pohl, Die Physik der Rimtgensirallen, Braun-
schweig, 1912 (Sammlung Wissenschaft).
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24 Chapter I. Introductory Facts

of longitudinal vibrations, that is, vibrations that occur in the direction
of the ray, there is symmetry about the ray and no such preference can
be imagined. Longitudinal radiation must therefore be unpolarised. In
the case of transversal vibrations, however, a favoured plane (including,
of course, all parallel planes) is determined by the direction of vibration
and the direction of the ray. It is only when no direction of vibration
is favoured that a ray composed of transverse vibrations can be un-
polarised. We here interpret the direction of vibration not as being the
direction of a motion or of matter, but only of the electric force which
participates in the wave-radiation. With this electric force is associated
a perpendicular magnetic force.

Let us first discuss in a general sense the production of electromagnetic
waves. In doing so, we shall adopt the standpoint of classical electro-
dynamics and of the theory of electrons. The fact that the newest
developments have led to the partial
rejection of this view is not to disturb
us for the present.

A charge ¢ which moves non-uni-
formly radiates energy, for it generates
an electromagnetic field which propagates
itself with the velocity of light. (A charge
moving with uniform motion, such as a
cathode ray particle, carries its electro-
magnetic field along with it, and hence
does not radiate.) Consequently the in-
tensity of the radiated field is in general

Fic. 7. proportiona.l to the acceleration * v of the
charge ; in particular, in the direction
7 = OP (cf. Fig. 7, in whlch O is the position of the charge, P that
of the observer, briefly called the initial point) it is proportional to the
component of acceleration v,, which lies in the plane through ¥ and 7,
and which is perpendicular to ». We describe a sphere through P,
about O as centre, with the radius 7, and mark as its north and south
poles N and S, the two points at which the acceleration vector, when
produced, meets the sphere. Let us fix the position of P on the sphere
by means of the angle § (complement of the geographical latitude).
Then

v, = 0 sin 6.
The electric force lies in the meridian plane ONP, the magnetic force is
the tangent to the small circle PP'. These forces are of equal magnitude

* Following Newton, we indicate the increase with respect to time by a dot thus:
. _dv,
V="gi
in the case here considered in which the velocity is supposed to have a coustant direc-
tion, ¢ denotes the value of ¥ when the direction is disregarded.
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§ 5. Rontgen Rays and y-rays 25

if, as is natural, we measure B in the electric (“electrostatic”) system
and H in the magnetic (* electromagnetic ") system, namely
ev,

E=H=4 - - - - - (O
{the charge e is measured in electrostatic units, just like E). The de-
pendence of these quantities on 7, as expressed in the equation, may
easily be seen a priori. During the process of emission of radiation, the
same flux of energy passes through each spherical shell. Since the
surface of each increases proportionately to 72, the specific flux of energy
8, the so-called Poynting vector, must decrease as r* increases. But, if

we disregard the factor 46-;-; which depends on the system of measure-

ment, 8 is equal to the product of B and H (at least, when E and H are
perpendicular to one another; cf. Note 1 at the end of the book), thus in
our case :

c ev? 3k
8= 4 BH = o = Lrap Sin*0 ) ) (2)
From this (by integrating over the surface of the sphere, cf. also Note 1)

we get £, Ui ‘otal flux of energy

2 e*i? .
Our representation (1) of the field is a necessary consequence of the
established principles of electrodynamics. It shows the transversal
character of the field (B and H are perpendicular to r, that is, to the
direction of the ray 8). In addition, it shows that in the longitudinal
direction, that is, in the direction of the acceleration Vv, the emission of
radiation becomes zero (sin § = 0). This fact is used practically in wireless
telegraphy : in the direction of the antenna (that is, of the alternating
current, corresponding to our ¥) the emission is zero : it is a maximum
in the direction at right angles to the antenna. The position of H, too,
corresponds to the well-known circumstances that attend the passage of
alternating currents through a wire: the lines of magnetic force are
circles around the wire (corresponding to our small circle PP’ in Fig. 7).
After these preliminary remarks, we have now to imagine secondary
X-rays to be produced as follows: Every body, whether solid, liquid, or
gaseous, is built up of electrons and positively charged matter. In Fig. 8,
let 1 be the direction of the primary beam from R (Rontgen, or X-ray,
bulb) to K (the scattering body). We assume that at the outset the
primary ray is unpolarised and that it consists of transversal vibrations (the
possibility of longitudinal vibrations is already excluded owing to the mere
fact of polarisation). Let us then resolve the electric force, as shown at
the bottom of the figure on the left, along the two perpendicular directions
2 and 3, which are perpendicular to 1; we get two equally intense
component forces along 2 and 3. When the component 3 has arrived
at the surface of K, it sets the electrons in motion along the direction 3.
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26 Chapter I. Introductory Facts

These electrons thus become the source of a new radiation. This radia-
tion gives us, as we saw, no intensity along 3, but maximum radiation in
the direction 2. In the same way the component force 2 sets the
electrons of K into motion. The radiation thus produced gives no
intensity in the direction (2), but maximum radiation in the direction 3.
From this it follows that the secondary radiations s, which are propagated
in the direction 2, are derived from electronic vibrations in the direction
3 and likewise vibrate in this direction. They are thus completely
polarised. The same is true of the secondary rays that are propagated
in the direction of 3 and which vibrate in the direction 2; and it is true
of all secondary rays that are propagated at right angles to the primary
direction 1. (The secondary rays that are obliquely inclined to 1 are
partially polarised.)

But how can we recognise the complete polarisation of the secondary
ray 8 in the absence of a Nicol for X-rays? By repeating the process,
we place a second scattering body
K’ in the path of the secondary ray
s and measure the tertiary X-rays.
These are produced by electronic
vibrations that take place exclusively
in the direction 3. They emit max-
imum radiation in the direction K'1,
and none at all in the direction K'8.
The perpendicular set of lines pst in
the directions 1, 2, 3 proves by the
vanishing of the intensity of the
. tertiary rays K'3 both the complete

3 polarisation of the secondary rays and

F, 8, the transversal nature of the primary
rays.

In Barkla’s experiments the scattering bodies XK and K’ consisted of
charcoal. The intensity of the tertiary rays was measured electroscopically
by their ionising action on the air space of a condenser (ionisation chamber),
which is very sensitive towards X-rays and which had already been per-
fected and used in the original experiments of Rontgen. Provided that
the primary radiation was fully unpolarised, K2 and K3 would have to
show the same degree of intensity under similar conditions of measure-
ment. In reality, as Barkla, and later Bassler, found, the secondary rays
already show differences of intensity with direction. They thus indicate
a partial polarisation of the primary radiation.

The latter circumstance leads us still more deeply into the process of
production of the primary X-rays. In Fig. 9 let K be the plate-shaped
cathode and AA the anti-cathode. When the cathode rays strike the
anti-cathode, they are arrested ; their average direction of retardation is
represented in the figure by the arrow ¥. This change of velocity causes
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§ 5. Rontgen Rays and «-rays 27

radiation to be produced, which is the shorter in wave-length and the
more intense, the greater the change of velocity. This radiation is to be
regarded as the reason (or better, a reason) for the occurrence of X-rays.
The resultant field is described by the earlier Fig. 7. In it the direction
SN is now represented by the direction KA of the cathode rays. The
electric force lies in the meridian planes, that is, now, in the plane KAR
through the cathode ray and the X-ray. The process of formation of
X-rays thus points directly at a favoured plane for the electric force.
The observations (of Barkla and others) have confirmed this position of the
plane of polarisation.

According to our argument we should actually expect a complete
polarisation of the primary X-rays. What is the cause of the incomplete
character of the polarisation? A reason that immediately suggests itself
is that there are changes in the direction of the impinging cathode rays
before and after they have been stopped by the material of the anti-
cathode. Through them the direction of the arrow v and hence also of
the direction of polarisation becomes blurred. But there is a still deeper
reason.

Barkla has discovered that every
material substance when bombarded R R
with cathode rays emits a radiation

characteristic of the substance (called B A

“ characteristic radiation,” FEigen- .
: K v

strahlung). Whereas we may com-

pare the radiation considered just R A

above (“impulse radiation,” Brems- Fia. 9.

strahlung) with the forced vibrations
that occur in mechanics—as a necessary consequence of the sudden
stoppage—this characteristic vibration corresponds to the free or nat-
ural vibrations of mechanics. Through the agency of the cathode rays
the electrons of the material of the anti-cathode are thrown out of
their positions of rest {or out of their stable orbits) and tend to return
to these. In doing so they emit the frequencies natural to, or char-
acteristic of, the material of which the anti-cathode is composed. This
circumstance gives the process a resemblance to optical fluorescence, in
which, likewise, a frequency of vibration oceurs which is characteristic
of the fluorescent material but differs from the frequency of the incident
radiation. The phenomenon occurs freely, being excited by the cathode
ray but, especially in regard to direction, is not subject to conditions.
Thus the characteristic radiation is unpolarised, and the total radiation
(impulse radiation + characteristic radiation) is only partially polarised.
As a result of the polarisation experiments ahove discussed, there is
no doubt that the radiation of X-rays is of the transverse wave type.
Nowadays we speak of Rontgen light or X-ray light and distinguish
it from visible light only by its greater hardness (penetrative power).
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§ 5. Rontgen Rays and v-rays 29

hardly deserves the name of Rontgen radiation. Hence we understand
why Barkla, to prevent being disturbed by the characteristic radiation of
the scattering body, had to use bodies of small atomic weight for his
experiments on polarisation. On the other hand, makers of X-ray
appliances had to resort to heavy metals for their anti-cathodes so as to
make use of characteristic vibration as well as the impulse radiation.

Our explanation of hardness does not seem to be so readily applicable
to the case of impulse radiation. The process of impulse radiation is a
single event ; that is to say, it is non-periodic. Consequently the con-
ceptions of period of oscillation and wave-length here seem out of place.
During the time required in coming to a stop (length of impulse) a single
shock emanates from the anti-cathode; an electromagnetic impulse is
emitted out into space; its field is contained between two spheres that
are described about the place at which the retardation or stoppage is
effected, and that widen out with the speed of light. The distance
between the two spherical shells gives the measure of the width of the
zone of disturbance; it is the ““ width of the impulse.” Thus instead of
wave-length, width of impulse was formerly the term used in speaking
of Rontgen radiation.

Now, it is a simple mathematical truth that a single unperiodic occur-
rence may be represented as composed of a number of purely periodic
occurrences superposed on one another. For example, the crack of a gun
may be represented by a continuous series of musical tones, if these are
chosen of the proper intensity and phase (Fourier’s integral representation
of an arbitrary function). The physical realisation of this mathematical
mode of representation is called the spectrum of the occurrence in question.
From the moment that the spectrum of such an event can be specified,
the spectral picture will be preferred on account of its fixed quantitative
character. This moment had arrived, in the case of X-rays, when Laue
made his discovery. Since then, we speak of the spectrum, wave-length,
and frequency of vibration in the case of impulse radiation too. Instead
of one width of impuilse we have then a continuous series of wave-lengths,
to each of which there corresponds a purely periodic vibration of definite
intensity.  Accordingly the spectrum is not as in the case of the
characteristic radiation a line-spectrum but a confinuous spectrum. 1t
resembles the spectrum of white light and is therefore occasionally called
the white Eontgen spectrum. The difference between the white Rontgen
spectrum and that of white light, for example, is only in the order of
magnitude of the dominant region of wave-lengths, of the region of maxi-
mum intensity. The mean wave-length of this region is in the case of
X-ray spectra 10,000 times smaller than in that of the solar spectrum.

As we saw, the hardness of the characteristic radiation depends on
the atomic weight of the emissive material of the anti-cathode. On the
other hand, the hardness of impulse radiation depends essentially on the
voltage of the X-ray bulb, or on what is the same, according to equation

Go glc



30 Chapter I. Introductory Facts

(1) of § 3, the velocity of the impinging cathode rays; as is well known,
the hardness increases with the voltage of the bulb. In the language of
spectra this means that the region of wave-lengths of greatest intensity
in the continuous spectrum shifts towards the smaller wave-lengths as the
voltage increases. We shall pursue this fundamental law further in the
next paragraph. To do so, we must discard the view-point of classical
electrodynamics here adopted, and must build up on the basis of the
modern quantum theory.

For our special purpose—atomic structure and spectral lines—the
characteristic radiation with its line-spectrum, which is characteristic of
the emitting atom, will of course be more important than the impulse
radiation with its continuous spectrum essentially conditioned by the
voltage of the tube. But firstly we have yet to call attention to various
observations about the latter that are intelligible on the basis of classical
electrodynamics and mechanics.

‘We inquire into the total scattered secondary radiation that is emitted
per unit of time by a body (radiator) struck by primary X-rays. The
scattered secondary radiation, in contrast with the simultaneous secondary
characteristic radiation of the radiator, has the same hardness, or in more
precise terms, the same continuous spectrum as the primary radiation.
Its intensity, calculated for a single emitting electron, is given by equation
(3). We shall write it down here for the unit volume of the radiator and
take n as the number of atoms per unit volume, Z the number of electrons
per atom. (The radiator is assumed to be a chemical element; in the
case of a compound the various atoms would have to be differentiated.)
We then obtain from (3)

292
S=§%’nz N )
This implies the assumption that the quantities of energy emitted by the
individual electrons of the atom become simply superposed, an assumption
which no longer holds for white light (cf. Note 2) and which even in the
case of excitation by X-rays is not true for all directions of the scattered
radiation (cf. again Note 2).

The acceleration v of the individual electron is closely connected with
the electric intensity of field B, (of the primary X-ray which impinges on
it) by the equation

mv = —¢B, . . . . . (5

In (6) we have assumed the electron to be free. If it is bound to a
position of rest, the restoring force has to be added. In the case of
sufficiently hard X-rays, we may discard this force ; in the case of optical
frequencies it must be taken into account (cf. Note 2). By inserting (5)
into (4) we get

s =2 gy (6)
3 oA . . . . .
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§ 5. Rontgen Rays and g-rays 31

Again, we determine the energy P of the primary radiation that falls per
unit of time on the unit of area of the radiator and excites secondary
radiations in it. We get (cf. eqn. (2), in which H = E = B))

¢ 2
P= 41}31, . . . . .M
From (6) and (7) we get
S _ 8 e .
P 3 ‘mict

The energy S is produced at the expense of the energy P and hence

causes a decrease in the latter, an ¢ absorption through scattering.” The

nZ . . . . . @

ratio % is called the “absorption coefficient due to scattering” and is
designated by s. From it we pass on to the absorption coefficient of mass

g by dividing by the density p. Whereas s is a measure of the scatter-
p

ing per unit of volume, Z is & measure of the scattering per unit of mass.
Now M
p=mnHM=-nL~ . . . . . (9

in which M is the atomic weight of hydrogen, = 1, and thus m,M is the
mass of a single atom ; and nmyM is the mass of the atoms contained in

. 1. '
unit volume, i.e. it denotes the density p; Li=— is (see p. 4)

Mgy
¢ Loschmidt'’s number per mol.”
From (8) and (9) we get
s _8r etk Z '/
E=§W6*M—B'M . . . . (10)
The factor K is a universal quantity independent of the nature of the
radiator. Its value may be calculated according to the data at the end of
§ 2 in Figs. 1a and 1B. In doing this, it must be observed that we have
here reckoned e in electrostatic units, and hence according to the remark
at the end of §3 we must divide it by ¢ to reduce it to electromagnetic
units. We then obtain
£ 177.10%, L = 965.105, ¢ = 1-59.10-
me c ¢

hence
K =040 . . . . . (11)

r

. . '/ . .
From this we can determine the ratio 3 from (10) if the absorption

coefficient of mass is found by observation. Such observations have been
made by Barkla (for air) and by Barkla and Sadler (for C, Al, Cu, Ag).
In the case of air, C and Al, the value attained (in cms. and grms.) is

S
~ =02 . . ) . . (12
P (12)
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For Cu and Ag, greater values (04 and 0'5) were found, but in their cases
we are no longer dealing with pure scattering, for secondary characteristic
radiations occur, as well scattered secondary rays, and these increase the
demand for primary radiation and hence increase the absorption co-
efficient of mass. Taking this into consideration we may say: for small

. . . 8
atomic weights measurements lead to the uniform value 02 for Z, whereas
P

for greater atomic weights the values obtained do not condradict the assump-
Lion that the same value holds generally to a certwin degyree of approximation
so long as we are concerned only with the absorption due to scattering.
Now, from (10), (11), and (12) the remarkable result follows
Z 02 _1 .
M-040 -2 - . . . (13)
The number of electrons per atom is half as great as the atomic weiglt
(proved for atomic weights smaller than 27 ; extrapolated for higher
atomic weights, and in their case, as we shall see later, this rule is only
approximately true).
For the sake of completeness we must emphasise that the law con-
tained in (12) is subject to a very noteworthy exception in the case of

extremely hard X-rays. We get for them values of > that continuously
P
and systematically fall below 0-2 as the wave-length decreases. For

further details we refer to Note 2 and merely remark here that the oc-
currence of this exception for just the shortest wave-lengths is very sur-
prising. In the case of long waves for which the distances of the
electrons from one another in the atom compared with the wave-lengths
can no longer be regarded as great, the vibrations emitted by the in-
dividual electrons would interfere with one another, analogously to what
happens in optics, so that in their case we should be able to understand
a departure from (12), since it takes no account of such an interference -
but assumes a simple superposition of energy. Nevertheless in the case
of short wave-lengths this departure-must be due to another reason.
Presumably it hints again at the limits of validity of the classical theory
and the necessity of supplementing it by the quantum theory

From the secondary rays we return once more to the primary ray
and inquire whether their mode of generation (sudden stoppage of
cathode rays at the anti-cathode) can be proved in greater detail by
observations. To answer this we must first generalise formule (1) a
little. These formul®e related to the radiation that was emitted by a
single electron that was subjected to an acceleration v, but that possesses
no velocity comparable with ¢. They cannot, therefore, be applied to

v . . .
rather rapid cathode rays <,B =, = %(5&}')) without same modification.
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They must be replaced, if 8 is not very small, by (see Note 1)—

ev, _ e_iz sin @ 14
¢*r(l — Beos6)® — c*r (1 — Bcosd)? - (19
in which 6 denotes, as in Fig. 7, the angle between the direction of the
X-ray under consideration and the direction of v (being the same as the
direction of the generating cathode ray). In place of (2) we then get for

the energy radiation 8 at the angle # and measured per unit of time and
surface : :

E=H=

622 sin? §
8=Gor (@i -Boosgyr - - - D
This is the radiation emitted during any arbitrary moment of the
process of stopping: B denotes the velocity still left at this moment,
divided by c¢. To arrive at the total radiation 8 emitted during the whole

process of stopping, we must sum all the amounts 8 (i.e. integrate over
the time). We get (cf. Note 1), if we keep v constant,

- e*v  sin?0 1
8 = 16rcr? " cos 6 ((1 ~ BecosO)r ~ 1) - (16)
In contradistinction to (15) 8 here denotes the initial velocity of the
cathode ray, which becomes reduced to zero through the stoppage. For
values of B that are much less than 1 (slow cathode rays) we get from (16)

e .
0=4—ﬂ_;§'%sm20 o . . Q7

The result of this calculation is depicted in Fig. 11. The curve % re-
presents the emission of radiation for 8 = 4 < 1*, according to equation
(17), for every angle 6 between 0° and 180°. It exhibits a maximum for
8 = 90°, as we ascertained earlier in the case of scattered secondary
radiation, and a symmetrical decrease on both sides of 6§ = 90°. Of
course, the figure must be imagined three-dimensional by supposing it
rotated about the direction of the cathode ray. The curve } has been
drawn for 8 = }. The maximum is here displaced in the direction of
smaller ¢'s, and is indicated by a small circle : it is still further displaced
in the outermost curve which holds for 8 = . For 8 =1+ we should
get a pear-shaped figure for the curve of emission, with & maximum near
=0 For =0 itself, as for § = 180°, the emitted radiation, on
account of the factor sin? 6, is necessarily zero under all circumstances,
as has already been mentioned above in the discussion on secondary
radiation. Concerning the size relationships of the figure, it is to be re-
marked that all three curves have been drawn for the same v.

This progressive advance of the maximum was derived by the author
theoretically as long ago as 1909 } and has been confirmed by observation

* & signifies considerably less than, > signifies considerably greater than.

+ ~ signifies is of the order. 1 Physik. Zeitschr., 10, 969 (1909).
3
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several times, with the greatest accuracy in a work by W. Lébe.* 1In the
experimental observations the differences of intensity are not so pro-
nounced as in our figure, because in this case there is superposed on the
impulse radiation the unpolarised radiation, particularly the characteristic
radiation of the anti-cathode, which is equally intense in all directions.
Besides the differences of intensity primary X-ray radiation exhibits
differences in hardness. The hardness increases uniformly from 6 = 180°
to § = 0° as we may prove by & simple geometrical consideration in-
volving Doppler’s Principle.t These differences in hardness have also
been actually observed.

It is hoped that the latter reflections will help to give the reader a
picture of how successful and how trustworthy in detail are the classical
methods of calculating radiation. That, notwithstanding this, they have

yet to be refined by the intro-
900 800 700 duction of the quantum theory
is no longer open to doubt.

The radioactive y-rays bear
the same relation to X-rays
as a- and B-rays bear to the
canal and cathode rays. Like
X-rays they are a wave radia-
tion; likewise they cannot be
deflected by electric or mag-
netic fields. We have already
encountered them in Kauf-
mann’s Fig. 6 of the previous
paragraph (at the point of non-
deflection on these). . The
v-rays, too, may be resolved
spectrally. The result has been
a line-spectrum of y-radiation
which links up continuously with the hardest characteristic X-rays and
extends towards the region of decreasing wave-lengths to waves about
twenty times smaller. It is possible that there exists considerably harder
y-rays than those hitherto known. In any case it may be stated that the
difference in hardness between X-rays and y-rays is by no means as great
as that between visible light and X-rays (the ratio of the wave-lengths is
in the latter case given by a factor of about 10-4). Whether, in addition
to the line-spectrum, there is also a continuous background in the y-spectrum
has not yet been decided. - Experiments carried out by Edgar Meyer }
seem to favour of a one-sidedness in the emission of y-rays, similar to
that which occurs in the case of Rontgen rays, but, in conformity with

* Ann. d. Phys., 44, 1033 (1914). + Physik. Zeitschr., 10, 969 (1909).
+ Ann. d. Phys., 37, 700 (1912); cf. also E. Buchwald, idem, 39, 41 (1912).
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§ 6. The Photo-electric Effect and its Reversal 35

the greater hardness, this characteristic is correspondingly more strongly
pronounced. The y-rays, too, produce scattered secondary radiation and
secondary B-radiation. In radio-therapy, y-radiation alone is effective:
it is surmised that its effectiveness is due solely to the secondary -
radiation generated in the diseased tissues, which thereby causes their
disintegration (cf. Fig. 10, in which the corresponding process is exhibited
for the case of air that is traversed by X-rays). In particular, it is the
vy-rays of RaC and MsTh2 (cf. Table 1 of § 7 in this chapter) that are
applied in medical practice.

All things considered, there is no doubt about the similarity of nature
between y-rays and X-rays.

§ 6. The Photo-electric Bffect and its Reversal. Glimpses of the
Quantum Hypothesis

Just like the modern development of the doctrine of cathode rays
(cf. § 2), so the knowledge of the photo-electric effect * is to be traced back
to a paper by H. Hertz (Concerning an Effect of Ulira-violet Light on
Electric Discharge, 1887). Following in Hertz's footsteps, Hallwachs
showed that when a metal plate is exposed to short wave radiation, it
becomes positively charged ; and again, as in the case of cathode rays
phenomena, it was Lenard t who recognised that the true cause of this
whole category of phenomena was to be sought in the corpuscular

negative rays, the photo-electric cathode rays. Their specific cha.rgesi

was found to be equal to that of ordinary cathode rays, but their velocity
was found to be only a fraction of the latter. Whereas in the Wehnelt
tube we met with particularly slow cathode rays excited by a voltage of
110 volts, the photo-electric cathode rays, when reduced in the same way
to an imagined excitation voltage, correspond to only one or two volts
(according to equation (1), p. 8). They thus have a velocity that is ten
times smaller than the already “low” velocity (amounting to only six
million ems. per second) in the Wehnelt tube (cf. p. 10).

The following discoveries of Lenard are of very great importance.}

* For further details see Pohl and Pringsheim, Die lichtelektrischen Erschei-
nungen, Sammlung Vieweg, Nr. 1, Braunschweig, 1914. This also contains a descrip-
tion of the interesting “selective photo-electric effect '’ which originated in researches
of Elster and Geitel and which was further investigated by Pohl and Pringsheim.
They show that there is an increase in the number but not in the velocity of the
escaping electrons when the plate is exposed to wave-lengths that lie in the
neighbourhood of & certain favoured or resonance wave-length, especially when the
plane of polarisation is perpendicular to the plane of incidence. In the text we
restrict ourselves to the so-called * normal photo-electric effect,” which is independent
of the polarisation of the exciting light. An exhaustive discussion of the literature as
far as 1912 is to be found in Hallwachs, “ Handbuch der Radiologie,” Bd. 8. Sce also
Pringsheim, Fluorescens and Phosphorescenz im Lichte der neueren Atomtheorie,
Springer, Berlin, 1921,

+ P. Lenard, Erzeugung von Kathodenstrahlen durch ultravioletics Licht, Wiener
Akademie, 108, 1649 (1899).

+ P. Lenard, Uber die lichtelektrische Wirkung, Ann. d. Phys., 8, 149 (1902).
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36 Chapter I. Introductory Facts

The intensity of the exciting light has no influence on the velocity of the
excited photo-electric cathode rays; the intensity determines only the
number of electrons emitted, which is exactly proportional to the intensity.
The velocity of the escaping electrons depends primarily on the colour of
the exciting light. Ultra-violet light produces the quickest photo-electrons,
and that is why its photo-electric activity was discovered first (by Hertz).
Red light endows the photo-electrons with so small a velocity that in the
case of most metals (it is difficult to prove the photo-electric effect in the
case of non-conductors) they remain embedded in the surface. The
alkalies alone form an exception in this respect for reasons that are
connected with their chemical behaviour in other directions (with their
electropositive character).

A still greater degree of photo-electric activity than that of ultra-violet
light is possessed by X-rays.

To bring into prominence the essential peculiarity of these discoveries
we shall refer to the well-known conceptions of thermodynamics in this
connexion. Thermodynamics investigates the conditions that govern the
transformation of heat into work and, in particular, then, the production
of kinetic energy. It teaches us to recognise temperature as the measure
of the work-value of heat. Heat of higher temperature is richer, is capable
of doing more work, than heat of lower temperature. Work may be
regarded as heat of an infinitely high temperature, as unconditionally
available heat.

In the case of the photo-electric effect, too, we are dealing with the
production of kinetic energy which is drawn from the energy supply of
the incident radiation (the fraction that is absorbed). We should expect
more intense light to produce a greater photo-electric effect, than less
intense light. But this, as we saw, is not true. The power of the light is
not determined by its ¢niensity but by its frequency. Blue light has great
power, red light but little. The intensity determines only the quantity,
but not the quality of the photo-electric action. These facts are very
strange and depart greatly from the usual theoretical conceptions: they
could not be explained on the basis of classical mechanics and optics.
The key to them was furnished by the modern theory of quanta.

The quantum theory is a product of the twentieth century. It came to
life on 14th December, 1900, when Max Planck gave the Deutsche Physika-
lische Gesellschaft a method of deriving the law of black body radiation,
discovered by him shortly before, on the basis of a novel physical idea. As
is well known, we apply the term black body radiation to that condition
of equilibrium of heat radiation which comes about in a space enclosed by
bodies of any kind, but at the same steady temperature. The term itself
is due to the fact that radiation of just this intensity and spectral com-
position is also emitted by a black body, that is, a non-reflecting body at
the same temperature.

The problem of radiation is rooted, on the one hand, then, in thermo-
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§ 6. The Photo-electric Effect and its Reversal 37

dynamics, in the laws of the equilibrium of heat; on the other hand, in
electrodynamics, in the laws according to which light- and heat-vibrations
are excited, propagated, and absorbed. Planck spent years of consistently
planned work in seeking to penetrate into the realm of electrodynamics
with thermodynamic principles. To retain agreement with observation
and experiment he finally saw himself compelled to take a bold step
leading away from the main road of our usual wave theory and to
propound his hypothesis of energy-quanta. He postulated that emergy of
radiation of any frequency v whatsoever can be emitted and absorbed
only in whole multiples of an elementary quantum of energy,

e=hv . . . . . @O

h is Planck’s quantum of action. From measurements of radiation Planck
soon succeeded in determining the value of his constant

h = 6:55.10-% erg secs. . . . 5]

(Its dimensions are: energy x time, the same as those of the mechanical
“action ” that occurs in the Principle of Least Action.)

This postulate does indeed upset our usual ideas of the wave theory.
If wave energy is propagated continuously in space and becomes dispersed,
how can it then condense at individual places so as to be absorbed in
quanta of finite size? Moreover, how can it be emitted in finite quanta
if, according to the laws of classical electrodynamics (cf. for example,
equation (2) of p. 25), every change of motion of the centre of vibration,
which emits radiation, is accompanied by an instantaneous emission of
radiation ?

The hypothesis of energy-quanta, however, also affects classical
statistics, that is, the method by which, for example, in the kinetic theory
of gases we calculate the average result of many individual events which
are not known to us separately. Like every problem of heat, so the
problem of the equilibrium of radiation is ultimately a statistical question.
The radiation that we observe is composed of an immense number of
separate rays and separate events that occur in the emitting body. Now,
Planck’s investigations showed that classical mechanics could never lead
to Planck’s law of radiation, which has been verified by observation so
excellently, and that, on the contrary, it would lead to a spectrum of
heat radiation that would be in irreconcilable contradiction to the facts
of experience. '

It was just this statistical aspect of radiation that engaged the special
attention of the discoverer of the quantum theory. He purposely brought
the elementary atomistic phenomena which lie at the basis of radiation
under one scheme, by operating with a ‘ harmonic oscillator,” a con-
figuration that emits and absorbs radiation in & manner different from
that of the real atoms. Einstein (and also Stark) maintained the opinion
that the quantum conception must be valid not only in the statistical
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38 Chapter I. Introductory Facts

equilibrium of radiation, but also in the elementary atomic phenomena.
Einstein * called his extension of the principles of the quantum idea *“ a
heuristic view-point concerning the production and transformation of
light.”

Disregarding for the present all obstacles we shall follow Einstein and
describe the photo-electric effect thus. The radiation that is active photo-
electrically is absorbed in energy-quanta kv according to equation (1), and
in a manner depending on its vibration number », it may generate an
amount of kinetic energy hv in the electrons dislodged from the metal.
In this process the kinetic energy that we measure in our observations is
less than that originally absorbed since the electron, in passing through
the surface of the metal, has to perform work to get away. This work
of escape P keeps the free electrons back in the metal if there is no
photo-electric excitation, and it is different for different conductors. The
difference in the values of P for two different metals finds expression in
Volta's series of contact potentials, and is equal to the difference between
the two contact potentials. Accordingly, we get for the velocity of escape
v of the electrons, if m denotes the electronic mass :

2
L e N )

‘We shall leave unanswered the question whether P is a measure of
only the work of escape from the surface of the metal or whether it is
simultaneously a measure of the velocity of escape out of the atom (the
so-called work of ionisation). If there are really free electrons in metals,
then the latter work would be zero, and P would be a direct measure of
the work of escape out of the metal; otherwise, P would be the sum of
both amounts of work.

At the time that Einstein set up the relation (3), only qualitative
evidence was available on which it could be based: the velocity of
electrons emitted photo-electrically increased with increasing frequency
of the exciting light (greater iw) and with the increasing electropositive
character of metals (small P): ultra-violet light had been found to be
more effective than red light ; potassium, which is situated at the extreme
end of the electropositive metals, was more sensitive than copper and
silver. Quantitatively, Einstein could confirm the law only as far as
order of magnitude was concerned. The wave-length of blue light is

A=04p=4.10-%cms.

The vibration number (frequency, or number of vibrations per second)

corresponding to it is

v="2_ 2.1015 sec~1

* Ann, d. Phys., 17, 132 (1905) ; cf. idem., 20, 199 (1906) Zur Theori¢ der Lichter-
geugung und Absorption.
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and the corresponding energy-quantum according to equation (1) is
hy = 6:65.10-%27.4,10' = 5.10-1 ergs.

According to (3) the kinetic energy of the escaping electrons is just
as great, provided that we disregard the work of escape P for the present.
Now, if we calculate the potential V which a cathode ray tube would have
to possess to produce the same kinetic energy 4mv? in a cathode ray tube,
we also get

eV =5.10-12,

If we take for e its value in the electromagnetic system, that is,
e =16.10-% (see p. 15),

we get
V = 3. 108 electromagnetic C.G.S. units = 3 volts.

The same order of magnitude, namely 1 to 2 volts, characterises the
contact difference of potential between two somewhat distant metals of
the Voltaic series, and hence also our work of escape P (which is, so to
speak, the difference of contact potential of the metal relative to a
vacuum). For the kinetic energy of the escaping electrons there then
remains, according to (3), if we take P into account in our calculation,
likewise an amount of 1 or 2 volts, corresponding to the above-
mentioned order of magnitude of the results of observation.

The order of magnitude changes if we pass from visible light to
Rontgen light (X-rays). The wave-length of the latter is, as we
mentioned in the preceding paragraph, about 10* times smaller, and
hence their vibration frequencies about 10% times greater, than the
corresponding quantities in the visible region. If we carry out the same
calculations for X-rays as made just above for blue light, we get for the
kinetic energy of X-ray photo-electric cathode rays, or for the potential
corresponding to this energy, in place of 3 volts, 30 kilovolts, that is,
a voltage such as is usual for working a moderately hard X-ray tube.
Clearly, the work of escape P, being only of a few volts, is to be neglected
in comparison with a voltage of this magnitude. We thus arrive at an
amount of energy that corresponds to that of the secondary cathode rays
mentioned on page 23, of which we said that it is equal to that of the
corresponding primary rays. This shows that the secondary cathode
rays are to be regarded as a photo-electric effect of the primary X-rays
and that their energy, too, is expressed by Einstein’s formula as far as
the order of magnitude is concerned.

Ten years after Einstein had proposed his law, it became clear that
it was not only true in order of magnitude but that it gives the exact,
quantitative expression for the photo-electric effect. This was shown in
particular by Millikan* for the case of the sharply defined greatest energy

*R. A. Millikan, 4 Direct Photo-electric Delermination of Planck's ** 1, Phys.
Rev., 7, 356 (1916).
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40 Chapter 1. Introductory Facts

which monochromatie light (light corresponding to a definite spectral line)
is capable of generating. For if we plot the greatest energies that are
obtained by using various spectral lines in a diagram, in which we plot
the energies as ordinates and the vibration frequencies of the spectral
lines used to produce them as abscisse, the line connecting the points
plotted exhibits & linear increase, the magnitude of which is given by the
constant h.

That there is & maximum value of the energy generated and that just
this and not some mean value of the energy follows Einstein’s law is, in
fact, to be expected according to quantum ideas. For the energy-
quantum kv denotes the energy which the incident radiation initially
puts at the disposal of the electron for the purpose of photo-electric
emission. This energy can, indeed, be reduced through secondary losses
of energy in the metal, but it can never be exceeded. 'We have, there-
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fore, to regard the photo-electric maximum * of energy as being primarily
given and determined by the theory of quanta. It appears that this
maximum of energy obeys Einstein’s law very accurately.

We demonstrate this in the following picture (Fig. 12) by Millikan,
which has been obtained for the case of lithium ; the result for sodium
looks quite similar. Millikan used as a source of light five mercury lines
in succession. The corresponding five points of observation are in-
dicated in the figure by small circles. The frequency number of the line

* About the same time as Millikan, Ramsauer investigated the photo-electric law
of distribution, that is, how often, relatively, the various values of the kinetic energy,
for light of a given frequency v, are represented in the photo-electric emission. He
found the distribution to follow a universal form, independent of the nature of the
metal used and of the light used. The energy that occurs most often (corresponding
to the maximum of the curve of distribution) follows, according to Ramsauer, a law
that expresses linear dependence on the exciting frequency », which is of the kind
given by Einstein and Millikan for the maximum energy. Of. Ann. d. Phys., 45, 1121,
(1914).
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§ 6. The Photo-electric Effect and its Reversal 41

corresponding to the shortest wave-length, the so-called resonance-line
of mercury A = 2536A (A = Angstrém unit = 10-8 cms. = % pp) is
v = 1'18.10'%; the frequencies of the others can be read off from the
figure along the z-axis. Opposite the Li-plate is a so-called Faraday
cage, carefully sheltered from electrostatic influences, which is connected
with the electrometer : the plate gives up the photo-electric cathode rays,
released by incident radiation, to this Faraday cage. The plate and the
cage are kept in a vacuum. If the plate is now charged positively, the
ejected electrons experience a restoring force. A certain intensity of
charge just suffices to turn back all electrons, including those that are
emitted perpendicularly to the plate with the maximum velocity. The
reversing potential, in volts, corresponding to this charge is at the same
time, according to the law of energy, a measure of the maximum kinetic
energy of the incident light. Corresponding to every vibration frequency
of the incident light there is a different photo-electric maximum of energy,
that is, a different voltage of the reversing potential. Millikan next
proceeds, by means of an auxiliary figure (see Fig. 12, the right-hand
bottom corner), to determine graphically the voltage of the reversing
potential for which the photo-electric current becomes just equal to
zero.*

In the main part of Fig. 12 this voltage number is mapped out as the
ordinate and the same is done in the case of the other four frequencies.
The points obtained lie beautifully on a straight line (departing from it
by less than 0-5 per cent). The inclination of the line, expressed in
C.G.S. units, is :

h = 6.58 .10-%" erg secs. in the case of Li
and & = 6'57 .10-%7 erg secs. in the case of Na

agreeing fully with Planck’s value of & in equation (2).

In the realm of X-rays, too, we may regard Einstein’s law as an exact
expression of the facts and not only as being correct in order of
magnitude : here we may state it in the simplified form in which the
work of escape P is omitted (cf. p 38). Thus we write

=1‘232=hv 7
If we read this equation from right to left, it represents the process of
generating secondary cathode rays by primary X-rays: it determines
from the frequency v of a monochromatic Rontgen radiation the
maximum velocity » of the cathode rays which this radiation is able to
release when it impinges on any arbitrary material substance, and it
likewise determines the corresponding voltage that is equivalent to the

* The particular advance made by Millikan beyond his predecessors consisted in
the accuracy with which he determined this reversing potential. This is expressed in
the circumstance that the curve of our auxiliary figure cuts the z-axis i a well-
defined point at an angle that is not excessively acute.
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maximum velocity generated in the cathode rays. We have, as in the
photo-electric effect, the transformation of wave-radiation into corpuscular
radiation. The same equation, however, represents the transformation
of corpuscular radiation into wave radiation. For if we read it from left
to right, V denotes the voltage of the X-ray tube. This produces the
primary cathode rays of velocity v: when the latter strike the anti-
cathode, they produce X-rays, characteristic radiation, and impact
radiation. The spectrum of the impulse radiation is, as we saw in the
previous paragraph, continuous. This spectrum stretches from a small
v (soft X-rays) up to a sharply defined limit in the region of short fre-
guencies, which corresponds with the hardest X-rays that can be pro-
duced by the voltage V; the frequency corresponding to this limit is
given by equation (4). So, here too, the relation between the voltage V of
the tube and the limiting frequency v is expressed by Einstein’s linear law.
As V increases, the short wave limit of the continuous spectrum moves
to higher frequencies. The frequency of the greatest intensity, as also
the average hardness of the radiation, becomes displaced in the same
sense. The well-known law (cf. p. 30), that the hardness increases
with the voltage of the tube is thus likewise a consequence of Einstein’s
law ; it is, in a sense, a more sketchy form of it.

In particular, we get as a direct result of the double reading of
Einstein’s law the equality, emphasised above (p. 23), between the velocity
of primary and secondary cathode rays. The production of secondary
cathode rays from primary X-rays seems a direct reversal of the pheno+
menon of the production of primary X-rays from primary cathode rays.

The existence of the short wave limit of the continuous spectrum is a
main feature in the complete picture of X-ray phenomena. There seems
no possibility of success in attempting to explain it from the point of view
of the classical theory of radiation. However we may care to picture the
details of the phenomenon of impulse radiation, the resolution of the
radiation emitted into Fourier terms would, according to classical electro-
dynamics, lead to a spectrum that would stretch to infinity on the side of
higher frequencies. Thus the existence of the short wave limit is an
unmistakable hint that we must go further than the classical theory of
radiation and work out & quantum theory. Einstein’s law formulates this
fact as compactly and precisely as can be desired. That it is quantitatively
correct will be seen in Chapter III, § 7. Just as in the case of the photo-
electric effect, the measurement of the short wave limit of the continuous
X-ray spectrum may be elaborated so as to lead to & precise determination
of the constant of radiation k.

‘We shall now at once go a step further to the extreme end of the scale
of frequencies—to the y-rays—and we shall discuss their connexion with
B-rays.  Concerning this connexion there are particularly convincing
researches,* by Rutherford, Robinson, and Rawlinson, undertaken in the

* Phil. Mag., 26, 717 (1918), and 28, 281 (1914).
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years 1913 and 1914, which give quantitative evidence. The B-rays of
certain radium preparations (RaB and RaC, cf. the following section) have
velocities which, over a certain region, approach the velocity of light, but
within this region of velocity they, in the main, assemble at individual,
discrete points. By means of magnetic deflection they can be resolved
into a ‘“velocity-spectrum.” This velocity-spectrum is then observed
once, at the beginning, with a wire brushed with the radium preparation,
and then, after the wire has been surrounded by a lead envelope that
absorbs the B-rays, the spectrum of the secondary rays is observed. In
the latter case the primary B-rays remain imprisoned in the absorbing
layer. But they absorb secondary y-rays, for which the layer is trans-
parent. What we observe when we apply magnetic deflection are the
secondary 3-rays produced in their turn by the y-rays—in particular, those
B-rays that are produced near the surface of the absorbing envelope and
which escape without any considerable reduction of velocity. A com-
parison of the primary with the secondary spectrum shows that they are
exactly identical (except for a certain broadening in the region of lesser
velocities). This proves that the transition

B-rays Z y-rays
is a reversible phenomenon that is regulated accurately by the hv-relation.

We have now to take only one step further to arrive from Einstein's
law to one of the main pillars of Bohr's theory of spectral lines.

‘We have seen how energy of monochromatic frequency kv is taken up
by a metal atom and how it reappears as kinetic energy of a photo-electric
electron. If we now suppose that the absorbed energy of vibration does
not suffice to release the electron from the atom, then it will only effect a
re-adjustment in the atom, in which the atom passes from a lower to a
higher step of energy. We can imagine this transition to be similar to
that of a weight which is lifted from a lower initial position to & higher
final position. If W, and W, (> W,) are the initial and final energies of
the atom, respectively, then we get, as a counterpart to Einstein’s photo-
electric equation, Bohr's fundamental equation for a phenomenon of optical
absorplion :

=W, -W, . . . . b)

‘We saw, on the other hand, that an initially given amount of energy
of cathode rays or its equivalent volt-number produces Réntgen radiation,
the maximum #v of which is equal to the initial energy. =This maximum
hw is not reached in every elementary process because in general a fraction
of the available cathode ray energy W, is transformed into wave radiation
and another (indefinite) fraction W, remains in the form of cathode-ray
energy. If we now suppose that the primary energy originates in the
change of configuration of the atom, of which the initial energy is W, and
the final energy W, << W, so we may here too, expect a radiation to appear

thus
v =W, - W, . . . . (6)
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This radiation is now strictly monochromatic, because in this case W, as
well as W, is fixed as a discontinuous quantity by the configuration of the
atom. In equation (6) we have Bohr's fundamenial equation for the
‘phenomenon of optical emission.

Just like Einstein’s law, this extension of it by Bohr claims to be valid
with absolute accuracy in the entire spectral region from the slowest heat
rays to the most rapid X-rays and y-rays. Thus this quantum law regu-
lates in the same way as Einstein’s law the transition of wave radiation
into corpuscular radiation as well as the reverse process; it governs the
phenomena of absorption as well as those of emission, in optical regions
as well as in the region of high frequencies. There is no doubt that we
are here dealing with one of the most mysterious of physical laws.

The photo-electric phenomena and the other phenomena of absorption
in optical and X-.ray regions certainly give the impression that wave
energy as well as the energy of corpuscular radiation is concentrated at
certain points. This brings us to the extreme view that light consists of
“light-quanta” that leave the centre of emission with the speed of light.
Particularly the facts of the production of secondary cathode rays by
X-rays seems to admit of no other interpretation. In phenomena of
optical absorption we see the same transformation of radiation energy kv
into mechanical work exerted on the electron take place in the interior of
the atom. How is this transformation to be interpreted if the wave
energy is not concentrated in the form of light-quanta, and is not
available all at once?

There has been no dearth of attempts to reduce the contradiction be-
tween the “ quantum " and the *“ classical ” view of energy transference.
In conjunction with Debye the author has put forward a view of photo-
electric phenomena and a method of deriving Einstein’s law,* which does
not deprive radiation of the character demanded of it by the wave theory,
that is, which does not require the use of compact elements of energy of
amount kv and which, instead, ascribes to the atom the property of being
able to pile up energy of radiation to a limiting amount determined by the
constant i. As soon as this limit is reached, the electron is supposed to
be released from the atom and to escape with the energy which it has
collected. Under certain conditions (chosen in rather an artificial manner)
Einstein’s law for the energy of the escaping electrons may be deduced.
At the same time the “ time of accumulation” that is necessary for the
heaping-up of the energy hv may be calculated. If a powerful source of
light is assumed, then this time in the case of the photo-electric effect
comes out fairly small (fraction of a second), but when the calculation is
made for the conditions of the X-ray photo-electric effect, for which
the energy-element kv is much greater and the intensity of radiation is,
in general, much smaller, impossible *accumulation times ™ come out,
times of the order of magnitude of years! Yet experiment shows that, in

* Ann. d. Phys., 41, 873 (1918).
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the case of X-rays as well as in that of ordinary light, the emission of
electrons commences immediately, as soon as the exposure to the incident
light begins, and ceases the moment the exposure is stopped. From the
point of view of the wave theory the source of the great energy of emission
remains incomprehensible. The phenomena actually occur as if in light
of frequency v there are v energy-elements of the magnitude hv, which are
ready at any moment to become transformed, according to Einstein’s law
(in atoms that are appropriate), into kinetic energy of electrons. Later,
when we come to speak of the absorption and excitation of spectral lines, we
shall find ourselves compelled to adopt this standpoint of * light-quanta.”

On the other hand the continuous propagation of wave-energy is so
firmly established for phenomena of interference and diffraction (also in
the region of X-rays, owing to the Laue effect, cf. Chap. III) that it
makes the idea of light-quanta appear quite out of the question. Modern
physies is thus for the present confronted with irreconcilable contradic-
tions and must frankly confess its ‘‘ non liquet.”

§ 7. Radioactivity.

Hitherto we have considered only the physical manifestations of
radioactive processes. A few remarks about the chemical carriers in-
volved must now be added.*

A characteristic feature of radioactivity is that it occurs essentially only
in the case of the elements of greatest atomic weight. Uranium (Ur-ahn
= original ancestor of the radium family) is the heaviest element, having
an atomic weight 238:3. Thorium, the parent substance of the thorium
family, is the second heaviest of the elements that were known before
radioactivity (as its atomic weight = 23215). It is therefore allowable
to regard atoms that are too heavily loaded with matter as hypertrophic,
configurations that are unstable and disintegrate into simpler forms.

‘We shall take for granted the sum-total of radio-chemical research in
the form of the genealogical tree given in Table 1. How it became
possible to set up these lines of descent will be made clear below (in the
theory of disintegration), and also partly in the next chapter (§ 5, “ Laws
of Displacement”). It need only be remarked here that without this
theory as a kind of Ariadne’s thread it would have been impossible to
find a means of locating the members of this manifold series of new
elements. On the other hand we must mention that it is only the extra-
ordinary sensitiveness of electroscopic observations of radioactivity, a
sensitiveness which far exceeds that of the balance, that has enabled us
to prove the existence of the products of disintegration, for these are
often present in only very minute quantities.

* Cf., besides the comprehensive works mentioned in § 8, the résumé of Fajans in
Jabrg. 16 der Physik, Zeitschr., 1915: Das periodische System der Elemente, die
radioakliven Umwandlungen und die Struktur der Atome. Cf. also Radioaktivitt

und die neueste Entwickelung der Lehre von den chemischen Elementen. 8. Aufl.,
1921, by the same author in Sammlung Vieweg.
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Formerly, three radioactive families were distinguished, the Uranium-
radium Group, the Actinium Group, and the Thorium Group. It was,
however, conjectured that the actinium series was a branch of the
uranium series. This has been confirmed by Hahn and Meitner’s
discovery of protactinium; the exact point at which the branching
commences is not quite certain (it is at Uranium II in our table). Thus
there remain only two families: the Uranium family and the Thorium
family (vide Table 1 on the following page).

The upper rows of our genealogical tree shows the stages of develop-.
ment from the two parent substances U and Th as far as the three
emanations (the inert gases). The subsequent development, which runs
parallel in the three, now distinet, families, is shown in the lower rows.
In each case they end with an element having the character of lead.
The actinium series ends with AcD (actinium lead), and the thorium
series ends with ThD (thorium lead), but we are not yet certain whether
these are really permanent final products or only intermediate pro-
ducts that disintegrate exceedingly slowly and whose further disinte-
gration is yet unknown. In the radium series the analogous substance
RaD is certainly not & final product: to it there is linked the series RaE,
RaF = polonium, and RaG = radium lead. The similarity of the three
trees of descent between the emanations and the D-products is shown not
only in the number of products of disintegration and their position in the
patural series of elements (cf. Table 4 in Chap. IT, § 5) but also in the
mode of disintegration (denoted in our table by the letters « and 8 printed
above the arrow used to signify transformation; y denotes that y-rays
are present). At corresponding positions in the genealogical trees the
disintegration is effected either by an a-transformation (emission of
helium) or a B-transformation (electron emission), or by a simultaneous
a- and B-transformation. The notation here adopted takes due account of
this parallelism of disintegration. It has been suggested by Stefan Meyer
and Schweidler and differs from that formerly in use (which arose
historically and which is thus less systematic) in the names given to the
C- and D-products.

Below the symbol of each element we have recorded the “half-value
time”; this is the time which has elapsed when half the body is disinte-
grated. It is proportional to the “ mean duration of life ” of the ele-
ment. We shall explain later how it is determined. The abbreviations
a, d, h, m, s, denote : year (annus), day, hour, minute, second. 'We thus
have long lived elements with spans of life stretching over millions of
years (UI has a half-value time of 5.10° years, and.Th has one twice as
long) and short-lived elements which live only for seconds or fractions of
a second. The elements whose lives are shortest are to be found among
those designated by C':

RaC’ has 10-¢ seconds, AcC’ 5.10-3 s, ThC’ 10-11 s.
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48 Chapter I. Introductory Facts

These numbers like all the bracketed half-value times have been found,
not from observation, but from calculation. Within the region above
mentioned (from the emanation to the lead group) there is also a certain
parallelism between the half-value times of the three families.

The branching between RaC and RaD over RaC’ and RaC”, and the
exactly corresponding branching of the Th- and Ac-tree is of special
interest. The fact that RaC is transformed into different products (RaC’
and RaC”) according as it disintegrates by a 8- or an «-transformation,
is intelligible. But the fact that these products, when subjected to the
same transformations but interchanged (ie. by an a- and a B-trans-
formation respectively), resolve into the same element RaD will be made
plausible by the displacement laws of Chap. II, § 5, but it is not em-
pirically certain. In addition to these ramifications we have in our table
also the (at present hypothetical) branch at UII which is supposed to
consist of a double a-radiation. The branch product UZ (half-value time
6-7 hours), which emits 8-radiation and was discovered by O. Hahn,* has
not been included in our table as the point at which it branches off
(UX, ?) and its further development are not known with certainty.

We thus see that in virtue of these ramifications there are represented
in our genealogical tree not only children and grand-children but also
brothers and cousins of the first degree as well as of higher degrees.

Our next step is to give a short note on the laws of radioactive
disintegration. These laws arise directly and are of an extraordinarily
simple type. Being fully independent of temperature and pressure, they
thus differ fundamentally from the laws that govern ordinary chemical
transformations. Nor are they dependent on whether the active sub-
stance is present as an element or a salt, whether it is pure or mixed with
other substances. Everything seems to support the view that we are not
dealing with an action of one atom on another but rather with some inner
atomic process.

In Fig. 13 we consider a particularly simple case. We are dealing
with the disintegration from U into UX, or, more exactly, from UI into
UX,, that is, with the process that stands at the head of our table. Let
us take the B-ray activity as an indicator. That is we shall suppose the
a-rays to be eliminated by absorption for the sake of our present argu-
ment.t Only the 8- and y-rays penetrate into the electroscope, ionise
the air, and produce a charge which flows into the leaves of the electro-
scope and which serves as a measure of the number of ions formed. But
since y-rays are ineffective in forming ions, as compared with 8-rays, we
need here regard the activity as referring solely to B-ray activity ; *in-
active ”’ means “ producing’ no S-rays.

The preparation with which we start is not pure uranium but already
contains a certain very small percentage of UX. It is possible to

* Ber. d. Deutsch. Chem. Ges., 54, 1131 (1921); Naturwissenschaften, 1921, p. 84.
t 135 mm. of Al are sufficient to absorb the most rapid a-rays almost entirely.
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§ 7. Radioactivity 49

precipitate the latter from the uranium by repeated application of barium
sulphate. The UX thus isolated carries away the whole activity of the
preparation with it, and the U itself is left behind entirely inactive at
first. In the figure we have thus set the initial activity of U equal to
zero, and that of UX equal to 1. From these initial states onwards the
activity of the UX diminishes regularly to zero, whereas that of U
simultaneously recovers and increases from O to 1. By comparing the
two curves we see that their ordinates at each corresponding point add
up to 1. If J,(¢) is the activity of UX at the time ¢, and J,(¢) that of U
at the same moment, then we have:

Ly=1-J,6 . . . .

Hence although these products are distinet from one another
(chemically, and, for example, separated by a considerable distance in
space) they yet continue to act in full accord with one another: the
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activity lost by the one is gained by the other; the sum of their activities
is constant just as would have been the case if we had not separated
them chemically.

According to the disintegration theory of Rutherford and Soddy, the
explanation is as follows. The constitution of the atom, and this alone,
invests any arbitrarily chosen atom with & certain probability that it will
disintegrate in an arbitrarily chosen unit of time. This probability is
called the radioactive constant (or decay constant) of the atom. From
this there follows the essential principle of the theory of disintegration :
The number of atoms that decay per unit of time is equal to the radio-
active constant multiplied by the number of atoms still present (namely,
equal to the probability of decay of an atom multiplied by the number of
atoms). On the other hand the activity of the prepared substance is,
except for a constant depending on the apparatus, equal to the number
of atoms that decay per unit of time (in our case the atoms disintegrated

4
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50 Chapter I. Introductory Facts

by the B-transformation). In conjunction with the above principle, this
leads to:
IJH=Cwm . . . . . (2

where J = activity at the time ¢, C = the apparatus constant, A = the
radioactive constant, and n = the number of radioactive atoms at the
time ¢.

We next apply this principle to the two curves of Fig. 13.

I. In the case of UX isolated from its parent substance, the number
of atoms n is changed only through the decay of the atoms present.
Therefore the number of atoms that decay in time dt is — dn. From
this, and from the principle of the disintegration theory we get the
following differential equation for the disintegration of UX :

~ dn = Andt . . . . . (3)

Thence it follows that if n, denotes the initial number of atoms of UX,
and if e is the base of natural logarithms,

n=ne-MN . . . . . )
and, by (2),
J(t) = Cange-2t . . . . (5)
In our figure we chose our unit so that J(0) = 1. Hence we must set
Cany=1 . . . . . (6)
and thus get
J,(t) = e~ . . . . . (7

The curve in Fig. 13, which was obtained from direct observation, agrees
exactly with this exponential law. Its rate of decline allows us to
determine the decay or radioactive constant A.

II. In the case of the U that has been purified of UX, let N be the
number of uranium atoms at the time ¢, N, the initial number, A the
radioactive constant of uranium. The decay again takes place according
to the law (3), which now assumes the form:

—dN=ANdt, N=Ng-A . . . (8

Now, the radioactive constant A of the uranium is extremely small com-
pared with the radioactive constant A of the UX, i.e.

ALy . . . .09

Hence, within a period of observation that is not reckoned in millions of
years, we may reasonably set :

Ab=0, eA=1 . . . . (10

and hence, by (8),
dN

N=N, -g=AN, . . . (1
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Measurement of the activity in this case discloses nothing of this change,
since it is an e-transformation. For this measurement depends only on
the B-transformation of the UX. Now a UX-atom arises from each U-
atom. If the latter were not to decay, we should have simply dn= - dN
and, by (11),

d
T =AN, n=ANt . . . (12)

The number n of UX-atoms and therefore also the activity J(¢) of UX
would thus increase uniformly with the time, and would thus be repre-
sented by a straight line in Fig. 13, namely the initial tangent of the
curve there shown as J,(!). But the increase does not continue inde-
finitely, for the UX-atoms decay in their turn: a state of equilibrium is
gradually reached, in which just as many UX-atoms decay as are formed.
If n, is the number when equilibrium is reached, then the number of
UX-atoms which decay per unit of time is, according to (3), An,, the
number of those being formed is equal to the U-atoms that are decaying,

and = AN,, by (11). Hence, in radioactive equilibrium :

Any, = AN, . . . . . (13)

In the state of radioactive equiltbrium, the number of atoms of parent
substance and child product are in the inverse ratio of the corresponding
radioactive constants.

This state of equilibrium existed during the initial separation of the
U and the UX. The equilibrium number 7, just calculated is thus
identical with the initial number of atoms 7, of UX in equation (4). In
the state of equilibrium the activity of UX will be, according to (2)
and (6), )

J, =Cany = 1.

Our curve J,(t) which was originally an oblique straight line thus curves
round into a horizontal straight line, which is at unit distance from the
time axis.

If, further, we wish to find the law of curvature, we must complete

(12) thus:
dn

@U= ANy, - An

by taking account not only of the production of the UX-atoms but also
of their decay. As a result of (13) this equation may be written :

a
—J’Z + An = An,

and may be integrated by simple mathematical rules, if we take into
consideration the initial conditions n = 0, ¢ = 0, thus:

n=ny(l - e-2).
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52 Chapter I. Introductory Facts

By multiplying this by CA we get the activity J,(¢) = Can. From (6) we
get for the latter:
T)=1-e* . . . . (14
Thus Jy(t) tncreases according to the same expomential law as that by
which J,(t) decreases. J,(t) and J,(f) sum up to unity.
This is the full explanation of Fig. 13. The same diagram gives us
the semi-decay time of UX. For it, the relation holds:

e~M =1 — g-At or g~At = -& . . . (15)

The abscissa of the point of intersection is thus the time which has
elapsed when the exponential function has diminished to a half of its
initial value, i.e. at the time £ = 0. In our case the curve tells us that
the half-value (or semi-decay) time ¢, is equal to 23-8 days.

In addition to the half-value time we also arrive at the radioactive
constant. For from 15 it follows that

My=1log.2=693 . . . . (16)

The radioactive constants are in the inverse ratio of their half-value
times. The values of these times are given in Table 1.

Closely related to the conception of half-value time we have the con-
ception of mean length of life or average life. If we denote the latter by
t., we get in place of (16),

A, =1 . . . . . @an
For, as in social statistics, we define the mean length of life by first
multiplying each age by the relative number of the individuals that just
attain this age but do not exceed it and then summing all these products
of age and relative number. In our case, as we see from (3) and (4),
— dn is the number of atoms which at the time ¢ decay within the time-
interval dt, and n, the total number of atoms initially present, thus

- dn

Ty

= Ae~Md}

signifies the relative number with which we are here concerned. By
multiplying it with the corresponding ¢{ and summing for all #'s, we
get the required average length of life :

_ - dn\ _ m_,‘,
tL_jt( no)—Jte Mt . .. (18)

[

Equation (17) follows simply from this definition if we multiply both sides
of (18) by A and introduce z = Af as & new variable of integration :

Aty = Ixc"d.z: = 1.

0
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§ 7. Radioactivity 53

By comparing (16) with (17) we see that we get the average lengths of
life of the radioactive elements by dividing the numbers of Table 1 by ‘693.

In general, conditions are not as simple as in the example we have
so far discussed. This simplicity was due in the first place to the fact
that the life of Ul is very long compared with that of UX,. We made
use of the resultant simplification (A <€ A) in passing from equation (8) to
equation (11). But then the further fact comes into consideration that
-the life of UX, ({z = 1-15 minutes) is very short compared with the life
of UX, (cf. Table 1), and that the life of UII is again extraordinarily long
(tg = 2.10° years). The result is that immediately following on the dis-
integration of each UX,-atom, i.e. at intervals of probably about a minute,
the decay of the new-born UX,-atom and the transition to the UIl-atom
takes place. The decay is accompanied by 8- and y-radiation, and there-
fore increases the ionisation produced by the decay of UX,. In fact,
on account of the greater hardness of the B-radiation of UX,, it forms
the main part of the entire ionisation that is observed. The addition of
the decay of UX, does not, however, bring about to any appreciable extent
a delay in the rate at which the activity dies down, or a change in the
exponential law given by the curve. This allowed us to use the short term
«UX,” as referring to & uniform product, in our explanation of Fig. 13,
thus treating the two elements UX, and UX; conjointly as was the
practice formerly before these two elements had been separated. Nor does
the activity of UII, which remains after the decay of UX, and UX,,
cause a change in the course of the activity curve, since, being an o-
activity, it evades measurement.

We get a complete picture of the great possibilities of the theory of
decay only when we consider the course of the activity in a case in
which several products of approximately the same length of life par-
ticipate. The classical example is given by the precipitate which is
produced by radium emanation. This precipitate consists of a mixture
of RaA, RaB, RaC, which becomes transformed into the long-lived RaD.
The short-lived products RaC’ and RaC” are included here under the
symbol RaC. The a-activity curve of this mixture is shown in Fig. 14.
Since RaB emits only 8- and y-rays (cf. Table 1), it does not come into
account for the measurement of a-activity, except in so far as it becomes
changed into RaC. At the beginning of the measurement the products
A, B, and C are in equilibrium. By (13) we then have

Ay . Ny=2A.Ny= 2. N

if N,, Ng, N, denote the amounts of these products present (properly the
numbers of atoms of each). These amounts are different. By (2),
however, the activities of RaA and RaC, which we shall denote
briefly by A and C, are equal when in radioactive equilibrium, as
long as the apparatus constant that comes into question may be
regarded as constant. In the case of RaB, which has no a-activity,
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54 Chapter I. Introductory Facts

this constant is equal to zero. In Fig. 14 we therefore make the curves
A and C start with the same co-ordinate, whilst B starts with the
ordinate zero. The curve B, which represents the indirect contribution
of RaB to the a-radioactivity (this contribution asserts itself gradually),
ascends by degrees, like the curve for J, in Fig. 13, in proportion as
RaB produces RaC, but not to a constant value, as did J,(¢) earlier, but
to & maximum (on account of the limited life of RaB), and then gradually
drops to 0 again. The sum of the ordinates of B and C has been plotted -
as the curve L = B 4+ C and shows the activity of the whole RaC that is
present (namely that which is originally present and gradually dissociates,
and the RaC which is developed from RaB). In actual measurement we
get the curve L + A = A + B + C for the whole activity. Its quick
descent at the beginning betrays the presence of the comparatively short-
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lived component A (half-value time 3 minutes). Its later more gradual
descent points to components whose lives are longer (half-value time of
RaB is 27 minutes, of RaC is 19'5 minutes). The theory of decay gives
us as the theoretical representation of this curve, A + B + C, the sum of
three exponential functions whose exponents are — X,f, — Agf, — At and
whose coefficients depend only on A4, Ag, Ac. We must use analysis to
find these three unknowns A,, A, Ac.. The fact that this analysis is
possible, that is, that the results of observation may be represented
accurately by superposing three exponential curves with appropriately
chosen exponents and coefficients, proves that only three components
whose lives are of the same order of length have contributed to the
activity that has been measured. It may be remarked that in the pre-
ceding case a direct separation of the products A, B, and C is also possible
by physical and chemical methods.
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These few examples of the observations furnished by radioactive
researches conclude our note on the radioactive series of transformations.
It is hoped that they will have given the reader on the one hand a picture
of the simplicity and capabilities of the theory of decay, on the other
hand an idea of the methods that have led to the genetic relationships
recorded in Table 1. We have now only to touch on two points of more
general significance.

Our first question is whether radioactivity is a peculiarity of the heavy
metals uranium and thorium or whether it is a general property of
matter. The only certain fact that can be stated is that potassium
and rubidium both exhibit a feeble B-activity. So that even if a high
atomic weight doubtless favours radioactive decay, it is not the deciding
factor for this activity. The assumption, that there are also genetic
relationships between other elements and that they can be proved by the
existence of radioactive transformations, is at any rate supported by the
examples of K and Rb. It receives weight from the regular connexion
between the atomic weights of the periodic system, to which we shall turn
our attention in the next chapter.

Then there is the second question: Whence does the energy of
radioactive actions come? At the beginning of §3 we saw that the
energy of the a- and B-rays is many times more than that which any of
our present technical means will allow us to produce in the case of canal
and cathode rays. When the rays are kept back in the prepared sub-
stance, they produce and maintain an increase in the temperature of the
substance, which is several degrees higher than that of the surrounding
air. The heat energy generated by 1 grm. of radium amounts to about
100 calories per hour. A familiar problem of long standing asks how
the energy which the sun loses by radiation is continually replaced. In
this case, too, reference has been made to the apparently inexhaustible
supplies of energy derived from radioactive processes. Whence does all
this energy come? The answer is: from the interior of the atom, or,
more precisely, from the innermost part of the atom, from the * nucleus ”
of the atom. We thus indicate the role which has to be assigned to
rodioactivity in our theory of the atom. The sources of energy which
thus make their entrance into the outer world are of an order of magni-
tude quite different from the energies of other physical or chemical
charges. They bear witness to the powerful forces that are active in the
interior of the atoms (in the nuclei). This inner world of the atom is
generally quite shut off from the outer world. It is not influenced by
the temperature or pressure conditions that exist outside. It is governed
by the law of probability, the law of spontaneous decay that can in no
wise be influenced. Only as an exception is a door left open which leads
from the inner world of the atom into the outer world. The a- and
B-rays that are hereby emitted are emissaries from a world otherwise
closed.
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CHAPTER I1
THE NATURAL SYSTEM OF ELEMENTS

§ 1. Small and Great Periods. Atomic Weights and Atomic Numbers

the alchemists of the Middle Ages and by the research chemists of the

eighteenth and nineteenth centuries the human intellect has never quite
lost the view that unity and order exist among them. The old postulate
of natural philosophy that there must be & common basic substance in all
matter recurred again and again, particularly in the form of Prout’s
hypothesis (1815), because only the fulfilment of this condition could give
us hope that we should succeed in understanding fully chemical action.

This goal has assumed a more definite shape since the discovery of
the natural or periodic system of the elements by Lothar Meyer and
Mendeleef about 1870. In this system, as is well known, the elements
are written down in the order of increasing atomic weights, the series
being broken off at appropriate points. Chemically related elements are
written in the same vertical column, e.g. the alkalies, Li, Na, K, Rb, Cs,
in the first column; the halogens, F, Cl, Br, J, in Column VII; since 1895
(Rayleigh and Ramsay) the inert gases, He, Ne, A, Kr, X, Em, have
become added as Column VIII (cf. Table 2).

In general, the number of the column is the same as the oxygen-
valency of the elements contained in it. The valency increases by one
for every step from left to right in the periodic system. On the other
hand, a different kind of valency, the hydrogen-valency, increases in the
periodic system from right to left; this is particularly pronounced in the
columns from VII to IV. As the oxygen-valency increases the electro-
positive character (basic nature) becomes stronger and passes over into
the electronegative character (acidity).

In this mode of tabulation the system of elements seems, externally at
least, to be built up of periods of eight. Before the discovery of the
inert gases they were true “octaves’ in the musical sense, i.e. periods of
seven (Newlands, 1864). The structure in periods of eight is, however,
only apparent, for the periodic system has not so simple a periodicity,
At the beginning, for example, there is a period of only two elements (H
and He). Then there follow two periods of eight, the two *“small”
periods of eight exactly corresponding elements. They are succeeded by
two * great " periods of eighteen elements, which can be forced into the

56

IN the face of the manifold of elements which were brought to light by
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58 Chapter II. The Natural System of Elements

scheme of series of eight only by somewhat artificial reasoning. As a
matter of fact the alkalies, halogens, inert gases, and altogether the
elements which exhibit exactly corresponding chemical behaviour follow
one another after a further eighteen steps and are thus separated in our
scheme by an intermediate series. By writing the terms on the right
or left side of the individual spaces we succeed in making only those
elements that correspond exactly lie in a vertical line. The fact that H,
strictly speaking, belongs neither to the series of the alkalies nor to that
of the precious metals, Cu, Ag, Au, is indicated by placing H in the
middle of the space. Likewise C and Si are placed in the middle be-
tween the two sub-groups of Column IV. It is to be noted, however.
that the elements that lie consecutively in the same vertical column
but are not written in an exact vertical line, are related in certain ways,
For example, Cu and Ag are univalent just like the alkalies in the same
column; Zn and Cd are divalent like the alkaline earths, and so forth.
This “secondary” relationship becomes weaker at the end of the hori-
zontal series, particularly in Column VIII, in which we group with the
inert gases the triads, Fe, Co, Ni, and Ru, Rh, Pd, constellations of ele-
ments that are interrelated among themselves, but are absolutely dis-
similar from the inert gases. It is only by uniting these triads in one
column that the number 18 of the great period can be adapted to fit
the double number 2. 8 of the small periods.

The great periods are then followed by a very great period of thirty-two
elements which begins in the regular fashion with an alkali (Cs) and ends
with an inert gas (Em). It, too, has its representative in Column VIII, a
triad Os, Ir, Pt. But the whole series of rare earths (stretching from T.a
to Tu,), sixteen in number, will admit no periodicity and can in no way be
inserted in the Columns Ito VIII. As we are dealing, in their case as well
as in that of the triads, with elements that are closely related chemically,
we may group them together into a “ hexadecade ”* (a group of sixteen), for
which there are two empty spaces in the Columns IITand IV. If it were
possible to print them so, we should insert this hexadecade in Columns
IIT and IV ; instead of this, however, they had to be printed separately
below. Written in this way the period of thirty-two elements also appears
distributed among the spaces of two horizontal series, whereby exactly
corresponding elements, separated by a horizontal row lie below the
corresponding elements of the period of 18, thus W lies under Cr and
Mo, Au under Ag and so forth.

This greatest period is followed by a series of only six elements which
end with the heaviest element uranium. But it is quite admissible to
imagine this series continued, say to the number of thirty-two terms, and
to assume that it is only due to reasons of instability that the later elements
no longer exist. The facts of radioactive decay (cf. Chap. I, § 7), indeed
encourage the view that elements heavier than uranium are possible in
themselves although they cannot exist under the conditions of our earth.

Go 3lc
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The periodic numbers 2, 8, 18, 32, with which we are thus left may
finally be written in the following somewhat cabalistic form suggested by
Rydberg :

2=2.1%, 8=2.2%, 18=23.3%3 32=2.4%

The newest reflections of Bohr, as expressed in his letter, *“ Atomic
Structure,” in Nature (24th March, 1921), seem to show the way in which
this series of numbers is to be interpreted. To make their physical
meaning clear he has written the right-hand factors in the following
form :

2=1.3 8=2.4, 18=3.6, 32 =4.8.

‘When we write down the natural system of the elements in the order
of increasing atomic weights! we find that at four points the natural order
is transgressed. There is no doubt that we must write the inert gas A
before the alkali K, although the atomic weight of the former is greater
than that of the latter. Furthermore, Co must come before Ni and Te
before J, in spite of the order of atomic weights. After the recent
discovery of protactinium we have the fourth exception, for we must set
the series Th and Pa in the reverse order of their atomic weights. These
necessary reversals of order have been indicated in the table by a double
arrow. The method of X-ray analysis will remove these blemishes in the
system and will restore the natural order of the elements. This method
will show that the atomic weight is not the true regulative principle in
the natural system, but that it is only a complicated and as yet unex-
plained function of the true “atomic number " (Ordnungszahl).

The true atomic (or sertes) number is simply the number which gives the
position of the element in the natural system when due account is taken of
chemical relationships in deciding the order of each element. In our table
this number is printed directly before each element.

By arguing on the basis of the periodic system it was possible some
time ago to predict unknown elements and to discover them subsequently.
These are the elements bearing the national names, Gallium (1875, Lecoq
de Boisbaudran), Scandium (1879, Nilson), Germanium (1886, Winkler),
Polonium (1898, Madame Curie). The former three had been predicted
by Mendeleef and their properties had been accurately described.
Nowadays we can give the exact number, five, of the still existing gaps in
the system by means of the method of X-ray spectroscopy. These have
been marked in the table by a star.  In conformity with the position of
the missing elements, they should be called eka-manganese, eka-eka-
manganese, eka-iodine, and eka-caesium; the fifth unknown element is
situated in the group of rare earths. v

The atomic weights, with a regularity far exceeding the bounds set by
the laws of probability, are integral numbers or very nearly so when
referred to oxygen = 16. This integral property agrees with Prout’s
hypothesis (that elements are composed of hydrogen atoms). There are
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60 Chapter II. The Natural System of Elements

certain exceptions (e.g. Cl = 35'46, and Cu = 63:57), but they are rare.
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We shall revert to these ex-
ceptions and to their elimina-
tion by F. W. Aston in the
fifth section of this chapter.
‘Whole numbers of the form,
4n and 4n + 3, are particu-
larly frequent, the former
generally in even spaces, the
latter in places where the
atomic number is odd.

Thus, if we compare an
element with the next but
one element, we get for the
difference of their atomic
weights as a rule approxi-
mately four. Hence the
average increase in the
atomic weight as we pass
from element to element is
not one but two. Or, in
other words, the atomic
number of the element does
not on the daverage coincide
with the atomic weight, but
with the half of the atomic
wetght. This rule certainly
holds only at the beginning
of the system (as far as Ca) ;
thence onwards systematic
deviations occur in the sense
that the semi-atomic weight
increases more rapidly than
the atomic number and ex-
hibits a greater and greater
difference. As this rule will
be of importance in the
following section we shall
impress it on our minds by
means of Fig. 15.

For the sake of economis-
ing space we have marked
off the atomic numbers (the
absciss@) alternately to the
right and to the left after
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every twenty steps, so that the first branch of the line corresponds to the
elements from H to Ca, the second to those from Ca to Zr, and so forth.
The ordinates represent for the one part the atomic numbers themselves
(continuous line), for the other part half the atomic weights (crosses).
‘We see that the latter, in the mean, increase to the same extent as the
atomic numbers, but that with the exception of the lowest branch they
lie above the corresponding points of the atomic numbers, the difference
increasing as the atomic number increases. Thus our diagram gives us a
picture of the above-mentioned complicated relationship between atomic
weight and atomic number.

Concerning the arrangement of the periodic system in our table, it
cannot fail to be recognised that it is in many ways arbitrary. We have
already pointed out the arbitrary nature of the eight columns into which
we could insert the great periods only by force, as it were. A further
arbitrary adjustment consists in having placed the eighth column on the
right, next to the seventh column. As is often done, we may place it as
the Oth column in front of the first on the left. The Oth column would
then contain the elements of  valency zero,” that is the chemically inert
gases (at the same time, however, it would contain the triads, which
have in a certain sense a high valency, unless we renounce the grouping
of the triads and inert gases in one column ; but then this grouping seems
very plausible, inasmuch as the one row fits so well into the gaps of the
other and thus completes the whole structure of the periodic system).
By some physicists the inert gases have been placed into the middle
column of the table; this has the advantage that electropositive elements
are on the right and electronegative elements link up on the left. Asis
self-evident from the cyclic character of the system, the table may be
split at any vertical row and then joined at the former edges.

To dispose of this arbitrariness, the table is often imagined written, not
on a plane, but on & cylinder (Chancourtois, Lothar Meyer, Harkins),*
whereby the secondary relationships within the great periods and the
departure of the rare earths from periodicity is exhibited very well by
passing from the surface into the interior of the cylinder at appropriate
points. Representations in which plane spirals are used have also been
suggested. It must be clearly understood that the arbitrariness concerns
the type of description but not the essence of the matter. In spite of the
manifold nature of the elements, the relations between them follow in
logical sequence.

The general doctrine, however, that we derive from our consideration
of the natural system is that which we stated at the beginning of this
chapter.

The atoms of the various elements are not different by nature but, in
virtue of the uniform connexions which exist between them, they must be

* William D. Harkins and R. E. Hall, American Chemical Society, 38 (1916), or
Zeitachr, f. anorgan. Chemie, 97, 175 (1916).
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§ 2. Nuclear Charge and Atomic Number 63

‘What has happened to the a-particle at this bend? Rutherford traces
the effect back to very intense electric fields that start out from a very
small element of space, the “nucleus.” Since the magnitude of the
abnormal deflections increases with the atomic weight of the deflecting
element, the intensity of the deflecting field must also increase with the
atomic weight. If we consider the field produced by a point-charge con-
centrated in the nucleus, and if we suppose this charge to act according
to Coulomb’s law, we can calculate the magnitude of the charge that
is necessary to account for the observed deflections. At the suggestion
of Rutherford, Chadwick * has made very careful measurements of the
deflections caused by thin laming of Pt, Ag, and Cu, and has) succeeded
in determining with an accuracy which allows an error of about 1 per
cent the charges that must be assumed in the corresponding nuclei. He
gets the numbers 77'4, 46-3, and 29-3 for Pt, Ag, and Cu respectively,
these numbers giving multiples of the elementary charge e. These
numbers agree, within the limits of error, with the position of the cor-
responding element in the periodic system, namely, with the atomic
numbers 78, 47, and 29. Thus we follow Rutherford in enunciating the
fundamental thesis: The nuclear charge is equal to the atomic number
numerically. If in the general case we designate the atomic number by
Z, then the nuclear charge of each element is Ze, the nuclear number
being Z.

The nuclear charge, in itself, might just as well be negative as
positive, that is, the deflections might be regarded just as well as due to
attractions instead of to repulsions. But our general observations about
ions and electrons lead us to decide in favour of the positive sign for the
nuclear charges. For the nucleus must possess not only a considerable
charge but also a high resistivity, that is, must have a great mass in order
to bring about the great deflections of the a-particles. Now it was the
positive charge (cf. p. 5) that was, by nature, associated with
gravitational matter, whereas the negative charge was a property of the
light and mobile electron. Electrons, as centres of negative charges, may
be adduced to explain the small deflection in the regular scattering,
whereas we must fall back on the heavy positive nucleus to explain the
abnormal deflections.

‘We thus arrive at the following summarised statement. The positively
charged a-particle is repelled by the positively charged nucleus, if it passes
exceptionally close to the latter. In the neighbourhood of the nucleus there
i3 an atmosphere of negative charges, electrons, by which the a-particle s
attracted. These attractions, which are superposed according to the laws
of chance, explain the regular scattering of slight angular deflection, whilst
repulsions explain the comparatively rare bends of great angle.

Observations of a-rays also allow us to make deductions about the

* Phil, Mag., 40, 734 (1920).
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64 Chapter II. The Natural System of Elements

size of the nuclei. The distribution of the deflections among various
angles was calculated by Rutherford and Chadwick on the assumption
that the nuclear charge is concentrated at a point. So far as the ob-
served deflections agree with those calculated, they thus show that the
size of the nucleus did not interfere with the paths of the particles. The
greatest deflections that have been observed thus give us an upper limit
for the possible size of the nucleus. In the case of gold, Darwin * has ob-
tained a value 3.10-12 cms.; in that of water he obtained 2.10-13 cms.
This estimate by no means precludes the nucleus from being actually
smaller, but it cannot be larger if a disagreement with the observations of
a-rays is to be avoided. = We may thus at least affirm with certainty that
the nucleus (as also the electron, see p. 12) can be at most of sub-atomic
size.

On the whole, atoms must be electrically neutral. Consequently the
number of electronst per atom must equal the number of elementary
positive charges concentrated in the nucleus. Hence we get our second
thesis. The atomic number is equal to the nuclear charge (numerically),
and both are equal to the number of electrons around the nucleus.

This thesis is supported by a result arising from the theory as well as
from the measurement of Rontgen radiation: this result is the value
found for the amount of scattered radiation per atom. As we saw earlier
(Chap. I, § 5, eqn. (13)), this amount led us to conclude that the number
of excited electrons per atom that emit scattered radiation is equal to half
the atomic weight. Whereas in the case of optical waves only the out-
side or loosely bound electrons (so called dispersion or valency electrons)
are perceptibly excited—the inner electrons are too rigidly fixed to be
affected by the optical excitation to which they are exposed—the X-rays
which are of high frequency, affect the inner electrons (those nearer the
nucleus). The above result about the scattered radiation was interpreted
earlier as follows. The fotal number of electrons in the atom is approxi-
mately equal to half the atomic weight and is exactly equal to the atomic
number of the element; this accords with Fig. 15 of the previous para-
graph in which we saw that the atomic number is approximately equal to
half the atomic weight.

So far our theses are supported by comparatively meagre observations.
In the next chapter the facts given by the X-ray spectra will furnish us
with much stronger evidence. Assuming these results for the moment, we
affirm : for each step forward in the periodic system of the elements the

* C. G. Darwin, Phil. Mag., 27, 506 (1914) ; cf. Rutherford, tbid., 494 (1914).

+In more accurate language, we mean the number of electrons present in the
atom outside the nucleus. For, later, the facts of radioactivity will compel us to
assume that there are also electrons in the interior of the nucleus. In determining the
nuclear charge these are subtracted from the positive charge present. Hence * nuclear
charge " denotes, not the positive charge of the nucleus, but the algebraic sum of the
positwe charge of the nuclear matter and the negative charge of the electrons contained
sn the nucleus. For further remarks see § 6 of this chapter.
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nuclear charge grows by one unit and the nuclear mass becomes increased
by approzimately two units. For since the electrons contribute only a
vanishingly small amount to the atomic weight, the latter must be repre-
sented essentially by the mass of the nucleus. And further : each element
in the periodic system contains one electron more than the preceding element
(we do not here take into consideration the nuclear electrons mentioned
in the last foot-note).

The question arises: how can the electrons of the atom maintain
themselves in opposition to the attractive action of the nuclear charge ?
Will this action not cause them to fall into the nucleus? The answer—a,
possible one which is particularly simple and satisfactory—is furnished
by the conditions of the solar system. The earth fails to fall into the sun
for the reason that it develops centrifugal forces owing to its motion in
its own orbit, and these forces are in equilibrium with the sun’s attraction.
If we transpose these ideas to our atomic model we arrive at the following
view. The atom is a planetary system in which the planets are electrons.
They circulate about the central body, the nucleus. The atom of which
the atomic number is Z is composed of Z planets each charged with a
single negative charge, and of a sun
charged with 7 positive units. The
gravitational attraction, as expressed
in Newton’s law, is represented by
the electrical attraction as given by
Coulomb’s law; these laws are alike
in form. There is a difference in that Fia. 17.
the planets repel one another in our
atomic microcosm—likewise according to Coulomb’s law—whereas, in
the case of the solar macrocosm they undergo attraction not only from
the sun but also from themselves. The fact that the dynamical laws—
we just now introduced them in using the popular expression, centrifugal
force—hold in our microcosm just as exactly as in the astronomical
macrocosm, will be fully exhibited in all our later discussion.

Bearing in mind the picture of the planetary system, let us once again
consider the phenomenon of a-ray deflection. We shoot an a-particle, a
comet, through our planetary system. In general it pursues a rectilinear
path (as is shown in the top and bottom paths of Fig. 17) and is attracted
(scattered) only slightly by the nearest small planets. But if it strikes
the sun directly or passes near by (central path of Fig. 17), it undergoes
a comparatively great and immediate repulsion. It then describes a
hyperbolic orbit, in the focus of which is the nucleus; the angle of
deflection is equal to the angle between the two asymptotes of the
hyperbola.

This astronomical description of the phenomenon hints, too, at the
method of calculation, and Rutherford was the first to apply it in the
discussion of the measurements of a-ray deflections and on it he founded

b
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66 Chapter II. The Natural System of Elements

his nuclear theory. The historical remark must be added that van den
Broek * was the first clearly to formulate the idea of a nuclear charge
increasing with the atomic number and of the electronic number, and he
substantiated these ideas with chemical facts.

§ 3. The 8implest Examples of Atomic Models.

1. The hydrogen atom (Niels Bohr,t 1913). The simplest atom is the
hydrogen atom ; for this, Z = 1. It consists of a nucleus with one positive
charge, and of an electron that revolves about this nucleus. In Fig. 18
we have designated by * the nucleus as the centre of the lines of force.
Three circles have been drawn as examples of the path of the revolving
electron. The sense of revolution is of course arbitrary, as is also the
position of the plane of the orbit in space. It seems at first as if the size
of the circles is arbitrary. For we may make the electron run along a
circle of any radius whatsoever as long as we give it a velocity such that
the centrifugal force due to the revolution exactly balances the attraction
due to the nucleus. Nevertheless, we
affirm that actually only certain dis-
crete values of the radii of the orbits
may occur when the atom is in a
stable condition. We indicate this in
the figure by marking the radii a,,
a,, a4, which are to be regarded as of
definite lengths given by a certain law.
(This will be discussed in the follow-
ing section.) At any rate the motion

Fi. 18. must encounter no resistance if station-
ary orbits are to be possible; in our
case, this means that no radiation may take place.

We observed in Chapter I, § 5, that the accelerated electron radiates
energy of an amount depending on its acceleration. Uniform rotation is
an accelerated motion (since the direction of the velocity is altering con-
tinually, although its magnitude remains unaltered). So that according
to classical electrodynamics a rotating electron must also be radiating
energy. Hence our atomic models deliberately contradict ordinary
electrodynamics, as far as the radiation of energy is concerned.

These two postulates that the orbits be discrete and free from radiation,
not only in the case of the hydrogen atom but also in all others, seem at
first rather bizarre. But they are quite indispensable and are supported
by two fundamental facts: the discreteness and sharpness of the speciral
lines on the one hand, the exristence and permanence of the aloms on

* Physik. Zeitschr., 14, 32 (1918).

+ The writings of Bohr that laid the foundation to this theory appeared under the
title : **On the Constitution of Atoms and Molecules,” 1913, in Phil. Mag., 26, 1,
467, 857,
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the other. We postpone the discussion of all scruples against these
postulates till later when we deal with the ideas of the quantum theory.

In § 6, Chapter I, we sketched one branch of the quantum theory; the
general introduction will be given in § 1, Chapter IV. Whereas in Chapter
I we limit ourselves to the phenomena of radiation, we shall in the fourth
chapter apply the quantum theory to any mechanical motions whatsoever,
setting up definite rules according to which certain orbits will possess a
unique character among all possible ones. According to the nature of the
motion these rules will be concerned with the energy or with the moment
of momentum, with the form or with the position of the orbit. In the
first case they make the energy, in the second the moment of momen-
tum, and so forth, consist of an integral number of elementary quanta of
the corresponding quantity. According as we set this number, which
we may call the quantum number, equal to 1,2, 3, . . ., we obtain a
discrete series of quantum paths or orbits, which thus correspond in turn
to the discrete series of whole numbers or integers. The quantum theory
asserts that all these quantum orbits are stationary states of motion, that
is that they are traversed without radiation being emitted.

In the matter of discrete orbits our planetary system of atomic
dimensions differs decidedly from the solar system.* In other respects,
however, the analogy may be carried further, as follows. Just as in
the solar system the general motion of the electron about the nucleus is
an ellipse, at a focus of which the nucleus is situated ; but these ““ Kepler
ellipses,” further, form a discrete series, the members of which are
characterised arithmetically by quite determinate eccentricities and
major axes in conformity with quantum conditions. But these are details
of the model, the existence of which we shall only be able to demonstrate
much later (in the last chapter, when dealing with the hydrogen doublets).
For the present it is sufficient to imagine exclusively circular paths as
depicted in Fig. 18.

Concerning the appearance of these various circular orbits we may
already here remark the following. The innermost orbit (radius a, in the
figure) is the most stable; as a rule the hydrogen electron is to be found
in this orbit. By excitation from without (heat motion, electric fields,
collisions) the electron is occasionally removed into one of the outer
orbits (radii a,, a5, . . . in the figure), which it also traverses as a stationary
orbit, but with less stability. When left to itself it falls earlier or later
back into the innermost orbit or, more generally, into one that is situated
further inside. It is only during these transitions that energy is radiated
out, namely the difference of energy in the initial and the final path of
the electron.

* In drawing this comparison we feel compelled to mention the well-known rule of
Titius Bode, which asserts that the radii of the planetary orbits are approximately
connected by a simply arithmetical relation. We decline to regard this as a result of

the quantum theory or to compare this rule with our laws which give discrete atomic
orbits.
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68 Chapter II. The Natural System of Elements

The hydrogen atom is the prototype of all further atomic models, and
the whole theory of spectral lines has been developed from it. The reason is
easy to grasp. Only in the case of the hydrogen atom are we dealing with
the simple case of the problem of two bodies ; in the case of all other atoms
we meet with the notoriously difficult problem of three bodies or more.

9. The hydrogen on. Still simpler than the hydrogen atom we find
the hydrogen ion, which bears a single positive charge. It is so simple
that we appropriately dispense with a pictorial representation of it.
After it has lost its only electron it consists solely of a solitary nucleus of
vanishingly small spatial dimensions as compared with atomic dimensions.

We might find a connexion between this special constitution of the
hydrogen ion and its unusual mobility in electrolysis, and with its activity
in acids—we could well do this, were it not that there are several other
ions, e.g. the hydroxzyl (OH), that likewise possess unusually great mobility,
ions which undoubtedly have a more extended constitution. Moreover, it
is known that the electrolytic ions are loaded with multiple water mole-
cules (or, more generally, with molecules of the solvent). Hence the real
hydrogen ion, as it occurs in electrolytes, is by no means of sub-atomic
dimensions but is an extended complex.

On the other hand, another inference that may be drawn from the
constitution of the hydrogen ion is well founded : it is impossible to picture
as a physical reality a hydrogen ion carrying two positive charges. If a
chemist should ever succeed in producing such a one, we should be com-
pelled to declare all that follows in this book to be false. In his analysis
of canal rays, J. J. Thomson * has actually never found doubly positively
charged hydrogen atoms (just as little as trebly positive helium atoms),
whereas in the case of mercury positive charges up to eight units occurred
(cf. Chap. I, §3). The impossibility of having a hydrogen atom with a
double positive charge is connected with the general difference between
positive and negative charges, which was emphasised at the end of Chapter
I, §4: a negative charge may be increased to any extent, a positive charge
only to a certain limit, namely, to that at which all electrons have been
removed from the atom.

3. The neutral helium atom. ‘ Hier stock’ ich schon, wer hilft mir
weiter fort,” says Faust. This atom would have to consist of a doubly
charged positive nucleus, the “ helium nucleus,” four times as heavy as
the hydrogen nucleus, and two electrons. But how do the electrons
rotate around the nucleus? Here we stumble over the three-body
problem.

* Sir J. J. Thomson, Rays of Positive Electricity, Longmans, Green & Co., 1921,
Thomson emphasises the certainty of this statement by the following words on p. 53
of this book: *“No hydrogen atom with more than one charge has ever been

observed, though as the hydrogen lines occur practically on every plate more obser-
vations have been made on the hydrogen lines than on those of any other element.”

The non-existence of H¥* was first proved by W. Nammer, contrary to Sir J. J.
Thomson's assertion (Ann. d. Phys., 43, 686, 1914), and was only later taken over by
the latter.
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Niels Bohr, directly extending his hydrogen model, has\suggested for
the He-atom the model represented in Fig. 19. Two electrons are to
rotate at opposite ends of a diameter about the nucleus on the same
circle, and hence at the same speed. Unfortunately, for various reasons,
this picture may no longer be regarded as true. It would behave para-
magnetically in a magnetic field, whereas real helium is diamagnetic. If
we calculate the work that is necessary to detach one of the two electrons,
the so-called “work of ionisation” or ionisation potential (if it is
measured in volts), it comes qut to be too great (28:8 volts instead of the
observed value of 25'4 volts, cf. Chap. VI, §3). As regards dynamical
behaviour, our model is unstable with respect to certain perturbations,
and is unable to continue existing when subjected to certain compara-
tively minor influences, and so forth. It seems rather that, according
to the optical behaviour of He gas, as has been observed during ordinary
refraction of light, in the real atomic-model of helium one of the two
electrons must form a close bond with the nucleus, so that the other
electron can circulate around both as in the case of the hydrogen atom.
The inner system then acts on the external electron with an “ effective
nuclear charge” of 1, that is, with the positive excess of charge:
+ 2 - 1= + 1. The exact position, however, is still
a mystery, which will be solved only when the numeri-
cal explanation of the spectra of neutral helium has
been found. Obviously, to overcome the extraordinary
mathematical difficulties, new methods will have to be
thought out. We hope that these are already available
in Bohr’s newest ideas about atomic structure.* -

4. The ionised helium atom. On the other hand, Fie. 19,
the positively charged helium atom, the Het-ion, which
has been deprived of one electron through electrical or thermal agency,
is very simple. Consisting of a doubly charged nucleus and one electron,
it is represented by the same picture as the hydrogen atom. Like the
latter, it thus also comes under the scheme of the two-body problem.

It differs from the H-atom only in size. It is easy to understand that
the two-fold attraction of the He-nucleus on the electron diminishes the
orbit of the rotating electron as compared with that of the electron that
rotates around the singly charged H-nucleus, and, indeed, it is reduced to
one-half the size (cf. the following paragraph). Hence, we may again use
Fig. 18 as a picture to represent the Het-ion, but we must consider the
nuclear charge increased to 2¢, and the radii decreased by one-half.

In the theory of spectral lines ionised helium has become of great
importance, and has shown itself superior in some respects to H. The
broad outline of the theory has been developed and confirmed by the
spectrum of H, whereas the finer details have been suggested and proved
by the ionised helium.

* Cf. N. Bohr, in the letter called ¢ Atomic Structure,” in Nature, 24th March,
1921.
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5. The a-ray particle. The next picture, that of doubly ionised
helium, the helium atom with two positive elementary charges, is very
characteristic and satisfactory. It is, like the simply positive hydrogen
ion, & mere nucleus without real extension. The unique part played by
this system as an a-particle in radioactive phenomena now becomes
clear. The enormous penetrative power of a-particles, their comet-like
intrusion into the planetary systems of foreign atoms, their double positive
charge, which corresponds to the loss of all electrons in the helium, the
non-existence of three-fold positively charged helium, give it a special
role. In addition, the circumstance that, hitherto, a characteristic light
emission of e-rays has never been observed, speaks in favour of our
model. In the first chapter we spoke of the luminescence of canal rays
and of the similarity of nature between canal rays and a-rays. This
similarity, as we now see, cannot extend to the luminescence. We are
acquainted with helium canal rays that consist of neutral and also of
simply ionised helium atoms. These are recognised, among other
methods, by the characteristic lines that they radiate out. To render this
emission of spectral lines possible, there must be present at least one
electron, which alters its position during the process of emission. But
the doubly ionised helium atom is devoid of electrons, and hence of the
means of radiating. It becomes immediately obvious that the helium
nucleus, in travelling as an a-ray through the atmosphere or other matter
with its enormous velocity (almost % - velocity of light), cannot carry an
electron with it on the way or draw one to itself.

It must also be mentioned that already in Fig. 17 we have made use
of the exceedingly minute size of the a-particle. When, arguing from this
figure, we derived an upper limit for the nuclear size of an atom,
deducing it from the deflection of a-ray comets, we assumed tacitly that
the a-particles could be justifiably treated as points. In more correct
language, this determination of size gave us the sum of the nuclear radii
of the atom in question and of the helium atom. Inasmuch as the sum
was found to be sub-atomic, it was clear that, besides the atomic nucleus
under consideration, the a-particle itself can have no appreciable size.

Whereas scruples may be raised against the later spectral evidence of
our atomic theory, on the ground that it requires diverse theoretical inter-
mediate steps, the observable properties of the a-particle follow directly
from our fundamental views of nuclear charge and nuclear size, of atomic
number, and the number of associated electrons in the atom.

Our picture of the a-particle is so convincing that it scems justifiable
to infer from it that there is no gap between hydrogen and helium in the
periodic system. In the upper strata of the atmosphere and in stellar
nebula lines have been found that scientists have hitherto not been able
to ascribe to known elements, but that seem to hint at elements having
an atomic weight of 2 or 8 (Nebulium, Coronium, and Protofluor).* The

* Bourget, Fabry, and Buisson, Compt. rend., 158, 1017 (1914) (Photographs of the
nebula of Orion).




§ 3. The Simplest Examples of Atomic Models 1

existence of elements between hydrogen and helium has been demanded
on certain alleged grounds of chemical systematics. (Rydberg concluded
that there were two such elements; C. Schmid that there were three.)
These inferences, which are quite uncertain in themselves, seem very
doubtful in the light of our system of atomic models. If there were two
or three new ¥ elements between H and He, then He would not have a
nuclear charge 2, but one of 4 or 5. But then the a-particle would not be
a mere He-nucleus, but one with two or three outer electrons. But this
would be irreconcilable with our general experiences of a-rays. An exact
mathematical analysis of a-ray spectra also speaks against an increase of
the atomic number Z of all the heavier elements by even a few units, and
this would be necessary if unknown elements were inserted at the
baginning of the natural system. We shall, therefore, regard it as proved
that helium has the atomic number Z = 2.

6. The Li-atom. It consists of a trebly charged nucleus and of three
electrons that rotate around the nucleus in certain orbits unknown to us.
Probably one of the electrons is situated at a relatively great distance
from the nucleus. We surmise that this is generally true for the alkalies
on account of their great atomic volume (cf. §7 of this chapter); the
other two electrons would then form a more intimate bond with the
nucleus.

Nor can anything very exact be said about simply ionised lithium.
Its orbits, just like those of the neutral helium atom, come into the
category of three-body problems. On the other hand, the doubly ionised
lithium atom is exactly of the hydrogen type: it is a triply charged
nucleus with one electron rotating around it in orbits that are a third as
great as those of the hydrogen electron. It would be very well worth
while for some one to prepare this doubly ionised helium and to measure
out its spectrum. To achieve this, we should have to bombard lithium
with the strongest means available (by canal rays). The superiority
which we above claimed for Het as a test of spectral theory is possessed
by Li*+ to a still greater degree. Without doubt, experimenters will
succeed in finding ways and means of realising this state of ionisation of
lithium.

Finally, triply ionised lithium is a mere nucleus that gives rise to no
spectral phenomena at all.

7. The atoms of the heavier elements. As the number of electrons
increases so do the difficulties that oppose themselves to the theoretical
synthesis of atomic structure. In the case of the N-atom we should
have to describe the position and motion of seven electrons, in that of the
O-atom eight, and in that of the Uranium-atom we actually have to fit
ninety-two electrons into definite positions or orbits.

For the present we shall have to rest satisfied with asking general

* The existence of ‘‘isotopes’’ of H or He of atomic weight 2 or 3 (cf. § 5 of this
chapter and also § 6) is not excluded by these remarks.
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T2 Chapter II. The Natural System of Elements

questions concerning the arrangement of the electrons. Are the electrons
subdivided into groups? Do they form rings that surround the nucleus,
or shells arranged in space? Do the rings lie in a plane or are they
inclined to one another? Or have the shells a symmetrical form? What
is the number of innermost electrons in the atom? How many electrons
are to be found in the outermost region? We shall see that several of
these questions, even at the present stage of our knowledge, will receive
& more or less definite answer. Whereas the questions concerning the
innermost shells of the atom will be dealt with in the next chapter,
which is concerned with the theory of X-rays, the questions about the
constitution of the electronic envelope is to be treated in connexion with
the natural system of elements, that is, in ¢his chapter. :

In reviewing the substance of this section we cannot but regret the
comparatively scant number of atomic models that have hitherto been
established as certain. We feel quite sure about the model of the
hydrogen atom and of the very similar atoms, He, and Li*+, of which
the latter has not yet been made accessible to experiment. Concerning
the neutral He-atom, the atom of Lit and the heavier atoms, we have
been able to make only provisional and insufficient assumptions.

To the future falls the task of working out a complete topology of the
interior of the atom and, beyond this, a system of mathematical chemistry,
that is, one which will tell us the exact position of the electrons in the
atomic envelope and how this qualifies the atom to form molecules and
to enter into chemical compounds. '

The subject of mathematical physics has been in existence for more
than one hundred years; a system of mathematical chemistry that can
achieve what we have just mentioned, that can shed light on the still
very obscure conception of valency and can, at least in typical cases,
predict the reactions that must occur, is only on the point of being
created.

§ 4. Auxiliary Mathematical Reflections. Molecular Models

To begin with, we shall supplement quantitatively what we have said
about the hydrogen atom.

Let a, be the radius of the smallest circular orbit that, according to
Bohr, the electron can describe about the hydrogen nucleus, or, let a, be
the radius of the first Bohr circle as we shall call it. In addition to this
first orbit it can move in the second, third, . . . n*" Bohr circle. The
radii of the latter are:

ay, =2t a, a;,=3".4d, a,=n.qa . . 1

We shall use the same terminology as that used in (1) of the preceding
section and shall call n the quantum number of the circle under con-
sideratiopn. We then, in general, call the n'* Bohr circle the n'™® quantum
orbit.
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§ 4. Auxiliary Mathematical Reflections. Molecular Models 73

In the case of the ionised helium atom, as in that of the doubly ionised
lithium atom, and so forth, the corresponding radius is only one-half, one-
third, . . . as large as that of hydrogen on account of the double, treble,
. . . charge of the nucleus. The proof of this as well as of (1) will be
furnished later in Chapter IV, §3. In general the radius of the n* Bohr
circle for a nucleus with a Z-fold charge around which one electron
rotates is given by

= . . . . . (2)

For the sake of later applications this formula must be extended in two
directions.

(a) Let the nucleus be surrounded by a certain number of electrons,
say p; suppose there is a further electron at a comparatively great
distance away. This external electron is to be considered moving in such
a way that in a certain circular orbit it is in dynamical equilibrium under
the combined influence of the nuclear attraction, the repulsion of the
inner electrons and its own centrifugal force. (The same may be
assumed for the inner electrons.) Then the force that acts on the outer
electron is no longer the whole nuclear charge Ze but the “effective
nuclear charge” :

Ze —pe=Z2y4.¢ Zy=2-1p . . . (3)

(b) Further, suppose that in the outer orbit there is not one electron
but g, which are distributed at equal distances on their common circular
orbit. Then, not only do the p inner electrons act as a screen, but also
the g outer electrons, the latter, of course, not with the full electric force
corresponding to their total number ¢ but only with a fraction of it,
which we shall call s,. This
fraction may be calculated, as
we shall presently show, for the
general case by an easy method.
For the present let the hint
suffice that the repulsions which
the g —~ 1 electrons exert on the
remaining electron combine in
pairs to form resultants, which,
when continued backwards,
pass exactly through the nu-
cleus (cf. in Fig. 20 the re-
sultant PR, which is composed of two equal repulsions PQ,, PQ, that
are images of one another in an imaginary mirror along PR). For an
even value of g (in the figure, ¢ = 6) there is, in addition to the
symmetrical pairs of electrons, the one diametrically opposite to the one
under discussion, and this one exerts a repulsion along PR. In the
case of both odd and even values of ¢, the total effect of these repulsions

Fic. 20.
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74 Chapter II. The Natural System of Elements

can lead to nothing more than a weakening of the nuclear attraction,
that is, a further screen-effect that must be added to (3). In place of (3)
we thus get the effective nuclear charge

Zy=2-p-s, . . . . (4)

and in place of (2) we get for the radius of the n'* Bohr circle, in which
our ring of g electrons can circulate,

S ()

(c) Our next step is to calculate arithmetically the quantity s, intro-
duced into (4). Let n be the number of electrons and a the radius of the
ring. Each two neighbouring elec-
trons are separated from one another
by a distance that subtends the angle

kz

a= 2—1r at the centre. Hence an initial
n

electron P is separated from the
(& + 1)* electron g by an angle

In Fig. 21, the half of this angle, if
Fia. 2L, we use the triangle OPM, allows us

to calculate half the distance between
our first and our (k¢ + 1) electron, that is to calculate

1 k
57re = asin B = asin ‘% . . . (6)

According to Coulomb’s elementary law, two charges e and ¢’ separated

’

by a distance r act on one another with a force ji Accordingly, the
force which Q exerts on P in the direction QP is

et -
()

. .wk
4a?sin? —
n

To form the resultant, however, we do not need the whole force but
only its component PP’ in the direction of OP. This is obtained from
(7) by multiplication with

c0s /MPO = sin /MOP = sin § = sin ”Tf
and has thus the value

&2

— 8)
. (

4a? sin =

n
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§ 4. Auxiliary Mathematical Reflections. Molecular Models 75

The resultant of all the electrical repulsions at P then becomes simply

A=n-1

LN 1
mzw % (9)

= sSin —
k=1 n

in which the sum is to be taken by beginning with the electron (k¥ = 1)
succeeding our initial one up to the last electron before the initial one
(¢ = n - 1). The quantity

k=

1 5 _”
xk
n

n—1
1 8in —

- (10)

8, =

»
k=

Wl

2
is that fraction of Coulomb’s force 2, with which the ring electrons act

repulsively on a single one of them ; thus, the sym'ol s, corresponds to
that used in equation (4). '

We arrive a little more simply still at the same quantity s,, if we in-
quire into the potential electrical energy of our electron ring. The
Coulomb energy, that is, the useful work contained in the field of two
charges ¢ and ¢’ and due to the mutual Coulomb attraction, is

ee
- . . . . . (11
On account of (6) this gives for our electron ring }
ez}t) 1 =g—egs
DT 7 AL i . . . (19)
sin ;

if we write down only those terms in which a definite initial electron plays
a part. To arrive at the full potential energy V, we have yet to multiply
this expression by n (we may choose each electron of this ring in turn as
the “initial ” electron), and to halve the value obtained (otherwise we
should be reckoning the mutual action between two ring electrons twice
over). We thus get

2

v==2 . . . . . (18
S (13)
For n = 2, we obviously get from (2)
s, =1 1 _1_ s
4. 7w 4
sin 9

o _1/7 1 1 i1 1 _
33_1( 7r+ . 2_13)=§sin60°—f3—0577'
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76 Chapter II. The Natural System of Elements
For n = 4, we get

171 1 1\ _1 o _ o
*“Z( L+ ?m) 3 (1+23) = 0957,

.. T . .
sin- sing sin—
4 2 4

For higher values of n we use trigonometrical tables. In this way we
get

TABLE 3
n=1 8, = 00 n= 9 3, = 3328
=2 = 025 =10 = 8-863
=3 = 0577 =11 = 4°416
=4 = 0957 =12 = 4984
=5 = 1-877 =18 = 5565
=6 = 1-828 =14 = 6159
=7 = 2305 =15 = 6-764
=8 = 2:805 =16 = 7879

For great values of n, direct calculation becomes cumbersome. In
this case we may use the following approximation formula, the results of

I
+ Q*F’ a

Fig, 22.

which agree well with even the last values in the table and which is
useful for forming general estimates :

n .
Sy = Q;(log, n + 012) . . . . (14)

(It is derived in an essay by the author by means of substituting for the
sum an integral, see Ann. d. Phys., 53, 511 (1917).) The formula shows
that s, increases to infinite values with n.

(d) The hydrogen molecule. We shall now describe a little more
fully the model that Bohr has suggested for the constitution of the
hydrogen molecule H,, although, nowadays, we can take only a historical
interest in it. It is certain that the hydrogen molecule must consist of
two hydrogen nuclei; each composed of one positive charge + ¢, and two
electrons, each having the charge — e. Is there an arrangement in which
these four charges are in dynamical equilibrium with one another ?

The answer is given in Fig. 22. The two nuclei form the axis of the
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§ 4. Auxiliary Mathematical Reflections. Molecular Models 77

molecule and are at rest. The two electrons rotate diametrically opposite
one another in the plane bisecting the line connecting the nuclei about
this line as axis. Let a be the radius of the electron ecircle, b the distance
of the nuclei from the middle plane. We must first determine the ratio
a:b. The nuclei are subject only to electrical forces. According to
Coulomb’s law we have, for example, a repulsion at the upper nucleus,
due to the lower nucleus, of magnitude

e?
i 15
and two attractions, due to the electrons, of magnitude
o
a + b2 (16)

These three forces acting on the nucleus must be in equilibrium. In
the figure they are represented by the arrows 12, 13, 14. Equilibrium
certainly comes about if the forces are equal in magnitude and act at
equal angles. If they are equal in magnitude we get from (15) and (16)

a® + b2 = 42, a4 =1b.3 R 6 44

If they are equally inclined to one another then the two nuclei and each
electron in turn form an equilateral triangle. In Fig. 22 one of these
two triangles is distinguished by being shaded.

Through the relation (17) the equilibrium of the forces is established
as far as the nuclei are concerned. What is the position as far as the
aquilibrium of forces on the electrons is concerned ?

‘We see at once that this equilibrium can be brought about by suitably
choosing the rate of rotation.  If there were no or only a very small
veloeity of rotation both electrons would be drawn inwards owing to the
attraction of the nuclei: in the case of very great velocities of rotation the
centrifugal forces would become predominant and drive the electron out-
wards, so to speak. It is easy to determine by formula that magnitude of
the velocity of rotation for which the centrifugal forces are in equilibrium
with the electrical forces.

The electrical attraction which each electron experiences from both
nuclei is, ag in (16),

e
a? + b

The resultant of.both falls in the direction of the orbital radius a and has
the magnitude

Qe? a 3J/3e
- = > " _(by (17 . . 18
a® + bt /at + b 4 a'l(y( 2 (18)

Then there is to be added the electrical repulsion of the other electron,
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78 Chapter II. The Natural System of Elements

which also acts in the direction of the radius a, but in the reverse
direction to that given by (18). Its magnitude is
e
4 a?
Let the angular velocity of the electrons be w, and hence the linear

velocity aw. The centrifugal inertial force, which arises in this rotation,
amounts to

(19)

maw? . . . . . (20)
The forces (18), (19), (20) are to be in equilibrium. This requires that
33 - 1e
maw? = —“44————&—2 . . . (21)

Equation (17) determines the form of the hydrogen molecule, equation
(21) the velocity of its electrons. There is still wanting a third equation
that determines the size of the model. This missing equation can be
furnished only by the quantum theory. Bohr applies it to each of the
two electrons in the molecule just as to the single electron in the hydro-
gen atom (cf. Chap. IV). This would complete the molecular model.
But is it correct? Only a short while ago, even while this book was
in its first edition, we were inclined to accept it. Particularly after
Debye * had calculated the refraction of light in a gas composed of such
models and had found it to agree with the empirical behaviour of hydro-
gen gas. Since then, however, a series of properties have been remarked,
in which the model departs from reality in its behaviour, above all, in its
magnetic bebaviour (it is paramagnetic in the model, diamagnetic in
reality) ; also in the instability of the model when subjected to certain
small disturbances; further, the decrease of the specific heat correspond-
ing to the rotational degrees of freedom at low temperatures, to explain
which we must assume a smaller moment of inertia than that possessed by
the model ; finally, the magnitude of the ionisation voltage and the heat of
dissociation, that is, the amounts of work respectively that are necessary to
detach an electron and to separate the two nuclei from one another come
out somewhat differently when calculated for the model from what has
been observed. These objections, as we see, coincide partly with those
which, in paragraph 3 of the previous section, we were obliged to raise
against Bohr's He-model. Thus the true model of the H,-molecule is still
unknown. It will hardly be as symmetrically built as the model exhibited
in Fig. 22. On account of the magnetic properties the two electrons
cannot rotate in the same sense but must do so in opposite directions.
For the oxygen and the nitrogen molecule the author has proposed
models that were formed along the lines of Bohr’s model of the hydrogen
molecule. These, too, seemed at first to be satisfactory as far as the pheno-
mena of the refraction of light are concerned, but on closer examination

* Miinchener Akademie, 1915, p. 1.
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§ 5. Laws of Radioactive Displacement and Theory of Isotopes 79

they withstand criticism even less than the hydrogen model, especially
because, in this case, the number of outer electrons rotating in the same
direction (four in the case of O,, six in that of N,) are greater than in the
former case. For a particular reason we add in § 6, Fig. 23, a picture of
this model of oxygen (which is rejected later). In the last section of this
chapter we shall return to the suggestions of cube models that have
come from another quarter.

(e) The positive H,-ion. The problem is here simpler than in the case
of the H,-molecule, because the orbit of only one electron requires to be
determined : without involving an undue error we may disregard the
counter motion of the nuclei. A dynamically possible type of orbit for
the electron suggests itself at once: a circular orbit in the plane at right
angles to and bisecting the line connecting the nuclei. The size of this
circle will again be determined by the quantum theory; according to
the particular quantum number %, there will be a first, second, . . .
n* circle. 'We add details in note 14 at the end of the book.

Again, however, the question arises whether this model gives a true
picture of the hydrogen ion. Definite empirical criteria have so far not
been available. We must therefore rest our decision on a theoretical
consideration of the stability of the model. In this direction calculations
by W. Pauli * show that the circular orbit of minimum radius is, indeed,
more stable than any other form of motion, for example, than motion in
those orbits that lie, not in the median plane, but in a meridian plane
through both nuclei. For it may be proved that the transition from the
smallest circular orbit to any other type of orbit requires a positive
addition of energy; thus the electron cannot spontaneously leave this orbit
unless excited from without. The state of motion ascribed to the electron
thus seems to represent the state in the natural configuration of the ion.
The fact that we call this configuration only metastable and not stable is due
to the circumstance that the dissociated state (H*, H) is still more stable
from the energetic standpoint. Further details on this are to be found
in note 14.

All in all, the final result in the case of molecular models seems to he
even more unfavourable than in that of atomic models. Here we can
assert nothing even in the simplest case of the H,-molecule. The H,-ion
was suecessfully constructed theoretically, it is true, but owing to a lack
of empirical evidence, has not been confirmed.

§5. The Laws of Radioactive Displacement and the Theory of Isotopes

The characteristic properties of the a-particle (its double charge, its
great penetrative power, and so forth) have already served us as a direct
and obvious confirmation of our fundamental views, namely, those of
Rutherford, Bohr, and van den Broek, on nuclei, nuclear charge, and atomic

* Zeitechr. f. Phys., 1921,
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80 Chapter II. The Natural System of Elements

number (cf. $§§3, 5). Radioactivity, however, can furnish us with still
more information on this question.

Let us consider the genealogical tree of the radium family in Table 1
of p. 47, and discuss the position of Ra itself. Since it was first inserted
into the table there has been no doubt that it belonged to the group of
alkaline earths Ca, Sr, Ba. In particular, Ra is so closely related to Ba
chemically that, originally, it was difficult to separate them from one
another ; the similarity in the spectra of the two is also perfect. On the
other hand, radium emanation, in virtue of its chemically inert behaviour,
beyond doubt belongs to the group of inert gases. It occupies the space
left for the last element of the sixth period (in our representation of the
table), which was vacant before its discovery, just as Ra filled in a gap
in the seventh period, ocecupying the second space of it after the gap of
eka-caesium.

Now, this mutual position of Ra and RaEm in the periodic system is
Just such as is demanded by our muclear theory. Ra disintegrates, pro-
ducing RaEm and emitting a-radiation. The doubly charged positive a-
particles comes out of the nucleus of the Ra-atom and thus diminishes its
positive charge by two units, 2e. Hence the atomic number of the
resulting element must also be reduced by two, that is, the newly produced
element must precede the Ra in the system of elements by fwo places.
The nuclear mass becomes reduced simultaneously with the nuclear
charge, namely, by four units corresponding to the atomic weight of He.
According to Honigschmid the atomic weight of Ra is 226:0. Hence, in
the scheme of p. 57 the atomic weight 226 ~ 4 = 232 has been ascribed
to the emanation ; it has been surrounded by brackets because it is not
a result of direct measurement. But as far as measurement was possible
it did not conflict with this deduction for, from the determination of the
density of the very small amount of emanation available and on the
assumption that it is monatomic, the result obtained was 223 * 4 (the
roughness of the approximation is obvious under these circumstances).

We generalise the remark just made about Ra and RaEm and
enunciate the first law of radwactive displacement thus. In every process
of radioactive disintegration whick is accompanied by the emission of
a-rays (a-transformation) a product results, the atomic number of which
in the periodic system is reduced by two units; the element moves two
places to the left in the table. At the same time its atomic weight decreases
by four units.

Now what happens in the case of B-transformations, that is, of those
radioactive processes during which B-rays are omitted? Does the S-ray
electron in this case come out of the electronic shell of the element or out
of its nucleus? In the former case, the character of the element and its
position in the periodic system would remain unaltered. We should have
before us a process to which the term ionisation would have to be applied.
The element would become positively charged to the extent of one unit,
but would retain its chemical properties. But we know that S-trans-
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§ 5. Laws of Radioactive Displacement and Theory of Isotopes 81

formations also cause new elements to be formed. Hence the 8-emission,
like the a-emission must come out of the nucleus.

We must assume (this will be discussed in detail in the following
section) that in a nucleus of atomic number Z there must be in addition
to the Z positive unit charges that determine this atomic number, further
positive and mnegative charges which are mutually bound and which
neutralise one another (cf. also the note on p. 64). Now if a negative
unit charge (an electron) is thrown out of this neutral stock of charges, a
positive unit of charge is free, that is, unbalanced by a negative charge.
But then the nuclear charge must increase by one unit. Hence we get
the second law of radioactive displacement. In the case of B-transforma-
tions, the atomic number of the element undergoing change increases by one
unit, and moves to the next position on the right in the periodic table.
The diminution in the atomic weight in this process, however, is inappreci-
able on account of the small mass of the electron.

In fact, the atomic weight does not become reduced at all if we take
into account the fact that the atom which, owing to the 8-transformation,
has become positive, will soon neutralise itself by drawing to itself a free
electron from without. Such free electrons, so we may assume, are
always available in the interior of a metal and in an atmosphere con-
tinually subject to radioactive radiations and hence ionised. Of course,
the external electron just mentioned does not enter into the nucleus but
into the electronic shell. In this way it makes the number of electrons
that is properly due to the new element derived by the B-transformation
complete. Hence the charging process of the S8-transformation is followed
by a process of neutralisation. The small diminution of atomic weight
that is initially caused by the loss of the B-electron is thus rectified again.

After the a-transformation, too, a process of neutralisation will also
take place. For the atom which has arisen through the a-emission will
at first have two electrons more than the number corresponding to its
nuclear charge. It will therefore give up two of its electrons to its
surroundings, not, of course, in the form of B-radiation, but by way of
balancing its charge without the generation of considerable kinetic
energy. The decrease of atomic weight to the extent of four units,
which corresponds to the a-emission, thus becomes slightly more marked
owing to this additional loss.

It is of historical interest to note that Fajans* and Soddyt share
about equally the honour of having discovered these laws of displace-
ment.] Soddy first enunciated the law of displacement for a-transforma-
tions. Fajans tested it on further material and added the law of dis-
placement for 8-transformations. He and, a little later, Soddy formulated

* Habilitationsschrift Karlsruhe, 1912 ; Physik. Zeitschr., 14, 131 and 186 (1918).

+ Die Chemie der Radioelemente, Leipzig, 1912 (English, 1911); Chem. News,
Vol. 107, p- 97 (1918).

1 The general law was being sought almost simultaneously by A. S. Russell (cf.
Chem. News, Vol. 107, p. 52), but his formulation was not quite correct.
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§ 5. Laws of Radioactive Displacement and Theory of Isotopes 83

both laws of displacement in the form which is now generally accepted
as valid.

In our account we have read the laws of displacement directly out
of the theory of nuclear structure. Historically, the state of affairs was
of course different. When these laws were first enunciated this nuclear
theory did not exist nor was it possible at that time to arrange the radio-
active products into the groups of the periodic system in all cases. It
was rather the laws of displacement that have led to the present arrange-
ment of the radioactive elements into the scheme, and at the same time
they have given the theory of nuclear charges a sound foundation.

Table 4 shows on the one hand the distribution of the radio-elements
in the periodic system, on the other, in the vertical columns, their dis-
tribution in the scale of atomic weights. The character of the radiation
emitted is, as in the former table on p. 47, indicated by the letters a, 8
prefixed to the symbol of the element under consideration.

Let us, for example, follow out the radium family, beginning with Ra
and proceeding with the zig-zag step prescribed by the laws of displace-
ment. We get from Ra (Column II, At. Wgt. 226) to RaEm (Column
VIII, At. Wgt. 222), to RaA (Column VI, At. Wgt. 218), to RaB (Column
IV, At. Wgt. 214) by successive a-transformations. Next, from RaB we
get by a B-transformation to RaC (Column V, At. Wgt. 214). At RaC
the interesting branching that was discussed earlier (on p. 48) takes
place : by an e-transformation we get to RaC” (Column III, At. Wgt. 210)
and then by a B-transformation to the long-lived RaD (Column IV, At.
Wgt. 210) ; on the other hand, from RaC by a 8-transformation to RaC’
(Column VI, At. Wgt. 214) ; to this transformation we owe the emission
of intense y-rays by RaC; then by an a-transformation we likewise get to
RaD. From RaD a two-fold B-transformation leads to RaE (Column V)
and RaF (= Polonium, Column VI) in which the atomic weight 210 is
retained. The position of polonium in the periodic system may, accord-
ing to Marckwald, be verified by chemical methods. It is more electro-
negative than Bi (in the sense elucidated in § 1, p. 56) and this con-
forms with the position which has been assigned to it, namely that
immediately succeeding Bi. A final a-transformation changes polonium
into RaG, also called radium lead (Column IV, At. Wgt. 206), which is less
than the atomic weight of ordinary lead, 207-2. Radium lead is the final
product of the radium series. As far as we know, the thorium and the
actinium series also end at the same point of the periodic system, at
thorium lead (ThD) and actinium lead (AcD).

It may be left to the reader to go through the parallel transformations
of thorium and actinium in the table, so that we need now consider only
the beginnings of the radium series from uranium downwards, whereby
the origin of the actinium series will become clear, as already exhibited in
Table 1 of the radioactive tree of descent (Chap. I, § 7).

The parent substance is Ur (Column VI, At. Wgt. 238); by an a-
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transformation UX, (Column IV, At. Wgt. 3234) is produced ; by a two-fold
B-radiation we get UX, and the long-lived Uy at the same position as
Uy (At. Wgt. 234). By an a-transformation there is produced from Uy the
long-lived Io (Column IV) and, by a further a-transformation, radium
(Column II). Investigations (cf. p. 46) by Hahn and Meitner, however,
established with certainty that actinium, too, must ulimately come from
uranium, and their researches make it seem probable that the branching
of the actinium series takes place at Uy, which, owing to an e-transforma-
tion, changes not only into the long-lived ionium but also into the short-
lived UY ; both products are in Column IV (At. Wgt. 230). The occurrence
of two different a-transformations at the same element Uy with a different
final result (Io and UY), that is, a * branching due to a-radiation alone,”
has never been observed in any other instance. It is assumed that the
UY becomes transformed through a B-transformation into the parent
substance of actinium, known as protactinium (Column V, At. Wgt. 230).
Since Ac is produced from the latter by an emission of a-radiation, it
belongs to Column III, as has been long known : its atomic weight, 226, is
the same as that of radium.

‘We must next refer to the interesting complex of facts, to which the
name isotopes is applied collectively. Isotope signifies *“ occupying the same
position ;” isotopes are elements that occupy the same position in the
periodic system. The totality of isotope elements in one compartment of the
system is called a plesad. The pleiads of lead and polonium include no less
than eight and seven members respectively. The individual members differ
among themselves in atomic weight up to as many as eight units, but are
yet so similar that, in some quarters, their character of being distinet
elements is disallowed. For isotopic elements cannot be separated from one
another by chemical means at all and exhibit identical physical properties
throughout. The only means of separating them chemically or physically
is that offered by the difference in the atomic weights which may manifest
itself in a difference in their gravitational and inertial action.

The most convincing confirmation has been found for the theory of
isotopes in the case of lead. 'When the atomic weights of lead isotopes of
varying origin were compared with one another, it was shown that lead
from radium minerals (RaG) has the atomic weight 206-0 and lead from
the thorium minerals has the atomic weight 207'9, whereas ordinary lead
has an atomic weight 207-2.

On account of the interposition of isotopes the traditional framework
of the periodic system must be extended. Since there are now several
claimants to one space of the system, the scheme on one plane no longer
gives a non-ambiguous (uniform) allocation of the elements. It is best
to extend the scheme spatially. We imagine the isotopes to be placed
behind one another in order of their longevity, say. The longest-lived
element forms the chief representative of the pleiad in question and would
stand furthest back in our spatial scheme, in the same vertical plane as
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§ 5. Laws of Radioactive Displacement and Theory of Isotopes 85

the permanent elements which are not suspected of being radioactive.
From this longest-lived element the series of isotopes of varying longevity
would then be successfully arrayed outwards and upwards perpendicular
to the plane scheme. Thus in the two-dimensional table of elements, we
should, to be more accurate, have to place in the lowest space below
uranium Uy, whereas the isotope Uy; would have to be placed in front of
it (out in space). In the last place but one, protactinium stands as the
longest-lived element of its type (its stretch of life is at least 12,000
years), whereas the element UX, (also called brevium) that has hitherto
been installed there has a life of only 115 minutes and would thus have
to be brought forward out of the table. Of the three emanations Ra-Em
is the longest lived (3-85 days) and must therefore stand as the repre-
sentative of the inert gases in the sixth period. In the former table the
chief representatives of the corresponding type of elements was emphasised
by being printed in dark type. 'We maintain rigorously that the remaining
isotopes are also true elements. They are distinguished from one another
by their origin, their later developments, and their radioactive manifesta-
tions. Theoretically, we should be able to separate them from one another
by diffusion in the gaseous state, by using centrifugal and similar methods
in which the mass of the element is involved, provided that sufficient
quantities were available and that the mode of measurement was suffi-
ciently accurate. But for the ordinary methods of analytical chemistry, a
mixture of isotopes would behave as a uniform element.

Through the discovery of isotopes atomic weight has been displaced from
its position of sovereignity by the nuclear charge. We are acquainted with
elements, for example, RaG and RaB, or Po and RaA, which differ in
atomic weight by eight units and yet (as isotopes) they behave identically
alike in chemical reactions. On the other hand, we know elements, for
example, RaD and Po that behave chemically as differently as C and O,
which belong, namely, to the fourth and sixth column of the periodic
system, and yet they have the same atomic weight. Pairs of elements of
the latter type are to be found in Table 4 in a horizontal line; pairs of
elements of the former type occur vertically. Thus atomic weight is,
within certain limits, of no account so far as the chemical character of
the element is concerned. On the other hand, the nuclear charge
determines uniquely the chemical character in that from within out-
wards it regulates the arrangement of the electrons in our models up to
the outer boundary of the electronic atmosphere, the region of chemical
valency.

Not only among decaying elements but also among permanent ele-
ments there are isotopes. Nor do they occur as exceptions; indeed,
they are the rule. Of the elements that have hitherto been investigated
for signs of isotopy just about as many have shown themselves to be
multiform as uniform.  Those that have been proved to be uniform, that
is of a single kind, are
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H He C N F 0 P S As J
1:008 400 1200 1401 190 1600 31:04 3206 7496 126-92

and the multiple ones are

Li B Ne Mg Si Gl A Br Kr X Hg
69 110 202 243 283 3546 3988 7992 8292 1302 2006

We see that the atomic weights that have been printed below the
symbols for the elements are in the case of the simple (uniform) elements,
in particular, of the lighter ones—almost exactly whole numbers; on the
other hand, they diverge considerably from integers in the case of ele-
ments that have been recognised as multiform. Further, the elementary
constituents into which the latter may be resolved, are here, as we shall
see, exactly whole numbers, within the limits of error.

We are indebted for this important knowledge to the work* of F. W.
Aston, who, for his part, added a new link to the analysis of canal rays
(“ positive rays ") carried out by J. J. Thomson (cf. p. 14). In the canal-
ray tube there are manifold fragments of matter, simply and multiply
charged, atom-ions and mol-ions. In an electrical field they are deflected
by a force proportional to their charge and inversely proportional to their
mass. Hence in the case of two isotopes of the same charge and different
mass the heavier constituent will be less deflected than the lighter. Fur-
thermore, the amount of the deflection depends on the velocity that has
been acquired by particle in question. The advantage of Aston’s method
over Thomson's was gained by connecting up behind the electrical field a
magnetic field, the intensity and direction of which was so chosen that all
particles of the same mass are concentrated at one and the same spot:
The photographs so obtained are called *“ mass-spectrograms.”

The first result of Aston states: Neon consists of two isotopes of
atomic weight 20-00 and 22-:00, “ neon” and “meta-neon.” The atomic
weight obtained by chemical means, 20-2, results from a mixture of both
in a constant proportion.

The resolution of chlorine into two isotopes of atomic weight 35-0 and
370 (in addition to which there are also indications of one of at. wgt. 39)
is particularly impressive. The chemical atomic weight of chlorine, 3546,
which among the lighter elements is the first serious contradiction to the
integral (whole number) character of the atomic weight, comes about
owing to the fact that, as is shown from the photographic plate, the Cly,
is present in greater quantity than the Cly;; the proportion is 3:1. In
addition to the spots of 35 and 37 we see in the mass-spectrogram of the Cl-
photographs, also the spots 36 and 38 present in about equal proportions :
these are to be interpreted as HCl,; and HCl,;. Then, again, there are
spots 17-5 and 18-5 that represent doubly charged Cly; and Cly;. (In a
spectrogram double the charge acts like half the mass.)

* Phil. Mag., 39, 440 and 611 (1920). See also Isotopes, F. W. Aston, 1922,
Edward Arnold & Co., London. .
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§ 5. Laws of Radioactive Displacement and Theory of Isotopes 87

In the case of the neutral gases krypton and xenon, not less than six
and five isotopes, respectively, have been disclosed, of which the atomic
weights differ up to 8 in the case of Kr, and 7 in that of X. Thus we
have here pleiads as manifold as those occurring among the radio-ele-
ments (cf. Table 4). The same is true of the not yet fully resolved pleiad
of mercury. Further details are given in the following scheme, in which
the bracketed numbers denote suggested or uncertain cases :

Li B Ne Mg S C A Br Kr X Hg

6 10 20 24 28 35 36 79 78 - (128) 197-200
7 11 (21) 25 29 37 40 81 80 129 202
22

26 (30) (39) 82  (130) 204
83 131
84 132
&6 184
136

We restrict ourselves to these few data here and must refrain from
reproducing Aston’s spectrograms (which can be seen in his book Isotopes)
or describing them in detail. On the other hand, an optical spectrogram
(band-spectra of HCl) will later serve us as a striking document of the
double nature of chlorine (cf. Chap. VII).

At present only atoms in the gaseous state may be treated by Aston's
method ; this explains the comparatively small number of elements that
have hitherto been examined for signs of isotopic character. Mg has been
investigated by A. J. Dempster * by a canal-ray method differing from
that of Aston; in this case the three isotopes are present in the approxi-
mate proportion 6 : 1 : 1.

In view of all these discoveries the traditional term *atomic weight "
is no longer properly appropriate to express the quantity with which the
chemist is familiar. The true atomic weights of the simple constituents
are whole or nearly whole numbers. The usual atomic weights which in
many instances vary from integral values should rather be called “ mix-
ture-weights.” The constant values of the latter must be interpreted as
showing that the isotopes of the mixture came into existence before the
earth’s crust had solidified, in epochs in which their uniform commingling
was possible and inevitable. This alone would explain why the chemist
everywhere and at all times finds them occurring in the same proportions.

The striking characteristic of elementary atomic weights, that of being
integral, restores Prout’s hypothesis to its position of honour : according to
this hypothesis, all atoms are supposed to be built up of hydrogen—of
hydrogen nuclei and electrons, as we may nowadays say, or else (cf.
p- 22) of “positive and negative electrons.” The fact that hydrogen
itself is simple—in spite of the slight departure of its atomic weight, 1-008
from unity—has been proved not only by Aston but also by Stern and
Volmer t by another method (fractionated diffusion of hydrogen and
oxygen).

* Phys. Rev., 11, 316 (1918), and 17, 427 (1921). + Ann. d. Phys., §9, 225 (1919).
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If, in accordance with the sense of Prout’s hypothesis, H-nuclei are
the real elementary “bricks” of which all gravitational matter is built up,
it must cause surprise that in the radioactive transformations “ H-rays ™
have never been observed. Why does not the hydrogen nucleus occur as
a decay product of the higher elements just as well as the less simple
He-nucleus? According to what law of displacement would such an
« H-transformation ” take place? Since the H-nucleus is endowed with
a simple positive charge and since it has the atomic weight 1, the law
must clearly be : Displacement in the periodic system by one unit to the
left and simultaneously a decrease of the atomic weight by ome umit.
Actually, such H-transformations have never been observed among the
spontaneous radioactive processes, however much they may have been
sought. We might, with Fajans, see a vague indication of it in the
circumstance that hydrogen so often occurs locked up in the rare earths.
There is a type of artificial radioactive decay which is familiar as pro-
ducing H-rays, namely Rutherford’s disintegration of nitrogen. We
shall speak of this in the next paragraph.

Finally, let us consider the regularity in the succession of the atomic
weights from the point of view of the displacement laws. We saw in the
first paragraph of this chapter that, corresponding to the even atomic
numbers Z = 2n, there occur particularly frequently atomic weights of
the form 4n; corresponding to the odd atomic numbers Z = 2n + 1,
there are those of the form 4n + 3. This occurs in a particularly striking
manner in the region between C and Ca. Here we get, if we separate
the natural order into an even and an odd series of atomic numbers
and atomic weights :

TABLE 5
]
n=| 3 4 | 5 6 7 8 9 |10
Even sorieal % = 27 - 6 | 8 ‘ 10 |12 |14 |16 |18 |2
uVen Seriesy at. wgt. = 4n 12 |16 | 20 |24 (|28 {32 (36 |40
 (Z=om+1. .| 7| 9. m| 18| 15| 17| 19
0dd series {At. wgt.=4n+3.| 14% 19 23| 27| 81| 35| 39
i x

In writing down this table we have made use of Aston’s results; that
is, whenever various isotopes existed, we chose the atomic weight that fits
into our scheme ; for example, in the case of A we chose 36 (not 40). In
looking at these series it is difficult to avoid the impression that we are
here dealing with two series of a-transformations, each of which indepen-
dently obeys the displacement law for a-transformations (regular decrease
of the atomic number by 2, and of the atomic weight by 4, in passing
from right to left). The only exception is to be found at the point Z = 7,
which has been marked by an asterisk, namely the case of nitrogen where
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we should expect an atomic weight of 15 in place of 14. This exception
is of particular interest in connexion with the artificial disintegration of
nitrogen just mentioned. But another observation occurs to us as we
look at Table 5. Our two series may possibly be connected together by
an H-transformation of such a kind that the two series branch out from
a parent substance, the series of atomic weight 4n arising by a succession
of a-transformations, the series 4n — 1 by a single H-transformation and
then a succession of a-transformations. '

It is hardly necessary to emphasise that in this speculation we are, at
present at any rate, leaving the firm ground of fact, and that in the case
of the elements here under discussion, no trace can be shown of either an
H-transformation or even any spontaneous decay at all. Nevertheless
such reflections are at the present time inevitable. The proof of the fact
that there are isotopes among non-radioactive substances is a direct
challenge to us to seek out genetic relationships in the periodic system,
and to extend the laws of displacement to the whole system.* This fact
makes it seem highly probable that the nuclei, too, are of a composite
nature and may be synthesised. This opens up a new chapter in the
annals of research, about which we must now say a few words, namely
nuclear physics.

§ 6. Observations on Nuclear Physics

There is no doubt that the radioactive nuclei contain helium nuclei
and electrons, which they emit as a- and B-rays. Prout’s hypothesis
and its confirmation in Aston’s experiments requires beyond this that
all nuclei of atoms be ultimately composed of H-nuclei and electrons
(““ positive and negative electrons”). In the case of He-nuclei this
necessarily leads to the assumption that they are composed of H-nuclei
that are connected by two electrons. (We shall illustrate in a figure
below how this is to be pictured.)

In general we may assert that a nucleus of atomic weight A and
atomic number Z will contain altogether

K=A-272. . . . . 1)
electrons. For A (which, with Aston, we assume to be a whole number)
denotes the number of hydrogen nuclei and, at the same time, the total
number of positive charges; Z gives as the nuclear charge the uncom-
pensated positive charge that acts outwards. The difference of these two
must be compensated by nuclear electrons.

Of these nuclear electrons a large proportion is in the form of He-
nuclei. For atoms of weight A = 4n, Z = 2n (cf. p. 88) we have,
according to the experiments of Rutherford discussed below, to assume
that they consist of n He-nuclei. In this case, we get, by (1), K = 2n,
which is not greater than is necessary to bind the n He-nuclei together.

* Cf, van den Broek, Physik. Zeitschr., 164 (1921).
y (1921)
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90 Chapter II. The Natural System of Elements

At the same time, % = Z in this case. The excess A of the semi-atomic

weight over the atomic number, which we recorded and studied in Fig. 15,
shows in each case the presence of nuclear electrons that are not con-
tained as He-nuclei.

We proceed to prove this generally, not only for atomic weights of the
form 4n, but also for those of the form 4n + a(a = 1, 2,0r 3). Let = be
the number of He-nuclei, ¥ and z the number of electrons and H-nuclei
respectively that are not combined together into He-nuclei. We then
clearly have

A=4z + 2z
Z=2+z-y9
A z
th =" - Z =9 =%
us A g 1 3
. z
l.e. y—A+§.

The number of electrons y that are not included in the He-nuclei is thus
at least equal to the excess A, which is illustrated in Fig. 15. According
to this figure the number y increases systematically with the atomic
number.

We shall now follow L. Meitner * and assume that nuclear electrons
that are not included in helium nuclei, may in part be attached to them.
Thus, in addition to doubly charged helium nuclei, there will also be
helium nuclei that are neutralised by association with two electrons. We
shall call the first, as usual, a-particles, and the neutralising electrons, on
account of their presently-to-be-shown connexion with 8-rays, B-particles ;
finally, we shall call the helium nuclei, to which these B-particles attach
themselves, a’-particles, so that a neutralised helium configuration of this
type receives the name * (o’ + 2fB)-particle.” In addition to isolated
H-nuclei and further electrons, we thus also reckon as nuclear con-
stituents

a-particles and (o’ + 28)-particles.

The radioactive branches of descent (p. 47) teach us that these ideas are
no mere fictions.

For, at the very beginning of the uranium series there is the succes-
siona — 8 - B. We shall assume that this a-radiation in the case of
U Iis an o'-radiation, that is, that it is derived from a neutralised helium
configuration. When this configuration is deprived of an a’-particle, the
two p@-particles also become free; this is why two B-transformations
follow the emission of the a’-particle. The same phenomenon occurs at
the beginning of the thorium series.

But how will the configuration (o’ + 28) behave when its decay
begins with, not an o-radiation but a B-radiation? Two ways are then

* Zeitschr, f. Phys., 4, 146 (1921).
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open. Either the second electron of the group follows with a 8-radiation,
and then the a'-particle; or else the a’-particle is emitted first and fol-
lowed by the second 8-particle. The typical branching of the radioactive
trees of descent at the points occupied by C-products show that both ways
are followed, although not equally often (measured by the percentage
ratio of branching). That both ways must lead to the same final result is
theoretically clear, even if it has not been proved experimentally : for the
result finally is that the whole group («' + 28) is detached. Whereas, in
the thorium and actinium series the final result of branching represents
simultaneously the end of the whole tree of descent, in the case of the
radium series the decay-sequence B8 — 8 — a still follows. In this case,
too, we have the characteristic phenomenon of two B-radiations occurring
conjointly with an a-radiation (a’-radiation). We should be inclined to
expect a branching at this point, too, that is, in addition to 8- 8 —a’, also
B — @ — B. There is nothing to stop us from assuming that the ratio of
branching is vanishingly small for the second of these ways, and so has
escaped notice up till now.

Finally, the repeated succession of a-radiations that occur, for example,
between UII and RaB ean easily be accounted for. Such radiations are,
of course, not o'-radiations, but are to be regarded as a-radiations in the
narrower sense used above. The number of the a-particles in the
nucleus is much greater than that of the o'-particles ; as a matter of fact,
the comparatively small value of A shows that most nuclear electrons are
built into a-particles, and that, relatively, only a few are used in the
formation of a’-particles. It is thus more probable that an a-radiation
should be succeeded by further such radiations, in view of the pre-
dominating number of a-particles, than that an a’-particle or one of the
B-particles interlocked with it should become loosened.

Concerning further consequences, e.g. the branching of the actinium
series at UY, we must refer to the work of L. Meitner quoted above. Our
object here was only to show that speculations on the structure of nuclei
are already suggested by the well-known facts of the radioactive tree of
descent. '

These speculations have now entered on an entirely new stage, since
Rutherford * succeeded in 1919 in splitting up by artificial means nuclei
of lighter elements, as exemplified at present, in the nucleus of nitrogen.
This was the first occasion on which H-nuclei were proved to be elemen-
tary constituents of the nucleus, and became accessible to measurement.

Rutherford worked with a-rays of RaC. Their velocity is 2. 10® cms.
per sec.; their range is 7 cms., that is, in air at atmospheric pressure they
excite scintillations in a fluorescent screen (of ZnS) at distances up to
7 cms., but not at greater distances. Such a-rays represent the most
powerful concentration of energy at our disposal. When they strike
hydrogen molecules or bodies containing hydrogen, they set free H-nuclei

* Phil. Mag., 37, 587, 562, 571, 581 (1919).
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92 Chapter II. The Natural System of Elements

as high-speed “ H-rays.” This happens, certainly, only when the He-
nucleus exactly hits the H-nucleus or passes in very close proximity to it.
The range of these secondary H-rays is, corresponding to their smaller
mass, greater than that of primary a-rays; namely, it is 28 cms. in air.
They can thus be easily distinguished from the former by means of a
fluorescent screen.

But H-rays can be proved to be present not only in gases containing
hydrogen but also in air free from water vapour. In pure nitrogen con-
siderably more scintillations occur than in a mixture of nitrogen and
oxygen. From this it was inferred that the H-rays arise from the
nitrogen nucleus. Magnetic deflection also led to the correct value of
;;—. In this way the artificial transformation of an atom was achieved

H
for the first time and a dream of the alchemists attained realisation.
Rutherford succeeded in shattering, besides nitrogen, the following

atoms by means of a-rays of RaC:
B, F, Na, Al P

Here, too, the scintillation method was used as a proof. In the case of
the following elements, the result remained uncertain :

Li, Be, Mg, Si, Cl, K.
Rays of long range were found to be missing with certainty in the case of :

C O 8 Ca Ti Mn Cu Sn
12 16 32 40 48 56 636 1187.

The figures below the last row of elements show that we are here dealing
with atomic weights of the form 47 essentially. As at the beginning of
this section we may assume that such elements are composed only of
He-nuclei and that they contain no free H-nuclei. Rutherford therefore
comes to the conclusion that only elements of atomic weight

4n + a wherea = 1,2, 3

may become disintegrated by losing H-rays. The emission of whole He-
nuclei would be demonstrated by our present means only if they possessed
a greater range than that of the primary rays: in fact, all mass-rays of
less range would be beyond observation.. We shall give reasons below in
support of the view that the He-nuclei in their turn are not shattered—
neither the impinging He-nuclei nor those built into the atom that is
struck.

In the case of Al and P the observations of the scintillations disclosed
surprisingly great ranges : for Al the range was at least 80 cms.! 1If, as
is to be presumed, we are here dealing with H-rays, their initial energy
in this case would be 28 per cent greater than the energy of the exciting
a-rays. (If the carrier were of greater mass, this energy would obviously
be still greater.)
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§ 6. Observations on Nuclear Physics 93

In view of these facts we cammot regard the shattering of the atom
other than as radioactivity that has besn set going by forcible means. In
spite of the great energy of the impinging a-rays, it does not suffice to
account for the energy of the secondary mass-ray. At least a fraction of
this energy comes from the shattered nucleus itself. The action of the
impinging energy is essentially to loosen and to excite the constituents of
the nucleus.

‘What becomes of the shattered atom in each case cannot yet be de-
termined with certainty. It is surmised that N gives off two H-nuclei
and becomes transformed into C.

In addition to H-rays, Rutherford believed that he would have to
assume the presence of He-rays in the case of scintillations that corres-
ponded to a distance of 9 cms. Their behaviour in a magnetic field led
him to conclude that they were He-nuclei with a charge 2 and a mass 3,
that is, an isotope of helium. Recently, however, Rutherford has come
to the conclusion that this inference is not inevitable.

It is easy to understand why only rather light nuclei can be artifically
disintegrated. In the case of greater nuclear charges the approaching
a-particles lose too much speed to be effective. They run themselves to
a standsfill in the field of the nuclear charge. Let us work this out for
the case of Pb, in which Z = 83. The work done by the electric re-
pulsion which the charge 82¢ exerts on the charge 2¢ of the a-particle
when the latter approaches from infinity to within a distance a, is:

2.83. e
e € )

(e is measured in E.S. units). The initial energy of the a-particle is for
v = 2.10° cms. per sec. = %¢:

1 2\2
'an,'vz = 2my (%) ¢ . . . . 4)
The velocity will have been reduced to zero when
2\2 2.82% | 82 . elgn :
Amy <%> 2= —ai’ ie a = —2—%—— . . )
3) ™

Here ey, = o = 1'59.10-% and 22 — 9649 (cf p. 5). Hence
H
a = 29.10-!2 cms.

If the radius of the Pb-nucleus is smaller than this value, the a-particle
will reverse its direction before getting to the periphery of the nucleus.
If the radius is greater than this, the a-particle will be able to penetrate
into the Pb-nucleus, but only with considerably reduced velocity. Hence
it is unlikely that a-rays will be able to shatter heavy atomic nuclei.
Even in the case of the lighter elements this reduction of the initial
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velocity of the a-rays is to be taken into account. Our inference, earlier,
that the energy of the mass-rays observed by Rutherford do not arise from
the impinging projectile but from the struck nucleus, holds a fortiori in
view of this reduction of velocity.

The above calculation at the same time gives us a lower limit for the
nuclear radius of the substance emitting the a-rays. RaC is an isotope of
Bismuth, for which Z = 83. If the a-particle leaves the periphery of its
parent nucleus with zero velocity and if it owes its velocity only to the
repulsion of this nucleus, the process by which its velocity increases from
the value zero up to the value v, which it attains at infinitely great
distances, will be described exactly by equation (5), in which a now signifies
the radius of the parent substance (the difference between 82 and 83 is
clearly of no account for the accuracy of the calculation). Hence we
conclude that the nuclear radius of RaC is at least equal to 2'9 . 10-12 cms.
If it were less the velocity of the a-rays of RaC would have to be greater
than 2.10° cms. per sec. If it is greater, we need only assume that the
a-particle of the periphery of the nucleus starts out with a certain initial
velocity It is worth noticing that the lower limit thus obtained for the
size of the nucleus agrees fairly well with that mentioned on page 56, which
was derived empirically.

There is a further possibility that we must not lose sight of, namely,
that in heavy atoms there may be, in addition to He-nuclei, still other
groups of positive and negative electrons that are more closely inter-
related among themselves than with the other constituents of the nucleus.
As yet, there is no empirical evidence in support of this. Only the He-
group of four H+ and two electrons has been shown with certainty by the
general laws of radioactive decay to be a generally present element of
nuclear structure. We have now to deal with the latter in greater detail.

That the He-nuclei cannot be pure point-charges but must contain
negative charges, too, seems clear when we consider how often atomic
weights of the form 4n occur, in so far as we imagine these built up of
n He-nuclei and held together by electrical forces. If they were pure
positive charges, they would have to repel one another throughout. Only
the presence of negative charges inside the He-nuclei renders it possible
for several He-nuclei to be so interlocked that the attractive action between
the positive and the negative parts preponderates and keeps the whole
together.

The atomic weight of He appears to contradict the view that it is
composed of four H-nuclei. According to the most accurate measure-
ments, the atomic weight of H is 1:0077 ; that of He is 4-00 (the data
fluctuate between 3-99 and 4-002). Hence when these four H-nuclei
combine to form He, they must suffer a loss in mass, which, calculated
for the gramme-atom, is given by

Am = 4.10077 - 400 = 003 . . . 6)
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We have neglected the mass of the two electrons that should really be
added to that of the four H-nuclei, since they affect only higher decimal
places of Am.

This defect of mass is, however, only a seeming contradiction to the
statement that He is built up of four H’'s. In reality, it accounts in a
very satisfactory way for the great stabtlity of the He-nucleus.

As early as 1900, Lorentz concluded from the electromagnetic point
of view of inertia that the mass of a system of very close positive and
negative charges must be smaller than the sum of the individual masses
of these charges. The theory of relativity has intensified and generalised
this result. According to Einstein (ef. Chap. VIII, § 1) every form of
energy (not only electromagnetic energy) possesses inertia. Each amount
of energy E corresponds to a mass m that is given by the equation

meE.
Py
Hence if any system looses energy (e.g. by radiation), it suffers a loss in
mass. Conversely, we may infer that a loss of mass Am is due to a loss
of energy of the magnitude
Ae = c?Am . . . . . )

Accordingly we shall assume that when the four H-nuclei combine to
form the He-nucleus, they emit the energy determined by (7). We are
familiar with such a loss of energy in the case of atomic chemical com-
pounds. In this case we call it, expressed in heat-units, * heat of com-
bination,” and, moreover, we call a process of combination exothermic if
it is accompanied by loss of energy. This way of regarding things and
this terminology is to be applied to our nuclear reaction. The loss of
energy, according to (6) and (7), amounts to

AE = c¢?Am = 0-03¢* . . . . (8)
when calculated for the gramme-atom of He.

At the same time this quantity expresses the work that has to be done
to separate each He-nucleus of the gramme-atom into its four H-nuclei;
and hence it furnishes us with a measure of the stability of the He-nucleus.
This amount of work is so great that no means of physics at our disposal
can yield it. Let us compare it, for example, with the energy that is
available in the motion of a-particles of RaC. According to equation (4)
this is, per gramme-atom, ;§5¢% = 0:009¢%. It is thus three times smaller
than the energy (8), calculated in the same terms, that is, per gramme-
atom.

By dividing AE by the mechanical equivalent of heat we express AE
in terms of major calories (1 major calorie = 4:19. 10 ergs) and we then
speak, as in the case of chemical compounds of atoms, of the heat of
formation or combination Q of our nuclear compound, thus:

Q 0-03¢?

= {19 o0 = 6-3 . 10° major cals.
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As & means of comparison we mention the datum that the heat of com-
bination in usual chemical processes is of the order 100 major cals. In
the proportion of these two figures our He-nuclear compound is more
stable than ordinary chemical compounds. Whereas in the case of the
latter, thermal motion in many instances leads to a splitting up of the
compounds, in the case of our nuclear compound not even the energy of
the most rapid a-rays suffices to achieve this.

From these noteworthy general considerations which require no par-
ticular form for the constitution of the nucleus but only the trustworthy
« Principle of the Inertia of Energy,” we see that the stability of the He-
nucleus is firmly established and that it seems impossible to explode this
nucleus into four H-nuclei by the means at present available. Applied
to Rutherford’s experiments these reflections mean that not only the
bombarded He-units but also the impinging a-particles are very stable.
Of course, our conclusion of stability is restricted to the assumption that
the He-nucleus dissociates
directly into four H-nuclei.
In the event of only a partial
disintegration, e.g. splitting off
of one H-nucleus, nothing
can be asserted about the
energy of the resultant re-
maining product, and there-
fore no statement about stabil-
ity can be made.

If, as Aston’s experiments
seem to indicate, all higher
atomic weights will ultimately come out as whole numbers, this would
lead us to conclude that in the further construction of He-nuclei, H-nuclei,
etc., no nuclear reactions occur that could compare with the He-nucleus
in closeness of union. Otherwise departures from the rule of integral
numbers would have to become perceptible in the case of higher atomic
weights also. In this connexion we may regard it as a particularly
fortunate circumstance that in chemistry the atomic weights are referred
not to H =1 but to 0 = 16. With H = 1 the rule of whole numbers
would be entirely obscured.

Finally, we wish, without committing ourselves, to try to form a model
of the possible construction of the He-nucleus from H-nuclei. In doing so
we follow a suggestion of W. Lenz,* which we illustrate in Fig. 23. As a
development from Bohr’s model of the H,-molecule, this represents in the
first place a model of the O,-molecule that was formerly suggested by the

+2e

* Miinchener Akademie, 1918, p. 355. In this paper the above relativistic-energetic
reasoning for the stability of the He-nucleus is developed ; it applies independently of
the special model. Similar views were put forward earlier by Harkins and Wilson,
Zeitschr, f. anorgan Chem., 95, 1 (1916).
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author : four electrons — e are to move uniformly in a circle around the
line connecting the two remnants of the oxygen atom (not atomic nuclei).
Since each oxygen atom has lost two electrons from the equatorial electron
ring of the model, it acts outwards in both cases with the charge + 2e, as
indicated in the figure. It was pointed out earlier (p. 79) that this model
does not, according to our modern view, correctly represent the constitu-
tion of the O -molecule. '

Lenz calls his model of the He-nucleus an *inverted oxygen mole-
cule.” This has the following sense. When, in Fig. 23, the four negative
electrons are replaced by four positive H-nuclei, and the two positive
atomic remnants are replaced by two negative electrons, a configuration
results, which has the mass 4my and the nuclear charge (4 — 2)e = + 2e,
as is to be demanded of a model for an He-nucleus. Just as little as in
the case of the O,-model do we know, a priori, whether this conforms with
reality and can only prove it by experimental tests. In the case of the
He-nucleus the following data, admittedly rather unconvincing, present
themselves :—

1. The distribution of H-rays that are generated in hydrogen gas by
a-particles is very different from that which we should expect if the
a-particles acted as point-charges. Indeed, Rutherford says: The observed
effects are of such a kind as would arise if, for example, the helium nucleus
conststed of a charged disc of approximately the radius 3 . 10-13 cms., which
in the a-rays sets itself perpendicular to the direction of motion. Now, our
model with the four H-nuclei circulating in one plane actually bears a
certain resemblance to a charged dise.

2. If we apply the same laws of the quantum theory, which served to
fix numerically the size of the atomic models, to our He-nuclear model,
we get for the radius of the H-nuclei an order of magnitude which is

smaller in the ratio :Ti{ (that is, to the extent 1:2000) than the radius

of the H-atom. Thus, in this way, we arrive at sub-atomic dimensions
for the He-nucleus ; certainly these are still considerably greater, according
to Rutherford, than is estimated from the observations.

3. In addition to this insufficient agreement in size there is, as Lenz
has remarked, an insufficient stability of the model. Even hard X-rays
should suffice to disintegrate the model. To escape both these objections
Lenz suggests that we should no longer regard Coulomb’s law as
valid in such concentrated fields of force as must exist in the interior
of nuclei.

In Chapter IV we shall develop the laws of the quantum theory and
shall apply it in particular to the model of the hydrogen atom. There
we shall refer once again briefly to the model of the He-nucleus and the
determination of its size. We feel impelled to express the conviction
here that the construction of nuclei out of elementary constituents very
probably takes place according to the same principles as underlie the

4
[}

Go Slc



G68CT0GA " TON/L70OZ/3du d1puey 1py//:sdiy

Original from
UNIVERSITY OF CALIFORNIA

Digitized by G()Og[e

916006-pd#asn ssadde/bJo 1sniiTyiey -mmm//:dily / pazrithip-216009 ‘utewoq dT1gnd
/ 1W9 GG:ZZ ¥Z-0T-¢¢og uo ubredweyd-eueqdn 3e STOUT)LI JO AYTSJISATUN 1B paleJaus9



§ 7. Peripheral and Central Properties of the Atom 99

in the number of grammes given by the atomic weight. Instead of atomic
volume we might say more correctly gramme-atom volume. We shall,
however, retain the term that has been sanctioned by usage.

The atomic volume is, of course, defined only for the solid and liquid
state. The gaseous state admits of no proper volume that is characteristic
of a substance (unless we calculate such a volume from van der Waal’s
gas equation). In the case of the so-called permanent gases we must,
therefore, in defining the atomic volume, derive the density from the
liquefied state. In the case of solids that occur in various allotropic
modifications (diamond, graphite), we get several values. We exhibit
Table 6 set up by Stefan Meyer * for the atomic volumes (*At. Vol.”).
‘We plot the values of this table as ordinates in Fig. 24.

As absciss® we naturally use nowadays in place of the atomic weights
the atomic numbers, which smooth out several irregularities of the curve
(for example, at Se and Te).

We call attention to the following prominent features of the curve:
the steep maxima at the points occupied by the alkalies, the immediately
following descending branches of the curve, the flat minimum in the
middle of the period, the ascending branches before the next successive
alkali, the likewise high ordinates of the points occupied by the inert
gases, and particularly the similarity of appearance between the great
periods of 18, 18, and 32 elements with the small periods of 8 and again

TABLE 6
Z=1 H 132 Z=11 Na 237 Z=21 Sc —
2 He 274 12 Mg 134 22 Ti 107
3 Li 180 18 Al 100 23 V 9-27
4 Be 472 14 Si 12:1 24 Cr 776
5 B 44 15 P {17-0 95 Mn 743
& © { 54 135 26 Fe 7-10
3-42 16 S 155 27 Co 686
7 N 186 17 Cl 206 298 Ni 667
8 O 1122 18 Ar 28-0 29 Cu 712
9 F 167 19 K 45'5 30 Zn 9-21
10 Ne — 20 Ca 259
Z=31 Ga 118 z=a ™ [ Z=51 Sb 181
32 Ge 18-8 42 Mo 107 52 Te 204
33  As 121 43 ? — 58 J 25-7
34 Se 16'5 44 Ru 8-29 5¢ Xe 87
35 Br 254 45 Rh 8-50 55 Cs 706
36 Kr 384 46 Pd 9-28 56 Ba 862
37 Rb 56-25 47  Ag 10-8 57 La 226
388 Sr 845 48 cd 136 58 Ce 206
39 Y 234 49 In 159 59 Pr 217
40 Zr 14-2 i 50 Sn 16-3 60 Nd 207
Z=62 Sa 198 Z=17 Pt 9-12 Z=8% Bi 212
78 Ta 10-98 79  Au 10-2 86 Km 39
7 Wo 963 80 Hg 13-95 8 Ra 38
7% Os 849 81 Ti 17-2 90 Th 211
7 Ir 862 82 Pb 183 92 U 12-74

* Elster and Geitel-Festschrift, Braunschweig, 1915, p. 152,
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§ 7. Peripheral and Central Properties of the Atom 101

their thermal behaviour as shown by Dulong and Petit's law of specific
heats, the electrical conductivity, and the magnetic permeability give a
picture analogous to that given by atomic volumes, and thereby prove that
they too are external properties of the atom.

But also the phenomena that give rise to the emission of visible spectra
occur at the periphery of the atom. The spectra of the alkalies exhibit an
essentially similar structure in spite of their greatly different atomic num-
bers, Z = 3, 11,119, 37, 55, and the consequent increase in complexity of
the interior atomic structure. Only the peripheral arrangement of
electrons in the series of alkalies is similar; but this suffices to bring
about an essential similarity in their visible spectra. The same corres-
pondence exists between the spectra of the alkaline earths Mg, Ca, Sr, Ba,
as well as between Zn, Cd, Hg. Almost in every case the position of the
element in its period and mot its position in the system as a whole, its
atomic number, is the decisive factor. The latter (atomic number) gives
only a slight sign of itself, in that the spectral lines are in general not
simple lines but consist of two or three lines that belong together and are
more or less close together in the spectrum. The differences between the
frequencies of this “doublet” and ‘triplet” increase regularly with the
atomic weight, as used to be stated, or, as we now say, with the atomic
number or nuclear charge. But the part played by the nuclear charge in
the optical spectra is but a minor one.

This is different in the case of X-ray spectra. For this, the atomic
number is the chief factor, in that from the atomic number of the element
the corresponding X-ray line and, conversely, from the X-ray spectrum the
atomic number could be determined uniquely. The frequency of a
definite X-ray line, for example, the principle line of the x-series (cf. the
next chapter, § 4), increases uniformly and continuously with the atomic
number throughout the whole system of elements without showing a trace
of periodicity. In this case it is not the position of the element within
the period of the system but its position in the system as a whole that is
the all-timportant factor.

Now, what does it signify that in X-ray spectra the atomic number of
the element, its nuclear charge, exhibits itself so strikingly, whereas in the
spectra of the visible region it hides itself? This signifies that the region
in which the X-ray spectrum takes its origin is the innermost part of the
atom, the immediate vicinity of the nucleus, and that, on the other hand, at
the periphery of the atom, where the optical spectra are produced, the
nuclear charge 1s screened off by the cloud of inner electrons or just shines
Saintly through them. It is owing to the fact that the X-ray spectra take
their origin from the central region near the nucleus, where the forces are
strongest and least weakened, that their penetrative power and hardness
is so great. In contrast with this, the visible spectra require for their
excitation only small amounts of energy, compared with the extraordinary
amounts that are available in the interior of the atom and that are
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102 Chapter II. The Natural System of Elements

necessary to excite X-rays. At the surface of the atom the events occur
on a moderate scale but in the interior of the atom they become ex-
aggerated to an extreme degree.

The nucleus and the innermost regions of the atom around it are not
built up periodically but, in view of the intensity of the fields of force,
their structure is a continuous growth in conformity with the continuous
increase of the atomic number. The X-ray spectra reflect this systematic
increase of growth and thereby loose all connexion with the periodic
structure of the natural system. Periodicity is an external, and not an
internal, property of atomsic structure.

A general inference about the arrangement of the electrons about the
nucleus may be drawn from observations concerning isotopes. Two
1sotopes of an element cannot be separated by chemical means (e.g. radium
and mesothorium, thorium and radiothorium, neon and metaneon, or
Cly; and Cly;); that is, the peripheral parts of their atoms are built up
similarly, since it is these parts that are of account in chemical reactions.
Moreover, two isotopic elements have similar spectra * in the visible and the
ultra-violet regions (for example, thorium and ionium or mixtures of the
two) : this similarity also leads us to conclude with great certainty that
the arrangement of the external elements is the same. But two isotopic
elements have also the same X-ray spectra (e.g. in the case of lead and RaCr,
according to Siegbahn and Stenstrom : hence they are also alike in the
arrangement of the internal electrons. Hence the whole atomic structure
is determined uniquely by the nuclear charge; given the same nuclear
charge we get the same atomic structure, in spite of varying atomic
weights ; this applies, in particular, to the radioactive elements. As the
decay continues and the nuclear charge alters, the new arrangement of
the electrons that corresponds to the new nuclear charge is effected auto-
matically. Although we do not kmow the atomic structure in detail, we
know the law by which it is governed, the law that is dictated by the nuclear
charge through the agency of electrical attractions and-repulsions. The
atomic structure 18 uniformly regulated by electrical agency from within
outwards as far as the periphery of the atom by the magnitude of the
nuclear charge.

The question as to how the electrons are distributed numerically among
the individual shells of the atom is more difficult to answer. The X-ray
spectra do, indeed, furnish us with the evidence in which the definite
answer will be found, but we are not yet in a position to interpret these
data completely. The next chapter will give us further clues. Here we
shall just speak of the information that we get from the periodic system
of elements for the outermost shell of the atom.

*In the case of the line A = 4058A of lead, differences between uranium lead
thorium lead, and ordinary lead have been observed by Harkins and Aronberg on the
one hand, and Merton on the other (cf. Nature, 104, 406 (1919)). But they amount to
only a millionth of the whole value.
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§ 7. Peripheral and Central Properties of the Atom 103

‘We picture to ourselves the progressive synthesis of the atoms in the
order of the periodic system. At each step a new electron is added. In
general the new electron attaches itself to the outside, as we may assume
that in the interior of the atom there is no room for the immigration of
additional electrons. As the number of external electrons increases, step
by step, a limit is reached which, for reasons of stability, cannot be ex-
ceeded. From that point onwards a new outer shell begins to form, the
previous outermost shell contracting inwards. To picture this, we need
only remember the rings of a tree in its yearly growth.

The alkalies are decidedly univalent and electropositive. There can
be no doubt that we must assign to them in each period one outer electron
in the outermost shell.. The alkaline earths are divalent, the earths are
trivalent; to these must be ascribed, respectively, one, two, and three
outer electrons (valency-electrons). In general we ascribe to the electro-
positive atoms at the beginnihg of each period just as many outer electrons
as is expressed by their valency with respect to oxygen (cf. p. 56).
Electropositive character denotes readiness to part with electrons. Electro-
negative character denotes readiness to take wup electrons (*electron-
hunger”). The electronegative atoms lack just as many electrons as
they have hydrogen-valency; fluorine wants one, oxygen two, nitrogen
three. These electrons are not wanting in them for electrical neutralisa-
tion but for electro-mechanical stabilisation.

Between the electropositive elements following the end of a period
and the electronegative elements preceding it there is situated in each
case an inert gas. When the electropositive elements give up their
valency-electrons, they reduce their configuration to that of imert gases;
whereas when the electronegative elements satisfy their valencies by
taking up electrons, they complete themselves as configurations of the inert
gases. Thus both parties strive towards this goal. Hence we must
assume that the configuration of inert gases possesses a special degree of
stability, and we see why in the progressive synthesis of the atoms in the
natural system each period ends with an inert gas and that then a new
shell begins. To avoid misunderstanding, we must, however, emphasise
that we only assert the stability of the configuration of the inert gases as
a chemical fact but cannot yet give reasons for it.

The two small periods each contain eight elements. The inert gases
neon and argon that stand at the end of these periods are thus entitled to
eight electrons in the outer shell. Bohr gives good reasons (cf. the end
of this section) for thinking that the other inert gases, also, as far as the
emanation are to be credited with eight outer electrons. Instead of
configuration of inert gases we might just as well say ‘‘ 8-shell.”  Helium
with its two outer electrons is, of course, an exception.

The union of electropositive and electronegative elements denotes in
the simplest cases the creation of one or more 8-shells. We call to mind
HF, H,0, NH,. Fluorine, by taking from H the electron that it lacks,
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104 Chapter II. The Natural System of Elements

completes itself as an 8-shell; in the same way, oxygen and nitrogen do
likewise by depriving two or three hydrogen atoms of their electrons. In
all cases the result is the neon configuration with attached hydrogen
nuclei. How these nuclei lie with respect to the neon shell, whether, for
example, in the case of water they are arranged diametrally and sym-
metrically, whether they have definite positions at all, is still open to
discussion. Further, in the formation of NaCl two full 8-shells come
about : the outer electron of Na emigrates to Cl; Cl becomes raised to,
the argon type, and Na becomes lowered to the neon type. The ions
Nat and Cl-, on the formation and electrical attraction of which the
compound NaCl doubtless depends, both have in their external con-
figuration the character of inert gases. They are distinguished from Ne
and A only by a £ 1 difference in the nuclear charge. The same holds
for all alkali halogen salts and for univalent polar compounds. In the
case of divalent polar compounds two electrchs emigrate from the electro-
positive to the electronegative component. In this way there result, for
example, in the case of CaO two 8-shells, the one, Cat™, being of the
argon type, the other, O~ -, being of the neon type.

W. Kossel,* by reviving Berzelius' theory, has worked out fully this
view of chemical action and has tested it in Werner's complex compounds
in addition to the typical simple polar compounds. He arrives at the
result that in all compounds that are given as forming ions or that are
built up analogously to ion-forming compounds, the atoms are present as
ions in the undissociated state also. Consequently the single forces
represented in the old chemical scheme by hyphens with their mystic
directions become replaced by the physically more intelligible electric
forces of the ions. Of course, on this view we cannot occount for homceeo-
polart combinations, that is, combinations in which ions cannot be
assumed, as, for example, those of di-atomic gases: the difficulty of
understanding the latter presented itself to us sufficiently clearly in § 4 in
the case of the simplest homceopolar problem, that of the H,-molecule.
But apart from this the successes achieved by the electrical scheme are
astonishing. It would take us much too far from our true object to offer
even only a sketch of it.

Almost at the same time as Kossel, G. N. Lewis | recognised the part
played by the configuration type of inert gases as the goal of chemical
reactions, and pictured them in the special form of a cube, in the eight
corners of which the electrons of the 8-shell are stationed. The same
picture was sketched out a second time by Born and Landé,§ being

*In his long paper: Uber Molekulbildung als Frage des Atombaues, Ann. d.
Phys., 49, 229 (1916). Cf. also: Uber die physikalische Natur der Valenzkrdifle,
Naturwiss., 7, 339 and 360 (1919), or the monograph: Valenzkrifte und Rintgen-
spektren (Springer, 1921).

+ This term is due to R. Abegg, who prepared the way for Kossel’s theory.

+Journ. Amer. Chem. Soc., 38, 762 (1916) ; cf. also, as an extension of these views,
J. Langmuir, ibid., 41, 868 (1919).

§Born and Landé, Verh. d. D. Phys. Ges., 20, 210 (1918); Bom, tbid., 20, 280
(1918).
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based, indeed, on exact calculations of the density and compressibility
of crystals of the type NaCl. Landé* then set himself the difficult task
of investigating the dynamical possibility of the cubic arrangement, which
was, originally, only a postulate. He proceeded, not by supposing the
electrons fixed in the corners of the cube (statical cubic model), but by
inquiring after orbits in which they can keep themselves dynamically in
equilibrium, whilst preserving their cubical symmetry. It is indeed
enticing to bring the sacred number 8 of the periodic system into re-
lationship with the number of corners of a cube and to picture the
chemical ideal of the 8-shell in the form of the cube. At any rate this is
a first step towards solving the problem, proposed at the end of § 3, of
getting tangible ideas of the shell arrangement of the electrons in the
atom. But, apart from the fact that a more detailed discussion of this
question would again take us too far, we must not omit to mention that
recently Bohr (in the letter to “ Nature” quoted on pp. 59 and 69) has
raised objections of a general character against this perhaps already too
specialised picture. Presumably the symmetry of arrangement that was
demanded by Born to explain in particular the compressibility of regular
crystals, remains unaffected by these objections.

It has been held up s a reproach to Kossel’s line of reasoning, that,
in the effort to trace chemical actions back to electrostatic forces alone,
it has neglected the quintessence of the modern physics of the atom,
namely, the quantum theory. The author is of the opinion that in
Kossel’s theory the quantum ingredient is represented by the fact that,
going beyond Berzelius, Kossel takes the atomic volumes (better, the
ionic values) into account whereby, for example, the decrease in the
intensity of the polar union with increase of atomic size is explained
according to Coulomb’s law. In fact, the size of atoms is given, according
to our modern view, merely by the extent of their peripheral electronic
orbits, and these, in turn, are determined essentially by quantum relations
and quantum numbers (cf. what was said about hydrogen in §§ 3 and 4).
So that as Kossel works with impenetrable atomic shells, latent quantum
effects are involved in his calculations.

This brings us for a moment back once again to the curve of atomic
volumes, with which we started ‘this section. The downward course of
the curve at the beginning of each period may be made clear quite simply,
if superficially, by the following consideration. In the case of a neutral
atom of an alkali metal, an external electron is situated in the field of an
atomic residue carrying a single positive charge. In the case of a metal
of the alkaline earths, or of the following group, if they are elec rically
neutral we have two or three outer electrons in the field of a doubly or
trebly charged positive atomic residue. If we assume that these two or
three electrons move in a circle diametrally, or at equal distances from

* Berliner Sitzungsber., 1919, p.101; Verh. d. D. Phys. Ges., 21, 2, 644, 653 (1919);
Zeitschr. f. Phys., 2, 83, 880 (1920).
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one another, respectively (which need not be accepted, of course), and if
we extend this idea to the following column of the vertical system (for
which the arrangement in a circle obviously seems very doubtful, in view of
the tetrahedral valencies of carbon), we may make use of equation (5), of
page T4, to determine the orbital radius of the outer electrons. In every
period this radius, then, comes out as inversely proportional to Z_, =
Z —p — 3,. Here q is, for all columns from the first to the fourth, equal
to 1,3, 3, 4, and s,, according to Table 3, of page 76, is equal to 0-00, 0-25,
0-577, 0-957. Further, Z — p, that is, the nuclear charge minus the
number of electrons of the atomic residue that screens it off, is likewise,
on account of the neutrality of the whole atom, equal to 1, 4, 3, 4. We
may, therefore, write down the following table :—

TaBLE T
q 1 ' 2 P 3 4
Zepg .- . . 1 2-0-25 | 3-0-577 4-0-957
L 1 057 041 033
Zog

The hottom line gives, according to equation (5) of page 74, a measure
for the radius of the peripheral shell (imagined circular) of the atom, and
it shows how it diminishes step by step under the influence of the
gradually incressing charge of the atomic residue. We have thus a
qualitative * counterpart to the descending branches of the curve of
atomic volumes. Our argument clearly furnishes us with no analogy for
the ascending branches at the ends of the periods, particularly if we
retain the idea of a circular ring (which is in this case certainly inad-
missible).

Of greater practical importance for chemical purposes, we find the
ionic volume, inasmuch as it asserts itself directly in the polar com-
pounds of the solid crystalline state. From the point of view of theory,
too, the ionic volume is better defined and more easily accessible than the
atomic volume, in the interpretation of which the difficulties of the
homeeopolar union, and in the case of metals, in particular, our ignorance

* It is very surprising that if we form the * relative atomic volumes " from Lothar
Meyer's curve in each case, that is, the atomic volume in the second, third, and
fourth column divided by that of the preceding alkali in the first column, we get
almost the same figures, and, indeed, the same for each period. This might tempt
us, for example, to calculate the not yet experimentally determined atomic volume of
scandium from that of potassium, which is the alkali that precedes: we would get
0'41.45'5 = 18'6. In the previous editions of this book, the remarkable parallelism
between the real course of the atomic volumes and the calculation of atomic radii,
sketched out above, was discussed further. In its quantitative aspect, it is an
unsolved mystery, for atomic volume is the third power of a length, whereas our
atomic radius is the first power of a length. Consequently we have restricted our-
selves to the brief indications of the text.
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of the disposition of the conduction of electrons, makes itself felt. Thanks
to the courtesy of Mr. H. Grimm * the author is in a position to exhibit a
curve (Fig. 26) of ionic sizes, as a counterpart to the Lothar Meyer curve.
There are still gaps in it, and its absolute values are a little uncertain, but
its course is characteristic and full of meaning.

The atomic numbers are marked off along the abscissa, and the ionic
sizes R (defined as the radii of the sphere circumseribed about the 8-con-
figuration in question) are marked off along the ordinate axis. Branch I
of the curve represents all those ions that tend to the neon type from the
one side or the other; the curves II, IIl, and IV relate to those ions
that, similarly, belong to A, Kr, and X respectively. For example, on the
branch I we find, besides Ne itself, if we start from Ne and pass succes-
sively downwards, that is,

to smaller ionic sizes and o Erv
greater atomic numbers, i i R e
Nat, Mg*+, and, on the '? ' '-,s.- T
other side, that is, to 11 1§~ e X

\ i | e
s

greater ionic radii and g
smaller atomic numbers,

_‘—/l e
™ '

F-, 0~ . Corresponding o A X e
to this, we find for the % / Ve )
Argon branch, on the one o7 &
side, the group K+, Ca*t+, N°/ C
and on the other Cl—, 5——. o 2
The steep slope of all the \ \
branches is explicable from % TP
the same point of view as 03 it
receives expression in the N\
descending branches of the B
. 01
curve of atomic volumes
of Table 7, namely, the m 2% % © 5 -
same outer shell of elec- Fia. 26

trons as occurs in the :
neutral inert gas is contracted by electrostatic attraction when the nuclear
charge increases, and becomes distended by electrostatic repulsion as the
nuclear charge decreases. For example, we get the rule that the negative
ions are greater than the positive ions. The unique position of the alkalies
that was so prominent at the maxima of the curve of atomic volumes,
has vanished entirely in our ionic curves. This is easy to understand,
since the single valency electron that was responsible for this unique
position of the alkalies is no longer present in the ions.

In Fig. 26 we have drawn in addition to the curves that run from
above to below and that belong to the same period, two connecting lines,
from left to right, that link up the ions in the same group of the periodic

* Cf, Zeitschr. f. Physikal, Chem., 1921.
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108 Chapter II. The Natural System of Elements

system, namely, the alkali and the halogen ions. Concerning the dif-
ferences between the consecutive steps of these connecting lines, we read
from the figure the following rule:

II > IIIV> IIIIL

And, indeed, this rule holds not only for ionic sizes but also for numerous
other physical properties, and not only for the alkalies and the halogens,
but also for other groups of the periodic system. In particular, the
height of the step I II tells us why, in isomorphic crystals, the ions II,
IITI, and IV can be represented by one another isomorphically but not
by I. ’

Concerning the empirical origin of the ionic radii, the hint must
suffice that it is founded on the measurement and calculation of the
width of mesh of crystal lattices of the type NaCl. Fajans, Grimm, and
Herzfeld,* starting from the cube conception, have set up and tested
simple linear formule that connect the molecular volumes of crystallised
salts with one another, and their lattice constant with the ionic size of the
component parts. In the case of the inert gases, of course, the ionic radii
(here atomic radii) could not be determined in this way, but they have
been inserted as the arithmetic means of the alkali and halogen ions. A
check for this is furnished by the work, determined spectroscopically, that
is necessary to form the ions, starting from an initial netural state (cf.
Chap. VI, § 3).

So much for the outer shells of atoms and ions. Now, what does the
periodic system tell us about the inner shells and how they are occupied
by electrons? As already explained above, we may assume that each
new period marks the beginning of a new shell, whereby the one just
completed becomes the shell second from without. Thus, the periodic
numbers

2,8, 8, 18, 18, 32
give us an index of the probable numbers of the electrons that occupy the
successive inner shells.

But this does not imply that, as we proceed in the system, the
numbers of electrons in the inner shells remain the same, or even the
same as the numbers of electrons which occupied the same shells when
these formerly were complete as outer shells of a former element. It is
easy to see that the conditions of stability in an inner shell are different,
and indeed more favourable, than when the same shell formed the
periphery of the atom. As an inner shell it would thus (as a consequence
of the repulsive action of the newly added outer electrons) be able to hold
more electrons than when it formed the periphery of the atom. Hence
it may happen that at certain points of the periodic system a new electron
that is added is not attached to the outside, but takes up a position in an
inner shell. The points that come into question for this phenomenon are

* Zeitschr. f. Phys., 2, 299 and 309 (1920).
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§ 7. Peripheral and Central Properties of the Atom 109

the triads, FeCoNi, RuRhPd, OsIrPt, and the whole group of rare earths.
These elements are closely related chemically and hence we surmise that
the number and arrangement of their external electrons is the same.

These considerations which were undertaken some time ago,* have
received a much firmer foundation through the later views of Bohr, which
were accompanied by calculations, and which he communicated to us at
the conclusion of his letter to ‘“ Nature” (cf. p. 69). According to these
views, the successive shells in the case of the inert gases are occupied by
the following number of electrons :—

TaBLE 8
He . . . .2 Kr . . 2 8 18 8
Ne . . . . 2 8 X . . 2 8 18 18 8
A . . . . 2 8 8 Em . . 2 8 18 82 18 8

As we see, these numbers at first increase and then decrease to 8 again.
Allinert gases are surrounded by an outer 8-shell. The numbers of elements
in the periods of the natural system do, indeed, furnish us with the
correct strengths (Besetzungszahlen) of the shells, but, in general, not in the
right order of sequence.

How are we to represent to ourselves the difference between the period
numbers of the system and the strengths of the shells in individual cases?
Between A and Kr a first rearrangement of the electronic configuration
occurs. The completed 8-shell of A is not preserved in the case of Kr,
but is re-formed into an 18-shell. The point of the periodic system, at
which this occurs, is occupied by the triad FeCoNi. The same arrange-
ment occurs a second time between Kr and X, namely, at the point
occupied by the triad RuRhPd. The third revolution is very radical and
leads to the formation of an inner shell of thirty-two electrons; it has a
connexion with the occurrence of the rare earths in the periodic system.

From these remarks we see how the problems of atomic structure are
transfused with questions relating to the periodic system, and we recognise
that advances in problems of the former kind also entail the unravelling
of those latter types.

* Physikal. Zeitschr., 19, 229 (1918). Cf. also L. Ladenburg, Naturwiss., 1920,
Heft 1, in which he conjectures that a rearrangement of the external shell of electrons
takes place before the middle of the great periods, and in which he comes to the
conclusion that not only the inert gases Ne and A, but also Kr and X must have an
8-shell on the outside.
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CHAPTER III
X-RAY SPECTRA

§ 1. Laue's Discovery *

that Rontgen radiation is a radiation of transverse waves. We

spoke of the wave-length and of the spectrum of X-ray radiation,
both in the case of the characteristic radiation, which is the part that is
characteristic of the material composing the anti-cathode, corresponding to
the free vibrations of the electrons of the anti-cathode, and in that of the
tmpulse radiation, which is the part that is characteristic of the voltage of
the X-ray tube, corresponding to forced radiation of the electrons of the
cathode rays. Assuming the results of experiment, we described the
spectrum of the characteristic radiation as a line-spectrum, that is, as a
discrete series of individual wave-lengths, and the spectrum of impulse
radiation as a continuous spectrum which stretches from long wave-
lengths over a region of maximum intensity to a sharply defined edge of
short wave-length. In both cases the wave-length (the dominant wave-
length, the region of greatest intensity) is an inverse measure of the hard-
ness, a direct measure of the softness, of X-rays.

How are the wave-lengths of X-rays measured ? The general properties
of X-rays, compared with those of visible light, show that their wave-
lengths must be very much smaller than optical wave-lengths. In optics
the best method of measuring wave-lengths, and the only method that
leads to absolute determination of them, is that founded on diffraction.
By measuring the positions of the maxima and minima of diffraction, we
compare the wave-length with the dimensions of the diffracting aperture
and in this way reduce it to absolute measure. The greater the wave-
length of the light used, the less will be the distances between the dif-
fraction fringes and the more will the path of the ray deviate from that
of a straight line. Red will be diffracted more than blue, the diffracting
aperture being of the same size for both. Conversely, the smaller the dif-
fracting aperture, the greater will be the angle of diffraction for a constant
wave-length of light. From this it is clear that the dimensions of the

IN our introductory note on Rontgen or X-rays (Chap. I, § 5), we saw

*Laue has given a comprehensive account of his discovery in Jahrbuch fiir
Radioaktivitit und Elektronik, 11, 308 (1914). Its application to crystal analysis is
described in the book, ‘* X-Rays and Crystal Structure,” by W. H. Bragg. Loudon,
1916 (Bell).
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diffraction apparatus must be chosen much finer in the case of Rontgen
rays than in that of ordinary light.

As early as 1895 Rontgen himself had made tentative diffraction ex-
periments with his X-rays, but the result was negative. Results by other
experimenters, which were claimed to be positive, were later proved to be
due to optical illusions, half-shadow effects arising from the secattering of
the secondary radiation. Accurate diffraction photographs were first
obtained in 1900 by Haga and Wind, who used & slit that was placed
perpendicular to the course of the ray; the jaws of the slit were not, as is
usual, parallel to one another, but met at the lower end, so that its opening,
which had a width of several un at the upper end, became reduced to
several up at the lower end. The diffraction effect was to manifest itself
in a broadening of the dark band of the negative at the lower end of the
slit. These photographs were repeated with greater refinement by Walter
and Pohl. The plates were worked
out by the author, after P. P. Koch * M ¥
(of Hamburg) had measured them 1] fT !
out photometrically with great care | |['[{l{ i
]

by his own method. From a photo- | ! | |
graph taken with hard Réntgen radia-
tion the dominant wave-length
(“ width of impulse,” as it was called |
at that time) was found by calculation
tobe A>4.10-? cms. Contrast with
this the wave-length of yellow light, | ||
which is 6.10-% cms. ;
The fact that the wave-length de-
termines qualitatively the hardness of M |
the X-ray tube becomes clear when F1a. 27 (a) and (b)
we compere the two diffraction nega-
tives which have been worked out photometrically by Koch in Fig. 27 (a)
and (). The negatives were produced by Haga and Wind ; in the case (a)
they used a very soft tube, in the case (b) a very hard one. They both
present the left half of the picture of the wedge-shaped slit, of which the
geometrical shadow is indicated by the dotted line (the right half is to be
imagined added symmetrically about the middle line MM). The con-
tinuous lines are lines of equal darkness on the photographic plate, and we
see that the intensity of darkness decreases from the middle to the side.
In the absence of diffraction (wave-length A = 0) darkness would occur
only within the geometrical shadow of the slit and a neighbouring region
of penumbra. Now, a characteristic feature is exhibited in that, in Fig.
27 (b) (hard tube), the curves of equal darkness are closer to the geo-
metrical projection of the slit than in Fig. 27 (a) (soft tube). Thus, the
diffraction, that is, the deviation of the path of the ray from that demanded

*P, P. Koch, Ann. d. Phys., 38, 507 (1912).
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112 Chapter III. X-ray Spectra

by geometrical optics, is thus less in the case of greater hardness; greater
hardness corresponds to shorter wave-length.

Only a year after these results were made known, this determination
of wave-lengths was to be surpassed in accuracy and certainty in an un-
dreamt-of manner by Laue’s discovery.

In optics, the diffraction grating is more effective than the diffraction
slit, both as regards the intensity of its light and its resolving power.
The action of the diffraction grating depends on the regular succession of
the lines of the grating, the distance between which we shall call the
“ grating constant” a. The width of the form of these lines have no in-
fluence on the angle of diffraction and are only of secondary importance
even for the distribution of intensity among the spectra of various orders.

The theory of the diffraction grating is one of the most familiar
branches of the optics of the wave theory. Nevertheless, to lay bare the
root of Laue’s discovery, we must here set out some of its essentials.

In Fig. 28 we exhibit a section of the grating; 1,2, 3, . . . are the
traces of the lines of the grating; the distances (1,2) = (2,8) =. . .

are equal to the grating constant a. Let

> \ the angle between the incident beam of
P rays and the trace of the grating 1, 2, 3,
/ . . . have the direction cosine a, the

1 3 <>

(] direction cosine of the emergent beam and

¢ the sameline 1,2, 3, . . . beinga. (apand

(" a are simultaneously the sines of the angles

\ of incidence and emergence.) Using
Fic 98, Huyghen's Principle, let us imagine rays

starting out from each grating line in all
directions. Thus, for the present, we may regard e as any arbitrary
angle whatsoever. In the figure the case of transmitted light is pictured.
By folding the diffracted rays in the figure about the axis 1,2,3, . . .,
we get the case of light reflected by diffraction.

The theory of the diffraction grating is contained in the equation :
a(a — ay) = hA . . . . (1)

In (1) the left-hand side denotes the difference in length of path
between the ray, for example, that goes through aperture 1 and that which
goes through aperture 2 (and, generally, the difference of path between
any such ray and its neighbours). For aa = 1P is the difference of path
between the diffracted rays through 1 and 2, and likewise aa, is the
difference between the lengths of path of the incident rays through 2 and
1. Thus our equation demands that the path-difference in the whole
course of the rays be equal to a wave-length, or a multiple of the wave-
length (that is, & must be an integer). In this case we get an amplifica-
tion of intensity through interference, that is, a diffraction maximum.

Google



§ 1. Laue’s Discovery 113

We get diffraction minima, that is, a neutralisation of intensity by
choosing b = 4, or b = an integer + $.

In the first place, equation (1) shows that the diffraction grating is a
spectral apparatus, inasmuch as it gives for each wave-length A a definite
angle of diffraction. Hence incident white light is analysed into its
spectral components. Again, red is more strongly diffracted than blue.
For h = 1, we get a spectrum of the first order; for b = 2, we get one of
the second order, and so forth. Corresponding to the case & = 0 is direct
light, which is not resolved spectrally. On the other side of the direct
ray spectra of the first, second, . . . order also occur, namely, fork = - 1,
h = — 2, and so forth. The separation of the colours (the dispersion) is
double as great for a spectrum of the second order as for one of the first
order, and so forth. Further, equation (1) tells us that the grating
constant a must be greater than A, but not foo much greater. For if

a << A\, we should have h2> 1, and hence hg could not be equal to

a — a,, a8 is demanded by (1) (since a - a,, being the difference between
two cosines, is <{ 1). If, on the other hand, a > A, then a — a, will
become very small for moderate values of h, and the spectra of first,
second, . . . order, if caught on a screen, would lie very close to the
direct light; the dispersion would be insufficient and the grating would
fail to be of use as a spectral apparatus. In the case of Rowland gratings,

which are of perfect construction ; amounts to less than 10 units.

Besides the grating constant a, a decisive feature for the excellence of
a grating is the number of lines N of the grating. It conditions not only
the brightness of the diffraction spectra, as is immediately apparent, but
also the resolving power of the grating, that is, the power to separate
and make measurable spectral lines whose wave-lengths differ only
slightly from one another. The resolving power is given directly by the
number of lines N.

From the simple line-grating we pass on to the crossed grating, or
lattice. Every one knows the beautiful diffraction spectra that are pre-
sented to the eye when we look at a distant source of light through
gauze. We shall confine our attention in particular to a quadratic
system of fine apertures, that is, we suppose the threads of the web or
network to run at right angles to one another and supposc them to be
comparatively thick, so that the intermediate spaces that let through the
light may be regarded as mere points. The distance between each two
neighbouring apertures is to be called the ‘““lattice constant™ a. In
Fig. 29 we take two rows of such apertures as our z- and y-axis; we
draw a z-axis perpendicular to both. We cannot picture the course of
the beam for the incident and diffracted rays since their paths lie in space.
Nevertheless we may say exactly as in Fig. 28 let o, 8, be the direction
cosines of the incident ray with respect to the z- and y-axis, respectively ;

8
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114 Chapter III. X-ray Spectra

let a, B be those of the diffracted ray. In the diffracted ray the con-
tributions of all apertures are to strengthen one another additively as a
result of the inference. For example, let us consider the contributions of
1 and 2. If they strengthen one another then

afa ~ ay) = IyA . . . . (2)

where &, = an integer. The projection of the distance a of the lattice-
points 1 and 2 on the incident and the diffracted ray gives us precisely
Fig. 28 (only that, where necessary, the upper and lower half-planes in
Fig. 28 must now be considered inclined to one another) and thus proves
the truth of (2). In the same way the contributions of 1 and 2’ are to
act additively through interference. To assure this, we must have

a@ - B)=hA . . . . (D)

where 7, = an integer. This equation, too, may be read off from Fig. 28, if
we project the distance between 1 and 2’ on the incident and the diffracted
ray. But if 1 acts together with 2 and 2 to produce increase of bright-
ness as a result of the interference, then every
opening acts in the same sense, since, then, the
difference of path between each two openings is
equal to a whole number of wave-lengths.

Likewise the lattice (crossed grating) resolves
the incident light into its spectral components.
For, from equations (2) and (2'), if %, and &, are
given, there is defined for each A a different direc-

Fio, 29, tion of the diffracted rays. We construct the path

of this ray as follows. We describe about the

z-axis of Fig. 29 a cone such that the cosine of its angle of aperture is
equal to the direction cosine a, as obtained from equation (2). In the
same way we describe about the y-axis a cone which is similarly de-
termined by the direction cosine B8 given by (2'). These cones intersect
in the ray whose position we require (as well as in the ray that is sym-
metrical to the latter with respect to the zy-plane, the lattice acting, so to
speak, as a reflecting plane). Our construction holds for a definite wave-
length A. For a new A the apertures of the cones must be altered to accord
with (2) and (2'), and thus we get a new direction for the diffracted ray.
Hence, for given values of h, and h, we obtain a spectrum, which cor-
responds to the two order numbers h,, h,, and by varying h,, k, we get a
two-fold manifold of spectra. Each of these spectra repeats the complete
series of spectral colours from red (on the outside) to violet (on the inside),
with the exception of the spectrum (0-0), the continuation of the incident
ray, which is not analysed in this special case. The spectra (1:0), (2-0),
(3:0) . . . lie in the plane through the incident ray and the z-axis; the
spectra (0-1), (0-2), (0-3) . . . lie in the plane through the incident ray
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§ 1. Laue’s Discovery 115

and the y-axis. The spectra (1'1), (22), (3:3) . . ., further, are situated
in the plane through the incident ray and the bisectors of the angle between
the z-axis and the y-axis, and so forth for the other spectra. Besides the
spectra (+ k;, + h,), there are, alloted to the other quadrants of the xy-
plane, spectra (+ h,, — hy), (- hy, + h,), and (- hy, — k;). As in the
case of the line-grating we must have a >> X but we cannot allow a > A.
The equations (2) and (2') comprise the whole theory of the crossed grating
or lattice, just as equation (1) comprised the theory of the line-grating.
Concerning the resolving power of the lattice, the numbers N, N, of the
lattice aperture in the one or the other direction serve as indices.

From the crossed grating or plane-lattice we pass on to consider the
case of a space-lattice, for example, a cubical space-lattice. We may
imagine that there is added to the quadratic system of openings of Fig.
29 a whole system of similar systems placed one behind another at equal
distances a. For this purpose we prefer to talk, not of ““ apertures,” but
of “lattice-points,” which act as diffraction centres” or as *scattering
points.” Thus we have a cubical system of lattice-points, of which each
two neighbours are separated by a distance equal to the lattice constant a
along the direction of each axis, z, y, 2. We allow light to fall into the
system of lattice-points in the direction a,Byy, (these being the direction
cosines with respect to the three axes, respectively). At each of our
lattice-points a fraction of the incident light will be diffracted or scattered
in all directions, for example, in the direction aB8y. At a great distance
from our space-lattice the waves that emerge in the direction aBy from
each lattice-point form a homogeneous ray, namely, the ray aBy diffracted
by our space-lattice. (In order that this ray might form without obstruc-
tion in all directions, it was necessary to replace the idea of “ diffraction
apertures ” by that of “diffraction centres,” otherwise the formation of
the diffracted ray would be impeded by the diffracting screens that we
should have to assume between the diffraction apertures.)

The diffracted ray a8y, however, is appreciably bright only when the
contributions of all the lattice-points act together in the same phase in
producing it. For this it is necessary that the path-difference of the rays
from neighbouring lattice-points be a whole number of wave-lengths.
Thus we arrive at three conditions, one for the direction of # (that is, for
two neighbours that are at a distance @ from one another in the direction
of x), one for the y-direction, and one for the z-direction :

afa — ap) = A . . . . (3)
a(B — B,) = IA . . . . (3")
aly — 7o) = hzA . . . . (3

‘When these conditions are fulfilled, the effect of interference is to
amplify the intensity, and indeed, not only of that due to two neighbours
but generally, to that due to any two of our lattice-points, since for them
the path-difference is a whole multiple of the difference of path for two
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116 Chapter III. X-ray Spectra

neighbours. These rays that are thus intensified as a result of inter-
ference from all the lattice-points are, furthermore, the only ones that are
appreciably bright. For, in the case of a sufficiently great number of
lattice-points (N,, N,, N; in the three co-ordinate directions), rays that are
intensified through the combined action of only a fraction of these lattice-
points (for example, only the lattice-points, N, and N,) would appear
infinitely faint compared with those discussed above.

Equation (3) comprises the essential features of the theory of the space-
lattice. We read out of it that: every interfering ray is characterised by
three whole numbers (hy, hy, hs) the order numbers of the inierference pheno-
menon in question. We cannot, however, as before speak of a spectrum of
the order (h;, hy, hy). The light that is diffracted by the space-lattice no
longer contains all the wave-lengths in juxtaposition, as happens in the
case of the crossed grating or plane-lattice; it is, on the contrary, mono-
chromatic light.

From equation (3) it follows that

A A A
‘1=ao+h1(? B=Bo+h2(‘,’v 7='Yo+hsa- 4)
Moreover, we have the Pythagorean relation between the direction cosines:
a® + B2 + 92 =1, andlikewise o} + 85 +yi=1. 5)
By squaring each member of (4) and then summing, using (5), we get
1= 1+ (hag + hafo + hyyo) S+ (b + B3 + )2

and hence,

hia +ho[)’ +h.y
= — 9gM% 2P0 sYe . .
A e XYy ©)

Thus, the wave-length that can be diffracted in the interference ray of
order (hy, hg, hy) is fully determined for a given direction of incidence.
We may express this in some such terms as these : The third condition
that becomes added to those of the plane-lattice, when we deal with
space-lattices, singles out one wave-length from all those of the plane-
lattice, and excludes the others. We illustrate this by a conical con-
struction analagous to that which we have already used in the case of the
plane-lattice. About the z-, y-, z-axis in turn we describe cones whose
angular apertures have cosines such as are demanded by equation (4).
Two of these will intersect, whereas the third will not, in general, pass
through a line of intersection of the other two. But the latter condition
is absolutely necessary if the amplification produced by interference is to
reach full strength. Hence, for an arbitrarily chosen A, there will, in
general, be no diffracted ray. By altering A we also alter, according to
(4), the conical apertures continuously. We may carry out the change of
A in such a way that the sheet of our third cone gradually approaches the
intersection of our first two cones. If we proceed in this way we shall
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succeed, at a certain value of A, in making all three cones have a common
line of intersection. This is the interference ray (af8y) ; the corresponding
wave-length is that which was calculated in (6).

From equation (3) we shall straightway make a further deduction.
For this purpose we introduce the following symbols (cf. Fig. 30) : 26 is to
denote the angle between the incident and the diffracted ray, that is, 4 is
the angle which the incident or the diffracted makes with the middle
plane MM between both. We then have

cos 20 = aay + BB, + vy, - . . . (7
By squaring each member of (3), then summing and using (5) and (7),
we get

(@ = a) +(B=B)y+ (- 7)F=2-2cos20 =4sin%9
2
= (h* + b} + h;;z)%_; 8

Taking the square root, we get
. A
sin 6 = o Jh? + byt + R ¢))

We shall find that this equation will be of funda-
mental importance in § 3.

In the region of optics our space-lattice is
only a fiction, a model which we have conceived
so as to generalise the scheme of diffraction as .
presented by ordinary diffraction gratings. The
art of the mechanic and of the weaver are of ne
avail for producing such space-lattices. In the
realm of Rontgen radiation, the position is differ-
ent. The brilliance of Laue’s idea consisted in
his recognising that the space-structure of oo Bo 7o
crystals is just as happily adapted to the wave- F1a. 50.
length of Rontgen radiation, as the structure of
a Rowland grating was adapted to the wave-length of ordinary light,
that is, that we can take directly out of the hands of Nature the diffraction
apparatus necessary for Rontgen rays, in the form of one of her master-
pieces, a crystal of regular growth.

It was a favourite idea of mineralogists and mathematicians (Hauy,
Bravais, Sohnke, Fedorow, Schonflies) to account for the regular shape
and structure of crystals by the regular arrangement of their elements of
structure, of their molecules or atoms. According to this, a lattice of the
cubical type would have to be ascribed to a crystal of the regular or
cubical system. If we determine the lattice constant a of such a crystal
from the density of the crystal and the mass of the atoms composing it
(as we shall do at the end of §3 of this chapter for the case of rock-
salt), we find that a is of the order of magnitude 10-3 (for example,
a = 56.10-8 in the case of NaCl). This is the same order as that
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120 Chapter III. X.ray Spectra

possesses three planes of symmetry inclined to one another at an angle of
120°. In general, each spot occurs six times, but in a particular position
on one of these planes of symmetry it occurs three-fold. Each 3- or 6-
group of spots, respectively, is produced by the same wave-length. For
example, in the case of the very prominent 6-group of spots we have

A 2 X =330.10- cms.

The wave-lengths that are singled out in this way by the crystal
structure and are diffracted to definite points of the photographic plate are
all contained in the primary bundle of rays, just as the colours of the rain-
bow are contained in the white light of the sun. In Laue’s method the
continuous spectrum is used to produce the interference picture. This
continuous spectrum, however, is not, as in the case of the line-grating or
plane lattice (crossed grating), mapped out completely, but certain in-
dividual wave-lengths (more accurately, several narrow regions of wave-
lengths) that are appropriate for the crystal structure are selected from
the continuous manifold of the spectrum and made prominent. The
prominence of certain wave-lengths in the interference picture is partly
due to the fact that they are particularly strongly represented in the
primary spectrum (the region of maximum intensity of the continuous
spectrum), and partly due to the fact that the photographic plate reacts
particularly strongly to them (selective sensitivity of the silver bromide).
Laue’s method tells us nothing of the line-spectrum, of which the discrete
wave-lengths are not in general adapted to the erystal structure. Since
the line-spectrum, as the characteristic radiation of the atoms of the anti-
cathode, is particularly important for the study of atomic structure, we
shall not require to draw further from Laue's original method. Of course,
the spectrometric methods that we shall discuss in the sequel will differ
from Laue’s method only in the mode of arrangement, not in the root
idea. This idea, of using the crystal as an analyser for Rontgen rays, is
as essential in them as in the original method.

So far we have given Laue’s theory for the case of the regular system
with the lattice constant a. How this is to be extended to the other
systems of crystals suggests itself to us immediately. In the case of the
rhombic system, which is built upon three mutually perpendicular axes, it
is only necessary to replace the quantity a in equation (3) by the lattice
constants, a, b, ¢, in the directions of the three axes respectively. We
then get in place of equation (6)
glao + ';:2160 + }':3 Y
A= - 2"711,";7 ‘-h‘-'i”:ﬁ"mg ) ' ) (10

A
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§ 2. Results of Crystal Analysis 121

In the same way, equation (9) now becomes

. ARz pE 2
sin § = §J% + ]Z'; + ’:; N ¢ 5

The case of the tetragonal system is given by setting b = a. In the
remaining crystal systems, in which the axes of the lattice are in general
inclined against one another (oblique), the direction angles of the crystal
axes appear in the corresponding formule, besides the lengths of the edges.

The roads of research opened up by Laue’s discovery branch off in two
directions. In one case we measure out the Rontgen spectrum of a given
tube and of an anti-cathode of given material in terms of the lattice con- -
stants of a suitably chosen crystal. On the other hand, we measure out
the structure of a given crystal in lerms of a suitably chosen wave-length of
a Rontgen ray. The results of the former type of research form the
proper content of the present chapter. The following section gives a few
indications of the second type of research, which does not belong to our
real theme.

§ 2. Results of Crystal Analysis

In our description of Laue’s discovery we have tacitly assumed the
space-lattice to be formed exclusively of similar lattice-points, for example,
as a simple cubical lattice. In reality, this is not the actual case. In
dealing with non-elementary substances we are always concerned with
lattices of different types of atoms fixed within each other. The structural
elements of the crystal lattice are not crystal molecules but crystal atoms,
The conception of molecules finds a place only in the gaseous and liquid
state (in the latter, on account of varying polymerisation, it is already
somewhat indeterminate), whereas in the solid, that is, the crystalline
state, it is essentially resolved into the notion of atoms in juxtaposition.
We do not deny that, in the structure of crystals, groups of atoms occur
that are more closely related among themselves than with the remaining
atoms of the crystal (for example, the group CO, in the structure of fel-
spar CaCO;). Nevertheless we have a certain right to say that the whole
crystal forms a single giant molecule. It would be arbitrary and would
set an artificial restriction on many of the crystal models known at pre-
sent to isolate from the totality of systematically arranged atoms, in-
dividual crystal molecules, corresponding to the chemical formula.

Accordingly, the object of crystal analysis is not only to determine the
lattice constants of the system (linear and angular dimensions), but also
to determine the mutual position of all atoms that participate in the
crystal structure. The possibility of differentiating the various atoms
from one another depends on the fact that their power of diffracting or
scattering Rontgen rays varies. As we know (cf. Chap. I, § 5, p. 30, and
Note 2), this scattering power is proportional to the number of scattering
electrons contained in the atom, that is proportional to the atomic
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122 Chapter III. X-ray Spectra

number Z. Therefore the heavier atoms contribute more to the inter-
ference of X-rays than the lighter atoms. More precisely expressed, in
the case of polar salts it is not, as we already know, the atoms themselves
but their positive or negative ions that form the elements of structure of
the crystal.* Hence we must regard as the measure of the scattering
power, not the electronic number Z of the neutral atoms, but the number
of ions, which differs from the former by one or, in the case of multi-
valent ions, by several units. For example, in the case of rock-salt,
NaCl, Z = 11 for Na and Z = 17 for Cl. But since the electropositive
Na gives one of its electrons to the electronegative Cl, the scattering
power of the jons actually present in NaCl is 10 in the case of Na*, and
18 in that of Cl-. In sylvine, KCl, the two ions K* and Cl- have an
equally great scattering powsr, since the electronic numbers, Z = 19 for
K, and Z = 17 for Cl, equalise themselves in the corresponding ions to
the electronic number 18 which is that of the argon configuration (cf. the
final section of the preceding chapter, p. 103).

For a more detailed investigation into the structure of crystals, the
use of the line-spectrum proves to be more productive than that of the
continuous spectrum. Whereas in Laue’s method the wave-length varies
from spot to spot and has to be carried along as an unknown in the
interpretation of the interference picture, we avoid this unknown if we
use the line-spectrum, and thus the problem is simplified. We shall see
in the next paragraph how the experimental arrangements have to be
altered for this process. The successes which Sir William Bragg and his
son, Professor W. L. Bragg, have obtained in investigating crystal
structure is widely ascribed to the fact that they used the * reflection
method " as contrasted with Laue's *transmission method.” But this
view is erroneous. The advantage and the simplicity of their method is
due essentially to the fact that they used discontinuous line-spectra.
Thus the antithesis is not : reflection method and transmission method, but
discontinuous spectrum and continuous spectrum.

A few examples will serve to illustrate the present state of crystal
analysis. NaCl consists of a cubical lattice whose points are formed by
alternate Na*- and Cl--ions, in such a way that each Cl-ion is surroundea
by six Na neighbours (cf. Fig. 34, in which the two kinds of ions are re-
presented by white and black beads respectively).

The Na-ions, taken alone, form a * face-centred” cubical lattice, like-
wise the Cl-ions taken alone. The lattices, both of which are congruent
in themselves are placed within one another so that the points of one
space-lattice occupy the centres of the edges of the other space-lattice.
KCl, KBr, KI, LiCl, RbCl, and PbS (galena) have the same structure, the
magnitude of a changing gradually.

On the other hand, in CsCl, the Cs-ions, for their own part, form a

* This beautiful and obvious result has been proved experimentally for the case of
LiF by Debye and Scherrer (Phys. Zeitschr., 19, 1918, p. 474).
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§ 2. Results of Crystal Analysis 123

simple cubical lattice, and the points of each lattice are situated in the
middle points of the elementary cubes of the other lattice. Since it is
known that CsCl becomes a modification of another form at the tempera-
ture 479° C., we may assume that this other modification will be of the
same face-centred type as the other alkaline halides. Further, we may
assume that NaCl, etc., may also occur in two modifications but that the
point at which the transformation into the simple cubical type takes place
lie considerably below the room temperature. This assumption is sup-
ported by the fact that in the case of NH,Cl both modifications are
known and have been measured by means of Rontgen rays: at 20° C. the
simple cubical form was found, whereas at 250° C. the face-centred type
was found to be present. The point of tranformation is at 184° C.
NH,Br and NH,I gave similar results, the transformation points being
137° C. and — 18° C. respectively.

Most of the regular elements, for example, Cu, Ag, Au, Al, Ni, Pb,
and Th, crystallise in the form of simple face-centred lattices, as is
shown in Fig. 34, if we imagine one type of ions removed from it. As,
at present, we can make no certain statements about the state of ionisa-
tion of their structural elements, we speak, in
this case, of atoms rather than of ions, without
wishing to indicate, however, that they are
necessarily uncharged.

It is characteristic of the stability of the
face-centred arrangement that the lattice struc-
ture and the lattice distance remain quite un-
altered even when the metals are produced by
* gpotting” or in sizes extending to the colloidal state. The individual
particles in this state appear to consist only of a few hundred atoms.

Tungsten forms a space-centred lattice; its atoms are situated in the
corners and in the centres of the space of the cube; the centres of the
surfaces remain unoccupied. The same type of lattice has been found
in the case of Li, Na, Fe, Cr, Mo, and Ta. A peculiar combination of
space-centred and face-centred lattice occurs in cuprite, CuO,. In it the
Cu-atoms form a space-centred lattice, whereas the O-atoms form a face-
centred lattice. Their relative position may be described thus: connect
the centre of a cube that is occupied by & Cu-atom with its eight corners ;
place in the middle of each alternate semi-diagonal an O-atom, leaving
the intermediate diagonals unoccupied. In this way each Cu-atom is
surrounded by a tetrahedron of O-atoms: all O-atoms together form a
face-centred lattice, which is interlocked with the space-centred lattice
of Cu-atorns. '

A series of metals that crystallise hexagonally, namely, Mg, Zn
(probably also Cd), and Be have a lattice form that is built up as follows :
Fill up a plane in the form of a regular triangle with spheres that touch
one another; place a second layer of spheres over these according to the

Fig. 84.
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same scheme, so that they sink into the gaps of the first layer; the third
layer then lies vertically above the first and sinks into the gaps of the
second ; the fourth layer lies vertically over the second, and so forth.
The middle point of the spherical pile then corresponds * essentially ” to
the mid-points of the atoms in the hexagonal metals quoted (this is not
to be taken as meaning that the surfaces of the atoms touch in just the
same way as the spheres in our picture). ‘ Essentially” signifies that
the arrangement in the form of regular triangles is exactly realised not
only in the horizontal plane but that in the vertical direction, too, the
distance between the layers bears almost the same ratio to the side of the
triangle as in the case of the spherical pile, with slight deviations between
the individual elements.

From the point of view of crystallography this arrangement could be
resolved into two interlocked hexagonal lattices of the simple Bravais
type, the one consisting of the layers 1, 3, 5, . . ., the other of the layers
2, 4,6, ... The circumstance, however, that just in the case of
elementary substances always two such hexagonal crystals appear in
conjunction, and that the ratio of their axes approximates to that of our
spherical pile shows clearly that, not the resolution into two simple-
hexagonal lattices, but our description by means of the spherical pile is,
from the physical point of view, the description appropriate to the nature
of the case.

The relationship that we get between this view and that given by the
face-centred lattice, the other form in which simple elements present
themselves, is also remarkable. For instance, if, starting from our first
and our second layers, we build in the next layer not so that it lies
perpendicularly over the first layer, but over the gaps left by the second
layer, that is, so that the fourth, fifth, and sixth layers will be the first
repetitions of the first, second, and third layers, we get exactly the face-
centred lattices of the regular type built up on the octahedral surface as
base. Thus the hexagonal and the face-centred regular lattice form pass
into one another by means of a system of regular slidings along the
octahedral surface, or, as we may say, by a sort of twin-formation. The
face-centred regular lattice, like the double hexagonal lattice, may be
regarded as a special form of spherical pile.

Continuing from NaCl we may describe the structure of CaCO; in
the following way : Let us imagine the NaCl-lattice placed with its space
diagonal upright and let us replace Na everywhere by Ca, and Cl by C.
Let us then surround each C-atom (cf. Fig. 35) by a wreath of three
O-atoms, whose plane is perpendicular to the vertically placed diagonal.
As a result of this arrangement of the three O-atoms about the vertical
axis, more space, 80 to speak, is used up in the horizontal plane than in
the vertical axis. The original cube, therefore, becomes extended hori-
zontally and becomes a rhombohedron, as is well known from the sur-
faces .of cleavage of fluor-spar.  Carbonates and nitrates that are
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isomorphic with fluor-spar have the same structure with slightly changed
rhombohedral edges.

The structure of zinc-blende may be described as a cubical face-
centred lattice of Zn**-ions and a similar lattice of S~ ~-ions, which is
displaced with respect to the former by a quarter of a space diagonal.
Thes polar nature of this axis that shows itself in the crystal form of
zine-blende (tetrahedral hemibedrism of the regular system *) and in its
physical properties (pyro- and piezo-electricity), exhibits itself strikingly
by the uneven occupation of the space-diagonals by Zn- and S-ions.
In order not to confuse Fig. 36, we have filled in only the Zn- and S-ions
on a diagonal (placed vertically) and have only sketched lightly the edges
of the cube of the corresponding Zn- and S-lattices.

From the lattice of zine-blende we get that of fluor-spar, CaF,, by sub-
stituting Zn++ by Ca++, and 8~ ~ by F- and then adding a second
ion, ¥ —, symmetrically on the other side, which is diametral to the first

F-. Asa consequence of this symmetrical arrangement F~ Ca++F -
of the three-fold axis, its polar character is destroyed.

From zinc-blende we pass on to the diamond by replacing both the
Zn- and the S-ions by C-atoms. The polar nature of the three-fold axes
is thus again destroyed ; the symmetry becomes holohedric, which is as it
should be for diamond. But further: each C-atom lies at the centre of a
regular tetrahedron whose corners are occupied by C-atoms. Cf. Fig. 37
which represents a tetrahedron of this type that has been cut out of the
crystal structure. The old chemical idea of the tetrahedron valencies
of carbon (van 't Hoff and Le Bel) is thus beautifully confirmed by the
crystal model + of diamond. Of course we have had the same relative

* Cf. W. H. Bragg and W. L. Bragg, * X-Rays and Crystal Structure,” Bell & Sons,
p. 146, This book contains a detailed discussion of the points enumerated in this
section. H. L. B.

+ Proved by W. H. Bragg and W. L. Bragg, 1913; it was surmised by A. Nold
[Chem. Ztg., 29, 174 (1905)] and A. Schonflies (Vortrage iber die kinetische Theorie der
Materie, Gottingen, 1918, Teub. S. 66 der 1. Aufl.).
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position of the atoms already in the case of zinc-blende, as its constructed
space-model (in contradistinction to our schematic sketch of Fig. 36)
immediately shows : in this case, too, each Zn-atom lies at the centre of
a tetrahedron of S-atoms and vice versa. The same lattice as that of
diamond is possessed by the element Si, which is chemically related to it.

If the diamond model is uniformly stretched in the direction of the three-
fold axis, which was placed upright in Fig. 36, we get from the cubical

crystal form one that is of rhombohedral symmetry.
This form belongs to Bi, Sb, As, the stretching in-
creasing gradually. Since in the new form of
symmetry the two face-centred lattices that are
interlocked in diamond are no longer determinate
C  but may be slid along the three-fold axis, their dis-
c ¢ tance from one another need no longer, as in the
Fia. 87. cubical case, amount to a quarter of the principal
diagonal ; indeed, in the case of Sb, for which it has

been determined, it appears to be considerably greater.

The structure of the other modification of carbon, graphite, has also
been ascertainable by means of Rontgen rays. Its horizontal planes (base
planes, planes of cleavage of graphite) are hexagons that join up with one
another as in the case of honeycombs (cf. Fig. 38). The crystal system
is rhombohedral (trigonal). In this case, too, the carbon is tetravalent in
action. But only the three horizontal
valency bonds that connect one of the
hexagonal points with three neighbours are
equal to one another; the fourth valency
bond, directed upwards, which links up the
point of the one horizontal plane with a
point above or below it on the neighbouring
horizontal plane, is much longer and
hence much weaker. The exceptional
tendency of graphite to cleave along the
basal plane is connected with this fact.

We get this graphite lattice from the
two face-centred regular component lattices Fia. 88.
of diamond if we displace these relatively,
not as in Fig. 36 by a quarter of the greatest diagonal, but by a third. In
this reciprocal position the middle C-atom in Fig. 37 moves into the basal
plane of the tetrahedron shown, and at the same time the system of
tetrahedral diagonals darkened in Fig. 37 passes over into the hexagonal
system of axes shown in dark type in Fig. 38. Finally we have yet to
stretch the whole lattice uniformly in the direction of the vertical axis
without altering the horizontal projections, which are exactly equal in the
case of diamond and graphite.

Moreover, so-called amorphous carbon derived from the most varied

C
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§ 8. Methods of Measuring Wave-lengths 127

sources has shown itself to be micro-crystalline graphite on examination
by Rontgen rays. Hence there are only two chemical forms of carbon:
the diamond lattice, tetrahedral in structure, being the type of aliphatic
combinations of carbon, and the hexagonally constructed graphite lattice,
the archetype of all aromatic compounds of carbon (Debye).

By the same process of sliding as that by which we passed from the
face-centred lattice of the regular elements to the hexagonal lattices of
Zn, Mg, etc., we clearly also get from the two interpenetrating face-centred
lattices of diamond to a new lattice of hexagonal structure. The tetra-
hedral arrangement of atoms is not hereby destroyed; that is, we get a
lattice in which, as in diamond, each atom is connected by four valency
links with its neighbour atoms. It was natural that, originally, we were
inclined to attribute this lattice—we call it * pseudo-graphite lattice”—
to graphite. But, although later experimental investigations of graphite
disclosed a different lattice system, our pseudo-graphite lattice seems very
probably to belong to a second modification of Zn§, namely, wurtzite ; it
has been shown with certainty to exist in the case of ZnO, red zincite.

Of the other dimorphic crystals TiO, has been examined in the form
of anatas and rutil: both are tetragonal but their axial ratios differ and
likewise their lattice structures.

The knowledge of a great number of other crystals is so far incom-
plete, that is, only the position of individual atomic groups and the
lattice distance of their crystallographic basal form is known. Among
these are ice, quartz, sulphur, and the crystals of the aluminium group.

Figures and references about the lattices above described are added
in note 3 at the end of the book.*

§ 3. Methods of Measuring Wave-lengths +

Whereas in the first paragraph we have discussed the diffraction by
lattices exclusively from Laue’s point of view, we shall now pass on to
that of W. H. and W. L. Bragg. For this purpose, we prove the follow-
ing theorems :—

1. The median plane MM between the incident ray (a,8,y,) and the
diffracted ray (aBy) is a net plane of the crystal, that is, a plane that cuts
an infinite net of points out of the crystal lattice, and may therefore be
regarded as a possible crystallographic boundary surface.

2. The diffracted rays may be regarded as being generated by a reflec-
tion at this net plane.

In proving 1, we restrict ourselves, as in the first section, to the
regular system.

* Cf. also, besides the book by W. H. and W. L. Bragg, the consecutive account
in the Zeitschrift fiir Kristallographie, edited by P. Niggli, particularly the concluding
sections of each issue since 1921.

+The experimental methods of Rontgen ray spectroscopy have been enumerated
in detail by E. Wagner, Phﬁsikal. Zeitschr., 18 Jahrg., 1917, p. 405, and M. Siegbahn,
Jahrb. d. Radioaktivitit u. Elektronik, 13, 296 (1916).
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In Fig. 30, above, let the distances
OP = 0Q = 1.

If we choose O as the origin of a rectangular system of co-ordinates,
which coincides with the crystal axes, then the co-ordinates

of P are a,8,y,, and of Q are aBy.

Let the co-ordinates of any point M in the median plane be z, y, 2. The
median plane is the geometrical locus of equal distances, PM = QM.
Thus its equation is:

(@ —a))+ @Y =-B)P+E-y)=@-a?+(y B2+ (z-1v)?
or, after reduction,

(@ = a)z +(B = Bo)y + (v — 70)2 = 0.
If we insert into this the interference conditions (3) of § 1, we get

hyx + hyy + hgz =0 . . . . (1)
Let n be some common division of the order numbers k,, hy, k,, that is
hy =nh%, hy; =nh% hy=nh% . . . (2

whereby k¥, h%, h% have no common factor. Equation (1) then states
that a plane that is parallel to MM has intercepts on the crystallographic
axes that are inversely proportional to the integers k¥, h¥, h%, which are
prime to one another. The numbers A%, i¥%, A% are called the indices of
the surface MM. The fundamental law of crystallography, the *law
of rational indices” states that every surface that has integral indices is
a possible surface of a crystal. (As in the case of all physical laws in
which rational ratios occur, rational indices denote such as are repre-
sentable by the ratios of small integers.) From the point of view of the
lattice idea, this law is self-evident. It states nothing else than that
every boundary surface of a crystal is occupied by a full net of lattice-
points.

We have thus seen that the median plane MM between the incident
and the diffracted ray is a met plane of the crystal: the order numbers
hyy by, by of the interference phenomenon determine simultaneously the in-
dices h%, h¥*, h* of this net plane.

The incident and the diffracted ray make equal angles with this plane,
namely, the angle  in Fig. 30. Thus there is nothing to prevent us
from interpreting the phenomenon of diffraction as a reflection at this
net plane. This is, however, not surface reflection, but space reflection.
On the one hand, it is not necessary that the reflecting net plane of the
crystal be a bounding plane of it : the reflection takes place just as well
at the inner virtual crystal planes as at the external real ones. On the
other hand, the whole system of parallel net planes reflects concurrently
with the individual plane MM. As we saw in the first section, all lattice-
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§ 8. Methods of Measuring Wave-lengths 129

points on which the primary ray impinges contribute to the interference
phenomenon. The lattice-points contained in the individual net planes
would furnish only a vanishing fraction of the whole intensity. Even in
the particular case in which MM is a bounding surface of the crystal, the
intensity does not depend on the quality of the surface, as is the case in
optical surface reflection; we may roughen the boundary surface without
thereby making the reflection weaker or more diffuse. Thus the reflected
intensity is derived from the interior of the crystal.

But, further, we are here dealing not with a general reflection of all
wave-lengths, but with a selective reflection of certain favoured wave-lengths.
* White light ” is not reflected back as white light, as occurs in optics,
but reappears * coloured "’ (we are applying the language of optics here,
as on p. 119, to Rontgen light). Whereas all other wave-lengths remain
appreciably united in the primary ray, and traverse the erystal in a
straight line, certain wave-lengths, of appropriate length for the lattice
structure, are selected by the reflection. This selective colour of inter-
ference rays has already been met with in the first section.

Let OA, OQ be the incident and reflected rays at the lattice-point A,
and let PC, CR be the incident and reflected rays at the lattice-point C,
which is situated in the plane parallel and adjacent to MM. The
difference between the lengths of path of both sets of rays is found by
dropping from A the perpendiculars AB and AD on to PC and CR. The
difference of path is, if d denotes the distance AC between the net planes,

BC + CD = 2d sin 6.

This must be a whole multiple of A if the two reflected rays AQ and CR
are to be in phase and are to strengthen one another by interference.
This gives us the fundamental relation

2d sin § = nx . . . . . 3

But in deriving this relation we have made an unnecessary specialisa-
tion. It is not necessary that the two lattice-points A and C, in Fig. 39,
which are being compared, lie directly behind one another, that is, on
the same normal to MM as we found it convenient to assume for the
sake of simplicity in the figure. Rather, we may displace the point C
arbitrarily in its net plane to C'. The course of the rays P'C'R’ (dotted
in Fig. 39) clearly has the same optical length as the course PCR, pro-
vided that the two points PP’ and RR’ are assumed, in particular, to lie
on a wave plane through the incident and reflected ray, respectively.
This is shown clearly in Fig. 40, in which the points RR’ are placed still
more specially, namely, symmetrically to PP’ with respect to the plane
of symmetry SS there drawn ; this has no effect on the phase-difference
at R and R. We see that the optical paths PCR and k'C’P’ are images
of one another. If the two rays incident at P and P’ are in phase, then
also the two reflected rays at B and R’ will be in phase. But then it

9
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follows from Fig. 39 that in it, too, there is the same difference of path
between the reflected rays C'R’ and AQ as between CR and AQ, namely,
the difference #\; the former strengthen one another by interference
just as much as the latter.

In fact, generally, any two lattice-points of the crystal, no matter
whether they lie on two neighbouring net planes or on two net planes
that are distant from one another by various multiples of d, no matter
whether they lie in the plane of incidence (that of the page) or not,
will strengthen one another by interference, provided only that the wave-
length and the angle of incidence are related to one another by the
condition postulated in (3). It is not even necessary for the points
CC’ ... to be arranged in lattice form, that is, equidistantly, within
their net plane. What is important for reflection at the system of planes
MM is merely the regular sequence of these planes, not the regular
sequence of points within a plane of the system. The latter factor
comes into account only when we wish to change the reflection plane,
that is, when the crystal, besides reflecting from the system of planes
MM, is also to reflect from other net planes running through the crystal.

Fig. 89. Fia. 40.

For this, that is, for the existence of further net planes and for their
action by interference, the necessary condition is that the lattice-points
be regularly arranged in the first system of net planes.

In optics we are familiar with the process of O. Wiener, in which, by
means of stationary waves, silver particles are precipitated in parallel
equidistant planes in a layer of silver chloride. The silver particles
succeed each other irregularly within each plane, but the planes succeed
each other regularly at a distance equal to half that between two crests of
the stationary light, that is, equal to half the wave-length of the mono-
chromatic light used. These strata of Wiener have been used, as we
know, in Lippmann’s process of photography in natural colours. Here
we have the case assumed above of a regularly stratified system of
planes, which, for their part, are irregularly occupied by silver granules.
In interpreting such phenomena our equation (3) played a part,* long
before its importance in the realm of Rontgen rays could be surmised in
any way.

Of course this equation must be identical with the formule (9) and

*In the theory of W. Zenker. Cf. his Lehrbuch der Photochromie, Berlin, 1868,
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§ 8. Methods of Measuring Wave-lengths 181

(11) for the wave-length. In fact, on the view that the quantities
k3, hy, kg are surface indices we see by a simple geometrical argument
that the distance d between two successive planes of the group parallel
to MM is given in the cubic and the rhombic system, respectively, by

1 BERYE Ryt

1 1

It, taking account of (2), we introduce these values into (9) and (11) of
the first section, both these equations resolve into our present equation (3).
We see from the method by which it has now been derived, that it is not
confined to the case of the regular system but is generally valid. The
meaning, too, of the integral number = in-
troduced in equation (2) (it is the greatest
common factor of the order numbers &, k,, E——N\ A
ks of the interference effect) is now also
intelligible physically: n denotes the order
number of the reflection phenomenon, that is,
the number of wave-lengths by which each 8,
reflected ray differs from its neighbouring
rays that are reflected from the next or the
preceding net plane. F
For a given angle of reflection 6 and
given distance d between the net planes,
equation (3) determines one and only one )/
quite definite wave-length, A, of the first
order (for » = 1) that is capable of reflec- T
tion, and likewise one of the second, third,
fﬂ,...(forn=2,
3 ' E
3 ...). Hence if we wish to reflect the
whole spectrum from one and the same P
crystal surface, for example, in the first Fic. 41.
order, then § must be made variable. For
the short-wave side of the spectrum, 6 is to be chosen small, for the long-
wave side it must be chosen correspondingly great. This consideration
leads us on directly to the method of revolving crystals, which in the
hands of W. H. and W. L. Bragg*® has led to brilliant results, and,
indeed, in the two directions characterised on page 121, the analysis of
Rontgen rays by means of crystals, and the analysis of crystal structure
by Rontgen rays. -
Fig. 41 gives a schematic horizontal section of the arrangement of
apparatus in the method of revolving crystals. At the top the Réntgen
tube is indicated by its cathode K and its anti-cathode A. Theslit S, ina

. order, A, =?, Ay =

* They used the ionisation method (see below). De Broglie first used the revolv-
ing crystal method for taking photographs.
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132 Chapter III. X-ray Spectra

lead plate singles out from the rays emitted from the focus of the anti-
cathode a narrow beam of rays. S, is a second small slit of lead, which
serves to limit the pencil of rays still further. This beam then falls on
the crystal Kr, which is set up on a table T, carrying vernier divisions,
in such a way that the front reflecting net, plane of the crystal (for ex-
ample, a cleavage plane of rock-salt) passes through the vertical axis of
rotation O of the vernier table. The latter is slowly turned about the
axis O within a certain range of angles. All wave-lengths of a certain
range of wave-lengths then impinge on the table successively at the
necessary angle of incidence 6 (or * glancing angle”) and are separated
spectrally by the reflection. They delineate themselves sharply on the
photographic film FF, which is best fixed (see below) along the circle
S,PP, that passes through S,; for a small range of angles, it may also
be replaced by the plane photographic plate P’P’. Now, P, is the locus
of the film, at which is marked the primary radiation of the Réntgen
tube that has traversed the crystal without reflection; there follow con-
secutively on the film the shortest wave-lengths contained in the primary
beam of X-rays, and then the longer ones. The longest wave-length
which, according to equation (3), may be reflected by a crystal with a
given distance d between the net planes is A = 2d; the corresponding

angle 6 = g The locus or track of the wave-length on the film would

coincide with S;. It is obvious that this maximum wave-length can be
reflected only in the first order (z = 1).

The scale of the A's appears distorted in a certain way not only on the
plane plate PP’ but also on the film that is fixed circularly. If P is the
spot at which a certain wave-length A leaves its mark, then the distance
P,P that is measured on the unrolled film is proportional to 26, whereas
A itself, according to (3), is proportional to sin §. Hence the X-ray spec-
trum so obtained is drawn according to scale and in its natural pro-
portions only for small values of § (hard wave-lengths). As @ increases,
the dispersion of this spectral picture increases more and more rapidly

and finally becomes infinitely great for 6 = g For, by equation (3), we

get that, for two wave-lengths A and A + dA that differ by very little, and
their corresponding angles 26 and 2(6 + d#f),

de n ™
(ﬁ_2_~dc080—wfor0_2 . . . 5)

Hence if we wish to resolve a part of the spectrum very sharply (for
example, the region of a line-doublet), we must look for a crystal that
reflects the region of wave-lengths in question at the greatest possible

angle 6. By equation (3), this is a crystal with d = %)S for the reflection

of the n" order. Only for comparatively great A’s (A > 10-% e¢ms.) will it
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§ 8. Methods of Measuring Wave-lengths 133

be possible to realise this condition in the first order; for smaller A's we
should have to carry out the measurements in an appropriate higher
order.

At the same time, equation (5) shows that the revolution of neigh-
bouring wave-lengths in the photographic picture increases with the
magnitude of the order number 7, as has already been pointed out in the
first section for the case of the optical diffraction grating, and as will be-
come manifest in the specimens of spectral photographs of Fig. 44. As
an actual fact narrow doublets are often measured in the second order
and occasionally even in the fourth or fifth* order. The advantage of
greater resolution is, however, counterbalanced by the disadvantage of
diminished intensity. Fig. 44 gives a clear picture of this, too.

We have yet to mention several refinements of the method of the
revolving crystal. Among these is the elimination of the faults of the
crystal. Even a naturally grown crystal
surface, or one that is carefully prepared
by cleavage is not free from faults and
local irregularities. If we use a crystal
that is fixed in position, then every ray
and every wave-length of the incident
pencil of rays will be reflected at only
one point of the crystal, and the faults
of the crystal at this spot will have
their full effect and will betray them-
gelves by fogging the continuous spec-
trum or by distorting the rectilinear
course of the line-spectrum, as actually
took place in the older photographs, in
which the crystal was kept fixed. On
the other hand, in the case of the 7e-
volving crystal, in which the ray glides
along over the crystal surface and finds in each position of the erystal the
appropriate angle of reflection 6 for each wave-length in question, the
faults neutralise one another (cf. Fig. 42).

Let the position AA of the crystal be chosen so that the central ray of
the pencil escaping through the lead slit 8 falls on to the middle O of the
crystal at the correct angle 6 for the wave-length A under consideration.
‘We describe the circle 3,0BP through S, which touches the line AA.
Every point B of this circle is the apex of an angle at the circumference,
standing on the arc 8,0, and all these angles S,BO = §. Draw BOB; by
doing this, we obtain a new orientation of the crystal, in which the same
wave-length A of the ray S,B is reflected at the spot B of the crystal sur-
face. By continuously turning the crystal from the position AA to the
position BB, the point of reflection glides continuously from O to B along

* Cf., for example, Duane and Stenstrom, Phys. Rev., 15, 329 1920).

FiG. 42,
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134 Chapter III. X-ray Spectra

the crystal. This gliding motion ceases only at the boundary of the
crystal surface or at the boundary of the incident pencil of rays.

Our Fig. 42 exhibits a further advantage of the method, namely, its
power to focus the reflected rays of the same wave-length at one point. Let
P be the point at which the ray reflected at O meets the circle 8,0B.
Then 8,0P = = — 26 is the angle subtended by the arc S,P at the cir-
cumference. Thus the angle S, BP = = — 24, too, since it stands on the
same arc. From this it follows, if we suppose the reflecting crystal plate
in the position BB at which the ray S,B is incident at the angle 6, that
BP is likewise inclined at an angle 6 to BB, and thus represents the re-
flected ray. Hence, while the ray glides along the revolving crystal plate
in the process of reflection, it always passes through P: all rays with the
same A are focussed at P. If we pass on to consider a different A, the
position AA of the crystal plate, for which this A is reflected at O, will
indeed change, as also the circle S,0P and the position of P. But the
distance OP = OS, will remain fixed. Hence each successive focus P
will lie on the fixed circle with its centre at O and with the radius OS,.
We thus get a sharply defined photographic picture of the whole extent of
the spectrum if we bend the film, as was depicted in Fig. 41, so that ¢t les
along the circle described about O as centre with the radius OS,, that is along
the circle S,PP, of Figs. 41 and 42.

The sharp definition of the photograph is, on the other hand, reduced
by the circumstance that the revolving crystal averages over the crystal
faults of the region of surface used in the reflection. To counteract this,
the sharpness of the lines is increased by allowing the radiation to fall on
a minimum portion of the surface. This is secured if a carefully selected
good part of the crystal is narrowed off by a slit that is fixed close to the
surface of the crystal. Thus the ideal arrangement (which is, however,
as we shall see below, possible only in the case of comparatively soft
rays) would be a revolving crystal, of which only a very small part, free
from imperfections, was used. The consequent loss of intensity may be
balanced by lengthening the time of exposure. Whether the crystal is
turned continuously by clockwork or, in stages, by hand, is of no con-
sequence : nor does it matter whether the crystal is turned with respect
to the X-ray bulb or vice versa. Seemann and Friedrich* produce the
slit that is to be fixed just in front of the crystal surface by bringing a
metal edge close up to the latter; the other side of the slit is furnished
by the crystal itself.

In the case of hard rays the revolving crystal must be rejected, and
we use, instead of the rays reflected at the surface, transmitted rays.
For, on account of the depth of penetration of hard rays, the resulting
deep position of the system of reflecting layers would bring about a
broadening of the lines that would make impossible an accurate measure-

* Physikal. Zeitschr., 20, 55 (1919).
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§ 8. Methods of Measuring Wave-lengths 135

ment of the angle of incidence. In the case of transmitted Rontgen
light, the reflecting layers are inner net planes which, at least in the case
of regular crystals, lie perpendicularly to the surface. The slit must then
be fixed behind the crystal plate. It marks off the emergent pencil and
sharply defines the angle of reflection. A similar method has been used
by Rutherford and Andrade * for analysing y-rays (see § 6 of this chapter).
It has been converted into a precision method by Siegbahn.t The dif-
ferent angles of incidence that are requisite for the reflection of different
wave-lengths must be furnished by adjusting the aperture of the incident
pencil of rays. In spite of the absence of rotation, extremely sharp lines
are obtained, provided that the slit is sufficiently narrow. The correct
position of the lines cannot be checked from an individual photograph,
but is secured in the precision measurements of Siegbahn (see § 5 of this
chapter) by the simple artifice of comparing with one another two photo-
graphs taken in two positions of the crystal that are symmetrical with
respect to the direction of the ray.

If very soft rays, which are strongly absorbed in several centimetres
of air at atmospheric pressure, are to be photographed, the whole course
of the rays must lie in vacuo. This requirement leads to the construc-
tion of vacuum spectrographs, which have been developed by Siegbahn
along the lines of Moseley. The whole apparatus (see Fig. 41) from the
circle 8PP, up to and including the plate P'P’ has for this reason been
enclosed in a brass case connected with an air-pump. The X-ray tube is
also to be considered in this figure as connected with this brass case by a
tube S, that may be evacuated.

‘We now proceed to discuss two other methods of X-ray spectroscopy,
the first being the ionisation method of W. H. Bragg. In it the photo-
graphic plate or film is replaced by an ionisation chamber, that is, by a
vessel that is filled with a (preferably heavy) gas, which receives the
reflected radiation at P (Fig. 41). The gaseous content becomes con-
ducting (ionised) in proportion to the radiation absorbed ; the conductivity
is measured by electrometers. The ionisation chamber must be turned,
step by step, along the circle P,PS of Fig. 41 to the same extent as the
crystal is turned forward, step by step, when we pass from one wave-
length of the spectrum to another that is neighbouring to it. Thus, in
this case, the spectrum is represented not by a continuous distribution of
darkened spots, but by a discontinuous succession of electrometer de-
flections. The method has its advantage in measuring the intensities in
the X-ray spectrum, and, through the use of electrometers, it is specially
sensitive and allows quantitative comparisons (on account of the approxi-
mate proportionality between X-ray intensity and ionisation). The
method has been so far perfected, particularly by L. Webster and W.

* Rutherford and Andrade, Phil. Mag., 28, 263 (1914).
1 Siegbahn and Jousson, Physikal. Luhschr 20, 251 (1919).
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§ 8. Methods of Measuring Wave-lengths 137

in a strikingly sudden way towards the right, owing to the selective sen-
sitivity of the photographic layer of silver for X-rays. Hence we here get
s document which gives the two components of X-rays, often mentioned
above, namely the continuous spectrum and the line-spectrum (impulse
radiation).

The next picture is one of a series of systematic photographs by means
of which W. H. and W. L. Bragg have unravelled the structure of rock-
salt (Fig. 44). The source of radiation was a tube with a rhodium anti-
cathode. This gives, in addition to a weak continuous spectrum, two
lines in particular, one, the more intense but softer a-line, and the other, the
weaker but harder B-line of the so-called K-series. The cube surface of
rock-salt served as the reflecting crystal surface. The intensity of reflec-
tion was measured by the ionisation method. The ordinates of the figure
are thus electrometer deflections giving the intensity of the ionisation
current; the absciss@ denote the angles 26 (cf. Fig. 41), through which
the ionisation chamber must be turned so as to be able to receive the
reflected intensity under consideration in turn. The figure shows the
two lines a and B in three different positions. The difference between

1
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3
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A AL
00 6§ 100 160 200 250 800 960 400
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the lines, which gives a measure of the spectroscopic resolution, increases
with the order-number of the reflection ; at the same time, however, the
intensity of the lines rapidly decreases (the amount of this decrease de-
pends not only on the general conditions of the diffraction, but also on
the particular structure of the crystal used). Both facts, increase of re-
solution and decrease of intensity, have already been emphasised above.
In addition to the line-spectrum, the continuous background appears
faintly. The sharpness of the lines, compared with the preceding photo-
graph, is by no means great in this ionisation picture.

We give as our third picture a photograph,* taken by Debye and
Scherrer, of very finely powdered LiF. The source of radiation, a tube
with a Cu-anti-cathode, again emits, in particular, two characteristic
wave-lengths, the a- and the B-line of the K-series, the former being a
little more intense than the latter. The dark lines of the photograph are
produced by these two wave-lengths, whereas the continuous spectrum
of the Cu-tube has produced no appreciable darkening. These dark lines
are, as we remarked above, the intersections of the film with the circular

* Taken from the Géttinger Nachrichten of the year 1916.
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§ 3. Methods of Measuring Wave-lengths 139

the edge of the cube, in which Na-ions, on the one hand, and Cl-ions on
the other, are arranged. In each cube plane we have a quadratic net, the

distance between the meshes of which is g, and which is formed alter-

nately by Na- and Cl-ions. The neighbouring net plane is at a distance
d= ; from this one, and is occupied by the same net, whereby, however,
a Cl-ion is situated directly above an Na-ion and vice versa. If we
imagine a cube d? described about each Na- and Cl-ion as centre, then
these cubes completely fill the crystal. Hence, in the space 2d3® there
will be a mass my, + mg. This mass amounts to

58-46 _ 5846
(23-00 + 35-46)ymy = . = 606
that is, the sum of the atomic weights of Na and Cl multiplied by the
mass my of the hydrogen atom, or, more accurately,* with the reciprocal
of L, Loschmidt's number per mol, the value of which we get from
Fig. 1B on page 7.
We get in this way, for the density of mass of rock-salt,

_ bB846 23
P= 606240 1O
This density of massis, on the other hand, known from direct observa-
tion, or can be determined experimentally for the crystal of rock-salt used

in each particular case. A very exact measurement by Rontgen gives

10-23,

p = 2164,
By comparing the two values of p we find
3/ 5846.10-%

d= = 2-814.10 ‘8 cms.

2.92164.606
The most uncertain value of those used is Loschmidt’s number, the error

* As we are here dealing with an experimentally precise determination of d, which
will affect the accuracy of all later data about wave-lengths, the following circum-
stance must be emphasised. Our atomic weights, as we know, are referred to
0 = 16; the atomic weight of hydrogen then becomes not 1, but 1-008. When we set

the electrochemical equivalent charge of the mol,9649°4 in Chapter 1,§2, equal to 7:",
we intended mu to signify, not the mass of & real hydrogen atom, but the mass of un
imaginary atom, which would be exactly units in our table of atomic weights. We
shall distinguish the true hydrogen atom by the symbol m:{ from the imagined hydro-
gen atom my. The two are related by: m:{ = 1008 . my. Loschmidt’s number L,
which refers to the mol of exactly 1 grm., is not equal t'o 1::, but to".nlu—. In the text
above, too, as well as throughout Chapter I, mu is to be taken as standing for the
imagined hydrogen atom, and not for the real ’":r Only when we get to Chapter IV,
in which we deal with the spectrum of real hydrogen, will the real mass m:I of the
hydrogen atom first come into question.
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140 Chapter III. X-ray Spectra

in which is at most 1 per cent; as a result, the limit of error which may
be imputed to the value of the lattice constant d is less than 4 per cent.

The value d = 2814 was used in the first determinations of wave-
lengths by Moseley (1913), and has served for most of the later investiga-
tions, in particular for those of Siegbahn, as the standard value for
calculating the wave-lengths A from the measured angle 6. If we carry
out our observations, not with rock-salt, but with another crystal of, say,
even an unknown structure (gypsum, mica, Prussian blue), it is sufficient
to compare a wave-length in both scales, so as to be able to refer the
lattice constant d of the new crystal to that of rock-salt, and hence to be
able to calculate the wave-lengths from the measured angles 6 without
incurring new errors.

The use of a standard lattice constant is indispensable for absolute
measurements, as was pointed out in particular by E. Wagner.* Whether
the lattice constant is exactly known is only of secondary importance.
The main thing is that all measurements must be referred to the same
lattice constant. The conventional character of the “d” of rock-salt is
clearly recognisable from the circumstance that, in the more recent work
which has been done in Siegbahn's laboratory, d has been given the
numerical value 2:81400, and this is the value used in calculations ; it is
thus not a result of measurement, but an ideal value that has been fixed
by convention. Of course, it may be found convenient to pass from rock-
salt to calespar, d = 3:029 (or d = 3-02900), which is more appropriate
on account of its crystalline constitution. But this, too, could not be
done for an individual case, but would have to be agreed upon generally
by convention.

$4. Survey of the K-, I., and M-series and the Corresponding
Limits of Excitation

We now enter into a region of physical research which was founded
only in 1913 and which, in spite of the unfavourable conditions of the
intervening years, has already been developed so far that to-day its
structure is exposed to our gaze with greater clearness and harmony of
detail than the regions which have been explored much longer and from
which the new researches have borrowed their aims and methods. It is
in fact true that the spectroscopy of Rontgen rays shows in many ways
simpler and more satisfactory results than the illimitable spectroscopy of
the visible region.

The reason for this striking fact was touched on at the end of the
preceding chapter: the X-rays came from the inner part of the atom
where the electrons, owing to the influence of the unweakened nuclear
charge, obey simple laws : visible spectra start out from the periphery of
the atom, where the electrons accumulate and the nuclear charge loses

* Ann. d. Phys., 49, 646 (1916).

Google



§ 4. Survey of the K-, L- and M-series 141

its regulative power. A further reason must be added: right from the
outset X-ray spectroscopy had the new atomic theory of Bohr (1913) to
guide it and direct it, whereas optical spectroscopy was for decades without
theoretical guidance and had first to generate from within, as it were, the
facts on which the atomic theory could be founded.

Let us next cast a glance at our knowledge of Rontgen radiation
before Laue’s discovery, that is at the characteristic radiation of the
elements. Barkla, whose works are almost the only ones that come
into account for this question, showed that every element, on to which
cathode rays or X-rays are allowed to fall, emits characteristic primary
or secondary Rontgen rays of quite definite hardness. The hardness was
measured by noting the coefficient of absorption of the radiation in the
case of, say, aluminium. The simplicity of the law of absorption led
to the conclusion that characteristic X-rays must to a great extent be
homogeneous. Moreover, it was found that there is a, simple relation
between the hardness of radiation and the atomic weight of the element
emitting it. The hardness increases (that is, the absorption decreases) as
the atomic weight increases. In the case of compounds, the eharacteristic
radiation emitted was found to be the sum of the characteristic radiations
of the elements constituting the compound. This proved that the
characteristic part of the Rontgen radiation was a fundamental property
of the atom and that it was conditioned by the atomic weight.

Barkls succeeded in showing the existence of two series of charac-
teristic radiation which, he called the K-series and the L-series. He
observed the K-series of rays in the case of the lighter metals (as far as
Ag) and the L-series in that of heavy metals (e.g. Au, Pt). The extra-
polation of the observed L-rays for the case of the light elements made it
evident that they would be so soft that, with the means at that time
available, their presence could not be detected. For it is a general law
of the excitation of a characteristic radiation that the exciting radiation
must be harder than that which is excited. (Hence, if the characteristic
X-ray radiation is produced as a secondary radiation by means of a
primary one, the latter must be harder than the former. If it is produced
as primary Rontgen radiation by cathode rays, the latter must exceed a
certain limit of hardness, that is, of velocity, here.) This law of excitation
pointed to an analogy in the realm of optics, namely to Stokes’ rule for
light produced by fluorescence. If a fluorescent substance is to be made
to fluoresce, the incident light must in general be of shorter wave-length
than that of the light emitted by fluorescence. In this case, too, then,
the exciting light must be ““ harder’’ than that which is excited. Hence
Barkla also called characteristic X-rays fluorescent light, thus characteris-
ing their origin fittingly. Just as the fluorescence light is determined by
the nature of the fluorescent body and is different in nature from the
exciting light, so the fluorescence X-ray light is determined by the
structure of the emitting atom, independently of the constitution of the
exciting radiation, provided that the latter is sufficiently hard.
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142 Chapter III. X-ray Spectra

After Laue’s discovery all these relations became incomparably more
certain and definite. The qualitative measurement of hardness by means
of absorption was replaced by the quantitative measurement of wave-
length, which was free from all arbitrariness. The homogeneity of the
characteristic radiation was on the one hand sharpened and on the other
narrowed down. The spectroscopic resolution of the characteristic radia-
tion disclosed a spectrum of sharp lines, of which each, taken alone,
represents Rontgen light of very great homogeneity, but the totality of
which signifies an emission of light of a certain degree of heterogeneity.
The general dependence of the hardness on the atomic weight could
now, after the arbitrary mode of measurement by absorption had been
replaced by the natural method of measuring wave-lengths, and after,
thanks to Bohr's theory, the somewhat indefinite atomic weight had
been replaced by the simpler quantity, atomic number, be expressed as a
simple numerical law between wave-length and atomic number. It also
became possible to express the condition of excitation quantitatively.
When the exciting radiation was resolved spectroscopically, it was seen
by how much its short-wave end had to exceed the excited radiation in
hardness, in the sense of Stokes’ rule. Finally, it became possible to
add to the two characteristic emissions of Barkla, the K- and L-radia-
tions, still a third which was appropriately called M-radiation.

‘We next give a general graphical survey of the wave-lengths of K-,
L-, and M-radiation, which is derived from an account given by M.
Siegbahn, the discoverer of M-rays (Fig. 46). We mark off the wave-
lengths horizontally, whereas vertically, starting from the top, we
measure off the increasing atomic numbers of the elements emitting these
wave-lengths. The horizontal line thus signifies in a certain sense the
extent of the spectrum in question, and the vertical direction, in steps of
3 units at a time, the series of the natural system of the elements. The
K-radiation is the hardest of the three types of rays; it has been observed
for cases ranging from the lightest elements (Na, Z = 11), for which
even the K-radiation is already somewhat soft, to cases for which the
rays are extremely hard (for example, this was carried out with par-
ticular accuracy for tungsten, Z = 74). The L-radiation is, for one and
the same element, considerably softer than the K-radiation ; it has been
observed for Cu, Z = 29, for which it is still a little softer than the
K-radiation of Na. The L-radiation has been drawn in the figure
as far as Bi, Z =83. It has been measured beyond this as far
as the heaviest element U, Z = 92. Still softer than the L-radiation
there is the M-radiation, which has so far been observed only in the
case of the heaviest elements, and even then special precautions (vacuum
spectrograph, cf. p. 135) were rendered necessary. Each of these three
types of radiation consists, as the figure indicates, of several lines; as
the atomic number increases, each type becomes harder.

To this survey of the experimental results we shall immediately add
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§ 4 Survey of the K-, L.- and M-series 143

the theoretical picture to which the harmonious combination of experi-
mental results has led. To develop it fully we should certainly require
a rather lengthy introduction, which we shall give later. Consequently,
we shall here restrict ourselves to the more pictorial features of the
theory, and shall for the present omit the foundations and the numerical
details.

The theory of Rontgen spectra rests entirely on the atomic model
which was developed in the preceding chapter. This model was com-
posed of the positive nucleus as the central body and the planetary system
of electrons surrounding it. Concerning the arrangement of this planetary
system, the general facts of the periodicity of chemical properties gave
us some provisional information. According to this, the electrons are
apparently arranged 2z

in individual shells. 11 [
When one shell is 17 T ]Kl
completed, another is gg T I
formed, corresponding g8 u
to the beginning of a i
new period in the 3 L
system of elements. G { I “L
The strengths (Besei- # [] I
zungszahlen) of the in- wH l[“l
dividual shell should &8 L

56
coincide with the 59 I
period numbers of the & ”1[1
natural system (if we 68 T
leave out of account a ;: lllll
certain alteration in 7 ,]’
the sequence of the gg o

series). 0 1 2 3 4 5 6 7 8 9101 12>2.10"%cm

We shall call the
shells in turn, count-
ing from within outwards, the K-, L-, M-, N-, . . . shell. In the
schematic picture of Fig. 47, we shall represent them by circles described
about the nucleus as centre; in this sense, we often speak of a “ K-,
L-, ... ring”

We shall now describe (a) the phenomenon of excitation, () the pro-
cess of emission for the K-, I.-, M-radiation according to the plan of
W. Kossel,* whose views seem to be more and more confirmed by the
facts.

To excite K-radiation, an electron must be removed from the inner-
most shell, the K-ring, and transferred to the periphery of the atom. If
the excitation occurs through the agency of cathode rays, it is easy to

Fic. 46.

* W. Kossel, Verh. d. Deutschen Physikal. Gesellsch., 1914, pp. 899 and 953 ; 1916,
p- 389.
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144 Chapter III. X-ray Spectra

imagine that the tearing-off of the “ K-electron ” is effected by the impact
of a cathode-ray particle that has penetrated into the atom. To detach
the K-electron, a certain energy, lifting power, is necessary. The energy
of the impinging cathode ray must be at least as great as this lifting
energy. This sets a definite limit to the excitation necessary to produce
the K-radiation, that is, there is a lower limit to the necessary hardness
of the cathode rays. This agrees with the results of Barkla’s researches
as given above. If the excitation is effected not by cathode rays, but by
primary Rontgen radiation, then we must demand for the corresponding
minimum of its hardness, that its v (cf. Chap. I, § 6) is at least as great
as the lifting power required to do the work of transference.

To excite the Li-radiation, it is necessary to remove an electron from
the L-shell to an outer position. The lifting work necessary is less than
the corresponding work for the same atom in the case of a K-electron.
Hence, for the L-electron, the hardness of the exciting cathode rays or
Rontgen rays is less. To generate the M-radiation, whereby the attack is
made on the M-shell, the necessary work
of lifting and the hardness are corre-
spondingly reduced. In Fig. 47 the
process of excitation is represented
diagrammatically by the arrows that
point from within outwards. They bear
the signs K-Gr. (K-Grenze = K-limit),
L-Gr. (L-limit), and so forth.

Through the excitation the atom is
prepared for the following process of

Fia. 47. emassion. When the K-atom has been

torn out, the K-shell strives to com-

plete itself again. The missing electron may be furnished by either
the L-shell or the M-shell, or some other. Whereas the process of exci-
tation was accompanied by a gain of energy (work of lifting, absorption of
energy), the converse process takes place with the loss of energy (energy
of falling, emission). When, in our planetary system, an electron jumps
into an orbit nearer the nucleus, the potential energy of the planetary
system certainly becomes diminished. We shall show by a calculation
later that the total energy (kinetic + potential) decreases. Hence energy
is liberated. We assume that this appears in the form of energy of radia-
tion, and that it is emitted as monochromatic radiation, that is, as
radiation of one wave-length, in each case. According as, the missing
electron, however, returns to the K-ring from the L-, M-, or N-ring, the
energy set free will be different in amount: correspondingly there will be
various possible K-radiations, each of which is represented by a definite
wave-length. We talk of the Ka-line (transition from the L- to the K-
shell), of the KB-line (transition from the M- to the K-shell), of the Ky-
line (transition from the N- to the K-shell). The lines Ka, KB, Ky
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§ 4 Survey of the K-, L- and M-series 145

together constitute the K-series. K@ is harder than Ka, and Ky is harder
than KB on account of the successive increase in the energy of falling
that is available. On the other hand, Ka is more infense than KB, and
KB is more intense than Ky owing to the fact that the probability of the
occurrence of the transition becomes successively smaller. It seems very
plausible to suppose that the replacement of the missing electron is effected
more often by the neighbouring shell than by the next or some later shell.
In Fig. 47 these electronic transitions are represented by the arrows that
point inwards to the nucleus; they are distinguished, in so far as they
belong to the emission of K-lines, by the symbols Ka, KB, Ky.

Whereas all electronic jumps that end in the K-shell belong to the K-
series, all these that end in the L-shell belong to the lines of the L-series.
If a place in the L-shell has become vacant owing to a preceding excita-
tion, the L-shell seeks to restore its full complement of electrons at the
expense of the M- or the N-shell, and so forth, The energy that is hereby
set free again appears as monochromatic radiation. We speak of the La-
line (transition from the M- to the L-shell), of the Liy-line (jump from the
N- to the L-shell), and so forth. Ly must be harder than La, because
the energy-difference between the N- and the L-shell is greater than that
between the M- and the L-shell. On the other hand La will be more
intense than Lsy, because the transition from the neighbouring M-shell
seems more probable than from the more distant N-shell. In Fig. 47,
the inwardly directed arrows La and Ly end in the L-shell. Concerning
the naming of these arrows it must be remarked that there are also lines
LB and L3 which, however, like a series of further lines of the L-series,
have not yet been successfully fitted into our provisional scheme. The
following sections will deal further with this circumstance.

Finally, electronic transitions that end in the M-shell, furnish dif-
ferences of energy that correspond to emissions of lines of the M-series.
In our figure this series is represented by only one line, Ma, corresponding
to the transition from the N- into the M-shell. Actually, it, too, consists
of several lines.

In several absorption experiments with light substances (water, alu-
minium, paper) Barkla believed in 1917 that he had detected signs of a
radiation still harder than K-radiation ; he called it J-radiation. Repeated
tests by other observers have, however, not been able to confirm the
existence of this radiation.* Nor has the theory a place for such radia-
tion, so that we must regard K-radiation as the hardest possible radiation ;
this is expressed in our figure.

In succession to Fig. 47 we give Fig. 48 as a still more schematic
illustration of the process of emission of Rontgen rays. This diagram
has an advantage in that it takes more account of the quantitative aspect
of the phenomenon. In it we visualise the various shells not by their

* Cf. the summarised remarks of Ritchmeyer, Phys. Rev., 17, 433 (1921).
10
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146 Chapter III. X-ray Spectra

relative positions in the atom but by their relative energy-differences.
Thus we draw a succession of energy-steps such that the difference of
height between two steps gives the energy that is liberated when an electron
drops from the higher to the lower step (orbit). The lowest step bears
the sign K, the next L, and so forth. The energy-level of the nucleus is
to be considered at — . The highest dotted limit of the steps corre-
sponds to the periphery of the atom. The quantitative drawing of the
picture leads us to assign to the successive steps K, I, M, N, . . . the
series of integral * quantum numbers™ 1, 2, 8,4, . . . in such a way that
the position of each step below the highest level is, at least to a certain
degree of approximation, proportional to

1.1 1 1

I g# 3v 4277
Accordingly we make the height of the steps in the figure decrease, from

o S T
M oIt M
L--{ N S 3
1
ker] E[, K| K|,
E Yoo B P | AR g

Fic. 48.

the bottom upwards, in the manner indicated by the differences of height
1,1, 34, . . . written at the side (on the right). Moreover, we again draw
the arrows Ko, KB, . . . , La . . . that correspond to the various pos-
sibilities of energy-emission, and the arrows K-Gr, L-Gr, which corre-
spond to the various kinds of energy-absorption.

This theoretical diagram enables us to understand at once the general
laws for the hardness of Réntgen lines that came into evidence in Fig. 46
'We must thereby bear in mind the fundamental quantum principle that
we deduced in Chapter I, § 6, eqn. 6 from the photo-electric effect, namely :
the greater the available difference of energy, the grealer the hardness of the
consequent Riontgen radiation (and therefore, the smaller its wave-length).
Or, in symbols,

w=W, - W, . . . . 1)
Here I, is Planck’s quantum of action (see p. 37); v is the oscillation
frequency of the emitted Rontgen line under consideration (inversely pro-
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§ 5. The K-series. 147

portional to its wave-length). The right side of the equation denotes the
energy-difference of the atom between its initial and its final configuration,
and is, therefore, represented quantitatively in Fig. 48 by the length of the
arrow that represents the Rontgen lines in question. That is, the arrows
in our figure show by their length the hardness of the corresponding Rontgen
radiation. According to equation (5) of Chapter I, § 6, the same holds for
the arrows of the excitation limits that signify the absorption of cor-
puscular energy or wave-energy. In this case, we need merely reverse
the sign of the right side of equation (1), for this corresponds to reversing
the direction of the arrow in the figure.

Hence it follows: for one and the same atom the K-series is harder than
the L-series which, in turn, is harder than the M-series. Within the K-
series the hardness increases from Ka beyond KB to Ky, but in ever
decreasing steps, and finally arrives approximately at the hardness of the
K-limit. The same holds for the L-series, and the same for the others.
But further, the available differences of energy depend essentially on the
amount of the nuclear charge. The greater the nuclear charge (and hence
the atomic number of the element), the more intense is the electric field
around the nucleus. The energy-steps become greater as the Z increases
(as a rough approximation, they increase proportionately to Z2 as we shall
see later). But this means that the hardness of each series or iine in-
creases for each step forward in the natural system of elements. A glance
at Fig. 46 shows how perfectly these theoretical deductions agree with the
facts of observation.

§ 5. The K-series. Its Bearing on the Periodic System of Elements

Following in the footsteps of Barkla, Moseley * was the first to bring
the emission of the Rontgen lines into relationship with the scheme of
the natural system.

His first photographs (1913) dealt with the K-series of the elements
between Ca, Z = 20, and Cu, Z = 29, inclusive. The elements were
successively fixed into the X-ray bulb as anti-cathodes. Thus the
characteristic rays were excited directly by means of cathode rays; this
has the advantage that the excited rays are more intense than when
produced by the method of secondary rays (excitation by primary X-rays).
Moseley further increased the intensity by fixing the slit that limited the
X-ray pencil very close to radiating cathode in the X-ray bulb. In this
way he simultaneously obtained a wide angular aperture for the emergent
pencil and also the possibility of establishing the region of wave-lengths
of the K-series by means of the position of the crystal which was fixed
for each element, but had to be appropriately altered in passing from one
element to the next.

Thus Moseley did not use the method of the revolving crystal (cf. § 3).

*H. G. J. Moseley, The High Frequency Spectra of the Elements, Phil. Mag.,
26, 1024 (1918); 27, 708 (1914),

Google



G68Z10G4°ToN/LZ0T/33u 2 1puey 1py//sdidy

Original frem
UNIVERSITY OF CALIFORNIA

Digitized by Google

916006-pd#asn ssadoe/buo 1sniityiey mmm//:dily / pazritbip-216009 ‘uTewoq 2T1gnd
/ LW9 GS:ZZ ¥Z-0T-7zec uo ubTedwey)d-eueqdn 3e STOUTLLI 40 AITSJISATUN 1B paledaus9



§ 5. The K-series 149

to separate from Ni and Fe (first triad of the periodic system), besides
the a- and B-line of Co also less intense images of the a-lines of Fe and Ni.

4. The order of Co and Ni in the periodic system is rectified by this
result of X-ray analysis. Whereas, according to the values of the atomic
weights, Ni should precede Co (at. wgts. being 58:68 and 5897 respect-
ively), we had to write Co before Ni in the chemical scheme of Table 2,
page 57. The X-rays are not deceived by the atomic weight and so they
confirm the true order CoNi. Not the atomic weight, but the atomic

number governs the v8 ad’
Rintgen spectra. The 0 VvV Vv
atomic number intro- BE¥o=- i P i6

duces order into the
natural system, where-
as the atomic weight
introduces disorder.

The same is true of ' 34 Se
the order of Te and .J '
and this is likewise
established properly by
Rontgen analysis (cf.
Fig. 51). The third
space of the natural
system with the un- |- i 37 Rb
natural order of the |
elements (according to
atomic weight) was
A, K (Z =18 and 19).
The Rontgen spectrum
of argon is, indeed, still
wanting, but there can 41 Nb
be no doubt that it,
too, will decide against
the atomic weight and
in favour of the atomic |-
number. :

As Rutherford in- Fia, 50.
cidentally remarks, the original problem that Moseley was trying to solve
when he set about his experiment was to determine whether it was not
the nuclear charge, instead of the atomic weight, that decided the nature
and the hardness of the characteristic Rontgen radiation.

5. Since the discovery of the periodic system, particular interest was
centred on the presence of gaps and the prediction of new elements in
the system (cf. p. 72). In Moseley’s figure, the rare element scandium
is missing between Ca and Ti. Its absence is betrayed by a great leap
between the elements Ca and Ti that succeed one another in the figure.

33 As

35 Br

45 Rh
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150 Chapter III. X-ray Spectra

The regular increase (that was emphasised in 1) in the hardness as Z
increases reveals infallibly every gap in the system. Whereas, in the
case quoted, we were dealing with the known element Se, we shall see in
Figs. 50 and 51 a similar gap at Z = 43 (eka-manganese) that points to
an element not yet discovered. Also the remaining gaps in the system
(Z = 61, 75, 85, 87, cf. Table 2) have been confirmed by the method of
Rontgen rays. In this way the Rontgen spectra have led to the definite
conclusion that the number of gaps must be five.

Partly to continue Moseley’s figure in the direction of increasing
atomic numbers and partly to bring into evidence the advances that have
been made in photographing Rontgen rays, we give as our next illustration
Fig. 50, by Siegbahn : it represents the elements from As, Z = 33, to Rh,
Z = 45. In this case the spectra have been taken by the method of the
revolving crystal; as & result, the lines are sharper than in Moseley’'s
case and more completely separated. Besides the second most intense line
KB, we see here also the faint line Ky (to the left, and hence harder than
KpR), the origin of which we know from the preceding section. Further,
we see that the most intense line Ka of the doublet (a, o) has been re-
solved (a'.is to the right of a, and hence is softer). Besides these lines,
the zero mark (on the extreme left) has been photographed ; it is made by
the undiffracted primary radiation.

The same remarks apply to this figure as to the former; the hardness
increases for each line as the atomic number increases; the Sr-line
adulterates to the Rb-spectrum ; gaps occur in the succession of the ele-
ments, exhibited by irregularly great differences in the hardness, namely,
between Br, Z = 35, and Rb, Z = 37, the inert gas Kr, Z = 36, is missing.
As in the case of A above, it is difficult to get an X-ray spectrum of Kr.
Between Br, Z = 39, and Nb, Z = 41, there are missing Y and Zr, Z =
39 and 40 respectively. Finally, between Nb and Rh three elements,
namely, Mo, Ru, and the unknown element eka-manganese, are missing.

Before giving the complete list of the wave-lengths of the prineipal
lines of the K-series as far as they have been measured, we give in Table
9 a little list of the notation of the various lines, and, partly to revive our
earlier remarks, of the origin and intensity of the lines.

TABLE 9
P | N
Our notation. Siegbahn. Origin. Intensities. |
a @y Lg - K 8
a } a, L,—> K 10
B 8, M —>K 4
¥ B, N - K 1 |
|

|

The lines are arranged in order of increasing hardness. In Siegbahn’s
notation two groups of lines are distinguished, the soft a-lines and the
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§ 5. The K-series 151

harder B-lines; he numbers the lines in both groups according to their
intensity. A number of fainter lines that occur only in the case of the
lowest atomic numbers, and that are to bear the names a3, a,, a;, ag, B3, 8
according to Siegbahn, are not included in our list. All data about in-
tensity are fairly rough estimates and merely denote relative numbers.

The data concerning the origin of the lines agree with the account
given in the preceding section. All transitions end in the K-shell; to
produce Ka, the electron jumps from the L-shell, to produce KB it jumps
from the M-shell, and to produce Ky from the N-shell. But now, to
supplement the preceding section, we must subdivide the L-shell into
two parts, which we call the ;- and the Ly-shell. In the picture of Fig.
48 the L,-shell would lie below the L;-shell (there called L-shell); in the
picture of Fig. 47, the L,-ring would lie within the L,-ring (which is
there the L-ring).

In Table 9 the lines o, a are bracketed together to indicate that they
form a related doublet (which is not the case with the By lines). The
exact definition of what we call *doublet” cannot be developed except in
conjunction with the facts discussed in the next section. A necessary if
not a sufficient condition for a doublet, is that either the initial level or
the final level (as in the case of Ka and Ka') of the transition must coin-
cide for the lines of the doublet.

Turning next to Table 10 we must first say a word or two about the
choice of the wave-lengths. In optical regions we measure wave-lengths
in Angstrom units (&), which are such that

1A=10-%cms. = Tt

In the case of R('intgenn rays, too, the older measurements were usually
expressed in terms of Angstrom units. But when Sieghahn,* in 1919,
by means of an elaborate refinement of the apparatus and of the means
of taking readings (from a double photograph of the same line for two
different but exactly determinable positions of the crystal), succeeded in
increasing the accuracy of measurement a hundred-fold, it was found to
be expedient to introduce a more convenient unit of smaller value. The
new unit proposed by Siegbahn is

1 X =10-1¢ms.

The wave-lengths of X-rays are then described in X-units just as the

wave-lengths in the visible are described in ;\ngstrém units : for example,
according to our table, for the

Ko of Ca: A = 3351'86 X-units,
and as a parallel to this we have in the visible spectrum the Fraunhofer
line .

K of Ca: A = 3933-83 A-units.

* Rontgenspektroscopische Prizisionsmessungen, Ann. d. Phys., 59, 56 (1919).
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152 Chapter III. X-ray Spectra

In our table the more recent precision measurements appear to two
decimal places, the older measurements only in whole X-units. The
abbreviations which follow the numbers signify the observers; the key to
these letters is :—

M. = J. Malmer, Dissertation, Lund, 1915.

S. Fr. = M. Siegbahn and E. Friman, Ann. d. Phys., 49, 611 (1916).

S. St. = M. Siegbahn and W. Stenstrém, Physikal. Zeitschr., 17, 48, and 318
(1916).

U.C. = H. S. Uhler and E. D. Cooksey, Phys. Rev., 10, 645 (1917).

D. Hu. = W. Duane and Kang-Fuh-Hu, ibid., 11, 489 (1918), and 14, 369 (1919).
S. = M. Siegbahn, Ann. d. Phys., 59, 56 (1919).

H. = E. Hjalmar, Zeitschr. f. Phys., 1, 439 (1920).

Ste. = N. Stensson, ibid., 3, 60 (1920).

D. St. = W. Duane and W. Stenstrom, Proc. Nat. Acad., 6, 477 (1920).

The measurements first deal with the angle of incidence 6. From
them we calculate the wave-lengths according to the method given at
the end of § 3. At the top of the table the lines e, " have not yet been
separated. The fact that, of the metals of atomic number greater than
60, it is just tungsten that is quoted, is due to the uss of tungsten as the
anti-cathode in the Coolidge tube. 'Whereas the other gaps are obviously
merely accidental (for example, the inert gases are as yet all missing), the
v-line seems to reach its limit in the neighbourhood of Ca, Z = 20, and
is absent in the case of lighter elements. The reason is clearly to be
discerned in the incomplete development of the outer electronic shells as
the atomic number becomes smaller. Whether and where the B-line
reaches a corresponding limit is not yet decided.

In our table the values of A vary from 12 A to 0.2 A. At the limits
(both of the hard and of the soft rays), technical difficulties arise in photo-
graphing the lines, which at present prevent a further extension of the
series of observations.

The difficulty due to the strong absorption of very soft rays is over-
come by constructing a vacuum spectograph (cf. p. 135). But the
difficulty offered by the lattice constant remains. The fundamental
equation (3) of page 129.

nA
sm0—2d . . . . (D

requires also for # = 1 (observation in the first order of reflection, to
which we may restrict ourselves in dealing with very soft rays) that

% W )

The lattice constant for the cube surface of rock-salt was, as we cal-
culated at the end of § 3, d = 2:'814.10-8 cms. According to this rock-
salt may be used only as far as wave-lengths not exceeding A = 5 A.
Fortunately gypsum and mica are available as two good crystals that
have a considerably greater lattice constant. (This is in conformity with
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§ 5. The K-series

TasrLe 10

Wave-lengths of the K-series

153

YA a’ a B v

11 Sodium . 118836 H. 11591 H —

12 Magnesium 9867-75 ,, 953450 ,, —

18 Aluminjum . 8319-40 ,, 794050 ,, —

14 Silicon 7109-17 ,, 6789-33 ,, —

15 Phosphorus 6141-71 ,, 578518 ,, —

16 Sulphur. 586066 ,, 501918 ,, —_

17 Chlorine 4721-85 Ste. |4718'70 S. 4894-50 ,, —

19 Potassium 378725 ,, 8783:86 ,, 3446-38 ,,

20 Calcium . 885512 ,, 3851-86 ,, 3082:97 ,, 3067-40 H.
21 Scandium .| 802863 ,, 3025-26 ,, 277366 ,, 2755+(5) .,
22 Titanium . | 2746 S. St. [ 2742 S. St. | 250874 ,, 249867 ,,
23 Vapadium . | 2502 " 2498 " 227968 ,, 2265-37
24 Chromium 2289-28 Ste. |2285:17 S. 208144 S. 2071  [S. St.]
25 Manganese 2097 S.St. |2098 S.St. | 1902 8. St. | 1892 »
26 Iron .| 1986-60 Ste. [1932:39 S. 1758-97 S. 1742 "
27 Cobalt .| 1789°52 ,, 178524 ,, 1617-15 H. 1606 "
28 Nickel 165860 ,, 165467 ,, 149669 ,, 1488 '
29 Copper . 1541-22 ,, 158786 ,, 1888-87 ,, 1877 "
80 Zinc .| 1487 S, St. | 1483 8. St. | 1294 S. St. | 1281 "
31 Gallium. .| 1341-61 U.C. |18387-85 U.C. | 120591 U.C. —

32 Germanium .| 1261 S. St. | 1257 S. St. | 1131 S. St. | 1121 "
38 Arsenic . .| 1174 S.Fr. |1170 S.Fr. |1052 S.Fr. | 1038 S. Fr.
34 Selenium . | 1109 . 1104 " 993 " —

85 Bromine 1040 " 1085 " 929 ’ 914 "
37 Rubidium 926 " 922 " 825 ' 813 ”
38 Strontium 876 v 871 . 719 » 767 .
39 Yttrium 840 M. 835 M. 746 M. 733 M.
40 Zirconium .| 793 s 788 705 " —

¢1 Niobium .| 754 S.Fr.| 749 S. Fr 669 S.Fr. | 657 S. Fr.
42 Molybdenum .| 71212 D.Hu.| 70788 D.Hu. | 681'10 D.Hu. | 6197 D. Hu.
44 Ruthenium 645 M. 574 M. —

45 Rhodium 616’4 " 6121 D.Hu. | 5458 D. Hu. 5342 "
46 Palladium 590 M. 586 M. 521 —

47 Silver 567 " 562 " 501 " 491 M.
48 Cadmium 543 " 538 " 479 . —

49 Indium . .| 515 " 510 " 453 " 440 "
50 Tin . .| 490 " 487 " 432 ’ —

51 Antimony 472 . 468 " 416 . 408 "
52 Tellurium —_ 456 " 404 " —_

53 Todine — 437 s 388 " —

55 Caesium . 402 . 398 . 352 . —

56 Barium . .| 393 . 388 " 343 " —_

57 Lanthanium .| 876 v 372 ' 329 ' —

58 Cerium . .| 860 " 355 . 314 " —_

57 Praseodymium [ 347 " 342 . 301 " —

60 Neodymium .| 835 v 330 ' 292 " —

74 Tungsten 21341 D. St. | 208:60 D. St. | 184:20 D. St. 179:01 D. St.

the immediately obvious rule that, usually, net planes of crystals that
cleave very readily have a large lattice constant.) The lattice constant
d = 7621.10 — 8 cms. (according to a remark at the end of
§ 3, it may be obtained from the lattice constant d of rock-salt by photo-

of gypsum is

graphing one and the same line with the two crystals .in turn).
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154 Chapter III. X-ray Spectra

condition (2) then, gypsum suffices as far as wave-lengths not exceeding
A =15 A. As a matter of fact, the soft lines of Table 14 were obtained
by means of an analyser of gypsum. If, later, we should wish to pass
on to still greater wave-lengths, the crystal of gypsum would also have
too small meshes. We should then have to resort to organic crystals of
complex molecular structure.

On the other hand, the difficulties offered by very hard rays are that
the angle 8 in (1) becomes too small, thus depreciating the accuracy very
much. When A/d is very small, we are dealing with a glancing angle of
incidence and of reflection between the Rontgen rays and the crystal
plate. We may escape this, on the one hand, by making observations in
a higher order (cf. the factor # in eqn. (1)), on the other hand, by using
net planes whose distance apart, d, is as small as possible. Changing the
crystal does not help us much in the latter respect. Wherezs we had in
the case of rock-salt a = 2d = 563.10—8, we have in the case of the
crystal of smallest known lattice constant, namely, diamond, a = 3-55 . 10-8,
Greater advantage is obtained by passing from one crystal surface (for ex-
ample, from the cube surface 100) to another with higher indices (for
example, the octahedral surface 111), whereby d@ becomes smaller (e.g. in
the ratio +/3, cf. eqn. (4) in § 3). But both these advantages, gained by
using a higher order of reflection and surfaces with higher indices, are
obtained at the expense of intensity. ’

From the wave-lengths A we pass on to the wave-numbers ; (number

of wave-lengths that occur in 1 c¢m. of a light-ray). Following the usual
practice of spectroscopy, we use (in a strict sense, wrongly) the same
letter as for the vibration number or frequency (number of full vibrations

that occur per sec.). We thus have the two meanings for v, which differ
in their dimensions :

wave-numbers (cm. ~1) . . . (3

I

RN gl

; = frequency (sec. ~1) . . N C))

It is the latter meaning that we always have in mind when we speak
of the energy-quantum kv ; we are referring to the former when we write
down spectral formule. For the rest, we shall not always keep strictly
to the term wave-number, but shall occasionally replace it by the more
usual term “ frequency” in spectroscopy.

Furthermore, we introduce a universal wave-number which will serve
as the unit of measure for all remaining wave-numbers, namely, the
Rydberg-Ritz constant. 'We give it this name because it first played a
fundamental part in the series formula of Rydberg, and later in those of
Ritz (cf. Chap. VI, § 1). We assign to it the symbol R (instead of the
spectroscopically more usual letter N, which we used in the preceding
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§ 5. The K-series 155

editions of this book) ; its numerical value, according to Paschen (cf. Chap.
IV, §4),is
R = 109737 cm. -1 . . . . ®

The term Rydberg frequency which we shall often have occasion to

use is just as little correct as the term ‘ vibration number ” for % , since

it corresponds, not to the dimensions ¢m. -}, but to sec.~!. To retain the
strict sense of the word we should have to a.pply the term Rydberg fre-
quency to the quantity :

c¢R = 300.10. 109737 = 3-29. 10" sec.-l . . (6)

For the ratio %, however, which will alone concern us later, the dif-

ference (3, 4) and (5, 6) is of no account. By forming this ratio we arrive
at an un-named number independent of the umits of measure, which,
moreover, is of a convenient order of magnitude for all X-ray measure-
ments. Thus Table 11 represents in the first four columns the values of

;2 for the principal lines of the K-geries. Next to these, in the last two

columns, are the values of \/ _1'% for the two lines Ka and KB (at the head

of the columns these numbers are briefly called ,/a and /B respectively).

We first direct our attention to these last two columns. They form
an arithmetic series, that is, there is a constant increase in passing from
element to element. This increase is particularly regular at the beginning
of the table ; later, it increases a little. We read this off from Fig. 51, in
which, following Siegbahn, we plot the values of \/ 1; as a function of the
atomic numbers. The a- and B-lines (the two middle lines of the figure)
ascend regularly and, except for a small curvature for larger Z's, they are
straight lines. The neighbouring lines «’ and y (the two extreme lines)
follow the same course.

In this figure our earlier statements about the behaviour of X-ray
spectra and their relation to the natural system of elements are made
particularly clear. We see the uniform (in our picture, linear) increase
of the hardness with the atomic number and conclude from it that the
hardness is determined by the nuclear charge of the element. This
strengthens our belief that the Rontgen spectra arise through changes of
configuration that occur near the nucleus, in the innermost region of the
atom (cf. Chap. II, §7). There is not a trace of the periodicity of the
elements here. We interpreted this earlier as signifying that only the
peripheral parts of the atom are periodic in structure, but that energetic
conditions in the interior of the atom alter uniformly with the nuclear
charge.

Gaps in the system of the elements are exposed with particular
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TaBLE 11

v/R values of the K-series

Z a’ a B

11 Na 76-688 7862
12 Mg 92-348 95-576
18 Al 109-535 114762
14 Si 128-182 185-217
15 P 148374 157519
16 S 169992 181°559
17 Cl1 192-99 198-12 207-366
19 K 248-88 24406 264-418
20 Ca 271+61 271-87 295-581
21 Se 300-88 801-22 328-544
22 Ti 881-9 3823 863-238
23V 364-2 3648 399735
24 Cr 398-06 89878 43781
25 Mn 4346 4354 479-1
26 Fe 470°55 471-58 51955
27 Co 509-23 510°45 563503
28 Ni 549-42 55073 608856
29 Cu 591-26 592-76 656-122
30 Zn 6341 6359 7042
31 Ga 679-23 68114 75567
32 Ge 7227 7250 8057
33 As 7762 7789 866-2
84 Se 8217 8254 9176
35 Br 876:2 880-5 9809
37 Rb 984-1 9884 1105

88 Sr 1040 1046 1170

39 Y 1085 1091 1222

40 Zr 1149 1156 1293

41 Nb 1209 1216 1362

42 Mo 127964 1287-4, 14439,
44 Ru — 1413 1588

45 Rh 14785 14888 1671-1
46 Pd 1545 1555 1749

47 Ag 1607 1621 1819

48 Cd 1678 1694 1902

49 In 1769 1787 2012

50 Sn 1860 1871 2109

51 Sb 1931 1947 2191

52 Te — 1998 2256

58 J — 2085 2349

55 Cs 2267 2289 2589

56 Ba 2319 2348 2657

57 La . 2424 2450 2770

58 Ce . 2531 2567 2902

59 Pr . 2626 2665 3027

60 Nd . .| 2720 2761 3127

74 W 42700 43685 4947-2

' 5000-6

Ne ~/E

8-757 8-867

9610 9776
10-466 10°713
11-322 11-628
12-181 12-556
138-038 13-474
18897 14+400
15622 16-261
16-488 17-190
17-356 18-126
18-28 19-059
19°10 19-998
19-969 20-924
2087 21-89
21-716 22-794
22593 23-738
23-468 24675
24347 25-615
2522 2653
26-099 27490
26-93 28-39
2791 29-43
2873 30-29
2967 31-32
8144 33-24
32:34 8421
33-03 84-96
34-00 85-96
84-87 36-91
35-772 88-00
87-59 89-85
38585 4088

39-43 41-82
4026 4265
4116 43-62
4227 4486

43-26 4593
44-13 46-81
44-70 47-49
4566 43-48
4785 50-87
48-46 5155
49°50 5264
5067 58-88
5163 55-03
5256 5592
66-095 i 70336

clearness and certainty by this mode of representation.

If the figure had

been drawn without taking into account the gap at Z = 43 (eka-
manganese), a discontinuity would have come to light in the diagram of the
line, and would immediately have betrayed the missing element. Notice,
also, the order of Te (Z = 52) and J (Z = 53), which cannot be doubted
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158 Chapter III. X-ray Spectra

of eqn. (1), pagel46, of the preceding section as follows. The transition
electron comes from the initial energy-level of the L-Shell

(Z - 1)2

W,=-Ra 8)
and falls to the energy-level of the K-shell
—_ 2
W, = - rilZ 1._,;3 ©)

No importance is attached to the use of the negative signs before the
energy amounts ; they occur because, in Fig. 48, we calculated the energy-
steps from the surface of the atom and called the energy-step of the
nucleus — . By adding a sufficiently great constant that would cancel
out in the energy differences, we could make both amounts of energy (8)
and (9) positive. By forming, in accordance with eqn. (1) of the preceding
peragraph, the quantity iv = W, — W, we get, if we cancel the common
factor &, the value of v from eqn. (7) just above.

According to the most recent view of the theory, we may no longer
regard Moseley's equation (7) as exact. A complete description of the
Ka-line for all atomic numbers Z should also be able to account for the
slight curvature of the plotted line in Fig. 51: nor could it rest satisfied
with the above approximate determination of the constant s = 1. The
theory attains this, on the one hand, by applying a relativity correction
to Moseley's formula (cf. the last chapter), on the other, by penetrating
further into the nature of the atomic model and to find a reason for the
finer constitution of the K- and L-level. Nevertheless it will never fail
to excite wonder that Moseley, in his first entrance into the realm of
quantitative X-ray spectroscopy, also made the first and most important
step in giving the theoretical interpretation of high-frequency spectra.

§ 6. The L-gseries and the M-series. Doublet Relationship

The simplicity of the spectral laws that distinguishes the Rontgen
from the visible region is founded, according to the opening words of § 4,
in the circumstance that in the interior of the atom, under the influence
of the true nuclear charge, the electrons are arranged according to simple
laws, whereas towards the periphery of the atom, at which the visible
spectra originate, the arrangement of the electrons becomes gradually
more complex and more difficult to grasp. For this reason, too, we find
even the L-series to be of more complex structure than the K-series.

This increase of complexity in the L-series manifests itself largely in
the fact that its lines occur in greater number. Table 12 on page 159 gives
a survey of the various names, the supposed origin, and the approximate
intensities of the main lines; besides the lines there included there are
various other weaker lines that have been observed only in the case of a
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§ 6. The L-series and the M-series 159

few elements. We shall return to the latter lines in the last chapter.
‘We have already given a picture of the L-series of platinum in Fig. 43, § 3.

Our nomenclature agrees with Moseley’s, as far as his goes (Moseley
measured and named only the lines B,.y, 8, ¢), and seeks to extend it
systematically by using the later letters in the order in which they occur
at the beginning and end of the Greek alphabet. On the other hand
Siegbahn’s nomenclature recognises three group of lines that may be
distinguished roughly by their varying hardness, namely: a rather soft
a-group, & medium B-group, and a rather hard y-group, whereby, however,
the degree of hardness or softness of course changes with the atomic
number as we pass along the elements in succession. Siegbahn numbers
the lines within each group according to their intensity. The intensities
are given as relative terms ; their values fluctuate a little for each element,
and must, therefore, be regarded merely as estimated averages.

TaBLE 12
Sommerfeld Siegbahn Origin Intensities
{“' az M, ~>L, 3
a } a, M, ~>L, 10
B B, M,—»> L, 8
[ — N—»L, 0
\y } B, Ny— L 6
3 7 N‘ - 4
€ } 1 My—L, 3
1 1 My L, 0
¢ } Bs 0 — L, 1
¢ Yo Ve 0 —L, 1
¢ } Bs N7 -> L1 0
Kk ¥s N, L, 0
{4” By M, 1L 2
(4 By My Lg 3
{x' T Ve Ng— L, !
X s 5 —>
¥ Y4 Y - L 1

The order followed in our Table 12 does not entirely agree with the
order of the hardness of the lines. We always have, indeed, « softer than
B, and y softer than 8, but B is not in the case of all elements softer than
v. The softest line in the case of all elements is ¢ (discovered by Siegbahn,
and called by him ). Manifold overlapping occurs among the lines 3, y,
and ¢. Further details may be found by the reader in Figs. 53 and 54.
The latter figure also shows the complex conditions that obtain between
the lines x, x' and 6. In the case of the lowest atomic numbers, 6 is
softer than x and ', but in highest atomic numbers it is harder. In the
case of Pt and Au, 6 coincides with x’; in that of Pb and Bi, it coincides
with x. In the preceding editions of this book we followed Friman by
identifying 6 with x'; this, in the case of 'W, would apparently lead to a
contradiction to Stokes’ Fluorescence Law (cf. Note 1, p. 184).
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160 Chapter III. X-ray Series

Concerning the origin of the lines the following suggestions are
contained in Table 12. As already indicated in Figs. 47 and 48, the line
La corresponds to the transition of an electron from the M- into the L.-
shell, the line Ly to the transition from the N- into the L-shell. It now
becomes necessary, however, to subdivide these shells further. Even in
Table 9 of the preceding section, we distinguish two L-shells, L, and L, ;
it now becomes necessary to assume a third energy-level L;. In the case
of the M-shell, we have to distinguish five such steps, M;, M,, M, M,, M.
The N-shell is also to be subdivided, and indeed, still more than the
M-shell. The deeper theoretical reason for this at present apparently
arbitrary differentiation can be given only when we get to the last
chapter.

As is indicated by the brackets in the first column of Table 12 (on the
right of the symbols for the lines), the line-pairs (a'B), (y'8), (en), (£), (),
belong together as regularly given doublets. We call them L-doublets.
They are designated by the successive letters of the Greek alphabet.
Their characteristic feature is: both lines of an L-doublet have the same
initial level, the softer line ending in the L;-level, the harder one in the
L,-level.

In all these doublets the softer line of the doublet is the more intense
line (this holds for the doublets '8 and ¥'8 in so far as we take into
account the intensity of the two related lines aa’ and yy' respectively,
for these, together, are then considerably more intense than B or &
respectively).

We call the line-pairs (a'a) and (¢'¢) M-doublets, because, in them,
the related lines have as their final level the same L-level, but different
M-levels as initial levels. For an equivalent reason, the line-pairs (y'y) and
(x'x) are called N-doublets. The M- and N-doublets are made recognisable
in Table 12 by brackets placed at the left of their symbols. The symbol for
the softer doublet-line is distinguished from that for the harder line only
by the accent. In contradistinction to the case of L-doublets, the softer
components in the case of the M-doublet (a'a) and the N-doublet (y'y) is
the weaker component. In the doublets (¢'¢) and (x'x), both of which
have L; as final level (final letters of the Greek alphabet), the softer
component of the doublet is only inappreciably or not at all weaker than
the harder component.

To bring our comments on Table 12 to a close for the present, we
have yet to remark that the combination of the L-lines into doublets and
the tracing of their origin to common or different initial and final levels
has enabled us to get a preliminary survey of the manifold of emissions
that is possible.

In Table 13 the more recent precision measurements (Siegbahn,
Hjalmar, Coster) may be distinguished from the older measurements
(Friman) by the decimal places. The precision measurements for
Z =29 to Z = 73 are due to E. Hjalmar (Zeitschr. f. Phys., 8, 262, 1920),
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§ 6. The L-series and the M-series 161

those for Z = 76 to Z = 92 are due to D. Coster (bid., 4, 178, 1921);
tungsten, Z = 74, has been measured very carefully by various ex-
perimenters. Our numbers are taken from Siegbahn * (Physikal. Zeitschr.,
20, 533, 1919); the numbers for 8, x', x in the case of Ta, Z = 73, and
W, Z = 74, have been added in accordance with Coster (Compt. rend.,
173, 77, 1921). The older, less exact, observations were given in Friman’s
dissertation (Lund, 1915; see also Ann. d. Phys., 49, 616, 1916). For the
elements, Z < 74, we have corrected Friman’s values in accordance with
the method of Hjalmar, based on his precision measurements of the main
lines. (Correspondingly, in Table 10, the wave-lengths of Ky have been
corrected on the basis of Hjalmar's precision measurements of KB.)
The present gaps which occur particularly among the weaker lines, are
for the most part probably of an accidental nature; it cannot yet be
stated definitely whether several lines (for example, ¢ and 5) cease when
we get to the lighter elements.

The hardest and the softest wave-lengths of this table are of the same
order of magnitude as the hardest and softest lines of the K-series in
Table 10. But of course in this case the same hardness or the same
softness occurs at much higher atomic numbers than in the former case.
The measurement of the soft wave-lengths demands the same precautions
(vacuum spectrograph, gypsum ecrystal in place of rock-salt) as in the
case of the K-series.

A bold incursion into the region of very soft rays has been initiated
by Millikan,t not from the side of the Rontgen spectra, but from that of
ultra-violet spectra. He makes his observations not with a ecrystal
lattice but with an artificial line grating, the production of which he is
systematically improving ; he uses high-tension “ vacuum sparks.” Thus
at A> 360 A he has found lines that he aseribes to the L-series of carbon.
‘We hear that recently, on the one hand, Millikan, on the other, P. D. Foote,
has succeeded in extending the measurement of the Li-series systematically
as far as sodium. Moseley’s laws, which, according to Fig. 53, are ap-
plicable to the L-series, seem to remain valid as far as this region.

In Table 13 a first characteristic property of our doublet asserts itself.
We calculate in each case the differences AA between the wave-lengths of
two related doublet lines. We then find as a general result that, through-
out the whole series of elements, related doublet lines give almost equal
differences of wave-length AX. Or, expressed more accurately, we com-
bine such and only such lines into doublets as are separated by almost
equal distances in the scale of wave-lengths.

Let us consider Fig. 52. In it we have plotted our L-doublets (ey),
(«'B), (¥9), (£8), («). The curve ey lies highest, the curve a'-8 lies
below it, and so forth, in the order of the hardness of the line-pairs.

*In the case of tungsten, our {-line is different from that called 8; by Siegbahn.
+ Astrophys. Journ., 52, 47 and 286 (1920); 53, 150 (1921).
11
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162 Chapter III. X-ray Spectra

TaBLE 13. Wave-lengths
Z € a’ a L] ¢’ t B
29 Copper — — 13309-1 — — — —
30 Zinc . —_ — 12222-5 — — — 11951
32 Germanium — — 10418-6 — — —_ —_
83 Arsenic — — 96503 — — — 93940
34 Selenium — — 89706 — — — 8717-2
85 Bromine . — — 8356-6 — — — 81076
87 Rubidium — — 7802-7 — — — 70604
88 Strontium — — 6847-8 — — 6609-2
89 Yttrium . -— — 6434-9 — — — 6198-4
40 Zirconium — — 60559 — — —_ 58228
41 Niobium . — 5717 5711-3 — — — 54796
42 Molybdenum . — 5400 53943 — — — 5165-8
44 Ruthenium — 484867 | 483567 — — — 4611-00
45 Rhodium — 4595'56 | 458778 | — — — 4364-90
46 Palladium — 4366-60 | 435850 — | 4065 4137-30
47 Silver . — 4153°82 | 414564 — | 3861-09 — 392664
48 Cadmium — 3956-36 | 38947-82| — |3674:25| — 3730-08
49 Indium . — 377242 | 376367 — — — 3547-83
50 Tin — 3600-83 | 3591-93 — 3333 — 3377-62
51 Antimony — 344075 | 343177 — | 3181 — 3218-36
52 Tellurium — 8290-70 | 328169 — |8039:71, — 806964
58 Iodine . — 3150-57 | 3141-36| -~ |2906 — 2930-60
55 Caesium . — 2895-27 | 288587 | — |266019| — 267750
56 Barium . — 277869 | 2769-31 | — |2549°76| — 2562-24
57 Lanthanium . =— 266856 | 265931 — | 2443-90 — 245294
58 Cerium . — 256476 | 2555659 | — |2845'11| — 235061
59 Praseodymium — 2467-28 | 245735 | — | 2254 — 225353
60 Neodymium — 2375-26 | 236494 | — |2162 — 2161-81
62 Samarium — 220530 | 2194'63 — —_ 1998-17
68 Europium — 2126-95 | 211595 — [ 1921 1915-91
64 Gadolinium — 2052-24 | 2041-65) — |1848 — 1842-08
65 Terbium . — 1981-91 | 197109 | 1983 | 1781 — 1772-28
66 Dysprosium — 1915-22 | 1904-18( — |[1718 — 1706-16
67 Holmium . — 1851-65 | 1840-57 — 1653 — 1643-12
68 Erbium . . — 1791-00 | 178000 | 1722 | 1596 — 1583-04
70 Aldebaranium. | 1890 16785 | 1667-39 | 1616 | 1488 — 1472
71 Cassiopeium 1830 1625-96 | 161511 | — |1434 — 1417
73 Tantalum —_ 1528-90 | 1517-71 {1438 | 1841 — 1323-12
74 Tungsten. 167505 | 1484-52 | 1473°48 | 1417-7 | 129874 | 12871 1279-17
76 Osmium . — 13982 1388-16 — 112150 |1204°8 1194-59
77 Iridium . — 1359-39 | 1348-34 — | 1176-4 |1171-7 115495
78 Platinum 1497-23 | 1321-21 | 1310°08 | 1240-1 | 1139-8 | 11398 1117-22
79 Gold 1456-54 | 128489 | 1273-55 | 11995 | 1104°4 |11106 1080-93
81 Thallium —_ 1216-03 | 1204°71 | 1125 |1037-1 |1048-0 101266
82 Lead . 1844-54 | 1183-52 | 1172-02 | 1087 | 1004°69 | 10188 979-90
83 Bismuth . 1812-95 | 1153°3 1141-15 | 1057 9754 991-6 949-30
90 Thorium . 1112:41 | 965-24 953-42 — 789 826-2 762-59
92 Uranium. 106477 | 920-14 908:33 | 8029 | 7454 786-56 718-07

But within each curve the AX's are almost constant for the whole system
of elements from Z = 40 to Z = 92 (axis of absciss®); there is just a

slight decrease as we pass from lower to higher atomic numbers.

The AMN’s of our M-doublets (a'a) and (¢'¢) are much more constant

still.

The graphical curves a'—a and ¢'—¢ run almost exactly parallel

to the abscissa-axis, the first at a distance of 40 X-units, the second at a
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§ 6. The L-series and the M-series 163

of the L-series (in X-units)

¢ Y ¢ K 5 6 | x x ¥
[ — — — — — — — -
[ 5295-1 — — — — — — —_
— — — — | 41111 — — — —
— — — — 4172-82 — — — —
— — —_— J— 8935-7 J— —_ — J—
4025 8899 — — 8716-36 — 3594 —_
3824'45 | 369383 | — — | 851485} — — — —
363642 | 3507 — —_ 3828-00 — — — —
— 3832 — —_ 8155-29 —_ — — —
3297-38 | 3168-54 — —_ 2994-60 —_ 2897 2885 2827
3145-14 | 3017 — — 2845-07 — 2779 —
8001-00 | 2877 — — 270618 — — — —
2867 274575 — — 257712 — — — —_
2622-59 | 2507 — — 2842°17 — 2244 —
2511-00 | 2399-28 —_ —_ 228625 —_ — — —_
2404-95 | 2298 — — | 218680 | — — l — —
2304-58 | 2208 —_ —_ 2044 — 1995 —
2212°00 | 211431 — — 195641 — 198139 | 1925-54 —
2121-90 | 2081 — — 18738-48 — 1801 1778
1958 1877 — — 1722-69 — 1657 —
1886 1807 — — | 1659 — | 1598 1588 —
1809 1741 — — 1588-22 —_ 1554 1549 —
1742-16 | 167885 | 1656 — | 1529 — | 1474 1468 1434
1680 161938 — — 1467 —_ 1419 1415 —
1616-37 | 1563-25 | — — |1412 — | 1366 1861 —
1556 15108 — — 1363 — 1320 1313 —
1448 1412 — — | 1265 — | 1295 1221 —
1395 1366 — — | 1220 — | 1184 1180 —
1303 1280-35 — — 1134 11100 | 11020 | 1096-2 —
1260-00 | 1241-91 | 1218-8 | 11284 | 109553 | 10720 | 106584 | 105969 | 1026-47
1177-2 | 1168-38 | 1140 _— 1022-47 — — — —
1137-9 | 1182-87 | 1103-0 —_ 98841 | 9636 9636 9566 —
1099-50 | 1099-50 | 10701 984 95545 | 9317 9317 9256 |.8950

1060-9 | 1067-75 | 1038-2 924-37 | 901-25| 90125 | 89568 | 866-3
997-8 | 1007-86 | 978'3 | 89542 | 86529 | 8417 844-7 837-9 8100
966-02 | 97990 | 94952 ( 866 837-08 | 813'70| 8182 813'70 | 7836
9357 95293 | 9228 8378 | 81065 | 7874 | 7929 787-4 761
752-1 79108 | 76259 — 651-03 | 6301 — — —
708+4 75268 | T24-13 — 612-83 | 5926 604°4 5970 5738

distance of (10 + 1) X-units. In the same way x'—x is almost a con-
stant and equal to about 5 X-units: on account of the smallness of this
difference the corresponding graphical curve could not be shown in Fig. 52.
The difference y'—y is still smaller (about 1:5 X-units). Since the levels
N; and N, are separated by only an extremely small distance, the lines
¥ and y are so near to one another that only in the case of uraniuwm could
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164 Chapter III. X-ray Spectra

it be shown that they are distinct lines (cf. A. Dauvillier, Compt. rend.,
172, 1350 (1921)). But (with the help of the complete scheme of the
lines, §6, Chap. VIII) the distance between them may be calculated
indirectly and is then also shown to be constant. Since y' and y differ
only imperceptibly from one another, we were justified in Fig. 53 in re-
placing the difference y'-8 by the difference y—8. The existence of a
soft associate y’ for y was first postulated by the author as a necessity for
the completeness of the system.

In Table 14 we pass on from yalues of A to values of & (v ——, cf.

eqn. (3) on p. 154; R = 109737 cms.-}, cf. egn. (5) on p. 155), with which
the later investigations will be concerned.

Before we deduce from this table the relationships between the lines,
we shall consider a graphical representation (Fig. 53) of the values of

\/ ;{, similar to that given in Fig. §1. To prevent confusing the figure

AJ4 in X- Units.
. e ge-Ope L ]
w "|
200} A
M - l-lx
i o—»n_n_.:_or
¢
100
Oger ol ©O—OO 00 a0 m'
| qr-oreecoponr—geoecs—eeasseey —%oa-a
40 45 S0 55 60 65 170 75 80 85 90 Z—>
Fia. 52.

we shall restrict ourselves to the lines a, 8, v, 8, ¢, 7, . The atomic
numbers are again plotted as abscissee. Here, too, the course of the lines
traced is essentially rectilinear, which indicates that v increases nearly
proportionately with Z2, The curvature of the lines, however, is greater
than before, particularly in the case of the line 8. This is on account of
the “relativity correction” mentioned on page 158. Furthermore, we
see in the figure the overlapping which was mentioned earlier and which
was found to be absent in the K-series. The line 8 cuts the line y at
Pb, Z = 82; beyond 82, it is harder than y: below 82, it is softer. More-
over, ¢ and y intersect at Pt, Z = 78. From this we see that the re-
lationship between the lines is not so simple and rigorous as in the case
of the lines of the K-series.

In Table 14 the L-doublets are again distinguished by a characteristic
property. We have calculated the differences %’ of the values of I% for
all related doublet-lines and have tabulated them in Table 15. If, this
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166 Chapter III. X-ray Spectra

TABLE 14.
Z € a a n ¢’ t B
29 Cu . . Soo—- — 6847 — —_ — —
80 Zn . . . — — 74:55 — — — 76-25
32 Ge — —_ 87-50 — — — —
88 As — — 94-42 — — — 97-00
34 Se — — 101-58 —_ — — 104-53
35 Br — — 109-04 — — — 112-39
387 Rb — —_ 124-78 —_ — — 129-06
38 Sr . — — 183-07 —_ — — 137-87
89 Y . — — 141°61 — — — 147-01
40 Zr . — _— 15047 — — — 156-50
41 Nb — 159-4 15955 — — — 166-29
42 Mo — | 1687 168-93 —_ — - 176-40
44 Ru — | 188'13| 188-44 —_ — — 197-62
45 Rh — [198-29 | 198-62 — — — 208-77
46 Pd — 208:69 | 209-07 — 224°1 — 220-25
47 Ag — [ 219-87 | 219:80 — 23601 — 232:06
48 Cd — |280°82| 230-82 — 24800 —_ 244-29
49 In — | 241-55| 24212 — —_ — 256-84
50 Sn — | 25806 | 25369 — 2734 —_ 269-79
51 Sb — | 264-84 | 26558 — 286+5 —_ 283-18
52 Te — | 276-91| 27767 —_ 299-77 -— 296-85
53 J . — |289-23 | 290-07 — 318-6 —_ 310-94
55 Cs — | 814-78 | 31576 —_ 842-55 —_ 340-33
56 Ba — | 82794 | 82905 — 857-38 — 35564
57 La — | 84147 | 84266 — 372-86 — 37148
58 Ce — | 85528 | 356-57 — 888-57 —_ 387-66
59 Pr . . .| — [869-83| 87082 — 4043 — 404-36
60 Nd . . . — | 88364 | 88531 — 421-5 —_ 421-50
62 Sm . . Ll — | 41822 415-21 —_ —_ — 457-17
63 Eu . — | 428:42 | 48065 — 4744 —_ 47561
64 Gd . . L — | 44402 446-84 —_ 4930 —_ 49468
65 Tb . . So— 145978 46280 | 4714 5116 — 51416
66 Dy . . . — 47579 | 478-54 —_ 58056 — 534-09
67 Ho . . . — 149212 49509 — 5518 — 55458
68 Er . . .| — |50878| 51193 | 5292 5711 — 57568
70 Ad . . .| 482-2 | 54290 | 546°51 | 5638-9 612+5 — 619-0
71 Cp . . .1498-0 |560'43| 564:20| 63859 6356 —_ 642-9
78 Ta . . .| — 159600 | 600-40 —_ 6796 —_ 688-70
4 W . . .| 544-02 | 61885 | 618-45| 642-78| 701°66| 70803 | 712-39
76 Os . . .| — |651B0| 65645 —_ 74825 | 756-33 | 762-83
77 Ir . . .| -— |67035| 67584 —_— 77462 | 77775 | 788-99
78 Pt . . . 1 608-64 | 689°73 | 69558 | 734-82| 799-52 | T799-52| 81565
79 Au . . .1 62563 | 709-22 | 71553 | 759-97 | 825°15| 820-51 | 843-02
81 TI . . o= 749°39 | 756-42| 81030 | 878'64 | 869-49 | 899-88
82 Pb . . .| 6777576996 | 777-51 | 83826 | 907-01 | 894-50 | 929-98
83 Bi . . .| 694-07 | 790°20 | 79854 | 862:32 | 934-22 | 918:97 | 959-93
90 Th . . . | 819-19 | 944-08 | 955°78 —_— 115500 | 1102°78 | 1194-94
92 U. . . . | 855-84 | 990-37 | 1003-28 | 113495 | 1222-53 | 1158+70 | 1269-08

does 8-y ; this will become evident in Fig. 85. It is very striking that
the B-line, as the second most intense line of the L-series, forms the
characteristic doublet difference not with a, the most intense line, but
with o', its weak associate. 'We must remark, however, that we shall also
find this phenomenon to be characteristic of the visible region (cf. § 5,
Chap. VI, for the case of the so-called “composite doublets” ; there, too,

Google



§ 6. The L-series and the M-series 167

v[R-values of the L-series

¢ Y ¢ K 5 0 X X ¥
— 172-09 — — — — — — —
— — — — 19842 | — — — —
— — — — 21838 | — — — —
— — — 23153 — — — —
226-4 2337 — — 24519 —_ 2536 —
238-27 | 24669 — - 259-15| — — — —
250°59 | 259-8 — — 27881 | — — — —
— 2735 - — 28879 | — — — —
276-35 | 28759 — - 30429 | — 3146 | 8158 | 3228
289-78 | 802-0 — — 320129 | — 3280 —
30865 | 816-7 —_ — 38673 — — — —_
317-8 | 33187 — — 85359 | — — — —
34746 | 3635 — — 389-05 — 406°1 —
362:89 | 879-80 - — 40748 — — — —
37890 | 3965 — — 426-45 —_ —_ — —
895:40 | 4186 — — 4458 — 4568 —
412-1¢4 | 43100 — 46577 | — 471°80 | 47329| —
42944 | 4488 — —_ 486-40 | — 5062 514-0
465-4 485-5 — —_ 52896 — 5501 —
4832 | 5048 — — 549-2 — 5701 | 5748 | —
5038 | 5233 — — 57375 — 5865 | 5883 | —
52305 | 54278 | 550-2 — 596-1 — 6182 | 6209 = 6352
542:6 | 56271 — — 621-2 — 6422 | 6440 —
563-75 | 58291 — — 6454 — 667-3 | 6693 —
5855 | 60316 — — 6684 — 6905 | 6940 —
6291 | 6454 — — 7204 — 7436 | 7462 —
6534 6672 — — 7469 — 7696 7725 —

699-4 711-70 — — 803-7 82096 | 82692 831-30 —
72323 | 73376 | 75107 | 807-57 | 83181 850°07 | 85498 | 859-94 | 88777
774°08 | T80°58 | 799-65 — 891-25 — — — —
800-82 | 804-39 | 826-18 — 92196 | 94569 [ 94569 | 952-64 —
828-80 | 828:80 | 85157 | 926-20 | 95377 978-:07 | 978:07 | 984-52 | 101817
858-94 | 85346 | 877-70 — 985-83 | 1011-12 | 1011-12 | 1017-41 | 1051-86
918-23 | 904-16 | 931-47 | 1019-14 | 1053-12 | 108265 | 1078-81 | 108756 | 1125-00
943-30 | 929-98 | 959-72 | 105257 | 1088-37 | 1119-97 | 111375 | 1119-97 | 1162-89
973-85 | 956-28 | 987-98 | 1087-75 | 112410 | 1157-55 | 1149-20 | 1157°55 - 1196-89
1211-67 | 115193 | 1194:94 | . — 1399-74 | 1446-20 — — =
1286-29 | 1210°70 | 1256-43 — 148698 | 1637°45 | 1507-73 | 1526-42 | 1588

the weak associate’'of the principal line, not the latter itself, forms a
doublet with a second line).

The distances between both the components of M-doublets and those
of the N-doublets are not related among themselves, nor are they related
to the distance which separates the components of the L-doublet.

In the last column of Table 15 the fourth roots of the characteristic
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168 Chapter III. X-ray Spectra

TaBLE 15
Element | B—a | B—a’ | §—y n—e 0—¢ | x—i |a—a'|p—o¢' | x—x'|VB—a
41 Nb 6:74| 6°89 — — — — 015 — | 1620
42 Mo 747 770, — — —_ — 0-28 — | 1666
44 Ru 9-18| 949 — — — — 031 — — | 1755
45 Rh | 1015 1048 — — —_ — 033 — — | 1799
46 Pd 11-18| 11-56| 115 — — — 038 23 | — | 1844
47 A 12-26 | 1269 | 1246 — — — 043| 2:26| — | 1-887
48 13-47| 1397 14:0 — — — 0-50( 259 — | 1-988
49 In 14-72| 15-29| 158 — — — 067 — — | 14977
50 Sn 16-10| 16-78| 16-70 — — — 063 3:0 | 12 | 2022
51 Sb 17-60| 18-29| 18-3 —_ — — 069] 32 | — | 2068
52 Te 19-18| 19-94| 200 — —_ — 076| 888| — | 2118
533 20-87 | 21.71; 21-72 — — — 084 42 [ — | 2159
55 Cs 2457 2560] 256 — — — 1-03| 491 — | 2-249
56 Ba 2659 | 27-70| 27-68 —_ —_ — 1-11| 551 — | 2294
57 La 28-82| 80-01| 800 — — — 1-119| 6:04| — | 2-841
58 Ce 81-09| 32-88| 82-2 — — — 1-29( 688 — | 2:885
59 Pr 83-54 | 85-03| 8477 — — — 149 | 7-8 | 1-49| 2433
60 Nd | 86-19| 837-86| 876 — — — 167| 79 | — | 2481
62 Sm | 41-96| 43:95| 485 — — — 1499 — — | 2575
63 Eu 4496 | 47°19| 449 —_ — — 2231 88 | 37 | 2621
64 Gd 4834 | 50'66! 50°5 —_ — — 2:32110'8 | 18 | 2668
65 Tb 51-86| 54-38) 58-8 — —_ — 2:521114 | 27 | 2716
66 Dy 55'56| 58:80| 585 — —_ —_ 2-75112:1 | 1-8 | 2°768
67 Ho | 5949 | 62:46| 625 — — — 2:97112:5 | 20 | 2-811
68 Er 63-70| 66°85| 652 —_ — — 315|144 | 85 | 2859
70 Ad 725 | 761 | 750 817(?) — — 361|166 | 26 | 2:D54
71 Cp 787 | 825 | 797 —_ —_ — 3771178 | 29 | 8301
73 Ta 88-30| 92:70| 920 — — — 4:40|198 | 4-38| 8°10
T4 W 9394 | 98:54| 98'05| 9876 | 99-00| 99-54| 4-60|21-57| 4-96| 8-151
76 Os |106-38|111-08 | 110°67 — —_— — 47 12583 — | 8-246
77 Ir |118°15|118-64 | 117-57 — 111954 — 549 | 26-20| 6°95| 3-300
78 Pt 12007 |125°92|124-97| 126-18 |126-50 | 12668 | 5:85|29-28| 6-45| 8-350
79 Au | 127-49|133-80| 132-37 | 184-34 |188:42| — 6+3133-79| 6:29| 3-401
81 Tl |143:46|150°49 | 14896 — 151-18|149°651 7°03|384:59| 875 8-502
82 Pb |[152-47|160-02|15839| 160-51 |160-25|158-07| 7-55|36-30| 6-22| 3-557
83 Bi |161-39 |169-73 | 167-82| 168-25 | 169-57 | 168-78 | 8:3 |39-63| 8:75| 8.609
90 Th |289-16 | 250-86 | 24781 — 251-26| -— [11-70{56'67| — 1| 8980
92U 265-85 | 278-71 | 276+28 | 279-11 |279-02 | 281 12-86 [ 63-76 | 1869 | 4-086
J .

difference of the L-doublets, %Z = B - d/, are given. These form an

arithmetic series, as may easily be confirmed. As Z increases, these
numbers increase steadily by a constant amount of about 0-043. The
particular interest which attaches to this at present empirical fact will be
referred to at the end of this section. The fourth roots of the M- and N-
doublet-distances also increase linearly with Z.

Fig. 54 shows for several selected cases how the L-, M-, and N-doublets
overlap and alter their relative distances as Z increases (corresponding to
the intersections of Fig. 53). Each individual spectrum of our series has
been drawn in the scale of v (not of A), as it is in this scale alone that the
equality of the distances between the components of the doublets (doublet-
distances) come into evidence. But the ratio of the scales of the super-
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§/6. The L-series and the M-series 169

posed spectra has been chosen so that the L-doublets are equal in each
case, as actually occurs when we compare real spectral photographs of
different elements.

Now, the law of the constancy of the differences in wave-length im-
mediately becomes clear if we accept the assumptions that were made in
Table 12 about the origin of the lines. According to these assumptions
two associated lines of an L-doublet differ only in their final level (L, or
Ly). As a matter of fact, the 8-, 8-, 9-, 8-, x-lines are harder than the a-,
+-, or -, ¥'-, e, {-, clines, respectively; the difference of energy that cor-
responds to the former is greater than that corresponding to the latter
(Ly-level is lower than the L-level), and hence has also a greater wave-

A
920
i
€ a‘'a Nt ye lBe x XS v
83 Bi
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H |
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56 Ba
—
a« s @ % 4
Fia. 54,

length. The differences of hardness between the associated line-pairs
(@'B), (¥'9), (en), (£0), (x), however, are equal; they are represented, in-
dependently of the initial level of the transition in question, by the fixed
difference of level between the L,- and the L,-shell. The a-, y-, ¢, -,
«-lines are also more intense than the 8-, 8-, 4-, 6-, x-lines ; clearly, to the
former there corresponds a greater probability of transition. The (so to
speak) normal L;-level is attained more often as the final position than
the Ly-level.

But if an electron can pass to the L,- as well as to the L;-shell from
a higher level, then it will also be able to pass from the L,-level as well as
from the L;-level to the lower K-level. But the transition L — K denoted
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170 Chapter III. X-ray Spectra

the line Ka. We see now that this line must be a doublet, and we under-
stand the origin of the line Ka' that has already been indicated in Table 9
on page 150, and that is illustrated in detail in Fig. 55. (Concerning the
description of this figure, see also p. 175.) Ewvidently, in accordance with
our theory, the doublet-interval (a'a) in the K-series must be equal to the
doublet-interval (a'B) in the L-series, and hence also to the remaining
L-doublets (y'8), (ep), (£6), («x)—of course, all measured in terms of v or I_‘{”
respectively. Actually, this interval is determined in all cases by the
difference of energy between the L-level and the Ly-level in our figure.
On the other hand, the interval between the lines La and L that form
no true L-doublet, measured in wave-numbers, is less than (L;L;). Our.
figure also tells us that the line Ka’', starting from the less probable
energy-level L,, is weaker than the line Ka, starting from the Li-level,
just as the line L3, directed at the L,-level, was weaker than the line La

directed at the L,-level. This is indicated by the
Y1 thickness of the arrows. In the matter of intensity,

* the Ka' line thus corresponds to the line L8, the line

%1 Ka to the line La. But in the matter of hardness the
“ relation is reversed, as a glance at Fig. 55 tells us, for

the reason that the L, - and the L,-level forms the
L; initial level for our K-lines, whereas they form the
final level for the L-series. Hence there is the
following characteristic difference between the K-
and the L-series: in the K-serites the weaker a'-line
to| Ea 18 softer than the principal line a (smaller difference of
level in the figure), but in the L-series the weaker
B-line i3 harder than the principal line a or o’ respec-
tively (greater difference of level or “distance of
falling ).

As we know, this qualitative theoretical deduction agrees perfectly
with the facts of observation. But the quantitative deduction that the
doublet-intervals (a'a) in the K-series are equal to that of the * L-doublet
in the L-series is fully confirmed by the measurements. Certainly, the
measurements of the relatively small difference of hardness (aa’) in the
hard K-series is comparatively inexact, being much more uncertain than
the measurements of the differences of hardness in the L-doublet of the
L-series. To be certain of our quantitative deductions we must there-
fore restrict ourselves to the few elements for which precision measure-
ments of the K-lines are available and for which the L-series is also
known. These elements number only three: Mo, Rh, and W. In their
cases, however, the agreement is perfect, as is shown by Table 16.

In the case of the remaining elements only an average equality may
be expected. The confirmation of this is given in Fig. 56. It contains,
besides tungsten, all elements (between Z = 41 and Z = 60) for which

T THE

Lol Leq L

Ly

Fia. 55.
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TaBLE 16
42 Mo 45 Rh AW
(a'a)x - . . . 775 10-8 985
(a'B)L. . . 77 1048 98-54

the measurements of the K-series and of the L-series extend beyond one
another, and for which, in addition to the K-doublet, at least one L-doublet

has been measured. The values of %" denoted by x have been formed

from Table 11 as the difference of the % values for Ka and Ka'; the values

of AFvi denoted by O have been taken from the second column of Table 15.

From Table 10 we see that the K-doublet (or more correctly the Li-
doublet of the K-series) also obeys av vy
the law of constant differences X *7R
of wave-lengths. In actual fact o d¥y
Aa’ — A, is constant throughout 40 N A
the whole series of elements and
is equal to about 4 or 5 X-units. / «

We conclude our present pro- . =
visional statements about the L- e
series and L-doublets with some 10—
historical notes. The law of ap- &%
proximately constant wave-length >2
differences was set up by the *° Fbo o 50
author as long ago as 1916,* and 10. 56.
was used to arrange into order the lines of the L-series. Further, it
furnishes a convenient auxiliary means of finding doublet lines that belong
together. Concerning its theoretical grounds we shall soon have some-
thing to say. The L-doublets (a'B), (¥8), (en), (¢{6) were already known
earlier as a result of the law of approximately constant differences of
wave-length and as a result of their exactly constant differences of
frequency for each element. The doublet (i), in the light of more
recent measurements, has here been added.

On the other hand, the doublet (¢'¢) was previously called (v¢),
owing to a false interpretation by the author. For it seemed, according
to the measurements then available, that there was the same difference
of wave-number between the lines x and ¢ as between ¢’ and ¢, and
hence this difference of wave-number was attributed to a difference of
level in the L-shell. The doublets (¢'¢) and (x'y) which were conse-
quently surmised to exist, were called A-doublets in contrast to the true

* Ann. d. Phys., 51, 125 (1916), cf., in particular, pp. 137 and 138, from which our
Fig. 52 has been taken.
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172 Chapter III. X-ray Spectra

L-doublets. This interpretation was also used in the previous edition of
this book. The incorrectness of this view was disclosed by measurements
of the L-absorption limits carried out by G. Hertz (cf. the next section),
and was confirmed by A. Smekal * and D. Costert in the improved
measurements now available. The two latter physicists set up in-
dependently of one another the scheme for the interpretation of the
L-lines which we adopted (with unimportant changes) in our Table 12.

‘We here parenthetically add a few remarks about the Réntgen spectra
of isotopic elements. Siegbahn and Stenstrom have photographed the
L-series of ordinary lead (at. wgt. 207-2) and of radium lead (RaG,
at. wgt. 206) under identical conditions; they found not the slightest
difference in the wave-lengths of their L-lines.] We had already
anticipated this result in Chapter II, § 7 (cf. p. 102) and had concluded
that isotopic elements agree in the arrangement of their central electrons.
For the same two elements it has also been shown that their visible and
ultra-violet spectra are almost exactly identical. From this and from the
circumstance that they cannot be separated chemically, we concluded :
isotopic elements are also alike in the arrangement of their peripheral
electrons.

On the other hand Rutherford and Andrade § have taken photographs
of Ra spectra, which they have ascribed to proper or natural y-radiation,
that is to spontaneous ROntgen radiation in contrast with the Rontgen
radiation that is excited by impinging cathode rays, such as we just
now mentioned in the case of RaG. But we may conjecture that here
we have essentially the same case as in the previous section, namely, that
we are dealing with secondary X-rays that are excited by the S-radiation
of Ra. Photographs of the softer part of the spectrum produced wave-
lengths which partly coincided with the L-lines of Pb, and partly with
those of Bi. This is explained by the theory of isotopes as follows: Ra
contains among other things two of its descendants, RaB and RaC, which
are isotopes of Pb and Bi respectively ; they, therefore, lead to L-spectra
that are identical with those of Pb and Bi. In the harder part of the
spectrum, on the other hand, Rutherford and Andrade have found wave-
lengths that seem to be identical with wave-lengths (hitherto not directly
measured, but only obtainable by extrapolation) of the K-series of Pb and
Bi. This K-radiation, also, is presumably of a secondary nature. Proper
primary y-radiation is probably essentially harder. Interpreted in this
sense, the experiments of Rutherford and Andrade seem to bring nothing
new, or nothing that goes beyond the results of the experiments of
Seigbahn and Stenstrém; but like the latter, they represent a beautiful
confirmation of the theory of isotopes. :

* Zeitschr. f. Phys., 5. 91 and 121 (1921). + Ibid., 5, 139 (1921).

+ Physikal. Zeitschr., 18, 547 (1917). It is of course not out of the question that
if the measurements are carried out to an extreme degree of refinement, a very small

difference may become manifest, as in the visible region (cf. p. 102, footnote 1).
§ Phil. Mag., 28, 263 (1914).
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TasLe 17
Stenstrom ‘ Origin Intensity
{ a’ l Ny,—> M, 1
a N, =M, 8
8 [ N, —=>M, 3
v | N> M, 1
3 } 0 —>M, 1
€ | N, =M, 1

We now come to the third, the softest, series of Rontgen spectra,
namely, the M-series discovered by Siegbahn.* Table 17 is to serve as
a key to the terminology, origin, and so forth.

TaBLE 18
Wave-lengths of the M-series in X-units (Stemtrdm)
VA a’ a B v 8 €
66 Ds . — 9509 9313 — — —
- 67 Ho . — 9123 . 8930 — — —
{ 68 Er — 8770 8561 —_ — —_
70 Ad — 8128 7895 — — —
71 Cp — 7818 7587 — —_— —
78 Ta — 7287 70115 — — —
74 W — 6973 6745 6091 — —_
76 Os —_ 6477 6250 — — —
7 I — 6245 6029 — — —
78 Pt . . . — 6028 5812 .| 5811 — —
79 Au . . . — 5819 5601 5115 — —
81 T1 . . .| 5461 5449-9 5288-4 4802 — —
' 82 Pb 5287 52751 50648 46637 — —
| 83 Bi . . .| 5119 5107-2 4899-8 45238 — —
90 Th . . .| 4143 4129-15 | 39333 86565 3127 8006
92U . . .| 3916 8901-4 87083 84714 2943 2818
!

In Tables 18 and 19 the wave-lengths A and the wave-numbers v = ;

divided by the Rydberg frequency R = 109737 are tabulated. The
measurements for the elements Tl to U have been carried out more
correctly (felspar was the analyser) than those for Ds to Au (for which
a crystal of gypsum was used).

The discovery of associated doublet lines is not quite definite owing
to the somewhat incomplete nature of the measurements. As we have
indicated in Table 17 by brackets and have explained by giving the origin
of the lines, (a'B) and (ye) are to be regarded as M-doublets, («'8) in the
rigorous sense and (ye) in the slightly broader sense, analogously to the
(aB) and (y8) lines of the L-series; (a'a) is to be regarded as an N-doublet.

* Siegbahn, Verh. d. Deutschen Physikal. Ges., 18, 278 (1916); Stenstrom, Ann.
d. Phys., §7, 347 (1918), and his Dissertation, Lund, 1979,
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174 Chapter III. X-ray Spectra

It is true that neither of these doublets is known for more than five
elements. On account of the small numerical difference of the energy-
levels in the N-shell, however, the line-pair of3, which represents no real
doublet, differs only imperceptibly from o«’8. Consequently our criterion
of almost constant wave-length differences A\, by which we associated
the doublet lines in the L-series, holds here approximately as well for the
line-pair (ef) as for («’B); of this we may convince ourselves in Table 18.
In the case of those elements in which o' is not separate from a, (o) is
to be regarded as a doublet in the same sense as (Ae)y, (aB)., and (y3),.

TaBLE 19
v|R-valuss of the M-series (Stenstriim)

Z a’ a B ¥ 3 €
66 Ds . — 95-83 97-85 — —_ —
67 Ho . — 99:88 1020 — — —
68 Er — 103-9 106-4 — — —
70 Ad — 112-2 1154 — —_ —
71 Cp — 1166 120-1 — — —
73 Ta — 1259 1800 — — —
74 W — 180°7 . 135-1 1496 — —
76 Os — 1407 1458 — — —
77 Ir — 1459 151-1 — — —
78 Pt — 151-2 156-8 1716 — —
79 Au . . . — 1566 1627 178-2 — —
81 TI . . .| 1669 167-21 178-96 189-8 — —
82 Pb . . L1724 17275 17992 195-40 — —
83 Bi . . .1 1780 178-43 186-00 201-44 — —
90 Th . . .| 2200 220°70 231-68 249-22 291-4 303°1
920 . . .lo282-7 283-58 24575 26251 8096 3239

Towards clearing up the mutual relationships between the L- and the
M-series, the following remark of R. Swinne is of particular interest.*
The difference B’ — a in the M-series is equal to the difference a — o’ in the
L-series. Table 20 shows to what extent this equality holds; the numbers
Av
R
case of elements for which Ma' could not be measured separately, (a'83)y
is replaced by (af3)y.

We thus find the same relationship to hold between the M- and the L-
series as previously between the L- and :the K-series. Our nomenclature
has been chosen so that this relationship is brought into clear evidence.

Namely, (@B)y = (da),,
is fully analogous to
(@B = (@a)x

* Physikal. Zeitschr., 17, 485 (1916). Swinne here compares the doublets {(a'a)y,
and (aB)w. It was pointed out by the author in Zeitschr. f. Phys,, 1, 135 (1920), that
it is more accurate and more logical to replace (aB)y by (a'8)y.

again denote the —- values of the line-pairs written at the top. In the
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TaBLE 20
v‘ VA ('B)u | (a'a)L VA [ (a'B)n [ (a'a)y, |
. |
| | |
| 66Ds . . | 202 | 275 | T71Ir | o2 549
67Ho . . | 216 | 297 | 78 Pt 56 585 !
. 68Er . . | 26 | 815 | 79 Au 61 631
70Ad . . | 32 361 | s1m | 709 7-03
| 71cp . . | 85 | 877 | s2Pp . T61 | 755
| 78Ta . . | 41 | 440 | &8Bi . | 800 | B3¢
T4W | 44 | 460 | 90Th . | 1148 | 11-70
| 76 Os 51 47 | 92U 1292 | 1286
| |

We see the reason of this directly from Fig. 55. Here we have repre-
sented the two highest M-levels, M, and M, (we were able to suppress the
lower levels, M, M, and M,, which occured in Tables 12 and 17), just as
we have drawn only the two highest levels L, L, (omitting the lowest
level L,). Finally, the N-shell, too, is represented only by its two highest
levels N,, N,. If an electron sinks from one of these two N-levels into
the M-shell, giving rise to the emission of a line of the M-series, it may
stop at the M, -level or at the M,-level. In the latter case the emitted line
(Mp) is harder than that of the former case (Ma or Ma’). Thereby the
difference of wave-length of the lines Ma and Mp becomes nearly equal
to the difference of level of the energy-levels M, and M,, whilst the dif-
ference of wave-length of the lines Mo’ and M becomes exactly equal to
this difference of levels. We see that actually, in Table 17 and Fig. 55,
Ma' and Mg start out from the same initial level N,, and Ma and MB, on
the other hand, start out from the two somewhat different energy-levels
N, and N,. We may now again allow the electron to sink further from
M, or M, to L, whereby the line-pair (aa’) of the L-series is produced,
having the same doublet interval as that given by M;M,. At the same
time the same characteristic reversal of hardness and intensity occurs as
between the corresponding lines in the L- and the K-series: whereas in
the M-series the weaker line B lies on the “ hard’ side of a, in the L-series
the weaker line o' lies on the soft side of the principal line a.

We see that in spite of complicated and manifold conditions the
structure of atoms and its reflection in the structure of X-ray spectra is
marked by wonderful uniformity and logical consistency.

These general considerations may be concluded by some preliminary
remarks on the quantitative theory of the X-ray doublets, just as we closed
the preceding section by a preliminary remark of a quantitative nature,
namely, Moseley’s formula for Ka.

From the definition of wave-number
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there follows, for the doublet interval measured in wave-numbers,

Taking v as a mean wave-number for the two doublet lines, we write ,
Av = AN .2 . . . . . 1)

We next use the law that for each true doublet the difference of wave-
length AX of its members is constant, that is, independent of Z. For
example, if we set AA = a*, we get, by taking the fourth root,

Vav=adv. . . . . (9

By the last column of Table 15 the left side is a linear function of Z;
according to Moseley’s law the same is true of the right side, and, indeed,
not only for the line Ka but also for the other K-, L-, and M-lines.

So far our empirical data in Table 15, combined with Moseley’s law,
state no more,than the law of the approximate constancy of AA, which we
here used as our basis. But for the case of our L-doublets (a'8),.(¥9), ete.,
we may now insert numerical values in equation (2) on the ground of our
empirical Table 15. As already remarked in connexion with this table,
~Av/R increases by 0:043 for each increase of Z by one unit. Further-
more, from the last column of Table 15 we may derive that value of Z for
which Av would vanish, if we extrapolate the rectilinear law that holds for
greater Z's. In this way we get Z = 3'5. Consequently the equation
(2) may be rewritten in the form

\/%" —0043Z -35) . . . (3

If we raise both sides to the fourth power and, for the sake of convenience
multiply the numerator and the denominator by 2¢, we get

v M -5
%=5_3_-2}_0._(Z~3-5)4 Y
This law gives us a deep glimpse into the mechanics of the interior of
the atom. It points very definitely not only to the rules of the quantum
theory that reign in the interior of the atom (Chap. IV), but also to the
laws of the theory of relativity (Chap. VIII). Whereas the wave-numbers
themselves increase, according to Moseley, proportionally to the square of the
atomic number, the wave-length differences of the doublets depend on the
fourth power of the atomic number. This is true not only of the L-doublets,
as here derived, but also of all other regular doublets, for example, the
M-doublet (a'a) of the L-series or the similar doublet (a'B8) of the M-series.
In the latter case the denominator 24 is only to be replaced by 2. 34, and
the number 35 is to be replaced by a greater number which is to be
determined experimentally. The law that AA is nearly constant for all
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§ 7. Excitation and Absorption Limits 177

such doublets now follows directly from equation (1). Since AX is here
represented as the quotient of a bi-quadratic function by the square of a
quadratic function of Z, it becomes appreciably independent of Z for
greater values of Z.

In conclusion we must add a word about the troublesome question of
nomenclature. All terms used to describe physical quantities are arbitrary
and too narrow in view of the manifold character of Nature. Our
nomenclature, which is intended to be no more than an extension of
Moseley's, has the advantage of being systematic to a certain degree and
of allowing a fairly easy survey of details. But, for example, in the L-
series, it soon reaches the limit at which the Greek letters no longer
suffice, when new lines are observed, and would be demolished if lines
that have been observed earlier were to receive a new interpretation.
On the other hand, Siegbahn’s nomenclature has the undeniable advan-
tage that it has any number of indices at its disposal for the inclusion of
new lines, and also that the lines whose intensity is to be estimated, for
example, the a- (or the 8-, y-) group mostly occur on the same plate.
But it is a little difficult to remember and does not give an easy survey.

There is, however, one way of escape which the spectroscopy of the
visible region prescribes to us, a purely systematic method. The arbitrary
symbols with which Fraunhofer designated his lines are nowadays hardly
more in use, but rather we have had to make up our minds to designate
each line by its series relationships. For example, the D-line of Na is
represented by 1s — 2p (cf. Chap. VI). Corresponding to this we must
say in the Rontgen region, not Ko, L8, . . . but L > K, M, > L,, . ..
orK - L,L, - M,, ... These formule, consisting of two terms, so
to speak, are very little more cumbersome than the conventional ones and
are yet free from all arbitrariness. They certainly take for granted that
we have succeeded finally in interpreting the lines. Till this is attained
we shall have to help ourselves out, for experimental purposes, with
Siegbahn’s nomenclature, or, for theoretical considerations, with our
nomenclature of the Moseley type.

§ 7. Excitation and Absorption Limits, Regularities in the Absorption
Coefficient

In next passing from the line-spectrum of X-rays to the continuous
spectrum, we have once again to emphasise the fundamental fact that the
latter has a sharp limit or edge on the side of short-waves or high frequencies,
a fact for which classical electrodynamics could find no explanation and
which invokes the aid of the quantum theory. This limit, expressed in
wave-lengths by A, and in frequencies by vag, is determined by
the voltage V of the Rontgen tube, being independent of the material of
the anti-cathode, according to Einstein’s law (cf. p. 41):

he

ain

eV = hvypgy =

(1)

12
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178 Chapter III. X-ray Spectra

If we fix our attention on a definite v, then, as the voltage is made to
pass through a series of increasing values there is a value V., at which
this v appears for the first time although only with vanishing intensity;
v forms the short-wave limit corresponding to this V,,. As V increases
beyond this value, the intensity with which our v is represented in the
spectrum increases,—indeed, linearly. Hence if we observe the intensity
in a small region of wave-lengths, when the rays have been separated
spectrally (this measurement is probably best effected by the action of
the rays on an ionisation chamber), the excitation voltage V,,;, may be
sharply determined for each'v; by dividing the exciting voltage by its
corresponding v, we get at once the factor of proportionality given in (1),
and hence also, since ¢ is known, the value of the quantum of action A.
Everything seems to favour this as ma.king possible a precision determina-
tion of k, provided that the voltage remains constant and is well deﬁned
(this is attained by using a great battery of accumulators).

The following, Fig. 57, taken from Duane and Hunt,* shows how
Lonisation sharply the excitation voltage
Vinin may be determined by this
method of observation. The

voltages in kilovolts are plotted
as the abscisse, and the deflec-
tions of the electrometer, giving
the ionisation measured in the
spectrometer, are plotted as
ordinates. The curves may be
s ) called isochromates since each

24 26 28 30 32 34 35 38 40 Kilovolts one refers to a definite colour,
488 424 877 845 818 308 = a.10° and hence frequency v. At the
644 687 6:34 638 641 639 =h.10" foot of each of these ionisation

Fio. 57. curves, that is directly below
the intersections with the z-axis, we have written the corresponding wave-
lengths in X-units (10 - cms.) and also the value of the quantum of
action, h, calculated from these numbers, and expressed in erg-secs., cor-
responding to the dimensions: energy x time. More recent researches

by D. L. Webster,t Webster and Clark,} Blake and Duane, § and E.

Wagner, || in which the same method was used have considerably reduced

the uncertainty in the determination of & ; they lead to the values

h =653.10-%,
h=655.10-2
When we stated above that the limit or edge of the continuous spec-
trum was found to be independent of the material of the anti-cathode,

* Phys. Rev., 8, 166 (1915).

+ Proc. Nat. Acad 2, 90 (1916) ; Phys. Rev., 7, 599 (1916).

1 Proc. Nat. Acad., 3, 181 (1917). § hys Rev., 9, 568 ; 10, 93, 624 (1917).
| Aon. d. Phys., 57, 401 (1918) ; Physikal. Zeltschnit 21, 621 (19 20).
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§ 7. Excitation and Absorption Limits 179

we did not intend this to apply to the increase of intensity at the excita-
tion edge, or, indeed, to the intensity at all. The intensity, both the total
and the maximum, of the continuous or “ impulse " spectrum is observed *
to be proportional to the atomic number of the material of the anti-cathode,
and, for the rest, about proportional to the square of the excitation voltage
V. So far we have not succeeded in finding a theoretical explanation of
these interesting and important laws, that is, to link them up with our
present views of atomie structure.

Compared with the continuous spectrum of X-rays, what is now the
position of the line-spectrum, the * characteristic” spectrum? Does
equation (1) hold for this, too? We already know from § 4 that this
question is to be answered in the negative. There we spoke of the ez-
citation limit or edge of the K-lines, and we use this term to denote the
energy that the cathode rays must at least have in order to remove an
electron from the K-shell to the periphery of the atom, and thus to pre-
pare it for the emission of the K-series. In Fig. 48, this excitation limit
was represented for the K-series (K-limit) by an energy-level that is
higher than the energy-levels of K,, Kg, or even K,. It is equal to the
difference of level between the zero-level of the periphery of the atom and
the K-level. If, in accordance with the Av-law, we ascribe to it a
frequency vy, then the latter satisfies the inequality :

VK > vy > Vg > Va . . . . (2)

The ezcitation limit measured in this way as a frequency is thus the
sertes limit, to which the K-lines tend and at which they accumulate (of.
the dotted line in Fig. 58 above). This leads us to certain inferences.
Suppose that we allow the voltage or V applied to a cathode-ray tube to
be increased gradually up to the value eV, = hv,; we ask when the line
K., characteristic for the material of the anti-cathode of the tube is
emitted for the first time. In contradicton to (1) it is not emitted when
the voltage is V,. We allow the voltage to increase still further, to Vg;
again, neither the line Ky nor even K, is yet emitted. Rather we must
increase the voltage to the excitation limit e = kv or even further.
Then the lines K,, Kg, K, appear simultaneously. This was actually
confirmed by very careful experiments of Webster (loc. cit.). We follow
E. Wagner in calling the difference between vy and v, the Stokes lag of
the line K, and thus link up with Barkla’s term, “ fluorescent radiation,”
for the characteristic radiation. The Stokes lag of K is less than that of
K., and that of K, is vanishingly small. Stokes’ Rule of Fluorescence in
the visible region is confirmed without exception in the region of X-rays.
In the visible region, where conditions are less simple and less funda-
mental than in the Rontgen region, there occur occasionally apparent
exceptions to Stokes’ rule (but cf. p. 184).

The circumstances of the excitation of the L-series are still more

*C. T. Ulrey, Phys. Rev., 11, 401 (1918).
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180 Chapter III. X-ray Spectra

interesting. In Fig. 48 we drew the excitation limit for the lines a, ¥,

. of the L-series. In consideration of the necessary subdivision of
the L-level into three minor levels L;, L,, L; we must, to be accurate,
designate as the L-limit, the limit intended in Fig. 48. If we again
define a frequency v, corresponding to the energy-level L, then this will
be the series limit for the lines a, y, ¢, {, ¢ of the L-series (cf. the preceding
section, Table 12), thus

VL, Vv v > v > v . . . (3)

The second energy-level L, lies, as we saw, deeper than the energy-
level L, ; thelines B, 8, , 6, « that end in this level are harder than the doublet
lines a, y, ¢, {, c allocated to them. To excite these lines, it is necessary to lift
an electron from the level L, to the surface of the atom. The frequency
v, defined by the hy-relation now becomes the series limit of the second

set of doublet lines, and we find the inequality to hold :
VL, > Ve Vs > v > va > vy

Thus we have a doublet of excitation limits for the L-series. The fact
that the distance between these excitation limits v, — v, is, as we would
expect after what has gone before, equal, in the case of each element, to
the doublet Ay, studied in the preceding paragraph, will soon be cor-
roborated by the evidence of direct measurements.

Again we infer : to excite the La-line, the cathode-ray energy equiva-
lent to v, is not sufficient. Rather, it is necessary to go as far as the
voltage given by eV = kv, , when all the lines a, y, ¢, {, ¢ of the L-series will
appear simultaneously, but not yet the lines 8, 8, #, 6, x. To excite these,
the energy of the cathode rays must again increase il the second excitation
limit is reached. In the case of energies that lie between those of the first
and second excitation limits, only the softer line of each L-doublet is pro-
duced. Just as in the K-series the excitation limit vy coincides per-
ceptibly with the hardest K-line y, so in the L-series the limits v, and
v, coincide perceptibly with the lines { and 6 of the hardest doublets, as
is shown graphically in the lower part of Fig. 58.

But there is yet a third energy-level L,, below L,, at which the lines
¢¢’, xx¥ end. These lines do not at once appear when the second ex-
citation limit is passed. The voltage V has again to be increased to a
third excitation limit, given by the equation eV = hv, . It is only then
that the L-series is completely formed. And v, almost coincides with
the line Ly, and we get

Vi, vy v v S vg g

Exact foundations for all these assertions are given by extremely careful
measurements carried out by Webster and Clark *, Webster +, and Hoyt 3

* D, L. Webster and H. Clark, Proc. Nat. Acad., 3, 181 (1917).
+D. L. Webster, ibid., 6, 26 (1920). 1+ F. C. Hoyt, tbid., p. 639.
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§ 7. Excitation and Absorption Limits 181

for Pt and W. In the case of W, the three excitation limits, calcu-
lated from the frequencies of the lines {4 and y, are :

L,-limit . . .V = 102 kilovolts
Ly-limit . . . V=116 ,,
L,-limit . . . V=120

By adjusting the voltage to values in the vicinity of these, the appear-
ance or disappearance of the lines, or their change of intensity could be
observed, partly by photographic means, and partly by the ionisation
method. According to Hoyt, the following lines are certainly to be
allocated to the three limits thus :

L,-limit . . . edaylt
L,-limit . . . B8
L;-limit . . . Py

in full agreement with the scheme of the preceding section. In the case
of x, x', and « the final allocation is left open. A comparison of their
photographic intensities at 12:0 and 12-5 kilovolts seems to favour their
inclusion at present in L,. According to our scheme, x and x' should
actually belong to L;, but x which forms an L-doublet with :, must be
added to L,. For the same reason, we must count the line 6 as belonging
to L, ; in the case of W, it was too weak to be observed by Hoyt ; in that
of Pt it is Just exactly covered by x". Of course, experiments of this kind
are the surest means of arriving at an unambiguous conclusion about the
significance of the individual lines.

Earlier, the author, arguing from the supposed existence of an * A-
doublet” (cf. p. 171), had assumed that, besides the limits L;; and L, there
were two further limits A, and A, in the L-series, of which A, was sup-
posed almost to coincide with L, This assumption falls to the ground
with the “ A-doublet,” and is, in particular, refuted by Hoyt's measure-
ments.

Now what happens to the incident energy E of the cathode rays at
the excitation limits ? It is used to drive the K- or the L-electron to the
periphery of the atom and is therefore absorbed. What happens, on the
other hand, if we allow primary X-rays to fall on to the same material in
place of cathode rays? These too, if sufficiently hard, are able, as we
know, to excite the characteristic radiation of the matter of the anti-
cathode, in accordance with the general law of equivalence E = hv. But
then they must make available for the expulsion of the K- or the L-elec-
tron, the same amount of energy E as that furnished in the excitation by
cathode rays. The energy of the primary X-rays becomes reduced by
this amount when it passes through matter, in which it excites secondary
radiation.

That is : the excitation limits become marked in the continuous X-ray
spectrum as absorption limits.
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184 Chapter III. X-ray Spectra

the left, in the lower part of the figure, we come across several striking
sharply defined absorption edges that here (namely, in the scale of
wave-lengths) extend towards the left with decreasing darkening. What
do these absorption edges in the lower part of the figure denote, in view
of the fact that no absorbing medium intervenes? It has been ascer-
tained from indisputable and unambiguous experiments that they are
due to the photographic siver bromide layer. The intense: band on the
left is the K-absorption edge of Ag and it is repeated in the weak band
furthest to the right; the extended band between these is the K-absorp-
tion band of Br. Corresponding to its position in the natural system
(Br, Z = 35; Ag, Z = 47) the Br-band is softer than the Ag-band. The
former is entirely extinguished by the Al-sheet whereas the latter is not
absorbed either in the second order or in the first. Of course, actually,
the Ag-band reflected in the second order has the same wave-length as
that in the first order. This explains the circumstance, which at first
sight seems paradoxical, that the Br-band is weakened more in its
passage through the absorbing Al than the Ag-band of the second order,
which, according to its position in the figure, seems softer, but which is
in reality much harder. To conclude the description of this instructive
figure we have now only to mention that the photographic darkening is
dependent on the quantity of the absorbed energy. That is why the plate
becomes dark, particularly where the wave-lengths absorbed selectively
by the Ag or the Br meets it. The AgBr layer acts simultaneously
as an absorber and as an indication of the absorbed energy, and its
increased absorption is indicated by increased darkening. A bolometric
or an ionisation measurement of the radiation transmitted by the AgBr
layer would, on the other hand, indicate increased absorption by exhibit-
ing a lessening of the energy.

We now give figures of the absorption limits. The v/R values have
been placed alongside of the A-values, and in the case of the L-series the

values of the %" doublets are also shown. Table 21 gives the K-edges

or limits, Table 22 the L-edges.

A comparison of Tables 21 and 10 confirms that the K-limits lie hard
by the line Ky, and, indeed, in accordance with Stokes’ law they are dis-
placed a little towards the direction of shorter wave-lengths,* by about 4
per cent, as Duane and Stenstrom have proved for W by means of pre-
cision measurements.+ The same remark follows from a comparison
of Tables 22 and 13, with regard to the L-edges, and the lines L¢, L6,

* The opinion held by H. Fricke, Phys. Rev., 16, 202 (1920}, that the K-limit of
Mg is softer than the line K8 (K was not observed in this case) is contradicted by the
KB measurement of Hjalmar (given in our Table 10). In the L-series, Duane and
Patterson, Proc. Nat. Acad., 6, 508 (1920), have felt themselves obliged to register an
infringement of Stokes’ law in the case of tungsten. For the lines which we have
called (6 (cf. Table 13) this is, however, not so.

t Proc. Nat. Acad., §, 477 (1920).
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§ 7. Excitation and Absorption Limits 185

and Isy. But, further, a comparison with Table 15 shows that the ab-
sorption doublets of the Li-series coincide, within the limils of error, with the
emission doublets. The significance of this fact in the atomic model be-
comes particularly clear in the light of Fig. 55: the absorption doublet
is given as the difference in the energy-levels by the energy-step between
the L,- and the L,-level, in the same way as the emission doublet is
given as the depression in passing to the new energy-level.

TaBLE 21
Absorption Limils of the K-series

‘ Element Ain X-units| »/R Element Ain X-units| »/R
‘ 12Mg . . .| os112 | 9581l45Rh . . .| 5330 17097
13A . . .| 794700 | 11467|46 P4 . . .| 5075 |17956
[15P . . .| 57580 | 158-26|47 Ag . . .| 4850 |18789
lj16s . . .| 50123 | 18181|48Cd . . .| 4632 |19673
17C1 . . .| 48844 | 2078449 In . . .| 4434 [20552
|18A . . .| 88657 | 23573|508n . . .| 4242 [21482
C19K . . .| 34345 | 265831518b . . .| 4065 22417
|20Ca . . .| 80633 | 297-48|52Te . . .| 3896 |23390
21S . . .| o517 | 83117]|53 3 .. .| 8137 |24385
le2Ti . . 24937 | 86548|55Cs . . .| 3441 |2646-0
23V . . .| 22653 | 402.27|56 Ba . . .| 8307 |2755'6
| 24Cr . . .| 20675 | 44141457 La . . .| 8188 |9858+4
25Mn . . .| 18892 | 482:86]58Ce . . .| 8068 |[2970-2
26 Fe . . .| 17896 | se384f59Pr . . .| 2946 |3093
'27Co . . .| 16018 | 56890J60 Na . . .| 2885 |3214
28 Ni . . .| 14890 | 612:00[62Sm . . .| 2686 |8457
2906 . . .| 18785 | 661:06]63 Bu . . .| 2543 |3584
'8 Zn . . .| 12063 | 702098]64Ga . . .! 2456 [8710
] 31 Ga . . .| 11902 | 7656466 Ds . . .| 2294 |8972
32Ge . . .| 11146 | 81757|67 Ho . . .' 22144 [4116
83As . . .| 10435 | 873:28}7T4 W . . .| 178:06 |5117-8
348 . . . 9790 | 98082] 78 Pt . . .| 1581 |5764
3B . . . 9179 | 99278| 79 Au . . .| 1534 |5941
3R . . . 8143 (11191 |80 Hg . . .| 1491 |6112
lsgsr . . . 7696 |1184'1 |81 TI . . .| 1448 |6293
|9y . . . 7255 |1256:1 [82Pb . . .| 1410 |6463
0Zr . . . 687-2 (18261 |88 Bi . . . 1372 [6642
41 Nb . . . . 650-3 [14018 |90 Th . . .| 1131 |8057
|42 M0 . . . 6180 |14745 o2 U . . .. 1075 |8477
l‘ 44 Ru . . . 558-4 | 16819 |

Observers: Fricke, Phys. Rev., 16, 202 (1920) (Elements 12 Mg to 24 Cr). Duane
and Kang-Fu-Hu, $bid., 14, 516 (1919) (Elements 25 Mn to 58 Ce). Siegbahn and
Jonsson, Phys, Zeitschr., 20, 251 (1919) (Elements 59 Pr to 67 Ho). Duane
and Stenstrom, Proc. Nat., Acad., 6, 477 (1920) (74 W). Duane, Fricke and
Stenstrom, ibid., 6, 607 (1920) (Elements 78 Pt to 92 U).

It is to be regarded as an outstanding achievement of science that
also the M-absorption limits have been fixed completely at least in the
case of the heaviest elements. In the cases of U and Th, Stenstrom
found three, and Coster five different limits, that is just as many as we
found it necessary to assume in the scheme of L-lines of emission to ex-
plain their existerce. The three softest limits were observed by Coster
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186 Chapter III. X-ray Spectra

TaBLe 22
Absorption Limils of the L-series

Wave-lengths yalues of »/R
Element — el s = - ‘;{
L, Le Ly Iy f L, L,

‘ 55 Cs 2459 2299 2157 8706 396-4 422-5 258
56 Ba 2348 2194 20683 3881 4158 4417 27-2
57 La 2250 2098 1971 4050 434-4 4623 294
58 Ce 2158 2007 1887 422-3 4540 4829 317
5) Pr 2071 1922 1808 4400 474°1 5040 841
60 Nd 1992 1842 1736 4575 4947 5249 37-2
74 W 12136 | 10726 1024 750-88 849-59 889-9 9871

78 Pt 10705 9821 8885 85126 97765 | 10256 126-39
79 Au 10383 899-8 860°6 87765 | 1018-2 1058-9 1856
. 80 Hg 10067 8700 8335 905:20 | 1047-4 1093-3 142-2

81 Tl 977°6 8415 805-5 932-15 | 1082-9 11381-8 150-7
82 Pb 949-7 8188 780-3 95953 | 11205 1167-8 160-9
83 Bi 9216 787-2 7582 98879 | 11576 1209-9 168-8
90 Th 7596 6286 604-4 11997 1449-7 1507-7 2500
192U 7214 591-8 5685 12632 | 1539-8 1602-9 276-6

Observers: G. Hertz, Zeitschr. f. Phys., 8, 19 (1920) (Z = 55 to 60). W. Duane and
R. A. Patterson, Proc. Nat. Acad., 8, 509 (1920) (Z = 74 to 92).

for Bi, too. The orderly sequence (cf. also Chap. VIII, § 5) in the num-
ber of limits or energy-steps, namely, K1, L3, M5, N7, is worthy of
notice. The last number is used as a theoretical postulate for founding
Table 12, but for the present there seems little chance of verifying it ex-
perimentally. As a matter of fact, even in the case of the absorption
limits of the M-geries the experimental difficulties are extraordinarily
great. Not only is it necessary to use a vacuum spectrograph, but it is
also necessary to prepare the absorbing metallic salts in extremely small
quantities, for example, by soaking tissue paper in them. The result of
the measurements is given by Table 23, which, following Coster, we ex-
press in wave numbers v/R.

TABLE 23
—— 1 ‘ —
LM M, M, ’ M, | Mg
"83 Bi . . | 19136 199-44 ‘ 233-9 — —
90 Th . . } 24490 25655 | 297-99 8544 | 3816 | y/R-values
92 U 1718 | 3821 | 4089

26103 27399 | 3

In placing the excitation and the absorption limits after the emission
lines we have simply followed the course of the historical development.
From the strictly systematic standpoint, however, we should have
reversed the order, as is actually and rightly done in a report by
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§ 7. Excitation and Absorption Limits 187

W. Duane on Rontgen spectra.* The behaviour of the atom as regards
energy expresses itself most clearly and most simply in the existence
of the absorption limits. They represent directly the portions of energy,
by the manifold combinations of which alone the emission lines are
able to be produced. Compared with the former, the latter are compli-
cated expressions of the energetic structure of the atom.

The relation between absorption limits and emission lines in the
X-ray region is the same as that between the *terms” (cf. Chap. VI,
§ 1) and the wave-numbers of the lines in the visible region. The object
of spectroscopy s to determine the atomic states and their emergy values.
These are represented directly by the series terms. The observation of
spectral lines is merely a means of arriving at the terms. Only when the
spectral lines have been developed in series, and have been resolved into
terms, may the object of spectroscopy be said to have been attained.

The laws of selection according to which the energy-steps of the atom
conspire together to produce emission lines of Rontgen spectra will not
be given before Chapter VIII. More involved theoretical steps are
necessary before they can be made clear. Only then, too, shall we be in
a position to prove the correctness of our table of the methods of origin
by which the lines of the K-, Li-, and M-series are produced. Each datum
of the table implies a quite definite numerical statement about a relation-
ship between the energy-quanta or, what amounts to the same, the
wave-numbers of an emission line and of two absorption limits. For
example, when we denote the origin of La by the symbol M, — L,, we
assert that the following equation holds exactly between the wave-number
v of La and the wave-numbers vy, , vy of the limits L;, M, :

vE, - vy . . . . (2)
for which we may more conveniently write
v=L, - M. . . . . 3)

It is to be remarked that, in the case of the K-series in Table 9, the
origins of KB and Ky were indicated only generally by the statements
M — K, N = K, and no further details were given as to which M- or N-
level here comes into consideration. Since rather subtle questions arise
in dealing with the origin of KB in particular, which we shall not be
able to treat before the last chapter (under the heading * Defective
Combinations ), we shall wait till then before adding the details that are
still wanting for the exact definition of K8 and Ka.

When the origin of all the lines is known, we shall be able to replace
the tabulation of the lines by a mere tabulation of the limits together
with the rules of combination that correspond to the origin of the line in
question. Thus, in principle, the tables of this paragraph may replace
those of the preceding paragraph. Analogous conditions hold in the

* Bulletin of the National Research Council, 1, 383 (1920).
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visible region. Whereas earlier reference books used to contain detailed
tables of the wave-lengths, but could add no resolution into terms, the
tables of, for example, Dunz (cf. Chap. IV, § 2) furnish, in addition to
the wave-lengths, the values of the terms which are of most interest to
us, and which are of the greatest physical importance. In future, indeed,
it will be sufficient to know the terms alone, as long as the mode of
origin of the lines in question, that is their resolution into terms, is firmly
established. We actually put this point of view into practice for the
X-rays in Chapter VIII, § 6, under the heading ‘ Table of Term Values.”

Hitherto we have dealt only with the position of the absorption limits.
Concerning the amount of the absorption we mentioned merely its general
decrease as the wave-length decreased and its sudden increase in pass-
ing the absorption edge. The amount of the absorption is measured
numerically by the absorption coefficient 4. This is defined by the state-
ment that for homogeneous radiation the relative decrease of intensity in
the passage through a layer of depth d is e-#4. From the absorption
coeficient u, we pass on to the {rue absorption coefficient i in which the
loss due to the coefficient of scattering s (cf. Chap. I, p. 31) has been
subtracted ; and from this again, if we divide it by the number of atoms
per cubic centimeter, to the true absorption coefficient per atom, which we
shall call f,. According to calculations by R. Glocker,* the way in
which the latter depends on the wave-length A of the absorbed radiation
and on the atomic number of the absorbing element is represented for
the neighbourhood of the K-absorption limit by the formule (A being
measured in cms.):

- 92:8.10-6 Z#+2 228 for A> A 4
Par = 1120.10-6 2372 A28 for A <Ay SRS

We arrive at this formula if we plot the logarithms of the measured
values of the absorption coefficients as ordinates, and the logarithms of
the wave-lengths or the atomic numbers, respectively, as abscisse. The
points so obtained lie along segments of straight lines, from the position
of which the factors 22:8 and 1120, and from the inclinations of which
the exponents 2'8, 4-28, and 3:72 are determined. The uncertainty of
the exponent 28 of A makes it fluctuate between 2'5 and 3-0,t according
to experiment. The very unconvincing fractional form of the exponent
shows that we are dealing only with an empirical formula and that the
proper theory of the process of absorption is still wanting.

In this way we get for the dependence of log u on log A the character-
istic picture of Fig. 60. Suppose we are dealing, for example, with Ag,
at first in the vicinity of the K-absorption edge, Ax = 485 X-units. If

* Physikal. Zeitschr., 19, 66 (1918); the formula given above for the atomic
absorption coefficient was kindly furnished by Mr. Glocker for the purposes of this
mof IIIT'tor extremely hard wave-lengths far below the absorption limit, measurements

by C. W. Hewlett, Phys. Rev., 17, 284 (1921), indicate that i is proportional to A®
Cf. in this connexion Note 2 at the end of the book.
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§ 7. Lxcitation and Absorption Limits 189

we start from the less hard rays (A > A, at the right end of the continuous
line in the figure), log u decreases uniformly as log A decreases, as far as
A = A¢. At the latter point, on account of the excitation of the character-
istic radiation of Ag, increased absorption begins; the absorption co-
efficient suddenly jumps up, and, indeed, to a value seven times as great
as that before the jump; to this there corresponds in the logarithmic
representation a jump of the amount log 7 = 0-84. After the jump the
uniform decrease of the absorption recommences as the absorbed radiation
increases in hardness; the logarithmic value of the decrease as before

\log . 474
R ‘1 _.} "_.-
i
I
K L
7B a viiypg a
| . | log 2
) X Al < o8 07,
4 B, A=B, A
Fic. 60.

the jump, being again determined by the exponent 2-8 of X in equation
(2). If, on the other hand, we go towards the right into the dotted region
(which is not corroborated by measurements in the case of Ag), we arrive
at the L-absorption limits. The course is here, if we judge for instance
from the example of Au, similar to that for the K-absorption limit : there
are sudden jumps, the graph having a parallel course before and after the
jump. In the figure three such jumps, of decreasing intensity, have been
inserted, corresponding to the three absorption limits L, L, L,.
Concerning the rise of the absorption at the limit in question, it is not
quite sharp and sudden as was previously believed and
as it appears in Fig. 60. Rather, the limit has a
certain structure. Stenstrom showed this for the
M-limits, G. Hertz for the L-limits, and Fricke for
the K-limits of the lightest elements. Fig. 61 shows
the K-limit of sulphur, according to H. Fricke,* as a
photometric record of the darkening of the plate. Great
values of the ordinates denote good transmission, that is,
little darkening of the plate measured photometrically and corresponding
strong absorption in the absorption film placed in front of the plate. The
photograph for the case of sulphur shows a precipitous but nevertheless
steady rise of the absorption between & and K. The distance kK amounts
to about 5 X-units and is a measure, so to speak, of the breadth of the
K-edge. But the two absorption maxima behind K, called A and B in
the figure, are still more remarkable. (The small zig-zags are due

kK AB
FiG. 61.

* Phys. Rev., 16, 202 (1920).
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190 Chapter III. X-ray Spectra

to the granules of the photographic plate.) In the photographs the inter-
vening minima appear as comparatively sharp lines of brightness.

Kossel * accounts for the successive maxima as follows. The main
limit K corresponds to the energy that is necessary to transport an electron
from the K-shell to the periphery of the atom, and the succeeding maxima
A and B correspond to the transitions of a “ K-electron " to certain virtual
orbits, characterised by certain quantum conditions, which lie outside the
atom. The amounts of energy necessary for this are, of course, greater
than that corresponding to the true K-limit. The maxima A, B, . .
therefore lie on the side of greater vibration numbers. On Kossel's view
it follows that the intervals separating these maxima from each other and
from K, when measured in wave-numbers, must be of the order of magni-
tude of the Rydberg constant R, and this is confirmed by the figure.
Further, it follows that the phenomenon of a band-structure is accessible
to observation only in the case of very soft bands, that is, for the K-bands,
only in the case of the lightest elements. In the absorption edges in the
harder region, the successive maxima, when measured in wave-lengths,
crowd together.

This leads us to a fundamental question. Why is it that the visible
spectral lines may be observed both in emission and in absorption, but
the Rontgen rays occur only as emission lines? The ground of this is,
according to Kossel again, to be sought in the difference between the inner
regions of the atom and the outer regions. In the interior the shells (the
possible “ quantum orbits ’) are occupied by electrons and an electron that
is ejected out of the interior finds no vacant orbit and must therefore
escape to, at least, the periphery of the atom. In the outer regions of the
atom, however, the * quantum paths’ of the electrons are free; they are
virtual not real electronic orbits. When excited, the electron that is re-
moved out of its natural orbit can pass over into any of these virtual
orbits. HEach such transition corresponds to a definite acquisition of
energy and hence, according to the Av-law, to the absorption of a definite
spectral line. In the Rontgen region, however, absorption lines occur
only as secondary phenomena accompanying the absorption edges in
transitions that stretch beyond the periphery of the atom into the outer
region of the atom unoccupied by electrons.

‘Whereas, in Fig. 60, Z was kept fixed and A was varied, the depend-
ence of the absorption coefficient on Z is obtained from a logarithmic
graphical representation in which A is kept fixed and Z is varied. Here
too the course is along straight lines. According to investigations by
Bragg and Peirce t the steepness of the descent is measured by the ex-
ponent 4 of Z, and whereas, according to calculations of Glocker, the ex-
ponent is 4'28 or 3-72 according as A > Ai or A <C A respectively. (It is
interesting to note that the two latter numbers differ by the same amount

* Zeitschr. f. Phys., 1, 124 (1920). + Phil. Mag., 28, 608 (1914).
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from 4.) Glocker’s determination, which is founded on more compre-
hensive material than that of Bragg and Peirce, is without doubt the safer of
the two. The fact that the exponents of Z cannot be the same for A > A
as for A <A already follows from the circumstance that the absorption
jump measured by the ratio of the &'s before and after the jump diminishes
systematically as Z increases, whereas if the exponents were equal, as
given by Bragg and Peirce, it would be independent of Z. It is by no
means necessary that the absorbing substance be present in the form of
an element. The absorption of Rontgen rays is, like their emission (cf.
p- 148), an additive property of the atoms composing the substance.

Finally, we shall make a little digression into the region of medical
Réntgen photographs. These are, as we know, whether received on a
fluorescent screen or on the photographic plate, shadow pictures. They
are thus concerned only with the transmissive or the absorptive power of
the object through which the rays pass. The human body is essentially
composed of the elements H, C, N, O, P, Ca (for which Z =1, 6, 7, 8,
15, 20). Now the atomic absorption increases, as we saw, approximately
in proportion to the fourth power of the atomic number, and the absorp-
tion of a compound, of a mixture or of an aqueous solution is composed
of the additive absorptions of its constituents. Thus to know the absorp-
tion of bone-substance Cag(PO,);, we have only to superpose the absorp-
tions of Ca, P, and O, whereby each is to be counted the number of times
it occurs in the formula (thus, 3, 3, and 8), and to find the relative absorp-
tion of the bones with respect to the surrounding tissues, we have to
compare them with the absorptions of H,0, which is easily the prepon-
derant constituent of the tissues. In this way we get:

3.9204 .15¢ 4+ 8. 8% 4
204 + 2.15% + =3(g> +2(1—5>4+8.

2.8¢ 8

As we see from this the amount for Ca considerably outweighs even that
for P; the fluorescent screen counts, so to speak, only the Ca-atoms.
But if a lead bullet (Pb, Z = 82) is lodged in the bone, its absorption ex-
ceeds that of the bone to an extraordinary degree. The excellent contrast
effect produced by a solution of bismuth that has been introduced into the
stomach or the intestine is due to this; for its atomic number is 83. The
concentration of the bismuth solution need not even be high; on account
of the ten times higher atomic number of bismuth compared with
oxygen, & Bi-atom acts about as strongly as 10,000 O-atoms and 1 grm.
of Bi acts about as strongly as 1 kilogrm. of water. The same explanation
holds for the surprisingly strong absorptive action of iodine preparations
that are photographed, for example, as iodoform in the bandages; for
iodine has the atomic number 53.

But the dependence of the absorption on the wave-length and its jump
at the absorption edge also comes into account for the medical use of
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192 Chapter III. X-ray Spectra

Rontgen rays. For it is on this fact that one of the commonest hardness-
gauges, that of Wehnelt and the attached Wehnelt scale is founded (or
Benoist’s hardness-gauge, which is based on the same prineciple). Its
construction is familiar: an aluminium wedge is placed alongside a silver
plate of uniform thickness. We read off that position of the aluminium
wedge at which it absorbs just as strongly as the silver plate, so that
equal brightness is caused in the fluorescent screen. Whereas Al absorbs
all rays regularly—for the K-edge of Al has such a soft wave-length that
it does not come into question practically—the Ag absorbs the harder
rays for which A <485 X-units selectively and absorbs only the softer
rays regularly. Therefore, in the transition from soft to harder rays, the
point of equal brightness moves along the scale in the direction of the
thicker end of the Al-wedge, as then the Ag-absorption begins for a greater
part of the mixed rays and so the same thickness of silver becomes equiv-
alent to a greater thickness of the aluminium wedge.

This may suffice to show that in the medical application of X-rays
the more refined results of physical research, in particular those concern-
ing the absorption laws, come into account.
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CHAPTER 1V
THE HYDROGEN SPECTRUM

§ 1. Introduction to the Theory of Quanta. Oscillators and Rotators

F we wish to penetrate further into the nature of the theory of
Iquanta, we must not restrict ourselves to the special case of

vibrational energy, which we treated alone in Chapter I, §6.
This case takes precedence historically; it led Planck to formulate from
heat radiation a definition of his quantum of action 4. The simple
oscillator was used by Planck in a certain sense as a theoretical resonator
to heat radiation; by means of it he developed his hypothesis of energy-
quanta (see p. 37). This hypothesis is the foundation of the photo-electric
law of Einstein and also of its extension as Bohr's hypothesis concerning
emitted and absorbed energy.

Adopting a more general standpoint we shall consider instead of a
special Planck oscillator any arbitrary mechanical system whatsoever, or,
for the present, a little more specially, any arbitrary moving point-mass,
whereby it matters little whether we assume it to be charged (an electron)
or not.

We find it expedient to begin by enunciating the form that Newton
gave the mechanical laws in his Principia, in particular his Definitio 1T
and Lex II (Definitio I defines the conception of mass; Lexr I is the
law of inertia).

Definitio IT: Quantitas motus est mensura ejusdem, orta ex velocitate
et quantitate materiae conjunctim.

“The momentum (amount of motion) is the product of the mass and
the velocity.”

Lex IT: Mutationem motus proportionalem esse vi motrici impressae
et fieri secundum lineam rectam, qua vis illa imprimitur.

“The change in the momentum (amount of motion) is proportional to
the impressed force and takes place in the direction in which that force
acts.”

In place of amount of motion we say momentum or impulse; we
denote the impulse by p, and hence by Definitio IT we have:

P =mv . . . . @

As usual, we designate the position of the point by rectilinear co-ordinates
z, y, 2. For the sake of generalisation later, we shall, however, use,
13 193
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194 Chapter 1V. The Hydrogen Spectrum

instead of different letters, different suffixes attached to the same letter
thus: ¢, = z, ¢, = 9, ¢; = 2. The velocity is then given in magnitude
and direction by

q,‘(where == d_da:, QG =1, etc.>

and if p,, p,, p; are the corresponding components of the momentum or
impulse then, by (1),
P = M4, . . . . . (2
The fact that the dynamical triplet of impulse co-ordinates occurs
conjointly with the geometrical triplet of the co-ordinates of position is of
great importance to us. Furthermore, the above formulation of the law
of motion, Newton’s Lex II, is of particular importance to us, especially
with regard to the foundation of the theory of relativity (cf. Chap. VIII).
It is wrong to speak of Newton’s “ Law of Acceleration.” It ¢t not the
kinematic quantity acceleration* but the dynamic quantity change of
momentum that is regulated by this law. In this sense we write down
Lex II for each co-ordinate direction (¢ = 1, 2, 3) separately :

3)

In (3) we assume that the force K is derivable from a potential energy
Epee (function of ¢,). The kinetic energy is:

Buin= g (3 + g3 +§3) = DA D
by (2). We call the total energy, considered as a function of g, and p,,
Hamilton’s function H. We have:

DH - DEpnl DH _ a:Ekin — Pt

H ’ =E in + E)o, N ) <
(.2) = B e 0 g M WP m

Consequently we may write the fundamental equations (2) and (3) in the
form:
do. 3 dp_ O @
dt  dp., dt 3
This Hamaltonian or canonical form of the equations of motion is
remarkable not only on account of its symmetry but also because it
remains preserved if any arbitrary new co-ordinates are introduced (cf.
Note 4) and because it holds not only for an individual point-mass but

* Of course, when the mass is constant = mg§ = mass x acceleration. But in
general the mass is not constant; in the theory of relativity it is not even constant for
a single particle of mass; and in ordinary mechanics it is not constant for a rigid
body, for then the rdle played by mass is taken over by the moment of inertia, and
this varies during motion. In these cases Newton’s assertion about change of
momentum remains valid, but not the statement about mass x acceleration which has
wrongly become prevalent.
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§ 1. Introduction to the Theory of Quanta 195

also for any arbitrary mechanical system. For arbitrary co-ordinates
and systems * the impulse p is defined by :

B
== 5
YA )

in which the kinetic energy is o be regarded as expressed as a function of
the ¢'s and the 3,’s. TFor the individual mass-point, (5) clearly becomes
identical with (2) if rectangular co-ordinates are used.

The values of the co-ordinates g and p determine the corresponding
state or phase (in Gibbs’ terminology) of the system. To get a vivid
picture of the state of motion in terms of the position (g) and the velocity
or impulse (p), respectively, we imagine, in the case of an individual
point-mass (which has three degrees of freedom), its three position co-
ordinates ¢ and its three impulse co-ordinates p drawn as perpendicular
co-ordinate axes in a space of six dimensions, so that each point of this
space represents a phase of our point-mass. In a system having f degrees
of freedom this phase-space is of 2f dimensions.

Fortunately, we need not frighten off the reader by discussing our
problems in multi-dimensional space. We may rather for the present
restrict ourselves to systems of one degree of freedom, for which the
general phase-space resolves into a single phase-plane. Later, too, when
we shall have to consider systems of several degrees of freedom, we shall
be able to arrange so that we have only to discuss two-dimensional
sections of the phase-space, that is, again, certain simple phase-planes.

We draw q and p as rectangular co-ordinates in the phase-plane of our
system. In this plane we construct the phase-paths or orbits, that is, the
sequence of those graph points that correspond to the successive states of
motion of the system. Choosing any point as an initial state we may
plot the phase-paths and densely cover the whole of the phase-plane.
The characteristic feature of the quantum theory, however, is that it
selects a discrete family of phase-orbits from the infinite manifold of
phase-orbits. To define these selected orbits, we shall first consider the
area of the phase-plane included between two arbitrary phase-orbits: we
shall call such an area a phase-area. We then draw our family of orbits
so that the phase-area between two neighbouring orbits is always equal
to the quantum of action %. In this way h acquires the significance of
the elementary region (or element) of the phase-area. We shall regard this
significance as constituting the true definition of Planck’s quantum of
action h. We shall next illustrate these rather abstract ideas by means
of two very important special cases, that of the oscillator and that of the
rotator.

We give the name linear oscillator to a point-mass m that is bound
elastically to its position of rest and that can be moved to either side of

Pr

* We shall not discuss here how the definition is to be generalised for the case
when the acting forces have no potential.
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196 Chapter 1IV. The Hydrogen Spectrum

this central position only in a direction z = g or its reverse, whereby it
experiences a restoring force but no damping resistance. The oscillator
is the simplest instance of a centre of vibration such as is assumed in
Optics in the form of a * quasi-elastically bound electron.” We use the
more accurate term “harmonic oscillator” if we wish to emphasise that
the latter is capable only of a definite characteristic or natural vibration
on account of its elastic attachment. Let the vibration number or
frequency of the oscillator (number of its free vibrations per unit of
time) be v. The vibration phenomenon is then expressed by :

z=q=asn2mwt . . . . (6)

In this case the impulse p simply becomes equal to mg (according to
(2), and in agreement with (5)). Hence

p = 2mvma cos 2mvt . . . . )

By eliminating ¢ from (6) and (7) we get as our phase-orbit an ellipse in
the p-g-plane having the equation :

£+§=1. )
in which the minor axis b is defined by
b = 2mvma . . . . . (9)
The area of the ellipse is then :
abr = 2rhvma®.

oo w
We next assert that this same quantity is also equal to —~, where W

denotes the energy, which remains constant during the vibration. If, for
example, we calculate W at the time ¢ = 0, the potential energy is zero,
and the kinetic energy is

Se@myE=W . . . . (0
and hence, actually,
W :
abr = — . . . . . (11)

14

By altering W we get in the phase-plane the phase-orbits as a family
. . . . b
of similar ellipses since, by (9), the ratio a has the constant value 2mvm.

‘We have now to make the selected ellipses of this family succeed one
another in such a way that the elliptic zones have each the same area k.
Then & is at the same time (see Fig. 62) the area of the first (or inner-
most) ellipse ; the second ellipse has thus the area 2k, the #** the area nh.
If W, is the energy of the oscillator, when it describes the n* ellipse as
its orbit, then according to (11)

W,=nlw . . . . . (12)
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§ 1. Introduction to the Theory of Quanta 197

Whereas in the classical theory all points of the phase-plane are of
equal value and represent possible states of the oscillator, the states for
which the graph points lie on one of the ellipses of our family are dis-
tinguished. They represent the stationary states of the oscillator, that is,
such states as the oscillator may pass through without cessation and
without loss of energy, in other words, in the case of a charged point-
mass, without radiating energy. Equation (12) shows that in these orbits
the energy is a whole multiple of the elementary quantum of energy e,
that is, :

€= hy, W, =ne . . . . (13)

We thus arrive at the idea of energy-quanta that we hinted at in the
opening paragraph of this section and that we introduced on page 37.
‘When the oscillator retains its station- P

ary state with constant energy, its graph
luunnmlmm
dl li
(] ‘

point traverses during one vibration an
Ll

ellipse of the family in the phase-plane.
From time to time, however, the energy
of the oscillator changes, and when its
graph point jumps over to a smaller
ellipse it emits energy; but when its
graph point passes over to a larger
ellipse it absorbs energy. The emission
and absorption occurs in multiples of the energy quantum e.

Owing to the assumption of discrete phase-orbits and discrete energies,
the oscillator may only describe motions of definite amplitude (of
maximum displacement) and velocity. For from (6), (10), and (13) the
resulting magnitude of these two amplitudes is:

Fic. 62.

2 [2ne . One

Gmaz = 'Q.’—;v m’ Ginax = o
‘We have given here the extreme form of the quantum theory, which
recognises only discontinuous transitions between the various motions of
the oscillator. To obviate this paradoxical idea, Planck later developed
a form of the quantum theory in which phase-points in the interior of
the elliptical zones may also be regarded as possible states of the oscillator,
that is a theory in which the graph point of the oscillator is not ex-
clusively bound to the confines of the elementary regions. When energy
is absorbed, the graph point is to displace itself in & continuous manner
through the interior of the elementary region and is to jump from one
boundary curve to another only when energy is emitted. For our
purpose, however, the first form of the quantum theory will be more
appropriate. We therefore make the definite assertion (for the oscillator
and for every mechanical system of one degree of freedom): The graph
point (of the system) in the phase-plane is restricted to certain * quantised”
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198 Chapter 1V. The Hydrogen Spectrum

phase-orbits (which characterise certain quanta). Between each orbit and
ts successor there is an elementary region of area h. The n** of these orbits
(if closed) has an area nh. Expressed as a formula this is:

”dﬁdq=nh R e )

wherein the integral is to be taken over the interior of the nt* orbit. If
we carry out the integration with respect to p (corresponding to the

elementary formula J’yd:v for the area of a curve y = f(x)), we get

fpdq=nh. N ¢ 1)

This integral is to be taken along the nt* orbit itself. We shall call the
left member of this equation phase-integral and denote it by J, i.e.

J=deq . . . . . (15a)

We consider the definitive formulation of the quantum hypothesis to
consist in the postulate that the phase-integral must be a whole multiple
of the quantum of action 2. This postulate singles out of the continuous
manifold of all mechanically possible motions a discrete and infinite number
of real motions, that is such as are possible according to the theory of
quanta. In contradistinction to this general form of the quantum
hypothesis, the original hypothesis of energy-quanta that was formulated
by Planck for the phenomena of heat radiation is only a special result of
the general quantum postulate adapted to the oscillator. In the preced-
ing, we were relieved from the task of evaluating the phase-integral (15)
only because we were able to calculate the area of the ellipses directly
from the formula ab=.

From the oscillator we pass on to the rotator. This term is to denote
a point-mass m, which rotates about a fixed centre uniformly in a circle
of radius a. The natural co-ordinate of position is here the angle ¢
which the radius to the point-mass makes with an arbitrary initial radius
¢ = 0. We thus set p = ¢. The kinetic energy is

m .
Ek;n=—2a2q- . . . . . (16)

In the case of uniform rotation the potential energy will certainly be
independent of ¢ ; it is indifferent to us whether this energy depends on
a since a is constant during the motion. Hence we may write

Epot = const.

The impulse or momentum co-ordinate in this case corresponding to the
co-ordinate g is by (5) and (16):

P = ma*q . . . . . an
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§ 1. Introduction to the Theory of Quanta 199

It signifies the moment of momentum with respect to the centre of the
circular orbit. Since ¢ = const., this moment of momentum (Impuls-
moment) p is constant during the motion ; this, in fact, follows immedi-
ately from the equations of motion (4). Therefore the phase-orbit of the
rotation (the orbit in the phase-plane g-p) is a straight line parallel to
the g-axis (Fig. 63). Hence the phase-orbit is not a closed curve in this
case. Hence we have here first to define what is to be regarded as the
area of the phase-orbit.

The following remark accomplishes this: the phase of the rotator
(its position in the orbit and the direction of its momentum or impulse)
becomes repeated after every complete
rotation. Thus, the true phase-orbit is
not an infinitely long straight line but
a finite one that repeats itself. In the
g-direction the phase-plane of the rota-

tion has only the length 2r; we may, =@
for example, cut it along the lines -7 i e

g = * = and join the edges so as to form

a cylinder. The surface area of the Frc. 63.

cylinder between the =tR and the

(n — 1)th phase-orbit, being a rectangle on the base 2, is equal to
27 (pn — Pu-;)- We have to set this surface equal to 5. We then get
for the surface between the ntt and the zero phase-orbit, which is repre-
sented by the g-axis, the expression

Qpn=nh . . . . . (18)

This is the surface that takes the place of the area of the closed curves in
the case of the oscillator.

From this we see that the rotator is to be quantised not in energy
quanta but in quanta of moment of momentum. In the case of the rotator
-hi. If, on the
2
other hand, we calculate the energy (kinetic energy) of the rotator, then
it follows from (16) and (17) that

the moment of momentum must be a whole multiple of

Ekin = ];’q
and from (18), when v = a1,
2
h g nhy
By =20 4 " ) ] .
Mt or T (19)

Here v denotes the rotation frequency of the rotator (number of full
revolutions per unit of time), which appropriately takes the place of the
vibration number of the oscillator. Hence if we wish to speak of energy-
quanta Av in the case of the rotator, too (which is better avoided
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200 Chapter 1V. The Hydrogen Spectrum

altogether), we should find its energy to be not a whole mulitiple, but a half-
multiple of the energy-element hy.

By quantising the oscillator and the rotator we have already laid the
foundation of the numerical detaile of Bohr's hydrogen atom. As a
matter of fact, we shall see later that (18) determines the orbits, int
which the electron that belongs to hydrogen circulates round the
hydrogen nucleus. In the same way (13) determines the frequency of
the radiation that is emitted when the electron crosses from one such
orbit to another. But we shall even at this stage set the treatment of
the hydrogen atom and other atomic models on a broader basis. To
achieve this we pass on from the case of one degree of freedom, to which
we were able to restrict ourselves in dealing with the oscillator and the
rotator, to the case of any number of degrees of freedom. In this case
we must demand not one quantum condition of the form (15) but f
different quantum conditions, by which each of the f degrees of freedom
in a certain sense becomes fixed. We infer this, as a general result,
from the perfect sharpness of the spectral lines, which allows us to
conclude that the atomic phenomena underlying their origin are
fully determinate. For this purpose the author has adopted a direct
“ heuristic ” method,* which leads to the same results as those simul-
taneously obtained by Planck t as a consequence of a more systematic
investigation into the treatment, along quantum lines, of systems of
several degrees of freedom. The postulate of the author is: we must
tmpose the condition (15) on each individual degree of freedom of the
system, that i3, we must postulate the value of the phase-integral for the
k™ degree of freedom to be a whole multiple of h:

‘[p,,dq,, = nh . . . . . (20)

A little earlier than the author, W. Wilson | developed the same
postulate from the law of heat radiation.

By setting ny = 1,2 . . . in turn in (20) we fix the first, second . . .
quantised phase-orbit of the kt* degree of freedom. Since the system is
bound by each of its degrees of freedom to one of these orbits, the
required definiteness of its motions is attained. In certain exceptional
cases, so-called degenerate cases, the number of the necessary conditions
becomes reduced : then, for f degrees of freedom, less than f quantum
conditions already suffice to assure the sharpness of the spectral lines
emitted by the system.

* ¢ Zur Theorie der Balmerschen Serie,” Sitzungsberichte detr Miinchener Akademie,
Dec., as also 1915, and Jan. 1916, Ann, d. Phys., 51, 1 (1916).

+ M. Planck, * Die Struktur des Phasenraumes,” Ann. d. Phys., 50, 385 (1916).

+ W. Wilson, * The Quantum Theory of Radiation and Line-spectra,” Phil. Mag.,
29, 795, June, 1915. A historical account has been given by N. Bohr, Kopenhagener
Akademie, 1918, Teil 1, in which a work by Hn. Ishiwara, simultaneous with that of
W. Wilson, is referred to.
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§ 1. Introduction to the Theory of Quanta 201

At this stage we may already state a general property of the phase
integral, which is of fundamental importance for all that follows: the
phase-integral J is a necessarily positive quantity; that is, the whole
number ~ in (20) is a positive integer. This property really follows from
the geometrical meaning of the phase-integral in (14) as a surface area
(regarded positive) of the (g, p)-plane. But we may easily convince
ourselves of this by analysis. For this, it may suffice if we take the
case of the oscillator. Here p = mg, and hence

J = jpdq - Imédq = jmq’“dt.

In the last integral all factors, in particular also the progress of the
time d¢, are necessarily positive; hence the phase-integral itself will also
be a positive quantity. The proof for the other cases is exactly similar,
if the kinetic energy of the system contains only squares (not products)
of the velocity co-ordinates: this may always be secured by choosing
the co-ordinates suitably, whereby the place of the mass m is taken by a
positive function of the co-ordinates.

Concerning the integration limits of the variable ¢, in the phase-
integral (20), we postulate that the variable q; is to traverse the whole
region that serves to characterise uniquely the phases of the system. In
the case of a cyclical co-ordinate (¢ = ¢, rotator), this is the region from
—x to += (cf. Fig. 63, folding of the plane into a cylinder); for a
variable radius vector 7, it is the region from 7, to 7., and back again
YO 7Twmin. Further examples of the application of this rule, which clearly
arises quite naturally out of the idea of the phases of the motion, will be
found in this and in the succeeding chapter.

It is more difficult to decide the question : which co-ordinates are to be
used in forming the phase integral (20)? It is clear that our general for-
mulation of the quantum theory has a definite and unambiguous sense
only if it is supplemented by a rule regulating the choice of the co-
ordinates g, p, that are to be used in equation (20) and fixing the choice
uniquely. In the simplest cases, which we shall treat in the sequel, in
particular in that of Kepler motions in the plane or in space, appropri-
ate co-ordinates offer themselves immediately: namely, the cyclical
azimuth ¢ and the radius vector 7r; but even here the condition of
uniqueness raises difficulties (at least in the non-relativistic treatment ;
cf. Note 8). In other cases an analytical rule of Schwarzschild and
Epstein, which is described in Note 7, serves to determine the co-
ordinates. But this rule, too, is restricted and applies only to a definite
class of motions (so-called conditionally periodic motions). How to pro-
ceed in cases which do not fall under this heading is not yet known.

If we recapitulate what we, arguing from the sharpness of spectral lines,
have learned about the quantum treatment of the oscillator and the rotator
and about the application of quantum methods to general systems, we get
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202 Chapter IV. The Hydrogen Spectrum

an entirely new type of view of natural phenomena. We thereby adopt
the extreme view of the original Planck theory, according to which the
quantum favoured states lie solely at the limits of the elementary regions,
whereas the interior of these regions remains quite free of phase-points.
These quantised states are distinguished from all other possibilities as
stationary states of the system by characteristic whole numbers ; they do
not succeed each other continuously but form a net-work. Inthe quantum
orbits an electron moves, if undisturbed, permanently and without re-
sistance, that is, without emitting radiation; the electron is thus, so
to speak, rendered immune by the quantum condition as regards the
emission of radiation. The phase-space, being the manifold of all con-
cetvable states, including non-stationary states, is crossed mesh-like by the
graph-curves of the stationary orbits. The size of the meshes is determined
by Planck's constant h.

§ 2. Empirical Data about the 8pectra of Hydrogen. The
Principle of Combination

Before we deal with the spectra of the simplest element H, for which
Z = 1, it may be convenient to make here some preliminary remarks
about spectra in general.

‘Whereas solid bodies emit a continuous spectrum when they glow,
we observe in the case of guses and vapours (except for isolated regions
of continuous emission) line-spectra and band-spectra. The former belong
to the atom, the latter to the molecule. Hence in a Geissler tube the
hydrogen must first dissociate into atoms before its line-spectrum can
appear. In the case of iodine vapour, on the other bmgi; the 4xand-
spectra disappear in proportion as the dissociation /of J, i t@ro-
gresses. The line-spectra consist of individual welldefined tines or
complexes of lines; the band-spectra appear, if the dispersion is small,
as toned bands (often accompanied by “flutings” (“ Kannelierungen ™)),
but they resolve under higher dispersion into a great number of neigh-
bouring lines.

Within the line-spectra regular sequences of lines may be grouped
together into series. The distances between successive lines decrease
according to definite laws in each ‘series as we proceed towards the violet
end, and the lines accumulate at a series limit which is usually accessible
only by extrapolation. At the same time the intensity of the lines de-
creases regularly towards this limit of the series, either, as is the rule,
from the beginning of the series, or from a definite point later. The
series character is particularly marked in the first three columns of the
periodic system (alkalies, alkaline earths, and earths). The lines of a
band-spectrum accumulate at the heads of the bands, but do not become
infinitely dense there as in the case of the series lines at the series limit ;
the heads of the bands lie partly towards the violet and partly towards
the red.
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204 Chapter 1V. The Hydrogen Spectrum

Balmer’s formula became the model of all later rational spectral formule
and constitutes the firm foundation of the theory of spectral lines.
Balmer wrote his formula * thus:

m?
A=h— (1)
The integral numbers m and n have the values n = 2, m = 3, 4, 5, 6, for
H,, Hg, H,, H; respectively. The factor A (which must not, of course,

be confused with Planck’s constant h) is, according to Balmer, if X is
measured in Angstrém units (13 = 10-8 cms., cf. p. 151), equal to 3645-6.
Nowadays we write Balmer’s formula thus (A in cms., v in cm.~ 1) :

1 11 R = 109677-69
x='=B(z- 5 k=3,4,5,...}' - @

Formula (2) arises from (1) (if we disregard the choice of units and the
present more exact determination of the numerical factor R) by setting
in (1), n = 2, and

2
n 4
red blus vielet ultravjoles .
4000 5000 4000 3 Awi
g1, By H, |8,
" 15000 20000 " 25000 —e s wen”t
Fia. 65.

Here R is the Rydberg constant (Rydberg-Ritz factor) already introduced
earlier. The slight difference in the numerical value of R as now given
and as given earlier on page 155 will be explained in § 4 of the present
chapter. 'What accuracy comes into consideration when we write down
a number of eight figures may be judged from the fact that the standard
metre measure itself is defined only to the extent of several u's, that is
to the, at the most, 10-8th part of its length.

The fact that the accuracy of Balmer’s formula is not overdrawn may
be recognised from the following table which gives a comparison, for the

* Ann. d. Phys,, 25, 80 (1885). Balmer remarked simply that the wave-lengths
of Ha, Hg, Hy, H;, may be represented in terms of the ** basic number” %, quoted in
the text, thus:

9. 4 16h 25 9 36
sh g =12 uh g =gh
Enlarging the fractions ¢ and § for Hg and Hjs in the manner shown, he recognised
the successive numerators as the squares, 82, 43, 53, 63, and the denominators as the
differences of squares, 8% — 23, 4% — 23, 5% — 2%, 62 — 22, With the discovery of the
basic number k& Balmer's formula so to speak blossomed into existence.
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§ 2. Empirical Data about the Spectra of Hydrogen 205

first seven lines gf Balmer’s series, of the observed and the calculated *
wave-lengths in Angstrom units :—

TABLE 24
‘ k=3 k=4 k=5 k=286 l k=7 k=8 k=9
|
A calculated . . | 656307 | 4861-52 | 434064 | 4101-90 | 8970-24 | 8889-21 | 8885-54
A observed . . | 656804 { 486149 | 434066 | 4101-90 | 3970-25 | 8889-21 | 383558

This first example also serves to give the reader an idea of the extra-
ordinary accuracy of spectroscopic measurement—accuracy of calculation
and of measurement—which overshadows even the famous “ astronomic
accuracy.”

Balmer concluded his short account in 1885 with the remark that
the discovery of a corresponding “base number” h for elements other
than hydrogen would be very difficult, and would be possible only in the
case of the most accurate measurement of wave-lengths. How astonished
he would have been to learn that the same base numer k or, respectively

(cf.3), R = %, occurs in the spectra of all other elements. To have re-

cognised this is, above all, the achievement of Rydberg, and to a lesser
degree, of W. Ritz, who gave a more accurate expression.

The essential feature of Balmer’s discovery is the denominator of the
formula (1), in that he recognised it as the difference between two in-
tegers. From this we get formula (2) giving the difference of two
“terms,” the first being the constant term, which, at the same time, gives
the series limit (k = o), the second being a variable term. This repre-
sentation as the difference of two terms corresponds to the view of the
wave-number as the difference of level between two energy-steps, which
we treated in the preceding chapter (p. 187). There, too, we emphasised
the point that our real interest is in the terms or energy-steps and not in
the term-differences or wave-numbers.

Through his simple formula Balmer showed the way to the most
general and most fruitful principle of spectroscopy, which was introduced
in 1908 by W. Ritz, who recognised its fundamental importance, under the
name, “Principle of Combination.” Ritz formulated the principle in his
original paper t thus: “ By additive or subtractive combination, whether
of the series formula themselves, or of the constants that occur in them,
formule are formed that allow us to calculate certain newly discovered
lines from those known earlier.” But the fundamental importance of the
principle of combination consists of the following: by expressing the

* According to B. Dunz, Bearbeitung unserer Kenntnis von den Serien. Diss.
Tiibingen, 1911, p. 2.

t+ W. Ritz, Gesammelte Werke, published by the Schweizer Physikal. Gesell-
schaft, p. 162, Paris, Gauthiers Villars, 1911.
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206 Chapter IV. The Hydrogen Spectrum

wave-number of a spectral line as the difference of two terms, we define
two different states or energy-levels of the atom in question. In this
way several lines or series of lines determine several atomic states or
energy-levels for the same element. The principle of combination now
asserts that it is admissible to pass from any one of these levels to any
lower level, and to derive from the difference of the two corresponding
terms a new wave-number of the element. That this new wave-
number happens to be obtained by additive or subtractive combination,
as is stated in Ritz's original rule, is unessential. For example, if we
represent two lines by means of the term-differences A — B and C - D, then
we get new lines by combining the terms (BD) and (AC) with the wave-
numbers D —~ B and C ~ A, which cannot thus be derived individually from
A-B and C-D by the simple process of addition or subtraction. It is
only when two terms of the original lines are themselves equal that the
above quoted formulation of the principle of combination suffices.

The principle of combination has maintained itself in the whole region
of spectroscopy from infra-red to X-ray spectra as an exact physical law
with the degree of accuracy that characterises spectroscopic measure-
ment. It constitutes the foundation on which Bohr’s theory of spectra
rests, and is, in essence, identical with Bohr’s law (cf. Chap. I, § 6,
eqn. (6)), which likewise taught us to regard the frequency of a spectral
emission as the difference between two energy-levels. But not all com-
binations that may be formed from the terms or energy-levels are equally
probable. Rather, there are certain limitations (‘‘rules of selection”)
that, under certain circumstances, reject certain combinations. It will be
the object of the next chapter to found these limitations and to give the
conditions of excitation, under which the rules of selection may be trans-
gressed and combinations may be forcefully effected that do not occur of
themselves. A first and particularly brilliant test of the principle of
combination was offered by the hydrogen spectrum. Even Balmer him-
self raised the question whether the number » in his formula might not
also take the value 3, but the state of spectroscopy at that time did not
admit an answer. That is, he suspected lines with the wave-numbers:

11 11
y=R(§2_@) v=R<§z~5—z>,etc. L@

Ritz demanded the existence of these lines on the ground of his principle
of combination, since the first line of (4) may be obtained by forming the
difference of the wave-numbers of Hg and H,, while the second line may
be obtained by forming the difference of H, and H,, and so forth. There-
upon Paschen succeeded in finding in the infra-red region of the hydro-
gen spectrum intense lines of wave-lengths A = 187513 and 1281754,
respectively, corresponding exactly to the previously calculated values.
Since then, there is no doubt that Balmer’s formula must be written,
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§ 2. Empirical Data about the Spectra of Hydrogen 207

in conformity with the conjecture of its discoverer, with two integers,

thus : .
1
v=R<ﬁ§—-~ P) B
Paschen’s lines form the first two members of the infra-red series of
hydrogen, which are obtained by settingn = 3, m = 4,5,6, . . . Now,

what is the position of the series that corresponds to the values
n=15%k=2234,...?2

It lies in the ultra-violet and its limit » = R is four octaves higher than
the series limit of the ordinary Balmer spectrum v = R/4, which likewise
lies in the ultra-violet. The existence of this ulfra-violet series of hydro-
gen was the final confirmation of Balmer’s formula by Lyman. In
particular, the base line of this  Lyman-series,” namely,

R )

appears excellently sharply defined on all photographic plates obtained
by Millikan (cf. p. 161) for the extreme ultra-violet. Its wave-length is,

A = 1215-7A.

It is in a sense the prototype of all spectral lines, being the most funda-
mental spectral line of the simplest whole numbers that can be imagined.

Balmer’s formula (5) maintained itself in the sequel not only as a
sufficient, but also as a necessary condition of the hydrogen lines. That
is to say, not only are all the series of lines indicated by (5) actually
observed in the case of hydrogen, but also no other lines belong to the
hydrogen atom but those contained in (5). Until recently (1913, when
Bohr’s theory was proposed) two further series were ascribed to hydro-
gen, which were determined from the formulse

11
V=R(iT_5‘_l?"> E=23,4, ... . . (6)

1 1
and v=R(g - (m)k_2,3,4, N ()

They were called the “ Principal Series” and the * Second Subsidiary
Series of Hydrogen,” while Balmer’s series itself was called the * First
Subsidiary Series,” in accordance with a terminology that will be de-
veloped in Chapter VI, § 1.

The series (6) was originally measured by A. Fowler * in the spec-
trum of a mixture of H and He; series (7) was discovered by Pickering
in the spectra of nebular clusters (¢-Puppis). According to Bohr's
theory, however, both series are to be ascribed not to H but to Het, that
is, to ionised helium ; at the same time formule (6) and (7) are to be

* Monthly Notices, 73 (1912).
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208 Chapter IV. The Hydrogen Spectrum

remodelled and supplemented as follows (by multiplying numerator and
denominator by 4):

1 1

v=4R(z - ) k=456... . . (6a)
1 1

v=1B(g- ) k=567... . . (T

Written in this way, they come under Balmer’s form (5), with the differ-
ence that R is replaced by 4R, a fact that points to the double nuclear
charge of He (cf. eqn. (17) of the next paragraph), and with the further
difference that the value of R in (6a) and (7a) does not agree exactly with
the value of R in (5); this is explained by Bohr's theory of motion of the
nucleus (cf. § 4 of the present chapter). But our reasons for denying
hydrogen the series (6) and (7) and ascribing them to helium are not
only of a theoretical nature, but rest on experimental evidence given by
precision measurements of A. Fowler* and F. Paschen,t to which we
shall often have occasion to refer.

For the present we assert that the series (6) and (7) occur not only
in mixtures of hydrogen and helium, but also in quite pure helium.

We next remark that Pickering's series (7) includes only one-half of
the lines represented by (7a), namely, those for which & is odd; the
other half coincides nearly, but not quite (on account of the above-men-
tioned small difference in the value of R) with the ordinary Balmer series.
In reality both together form a uniform series in that the lines of the
one type arrange themselves according to intensity continuously among
the lines of the other type. It is therefore unjustifiable and arbitrary to
detach one-half as the Pickering series and to aseribe it to hydrogen.
The other half was overlooked earlier only because it could not be
separated from the neighbouring true hydrogen lines. Further details
on this point are given in § 4, Fig. 69.

The same is true of the relation between the series (6) and (6a). Of
the lines represented by (6a), and actually observed, the series formula
(6) represents only the members for which % is even. Hence, if we regard
the series (6a), in the sense of (6), as the principal series of hydrogen, it
becomes arbitrarily subdivided into two parts, of which only the one
fits into the terminology of the hydrogen members. Actually, as Paschen
shows, both parts as regards the intensity of their lines as well as the
nature of their origin belong together, and form a uniform series.

We thus finally find our above assertion confirmed that the simple
and integral character of spectral laws expressed in Balmer’s formula
represents a necessary criterion of hydrogen emission. The spectral
laws (6) and (7) that depart from the integral type, and thus do not come

*#Series Lines in Spark Spectra,” Proc. Roy. Soc., 90, 426 (1914), and Phil,
Trans., 1914.
t Bohr’s Heliumlinien, Ann. d. Phys., 50, 901 (1916).

Google



§ 2. Empirical Data about the Spectra of Hydrogen 209

under Balmer's formula, do not belong to hydrogen but to ionised
helium. Nevertheless, these laws are of the ‘‘ hydrogen type.” They
will, therefore, be discussed with Balmer’s series in this chapter.

The question arises whether doublets, or, more generally, multiple
lines oceur in the case of hydrogen as in that of so many other elements
(cf. Chap. VI, § 1). Just in the case of hydrogen, this question is not
easy to answer, since its lines, at ordinary temperatures, are very blurred,
a result which is connected with its small atomic weight (and the con-
sequent greatness of the Doppler effect, cf. Chap. VIII, § 4). Now,
older observations of Michelson, Fabry, and Buisson, and more recent
ones by Gehrcke and Lau have shown the lines of the Balmer series to be
doublets,* of which the difference of wave-lengths are very small (in the
case of Ha the doublet is of size, 0'13A). From his precision measure-
ments of Het, Paschen (cf. p. 208, foot-note 2) calculates the corre-
sponding difference of wave-numbers to be

Av = 03645 + 00045 cms. -1 . . . (10)

(Concerning the dimensions, cf. eqn. (3) of p. 154). The existence of
the doublets of hydrogen cannot yet be explained in this chapter; it led
to the elaboration of Bohr's theory described in Chapter VIII. There,
too, we shall learn more details of the above-mentioned results of obser-
vation.

Besides the Balmer spectrum to be understood in the general sense
of equation (5), hydrogen possesses another spectrum of quite a different
nature, the so-called “many-lines spectrum” (Viellinienspektrum). In
contradistinction to Balmer's ‘ four-line spectrum™ (called so, oc-
casionally, in view of its four lines H,, Hg H,, H; in the visible),
the many-lines spectrum is to be regarded as a band spectrum, although
it does not exhibit the external signs of band-spectra, namely the accumu-
lation of the lines at certain heads of the bands and the repetition of these
bands, constituting flutings. From the great number of lines observed,
however, individual groups of lines may be separated out, which follow
the laws of band lines (set up by Deslandrest) and which also show
themselves to be related in that they behave similarly in the Zeeman
effect. The many-line spectrum arises in the Geissler tube at lower dis-
charging potentials than the Balmer spectrum. The question as to the
carrier of the many-lines spectrum is a subject of great controversy. The
newest experimental investigations, in particular a work by E. Gehrcke,]
leave no room for doubt that its carrier is the hydrogen molecule and not
the hydrogen atom. From the point of view of theory, only the H,-
molecule can come into question at all as the carrier of the many-lines
spectrum on account of the great complexity of the latter. Actually, we

* Cf. Chap. VIII, § 4, also for references to the literature.
+ Fulcher, Physikal. Zeitschr., 1912, p. 1140 ; Croze, Ann. d. Phys., 1, 87.
1 Cf. Report of the Physikal.-Techn. Reichsanstalt, 1921.
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210 Chapter 1V. The Hydrogen Spectrum

shall see in Chapter VII that the modern theory of band-spectra, even if
it cannot predict quantitatively the frequencies of the many-lines spectrum,
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can at least completely account for its
general character qualitatively if its calcula-
tions are based on the mass and size of the
H,-molecule.

To give the reader at this early stage a
general survey of the distribution and
density of the lines we give here as a
résumé of the empirical data the accom-
panying curve that has been calculated and
drawn by K. Glitscher.* At regular inter-
vals of 100 wave-numbers it gives as ordin-
ates the total intensity of the lines that have
been measured in each of these intervals and
whose intensity has been estimated. .The
end-points of the ordinates have been con-
nected by a smooth curve. This curve is
the schematic picture of the distribution of
intensity in the many-lines spectrum and
would be obtained directly if, for example,
the action of the Balmer lines were elimin-
ated and the whole spectral region were
photographed with a greater width of slit
and measured photometrically.

If, now, we mark the frequencies of the
Balmer lines H,, Hg H,, H;, in their
proper positions on a strip of paper as
shown on the abscissa of the figure, and if
we then slide the strip along the abscissa
until H, coincides with the first principal
maximum « (at about 16,600) we find that
simultaneously Hg, H,, H; also coincide
with the particularly prominent maxima
B, v, and & (at about 22,000, 24,600, and
26,000). The principal excrescences
(maxima) are attended by minor excres-
cences. If we next place the strip so that
H, coincides with the minor maximum
o', Hg and H, coincide with 8’and y’. Per-
haps it would be possible to find a third
group of excrescences a”, 8", y" separated
by the corresponding distances of the Balmer

lines. Furthermore, we have grouped into pairs (shown by brackets)
* Sitzungsber. d. bayer. Akad., 1916, p. 125.
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§ 3. Bohr's Theory of Balmer’s Series 211

a number of excrescences of which the difference of frequencies is
fairly accurate :

H;-H, = R(glz - ;1> (R = Rydberg's number).
A complete theory of the many-lines spectrum would also have to account
for the remarkable relationships here indicated between the many-lines
spectrum and Balmer’s series.

Finally, hydrogen has also a continuous spectrum ; it stretches from
the limit of Balmer’'s series to the ultra-violet; its carrier is the H-atom.
It was first observed in stellar spectra and was then examined more
closely by Stark* in canal-ray tubes. This spectrum is also to be in-
terpreted theoretically in Chapter VII.

§ 3. Bohr's Theory of Balmer's Series.

We here make the simplest assumptions possible: a nucleus of
negligible size carrying a charge +e¢, an electron of charge —e is con-
sidered likewise concentrated at & point, and the mass of the nucleus is
considered infinitely great compared with the mass m of the electron;
that is, we are confronted with a “one body problem ™ instead of the
actual “two body problem”; Coulomb's law is valid and likewise
ordinary (pre-relativistic) mechanics ; the electron moves in a circle about
the nucleus and is a simple “rotator.”” Concerning these assumptions
we remark that for hydrogen, in particular, E = ¢; the calculation with
E is worth doing because it also includes the case of He* and Li+ +
(cf. Chap. II, § 3, Nos. 4 and 6). The assumption that the nuclear mass
is infinitely great is a good approximation even for hydrogen (according
to earlier remarks, cf. eqn. (16) of the following section, m : my = 1:1847);
but in the next section we shall let this assumption drop.

The orbit of the electron is fixed by two conditions, one prescribed by
the classical theory, the other by the the quantum theory. The classical
theory requires that the external forces be in equilibrium with the inertial
forces. The inertial force of circular motion is the centrifugal force :

muv® .
= mre = maw?

(v = aw is the linear velocity, w the angular velocity of the rotating
electron, @ the radius of the orbit). The only external force is the

. . eB ..
Coulomb force of electric attraction “at Hence the condition of the

classical theory is:

, ¢E
nmaw* = —
@
or madw? = ¢ . . . . . (1)

* Ann. d. Phys., 52, 255, 1917.
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212 Chapter 1V. The Hydrogen Spectrum

The quantum condition is given by the equation for the moment of
momentum of the rotator,* namely 2rp = nh (cf. eqn. (18), § 1 of this
chapter).

With our present symbols the moment of momentum takes the form :

P = mva = ma’.
Hence we get the quantum condition as:

2rmaie = nh

ie. mate = ’2% )
Dividing by (1) and (2) we get
QmeE
v=aw=— 7 . . . . (3)
Inserting this value in (2),
w2 8wime*E?
= TmeE w=""g5 - . . 4)

- Thanks to our two conditions, then, the two unknowns a4 and o are
determined. Both logether demand that the electron move only in certain
“ quantised” circles on the 1%, 2né, . . | nth «“ Bohr circle” ; n is the
“quantum number " of the orbit. The radii of the circles are proportional
to the squares of the quantum numbers :

a,:8y:0,: ... 6,=12:22:32: . . n? | . (5)
The times of revolution (periods) = are inversely proportional to the

: 2 . L
angular velocities (1.9. @ = —:) The times of revolution in the Bohr
circles are proportional to the cubes of the quantum numbers:

T ity .., =132 0 md . . (6)

To bring out the analogy with the planewary system still more and to
prepare for later generalisations leading to elliptic orbits, we recapitulate
our results so far obtained in the form of Kepler's laws:

Kepler's First Law : The planel moves in a circle at the centre of which
the sun is situated. There is a discrete infinite number of orbits; the
radius of the n** orbit is given by the quantum number n.

Kepler's S8econd Law : The radius vector from the sun to the planet de-
scribes equal areas in equal tvmes. The surface-constant of the n' orbit
(which is proportional to our moment of momentum p) is equal to % times
Planck’s quantum of action.

Kepler's Third Law : The squares of the periodic times (of revolution)

* It is worthy of remark that, before Bohr, J. W. Nicholson (Monthly Notices,

72 (1912), cf. in particular p. 679) set up the quantum condition for the rotator, and

used it to interpret certain lines of the sun, as well as of nebulee. Since, however,

Nicholson did not determine the emitted radiation in terms of quanta, like Bohr, but

%nlhy set it equal to the mechanical frequency, his theory is very different from that of
ohr.
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§ 8. Bohr’s Theory of Balmer's Series 213

are proportional to the cubes of the radii of the orbits. For, by (6) and (5),
the time of revolution is proportional to #3, and the orbital radius is pro-
portional to 7.
As above remarked, for hydrogen, E = ¢. The radius of the first Bohr
circle is therefore by (4) in the case of hydrogen :
B2
a1= ———-h_lmex . . . . . (7)

We next determine the velocity v, in the first Bohr circle and divide it by

the velocity of light c. We call the ratio % simply . By (3), we get:

o =227 I )

Using the values*: e = 4:77 . 10-19, :L =177.107.¢, h=6565.10-%
(cf. p. 87), we get by calculation
a, =0532.10-8cms. a=729.10-2 o? =531.10-% (9)

The value of a will be the determining factor, in the last chapter—as the
constant of the fine structure of spectral lines. From the value of a, we
get for the diameter 2a of the hydrogen atom in its ‘“normal state” the
order of magnitude 10-8 cms., corresponding to the ideas that were gained
about atomic size in other ways (kinetic theory of gases, etc.).

The calculations just given supplement numerically our general data
about the hydrogen atom stated in Chapter II, § 3, no. 1. As an illustra-
tion we refer to Fig. 18 there drawn. In it we see the first three Bohr
circles of radii a,, a; = 4a,, a; = 9a,, represented. The arrows at these

circles denote the velocities of revolution v,, v, = %‘, vy = %1 (cf. egn. (3));

the increasing time of revolution is indicated by the decreasing lengths of
the arrows outwards. These quantum-favoured orbits must exist as
stationary states of motion of the atom; an electron moving in any one
of them must not radiate.

We next calculate the energy of the electron in its various orbits and
take this opportunity to explain why we just now called the first orbit the
normal state of the atom. We again designate the nuclear charge by E.
The energy is composed of potential and kinetic energy. The potential
(Coulomb) energy is, in view of (4):

Epor = —aeE - _ 4rime? B2 ‘ . . (10)

neht

* Here and in the sequel 6 is to be taken as measured in electric * electrostatic ™
units, as is evident from the above statement for Coulomb's law. According to the con-
cluding remark of Chap. I, § 3, we should therefore multiply the given values of ¢ and

£ by c=3800. 10"
m
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214 - Chapter IV. The Hydrogen Spectrum

The negative sign indicates attraction. In the case of repulsion we should
have to exert work in bringing the electron from infinity up to the nucleus,
as in the case of a spring that we set; this would correspond to the posi-
tive sign. When the force is attractive, we correspondingly gain energy,
and have thus to exert negative work.

In general we have the rule in a Coulomb field (see Note 5) that :

Biin = — 3 Epot . . . .1
We can immediately confirm this rule here. For, by (3),

m 2rime?E?
Ein = g v = Tk (12)
and this is, by (10), actually identical with half of the negative potential
energy with the sign reversed. If W denotes the total energy then by
(10) and (12)

- 2r'me’E* 1

\V = Ekin + Epot = W2 1-1‘2

(13)
Thus we may supplement our third Kepler law by stating that the energy
constants of the various orbits are inversely proportional to the squares of
the corresponding quantum numbers.

Our way of counting the energy entails that we give to an infinitely
great orbit the energy zero. As a result of this the energy constant for
all finite paths comes out negative. As we are concerned later only with
differences of energy the negative sign causes no difficulty whatsoever,
although it appears to contradict the nature of energy. But, as already
remarked on page 158, we should immediately arrive at a positive value for
the energy if we were really to calculate the total energy of the moving
electron, and thus count besides the kinetic and potential energies also,
for example, the *“ proper ” energy contained in the field of the electron.
According to the view of the theory of relativity (cf. Chap. VIII, § 1, or
Chap. II, §6, p. 95) the latter energy is simply equal to mc?, that is,
equal to an amount of energy, which is many times greater than the other
parts of the energy and which would therefore make the sign of the total
amount positive. In the same way, we could include the still consider-
ably greater positive proper energy of the nucleus. But since these proper
energies are constant, they naturally cancel when we form energy-differ-
ences and they are, therefore, more conveniently left out of account from
the very outset.

Our energy-constant W has the algebraically smallest value in the
first (innermost) orbit. If we call it W;, then in the 2nd and 3rd orbits,
respectively, we have Wy = }W, W, = LW,. These amounts are > W,
since W, < 0. Hence the electron can be lifted from an inner to an
outer orbit only by an addition of energy. It can fall from an outer to
an inner orbit when it loses energy. The innermost orbit is therefore
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§ 8. Bohr's Theory of Balmer’s Series 215

most stable and represents, as we said earlier, the normal state of the
rotating electron.

Bohr’s theory has two quantum sources; it arises, as we stated in §1
of this chapter, out of the quantum condition for the rotator, on the one
hand, and the oscillator, on the other. So far, we have used only the
first condition. The quantum condition for the oscillator comes into
force now when we turn our attention to the radiation of the atom.

We arrive at our goal by the shortest route, which is also essentially
the most expedient one, by referring to photo-electric phenomena. These
were brought together under Einstein’s law (cf. Chap. I, § 6) and were
extended as far as Bohr's frequemcy condition for spectral emission
(loc. cit. eqn. (6)):

hw=W,- W, - . . . . (19

This equation states that if the atom passes over from an initial state of
energy W, to a final state of lesser energy W, then the excess of energy
is radiated out in the form of a monochromatic wave of light, the fre-
quency v of which is determined by just this eqn. (14). Each such
transition thus causes an emission of well-defined light and is observed
as a sharp spectral line. How the change of the liberated atomic energy
into light-energy is effected is still a matter of mystery. In the next
chapter we shall, indeed, investigate this phenomenon more closely from
the point of view of Maxwell's theory and shall draw from it inferences
about the polarisation of the resulting light-wave. In doing so, however,
we do not derive eqn. (14) in our reasoning but use it as our basis of
argument. As we already emphasised earlier in dealing with Einstein’s
law, it is impossible to derive this equation from the idea of continuous
electromagnetic fields.

Merely to satisfy the wish for a physical interpretation we give an
account of a view of eqn. (14) that is taken from an essay by L. Flamm *
But this view is in no wise to be regarded as a necessary foundation
of the equation, as is already evident from the auxiliary assumptions
that are to be noted specially in what follows, but merely as a means of
visualising the phenomenon involved.

In addition to the atom, which excites the radiation, we suppose an
“ether” to exist, which transmits the radiation. Nowadays we like to
avoid speaking of the ether, since the theory of relativity has deprived it
of its material existence in the older sense (cf. Chap. VIII, §1). Here
we use the word ether to signify no more than that ‘“states of vibration’ are
possible that are propagated with the velocity ¢, as they are presented to
us on all sides in experience and are described more closely in the theory
of electrodynamic optics. In this sense we define the ether as an
oscillator. But the oscillator *“ether” differs (apart from the spatial
arrangement and the space-time distribution of its vibrations, with which

* Physikal Zeitschr., 19, 116 (1918) ; cf., in particular, p. 125.
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216 Chapter IV. The Hydrogen Spectrum

we are not concerned here), from the harmonic oscillator introduced on
page 196, essentially in that it is capable of executing vihration of .any
frequency v, that is, it can transmit radiation of any colour. The ether
therefore represents not one oscillator but an infinite system of oscillators
in which the proper frequency varies continuously from oscillator to
oscillator ; it is, so to speak, a system of organ pipes with infinitely small
differences of pitch.

‘We suppose such a system of oscillators to be placed next to an atom.
When the atom radiates, it is linked with this system of oscillators and
transfers energy to it. The atom does not, indeed, radiate when in its
stationary states of motion; but when an electron jumps from one orbit
to another, when it passes from an orbit further removed from the
nucleus to one that is nearer, energy is liberated. The sharpness of the
spectral lines points to the fact that this energy becomes converted into
monochromatic energy of vibration (first assumption), that is, that it
excites only one definite ether oscillator of our system. Which oscillator
is this? The answer is given by the quantum condition of the oscillator :
that oscillator will respond, for which the energy set free by the atom
. equals & whole multiple (integral number) of its energy elements. Assum-
ing this integral number to be 1 (second assumption), we have to set the
energy element of our ether oscillator equal to the energy W, — W, set
free by the atom. Thus we again arrive at our eqn. (14).

In (14) we insert the value of (13) for the energy. Let n be the
quantum number for the final orbit, and k(> n) that of the initial orbit.

We then get:
2mimet/EN\2/ 1 1
v= "";;s'('é) (1? - k"’> S A

Now E = ¢ in the case of hydrogen, and if we set

2rimet

R=—p. . . . . (16)
we get from (15) exactly Balmer's series in its gemeral form (5) on
page 207. For other atoms of the hydrogen type (He +, Li ++, etc.) E = Ze,

where Z is, as earlier, the nuclear charge or the atomic number of the
atom. For such atoms we get, correspondingly, from (15):

1 1
v=RZ(H-m) . . . . (0

But the sweeping success of Bohr’s theory is not founded only on the
derivation of Balmer’s formula, but especially on the numerical calcula-
tion of the Rydberg-Ritz constant R that occurs in it. Before Bohr,
A. E. Haas,* in particular, had already proved the universal nature of
this constant, and had shown how it was very probable that it could be

* Sitzungsber.;Wicner Akad,, March, 1900,
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§ 8. Bohr’s Theory of Balmer’s Series 217

expressed in terms of & and electronic data. But Bohr's theory first
brought complete clearness by giving the relation (16). If we use the
values given on page 213 :

e=477.10-10 e/m =177.107.¢ h = 655.10-%7

then it follows that
R =327. 10! gec.-1 . . . . (18)

Hereby it is to be noted that when we set the energy-element of the
oscillator equal to v, we take v to mean the vibration number in the
ordinary sense, having dimensions sec.-1. But, for spectroscopic reasons,
we have wished to take v as meaning the wave-number, i.e. the reciprocal
of the wave-length, having dimensions ecm.-!. 'We therefore contrast as
on page 154 in eqns. (3) and (4):

the proper vibration number or frequency, sec.”1 . . v =

the improper frequency or the wave-number, cm. 1. . v =

Accordingly we have yet to divide our formule (15) and (16) by
¢ = 3. 10 to get from the proper vibration number to the spectroscopic
wave-number. Consequently, there results from (16) and (18)

2mimet
h3c

This value of R agrees, except for the last, not quite certain, figure with
the observed value in eqn. (2) of page 204, in which R = 1-09678 . 10%.
Bohr’s theory is thus confirmed very strikingly.

‘We shall now continue to reverse the sequence of results and use the
theoretical formula for Rydberg's constant to correct one of the data
occurring in it, namely e, m or h. 'We actually know Rydberg’s number
to a degree of accuracy that we can never hope to attain in measurements

> >

R = = 1-09.10°% cms."1 . . . (19)

of e, ’% or h. This leads us to the problem of spectroscopic units, which

we shall, however, be able to.solve only when in the next section we
have deepened the theory of Rydberg’s constant. The problem is to

calculate the universal constants e, 7%, h from purely spectroscopic data

with “spectroscopic accuracy.”

In Fig. 67 we once more summarise Bohr's theory graphically. The
ultra-violet (Lyman) series (n = 1), the visible Balmer series (n = 2),
and the infra-red Paschen-Ritz series (n = 3) appear in it as counterparts
to the K-, Li-, M-series of the X-ray spectra in Fig. 47. The fact that
Fig. 67 requires, on account of the “ Principle of Selection,” a correction
(namely elliptic orbits in place of circular orbits) will be accounted for in
Chapter V. at the close of § 2. The figure shows, just like the calculation
(eqn. (4) of this section) how greatly the size of the hydrogen atom

Google



218 Chapter IV. The Hydrogen Spectrum

increases with the value of the quantum number n. Bohr* recognised
in this an explanation of the fact that the higher members of Balmer’s
series, even in highly evacuated tubes, are most often not to be observed,
but are only known through spectra of nebulee. He argued in this way :
the mean distance between the atoms (which is essentially their mean
free path) must be greater than the diameter of the outer orbit of the
electron concerned in the production of the spectral line, if it is to be
possible for this line to be emitted at all at the gas-density in question.
For the 33rd line of Balmer's series this distance would have to be
greater than 1-2.107% cms. and this would correspond to a gas pressure
of less than 002 mm. of mercury. In this way it seemed possible to
find an upper limit for the pressure of the hydrogen gas in nebul® which
radiate out Balmer’s series.

More recent observations, however, as J. Franck t points out, have
demolished this view and its cosmological inference. The appearance of
the higher lines of the series is dependent above all on the energy of
excitation of these lines, which is
necessary according to the hv-law,
being supplied to the atom. When
the pressure is not very small, how-
ever, the frequent collisions prevent
larger amounts of energy from being
collected in the exciting atom, unless
the collisions, as in the case of He,
N, and other gases of small electro-
affinity, take place without loss of Puschen Sorine
energy. Under such circumstances Fia. 67,

(e.g. if we have very little H, in He

of, say, 40 mm. pressure) we find that in spite of the small free path
and frequent disturbances of the paths, the series lines are emitted very
richly.

The wealth of lines of the absorption series to which we called
attention on page 203 and represented in Fig. 64, is explained in the same
way ; in the beam of light that is absorbed all wave-lengths and therefore
all quantities of energy hv are present. Hence all absorption lines occur
at the same time.

§ 4. Relative Motion of the Nucleus

Our confidence in the theory of the hydrogen spectrum developed in
the preceding paragraph becomes strengthened if we can show that
certain more detailed inferences that result from Bohr’s picture of the
phenomenon of emission are confirmed by experience.

In the preceding section the nuclear mass was assumed to be infinite

* Phil. Mag., 26, 9 (1913). + Zeitschr. f. Phys., 1, 1 (1920).
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§ 4. Relative Motion of the Nucleus 219

and the nucleus itself was assumed to be at rest. We now take into
account that the mass of the nucleus is finite and then see that it, too,
will move. Our first Kepler Law on page 212
will now accordingly be enunciated thus:

The planet and the sun each move in a circle
about their common centre of gravity.

In Fig. 68 let m be the mass of the planet,
M that of the sun. According to the law of con-
servation of the centre of gravity, the centre of
gravity S of m and M remains at rest. m and M
move on their circles at the ends of a common
diameter with the common angular velocity w.
Let a be the distance Sm, A the distance SM. Then

am = AM . . . . . (1)

from which it follows

M m
= — A = - 2
a=@rA) T A=@ra g @
The classical condition (p. 211) now requires that the Coulomb attraction
is equal not only to the centrifugal force of the planet, but also to that of
the sun. Thus )
2 = 2 = _.LE<_ -
maw? = MAow @+ AF
This double equation reduces, on account of (1), to a simple equation.
By substituting @ from (2) and by using p as the “resultant’ mass of
m and M, namely

Mm
F= N . . . . (3)
we get pla + A)de? =eE . . . . (4)
We have also the following definition equivalent to (3)
1 1,1
a=m + S . . . . 6))

The quantum condition next becomes added to the classical condition.
This deals with the moment of momentum p of the rotator. The latter
quantity is composed of the moment of momentum of the planet ma’e
and that of the sun MAZ2w, thus:

p = matw + MA%.

By eqns. (1), (2), and (3) we write for p successively:

"‘Mm(a + Ao = p(a + Ao

p=7n.a(a+A),,,=l\’1+
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The quantum condition requires that: 2xp = nh, thus we get

nh

pa+Afo=22.  . . . (6)

Equations (4) and (6) agree with equations (1) and (2) of the preceding
section, with the exception that p and @ + A takes the place of m and a.
Consequently we may use the solutions for these equations obtained from
(4) of the previous section. The result is:

n2h? 8miue’ K2 -
a + A = ""’ﬁﬁ, w = *?}*ﬁ"‘ . . . (‘)

The potential energy between the sun and the planet is now (cf. (10)
of the preceding section):
¢E 471’2}1.82El‘:

R

The kinetic energy is again half the potential energy with reversed
sign (this theorem is proved in Note 5 at the end of the book for moving
nuclei, too), hence the total energy is:

2,02 K2
W= Ekin + Epot = - %’;;TE . . . (8)

The circumstance that u, the * resultant” mass of the sun and planet
enters into this equation, points to the fact that we are now concerned
with the energy-constant of the common motion of both masses (their
relative motioun,. For this common motion there is a discrete series
of quantised states of motion that are singled out of the manifold of
all states of motion by the quantum number, in exactly the same way
as previously for the cases in which the planetary orbits were alone
considered.

We now consider a transition from an initial state of motion (with
the energy-constant W,, quantum number k) to a final state of motion
(with the energy-constant W,, quantum number n < k) and assume that
the energy set free again becomes transformed into monochromatic radia-
tion, according to eqn. (14) of the previous section. The energy set
free is derived now, not only from the planet but also from the sun
during the transition; the sun’s orbit alters simultaneously with that of
the planet in a ratio definitely fixed by the change in the quantum
numbers. The spectral formula obtained in this way is clearly again
eqn. (15) of the previous section, but with u in place of m. Con-
sequently we get for Rydberg's constant

2n’pet

R= h?

2mImet R
. = » . . . .9

m m

’3<1+M> L+
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§ 4. Relative Motion of the Nucleus 221

Here we have inserted the value of p out of eqn. (3), whereby the
denominator was divided by M. The symbol R, recalls the earlier
value of R in eqn. (16) of the previous paragraph, which was actually
obtained under the assumption that M = 0. Eqn. (9) contains the
following remarkable result :—

Owing to the relative motion of the nucleus Rydberg’s constant be-
comes reduced in the ratio (1 + %) :1. Rydberg’s constant is least for

hydrogen, for which its value is

R
Ry = “m . . . . . (109
1+ —
mu
Its value for helium is greater, being
R R
Rige = —2_ = ' _ 5 )
m m
1+ -— 1—
He my

and, for increasing atomic weight, approaches the universal limit R,
which is independent of the atomic weight, and which was designated as
Rydberg’s constant simply by R in the previous section.

This result, too, we owe to Bohr. He remarked at once that from
the spectroscopic determination of Ry and R_, or, what is easier to carry
out in practice, from the determination of Rx and RHe, the quantity m/mg
could be obtained. It actually follows from (10) and (11) that

m_ Bro — R

ma Ry — {Bue

The determination of m/my in eqn. (12) is equivalent to the de-
termination of the specific electronic charge e/m. We actually have

(12)

m _ e/mu

my  e/m (13)

Now, ¢/mg is the specific ionic charge, the electrochemical equivalent *
of § 2, Chapter I, that is, a quantity that is very accurately known (its value
is 96,494 Coulombs). An exact spectroscopic determination of m/myg de-
notes at the same time an exact knowledge of ¢/m, one that is presumably

* Strictly speaking, the difference between my and mj; = 1-008mpy ought to be
taken into account ; we called attention to this difference in the foot-note at the conclu-
sion of Chapter III, § 8. In the relative motion of the nucleus we are dealing with the
true mass mj of the hydrogen atom, not- with the mass of the imaginary hydrogen
atom my = -1fL, to which we refer our quantities in electrolysis when we define the
chemical equivalent charge. Consequently in eqn. (18) my would, strictly, have to be
replaced by my;, and e/mj; would have to be taken equal to 9649-4/1-008. In the same
way, in eqn. (10), we should have to write m} in place of my, but nof in eqn. (11)—for
the true atomic weight of He is equal to four times the ideal, not the true, atomic
weight of H. As a result of this a correction should also be applied to eqn. (12), too,
and this has to be taken into account if we are carrying out exact numerical calcula-
tions, but we may express this correction in the text.
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222 Chapter IV. The Hydrogen Spectrum

more accurate than can ever be obtained from experiments on the deflec-
tion of cathode rays. 'We have thereby come a step nearer to the goal
that we set up as the problem of spectroscopic units in the preceding
section : Instead of using the one value of R = R_ in eqn. (16) of the
previous section, we use the two values Ry and Ry, out of the above
eqns. (10) and (11), and we get, instead of one, two equations for deter-
mining the three universal units e, ¢/m, and 4. The necessary third such
relation we shall get to know in the last chapter.

We must next broach the question how the difference between Ry
and Ry, may be made evident in practice. This is made possible by the
series of ionised He, of which we spoke in § 2.

Ionised helium is of the type of hydrogen (wasserstoffahnlich =
hydrogen-like). It consists, like the H-atom, of a nucleus and of an
electron and differs from it, at first sight, only in having a double nuclear
charge. Accordingly its spectral lines are contained in the general
formula (17) of Balmer’s type, mentioned in the previous section, if we
set Z = 2 in it. But on closer inspection a finer difference, which is at

k=6 =1 =8 =9 =10=11=12---Het

1 l“

P H, P H,
Fia. 69.

4716000

present of essential importance to us, is the difference in the nuclear
mass. This mass is not, as in the case of hydrogen, my, but my,.
Consequently the earlier R = Ry is to be replaced by Rg,. From
eqn. (17) of the previous paragraph, there thus arises in this way, if we

setn = 4:
1 1
R,(f——_)... k= 2m
.v=4RH,(1__ - l,) g : . (14)
¢ K R.(L——-l—)...k=2nz+l
He\ g2 (m + $)?

The subdivision into two parts (which is not really contained in the
nature of the matter in question) brings into evidence the circumstance
that the component for which & is even (k = 2m) coincides very nearly
with Balmer's series, whereas the other part (k = 2m 4 1) has the
form of Pickering's series that was given earlier in eqn. (7) of page 207.
The combination of the two partial series (which conforms with the
nature of the matter in hand) into one uniform series corresponds
to the earlier formula (7a) on page 208.
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§ 4. Relative Motion of the Nucleus 223

In Fig. 69 we exhibit the positions of the He *-lines relatively to the
Balmer lines. The length of the lines is to denote diagrammatically
their intensity, on the assumption that we are dealing with a mixture of
He* and of H. For this reason the Balmer lines are drawn shorter than
the neighbouring He*-lines. The difference in the position of the two
series corresponds to the difference between Ry, and R,. Since Ry, > Ry,
the helium lines, as compared with the Balmer lines are displaced a little
towards the violet end. The lines P of Pickering’s series, that is, the
helium lines ¥ = 2m + 1, arrange themselves between the helium lines
k = 2m, and, as emphasised on page 208 in order of steadily increasing
intensity.

The researches of Paschen mentioned on page 208 give for the wave-
lengths of the helium lines and the neighbouring Balmer lines the
following values (here cut short at the first decimal place) in Angstrom
units, which confirm the displacement towards the violet, as predicted
by theory.

TaBLE 25

Het H
k= 6 6560°1 65628 (Ha)
k=17 . 54116 —
k= 8 4859°8 48613 (Hp)
k=9 45616 —_
k=10 . 43387 438405 (Hy)
k=11 . 41999 —
k=12 41000 4101-7 (Hs)

According to our whole development of the question, this violet shift
of the helium lines with respect to the Balmer lines may be regarded as
a certain indication of the relative motion of the nuclei during the
stationary forms of motion of the atom, or, more accurately, of the
slightly different relative motion of the heavier helium nucleus compared
with that of the lighter hydrogen nucleus. The differences between the
lines, as exhibited in Fig. 69, depict the small distances between the centres
of gravity shown in Fig. 68. At the same lime they give us definite
information to the effect that in our intra-atomic planetary system the
law concerning lhe persistence of the common centre of gravily remains
in force.

It need hardly be mentioned that this exhaustive test of our atomic
model is possible only thanks to the extraordinary accuracy of spectro-
scopic methods, by means of which differences of wave-length of 4 in
a million can still be determined with absolute certainty.

Of the series of ionised helium we have considered in detail that
which has the final quantum number n = 4 (Pickering’s series), in §2
that with the final quantum number n = 3 (Fowler’s series) was touched
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on lightly. Also some of the representatives of the series with the final
quantum number n = 2 have been measured. The succession of its
lines is identical with that of the ordinary Balmer series except for the

factor <}_3)2 = 4. The lines in question therefore lie in the extreme
e
ultra-violet; their wave-lengths are obtained from H,, Hg, . . . by

dividing by 4 (as long as we disregard the small difference in the
constants R, thus:

11 6560
v = 4R<.2§ - §2)' A = 257 = 1640,
y = 43(1 1), A= ‘i%_” - 1315

2 4

The wave-lengths 1640 and 1215A have been found by Lyman* in
the spectrum of helium. On the other hand, the prospects of proving
the existence of the He *+-lines with the final quantum number n = 1 are
unfavourable, since their wave-lengths are only a quarter of those of the
Lyman series, which themselves already lie in the extreme ultra-violet.

From the difference in the wave-lengths of the He *-lines and the H-
lines, or from the wave-lengths of all the He *-lines that he measured,
Paschen determined the value of Ry, and Ry. He found (we here pur-
posely give all the decimal places of the numbers) :

Ry, = 109722:144 + 0-04
Ry = 109677-691 + 0-06

According to eqn. (12), we may calculate t from these values (cf. also the
correction remarked on in the footnote to eqn. (13)):

(15)

*
"H = 1847, £ =1769.10c . . . (16)
m m

The latter value is almost identical with one obtained from the
Zeeman effect, that is by a semi-spectroscopic method (measurement of
a wave-length + the measurement of a magnetic field) and probably
represents the at present most accurate value of this quantity. According
to eqns. (10) or (11) we follow Paschen or Flamm, respectively, in de-
ducing from Ry or Ry, that

R_ =109737°11 + 0-06 . . . . an

In the series of spectra of the hydrogen type there would now become
liked with the H- and the He *-spectrum that of Li*+, namely of
doubly ionised lithium. This Li++ again consists of a nucleus and one

* Nature, 104, 565 (1920).

t Cf. L. Flamm, Physikal. Zeitschr., 18, 518 (1917). The values caleulated by
Paschen differ from those given above by some millionths, since he takes the atomic
weight of He as 3:99 instead of 4-00.
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electron ; its spectrum falls under the general category of the form given
by eqn. (17) of the previous section, but with Z = 3. Taking account of
the relative motion of the Li-nucleus, that is:

my = 6:94 my, Ry, = Rc"m - R’f _
1+‘"Tu 1"’@»7,,

we write this equation in the two forms:

v=19 Ru(‘:'li - li)
nt "k
c 71 1 (18)

= Rl G - ey

The first of these forms is the more natural one; in the second, the
triple nuclear charge of the Li causes the deceptive occurrence of the
denominator 3 in the series formula, just as that of the denominator 2 in
the case of He *, which led to its lines being wrongly interpreted as the
“ principal series” and ‘“second subsidiary series” of hydrogen. Un-
fortunately, these series of Li++ have not yet been observed in the
laboratory. Bohr has, however, shown that it is probable that individual
lines in certain nebule of the Wolf-Rayet type may have this origin.
These constellations show characteristically Pickering’s series particularly
intensely. Their physical state therefore seems to favour the ionisation
of the atoms and might therefore lead to the production of Li++. But
since these series have not yet been discovered completely in these
nebulae, we shall not enter into the numerical calculations of Bohr’s
conjecture here.

§5. The Ka-line of Rontgen Spectra. The Model of the He-nucleus

Continuing from the preceding reflections on the spectra of He *+ and
Li ++, we shall proceed further in the sequence of spectra of the hydrogen
type, and, indeed, at once as far as elements of any arbitrary atomic
weight. Let us assume for a moment that the element of atomic number
Z had been deprived of all its electrons except one by intensive ionisa-
tion, or, what comes to the same thing, suppose all its electrons but one
had been removed from the neighbourhood of the nucleus to the periphery
of the atom, then the orbits described by this remaining electron in the
vicinity of the nucleus would be governed by the same simple laws as in
the case of the hydrogen electron, and the spectra that result from the
jumps between these orbits would again be determined by eqn. (17) of
page 216. We shall be able to identify the Rydberg number R that
occurs here with our Rx. For the quantum numbers #» and & > n we
shall insert the simplest values n = 1, k = 2. We then get

v 1 1
R=Z2<ﬁ‘2_z> e )
156
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226 Chapter 1V. The Hydrogen Spectrum

In this we first call attention to the fact that the factor Z3, especially
in the case of the heavier elements, brings this vibration number out of
the visible region far into the ultra-violet. Even in the case of hydrogen
(Z = 1), the line defined by (1) belongs to the Lyman ultra-violet series
(cf. p. 307). As Z increases, the corresponding line passes over into the
Réntgen or X-ray region. As an actual fact, eqn. (1) represents essentially
the principal line of the K-series of the X-ray spectrum, namely the Ka-
line. In Chapter III, § 5, we deduced for this line, by an empirical
method, Moseley’s formula (7) of page 157 :

weo-v(el). o

The difference between the eqns. (1) and (2) consists essentially in the
substitution of Z — 1 for Z. 'Without attaching importance to this for the
present, we shall rather direct our attention to the general agreement
between what our theory led us to expect, leading to eqn. (1), and the
empirical datum expressed in eqn. (2). 'We may then make the assertion :
Independently of the more delailed structure of the atom, the field of the
nuclear charge predominates in its interior. The electron which produces
the Ka-line behaves in the main as if it confronted the nucleus alone. The
spectral formula of the Ka-line 13 essentially of the simplest type, that of
hydrogen. '

To arrive at a closer understanding of the Ka-emission, we shall follow
the example of Debye * and drop the assumption that all electrons except
one have been removed from the vicinity of the nucleus. Rather, we
know from § 4 of the preceding chapter that in the excitation preparatory
to the K-emission, only one electron is taken out of the K-shell and
removed to the periphery of the atom. This one missing electron is then
replaced in the K-ring from the next following L-ring when the Ka-line
is produced. Let p be the normal number of electrons in the K-shell, ¢
that in the L-shell. 'We imagine both as circular rings and suppose the
p or g electrons, respectively, distributed at equidistant intervals along
them. The initial and final state of the atom in the K-emission may then
be characterised by the following scheme :—

K-ring L-ring
Initial state . . . .p=-1 q
Final state . . . .p g-1

The outer rings that follow the L-ring are to be left out of considera-
tion in this, since they are not (or at least not essentially) brought into
question by the Ka-emission.

Our next step is to evaluate the energy constants W for the K- and
the L-ring, at first for the normal distribution of the electrons. We
assert that they are given by:

* Physikal. Zeitschr., 18, 276 (1917).
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§ 5. The Ka-line of Rontgen Spectra 227

K-ring: W= - plz'——:lZ2 Zy=12 -5,

L-ring: W-——qI;:LZ,,, Zy=2—p-s,

3)

and that at the same time the radii of the rings, as calculated from eqn.
(5) on page 74 are given by: :

12

K-ring: a = Z—a’, Zy=14-s,

9% 4

Lring:a = 5=, Zy=Z-p~s,
o

in which a,, is the radius of the first Bohr circle for hydrogen, and s,, s
denote the quantities introduced on page 75.

To prove our assertions we set up, exactly as on page 211, the classical
and the quantum condition for the determination of a and w, the radius
and the angular velocity, whether in the K-ring or the L-ring. In deriv-
ing the classical condition, we fix on any one electron of those in the ring
for which we are making the calculation and let this be subject not only
to the centrifugal force and the attraction of the nucleus but also to the
repulsion exerted by electrons of the same ring as that to which the
selected electron belongs. The latter repulsion, by eqns. (9) and (10) of
page 75 (n = p or g, for the K- or L-ring respectively) amounts to :

=n- 1

sm —

In the case of the L-ring there becomes added also the repulsion
exerted by the inner K-ring on the selected electron of the L-ring. If we
suppose the K-ring, as an a.pprox1matlon contracted into the nucleus,

the repulsion is expressed simply by p . The classical condition there-
fore becomes

2 2 2
for the K-ring: maw? = g_g _ Oy Cly

a‘l a* a'l -
9)
2 2 (
eZ e e’s, 7,
for the L-ring: maw? = —- - il}) - =T
a a a a

in which Z,, has the same sngmﬁcance as in (3) and (4).

Let the quantum condition be the same as in the case of hydrogen ;
it requires that every electron of the K-ring rotate with one quantum of
moment of momentum, and every electron of the L-ring with two such
quanta. Thus

Kring: mate =

-ring - © = 2
o N
Ting: male = g-
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228 Chapter IV. The Hydrogen Spectrum

As is evident, the present conditions (5) and (6) arise from the earlier
eqn. (1) of page 211, and (2) of page 212, if we set in the latter

E =¢Z,and n = 1, or = 2, respectively . . (7

For this reason we may also take the value of a for this equation out of
the eqn. (4) of §3. But the latter becomes our present eqn. (4), if we
compare our present and the former eqn. (7). Our eqn. (4) is thereby
proved.

To pass on to eqn. (3), that is, to calculate the energy, we first write
down the potential energy of the nucleus and (in the case of the L-ring)
that of the K-electrons (that are nearer the nucleus) for the individual
electron, namely :

— e 2
2 and + %P,
a a

Next, the potential energy of the electrons of the ring under consideration
with respect to the selected electron (belonging to the same ring) is, by
eqn. (12) of page 75 (n = p or g for the K- and L-ring, respectively :
2els,,
“a
The potential energy with respect to all the electrons of the ring in
question therefore becomes (cf. also eqn. (13) of p. 75) :

. e? 2 27,
K-ring: —p—z+ p%=pT’ l

. e*Z e e3s 27
L-ring: -—q—+q p+qa. =qT"}

@)

But the expressions to be proved, contained in (3), arise from these if
we insert the value of (a) from (4) and take into account that here, too
(cf. Note 5) the total energy is equal to one-half of the potential energy.

The radiation emitted when the atom passes from the initial state to
the final state is governed by Bohr's frequency condition :

hv=W,-W,. . . )

By inserting here the values from (3), the terms relating to the final state
appear with a positive sign, those relatln% to the initial state appear with
a negative sign. Concerning the different meaning of Z,, for the initial
and the final state, we refer to the above scheme for the generation of the
Ke-radiation. We get from (9) :

(Z -s)° _ (-1) (_Z_:lf,u)f

v
i P —
R 1¢ (10)

Z - —s_‘~’ Z - +1 s,)?
+(q_1)( ‘p22 4 1) ( P gy l)

The result so obtained looks much more complicated than our eqn. (1),
to which we were led by generalising directly Balmer’s formula. The
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§ 5. The Ka-line of Rontgen Spectra 229

fact that a closer relationship holds between (10) and (1) in spite of this,
becomes clear when we develop (10) in powers of Z. We get
1

f:=za(%_2_,)_ 2Z<DP_D,—p—;g)+C .oay

in which we use the abbreviations :
Dp =Ps, - (P - l) $p-1, Dq =qs, — (q - 1) $~1,
2 2
Cmpst—(p-1)st,+(q-1) (PL:LQ—J). _ QM:—SJ

Thus we see: eqn (1) is the first member of the development of egn. (10)
in powers of Z. The fact that the K-emission s of the hydrogen type, is
exzplained not only if we assume provisionally as above, that, as in the case
of hydrogen, a single electron effects this emission, but also if we assume our
present picture of electronic rings that are occupied by several electrons.

Our next step would be to choose our integers p and g so as to obtain
as close a connexion as possible between eqn. (10) and the observations
of the Ka-line. According to J. Kroo,* this is attained by using the

values :
p=3, g=9. . . . . (19

This connection is noteworthy but it is not perfect. We show this in the
following teble calculated by Siegbahn.t The first column contains the

TaBrLE 26
Z Theor. Exper. A
17 CG1 . . . 192-78 19812 - 039
19K . . . 248-76 244°06 - 030
20 Ca . . . 271-60 27186 - 026
21 Se . . . 800-99 801-22 - 028
24 Cr . . . 898-55 398-78 - 028
26 Fe . . . 47149 471-58 -~ 009
27 Co . . . 51034 51046 - 011
28 Ni . . . 5560-80 550-73 + 007
29 Cu . . . 592-85 59275 + 010

elements and their atomic numbers; the second contains the theoretical
values of % according to Kroo's assumption (12), in which, however, the

relativity correction is taken into account, which was already men-
tioned on page 158 but which will not be set on a firm foundation till we
get to the final chapter. The formulese, completed in this way, are con-
structed quite analogously to eqns. (10) and (11), but differ from them by

* Physikal. Zeitschr., 19, 307 (1918).
+ Ann. d. Phys., 59, 72 (1919). This is the same essay as that already quoted on
page 152, in which Siegbahn describes the method of his precision measurements.
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230 Chapter IV. The Hydrogen Spectrum

terms of small numerical value, that contain higher powers of Z and that
are due to the change of the electronic mass with high velocities. The
third column contains the experimental values of v/R in agreement with
our Table 11. The fourth column contains the difference A between the
theoretical and the experimental values. It shows that the course of the
values is regular and increases linearly with Z. It is impossible to
eliminate A by choosing other values for p and g. Is it possible to ex-
plain it by refining further the above scheme of calculations ?

Continuing from Kroo's essay, the author has pointed out * that,
strictly speaking, not only the proper energies of the K-ring and the
L-ring, but also the mutual action between these rings themselves and
also with respect to the outer rings have to be taken into account, and
that the outer rings, which were neglected in our calculation, by con-
tracting or expanding, according to the electrons present in the inner
rings, likewise contribute amounts of energy to the emission of Rontgen
rays. Moreover, these energies, due to mutual action, depend on whether
the rings are imagined co-planar (lying in one plane), or with their planes
inclined to one another in space. It was possible to prove, however,
that, although these amounts of energy were not negligible in themselves,
they, for the most part, cancelled one another.

On the other hand the question arises, whether the notion of plane
rings can be more than a rough approximation of the true arrangements.
We are inclined, at the outset, to answer in the negative. We shall ex-
pect, not plane rings, but spatial shells (e.g. 8-shells, ef. p. 203). From
the point of view of the periodic system, the numbers p = 3, ¢ = 9 cer-
tainly do not inspire confidence. Rather, in conformity with the whole
structure of the system of elements, we must demand that p = 2 for the
K-shell, and ¢ = 8 for the L-shell. Furthermore, we must demand that
the same numbers p and ¢, with which we represent the Ka-emission,
and the corresponding and fixed distribution numbers for the outer shells
account for not only the Ka-line, but also for the remaining lines of the
K-spectrum as well as those of the L- and M-spectrum. Many tentative
calculations in this direction, in particular by L. Vegard, show that this
is impossible even if moderate accuracy and completeness is aimed at.

But there is another fundamental feature that must prevent us from
proceeding along the way that we have started along. The whole calcu-
lation of this paragraph depends on the assumption that the g-electrons
of the L-shell are equivalent as regards their energy. This assumption
is certainly not right, as our later critical investigation of the “ elliptic
complex” (Ellipsenverein) in Chapter VIII, § 5, will show, and it
leads to absurd consequences.

As a result of this, the detailed explanation of the Ka-line here at-
tempted has only limited importance. The similarity between Balmer's

* Physikal. Zeitschr., 19, 209 (1918).
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§ 5. The Ka-line of Rontgen Spectra 231

and Moseley's formula demands an explanation. We showed that the
term in Z? furnishes the clue, whether we consider only the motion of
a single electron, or whether we consider the tramsition of an electron
between shells occupied by several electrons. The similarity of X-ray
spectra with those of the hydrogen type extends thus far ; but it does not
furnish a complete theory of the energy-levels of Rontgen rays.

Nor can we claim to have obtained final results in the next matter of
discussion, in which we are concerned with an experiment leading into
the region of nuclear physics, namely, in finding the quantum elaboration
of our model of the helium nucleus. Following the suggestion of Lenz,
we described this on page 97 as an inverse oxygen model, of which an
illustration was given in Fig. 23. It has two negative electrons separated
by a distance 2b, surrounded by four positive electrons or H-nuclei
(protons), the latter being distributed at equal distances along a circle of
radius 4, and rotating with the uniform angular velocity

We have two classical and one quantum condition for determining
the three unknowns a, b, w.

First, we have the condition of equilibrium for the negative electrons
under the action of their mutual repulsion, and of their attraction towards
the four positive electrons (protons), both according to Coulomb’s law.
The repulsion amounts to ¢2/45?%; the attraction due to a single H-nucleus
is €¥/(a® + b%), and has the component e2b/(a? + b%)! in the axial direction.
Hence the condition of equilibrium when four nuclei are present is:

e? 4¢’b
= @4 By
From this it follows that :
(0 + B = 168, ot b= 168 )
1 @ 16ia?
’ 161 — 1

N o B (13)

Then we have the mechanical condition of eqilibrium for one of the
rotating positive electrons. Its centrifugal force is myaw?. The com-
ponent of attraction, due to the individual negative electron, in the radial
direction amounts to e%a/(a? + ?)"; it must be doubled owing to the
presence of the two negative electrons. The repulsion due to the three
remaining electrons likewise acts in the radial direction, and is given,
according to eqns. (9) and (10) on page 75, by e%s,/a?, where s, has the
value 0-957, according to Table 3. Hence the condition of equilibrium

of the positive electrons in the radial direction is : .
2e?a e?
2 — — 14
RGO = (gt 1 bt T g7 (14)
If we insert the value of a? + 5% from (13), it follows that
mpaie? = e2[1(16% ~ 1)! — 5] = 0-58¢ . . (15)
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232 Chapter IV. The Hydrogen Spectrum

Finally, we apply the quantum condition for the rotation of the
positive electrons (or protons). As in eqn. (6), we assume in the case of
the K-ring that each electron rotates with an amount of energy equal to
one rotation-quantum. We then have

2rmygate = h . . . . . (16)

The essential difference between this and the determination of the size
of the hydrogen atom in §3 consists in the fact that the mass m of the
negative electron is replaced by the 2000 times greater mass my of the
positive electron. The result is that the radius a of our model of the helium
nucleus s about 1000 times smaller than the radius a, of our model of the
hydrogen atom. For we get from (15) and (16), by eliminating w:

1 h3
¢=058 1% 26 my,
or, taking into consideration the significance and the size of the hydro-
gen radius 4, in eqns. (7) and (9) on page 213, and the value of 7% in
eqn. (16) on p. 224, we get
m & _ 1 053.10-8
%=y 058 1847 038

The same quantum condition that determined the correct atomic size of
the model of the hydrogen atom leads to the reswlt that our model of the
helium nucleus becomes of sub-atomic size and that it shrinks, compared

=560.10-2cms. . (17)

with the former model in the ratio %

According to Rutherford’s experiments on deflections of a-rays,
certainly, the true extent of the helium nucleus is markedly smaller,
namely 3.10-1® ems. We may explain our different result on the ground
that at such small distances and with such concentrations of energy
Coulomb’s law no longer remains valid (cf. p. 97), or by admitting that
the details of our model are not yet correct. In any case, our calculation
is worthy of notice, since it gives a hint as to how the smallness of the
dimensions of the nucleus and the holding together of the nuclear parts
comes about. As a matter of fact we have the firm conviction that the
quantum theory holds sway even in the interior of the nuclei, and that the
structure of the nuclei is governed by the same quantum laws as govern
the structure of the atoms.

§ 6. Elliptic Orbits in the Case of Hydrogen.

In § 4 we subjected the model of the hydrogen atom to a first test by
demanding that the law of the persistence of the common centre of
gravity should hold for the two-body problem : nucleus + electron. This
leads to an elaboration of the first Kepler law and to a refinement of the
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§ 6. Elliptic Orbits in the Case of Hydrogen 238

definition of Rydberg’s number. We next apply a second test to our
hydrogen model, by asserting that elliptic orbits are possible as well as
circular orbits. In this sense we enunciate Kepler's first law in its
complete astronomical form :

The planet moves in an ellipse at one focus of which the sun is
situated.

In this formulation of Kepler’s law we have for the present disregarded
the relative motion of the nucleus; we can easily make up for this little
imperfection later.

Our chief concern is to select from the manifold of all mechanically
possible elliptic orbits those that are possible according to the quantum
theory. The motion in the elliptic path represents a problem of fwo
degrees of freedom, since the position of the electron is determined by two
co-ordinates, most simply by the polar co-ordinates measured from the
nucleus, namely the azimuth ¢ and the radius vector . 'We then get for
the element of orbit ds of the electron

dg? = dr? + ride?.
Hence the kinetic energy becomes
m(ds\! m
EBiin = E(d_t) = ﬁ-(fz + ,'.g¢g) . . . (1)

and the potential energy becomes (we here again denote the nuclear
charge for the present E)

eE
T

@)

Corresponding to the position co-ordinates ¢ = ¢ and g = 7, respectively,
we define the corresponding impulse co-ordinates (momentum co-ordinates)
in accordance with § 1 of this Chapter (p. 195), namely
dEy;
p=dé". I ¢

Epoc=' =

‘We denote these impulse co-ordinates by pg and p,, and then we get, on
account of (1) and (3),
pp =mrid, pr=mr . . . . 4
where p, is the moment of the momentum mv, namely the product of
the perpendicular distance 7 and the azimuthal component mré of the
momentum, and p, is directly the radial component m7 of the momentum
(cf. Fig. 70, in which the component # of the velocity in the direction of
the radius vector and the component r¢ perpendicular to it in the direction
of ¢ increasing are shown). According to Kepler's second law (*the
radius vector sweeps out equal areas in equal times”), py is a constant
during the motion, the so-called ‘“areal constant.”” We indicate this by
setting in future
Po=D . . . . . )
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234 Chapter 1V. The Hydrogen Spectrum

In our general formulation of the quantum theory, § 1iof this Chapter,
eqn. (20), the quantum conditions for our system of two degrees of freedom
are:

& =2 ¢ ==2r
j1)¢d¢ =nh |pdr=a'h . . . (6)
¢=0 =0

The limits of the integrals correspond to the rule for limits given on
p. 201. They include the full range of values of the position co-ordinates,
namely, in the case of ¢, the region from ¢ = 0 to ¢ = 2, and, in the
. case of 7, the region from 7, to
Tmaz and then back to 7, again,
for which in the case of the closed
elliptic orbit, too (but not in the case
of an open orbit, such as we shall
later have to consider), we may
again write ¢ =0 and ¢ = 2=
For we want to ascribe to the
perihelion 7., the azimuth ¢ =0
(cf. Fig. 70); = 7 then corre-
sponds to the aphelion 7,z2. In the return to the perihelion ¢ again in-
creases to the value ¢ = 2x. The first equation (6) will be called the
azimuthal quantum condition, the second equation (6) will be called the
radial quantum condition.
On account of (5) the first equation (6) becomes

2rp =nh . . . . . W)
namely, the quantum condition of the rotator given earlier (eqn. (18) on
p- 199). The second equation (6) has to be restated in terms of the
orbital equation of the ellipse.

According to elementary analytical geometry we write this equation
in polar co-ordinates thus:

Fig. 70.

1
;=0C + Cyecosgp . . . . (8)

To determine the constants C, and C, that have for the present been
left indeterminate, the following relations are used (cf. Fig. 70):

Major axis a = MP = MA,
Eccentricity ae = OM,
: . OM
Numerical value of the eccentricity e = MP
Minor axis b=MQ=a1l-¢,
Perihelion ¢ =0,7=rpin = OP =a(l - ¢,

hence, on account of (8),
1
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§ 6. Elliptic Orbits in the Case of Hydrogen 235

Aphelion ¢=m7="Tme=0A=a(l+e),
and hence, on account of (8),
1
a‘(]._+—ej =C, -G, . . . . (10)
From (9) and (10) we get
1 1 1 €
G=G1—e G=u1_-¢

and eqn. (8) becomes :
1 114+ ecos¢

F ST I-é (1)
From this it follows by logarithmic differentiation with respect to ¢ :
1dr € sin ¢ (11a)

7—'d¢ 1+ ecosd

In the radial quantum condition (6) we now write, in view of (4) and (5),

dé : (12)
d’r = BT#' ¢ J
On account of (11a) we therefore get
1 dr\? g sin? ¢do
p,d'r—-p( = Pe (1 + ecos ¢)?
and our radial quantum condmon becomes
sin? ¢ ,
P j(1+ecos¢)3 dp = wh
or, on account of (7),
e sin? ¢ n
—kf:5§@2¢ L)

The left side depends only on the eccentricity e. That is, € is determined

by the two integral quantum numbers # and »'. In Note 6, eqn. (7), at

the end of the book, it is shown that by carrying out the integration in
(13) we get :*

' 2

o —1="thatis1-e&= ¥ __

N R o that is, € o+ A

The areal constant p determines the size of the ellipse, the eccentricity e

determines its form. Hence, through the azimuthal and radial quantum

(14)

* W. Wilson derived the above eqns. (18) and (14) a little earlier than the author
from his general formulation of the quantum conditions quoted on page 200 (Wilson’s
essay in Phil. Mag., 31, 161 (1916) was completed in Nov. 1915, the author’s was
finished in Dec. 1915). But no application of these equations to Balmer's series have
been made by Wilson.
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236 Chapter 1V. The Hydrogen Spectrum

condition, egns. (7) and (14), the size and form of the elliptic orbit is fixed
in accordance with the quantum theory. From the continuous manifold
of all possible ellipses there are thus selected a family of quantised ellipses,
given by the two positive integers n and n'.

We next turn to the calculation of the energy. The kinetic energy is,
by (1), (4), (5) snd (19).

_m . -2=_1_2}f=p2 1dr\2
Erin = 7(7'2 +7%) 2m( = 2m1"‘|:<’;71<—i>> * 1] (19)

If we here use (11) and (11a), we get

Eiin = %sz——d)‘ [€sin? ¢ + (1 + € cos ¢)?]
= ma‘l(f)g—- o ! '; ¢ + ecos ¢> . . . (15a)
On the other hand we have, by (2) and (11),
Bpo = -0 —-Ciltcos¢ g

The sum of the kinetic and the potential energy must be independent of
the time, and hence also of ¢, namely it must equal the energy constant
W. From this it follows that the factor of € cos ¢ in this sum must
vanish. This gives
P ___¢E _ P
APl al-& “TmEa-e - @D
The value of a obtained in this somewhat indirect and artificial way
might have been obtained more directly from differential equations of
the problem, but we wished to avoid writing down the latter. By re-
writing the value of a by means of (7) and (14) and adding the value of
b(= a1 - &), we get

h 2

&= g E(n+n) b= En(n+n) . (18)

On the other hand, by using (15a) in (17) and then adding (16), we get

eE 1+ & eE

= B =_ " _(—— -1)=- = . 1

W= Buin + Bpor = 2 a)( FS-)=-g - @
If we insert in this the value of a from (18), we have
2r'melE? 1

W=- el rerar . . (20)

This result is of the greatest consequence and is superlatively simple :
we have found for the energy of the elliptic orbits the same value as in egn.
(13) on p. 214 for circular orbits, with the one difference that the quantum
number n in the latter case is replaced by the quantum sum, % 4+ ="
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§ 6. Elliptic Orbits in the Case of Hydrogen 2837

Each of the quantised ellipses of our family has an amount of emergy
equivalent to thal of a definite Bohr circle.

‘We next consider an ellipse of the family as the initial orbit—let its
quantum numbers be % and %—, and another as the final orbit—with
the quantum numbers » and n". In order that the transition may be
free and accompanied by the emission of energy, we must certainly have
kE+ K>n+ n (cf. eqn. (20), in particular as regards the signs). We
calculate the energy radiated out according to the hv-law (Bohr's
Frequency Condition). We get a result quite analogous to eqn. (15),

page 216:
V=M(§)’( ! 1 ) - - @y
h* \e/\(n+n)? (k+k)*
For hydrogen E = e, this simplifies, if we introduce Rydberg's

number R, to: 1 )
y = B((n T G k,)z) ... (99

From the point of view of practical results, this spectral formula
again gives only Balmer’s series, but it has a deepened theoretical signifi-
cance and its origin has now multiple roots. By the admission of our
elliptic orbits the series has gained no extra lines and has lost mone of its
sharpness.

When the author, early in 1916, developed the above theory, he
referred at the outset to a series of indices * by which the various possi-
bilities of generation contained in a Balmer line may be made manifest.

1. In the natural state of the H-atom without a super-imposed field
the various possibilities of generation coincide only accidentally, as it
were, in one line. But if we allow an electric field to act on the lumin-
escent atom, in the manner practised by Stark, the original quantum
orbits will be disturbed. It is evident that the disturbance will affect
the various ellipses differently ; it will therefore alter the energy of the
various orbits differently in each case. The result is the so-called
8tark effect, to which we shall return in the next chapter. 2. Similar
consequences follow from the application of & magnetic field and the
result is the Zeeman effect. Here, too—both in our theory and in the
older view based on the classical theory—the resolution of the lines is
not due to new possibilities of vibration being generated but to the cir-
cumstance that lines which were originally coincident are differently
displaced and hence separated by the magnetic field. We shall also
study the Zeeman effect in the next chapter for the case of the hydrogen
atom. 3. The most beautiful and most instructive manifestation of the
various elliptic orbits that belong to the same Balmer line is, however,
given by Nature herself without our agency in the fine structure of space-
time conditions as reflected in the fine structure of spectral lines. The

* Sitzungsberichte der Miinchener Akademie, 1915, p. 425, cf., in particular, §86.
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238 Chapter IV. The Hydrogen Spectrum

last chapter will deal with this subject. 4. The coincident lines in the
case of hydrogen may be separated by an inner atomic field in place of
an external electric or magnetic field. Such an inner atomic field does
not, indeed, occur in the case of hydrogen itself or atoms of the hydrogen
type (an electron and & nucleus, singly or multiply charged) bus in the
case of all other atoms (neutral He, Li, etc.). In the next chapter but
one we shall see that such atomic fields are the cause of the one Balmer
series of hydrogen in the elements not of the hydrogen type splitting up
into the series systems: Principal Series, First and Second Subsidiary
Series, ete.

We now enumerate the various possibilities of circular and elliptic
orbits that belong to a given value of n 4+ n'. To begin with, we remark
that: (a) n’' = O denotes a circular orbit. For when n’ = 0, then by
eqn. (14), e = 0, and the focus and centre of the ellipse coincide, that
is, the ellipse degenerates into a circle. This could also be read off
more directly from the radial quantum condition (6), which shows that
when n’ vanishes, p,, that is #, also vanishes, and hence 7 must be con-
stant.

(6) n = 0 denotes a degenerate ellipse ; it is the focal distance counted
twice. For when n = 0 we get from (14), ¢ = 1, i.e. the perihelion and
the aphelion coincide with the two foci. This follows more directly, too,
from the azimuthal quantum condition (6) and its connection with the
areal constant p. This denotes the area swept out by the radius vector
in the unit of time. If this is to vanish,* the orbit must degenerate into
a double line with a zero areal content. But the electron, in describing
this orbit woutd fall into the nucleus. Owing to the permanence of
atoms we regard this as impossible. Thus we declare the orbit n = 0 to
be impossible and do not include it among the following orbits. In Fig.
71 it is indicated by a dotted line.

The number of possibilities that belong to a given value of n + #’, for
example, n + n' = 3, is obtained from the apparently not very subtle
equation of resolution :

3=n4+1n=3+0=2+1=1+ 2

We thus have three possibilities; the fourth, 3 = 0 + 3 is excluded as

being fictitious by what was said under (b). In all three cases we have
3

h
for hydrogen, by eqn. (18) (E = ¢, a, = Irimet = radius of the first Bohr

circle), the same a, namely a = a, . 3%
On the other hand, b, by the same eqn. (18), changes in steps thus:

b=a,.3.3, b=4a,.2.3, b=gq,.1.3.

* We are here concerned with the limit p = 0. If we set p» = O directly, that is, if
we let the electron fall into the nucleus without a blow from the side, then if we
suppose the nucleus to be penetrable, the eleotron could oscillate pendulum-like to
equal distances on the other side and back, moving to and fro. In reality, of course
both the orbits line » = 0 and simply p = O are to be rejected.
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§ 6. Elliptic Orbits in the Case of Hydrogen 289

After this, the following tabulation with the illustrations of Fig. 71
will be immediately intelligible :—

n + n' = 1, one possibility.

n=1 n=0 a=a=1b
Circle.
n + n' = 2, two possibilities.
n =2 n =0 a = 2%, b=a
n=1 n =1 a = 2, b = a/2
3

A circle, or an ellipse of eccentricity e = —5=

n + n' = 3, three possibilities.

n=3 n =0 a = 3%, b=a

n=2 n =1 a = 3a, b=3a

n=1 n =2 a = 3, b= 3a
V5 V8

Circle, or ellipses of eccentricities ¢ = —3~ore = —3—

0%
@
@

L] s, 18s,
Fig. 71
n + n' = 4, four possibilities.
n=4 n =0 a = 4a, b=a
n=3 n =1 a = 4%a, b=ia
n =2 n =2 a = 4%a, b=3a
n=1 n =3 a = 4%, b=1la
e 7 12 15
Circle or ellipses of eccentricities e = —%é, € = JT’ or € = i;é

The figures here drawn do not exactly correspond with reality: in the
first place, for the sake of economising space, we have not drawn them to
the same scale (cf. the accompanying arrows a,, 4a;, etc.); secondly, to
give a better survey of the curves we have drawn them concentrically
instead of confocally. But if we keep the position of the nucleus fixed in
the figure, then, not the centres, but the foci in which the nucleus (at rest)
is situated, coincide. In this way there result from Fig. 71 the following
figures which bring out the true conditions better.

Now that we have investigated the various possibilities for the single
orbit when n + ' is: given, we can immediately state the number of
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240 Chapter IV. The Hydrogen Spectrum

possibilities for the transition from an initial orbit (with a given k + %)
and a final orbit (with & given n + n’). In general this number is equal
to the product (n + #') (k + &'), for example, in the case of the He *-line,
1% = % - i—,, it is equal to the product 3 .4 = 12 (combination of one of
the four initial orbits of the fourth drawing of Fig. 72 with one of the
three final orbits of the third drawing of Fig. 72). In the same way we
get for the Balmer series the following number of possibilities of
generation :—

H. Hs H, H,

2.3 2.4 2.5 2.6

In thus enumerating all these possibilities of production we do not
wish to affirm that they are all realised in nature. In the next chapter
we shall develop a “ Principle of 8election ” which separates out from the
totality of the possible transitions between orbits those that can excite the
emission of radiation. So far our enumeration has started purely from
the possibilities in the atom. Through the linking up of the atom with

a. b. c. d.
Fia. 72.
the “ether” both in respect to energy and impulse, several of these
possibilities become fictitious.

The relative motion of the nucleus that has so far been disregarded
may be added in the case of elliptic paths just as easily as in that of
circular orbits. From the equations of motion of the nucleus and the
electron separately we form, as for the astronomical Kepler problem, the
equations for the relative motion of the electron with respect to the
nucleus. These differ from the equations of motion for when the nucleus
is at rest, in that the “resultant mass” u (eqn. (3) on p. 220) takes the
place of the electronic mass m. The same holds for the azimuthal and
the radial quantum condition. We first postulate that the sum of the
phase-integrals calculated for the motion of the electron and for that of
the nucleus, both for the ¢ as for the r co-ordinate, is equal to a multiple
(n or n’) of h, and therein we express the corresponding distances between
the centre of gravity in terms of the distance between the electron and
the nucleus in the relative motion. The result is the same quantum
conditions as in eqn. (6) of this section but with . instead of m. Con-
sequently . also takes the place of m in the expression for the energy.
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§ 6. Elliptic Orbits in the Case of Hydrogen 241

The result of this for the spectral formula is that Ry, Ry, etc., take the
place of Ro, whereby these symbols have the same meaning as in eqns.
(9), (10), (11) of §4. We may conveniently refrain from carrying out
the calculations here sketched. Perhaps we may finally make two
observations regarding the method of calculation.

The above treatment of Kepler's problem was kept as elementary as
possible. But by using the methods of higher mechanics in our dis-
cussion of the same problem in Note 8 at the end of the book, we shall
not only reduce the amount of calculation but also gain in precision.
For we shall be able to present points of views to show that the polar
co-ordinates here used are prescribed by the very nature of the problem
and thereby give an answer to the question which was raised in § 1 of
this chapter on page 201. The method that is to be developed later is
unquestionably superior to that used in this paragraph. Moreover, the
method of treatment of this paragraph cannot quite escape the reproach
that it leaves a certain gap in not giving reasons for the choice of co-
ordinates. Nevertheless it was inevitable that we should begin with the
visual methods of this section ; they form the proper introduction to the
more abstract method of Note 8.

Our second remark, too, concerns a certain gap in the preceding
representation. For Kepler’s problem belongs to those exceptional cases
of which we spoke on page 200; it is a so-called degenerate problem.
The external characteristic of 4 degenerate problem consists in the
circumstance that in it the choice of co-ordinates is not unique and
that, therefore, the quantum conditions, too, that depend on the choice of
co-ordinates, may be applied in various ways. In the case of our Kepler
problem, the so-called parabolic co-ordinates that we shall use in § 4 of
the next chapter, are in principle admissible as well as polar co-ordi-
nates. By making use of these parabolic co-ordinates we should
get quantised ellipses selected from the group of Kepler orbits differ-
ent from those which we get when polar co-ordinates are used.
The justification for favouring the latter is offered only when we have
performed a passage to a limit, namely, by treating our problem first
according to the laws of relativistic mechanics (cf. § 2 of Chap. VIII) and
then, by neglecting the relativistic variability of mass, passing over to
classical mechanics. The result obtained in this circuitous way agrees
exactly with the result of our above treatment. On the other hand, the
internal criterion for the degeneration of a problem consists in this, that,
to fix the energy and hence also to obtain sharp spectral lines, fewer
quantum numbers are necessary than there are degrees of freedom
involved in the problem. We have already characterised degenerate
systems in this way on page 200. In our case the quantum numbers n
and n' do not actually enter into the expression (20) for the energy
individually, but only the quantum sum n + #’. Thus, from the view of
quanta, our problem has, so to speak, not two, but one degree of freedom.

16
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242 Chapter IV. The Hydrogen Spectrum

From the point of view of his own principles, Bohr* accordingly
denies that both conditions (6) are necessary for the treatment of the
non-relativistic Kepler problem. We must of course admit that this
view is incontestable, but, on the other hand, we can point to the fact
that, from the physical point of view, our problem is to be regarded only
a8 the limiting case of the non-degenerate relativistic problem, in which
both quantum conditions, the azimuthal and the radial condition, come
fully into their own.

§ 7. Quantising of the Spatial Position of Kepler Orbits. Theory
of the Magneton

In the preceding section we quantised the Kepler orbits with respect
to size and form, by means of the azimuthal quantum number » and the
radial quantum number #’. We wish to show that the quanta can
perform still more: they also determine the position of the orbits in space,
that is, they select from the continuous manifold of all possible positions
of the orbits in space & discrete number of orbits that conform with
certain quantum conditions.

It is possible to quantise spatially only, of course, when a certain
favoured direction is given with re-
spect to which we may measure the
orientation of the orbits. Such a
favoured direction may be given
either by an external field of force or
by an internal atomic field. The first
case is simpler and will be considered
here. But in this case, too, we have
no longer, even for the hydrogen
atom, pure Kepler orbits. Rather,
these are deformed through the ex-
ternal field of force. If we wish to
manage with the Kepler orbits, not-
withstanding this, we must pass on
to the “limit when the force tends
to zero.” In this passage to the
limit, on the one hand the disturbance of the orbits by the field of force
vanishes, but on the other hand the possibility of their orientation with
respect to the field of force remains. The reason for this is that, whereas
the disturbance of the orbits is a phenomenon which varies continuously
with the field of force, the orientation of the orbits is restricted to certain
discrete possibilities. That is why the latter remains after the passage
to the limit, whereas the former vanishes.

Fia. 78.

* Cf., for example, what he says on page xv of his introduction to his collected
essays on atomic structure, published in German by Vieweg & Son, Braunschweig,
1921,
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§ 7. Quantising of the Spatial Position of Kepler Orbits 243

We take the direction of the lines of force as the axis of a spatial
polar co-ordinate system 76y ; in Fig. 73 this is the axis SN. We as-
sume the nucleus to be at rest in O; we draw the unit sphere (i.e. one
of unit radius) about O as centre. Let the variable radius OP point to
the present position of the electron. Let OK be called the common line
(“ Knotenlinie "); it is the line of intersection of the equatorial plane
ORQ and the orbital plane OKP. The great circle KPAB is the trace
of the orbital plane on the unit sphere. The *latitude” 6 is represented
in the figure by PN, the longitude y, reckoned from the common line,
is represented by KQ; in addition, we consider the * orbital azimuth” ¢,
which is given by KP. Let a be the angle between the direction ON of
the lines of force and the normals OM to the orbital plane; a appears
in the figure as the arc MN, and at the same time as the angle at K in
the spherical triangle KQP, which is shaded in the figure.

Corresponding to our three degrees of freedom 76y, we have now three
quantum conditions :

jp,dr - wh; jp,,dq, = mh; j pdf = mph . (1)

The integration with respect to y is from 0 to 2r. The integration for
0 stretches (cf. p. 201) from 6,,;, = NA beyond 0,4, = NB back t0 Onin;
the integration for r is as formerly (cf. p. 201) from 7mi OVer .4, back to
Tmin- 'Thus the radial quantum integral is not different from that in the
two-dimensional point of view. As in the preceding section, eqn. (14), it
gives us:

2wp(UY_1_T;§-1)=@'h. L@

and determines as before, through the eccentricity ¢, the form of the
orbit. p is the areal constant for the orbital azimuth ¢. The corres-
ponding quantum condition is:

2r
f_pd¢=21rp='nh. A )
[}

Let 7 be called as before, the azimuthal quantum number; as a means of
distinguishing #,, let it be called the equatorial quantum number. We
now assert that the azimuthal quantum number is equal to the sum of
the “equatorial” number 7, and the * latitudinal ” quantum number n,:

n="n+n . . . . . @)

The proof is contained in the definition of p, py, and ps. In general
the following holds (cf. eqn. (5), § 1 of this chapter) for any arbitrary co-
ordinates gp : :

_ OEin C_1Sw .
p ”—aa’, Eiin 9 z P*q;.
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244 Chapter 1V. 'The Hydrogen Spectrum

The latter holds because Ej;;, is & homogeneous quadratic form of the ¢'s
(cf. also Note 4, eqn. (5)). In our case this yields, according as we use
plane polar co-ordinates r¢, or spatial polar co-ordinates réy :

Eiin = $(pi7 + 1) = (0 + pof + pyi)-
From this it follows: . . .
‘ pp = peb + pyy
or, integrated with respect to the time for the whole duration of a com-
plete period :

Ipd¢=jpad0+jp¢d¢ B

The integrals here indicated are our phase-integrals of eqns. (3) and (1);
their values are, in turn, nh, nh, and n,h. Thus eqn. (5) is identical

with eqn. (4).
But between the quantum numbers n and =, there is also the relation
n,=ncose . . . . . (6)

For p is the whole moment of momentum of the rotating electron ; p, is
its component in the equatorial plane. The former is, in Fig. 73, drawn
a8 the vector in the direction of the normal OM to the orbital plane,
the latter as the normal ON to the equatorial plane. As Fig. 73 shows:
we have

Py =pcosa . . . . . (M

According to this, py, just like p, is constant during the motion. The
equatorial quantum condition (1) becomes on calculation

2mpy = nh . . . . .’ (8)
In virtue of this equation and of eqn. (3), (7) is shown to be identical
with (6).
Eqn. (6) already contains the remarkable result that there are certain
quanttim favoured spatial positions of the orbital plane characterised by
integral numbers. Combined with eqn. (4) it states:

cosa=_"1__ N, + Ny, =n . . ()]
n, + Ny
We consider in turn the cases n = 1, 3, 3, . . . and represent them

by the Figs. 744, B, c. In them, the direction of the lines of force is, as
in the preceding figure, supposed to run from the top to the bottom. The
sense of rotation in the orbital plane is arbitrary, but is to be considered
the same in each part of Fig. 74.
n =1 In this case there are, according to eqns. (4) and (9), only
two possibilities :
n =1 n, =0 S cosa=1

a2

and
n =0 n, =1 cosa = (

<

Google



§ 7. Quantising of the Spatial Position of Kepler Orbits 245

Hence the orbital plane is either the equatorial plane (a = 0) or a
meridian plane through the direction of the lines of force (a = =/2).
Fig. 744 exhibits sections of both planes.

n = 2. According to eqns. (4) and (9) we have here three pos-
sibilities :

n =2 ny =0 cosa =1
n, =1 ny, =1 cosa = 4
n, =0 ny = 2 cosa =0

Besides the equatorial plane (a« = 0) and the meridian plane
(e = w/2), there is a third possible inclination of the orbital plane,
namely, that making an angle of 60° with the equatorial plane (a = 7/3).
Fig. 748 shows those three positions in section. The orbital plane, in-
clined at 60°, can of course be rotated arbitrarily about the direction of
the lines of force; in the figure this is indicated by drawing the optical

D A
N

A

n=1 D=2 n=3
Fia. T4.
n = 3. Here there are four possibilities :
n =3 ng =0 cosa =1
n =2 ny =1 cosa = %
n, =1 ng = 2 cosa =}
n =0 n, =3 cosa=0

These four positions of the orbital plane may be constructed, as has
been done in Fig. 74c, by dividing the radius into three equal parts. The
positions corresponding to the values cos a = § and cos a = 4 have been
drawn twice, to indicate that the corresponding orbital planes may be
rotated about the direction of the lines of force.

So the process continues. In each of these orbital planes in space
the electron may clearly describe, besides the circular orbit indicated by
n, o series of elliptic orbits; for example, in the case n = 3, it may
describe, besides the circular orbit » = 3, n’ = 0, also the elliptic orbits
n=38 n=1; n=3 n=2; n=3 0" =3,... In the order of
sequence of Fig. 72, these are orbits, each of which is represented by
a different picture among those given; the circular orbit is represented
by Fig. 72c; the first elliptic orbit by the ellipse of Fig. 72D that has the
smallest eccentricity, and so forth.
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246 Chapter IV. The Hydrogen Spectrum

Without doubt this spatial quantiging is one of the most surprising
results of the quantum theory. When we consider the simplicity with
which the positions are derived and how simple is the result, it seems
almost like magic.

Spatial quantising, as long as we stop at the limiting case of the
external force tending to zero, has of course no effect on the calculation
of the energy of the orbits and the spectral consequences following there-
from. The two quantum numbers #, and n, then enter into the ex-
pression for the energy only in the form of the sum: n = n; + n,; that
is, the expression for the energy and the spectral frequencies that are to
be derived from it remain the same as in the case of simple quantising
in the plane.

It is in connexion with this that the spatial Kepler problem is one
degree more ‘ degenerate "’ than the plane Kepler problem. Whereas we
describe it mechanically by three co-ordinates as a problem involving
three degrees of freedom and determine it, according to quantum con-
siderations, by three quantum conditions, only the quantum sum
n, + ny + n' occurs in the expression for the energy. The necessity
of using three quantum conditions may therefore be disputed (cf. the
conclusion of the last section). But if we pass on from the case “ in the
limit the force tends to zero,” to a true field of force, the degenerate
character is eliminated and the existence of three quantum conditions
becomes essential.

In carrying out the latter transition, we get at the same time a
correction of the spatial possibilities enumerated above: in each case
the number is to be reduced by one, since, in each case, the last position
‘in our enumeration, the meridian position characterised by =, = 0,
cos a =0, drops out. The reason is similar to that which in the
previous section led us to declare as fictitious the ellipses that had
degenerated to a double straight line (dotted in Fig. 71). Just as in
the case of the degenerate ellipses the electron would collide with the
nucleus, so we may show that in the meridian position of the orbital
plane the electron, under the influence of an electric force acting in this
plane, would finally approach infinitely near the nucleus. We cannot
furnish the proof before §5 of the next chapter, when we deal with the
Stark effect, and when we generalise it for forces other than electrical
forces in § 7 of the same chapter, in speaking of the Adiabatic Hypothesis.
But we must take the result, which also holds for the case *“in the limit
the force tends to zero,” for granted here, to correct our above enumeration
of the possible orbits in space, which we now state as follows :—

For any arbitrary azimuthal quantum number n there are exactly n
quantised positions of the orbital plane which are characterised by whole
numbers. They correspond to all resolutions of the number n into n, + n,,
including ngy = O (the equatorial position of the orbital plane), and excluding
n, = 0 (the meridian position). Thesc n positions are constructed by dividing
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§ 7. Quantising of the Spatial Position of Kepler Orbits 247

a radius of the equator of the unit sphere into n equal parts and erecting
on the dividing points (excluding the centre of the unit sphere) right-angled
triangles according to the example given in Fig. T4. These figures them-
selves are to be corrected by removing the diameter which is at right angles
to the equatorial plane from the series of the projections of the orbital
planes.

From this point of view we next return again to Fig. 71 of the
previous paragraph. Each part of it was drawn for a given quantum
sum s = n + 7', and consisted of s orbits, namely, a circular orbit (n = s,
n' =0) and s — 1 elliptic orbits (n =8 - 1,0 ' =1; n =38 - 3,8 =3;
n =3 — 3, n’ = 3, respectively, and so forth). By now adding the
spatial position of the orbits and taking into account the above theorem,
we see that each of these orbits may in their turn be produced in as many
ways as the numerical value of their azimuthal quantum number  ; that
is, the circular orbit may be produced in s different ways, the first elliptic
orbit in 8 — 1 ways, the second in s — 2 ways, and so forth. Owing to
the lack of detailed knowledge, we regard all these spatial modes of
generation as equally probable and as occurring equally often empirically ;
we thus arrive at the conclusion that the probability of the circular orbit
to that of the first, second, . . . elliptic orbit is as

s:s—1:8-2:...:2:1 . . . (10

We call this probability the “a priori probability.” We hereby as-
sume as in this whole section the presence of some direction of force or of
orientation in space, but on the other hand we assume that the force
that is present in no wise essentially affects the character of the Kepler
orbits.

Our “a priori probability” will later give us a certain support in
dealing with the difficult question of the intensity of spectral lines.
Even now, however, it may already be remarked that this does not
suffice to settle the question finally, but that the ‘‘probability of tran-
sition "’ between the initial and the final orbit plays an essential part in it.

To conclude this chapter we shall briefly consider a very important
but as yet very obscure problem of physics on which the spatial quantis-
ing of electronic orbits promises to throw light, the problem of the
magneton.

The view that every paramagnetic substance (i.e. susceptibility > 0)
has a definite magnetic molecular moment is old established among
physicists. It was elaborated in particular by Wilhelm Weber, and was
rendered certain by Langevin's theory of the dependence of paramagnet-
ism on temperature. Within the last decades P. Weiss * has set out to
prove by means of a great number of detailed measurements that this

* Summaries are given by P. Weiss, Physikal, Zeitschr., 12, 935 (1911), or Verh.
d. D. Phys. Ges., 13, 718 (1911); R, H., Weber, Jahrbuch fiir Rad. u. Elektr., 12, 74
(1915); B. Cabrera, J. de Chimie Physique (Guye), 16, 442 (1918).
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moment occurs not as an arbitrary quantity but as a whole multiple of a
certain elementary moment. The value of this elementary moment, the

‘“magneton " is, according to him :
M = 11235 gauss x cm. per mol . . .1y

The value of the elementary moment of the individual atom or, in
the case of compounds, of the individual molecule is obtained by dividing
(11) by Loschmidt’s number, L = 607 . 10%, and is:

1 .
p= IL;’5 = 1-85.10-% gauss x cm.

The assumption immediately forced itself on physicists that this
elementary magnetic quantum was no new constant but was probably
connected with the elementary electric quantum e and the quantum of
action h. Let us endeavour to find this connexion as simply as possible.

As we know, & magnetic moment is equivalent to an electric current :
Weber’s electromagnetic measureof current in C.G.S. units depends just on
the fact that the current strength times the enclosed surface around which
the current flows is equal to the momeént of the elementary magnet,
placed at right angles to the current surface, that produces, at a great
distance, the same magnetic field as the current. Let the current be a
circular current of radius & and let it be produced by the revolution of
an electron about the atom. If w is the angular velocity of the electron,

o s tw .
then /2 is its number of revolutions per second and % is the current

strength, calculated as the quantity of electricity that passes through the
cross-section per second. Hence the magnetic moment u of our circular
current, calculated from the intensity of current and the circular surface :

,L=f’2%m2=gma2 R i 1)

Our rotating electron is a rotator. Its moment of momentum is
detefmined on the quantum theory by the condition

nh
mwa® = oy - . . . . (13

Hence the mechanical moment of momentum and the magnetic
moment are expressed by w and a in the same way and their ratio to
one other is a universal constant. From magnetic measurements we
can arrive at the mechanical moment of momentum and its value accord-
ing to the quantum theory. Just as there is an elementary quantum
of mechanical moment of momentum, so there exists theoretically an
elementary quantum of magnetic moment.

From (12) and (13) there follows
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The theoretical elementary quantum of magnetic moment is, therefore,
e
F=m i
or, referred to the mol (or gramme-atom, respectively)

M=—+L. . . . . (14

thdt is, if we insert the known values of ¢/m, k, and L :
M = 5584 gauss x cm. . . . . (15)

that is almost exactly five times as great as Weiss' magneton (11). We
shall call the value (15) the Bohr magneton.

Now, how does it happen that Weiss appears to get the smaller unit
in his measurements? What value is to be attached in particular to
the methods of caleulation by which he obtains the value (11)? We
accept as the answer to this question an investigation by W. Pauli, jr.,
which we shall now describe.*

Concerning solid paramagnetic substances first, we must, in interpret-
ing the measurements in question—at all events—take into consideration
their erystalline structure. The same applies to ferromagnetic substances,
all of which occur only in the crystalline or micro-crystalline form.
Whereas Weiss assumes that, in the state of saturation, all atomic
magnets point in the same direction, the crystal structure would seem
to favour a distribution of these directions among directions prescribed
by the symmetry of the crystal.

In the case of paramagnetic liquids, too, the theoretical interpretation
is rendered difficult by the complicated character of the liquid state and
by the question as to how the diamagnetism of the solvent is to be taken
into consideration. In this case there is to be added that the magneton
numbers determined by Weiss are by no means exact multiples of his
fundamental unit.

There then remain the paramagnetic gases, of which measurements
have hitherto been possible only for the cases O, and NO. In this case
Langevin's theory of paramagnetism seems to ensure a trustworthy
calculation of the magnetic moment to be aseribed to the individual gas
molecule. Langevin's theory asserts that the Curie constant C, that is,
the product of the absolute temperature and the susceptibility calculated
for a mol of the gas, is givent by:

p
C= %—00320 . . . . . (16)

M is the magnetic moment of the mol; that is, L times the magnetic
moment p of the individual gas molecule; R is the gas constant referred

* W. Pauli, Quantentheorie und Magneton, Physikal. Zeitschr., 21, 615 (1920).
61- Of., for example, M, Abraham, Theorie der Elektrisitat, Bd. 2, 4, Aufl,, §31,
p- 263,
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250 Chapter IV. The Hydrogen Spectrum

to a mol ; 6 denotes the inclination of the magnetic axis of a gas molecule
to the direction of the magnetic field; the horizontal bar drawn above
the expression denotes that the average is taken for all angles of
inclination.

Of course, before the advent of the quantum theory, Langevin's
theory assumed 6 to be continuously variable. By treating, in addition,
all positions as equally probable (it is admissible to disregard favouring
the direction of the magnetic lines of force in the process of adjustment,
since it requires only a correction that is proportional to the intensity of
field), the theory set

cos’d =4 . . . . .

that is, made it just as great for the direction of the lines of force as for
two axes perpendicular to this direction. But, from the point of view of
spatial quantising, this is nc longer admissible. Rather, we now have :—

Forn = 1. All orbits place themselves at right angles to the direc-
tion of the lines of force, cf. Fig. 74a; we have excluded the other
theoretical possibility, the meridian position of the orbital plane. Hence,
for all orbits cos § = 1, and therefore

costf =1 . . . . . (17a)

Forn = 2. The orbital planes set themselves partly at right angles
and partly at angles of 30° to the lines of force; cf. Fig. 74B. Either
cos = 1 or cos § = §; the theoretical possibility cos § = 0 is again to
be excluded. As on page 247 we regard both these possibilities as
equally probable. Conseqgnently,

oF =41+ @N=% . . . (%)
FPorn = 3. There are three and only three cases, namely, cos § = 1,
cos @ = 4, cos 6 = }; all three are equally probable. Accordingly

o f =YL+ @+ @3 . . . (7o

In general. For the quantum number %, we have n equally probable
positions, and we get

e R C R G -
~ln+1)@n+1)
3 2n?

Equal distribution (equi-partition) among all directions, in the
manner assumed by Langevin’'s formula (17), comes about, then, only in
the limit when n = o, as was to be foreseen. But this circumstance
has a considerable influence on the calculation of the value of the
magneton. As a matter of fact, Weiss bases his determinations of M
along the reasoning of Langevin on the following formula which arises
from (16) and (17) )

M=4J3RC. . . . . (@18
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§ 7. Quantising of the Spatial Position of Kepler Orbits 251

Taking into consideration spatial quantising, he should base them on
the formule :

In the case # = 1 [eqn. (16) and (17a) M = VJRC . (18a)
In the case 7 = 2 [eqn. (16) and (17b) M = J/FRC . (18b)
and so forth. v
In the case n = 1, for which the magnetic moment amounts to 1
Bohr, that is 5 Weiss, magnetons, Weiss would obtain a value according
to eqn. (18) that is /3 times too great, namely :

54/3 = 87 instead of 5 Weiss magnetons . . (19a)

In the case » = 2, for which the magnetic moment amounts to 2
Bobr and hence 10 Weiss magnetons, a comparison of (18) and (18b)
shows that Weiss’ method of calculation leads to a value that is too great
in the proportion /3 : J/%, thus

10+/1¥ = 137 instead of 10 Weiss magnetons . . (19b)

Thus if we calculate by Weiss’ method, not taking into account the
position of the magnetic orbits of rotation, we cannot obtain integral
multiples of magnetons, whether we use the Bohr or the (five times too
small) Weiss unit. Actually, observations seem to show, too, that the
integral character affirmed by Weiss is not in general true.

In the case of the gases NO and O, the number of magnetons*
amounts, according to Weiss, Piccard and Bauer, to 9 and 14 (more
recent measurements have given the values 92 and 139 or 14-2). It is
worthy of note that these values lie in the neighbourhood of our numbers
87 and 13:7 in (19a) and (19b). We are therefore inclined to surmise
that, in the case of these two very simple paramagnetic gases, we are
dealing with the two simplest cases of ome and two Bohr magnetons,
whereby each O-atom, in NO as well as in O,, would have one Bohr
magneton. We do not wish to assert that in the case of these gases
our numbers 8:7 and 137 should be accurately true, that is, that measure-
ments free from error, when inserted in the Weiss-Langevin formula,
should lead exactly to the values 87 and 13'7. Our spatial quantising
refers in the first place to the orbits of the hydrogen atom ; it may,
indeed, be straightway applied to other monatomic gases, whereby the
so-called invariable plane, that is, the plane of the total resultant moment
of momentum takes the place of the orbital plane. But the application
to diatomic gases is very doubtful. The molecular models of such gases
are entirely unknown to us; according to their geometric structure, the
spatial quantising may come out differently from that of the hydrogen
atom, and then the energy of rotation may affect its orbital positions
variously. When we just now concluded from the approximate number

I

* Weiss and Piccard, Compt. rend., 155, 1234 (1912); 157, 916 (1913); Bauer and
Piccard, Journ. de Phys., 1920, p. 97.
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of magnetons 9 and 14 that there were one and two Bohr magnetons,
respectively, present, we did so under the assumption that the behaviour
of diatomic gases, too, will not differ markedly from that of hydrogen
and that here, too, the ideal case of hydrogen allows us to predict in
general outline the approximate behaviour of the complicated cases.
Moreover, we did so, in the conviction that the true unit is the Bohr
magneton, not the Weiss magneton.

The object of the above discussion was clearly more negative tha.n
positive. 'We wished to show that up to the present measurements have
not been able to contradict the quantum value (Bohr’s) of the magneton,
particularly not when it has been evaluated on the basis of Langevin's
formula, which takes no account of spatial quantising. On the other
hand, we could not adduce a certain positive contribution towards evalu-
ating magnetic measurements either for crystalline paramagnetic solid,
or paramagnetic gases. The natural- conclusion that there is a Bohr
magneton for every O-atom was fraught with uncertainty on account of
our ignorance of the molecular models concerned. We have no doubt,
however, that, some day, the abundance of magnetic observations will
allow us to recognise unmistakably the existence of the Bohr magneton
or, what amounts to the same, Planck’s quantum of action and that it,
just like the data of spectral observations, will bear striking testimony to
the quantum structure of matter.
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CHAPTER V
WAVE THEORY AND QUANTUM THEORY

§1. The Spherical Wave and its Propagation. Conservation of
Energy and Momentum

of the Science Research Society (Naturforschergesellschaft) in

1889, drew certain general conclusions from his experiments
on electric waves and made the following remarks about the nature of
light :—

“ What is light? Since the time of Young and Fresnel we know
that it is a wave motion. We know the velocity of the waves, we know
their lengths, and we know that they are transverse; in short, our
knowledge of the geometrical conditions of the motion is complete. A
doubt about these things is no longer possible; a refutation of these
views is inconceivable to the physicist. The wave theory of light is, from
the point of view of human beings, certainty.”

Has this certainty meanwhile been shattered? Yes and no! In all
questions of interference and diffraction, the wave theory has not only
maintained its position but has, indeed, gained new ground; it has ex-
tended its range of influence towards the side of small wave-lengths as
far down as Rontgen and y-rays, and towards the side of great wave-
lengths as far as the waves of wireless telegraphy, whose length is
measured in kilometres. In all questions, however, which, to use
Einstein’s language (cf. p. 38), concern the production and transformation
of light, we have the firm conviction that the optics of the undulatory
theory is, at least in its present form, insufficient. The appropriate and
natural point of view to adopt towards these phenomena (photo-electricity,
secondary radiation, absorption and excitation limits) is that of propa-
gation not in spherical waves but in light-quanta Av, in the manner ex-
pressed by Einstein’s photo-electric law. In these phenomena amounts
of energy occur such as the wave theory simply cannot place at our
disposal, not even if we enlist the help of an artificial accumulation of
energy (p. 44). The mildest modification that must be applied to the
wave theory is, therefore, that of disavowing the energy theorem for the
single radiation phenomenon and allowing it to be valid only on the
average for many processes. How this new type of localisation of

H EINRICH HERTZ,* in his discourse at the Heidelberg Session

* Gesammelte Werke, 1, 340.
2563
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254 Chapter V. Wave Theory and Quantum Theory

energy or this denial of every localisation of energy is to be brought into
harmony with the laws of the electromagnetic field is still wrapt in ob-
scurity. On the other hand, the most extreme view is that which regards
the field laws themselves, that is, Maxwell’s equations, only as statistical
approximations and to consider the elementary phenomenon of individual
emission as & continual succession of light-quanta, which have a definite
direction. The connexion between these two views would then be
similar to that in the gas theory, in which the continuous equation of
state, is only a rough approximation, and the proper elementary process,
however, by which the gas pressure is produced takes place discontinu-
.ously and in impulses. But whereas we have been able to carry out the
statistical calculations for gas molecules and from it the continuous
equation of state quite rigorously, we are still far from carrying out the
corresponding statistical calculations for light-quanta. Only Einstein,*
again, has succeeded in taking a first step in this direction, in deriving
Planck’s law of heat radiation by starting from elementary phenomena
of a markedly one-sided and discontinuous character. The phenomena of
light absorption and light transformation receive a natural interpretation
in this theory ; but the phenomena of interference and diffraction find no
place in it. In particular, the spherical wave of optics becomes a con-
figuration that is incoherent in itself, for it comes about as a result of aver-
aging over elementary processes that are all independent of one another.

Both points of view, the classical continuous wave theory and the
discontinuous-statistical theory of light-quanta, each offer at present only
one-half of the truth. How the dilemma will be overcome finally, cannot
yet be gauged. At all events the classical wave theory in its application
to the phenomena of light propagation has not yet been supplanted by
something better. It is, indeed, astonishing how much of the wave
theory still remains even in spectroscopic processes of a decidedly
quantum character. Bohr- has formulated this very definitely in his
Principle of Correspondence (cf.the end of §3). For example, in describ-
ing the continuous radiation of X-rays, we pointed out the effectiveness
of the classical wave theory (cf. p. 34).

In the sequel we shall take the view, as far as the propagation of light
is concerned, of the classical wave theory. We shall thus repress all
doubts about the idea of a spherical wave that is coherent in itself and
shall accept it as given in experience. Whether this view is the funda-
mental and final one must be left an open question; it is at least ap-
proximately justified by a general correspondence between wave theory
and quantum theory. To account for the production of light by the
process of atomic radiation, on the other hand, we must absolutely call
in the aid of the quantum theory, in particular Bohr’s frequency law :

w=W.~-W, . . . . @

*Verh. d. D. Phys. Ges., 1916, p. 318 ; Physikal. Zeitschr., 18, 121 (1917). See
also p. 106 of The Quantum Theory, F. Reiche. Methuen & Co., Ltd.
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§ 1. The Spherical Wave and its Propagation 255

This equation determines the frequency of the wave according to the
theory of quanta. Besides frequency, however, a light wave possesses
intensity, polarisation, and a certain measure of coherence (ability to inter-
fere). The quantum theory seems at present unable to answer the finer
questions touching the form of the vibrations, their arrangement in space
and the space-time disposition of the train of waves. Here that is true,
which may be said of every purely energetic treatment : the equating of
energy—as is performed in our equation (1)—can never furnish more
than one equation determining the course of the phenomenon. In the
case of more than one degree of freedom the energetic view must be sup-
plemented by a deeper dynamical treatment.

Let us next enumerate the determining factors, accessible to observa-
tion, of & monochromatic spherical wave (or one practically monochrom-
atic) starting out from the point at which emitting atom is situated. The
wave-length (or vibration number or frequency) is one determining factor,
the length of the train of waves, the ‘ coherence length ” (number of
successive wave-lengths up to the point of perceptible extinction of the
phenomenon of “vibration”) is a second determining factor. (Strictly
speaking, of course, a finite coherence length is not compatible with
exact monochromatism ; we here mean the kind of approximate mono-
chromatism such as is presented by a sharp but, of course, not infinitely
narrow spectral line.) Three further determining factors are presented by
considerations of tnfensity and polarisation. For if we draw two mutually
perpendicular planes through a direction of emission chosen at random,
we have in both of them a definite amplitude of the alternating electro-
magnetic field and between both there is a certain phase difference of the
partial vibrations. With these three data, the observable intensity and
the character of the polarisation (linear, circular, or elliptic) is fixed for
one direction. But it is not sufficient to furnish these data for any arbi-
trary direction of emission, but rather this direction must be a unique
axis for the spherical wave, in order that through it the distribution of
intensity and the polarisation is determined for the whole spherical wave.

At first sight it would appear that the existence of a unique axis con-
tradicts the notion of a spherical wave. For a spherical wave is usually
understood to mean & phenomenon that is propagated from the centre
of the source of light symmetrically in all directions and in every respect.
This view corresponds to our rough optical experiences but not to refined
observation such as forms the basis of the theory of light. According to
Maxwell's equations (as well as the older ideas of elasticity) a spherical
wave has always a unique axis both for the distribution of intensity as for
polarisation. Only the phase of the light is distributed with spherical
symmetry ; and only the wave surfaces, that is the surfaces of points in
the same phase, in the case of a spherical wave, form a system of con-
centric spherical surfaces. On the other hand the surfaces of points of
the same intensity are by no means spherical surfaces. Let us recall, for
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256 Chapter V. Wave Theory and Quantum Theory

example, the simplest case, in which, in the language of the classical
wave theory a linearly vibrating electron emits the spherical wave. On
account of the general character of transversality of the light vibrations
no intensity is emitted in the direction of vibration of the electron; the
intensity is a maximum at right angles to this direction (cf. in this con-
nexion the innermost curve in Fig. 11, which depicts this case of emitted
radiation). The surfaces of equal intensity have therefore by no means a
spherical shape, but, rather, the direction of vibration of the electron is at
the same time a unique axts of the distribution of infensity. The same is
true in the case, which, in the language of the classical theory, corre-
sponds to an electron that executes circular vibrations. Here the axis
perpendicular to the vibration circle is a unigue azis of polarisation,
namely, the direction in which circular polarisation is observed, whereas
in every direction inclined to this elliptic polarisation occurs, and in
directions perpendicular to it, linear polarisation takes place. At the
same time the axis mentioned is a unigue axis of distribution of intensity.
In this axis the intensity is a maximum, being, namely, twice as great as,
for example, in the two directions at right angles to it.

Now, an axis that starts out from the centre of the sphere is defined
by two determining factors, for example, two angular measurements. If
we add to these the three determining factors which define the amplitude
and the phase of the vibrations for this axis, and also the two first-men-
tioned data relating to frequency and coherence, we get in all: 2 4 3 + 2
= 7 determining factors or elements of definition for the spherical wave.
(We give quantitative details of this in Note 9.) ,

‘We require just as many equations of definition which will connect
the light emission in the spherical wave with the changes of state in the
emitting atom. Hereby we draw special attention to the following point :
in general, according to the quantum view the atom and the “ether” are
not connected with one another;* it is only during the process of
emission that they are coupled together. In contradistinction to this, on
the ordinary view of the wave theory, the electrons in the atom are
permanently coupled with the ether: every change of motion of the
electron produces wave radiation. According to this view we consider an
electron active at the origin of every spherical wave, which generates in
unison with the rhythm of its own motion the electromagnetic spherical
wave. However convenient and however much accepted this view may
be, yet we must free our minds of it. 'We must speak not of an electron
but of a solution of Maxwell's equations, which is determined by con-
ditions of coupling in the process of emission between the atom and the
ether. The more abstract mode of expression, to which we are forced, is

* The objection has been raised against the account given here that in the stationary

ths, too, the coupling between the atom and the ether cannot be entirely detached :

Egth the inner forces acting between the nuclei and electrons, as well as the external

forces of a possibly added electric or magnetic field are transmitted in the *ether.”
The author finds himself compelled to admit that this objection is justified.
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§ 1. The Spherical Wave and its Propagation 257

inevitable if we wish to follow out logically the view of the quantum
theory.

Let us now collect together the necessary conditions of coupling that
may serve to determine the parameters of the spherical wave that enter
into the solution.

In eqn. (1) we have so far only one such determining equation, or
two, if we take into account that hv determines not only the frequency
but also the total energy of the spherical wave, that is, that eqn. (1)
contains also a statement about the observable total intensity of each
process of emission.

To arrive at further determining equations we consider, besides the
energy, the impulse or momentum of the atom, on the one hand, and of
the radiation on the other. In mechanics the fundamental law is that of
the conservation of momentum (Galileo's and Newton’s law of inertia),
or, respectively, the law of change of momentum by external forces
(Newton's second law). The law of conservation of energy is derived in
mechanics as a consequence of the law of momentum.

In mechanics there follows, further, from the law of momentum the
law of moment of momentum, in particular, the law of areas, which
asserts the conservation of the moment of momentum for vanishing
moments of the external forces. When, in the process of emission, the
atom is coupled with the surrounding ether, we demanded by eqn. (1) the
conservation of energy. The energy that is made available by the atom
should be entirely accounted for in the energy of radiation v, which is,
according to the quantum theory of the oscillator, equal to hv. With
the same right, we now demand the conservation of momentum and of
the moment of momentum : if in a change of configuration of the atom,
L3 momentum or moment of momentum alters, then these quantities are to
be reproduced entirely and unweakened in the momentum and moment of
momentum of the radiation. This postulate will furnish us with three
further determining equations of the spherical wave.

The eonservation of momentum and of moment of momentum holds
hereby, as in mechanics, only when the atom is subject to no external
forces. 1If the atom happens to be in an external field of force, this in
general changes the momenta and reacts with them. The momenta may
then, instead of being transferred to the radiation, be partly passed on to
the external field of force. We show this in the third section.

To develop the equations in question—here for the case unem-
cumbered by external forces—we must talk of momentum and moment
of momentum of the atom, and then also of the momentum and moment
of momentum of the * ether.”

The momentum of the atom does not mean the momentum of a single
electron, which primarily brings about the emission of light through its
change of motion, but the whole momentum of the atomic configuration.

In the case of hydrogen, too, with its one electron, we are concerned

17
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not with the partial momentum of this electron, but with the whole
momentum of the electron and the nucleus. This is zero, if the centre
of gravity remains at rest while the electron rotates, no matter whether
we regard the mass of the nucleus as finite and take into account the
relative motion of the nucleus, or whether we consider the limiting case
of an infinitely heavy nucleus at rest. The same is true for an atom con-
taining any number of electrons moving in any manner: on account of
the law of the persistence of the centre of gravity, the total momentum of the
atom 1s zero in i3 initial configuration; we assume that it is also zero in
its final configuration, that is, that the atom does not, in emitting radia-
tion, acquire a velocity as a whole due to a sort of rebound. As a matter
of fact there is no sufficient reason why the atom, when it emits a
spherical wave, should favour one direction of velocity more than any
other.* Hence the change of momentum as the atom passes from the
initial to the final configuration vanishes. No momentum is transferred
Jfrom the atom to the ether.

The position is, however, different in the case of the moment of momen-
tum. We designated this for the single electron, for example, the hydrogen
atom, by p (or py since it is allocated to the azimuth ¢ of the rotation).
In the case of the nucleus at rest, it was equal to nh/2r; when we took
into consideration the relative motion of the nucleus we had to set the
total moment of momentum of the electron -+ the nucleus equal to nh/2xr
(cf. Chap. IV, § 4, eqn. (6), and also § 5, p. 227). But also in the case
of a more general atomic structure, which we need not consider in
further detail here, the resultant moment of the momenta of all masses
(electrons + nucleus) is given by nh/2m, in so far as no external field
acts on the atom and the law of areas therefore holds. Let n denote
also in this general case, the ‘azimuthal quantum number.”

Thus every change of the azimuthal quantum number n denotes a
change of the moment of momentum. This amount of moment of momentum
cannot be lost but must be transferred from the atom to the ether, if both
systems are coupled together during the process of emission.

Before proceeding further, we shall interpose, as we have already
done on page 215, a few remarks to excuse the use of the word “ether.”
From the point of view of the theory of relativity we must deny the
reality of a universal ether transmitting light. No optical system is
favoured more than any other. None may claim the true ether as its
own. If, in the interests of a convenient and short terminology, we
desire not to give up the term ether, we must allow every system of
reference its own ether, which enjoys no preference above that of any
other system. We hereby merely express that in every system of
reference the propagation of light follows the same laws, namely,

* According to the point of view of the clementary processes with a definite
direction (ef. p. 254), the position is different ; according to Finstein the emitting atom
must theun suffer a rebound.
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Maxwell’s equations. This is true in particular of the system of reference
in which the emitting atom is at rest. 'We need not think of a material
substratum when we use the word ether ; in our interpretation, the ether
has no properties other than such as light itself possesses and such as
arise out of the laws of the optical field.

Regarded from this angle, what interpretation are we to place on the
momentum of the ether when we talk of radiation? Every one is aware
of the fact that light has energy which, taken from the source of light, is
radiated out with the velocity of light. Thus the conception of energy
becomes extended from material systems to the electromagnetic system
of the ether. The necessity of ascribing to the electromagnetic field not
only energy but also momentum was pointed out by Lorentz and later
by Poincaré* and Abraham.t We shall give two grounds for this
necessity, one that is experimental, and one that is theoretical. The
pressure of light may be regarded as an experimentally established fact.
A ray of light that falls on an absorbing body exerts on it a pressure in
the direction of the ray; a ray of light that is emitted by an emitting
body exerts a reaction on the latter, like that of a cannon-ball on the
cannon. The most striking theoretical evidence for the necessity of the
conception of momentum in radiation is furnished by the relativistic law
of the inertia of energy (cf. Chap. VIII, § 1). If energy has inertia and
is equivalent to a certain mass, being equal to the energy divided by ¢2,
the energy radiated out has momentum ; the mass that is equivalent to
the energy here moves with the veloeity ¢, hence the momentum, being
mass times velocity, is equal to the energy divided by c.

From this step we may conveniently arrive at the quantitative
expression for the momentum of the radiation. The electromagnetic
energy is, if measured in appropriate (so-called rational) units, per unit
of volume,

W, = 4B + §H3.

In the field of radiation B is numerically equal to H but perpendicular
to it in direction, the direction of both being perpendicular to the
direction of the ray. In place of W, we may, therefore, also write

W, = B2 = H? = EH.
Let us denote the momentum, calculated for the unit of volume G.
According to the law of the inertia of energy, we have numerically

The direction of the momentum is the same as that of the propagation
of energy, that is the direction of the ray. We express this by writing

8

* Arch, Néer., b, 252 (1900) (Lorentz-Festschrift).
t Ann. d. Phys., 10, 105 (1903).
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In accordance with Note 1 at the end of the book [EH] the vector
product of E and H, or 8, is the so-called Poynting vector of energy-flux.
By including (as in Note 1) the factor 4 in the denominator, we pass
from our rational to the ordinary conventional units. Egn. (2) is an
expression of how closely connected momentum and radiation is, and
likewise the momentum vector G and Poynting’s vector 8.

Hitherto we have spoken of the momentum in the single direction of
the ray, and now we must consider the momentum of the whole wave.
It is certain that the process of emission in the spherical wave is a
spherically symmetrical process: in spite of the above-mentioned differ-
ences of intensity and polarisation within the spherical wave the radiation
is in every radius equal and opposite to that in the corresponding dia-
metral radius. From this il follows that the total impulse of the spherical
wave 43 zero, not only for unpolarised radiation but also for any arbitrary
state of polarisation. This result concurs with our above assumption
that the atom, too, does not furnish the ether with momentum when
they are coupled. Thus the conservation of momentum imposes no other
condition on the radiation produced than that it must be a spherically
symmetrical spherical wave. The corresponding equatlion of condition ss,
s0 to speak, satisfied identically.

The position is different, however, in the case of the moment of
momentum of the spherical wave. The moment of momentum per unit
volume of the ether is calculated as the product of the momentum @& and
the perpendicular from the centre of the spherical wave. It is most
simply expressed analytically, both in magnitude and direction, by the
vector product (cf. Note 1):

M=[rG] . . . . . (3)

where r is the radius vector from the centre to the unit volume under
consideration. From the moment of momentum of unit volume we pass
on to the moment of momentum that is radiated out in all directions in
the spherical wave. by forming

N=Idtjdo—M N )

in which the first integral is taken over the whole time of the emission,
and the second over the whole spherical surface of radius 7.

It certainly seems at first sight as if the moment M must vanish for
each individual direction and hence also the total moment N. For if, as
we said, @ has the same direction as the ray and if this were the radial
direction the perpendicular from the centre of the sphere to @ would be
zero and hence M would vanish. But we must notice that this deter-
mination of the direction of the ray and the momentum is only asymp-
totic and does not hold accurately for a finite r. Hence, in the integral
(4), M differs from zero when r has finite values; when r increases to-
wards infinite values, M does, indeed, decrease to zero but at the same
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time the region of integration increases in proportion to the square of the
radius of the sphere. This allows us to understand that both influences
may compensate one another and that, in the limit for infinitely great
distances, as well as for finite distances, N may have a finite value. Thus
the total moment of momentum of the spherical wave is in general not equal
to zero but is finite in value. It is able to take up and keep the amount of
moment of momentum furnished by the atom.

The considerations here sketched already show that the calculation of
the moment of momentum of the radiation renders necessary the carry-
ing out of a more elaborate passage to the limit; we have done this in
Note 9. The result is this : we calculate the moment of momentum N,
which is radiated out, from the emitted energy W and the vibration
number v, by means of the formula

W 2ab sin
N=Q1-r;z.;ﬁ.§ N )

To define a, b, and y, we first remark that a moment of momentum
has an axis and hence defines a plane that is perpendicular to it. The
axis of the moment of momentum is identical with what we called above
the unique azis of the spherical wave. If we represent the state of motion
by a vector potential (designated by II in Note 9), this vector potential
may be resolved into two perpendicular components that are contained
in the unique plane of the momentum. Then a and b denote the ampli-
tudes of vibration of these two components of the vector potential, and y
is the phase difference between them ; a, b, and y define what is called in the
usual wave theory the vibration ellipse of the exciting electron. Follow-
the usual terminology, we should call the unique plane of the moment of
momentum the vibration plane. We must carefully note, however, that
even if we adopt the convenient terms vibration ellipse (or vibration circle)
and vibration plane, because we are familiar with them, we associate with
them a different meaning from that in the wave theory. As already
pointed out on page 256, we do not speak of an electron that describes
the vibration ellipse and that circulates in the vibration plane; in our
account, the vibration ellipse occurs only as a characteristic of the
phenomenon of emission and the vibration plane occurs only as the
favoured plane of this process or of the corresponding vector potential.
This potential itself is calculated, not from the motion of an electron, but
from the conditions of coupling of the atom and the ether.

How our view differs from the usual one based on the wave theory
manifests itself, too, in the way in which we define the different special
cases of polarisation. It is appropriate to our standpoint that we base
this definition not on the particular forms of motion of & vibrating
electron, but on the special values of the moment of momentum N, which,
according to our view, determines the phenomenon of radiation.

We thus state: the light is linearly polarised when the moment of
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momentum N vanishes. By (5) this occurs when either a or b or sin y
vanishes. The vibration ellipse then degenerates to a straight line, which
has either the same direction as & (if a = 0) or of a (if b = 0) or of the
one or the other diagonal of the rectangle ab (if sin y = 0). The straight
line is the axis of symmetry of the spherical wave. Its position allows
us to determine for each radius of the spherical wave the direction of the
electric force and the observable plane of polarisation according to the
rules of the wave theory.

The light is circularly polarised when the moment of momentum N
attains its maximum for a fixed intensity of the light (a? + b* remains
fixed), the values of a, b, and y being otherwise variable. This maximum
occurs when a = b and sin y = + 1 (phase angle y = + 7/2); hereby, the
factor depending on a, b, y in (5) becomes equal to + 1. The vibration
ellipse becomes a vibration circle. Along the axis of the moment of
momentum, we have the circularly polarised light, being left or right
polarisation according asy = + n/2, or y = — #/2. In all other direc-
tions the light is polarised elliptically or, in particular, linearly (namely,
perpendicularly to the axis of the moment of momentum).

By setting the moment of momentum, calculated in (5), of the radia-
tion equal to the moment of momentum (by the principle of the con-
servation of the moment of momentum) which is placed at the disposal
of the ether by the atom when the latter changes its configuration, and
indeed, setting it equal both in direction and magnitude, we get three
determining equations of the geometric character of the resultant
emission. We thus get one equation by equating the magnitude, and
two by equating the directions of the two moments of momentum. If
one of the above-mentioned special cases occur, we also get a statement
concerning the character of the polarisation. The complete determination
of the defining factors enumerated in this section is, however, not yet
hereby attained. Whereas we enumerated seven such elements above,
we have here only five determining equations, namely, two in (1) and
three in (5). Concerning the *coherence length” in particular, which
we counted as one of the determining elements of the spherical wave, it
has been proved by interference effects of light for great ditferences of
path, that such a coherence length must exist and must have a perceptible
size. Important evidence on this question is furnished by the quantita-
tive measurements of the dying down (* Abklingen ) of the luminescence
of canal rays carried out by W. Wiess.* Whether we have from this to
deduce the duration of luminescence of the individual elementary pheno-
mena or rather the so-called “length of stay” (* Verweilzeit '), that is the
time that the excited electron persists in its initial orbit, is still undecided.

The problem of determining fully the elementary process of emission
has, indeed, been partially unravelled in the foregoing but it is not yet

* Ann. d. Phys., 60, 397 (1919).
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fully solved ; we may say that %/,ths of it are solved and the remaining
2/.ths are still in darkness. But even if the whole seven of the deter-
mining elements were discovered, we should still have to investigate the
probability of the elementary processes, which alone defines the observ-
able intensity of the spectral lines. This is a statistical question which
we touched on in Chapter IV, § 7, page 247, and shall consider more
thoroughly in Note 10; the steps here enumerated disclose nothing on
this subject.

In conclusion we shall point out those features in which our treatment
and the classical wave theory agree and those in which they differ.

They agree in their views of the phenomena that occur in the ether.
According to the wave theory, as well as ours, the ether vibrates, that is,
it propagates alternating electromagnetic fields. We take over Maxwell’s
equations, which define the ether and regulate its vibrations, directly
from the wave theory.

They differ in their views of the excitation of the states of vibration.
According to the wave theory, the electron that excites the ether also
vibrates. It is forcibly coupled with the ether and impresses its time of
vibration on the latter, which, according to the wave theory, is prescribed
by the nature of the bond between the electron and the atom. According
to the view of the quantum theory, however, the coupling between the
ether and the electron is less strong or more superficial. In its stationary
orbits, the electron does not excite the ether at all, but is coupled to it
only during the transition from one stationary orbit to another. The
duration of vibration of the radiation has nothing to do with the revolu-
tion of the electron in its stationary paths. Even during the transition
there is nothing in the atom that occurs in rhythm with the vibration
number v. The ether demands its v, the atom furnishes it by giving up
an amount of energy W, — W,. The duration of vibration follows if these
two quantities are equated; at the same time, the polarisation follows if
we equate the two corresponding moments of momentum. It has, indeed,
been suggested that the transition from the stationary initial orbit to the
stationary final orbit takes place along a spiral, which is traversed with
the frequency v. This too specialised picture seems to us unfruitful. It
18 not the atom that vibrates, but the ether. The coupling between the
atom and the ether is, as we said, more provisional in the quantum theory
than in the wave theory. The atom gives the ether a certain amount of
energy and moment of momentum. The ether does with this, what its
nature compels it to do, namely, it transforms these amounts into vibra-
tions of a definite state of polarisation. The coupling is of an integral
kind, not of a differential kind that determines the infinitesimal elements
of .the process of vibration.

Is this state of the theory only transitory, or does it denote an actual
advantage of the quantum theory? A theory should, indeed, determine
the observable phenomena, but must not over-determine them. There
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are in the spherical wave, as we saw, only a definite number of deter-
mining elements or factors. Consequently a definite number of deter-
mining equations also suffices. Our integral equations of coupling for
the energy and the moment of momentum do not, indeed, furnish a
sufficient number of such equations. But they determine several essential
factors of the ether vibration and allow the atom on the one side, and
the ether on the other, the necessary freedom to behave in their appro-
priate manners, respectively, that is so that the atom suffers changes in
stationary electronic orbits, and the ether undergoes vibrations. Of
course, from the moment new empirical factors occur which do not fit
into the scheme of the spherical wave with its finite numbers of para-
meters, effects such as one-sided emission or similar phenomena, the
theory must at once give up its general standpoint and must adopt new
and cautious hypotheses, also, for example, about the nature of the
transition from the initial to the final orbit.

§ 2. Principle of Selection and Rule of Polarisation

In the preceding section we quoted the moment of momentum of the
radiation of a spherical wave and we have derived it in Note 9. It was

W 2ab sin
Ngmwarm - - - O
where W is the energy of the spherical wave ; as we have to set the latter
quantity equal to hv, we get b 9ab s
ab sin
“saze - - - ®
where a, b, and y denote amplitudes of vibration and the phase difference
of two mutually perpendicular directions in the plane which is at right
angles to the axis of N (““ vibration plane ”’). Herein that which vibrates is
not the atom nor an electron in the atom, but the electromagnetic field
in the ether, which we described by means of a vector potential in Note 9.
The moment of momentum of the radiation must be equal to the
change which the moment of momentum of the atom undergoes during
the transition from its initial to its final configuration. The atom is a
closed mechanical system in which only internal forces act. Conse-
quently the law of sectorial areas holds for each of its stationary forms
of motion ; that is, the moment of momentum of the whole system re-
mains constant during the motion ; there is a so-called invariable plane,
whose normal is the axis of the moment of momentum. As in the case
of the hydrogen atom this total moment of momentum p is fixed in terms
of whole numbers by the quantum condition of the rotator 2mp = nh.
Thus the change of the moment of momentum Ap is connected with the
change Az of the azimuthal quantum number by the equation

h .
A[’ = Q}An . . . . . (3)
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By equating (2) and (3), it accordingly follows that
2ab sin

This equation holds with respect to both magnitude and direction.
The numerical value of the right-hand side of eqn. (4) 13 less than or at
most as great as 1. 'We have actually, since (@ — 5)2>0:

an

a? + 5> 2ab . . . . (5)
8o much the more is
a®+ b*>2absiny . . . . (ba)
In place of this inequality we have the equality
a® + b = + 2absiny . . . . (8b)

only in the ‘case a = b, and sin v=+1, that is, y = + n/2. In this
particular case the right-hand side of (4) becomes equal to + 1. Hence the
absolute value of the left-hand side of (4) is, at the most, equal to 1:

lan|<1 . . . . . (8

We first assume that the plane of the moment of momentum in the
atom (the invariable plane) is the same before and after the transition.
The vector p of the moment of momentum which is perpendicular to this
plane has therefore the same direction before and after the transition.
Its change Ap is equal to the algebraic difference of the two similarly
directed vectors p, and p,. Just like Ap, An is calculated from the
algebraic difference of the two integral quantum numbers %, and #,, and
is thus itself also necessarily integral.

There are only three integers whose absolute value is not greater than
1, namely, the numbers

An = + 1, An=0, .An= -1

In the cases An = + 1, eqn. (5b) holds; the corresponding values of a,
b, and y are fully determined and already given by eqn. (6b). In the
case An = 0, the numerator of the right-hand side must, by eqn. (4),
vanish. From this it follows that we must have either a = 0, or b = 0,
or siny =0 (ie. y = 0 or «).

For integral values of An we thus have three possibilities :

I+1a=b&nd'y= + =/2
An = Oa=0o0rb=0o0ry=0 iexr=0 . )
l—1a=bandy=—1r/2.

According to the remarks on pages 261 and 262 of the previous para-
graph the emitted light is left-circularly and right-circularly polarised
respectively in the first and third cases, but linearly polarised in the
second case.

In this way, by a remarkably rigorous process of deduction, reminis-
cent of the incontrovertable logic of numerical calculation, we have
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arrived from the principle of the conservation of moment of momentum
at a principle of selection and a rule of polarisation.

The principle of selection states: the azimuthal gquantum number
can at the most alter only by one unit at a time in changes of configuration
of the atom.

The rule of polarisation demands that if the azimuthal quantum
number alters by + 1, the light is circularly polarised; if the quantum
number remains constant, the light is linearly polarised.

The principle of selection and the rule of polarisation, as well as the
present method of deducing them are due to A. Rubinowicz.*

In the case of circular polarisation (An = + 1) there is a unique
direction of the ray (normal to the vibration plane, axis of the moment
of momentum in the ether) in which the polarisation appears circular,
whereas in the gradually inclining directions of the ray it appears as
more or less elliptic and finally linear. This unique axis of polarisation,
too, is fixed by our argument. For eqn. (4) holds, as we said, not only as
regards quantity but also as regards direction. On account of the
equality of direction the axis of the moment of
momentum N, that is the axis of the circular
polarisation must coincide with the normal to
the invariable plane of the atom before and after
the transition.

On the other hand, in the case of linear
polarisation (An = 0) the direction of polarisa-
tion remains indeterminate; our determining
eqn. (4) assumes the form 0 = 0 and gives no
clue about the direction. The conclusion which

Fre. 5. at once suggests itself, although it is not inevi-

table, that where the direction of polarisation is

thus indeterminate, nothing at all happens, that is that the ¢ase An =0
which could theoretically lead to linear polarisation can lead to no emission.

Hitherto we have assumed that the moment of momentum p of the
atom retains its axis during the change of configuration. We shall now
make the more general assumption that this axis, and hence also the
invariable plane of the atom (the orbital plane of the electron in the simple
Kepler motions) changes. Then Ap is to be constructed vectorially from
the moments of momentum p, and p, before and after the transition, as
shown in Fig. 76. Let ® be the angle between the axes of the two
moments of momentum before and after the transition. By Pythagoras’
theorem, we get

Ap = pE A pE S B s @,

* Bohrsclie Frequenzbedingung und Erhaltung des Impulsmomentes, Physikal.
Zeitschr., 19, 441 and 465 (1918).
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Moreover, on account of the relationship between p, Ap and =, An, ex-
pressed in the figure, we also have

An = /nE + nE - 2nn,co8 @ . . . (8
At the same time, in the triangle formed from p,p, and Ap, the one

side Ap is in general, according to Euclid, greater than the difference
between the other two sides p, and p,, thus

Ap—>_—lpa—pel

for which, on account of the proportionality between p» and n, we may
also write

An>|n, - nl. . . . .9

The sign of equality holds only when the triangle degenerates to a double
straight line, that is ® = 0; this is the case which we have already
considered, namely, in which p, and p, are in the same direction.

The axis of the moment of momentum N of the spherical wave
coincides with the direction of Ap, as is indicated in the figure. At the
same time the vibration plane SS has been drawn in as a normal plane to
this direction.

According to eqn. (6) we now have

Aan <1 . . . . . (10
and, by (9), still more is
o, —n <1 . . . . (1)

Thus our principle of selection still holds exactly as before under the
present general assumption, that is: the azimuthal quantum number can
change by at most one unit during a change of configuration.

In the first and third cases, n, — n, = + 1, we also have An = 1 owing
to the following double equation, arising out of (9) and (10} :

ln.‘,—n,léAngl

hence we have, as remarked in the case of (9), ® = 0. The relative
position of the vectors p, and p, is, therefore, actually not shown correctly
in Fig. 75; rather, this figure degenerates into one in which p, and p,,
Ap and N all have the same direction. We then find ourselves again
confronted with the conditions above considered and our rule of polari-
sation is also valid unchanged, that is: the light is circularly polarised and
the vibration plane coincides with the invariable plane before and after the
transition.

The position of things is not so simple in the second case n, — n, = 0,
which is represented in Fig. 76. If we denote the common value of 7,
and n, by %, then, as a result of (8),

An = n,/2(1 - cos®) = 2 sin ©/2 . . . (12)
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Hence from n, — n, = 0, it does not now follow that An = 0. In Fig.
76, the vector N represents the axis of the moment of momentum of the
spherical wave, which coincides with the direction of ap. The corre-
sponding plane of vibration 8S is then the plane of symmetry between
p, and p,. From (10) and (12), we see that half the angle between the
directions of p. and p, is subject to the limitation
. 1
sin ©/2 < 3 . . . . (13)
But we further wish to show that we now also return to the case
initially considered in which p, and p, have the same direction, that is,
in which the angle of inclination ® = 0. To do this we refer to the
spatial quantising of the orbits, which was treated in the last section of
the preceding chapter. As the spatial quantising could there be carried
out only for Kepler paths, we shall here also speak only of the orbital plane
of a single electron instead of the invariable plane of any arbitrary atomie
system, but we shall finally allow ourselves to extend this result to the
general case.
We certainly have not now, in conformity with our assumption, an
N B external field of force to which we

Py= Dy ry may refer the orientation of the orbital

9/, dp=4n 21 plane. In the absence of such a field,

b=, b " we shall adopt the standpoint (cer-

9, ® °%n tainly rather risky) that the initial

8 3 position of the orbital plane already
Fia. 76 defines a favoured direction in space.

The normal of the initial orbit then
takes the place of the direction of the lines of force, of which we spoke
in Chapter IV, § 7, and the equation which formerly determined the
inclination of the orbital plane to the field of force, now applies to the
inclination of the final orbit to the initial orbit. By correspondingly
replacing the former symbol o for the angle by ®, and taking n,, n, to
denote the quantum numbers of the final orbit in its orientation with
respect to the initial orbit, we may write the equation referred to thus:

., 0 n
cos ® = 1 - 2 sin? 5 = ni?l = n o+ n,=n - (14)
From this, it follows
e ® _omy
sin 9= ay . . . . (19)
On the other hand, by eqn. (13):
L0 _ 1
sin 5 < i . . . . (16)
From (15) and (16) it follows that :
n, 1 1
2 it
2n = 4n¥ S 2n
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Now §1,‘,, is a proper fraction, and n, is an integer. Hence the only value

of ny that is possible under these conditions is n, = 0. But eqn. (14) then
states that

cos ® = 1, ® =0.

Thus the plane of the final orbit coincides with that of the initial orbit.
Accordingly, the more general case in which p, and p, are in different
directions reduces to the previous case in which they had the same
direction, and this happens not only for changing quantum numbers
n, — n, = + 1, but also for quantum numbers that remain equal, i.e.
N, — m, = 0.

On the whole we have the remarkable result: the invariable plane of
the atomic planetary system (in the simplest Kepler case this is the orbital
plane) remains the same (i3 “invariable”) not only in the case of the
stationary motions themselves, but also in ithe transitions from one such
motion to another. If, in these transitions, the azimuthal quantum
number changes by one unit, the light emitted 18 circularly polarised. If
the azimuthal quantum number is to remain unaltered, only linear polari-
sation can océur ; but since the direclion of the latter is indeterminate, we
conclude that such transitions are not connected with emission. The general
case of elliptic polarisation is suppressed by the quantum conditions (if the
spatial quantising is applied).

In the whole of this section we have spoken solely of such transitions
in the atom as may give rise to monochromatic emission. It is only for
these that the preceding limitations and exclusions hold. Ounly when we
assumed the coupling between the atom and the ether, did we arrive at
our principle of selection and so forth, and only the combination of the
two postulates that energy and moment of momentum are transferred to
the ether, led to the eqn. (1) on page 264, from which we made our later
inferences. Phenomena that have nothing to do with monochromatic
wave radiation are not subject to the principle of selection. These
include, for example, electronic impacts which throw an atom from its
natural state into an excited state. In such a case we are dealing not
with the combination, atom and ether, but with the combination, atom
and impinging electron. Such occurrences have nothing to do with the
principle of selection.

How far have we got with the experimental proof of these results?

It is evident that in an atom not subject to forces the rule of polarisa-
tion eludes experimental proof. In this case every position in space is of
equal value with every other. Hence if the individual occurrence exhibits
polarisation in conformity with the position of the atom, the observable
lotal phenomena will still appear totally free from polarisation. This
holds for hydrogen as well as for every other atom.

The position is more favourable as regards the rule of selection. In
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the case of atoms other than hydrogen, it leads to important restrictions
of the principle of combination, which we shall get to know in the next
section, and thus finds clear expression in the general series scheme of
these atoms. But in the case of the hydrogen spectrum, too, the rule of
selection is accompanied by surprising consequences. The azimuthal
quantum number 7 can change only into n ¥ 1. Hence it follows that,
for example, when Hgor H, are emitted, a circular orbit can never
transform into a circular orbit. For Hg (4 — 2) the initial orbit, if it
takes the form of a circle, would have the azimuthal quantum number
ng = 4, the final orbit the azimuthal number n, = 2. This transition
cannot lead to an emission; the *ether” would not be able to take up
the moment of momentum An = 2. Thus the initial orbit of Hg and
likewise of H,, H;, . . . must be an elliptic orbit; only in the case
of H, (3—>2) can a circular orbit be transformed into a circular orbit.
The final orbit in the cases H,, Hg, . . . may be a circle, but need not
be so. From this we see that the various possible origins, which we
counted up on page 239, for Balmer's lines, are considerably reduced by
the principle of selection, and that Fig. 67 on page 218, which makes a
circular orbit pass into a circular orbit for all Balmer lines, is incorrect.

The possibility of proving the principle of selection experimentally is
certainly as yet not offered as long as we maintain the standpoint adopted
in the preceding chapter. From that standpoint all possible transitions
coincide in one line and the differentiation between circular and elliptic
orbits seems at first sight impossible. This is different, however, if we
adopt the relativistic standpoint, as we shall do in the final chapter;
in this case each transition corresponds to a different component of a
fine structure, and then it also becomes possible to test the principle of
selection quantitatively by spectroscopic experiments.

But the rule of polarisation and the principle of selection enter fully
into action only when an external field of force is present, as in the Stark
effect and the Zeeman effect. The next section is to serve as an intro-
duction to these phenomena.

§ 3. Emission in a Field of Force. Principle of Correspondence

We assume the field of force to be an electric field. On account of the
very small order of magnitude of atomic dimensions we may certainly
regard it as homogeneous. Thus the force has everywhere the same
magnitude and the same direction. We determine the moment of the
force for a fixed point O of the atom, for example, for the nucleus situated
at an arbitrary initial point P, and represent it by a vector (at right
angles to the plane through O, P, and the direction of the lines of force).
The component of this vector in the direction of the lines of force is then
zero. According to mechanics, the moment of the force determines the
change in the moment of momentum ; the moment of momentum is here
to be calculated as the sum of the moments of momentum of all the
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particles of mass of the atom with respect to the same point O and is
likewise to be represented by & vector. Its component in the direction
of the lines of force now remains constant on account of the vanishing
of the corresponding component of the moment of the force, whereas the
perpendicular component in the plane continually changes. Thus the
law of areas holds, in its special form as the law of the conservation of
the sectorial velocity, only for the direction of the lines of force. It is
only for this direction that we have an areal (sectorial) constant.

Consequently, we may demand the conservation of the moment of
momentum during the coupling of the atom with the ether only for this
special direction. This already allows us to see that we can assign to
the components of the moment of momentum that are perpendicular to
the lines of force no definite constant amounts that would be transferred
from the atom to the ether during the process of emission. For these
components change in the atom with the phase of the motion, and hence
their difference in the initial and the final configuration would depend on
that phase of the motion, in which we imagine the initial configuration
to have ceased and the final configuration to have started. But in reality
the process of emission must be definite and free from such arbitrariness.
Hence we conclude that only the constant component of the moment of
momentum in the direction of the force can determine the emission.

This component of the moment of momentum, and not the whole
moment of momentum will now be equal to nk/2r, according to the
quantum theory. Let n be called the equatorial quantum number. We
take the direction of the lines of force as our z-axis, and the perpendicular
zy-plane will be called the equatorial plane. Our present quantum
number % refers to the circulatory motion in the equatorial plane and
not as before to that in the invariable plane. Accordingly, let N, be the
component, in the direction of the lines of force, of the moment of
momentum of the emitted spherical wave. We take its mode of repre-
sentation in terms of the amplitude and phase constants of the spherical
wave from eqn. (23) of Note 9. Since we have now defined our co-
ordinate system with reference to the field of force, and not, as before,
with respect to the plane of vibration, three amplitude constants a, b, ¢,
now occur, of which the third, ¢, refers to the z-axis, whereas in our
former orientation with respect to the plane of vibration this third
amplitude constant dropped out. Moreover, there occurs in the quoted
eqn. (23) a phase constant y, which denotes the phase difference between
the a-vibration and the b-vibration (the z- and the y-component). Our
representation of N, now becomes

_ /L 2(£§iny (1
Imat + ¢+t T T T !

This z-component of the moment of momentum of the ether must be
p

Google



212 Chapter V. Wave Theory and Quantum Theory

equal to the change in the corresponding component of the atomic
moment of momentum. We thus demand that

N,=%An. )

where An is the change in our present equatorial quantum number, that
is, simply the algebraic difference between its initial value n, and its final
value n,.

From (1) and (2) it follows that

_ 2ab sin y
An = FrE e )

Just as in the previous section we may now conclude: the numerical
value of the right-hand side of (3) is necessarily < 1, for, as in eqn. (5)
on page 265,

a® + b*>2ab
hence so much the more is
a? + b* + c*> 2ab sin y.

Thus the right-hand side of (3) can be equal to + 1 only if simul-

taneously
a=b ¢=0 siny=4+1

Accordingly the left-hand side of (3) must necessarily lie between the
limits + 1. As it is itself an integer, being the difference of two integers,
it can have only the values

An=+10, —1.
When An = + 1, we get
a=b ¢=0 siny=4+%1

We have a circularly polarised spherical wave (left or right). Iis
vibration plane ts the equatorial plane (perpendicular to the direction of
the lines of force), and its unique axis coincides with the direction of the
Jorce. The component of the wvibration in the direction of the force,
measured by the amplitude ¢, vanishes. The vibration ellipse becomes
a vibration circle that is perpendicular to the direction of the force.

When An = 0, we get, by (3), either a =0, or 4 =0, or sin y = 0.
This suggests the conclusion that only the z-compoment of the vector
potential can be present, that is, that both @ = 0 and b = 0, whereas only
¢ # 0. To determine this, we set up the following line of argument that
is not, however, inevitable. The polarisation must be fully determined
in this case as in every other. On account of the field of force the z-axis
and the equatorial plane xy are uniquely determined, but within this
plane every direction is of no less and no more value than any other. If
a =0 and b = 0, then the y-axis would be favoured as a direction of
vibration as compared with the z-axis. It b= 0and a # 0, the z-axis

Google



§ 8. Emission in a Field of Force 273

would be favoured. If sin y = 0, we should have a linear vibration in
the direction of the resultant of the two amplitude vectors a and b, and
this direction would then be favoured above all other directions of the
equatorial plane. There is no physical reason that this should be so.
But the necessary equality of value (equivalence) of all equatorial
directions is, however, brought about if we set a = b = 0, whereby the
eqn. (3) is likewise satisfied for the case An = 0. Thus we are left with
only the amplitude of vibration ¢, which is actually favoured by being in
the direction of the lines of force. The spherical wave produced 8 then
linearly polarised and the direction of the force is the azis of symmetry of
the linear pola/rz.satwn

The difference in this result and in the mode of inference compared
with the case in which there is no field of force (p. 267) is to be noted.
In the latter case, the vibration vector (a, b) lay in the orbital plane (in-
variable plane) of the atom ; in accordance with the definition there was
no ¢ component perpendicular to this plane. The equivalence of all
directions within this plane therefore led to the conclusion: @ = b
= ¢ = 0, that is to no emission. In the present case, on the other hand,
the c-component is favoured by being in the direction of the lines of
force. Our corresponding conclusion is here, therefore, a = b = 0,
¢ # 0, that is, linear polarisation along the z-axis.

Moreover, whereas in the case in which no forces were present, we
could prove that the orbital plane (or the invariable plane, respectively)
was preserved during the transition from the initial to the final state,
there is no question of this in the present case. Under the influence of
an electric field the orbit of the hydrogen electron is not plane, and a
more general type of atom has no invariable plane. But even under the
influence of a magnetic field, in which we can, in a certain sense (cf. § 6)
speak of a plane orbit of the hydrogen electron, this plane is not pre-
served in the transition.

Summing up, then, we may say that also in the presence of an ex-
ternal field of force the rule of polarisation and the principle of selection
is confirmed provided the appropriate changes are introduced which are
given by the existence of a unique direction of the force. The rule of
polarisation states that the axis of symmetry of the linear or the unique
axis of the circular polarisation, respectively, now coincide with the
direction of the force, whereas, earlier, the same axes were only relatively
orientated to the state of motion of atom, but could have any arbitrary
position in space. The principle of selection now refers simply to the
equatorial quantum number, which is associated with the component of
the moment of momentum of the atom in the direction of the lines of
force, just as earlier the azimuthal quantum number was allocated to the
whole moment of momentum.

Through the restriction to one direction of the components the effect of
the principle of selection 18 clearly weakened. This is seen very simply if

18
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the assumptions are as in § 7 of Chaper IV (limiting case of a field of force
of intensity zero). There the azimuthal quantum number 7 allowed
itgelf to be resolved into two parts, the equatorial #, and the ‘“ latitudinal
quantum number” n,. By merely taking over this resolution and the
consequent change in terminology (=, in place of the previous n for the
equatorial quantum number, and 7 for the quantum sum =n, + n,), we
may say: our principle of selection restricts only =, leaving n, free.
But through this the limitation of n is partly removed. Instead of
[An | < 1 in the case without forces, we have now | An, | < 1, whereas

An = An, + An, = (i' (1)> + An,.

On account of the freedom of An,, Az, too, is now capable of assuming
also values above 1 (or below — 1, respectively).

We apply this to an actual case by passing from the field with a
definite direction of the lines of force, as hitherto considered, to a field in
which the direction of the lines of force are unknown and change from
atom to atom.

Electrically such a field is realised by a discharge tube of high current
density. Free charges occur in it which produce spherical fields of force
distributed arbitrarily. Different atoms are then under the influence of
forces which differ in direction, and one and the same atom is subject
to forces that vary with the time.

In this case the component of the moment of momentum in the
direction of the lines of force and the corresponding equatorial quantum
number are not observable since the direction of the lines of force is not
defined. Only this equatorial quantum number, however, is restricted by
the principle of selection. In the case of the azimuthal quantum num-
ber, which is alone observable, the principle of selection does not come
into effect. So we arrive at the following conclusion which has been ex-
cellently confirmed by experiment (cf., for example, §2 of the next
chapter) : when the electric current density in the discharge tube is high
the principle of selection is rescinded.

What we have said here about electric force (in a definite direction)
will also be applied to magnetic force, but with certain alterations of the
argument, for which we refer to § 6 of this chapter.

Finally we have yet to speak of ideas of quite a different type, by
which Bohr has arrived at the same results as ours in his latest re-
searches,* and has, indeed, partly gone considerably beyond them. Bohr
has set up a general “Principle of Correspondence between the Wave
Theory and the Quantum Theory” which is added to the quantum
theory as something foreign to its nature. We sketch it here for only
the simplest case of purely periodic orbits; we give its general formula-
tion in Note 10.

* Kopenhagener Akademie, 1918 (so far, Parts 1 and 2 have appeared).
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In a mechanical system that periodically executes a cycle there
belong to the stationary orbits of infinitely great quantum numbers a
rotation number (“ Umlaufzahl’) that agrees with the vibration number
(frequency) calculated according to the quantum theory for the transition
of the electron from one such stationary path to a neighbouring path (cf.
Note 10, in which the proof is straightway given for the general case of
a conditionally periodic system). Since, according to classical electro-
dynamics, the rotation number of an electron coincides with the vibration
number of the light-wave which it emits, we may say that in the region
of infinitely great quantum numbers, the vibration frequencies coincide
in the classical and the quantum theory. Moreover, since in atomic
systems of the Bohr type the rotation number decreases to zero as the
quantum number increases, this is in harmony with the theory of heat
radiation for which, likewise, in the region of infinitely slow vibrations
the results of the classical theory are confirmed by the quantum theory
as well as by experiment. But the classical theory makes definite state-
ments not only about the frequency but also about the polarisation and
the intensity of the emitted vibrations. We can raise no objection, in
the light of what we have just said, to regarding these statements as
trustworthy, too, in the region of infinitely slow vibrations. Now, Bohr
extends these statements, by extrapolation, to the region of rapid vibra-
tions, too, that is he passes from infinitely great to finite quantum num-
bers. The justification for this can be found only by agreement with
experiment. And experiment does, indeed, give convincing evidence in
favour of Bohr's extrapolation. For Bohr derives by this means not
only the rule of polarisation and the principle of selection as well as their
non-validity for cases in which external forces are superimposed, but he
and his pupil Kramers,* respectively, also find that when the intensity
of the spectral lines is determined in the above way the results agree
remarkably well with experiment.

Our object in the above discussion was the reverse of Bohr's. In
leaving incomplete our process of finding the determining elements, in
the wave theory, of the process of emission, we wished to fit wave theory
and quantum theory together according to the immediately evident
maxim of the conservation of energy and momentum and to prove that
the conception of two views are compatible with each other. On the
other hand, Bohr has discovered in his principle of correspondence s
magic wand (which he himself calls a ‘ formal ” principle), which allows
us immediately to make use of the results of the classical wave theory in
the quantum theory. For the rest, in his discussion of the results, he
also refers to the conservation of the moment of momentum, as a
possible means of explanation, quite independently of, although simul-
taneously with, Rubinowicz. It is a source of satisfaction that Bohr's

*H. A. Kramers, * Intensities of Spectral Lines,” Kopenhagener Akademie, 1919,
p- 287.
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method and our own, in spite of their opposite starting-points, agree in
their essential results.

Hereby Bohr's method is not only of greater consequence in the
question of intensity, but also leads to sharper and more definite results
as regards the question of polarisation. Whereas we, in the case An = 0
(cf. pp. 266 and 273), attained our object only as a result of plausible re-
flections, the principle of correspondence comes to its decisions by un-
ambiguous analytical criteria, namely, that in the case in which forces are
absent the radiation is absent, and that when there is & field of force
there is linear polarisation in the direction of the lines of force (details
in Note 10).

In the matter of method the principle of correspondence has the great
advantage that it postulates that Maxwell’s theory be generally valid for
long waves (Hertzian vibrations of wireless telegraphy), and that it does
not throw overboard the many useful results, which the classical theory
gives for optical waves and Rontgan rays, but makes fundamental use
of them. From this point of view the quantum theory seems, as Bohr
has several times emphasised, not to deny the classical wave theory but
systematically to extend it.

We have to recognise the complete superiority of the principle of
correspondence in the matter of atomic models. For here Bohr seems
to have succeeded (cf. pp. 59 and 109), by using classical mechanics and
electrodynamics, in arriving at definite statements about the periodic
system and the atomic shells, which would have been inaccessible by any
other route.

§ 4. The Orbits of the Hydrogen Electron in the Stark Effect

The influence of the electric field on the emission of the Balmer lines
was discovered by J. Stark* in 1913 and was examined by him in the
succeeding years experimentally in an exemplary fashion as far as all the
details of the fine-structure + and polarisation, not only for hydrogen, but
for a series of other elements, He, Li, etc. It was a happy coincidence
that in the same year, 1913, Bohr's spectral th ory was proposed and
was elaborated far enough to be able to grapple with the problem of the
electrical resolution of hydrogen lines. The solution of the problem
was obtained simultaneously and along essentially similar lines by K.
Schwarzschild { and P. Epstein § in 1916. Whereas the classical theory
failed completely, the quantum theory yielded all the many details of
Stark’s observations of the fine-structure in such complete coincidence

* Berliner Sitzungsber., Nov., 1913; Ann. d. Phys., 43, 965 and 983 (1914). A
summary has been given by J. Stark, Elekirische Spektralanalyse. Leipzig (Hirzel),
1914.

+ Gottinger Nachr., Nov., 1914.

1 K. Schwarzschild, Zur Quantentheorie, Berliner Sitzungsber., April, 1916, pub-
lished on 11th May, the day of Schwarzschild’s death.

: P. S. Epstein, Zur Theorie des Starkeffektes, Ann. d, Phys., 50, 498, (1916).
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§ 4. Orbits of the Hydrogen Electron in the Stark Effect 277

with experiment that it was no longer possible to doubt the correctness
and unambiguity of the solution found.

We shall just shortly remark on the experimental difficulties of the
problem. The object was to subject hydrogen atoms during their emis-
sion to a powerful electric field of, say, 100,000 volts per cm. This was
not possible with the ordinary arrangement of the Geissler tube, in which
the hydrogen lines are usually produced. Geissler tubes are compara-
tively good conductors; an electric field in it simply collapses. Stark,
therefore, used in place of the Geissler tube the luminescence of a canal-
ray tube in a layer directly behind the perforated cathode. By using an
oppositely charged electrode placed parallel and close to the cathode, he
was able to generate a uniform and measurable electric field in a space
of a few millimeters. The shortness of the space between the electrodes
of this additional field not only favours the production of the resulting
great potential drop but also prevents (in accordance with the peculiar
laws of the production of the dark space in discharge tubes) the occur-
rence of a spontaneous discharge between the electrodes. ' The potential
difference is great enough to influence effectively the canal-ray ions that
fly through the perforated cathode in the usual way and to distort per-
ceptibly the elec'ronic orbits which are being traversed in them.

In contradistinction to Stark, Lo Surdo * uses as a means of influenc-
ing the phenomenon of luminescence no additional field but the field of
" the discharge tube itself, and, indeed, the part within the dark space of
the cathode. Thus his method sacrifices quantitative definiteness and
homogeneity of field but offers special advantages for the purpose of
qualitative observations.

The general experimental results of Stark and Lo Surdo, respectively,
were :—

1. Every Balmer line becomes split up into a number of components.

2. The number of components increases with the series number of the
line.

3. The components are lincarly polarised when viewed transversally
(transverse effect), being polarised partly parallel to the field ( p-compon-
ents) and partly perpendicularly to it (s-components).

We must then first define clearly what these terms usually signify.
In the case of the p-components the direction of the electric vibration in
the light ray at the point of observation is parallel to the lines of force
of the external field; in that of the s-components, the direction of the
electric vibration is perpendicular to these lines of force. Thus it is not
the position of the optical plane of polarisation, as shown by a Nicol's
prism, that is to serve to distinguish “»”" and *s.” Since, as we know,
the plane of polarisation in the light ray is perpendicular to the direction
of electrical vibration (or, what is the same, it passes through the plane of
magnetie vibration), we should have to transpose the terms p and s if we

* Accad. dei Lincei, 23, 83, 117, 143, 252, 326 (1914),
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judged them according to the plane of polarisation. The use of the
words * parallel ” and “ perpendicular,” as here applied, arose historically
out of the ideas of the classical wave theory. If we imagine a vibrating
electron to be added to the place at which the emitting atom is situated,
then the wave emitted by this electron would have, according to the
classical view, a direction of electric vibration that would have the same
direction as the component of acceleration of the electron (v, in Fig. 7)
that is effective in the direction of emission in question. The p- and the
s-components thus arise, in classical language, from vibrations of an ex-
citing electron, which take place parallel or perpendicularly to the line
of force of the external field.

4. When viewed longitudinally (longitudinal effect) the p-components
are invisible and the s-components are unpolarised.

5. The intense p-components in general lie on the outside, and the
intense s-components on the inside.

6. In the case of hydrogen the resolution and the polarisation are
distributed symmetrically on both sides of the original line, but in the
case of other atoms, the distribution is largely unsymmetrical.

7. The distances of the components from the centre are, in the case
of hydrogen, whole multiplies of a certain smallest distance between the
lines, and indeed, measured in the scale of vibration numbers, there is
the same line-interval for the various hydrogen lines.

8. The resolution (in particular, this smallest line-interval) increases
proportionally with the field.

We have already formed in Chapter IV, page 237, a general theoretical
idea of the cause of the Stark effect. We spoke there of the various
possible ways in which one and the same Balmer line may be produced
by circular or elliptic orbits with the same quantum sum. These various
modes of origin certainly coincide in one line if no external field of force
is present (and if, see Chap. VIII, § 3, we leave out of consideration the
relativistic fine-structure). But they become separated if a powerful
electric field is imposed.

Thus the Stark effect denotes the artificial separation of the various
possible modes of production, which originally coincided in a Balmer line,
of the initial and the final orbit, this separation being effected by the appli-
cation of an external electric field. And, owing to the spatial position of
the orbits, the composition of the same quantum sum out of three quantum
numbers n,, n,, and n, is involved. This is easily understood from the
fact that the effect of the electric field on the orbits of the hydrogen
electron will be found to depend not only on the shape and size (two
quantum numbers) but also on the spatial position of the orbit with
respect to the electric lines of force (third quantum number). These
orbits are in the electric field, no longer, of course, circular and elliptic
but are more complicated curves. Our object is to select from the totality
of mechanically possible orbits those that are distinguished in the light
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§ 4 Orbits of the Hydrogen Electron in the Stark Effect 279

of the quantum theory by choosing three appropriate quantum numbers
n,, ng, 1y, and by representing the orbital energy as a function of these
quantum numbers. To each such quantum triplet n,, n,, ng, in the initial
and the final orbit there corresponds in general a different component in
the Stark fine-structure. The increasing number of components in the
series of lines H,, Hg, H,, . . . becomes immediately intelligible from
this. As the quantum sum of the initial orbit gradually increases, the
number of the quantum triplets into which this sum may be resolved
also increases, and, in harmony with this number, the number of compon-
ents of the corresponding picture of resolution in the Stark effect increases.

We now consider the mechanical problem: how does an electron
move when under the influence of a fixed nuclear charge E (in the case
of the hydrogen atom this E = ¢) and under the simultaneous action of
an external homogeneous electric field of force of the intensity F? This
problem is contained in the more general one: how does a point-mass
move when under the influence of two arbitrary and arbitrarily placed
fixed (Newton-Coulomb) centres of attrac- .
tion? The appropriate co-ordinates for the '
treatment of this general problem are (accord-
ing to Jacobi) the parameters of the families of
confocal ellipses and hyperbole that are de-
scribed about the two centres as foci, together
with the angle counted from the line connect-
ing the centres. If one of the centres is taken
off to infinity whilst its attractive power corre-
spondingly increases, the general problem re-
duces to our special one; at the same time the
systems of confocal ellipses and hyperbola re-
solve into two families of confocal parabolas of which the second fixed
centre, the nucleus, is the focus, and the field direction through it is the
common axis. We call the parameters of these two parabolic systems
¢and 4. They, together with the angle y counted from the direction

of the axis, are the co-ordinates which we shall have to use in our special
problem.

In Fig. 77, O represents the nucleus, x the direction of the lines of
force. The parabolas ¢ = const., » = const., respectively bave the
equations : )

Fre. 77,

P oyor=g Y _oz=m. . . (1

& 7
For each point P (z, y) of the plane we calculate by means of these
equations the para eters £, 5 of the two parabolas which intersect at P.
These two parameters may serve in place of x, y to define the point P,
and hence also to determine the position of the electron within the plane
of the diagram (“ meridian plane”). To fix the position in space we use
a8 the third co-ordinate the angle y that the meridian plane which passes

)
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through the position of the electron at the moment in question makes
with an arbitrary fixed meridian plane.

In the figure the lengths OP = r and PP’ = ds are also drawn. The
potential and kinetic energies of the electron are calculated from them.
‘We show how these expressions are derived, and also how the parabolic
co-ordinates are naturally introduced that lead to the eqns. (1) in Note 11
at the end of the book : here we write down at once the expression W
for the total energy. In forming this expression as a function of toe
co-ordinates of position ¢, », ¢ and of the corresponding momentum
co-ordinates pg, p,, py We call it Hamilton’s function H (cf. Chap. IV,
§1, p. 194):

W = H 2’”‘({2 + 77) {Pe + p,' + (g; )Z)A
— 4dmeE + melF(§* - n*)} (2)

The relationship between the momentum co-ordinates p and the velocity
co-ordinates ¢, 5, y is given by the first triplet of Hamilton’s equations,
of eqn. (4) on page 194:

ac_OH _ dn _H P Ay _H - py
dt  dpe m(E + ) dt 5);" m(E+ ) at  dpy  még

,y

3)

The second triplet of Hamilton's equations then states how the p's alter
dynamically :
dpg YH dp,  H dpy _ 0H 0 4
dT " @ a4 w0 @
The last of these equations shows that py is a constant. This is nothing
new to us for we saw on page 271 that in a homogeneous electric field
the moment of momentum about the direction of the lines of force (even
when the atom has a complex configuration) must be constant; accord-
ingly, p, is the “ equatorial "’ areal constant.
The first two eqns. (4) are, if we replace H by the constant value W
which it has after the differentiation has been performed :

d(% = (52 {2m£W+ - Qm(eF‘fii}]

dp, 1 j p ¥l
o e |2+ merr |
If we divide these two equations by the first two eqns. of (3) respectively,
the differentiation with respect to ¢ drops out in accordance with the
scheme :

()

dpg  dé _dpe dp, dy _ dp,

dtCdt T dE dedt T ody
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and we get

dpy .

“HE =2mW¢ + 3— - 2meF¢g )
d

P d—-q" =2mWy + 117 + 2meFy?

It is worthy of note that the right-hand members of (6) are pure
functions of ¢ and ». We may therefore integrate and thus get pf as a
function of ¢? and p, as a function of »*:

pe = Nfi(€), where f,(¢) = 2mW¢ — L¥ - meF¢t + C,
(7
Py = Nfy(n), where f,(9) = 2mWq2 — + meFyt + C,

C, and C, are constaits of integration. They become reduced to only
one constant since pg, p, must satisfy the equation of energy (2). For
if we insert p} + p; = f, + f, from (7) into (2), it follows that C, + C, =
4meE. Thus we may set

C,=2meE -B), C,=2mEeE+g£) . . (Ta)

where B is now the arbitrary solely remaining constant of integration.
Eqns. (7) are derived a little more shortly and less artificially by the
method of separation of variables in Note 11.

The essential result of our treatment so far is: the parabolic co-
ordinates of momentum are square roots of simple rational functions of
the parabolic co-ordinates of position.

From this theorem a general inference may be drawn, without further
calculation, concerning the form of the orbital curves. Firstly, we see
from (7) that during the motion ¢ is limited to values for which f, >0,
since p; must be real. Hence the extreme values that ¢ may assume are
the roots of f,(¢) = 0. We denote them by ¢, and ¢, In the case
F = 0, for which f; = 0 becomes a quadratic equation in ¢, there are
only two positive roots. In the case F # 0 a third root comes from
infinity but it does not come into consideration for us; thus we take
&nin 80d £.qx to denote those two roots that proceed by continuous
development from those of the case F = 0.

We next show that in the course of the motion ¢ increases continually
from &min t0 &uaz. For if ¢ were to alter the sense of its progressive
increase, we should have to have { = 0. But then, by (3), p; = 0. By
(7), however, p; cannot vanish if f; = 0, that is if £ = £, Or &uin. Thus
¢ changes the sense of its progressive increase when it starts from
& = &uin, for the first time at the point ¢ = £,,,. Whereas hitherto
p¢ >0, from now on, the negative sign of the square root holds; when
¢ <0, we have, by (3), £<0.

The decrease of { now continues until ¢ = &, and then passes over
into a phase of increase, and so forth. We see that, in the motion ¢ is
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confined to the region between Emin and &uax and continually traverses this
in alternate senses. The same holds for y. Here, too, the roots ., and
Nmaz Of f3(n) =0 form the reversion pointsor “librationlimits” (Librations-
grenzen) for the progress of the y-co-ordinate. At the same time we have
in this behaviour of ¢ and » a typical example of the general course of
motion in the case of all ‘‘ conditionally periodic systems' (cf. Note 7,
No. 2). The continuous libration of the co-ordinates is proved in the
general case just as in our special case.

The main features of the form of the orbits in the Stark effect are

now exposed. In Fig. 78 we exhibit the curved quadrangle which is
formed by the parabolas § = &nin, € = Emazy 71 = Nmin, a0d 4 = Yugg.
The orbital curve i3 enclosed within these limits ; it alternately touches a
¢- and an y-limit, and in the course of time closely covers the whole of the
curved gquadrangle. Our figure exhibits the ¢onditions only in the
meridian plane, that is, in a plane
¢ = const. DBesides the motion in
this plane a rotation of the plane in
space about the direction of the lines
of force takes place in which the
moment of momentum py is constant.
By eqn. (3), there corresponds to it a
quantity, the rotational velocity, v,
which is variable within certain limits.
Hereby the plane orbital curve shown
in the figure becomes a spatial orbital
curve which continually circles round
the direction of the lines of force.

Only in the special case py =0,
in which ¢ also = 0, the meridian ~ Fi. 8.
plane remains at rest; the electron
then describes a plane orbital curve in it. From the expression (7) for £,
it. follows that when py=0 one of the roots of f, = 0 vanishes. For if
we multiply throughout by the denominator £, we get

E(2mWE — meF¢t + C)) = pi

thus
fun'u = 0 when Py = 0

and likewise it follows that
Nmin = 0 when py = 0.

But by Fig. 77, ¢ = 0 and 5 = 0 respectively denote double the negative
or the positive z-axis. Instead of the point of contact of the bounding
parabolas ¢,.i. and i, in Fig. 78, there then occurs an intersection of
the x-axis on both sides of the nucleus. The orbital curve then assumes
the form of Fig. 79.

Just as the orbital curve in Fig. 78 everywhere closely filled the
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whole curved quadrangle between the bounding parabolas &nin, €maz,
Nuins Mmaz: OF the whole ring region, in a spatial sense, between the corre-
sponding paraboloids, so also the whole curved two-sided space between
the bounding parabolas is everywhere closely occupied in the course of

the motion by our plane curve in Fig. 79. From this it follows that our
electron must finally, some time

or other, collide with the nucleus.
The special case py, = 0 in the
Stark effect is thus analogous to
the special case of an ellipse
that degenerates into a double
straight line in the case of the
Kepler motion (cf. the dotted
lines in Figs. 714, B, c, ). We
shall draw here the same infer-
ence as in the Kepler case,
namely, that this orbit which
lies in the meridian plane and which collides with the nucleus cannot
exist as a stationary state of motion and is to be excluded from the series
of quantum states.

Now that we have discussed the essential features of the mechanical
aspect of the problem, we turn to the quantum aspect. It is clear that
we shall have to apply the quantum conditions to our co-ordinates ¢, », y.
Taking n,, n,, n, to denote integers, we then postulate

X

L
T

Fig. 79,

2
$padg = mh, podn = moh, [pudy =nh .. (3)
) ) J
we call n, the equatorial quantum number. The integration with respect
to y is to be taken over all positions ¢ of the meridian plane from 0 to
2m. Since py is constant, we get

h
Qmpy = nyh, Py = g . . . 9)

n, may assume all integral positive values except zero. 'We exclude zero
on the ground of the collision between the electron and the nucleus con-
sidered above.

Let n, and n, be called parabolic quantum numbers. The integration
with respect to ¢ and 7 refers to the whole of the region of values of these
variables, that is, in the case of ¢, from ¢,.in t0 &mar and back to &, and
correspondingly for 4. In eqns. (8):this closed integration path is dencted
by the sign 0. It may also be replaced by twice the one way from
&in tO Euiaz OF from yimin t0 .42 respectively. But it is better to take full
advantage of these simplifications that result fiom the circumstance that
the path of integration is closed. This occurs in Note 6 in sub-section f.

n, and 7, may assume all positive integral values including zero. The
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case n, = 0 denotes that the integration path in the first integral (8)
shrinks to the length zero, that is, that £uim = uee In this case the
eqn. f; = 0 has two equal roots. The two bounding parabolas £ = &uin
and £ = £,4 in Fig. 78 merge into one and the orbital curve runs to and
fro on this bounding parabola between the limits npi, and 9uq.. Con-
sidered spatially, it then lies on a paraboloid of revolution, of which it
everywhere completely covers a portion enclosed between two parallel
circles. The same is true for n, = 0, in which #,,, becomes equal to
7maz- Since these paraboloidal orbital curves always remain at a finite
distance from the nucleus during the whole course of the motion, there
is no reason for excluding them from the family of stationary curves.

The case n, = n, = 0 also belongs to the possible stationary orbits.
1t is characterised by two pairs of coincident roots: &uin = €mer and
simultaneously, ymin = Mmez- The curved quadrangle of Fig 78 contracts
into a point and the orbit consists, regarded spatially, of a circle that is
described about the direction of the lines of force. Its centre does not,
however, coincide, as in the case in which no forces are present, with
the nucleus, but is displaced towards the side of the negative lines of
force (negative x-axis), as we see at once, if we inquire into the equi-
librium between the action of the nucleus and the external field of force.
In particular, there belongs to this simplest circular type of orbit the
unexcited natural orbit of the hydrogen atom (for which the quantum
sum = 1) in the electric field. For if we are to have n, + ny + ny, = 1,
then, on account of n, > 0, it follows of necessity that n;, = ny = 0.

The totality of quantised orbits thus forms a triply infinite discon-
tinuous group and is represented by the scheme of quantum numbers

n=012.., n,=01,2.., ng=1238 ...

In the limiting case F = 0 of a vanishing field each member of the
group becomes a Kepler ellipse with the nucleus as a focus. We might
be led to suppose that in this limiting case our present group merges
into the triply infinite group which resulted from spatial quantising in
Chapter IV, §7, and which was represented by the scheme

n=012... n,=0,12... n=12 ...

But this is not so. Our present quantum numbers have a different
meaning than the former ones, since they are based on a different co-
ordinate system. Accordingly, also the position and the shape of the
Kepler ellipses will now be different. We discuss this further in the
final section of this chapter. In mathematical language, the ambiguity
of this result is due to the fact that in the Kepler motion we are dealing
with a degenerate problem (cf. p. 241). As in such a case there are
several possible choices of co-ordinates, so there will be several different
results of quantising. But from the physical point of view no ambig-
uity is admissible. Only one of our two methods of quantising can be
physically true,

Google



§ 5. Resolution of the Balmer Lines in the Stark Effect 285

The following circumstance decides which of these two it is. The
Kepler motion without external forces is a degenerate problem only so
long as we consider it from the physically insufficient view-point of
classical mechanics. From the relativistic view there is, at least for the
plane problem, no ambiguity. On the other hand our treatment of the
Stark effect in parabolic co-ordinates is possible only when we start from
classical mechanics. That is, our quantising of the Stark effect holds
only so long as classical mechanics is applicable. This is the case with
strong electric fields but not with arbitrarily weak fields. Whether a
field is to be regarded as strong or weak in this sense may be most
simply determined as follows. Let Avy be the resolution that an electric
field F effects in a Balmer line. Let Avy,, on the other hand, be the
natural doublet interval of the Balmer lines (cf. p. 209) which is ac-
counted for by relativistic mechanics. If Avp < Avy, the field is called
weak ; if Ave > Avy, as is always the case when observations of the Stark
effect are made, the field is to be called strong. In the latter case the
quantising performed in this section is correct, in the former case it
fails. The passage to the limit for the field zero is thus not allowable.
In physical language, therefore, the present method of quantising the
Kepler motion for the case when no external forces are acting is wrong,
but the method of the preceding chapter remains true.

The question, interesting as regards method but difficult, as to how
we are to quantise in the case of very weak electric fields has been
answered quite definitely by H. A. Kramers.* As it is of no account for
the interpretation of the Stark effect, after what we have just said, we
shall not discuss it. But in speaking of the Paschen-Back effect in
Chapter VIII, § 7, we shall again have to refer to it.

In saying above that when we quantise Kepler’s problem in parabolic
co-ordinates different ellipses result than when we quantise in polar co-
ordinates, this difference affects the shape, but not the energy of the orbits.
As we shall see at the beginning of the next section, the energy comes
out exactly the same by each method so long as the quantum sum that
enters into it is assumed the same in each. This holds not only for the
present case of Kepler ellipses, but generally for degenerate problems:
as far as the calculation of the energy and the spectral consequences that
result therefrom are concerned, the ambiguity that otherwise attaches to
degenerate systems disappears.

§5. The Resolution of the Balmer Lines in the Stark Effect

If in the first two eqns. (8) of the preceeding section we imagine

Nf(€) and A/f,(n) written for p; and p,, only two unknowns occur in the
left sides of (8), namely, the energy constant W and the integration con-

* Zeitschr. f. Phys., 3, 199 (1920).
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286 Chapter V. Wave Theory and Quantum Theory

stant 8. These two constants are, by eqn. (8), brought into relation with
the two quantum numbers 7, and 7, and may each be calculated separately
from these. Since p, also occurs in the expressions for f, and f,, and
since, by (9), py is proportional to ng, the expressions that we are seeking
for W and 8 will depend on all three quantum numbers n,, n,, 7.
What interests us above all is the expression for W. We get for it, as
shown in Note 11, if we develop our expression in increasing powers of
the intensity of field F and stop at the first power :
2rme?E? 1 3n*F

-W="00 ) — y + 0, 1
W h? (nl +n, + 71'3)2 8rimE (nz nl)(nl + oyt n") ( )

The first term on the right denotes the energy of the electron when
the field is free. We designate it by — W, and may write

Ri(Efe)?
(g + oy )

@)

Since we thus get the same value as when we quantise the Kepler motion
free of forces in polar co-ordinates, cf. eqn. (20), p. 236, we have proved
the statement made at the close of the preceding section: in spite of the
difference in the paths the energy is the same in both cases so long as
the quantum sum is the same (n; + n, + n; = n + n').

The second term on the right of eqn. (1) denotes the change of energy
in the electrical field. We designate it by — AW and then have

- AW = Si}," F (ny — n)(ny, + n, + ny) . N 6))
From the change in energy we may calculate the change in the vibration
number, or the resolution, according to the formula

hav = AW, — AW..

Let the quantum numbers %,, n,, n, refer to the final state ¢, the quantum
numbers k,, k,, k; to the initial state . Then we find

Sthh g = n)(ng + my + my) — (b, — k))(k) + Ky + k) (4)

Ay =
We now assert that this eqn. (4) contains the whole of the expertmental
Sfacts which the researches of Stark have exposed in the case of hydrogen.
Our result is a little more general in that it includes, besides hydrogen,
atoms of the hydrogen type. In the case of hydrogen itself we must set
E =e¢. Eqn. (4) is of course to be supplemented by the principle of
selection and the rule of polarisation, as was developed in the case of an
electric field in § 3.
Firstly, we read out of (4) the experimental facts described in 7 and
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8, on page 278 : all resolutions of lines Av in the Balmer series are whole
multiples of a smallest line-interval :

c=SrE 5

8*mE

As the.intensity of field increases, this smallest line-interval and
hence also the whole picture of the resolution of each Balmer line
becomes magnified proportionally to F.

We read the experimental fact 6 on page 265 out of eqn. (4) just as
directly : in the case of each Balmer line the resolution is symmeirical
about the original line. For if the transition

kg —» nnyng . . . . . (6)

is possible according to the principle of selection, then so also is the
transition
ke kg —> nnng . . . . . (6a)

If the former gives rise to a component at a distance Av from the original
line, then, by 4, the latter gives rise to a component at a distance — Av.
The polarisation, too, is the same for each component. For this is
decided only by the equatorial quantum numbers, which are the same
for each pair of transitions such as (6) and (6a).

Concerning the type of the polarisation our rule of polarisation states :

i ky=mng+1 . . . . .

then (cf. p. 272) a wave is emitted which is circularly polarised around
the direction of the lines of force. In the transverse effect such a wave
appears under all circumstances to be polarised perpendicularly to the
lines of force (in the sense defined more closely on p. 277). In the
longitudinal effect, it would be observed as a circular wave if only one
process of emission were to be seen. In reality each observation re-
presents a section through many elementary phenomena. These split
up into two groups, as far as the hydrogen atoms are concerned, which
originally circulate around the lines of force in one or the other direction
respectively. Both directions of circulation are equally frequent and
cannot be distinguished energetically. The same quantum transition
that leads to the right-circular polarisation of the one group leads from
the, so to speak, antipodal standpoint of the other group, to left-circular
polarisation. The superposition of these two groups thus brings it about
that, in the direction of the lines of force, no polarisation is observed.
If, on the other hand,
ky = n,. . . . . . (8)

the direction of vibration that is unique in the state of polarisation (cf.
p- 278) coincides with the direction of the lines of force. Consequently,
in the transverse effect linear polarisation is observed parallel to the lines
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of force. In the longitudinal effect these same components of the resolu-
tion are invisible according to the general rules of wave kinematics, which
does not allow emission at all in the direction of vibration. These de-
ductions agree literally with the experimental results which we stated
under 3 and 4 on pages 277 and 278.

We next consider in turn the resolutions of H,, Hg, H,, H;, and use
the abbreviation

K = (ky = k)ky + by + k), No=(ny = m)(n + n5 + ny). (9)
Av -

A—-C—-N—I\. . . . . (10)
According to (4) and (5) A denotes the displacement, measured in
terms of the unit measure C, of the component in question compared
with the original line. We set up the totality of possible transitions in a
table and count them up according to the value of the azimuthal quantum
number %, by letting %, decrease from its respective greatest value to its
smallest value 1. The value k; = 0, just like the value n; = 0, is to be
excluded, according to page 283. Furthermore, we classify the transi-

tions according to the type of polarisation. In the case of H,, we have

k,+ ky + ky =38, n o+ ny, + 0y =2
that is,
K = 3(k; - %), N = 2(n, - n,).

For the parallel components (k, = n;), the value k; = 3 drops out,
because n, can have no value greater than 2. We thus begin our
enumeration with %; = 2. Whereas the corresponding final orbit is
fully determined, namely 002, there are two initial orbits belonging to
k, = 2, namely (102) and (012). The two transitions thus possible,
namely,

102 — 002 and 012 — 002

differ, however, like the transitions (6) and (6a) only in that the first
two quantum numbers are interchanged simultaneously and thus give rise
to components that lie symmetrically. In our table we show only the
first of the two transitions which lead to a positive A, and throughout
we imagine the symmetrical components, with a negative A added, that
arise through the simultaneous interchange of the first two quantum
numbers, and we also give the numbers K, N, and A in accordance with
(9) and (10). Then we consider k; = 1 and the corresponding final
orbits with 7, = 1. Here there are three transitions that lead to a
positive A and just as many that belong to an equally great negative A,
which will not be stated in the table. The electrically resolved line H,
thus consists, on both sides, of four components of which the line-in-
tervals are to be read out of Table 27.
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TaBLe 27
Ha, p-components, k, = n,

i
! Teikoky —> nynymy K N ‘ a l
| 102 — 002 -3 0 3
| 11 -5 101 0 -9 2
201 —5 101 -6 -2 4
201 -» O11 . -6 + 2 8
TaeLe 28

H,, s-components, ky =n; + 1

kykgks —> ningng K N A ;
003 — 002 0 0 0 '
102 — 101 -8 -2 1
102 —» 0l -8 +2 5
201 — 002 -6 0 6
111 — 002 0 0 0

Passing on to the perpendicular components, we begin with %, = 3,
ng = 2, corresponding to the first transition given in Table 28, namely,
003 — 002; circular orbit — circular orbit (cf. p. 284). Starting from
k; =2 and k; = 1, we get in each case two transitions, as may be read
from the table. The component A = 0 arises in two ways; besides this,
there are three transitions with a positive A, and, of course, just as many
with a negative A. _

‘We compare with this the result of the observations of Stark. Fig. 80
is a slightly altered copy of Stark’s original diagram (re-drawn from the
scale of AX's to that of the Av’'s). The length of the strokes indicates the
intensity of the resolved components as estimated by Stark. A sign of
interrogation denotes that the existence of the component in question is
uncertain. The accompanying numbers give the resolution (in wave
numbers) as multiples of the fundamental unit C, that is, our A.

Here we see that as far as A = 4 the theoretical predictions agree
perfectly with the observations made of H,. For example the places 0
and 1 are free of p-components and occupied by s-components, whereas
the reverse is the case with the places 2, 3, and 4, both in theory as in
experiment. It is, however, true that the theory gives several components
of greater resolution, 8 as a p-component, and 5 and 6 as an s-component,
which were not shown up in the experiment.

Is this & reason for distrusting the theory? By no means. As we
have left the question of intensities quite out of consideration here, it
signifies little that we do not observe a theoretical component ; for theory
might disclose that the intensity of such a line is very feeble. This is

19
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§ 5. Resolution of the Balmer Lines in the Stark Effect 291

completely confirmed by the dissertation of Kramers (cf. p. 273) in which
the question of intensity is treated with complete rigour according to
Bohr's principle of correspondence. On the other hand, Stark empha-
tically leaves open the possibility, in particular in the case of H,, that
in addition to the observed components, still other weaker ones may yet
be present.

If, however, a doubt should still remain about H,, it would be re-
moved by a look at the complete picture of the resolutions of Hg, H,, and
H;. It convinces us absolutely of the truth of the theory.

The following tables require no further explanation. In the case of
the p-components of Hs we have to begin our tabulation again with &,
= 2, on account of k; = n; and n; <2. There are two transitions from
ky; = 2, and four from k, = 1, which, according to the principle of selec-
tion, lead to p-components on the positive side (A >0). The symmetrical
components on the negative side here again arise by interchanging the
first two quantum numbers in the scheme of transition of the initial and
the final orbit, and are to be imagined added. The number of transitions
that lead to positive (or negative, respectively) s-components is just as
great, namely equal to 6.

TaBLE 29
Hg, p-components, ky; = n,

kkoky —> nynyng K N a
202 - 002 - 8 0 8
112 — 002 0 0 0
301 — 011 - 12 + 2 14
301 — 101 - 12 -2 10
211 — 101 - 4 + 2 6
211 - 011 - 4 -2 2

TABLE 30

Hpg, s-components, ky = ny + 1

| |
kkoky = nymyng K N A
(
103 — 002 - 4 0 i |
i 202 — 011 - 8 +2 10
J 202 — 101 ~ 8 Z o 6
‘ 112 — 011 0 + 2 2 |
211 — 002 4 0 4
| 301 —5 002 12 0 12 '

The agreement with the experimental picture of the resolution in Fig. 80
is again striking. All the theoretical components have been observed ;
besides these, however, there are shown, in Fig 80 among the p-compon-
ents, A = 4 as a very weak line and A = 12 as questionable, and among
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the s-components A = 0 as weak and A = 8 as questionable. It may
very well be that a revision or repetition of these observations will dis-
close these components as unreal or produced by & secondary effect.
The s-component, A = 4, which is observed as the most intense line
arises, according to our table, in two ways, and this partly explains its
predominating intensity. For a more detailed discussion of questions of
intensity we must refer to Kramers.

In the case of H, the agreement between theory and observation is

absolutely perfect. The theory gives the following picture :—

TaBLE 31

H,y, p-components, kg = n,

kikokg —> mymyng K ’ N A
302 —> 002 - 15 0 15
212 —> 002 - 5 0 5
401 = 011 - 20 + 2 22
401 = 101 - 20 -2 18
I 811 - 011 - 10 + 2 12
| 311 — 101 -10 -2 8
221 -> 011 0 + 2 2

TaBLE 82

Hy, s-components, kg =ny + 1

kikegkg —> nyingng K N A
203 > 002 - 10 0 10
118 —> 002 0 0 0
802 — 011 - 15 + 2 F 17
302 = 101 - 15 -2 13
212 = 011 - 5 + 2 7
212 = 101 - 6 -2 3
401 —> 002 - 20 0 20
311 - 002 - 10 0 10
221 —> 002 0 0 0

TasLE 33

Hs, p-components, kg = ng

kkky —> nyngng K N A
402 —> 002 - 24 0 24
312 —> 002 - 12 0 12
222 => 002 0 0 0
501 —> Ol11 - 80 + 2 32
501 — 101 - 30 -2 28
411 — 011 - 18 +2 20
411 -» 101 - 18 -2 16
321 —» 0Ol1 - 6 + 2 8
321 —» 101 - 6 -2 4
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TaBLE 84
Hs, s-components, ky =ng + 1
kkks = nyngny K N A
308 -> 002 - 18 0 18
218 -» 002 - 6 0 6
402 — 011 - 24 + 2 26
402 — 101 - 24 -2 22
312 — 011 - 12 + 2 14
312 .5 101 - 12 -2 10
222 _, 011 0 +2 2
501 _, 002 - 30 0 30
411 _5 002 - 18 0 18
321 5 002 - 6 0 6

The observations, pictured in Fig. 80, are identical in every detail.

The same is true of H;.

The wonderful numerical regularity of the pictures exhibiting the
resolutions is brought to light in the following remarks.

In the case of Hg and Hy, only even multiples of the interval A occur,
and, indeed, this is so both in theory and in experiment. (The theoretical
reason is that, in the case of Hy and H;, the common divisor 2 of the
quantum sum in the first and second term of their series-expression re-
mains preserved in the quantity A = N - K\)

In the case of Hg the components are partially, in that of H, and H,
Sully polarised, again both in theory and in experiment. (This is shown
in the theory in that the A-values of the p- and s-series in the scheme of
Hj partly overlap.)

The succession of components in the sequence of lines H,, Hg, H,, H;
becomes less and less dense. The interval between neighbouring compo-
nents is 1 unit for H,, 2 units for Hg 3, or 4 units alternately for H,,
4 units without exception in the case of H,.

It now seems almost self-evident that, besides the ratios of the inter-
vals of the components, also the absolute values of the distances will be
given correctly by the theory. The absolute value of the resolution is
given by our constant C in eqn. (5) and depends on the field F. The
latter cannot be determined very accurately experimentally (hardly to
within 1 per cent.). We may therefore correct the measured field inten-
sity, as Epstein has done, by using the values calculated from the actual
resolution, and, trusting, justifiably, in the truth of the theory, use the
resolution in the Stark effect as a means of measuring accurately an
electric field, just as the resolution in the Zeeman effect has occasionally
been used to measure a magnetic field. The corrected field intensity
thus found differs from that measured by Stark by only very little (107,000
compared with 104,000 volt/cm.).

All in all, we may regard the theory of the Stark effect as one of the
most striking achievements of the quantum theory in atomic physics.
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§6. The Zeeman Effect

In 1896 Zeeman discovered that the lines of the series spectra may
be influenced by magnetic means. In the simplest case there appear
instead of one line, when viewed longitudinally, that is when the rayisin
the direction of the magnetic lines of force, two lines (Zeeman doublet;

N P longitudinal effect), but when viewed trans-
versely, that is when the ray is perpendicu-
1) long. | l lar to the magnetic lines of force, instead

of one line, three lines are observed (Zeeman

b) transv. |, |p \s triplet; transverse effect). Of the latter
A three lines one occupies the position of the
B original unresolved line, and the other two
are displaced by equal amounts to greater
or smaller wave-lengths, and occupy the

same position in the spectrum as the two lines of the doublet in the
longitudinal effect (cf. Figs. 81, a and b). The displacement amounts to

=470.10-*. H . . . (1

where H = the intensity of the magnetic field in absolute units (Gauss).
If we wish to measure v in sec.-1, we have to take e¢ on the right side of
the equation as the electrostatic charge of the electron; but if we measure
v in cm.~! as a “wave number,” then ¢ is the charge on the electron
measured in electromagnetic units, and e/m = 1-77.107 is the specific
charge on the electron measured in the same way. The numerical value
4-70.10-%in eqn. (1) refers to the latter method of measuring v, and thus
gives the displacement Av in the scale of wave numbers.

In the first observations of Zeeman the lines were not completely
separated, because the resolution was too feeble and the lines were too
wide. But he succeeded in establishing beyond doubt the presence of
polarised light at the extreme edges of the line configuration. The type
of the polarisation is indicated in our figure. The symbols p and s
(parallel and perpendicular, German senkrecht, to the lines of force)
mean the same as on page 277. They refer not to the position of the
optical plane of polarisation but to the direction of the electrical vibra-
tions in the ray at the place of observation. In the longitudinal scheme
the circular arrows denote that circular polarisation was observed, and, as
is shown, the sense in the two lines of the doublet is opposite. In
general, in the short-wave component the sense of the circular polarisa-
tion is the same as that of the positive current in the coils of the electro-
magnet, which produces the magnetic field, and, of course, in the long
wave component the sense is reversed.

We first wish to emphasise that our two figures @ and b express the
same facts under different circumstances of observation. The p-com-
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ponent of the transverse effect must be ineffective in the longitudinal
effect and that is why in Fig. 81a no line occurs at the position of the
transverse p-component. Actually, this p-component arises from a
vibration phenomenon for which the direction of the lines of force is a
line of symmetry of the intensity (or, expressed in the language of the
older theory, it is due to the vibration of an electron, which moves in the
direction of the lines of force). But such a vibration, as we know and
have already used in the Stark effect on page 288, emits no light. On
the other hand, the circular components that occur in the longitudinal
effect are due to a vibration phenomenon, in which the plane of vibration
is perpendicular to the lines of force (in words of the old theory, due to
the vibration of an electron, which describes a circle in this plane). Such
a vibration phenomenon, however, sends out in a direction perpendicular
to its unique axis, that is, in the transverse direction, linearly polarised
light, whose electric force vibrates in the plane of vibration, that is per-
pendicular to the magnetic lines of force, likewise analogous to the cir-
cumstances in the Stark effect, cf. page 287. Hence the s-components
of the transversal scheme correspond to the circular components of the
longitudinal scheme. Accordingly, it is sufficient to study the Zeeman
effect in only one direction, for example, in the transverse direction which
is more convenient for purposes of observation : then the picture that
must be obtained when observations are made in the longitudinal
direction may be derived from the latter quite easily.

The facts so far described are fully explained by Lorentz’s Theory of
the Zeeman Effect. This is based on the assumption of quasi-elastically
bound electrons, which excite vibrations in the ether that are synchronous
and in constrained connexion with the vibrations of the electrons (cf. the
end of §1). More precisely: the electron is considered bound to a
position of rest in the atom in such a way that when it is displaced a
restoring force acts on it proportional to this displacement from the
position of rest, and, indeed, the force is the same for all directions of the
displacement. We know nowadays that this picture is too simple and
restricts the true scope of atomic phenomena. Nevertheless it has
proved of great service for explaining the typical Zeeman effect.

For let us imagine the motion of such an electron in a magnetic field.
Whatever it may be in itself, we may resolve it into a linear component
which takes place in the direction of the magnetic lines of force and
into two circular components that take place perpendicularly to the latter
with reversed senses of revolution. The first component is not influenced
by the magnetic field, so that its frequency of vibration is the same as
when the magnetic field is not present. That is why we get the p-com-
ponent in the position of the original line (when no field is present) when
the observations are made transversely. The two circular components are
for the one part accelerated and for the other retarded by the magnetic
field. Hence we have the two circular components in the case of longitudinal
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observation, or respectively the two s-compoments in that of transverse
observation, displaced by an amount Av with respect to the line when no
fleld is present ; and the displacement is the same in each direction and
proportional to the magnetic fielld H. Equation (1), which expresses
mathematically these facts, is a direct consequence of Lorentz’s theory of
the phenomenon. The value (1) will therefore still be called the Lorentz
difference of vibration or the Lorentz displacement. Its method of deri-
vation assumes besides the idea of a quasi-elastically bound electron only
the recognised laws about the influence of magnetic forces on moving
charges (law of Biot and Savart). The sense of the circular polarisation
in the one or the other component of the Zeeman doublet also follows
from Lorentz's theory if the negative sign of the electronic charge is taken
into account.

Lorentz's theory, however, far from includes the whole complex of
facts of magneto-optic phenomena ; rather, it is limited to lines of the
simplest structure.

In the case of multiple lines (doublets, triplets) there occur in place
of the ‘““normal Zeeman effect” of Fig. 81 the so-called anomalous or
complex Zeeman types. We shall treat these in detail in the next
chapter.

Here we deal only with the normal Zeeman effect and shall show how
this may be understood on the quantum theory. For this purpose we
consider the simplest atomic model, that of hydrogen, consisting of a
singly charged nucleus and an electron in the magnetic field. In the
last section of the previous chapter we have already spatially quantised
the orbits of the electron (the nuclear mass being o) for a field of force of
which the intensity is zero. We can reduce the action of an arbitrary
homogeneous magnetic field H to this case. For, following Larmor, we
state that the superimposed field H leaves the form of the orbiis and their
inclination to the magnetic lines of force, as also the motion in the orbit, un-
altered, and merely leads to the addition of a uniform “ precession’ of the
orbit about the direction of the lines of force, the precessional velocily
being
B @

le
*Tame
This law holds provided that the velocity imparted to the electron by the
precessional motion alone is small compared with the velocity that the
electron would have in its path without the precessional motion; under
the circumstances of our atomic model this is the case even for the
strongest magnetic field that can be produced. The proof of Larmor’s
theorem is based on the conception of Coriolis forces, which is known
from the mechanics of relative motions (for example, from the circum-
stances of the rotating earth).
Generalising somewhat from the special conditions of the hydrogen
atom, we consider the motion of a point-mass 7 under the influence of
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forces that are distributed symmetrically about a certain axis A, which,
for example, arise from centres of force on this axis. We call the co-
ordinate system of reference there used the static system of reference.
‘We next imagine the point-mass to traverse the same orbit at the same
rate but relatively to a system of reference which turns about the axis A
with the uniform velocity o relative to the static system of reference.
In this case the motion of the point-mass is no longer natural or free.
Rather, to maintain this motion, forces in addition to those acting in the
static system are necessary which just neutralise the inertial resistances
of the rotation. These inertial resistances are, in the first place, the
ordinary centrifugal force

Z = mo*p . . . . . 3

where p signifies the respective distance of the point-mass from the axis
A; and, secondly, the composite centrifugal force or Coriolis force

C ="2mfvo] . . . . . 4)

where v is the velocity of theipoint-mass in the orbit that is being turned,
and [vo] is the vector product of v and the vector of rotation o drawn
in the direction of the axis A (cf. Note 1). Eqn. (4) determines not only
the magnitide but also the direction of C, the latter as the common
normal to the directions of v and A.- On the other hand, the force, which
a magnetic field H exerts on the electronic charge (— ¢) moving with the
velocity v is, according to the laws of electromagnetism,

K.—=—§_[vH]. N )

This force exactly neutralises the Coriolis force if the direction of the
lines of force coincides with the direction of the axis A and if, also, the
condition for the magnetic field holds (we equate C and K):
e leH
2mo=EH, o"§,7,,; . . . . (6)
If we disregard the centrifugal force Z for the moment, then a magnetic
field of suitably chosen intensity is just able to bring into equilibrium the
inertial action of the electron in its rotating orbit. Thus, in the mag-
netic field H, the rotating orbit is a natural orbit or, in other words, the
electron describes in the magnetic field the same path as when no magnetic
field is acting but doing so with respect to a system of reference which s
rotated with the velocity o determined by the eqn. (2) or (6). Regarded
from the standpoint of this sysiem of reference the orbits are traversed as if
no field were present. Precession of the system of reference and action of
the magnetic field are interchangeable and equivalent t> one another.
Concerning the ordinary centrifugal force Z we may easily convince
ourselves, on the basis of the restriction made in Larmor’s theorem, that
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it may be neglected in comparison with C. This restriction is, in our
present symbols :
po LV . . . . . (5a)

As we see from the expressions (3) and (4), it is identical with
Z LC.

‘We now revert to the hydrogen atom. We know the totality of its
orbits in the absence of a magnetic field (merely ordinary Kepler orbits).
By what has just been proved we also know the totality of its orbits
when a magnetic field is present (Kepler orbits with a motion of pre-
cession about the direction of the lines of force). Thus we have a com-
plete survey of the mechanically possible orbital curves. We have now
only to select those that are possible on the quantum hypothesis. For
the “fieldless” case this has also been done in the preceding chapter :
we obtained Kepler orbits of a definite shape and with a definite in-
clination to the direction of the lines of force. But now we have seen
that the orbits when a magnetic field is present are, from the standpoint
of the precessional system of reference, fieldless orbits. Hence if we
carry over the quantising of the fieldless orbits from the static system to
the precessional system of reference, we get for the quantised orbits with
a field the same orbits in the precessional system of reference as we get with-
out a field in the static system. In the next section we shall trace this
application of quanta, which was here introduced merely as an obvious
special step, back to a general principle.

Thus we set up the quantum conditions for the magnetic field just as
previously for the case when the * field was zero.” By introducing polar
co-ordinates 7, 8,  in the precessional system of reference, we have

jp,dr _— fp,da = nh, Ip¢d¢ —wh . . (T

From this we conclude as in Chapter IV, §7, eqns. (2), (3), (4), (9),
and (8):

1
Al ——— ~- 1) =2'l, 2mp = (n, + n,)h
\/1 — € -
. (8)
n
cosa= -1

- Qmpy =k
n + n, Py =™

Here the quantities € and 6 are by definition independent of whether we
refer them to the static or the rotated system; on the other hand, the
quantities p and py are, in conformity with their nature, to be measured
in the system of reference which s turned with the velocity o. Hence we
take  explicitly as denoting the geographical longitude of the relative
position of the electron in the rotating system of reference and distinguish
it from the geographical longitude x in the static system of reference.
The connexion between these quantities is clearly

)}=z1;+o, X=y + ol . . . 9)
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§ 6. The Zeeman Effect 299

We now form the expression for the kinetic energy of the electron, first
when there is a magnetic field, Exn(H), and again when there is none,
E(ix(0). The latter expression is:

Epu(0) =5 02 + 76 + 2sint 6j®) . . (10)

At the same time this denotes the kinetic energy.of the electron, when
there s a magnetic field, related to our rotating system of reference.
The kinetic energy, when there is a magnetic field, related to our static
system of reference, is therefore (we merely interchange y and x):

Erm(H) = ’22(}2 + 7262 +%sin26yy) . . . (10a)
By substituting from (9), we get
Epn(H) = 72%2 + 726% + 72sin? 642 + 2¥sin?Gjo + . . .) (10b)

The last member (not written here) is quadratic in 0 and hence, owing to
the restriction contained in Larmor’s theorem, is to be neglected. If
we also take into account the significance of py :

3E:.(0)
= T =
as well as the expression for E;;,(0) in eqn. (10), we may write in place
of (10b):

Pe mr? sin? @y

E),,',,(H) = Ekm(O) + py .0 . . . (106‘)
Finally, we introduce the expression

AEkin = Ekm(H) - Eh’n(O)
as the change in kinetic energy of the electron arising through the

magnetic field H, and express py, by eqn. (8), in terms of the quantum
number #,. We thus get from (10c)

ABgn=T0h . . . . .
L
On the other hand we have, as regards the potential energy,
AE =0 . . . . . (11a)

2
For the potential energy of the Coulomb attraction — ¢ undergoes no
r

change through the introduction of the magnetic field, since the distance
7 in the precessional and the original orbit remains the same within the
limits of accuracy of our calculation.

Hence from (11) and (11a) we get for the magnetic change of the
total energy W of the electron

AW=Q"Joh. N ¢ 1)

T

Likewise we get for the difference of the total energy in the initial and
final orbit of the electron

AWa—AW¢="1—“2:—n1_"oh N ¢ £

T
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Now, just as the frequency v of the emitted spectral line is determined
from Bohr's condition
: hv =W, - W,
so the effect of the magnetic field is given by the condition
hav = AW, — AW,.
Hence eqn. (13) states that

hAy = Ta = Tegp
prs

or, if we insert the meaning of o from (6):

Av = (e = ny.)— — (14)

We firstly note that in the transition from (13) to (14), the quantum
of action, %, has characteristically cancelled out. In our final formula
(14) the quantum theory has in a certain sense become latent in that ils
characteristic feature, the quantity h, has disappeared. In this we see a
reason that it was possible to develop magneto-optics in Lorentz’s theory
to a certain degree on the classical, pre-quantum, basis. In electro-
optics (Stark effect) and in the general optics of spectral lines this was
hopeless from the outset, because here the quantum of action % played,
not a latent, but an explicit part.

We next observe that our final formula (14) agrees not only in its
general structure but also in almost all its details with the result of
Lorentz’s theory, that is with eqn. (1) and Fig. 81 at the beginning of
this section. To see this we have only to enlist the aid of our principle
of selection. In the magnetic field this concerns, as in the electric field,
only the equatorial quantum number n, (called n; in the Stark effect) and
states that :

e — Me=+1or0 . . . . (1%)
From (14) we therefore get
av=+2 B ora=-0. . . . @6
m dwc

In this form our quantum result agrees fully with the result of
Lorentz’s theory: we have before us not only the two lines of the Zeeman
triplet which are both displaced by the amount Av to greater and smaller
Sfrequencies but also the undisplaced line Av = 0. In contradistinetion to
(16), our original formula (14) would lead us to expect superfluous
components of the resolution that would be displaced two, three, . .
times as much as the normal resolution. The fact that such components
are, under normal * circumstances, not observed is a strong confirmation
of our principle of selection in its application to the magnetic case.

* In the reproduction of a ghobogmph of the Zeeman effect in hydrogen taken by
Paschen and Back, Ann. d. Phys., 39, Plate VIII, Fig. 4, Bohr discerned a faint

impress of the lines of twice the normal resolution and ascribed it to the unintended
simultaneous action of an electric field. On the original photograph lines of three times
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§ 6. The Zeeman Effect 301

But not only the displacement of the Zeeman components but also their
polarisation comes out correctly in our theory. This becomes immediately
evident if we can convince ourselves that our rule of polarisation origin-
ally derived for an electric field may be applied to the magnetic field.
For then we have circular polarisation in the case An = + 1, and linear
polarisation parallel to the lines of force in the case An = 0, correspond-
ing to the two possibilities distinguished in eqn. (15). Applied to eqn.
(16) this means the following :—

Viewed longitudinally the two external components of the Zeeman
effect are circularly polarised, and, indeed, in opposite directions; the
plane of vibration is perpendicular to the magnetic lines of force. Viewed
transversely, these lines must consequently be linearly polarised at right
angles to the lines of force. The middle component of the Zeeman effect
is polarised linearly and perpendicularly to the lines of force.

Concerning the extension of the rule of polarisation and the principle
of selection from the electric to the magnetic case, we seek to justify it
by the following not quite inevitable reasoning : —

Let us again picture to ourselves the orbit of the electron, both in
the precessional system in which its plane is firmly fixed, as in the
“ gtatic system of reference,” in which it is rotated through the action of
the magnetic field with the constant angular velocity o. In the pre-
cessional system of reference we erect the vector of the moment of
momentum as a normal to the orbital plane; here it has a constant
magnitude and direction, and hence also constant projections along the
direction of the lines of force and in the equatorial plane. Regarded
from the static system of reference, it describes a circular cone about the
direction of the lines of force with the constant angular velocity 0. From
the standpoint of the static system of reference, however, there becomes
added to the *“ moment of momentum without rotation’ ‘the moment of
momentum of the rotation itself,” which alters in magnitude and direc-
tion, with the distance of the electron from the nucleus. Hence, strictly
speaking, the cone that is described in the static system of reference by
the vector of the total moment of momentum is not a circular cone. Its
projection in the equatorial plane of the static system is slowly rotated
in the course of the precession (corresponding to the circumstance that
there are no areal constants for the equatorial axes of the static system)
and also its projection on the direction of the lines of force is not exactly
constant (strictly speaking, the law of sectorial areas is also rescinded by
the action of the magnetic field for the direction of the lines of force.)

Nevertheless there is a great difference between the manner in which
this component is not constant along the direction of the lines of force

the normal resolution can be seen. Just as the lines of normal resolution confirm
the principle of selection, so the lines of double and triple resolution give a striking
example of how the principle of selection is rescinded by electric fields, as was explained
on page 274.
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302 Chapter V. Wave Theory and Quantum Theory

and that in which it is not constant in the equatorial plane. The com-
ponent along the lines of force exhibits only brief fluctuations (of the
same period as the period of revolution of the electron); the component
at right angles to it performs, besides, a slow rotation in the equatorial
plane (of the same period as that of the precession). In view of the
condition (6a), on which, alone, Larmor’s theorem and our treatment of
the Zeeman problem is justified, even the variable part of the component
along the lines of force vanishes in comparison with the constant part.
On the other hand, in consequence of the same condition the rotation of
the equatorial component of the moment of momentum is, indeed,
infinitely retarded, but for a sufficient lapse of time it entails a complete
reversal of the corresponding moment of momentum of the component in
question.

From this we conclude, as on page 271, for the case of an electric
field, that we can postulate the conservation of the moment of momentum
in the coupling of the atom with the ether only for the direction of the
lines of force. Hence only the equatorial quantum number n, that refers
to the rotation about the direction of the lines of force is bound by the
condition imposed by the principle of selection. From this there results
the eqn. (15) already used, and the corresponding rule of polarisation.

It is instructive to trace in detail the scheme of quantum transitions
and the position of the orbital planes in the Zeeman effect, for example,
for the line H,. We find it expedient to start from the scheme of quantum
transitions for the Stark effect, with which our present scheme agrees in
design but from which it differs in that the quantum numbers have other
meanings in the inferences. Our present quantum numbers n’, n,, n,
correspond to 7, 6, . In turn they replace the quantum numbers n,, n,, n,
in the Stark effect. Our present equatorial quantum number n, is subject
to the same selective condition for the parallel and perpendicular com-
ponents as the equatorial quantum number 7, formerly. Our present
quantum sum 7’ + n, + n, is, just like the former sum n, + n, + n,,
equal to 2 for the final orbit of H,. Our present quantum sum &'+ &, + &,
for the initial orbit is, like the earlier sum &, + %, + k,, equal to 3. Thus
if we enquire as to what quantum numbers lead in the Zeeman effect to
parallel polarised light, we arrive at the same transitions &, = n, as were
enumerated in the first colurn of Table 25. But there is the following
difference between the Stark effect and the Zeeman effect. Whereas in
the Stark effect the first two quantum numbers 7, and n, have essentially
the same meaning, in the sense that a simultaneous interchange of them
in the initial and the final state leads to two essentially equal resolutions
(differing only in sign), the meaning of the first two quantum numbers
2’ and n, in the Zeeman effect is entirely different. Thus two transitions
that differ through the simultaneous interchange of these two numbers
are therefore not of equal value (equivalent) in the Zeeman effect. In
this way there becomes added, in the case of the p-components of H,, to
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§ 6. The Zeeman Effect 303

the first column of the following table, which has been borrowed from
Table 25 dealing with the Stark effect, the second column in which (n'n,)
and (k'k,) have been interchanged.

But there is still a second difference. In the Kepler motion under
no external forces, all those transitions are excluded by our principle of
selection (p. 269), in which ths sum n, + n, does not alter by one unit.
Reasons of continuity make us inclined to regard this rule of exclusion
a8 valid in the magnetic field (this may be proved rigorously with the
help of Bohr’s principle of correspondence). The transitions separated
out in this way are bracketed in the following table. Thus, of the eight
transitions only four remain. From our present non-relativistic stand-
point, they of course all lead to the same parallel polarised component
Av=0. We shall see later in Chapter VIII that upon closer calculation
and observation they are slightly separate. Corresponding tables may
be set up for the s-components of H,, as for Hg, Hy, . . .

TABLE 35
Ha, p-components

\
Kk, = nnm, | Ekk - nam,
P — |
(102 — 002 | 012 —» 002
111 — 101 \ 111 — O11)
(201 —> 011) 021 ~» 011
201 -» 110 | (021 —> 101

In Table 35 the following circumstance is worthy of note. In the
non-bracketed orbits the number-pair k%, is throughout different from
nyn,. As this number-pair determines the position of the orbital plane
(cf. Chap. IV, § 7, eqn. (9)) in the initial and the final orbit, respectively,
it follows that the orbital plane changes position in the transitions that
here come into question (and partly also in those belonging to the s-
components). In the first non-bracketed transition, for example, the
initial orbit is inclined at an angle of 60° with the equatorial (cf. Fig. 64b),
and the final orbit coincides with the equatorial plane, and so forth.

So we see, whereas in the Kepler motions, free of forces (cf. p. 269),
the orbital plane remains preserved, it alters in general in the Zeeman
effect ; through spatial quantising a discontinuity is introduced into the
position of the orbital plane as compared with its position for Kepler
orbits. Here ‘“orbital plane” refers to that in the rotating system of
reference.

Concerning the observation of the polarisation in the longitudinal
effect, the following difference in the Zeeman and the Stark effects is yet
to be noted. In the Stark effect the transitions that would lead to right
and left polarised light are equivalent energetically. They therefore
occur in one and the same line and produce unpolarised light. In the
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304 Chapter V. Wave Theory and Quantum Theory

Zeeman effect they are distinguished from one another magnetically, and
therefore produce different line components circularly polarised in opposite
directions.

When in 1916 the author* investigated the Zeeman effect on the
basis of the quantum theory, he felt himself impelled to emphasise in a
concluding remark that ‘ Bohr's energy equation hv = W, — W, (also
called frequency condition), being a scalar equation, can never account
for the polarisations.” We now see that this gap has in the meanwhile
been successfully bridged over, as it was only necessary to add to the
energy equation the equation of the moment of momentum. As already
remarked at the beginning of this chapter, the observation of the polari-
sation historically preceded the quantitative observation of the resolution
and was exhibited with greater certainty. Accordingly, the quantum
theory of the Zeeman effect can be regarded as quite complete and valid
only since the polarisation phenomens have been fitted into it.

In its present state the quantum treatment of the Zeeman effect
achieves just as much as Lorentz’s theory, but no more. It can account
for the normal triplet, including the conditions of polarisation, but hitherto
it has not been able to explain the complicated Zeeman types (p. 296)..
The perfect agreement between final results obtained in two such different
ways is highly remarkable from the point of view of method, and again
betrays an intimite and certainly not accidental correspondence between
the quantum and the classical view of radiation phenomena.

§ 7. The Adiabatic Hypothesis

At the first Solvay Congress,t in the year 1911, H. A. Lorentz pro-
posed the question as to how a simple pendulum behaves when its length
is shortened by holding the thread between two fingers and drawing it up
between them. If it has initially exactly the correct energy that corre-
sponds as an energy element to its frequency, then at the end of the
process when the frequency has become increased this energy would no
longer suffice to make up a full energy element.

Einstein at once furnished the correct reply in saying that the sus-
pending thread must be shortened infinitely slowly and then the energy
would increase proportionally to the frequency and would continue to
be equal to an energy element.

This answer is covered by Ehrenfest’s Adiabatic Hypothesis.; We

* Physikal. Zeitschr., 17, 491 (1916). Cf. also the somewhat earlier work of
Dobye, ibid., p. 507, or Gottinger Nachr., June, 1916,

+ Rapports du Congrés, Paris, 1912, p. 450.

+ First set up by P. Khrenfest in connection with the problems of ¢ cavity radia-
tion” in Ann. d. Phys., 36, 91 (1911), §§ 2 and 5, and then applied by him to other
problems; see Verh. d. Deutsch. Physikal. Ges., 15, 451 (1918); Amsterd. Academy,
29, 586 (1913); Phys. Zeitschr., 15, 657 (1914). A detailed survey for systems of
several degrees of freedom is contained in Ann. d. Phys., 51, 327 (1916). Cf. also J. M.
Burgers, bid., 52, 195 (1917). Bohr, who early recognised the importance and the
fruitfulness of this method, calls it the ** Principle of Mechanical Transformability.”
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formulate it according to its general significance as follows : Let us con-
sider any arbitrary mechanical system and an arbitrary initial state of
motion which is correctly quantised. We now alter the state infinitely
slowly by gradually imposing an arbitrary external field of force or by
gradually altering the inner constitution of the system (length, mass,
charge, connections). This causes the original state of motion to be
transformed by mechanical means to a new state of motion. For the
new conditions of the system this new state of motion is a quantum-
favoured state if the original state was so under the original conditions ;
it corresponds to the same quantum numbers n,, n,, . . . as the latter.

The expression ‘“ Adiabatic Hypothesis™ is taken from thermodyna-
mics. Just as in an adiabatic change of state in thermodynamics the
co-ordinates that determine the heat motion are not directly affected, but
only indirectly while no heat is added from without and the conditions
of the system are altered (for example, the volume, the position in the
gravitational field, and so forth), so in the applications of the adiabatic
hypothesis to the quantum theory the motion of the system is not con-
trolled directly by external agency; for such agency acts, not on the co-
ordinates of the motion, but on a parameter of the system. Just as in
thermodynamics an adiabatic change of state is to be regarded as a chain
of states of thermal equilibrium, 8o in the quantum theory the adiabatic
transformation from the original to the final quantum state has to occur
infinitely slowly, that is by passing through intermediate states of equi-
librium of motion. Quantities that remain unaltered during this trans-
formation are called adiabatic invariants. The quantum numbers that
fix the original state are by the adiabatic hypothesis themselves such
invariants. All other adiabatic invariants must be expressible in terms
of these simplest invariants.

There are three characteristics that are both necessary and at the
same time sufficient for adiabatic processes. 1. The infinitely slow or
reversible element of the process. In thermodynamics phenomena are
also known that occur without the addition of heat but are irreversible
(for example, the diffusion of a gas when no cotton-wool aperture is used).
Such processes are not adiabatic in the present sense. 2. The effect not
on the co-ordinates of the motion but on one or more parameters of the
system, that remains constant in the original motion. 3. The unsyste-
matic or irregular nature of the influence (effecting the alteration) in rela-
tion to the phases of motion. Even in the case of the simple pendulum
we could intentionally carry out the shortening of the thread in such a
way that the energy of motion there remains constant, if we draw up
the thread only at the points at which the motion is periodically reversed.
In that case, as Warburg remarked at this Solvay Congress, a contradic-
tion to Einstein's assertion and to the quantum theory would arise. Such
intentional or methodical alterations are then in no case to be included
in the category of adiabatic processes.

20
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We next consider the mechanical aspect of the question. The fact
that in ordinary mechanics we set aside the adiabatic processes is not
because they are less interesting, but because they are more difficult in
comparison with the ordinary problems of mechanics. In the case of
the simple pendulum, we easily attain our object by direct calculation
without having to seek support from the general laws of adiabatic invari-
ance, which we shall develop from this example.

Let I be the length of the pendulum, m its mass (concentrated at a
point), ¢ the angle of the instantaneous deflection, ¢ the amplitude, and »
the frequency, so that

2w = ,/, g—_/l . . . . . 1)

The tension S acting on the thread is, as we know,
8 = mg cos ¢ + mid?

in which the first part is due to gravity, the second to the centrifugal
force. If we shorten the thread infinitely slowly by |dl, we have to per-
form work against the tension; its amount is

dA =S|dl| = —mgcos ¢dl — migddl . . (2

The horizontal bar denotes that the time average is to be taken and indi-
cates that during the shortening by the amount dl many swings of the
pendulum are to occur. The negative sign occurs because |di| is to denote
a shortening, so that dl itself is negative. From

¢ = c sin (2mvt + y)
it follows that

= 2 2 2
cwg=l-if=1-gF=@mig=73 - ©
thus
1 - OVt - mgSar 142
dA = - mg( - I) —-mygdl= —mg( + ;—)dl.

The one part, — mgdl, of this work dA is used to raise the mean
position of the weight mg. The remainder,

2
dA'=-mgpdl ... L&)

increases the energy B of the motion of the pendulum. This total energy
E is twice as great as the mean kinetic energy :

J

Ekin = Ilﬁlzé_z= ﬂbglg . . . . (5)
Hence the change in the mean total energy is
— c?
dE = 7ng§dl + mglcdc . . . . (6)

By equating (4) and (6) we get
— Zedl = lde.
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Integrating,
4logl = —logc + const.
lic = const. . . . . . (N

From this it follows that when the pendulum is shortened adiabatically
the angular amplitude ¢ increases, as may easily be seen by performing
the experiment, whilst at the same time the linear amplitude ic decreases.
Concerning the energy we conclude by comparing (5) and (7) that it in-
creases when the pendulum is shortened adiabatically, as is evident from
the work dA’ performed; it is inversely proportional to ,/j.

By squaring (7), and inserting the values of Ic? from (5) and /I from
(1), we may write (7) in the form

—Hr =const. . . . . . (8

and on account of the equality of Eiis and Ep in our special case this

entails that = is an adiabatic invariant, in accordance with the quan-
| 4

tum law of the harmonic oscillator E = nhv. Eqn. (8) is an illustration
of the general law, the quantum of action (cf. Note 7, eqn. (5)) :

7 B 2_
2JEH,.dt = 2Eun=Bria . . . . (9
0

taken over a period is an adiabatic constant.

The adiabatic invariance of the quantity (9) already played a part in
the general investigation made by Boltzmann to base the second law of
thermodynamics on statistical considerations. Its relation to the quantum
theory is clear from the equation :

2Bkin = Speqr, 2 f Brindt = 3 f pdge . . (10)

(cf. Note 4, eqn. (5)) which is valid for any arbitrary mechanical system.
If we take this integral for a purely periodic system over the time T of a
period, then we have on the right the sum of the phase integrals (cf.
p- 198). From here we have a bridge to the more general class of con-
ditionally periodic systems (Note 7, No. 2): here each individual phase
integral or each of the corresponding quantum numbers s an adiabatic
invariant. By proving this theorem in Note 12, we show that from the
point of view of the adiabatic hypothesis our general quantum hypothesis
of page 200 is justified ; if, on the other hand, we adopt the opposite view
of regarding this quantum hypothesis as an established fact, we prove the
adiabatic hypothesis for the whole class of conditionally periodic systems.
(In adiabatic transformations transitions through degenerate systems are
excluded, as Bohr has shown and as will be proved in Note 12.)
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‘We next use the adiabatic hypothesis to fill in various gaps that were
left in the preceding section, firstly in the Zeeman effect.

To deal at the outset with the simplest case we consider a hydrogen
atom in which the electronic orbits are circular in a plane which is per-
pendicular to the magnetic lines of force. Let a and » be the radius and
angular velocity in the circular orbit when the field is zero, and let
@ + Aa, o + Aw be the same quantities when the field H has been
imposed adiabatically. The flux of lines of force through the orbit is
H=a?. Since we regard it as a small quantity (of the order of the incre-
ments Aa, Aw, whose squares and products may be neglected) it suffices
to use in it the original a instead of a + Aa. By Faraday’s law of
induction, the flux of the lines of force gives the whole electromotive
force that is excited by the increasing field in the ‘ circular current” of
radius @, that is the work performed on the current “ unity.” Our
rotating electron, the charge of which is e in E.S.U., represents a current
which, measured in E.M.U,, is of intensity ev/c = ew/2mc (cf. p. 248).
Thus, by setting the work performed equal to the change of energy AW
of the electron, we get

H=a?. 26_“’0 = AW or leeHa“’w = AEp + AEpq . (13)
Ly
Now
Ein = "ga%?, AEiin = m(aPwdo + aw’Aa)
: : 2 (19
Epot = — P ABEpy = a—ZAa = Mmaw’Aa

In the last transformation the equation for the centrifugal force

. e
Mmoot = — . . . . . (13)

By substituting (12) in (11) and dividing by ma’w?, we get
204920 2 . . . (19

A second equation is obtained from the circumstance that during the
adiabatic change of state the dynamical laws, here the equation of centri-
fugal force, are to remain valid throughout.

In eqn. (13) we wrote down this equation only to a first approxi-
mation for the field zero. In general it is

2o & e
m(a + Aa)(w + Aw)’ = @3 aap T “Haw
or, when multiplied by (@ + Aa)?,
m(a + Aa)¥(e + Aw) = ¢ + EHa“w A ¢ 1)
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From this, by using (13) and dividing by 2ma3w?, we get
Aw , 3 Aa e H
— 3 o . . . (16)
By comparing (16) and (14) we see at once that

Ac =0, Aw= _E[=o ..

e
am

Hence, when the magnetic field is introduced adiabatically the radius a
remains unchanged, the rate of rotation is changed by the amount o of the
Larmor precession (cf. eqn. (2) of p. 296), being increased or diminished ac- _
cording to the direction of the field.

The same calculation may be carried out for a circular or elliptic
path inclined to the lines of force, and the result is: as the magnetic
field increases gradually, the size and the shape of the orbit remains
preserved (corresponding to Aa = 0); but the rate of rotation becomes
changed in that the angular velocity o about the axis of the lines of force
becomes added. But this means: the orbit as a whole performs a pre-
cessional motion.

The limitation to a gradually, that is infinitely slowly, increasing field
is absolutely necessary. The precessional orbit arises from the original
one with the fixed orbital plane only if we pay due attention to the
necessary initial velocity of the electron in the direction of precession
(perpendicular to the lines of force). If the field is introduced suddenly,
the momentary velocity of the electron is not affected; for a change of
velocity to come about it is necessary that the electron traverse its orbit
one or more times during the time that an appreciable change of the
magnetic intensity of field takes place.

So far we have been dealing with adiabatic mechanics. The quantum
aspect of the adiabatic change comes into question only if we wish to
allocate quantum numbers to the changed motion. In the case of
the circular orbit that is simply placed perpendicular to the lines of
force, this has to occur, by the adiabatic hypothesis, thus: let the initial
circular orbit (a, w) be quantised, that is, let it be such that

mate =7 . . . . (s
o

Then the altered motion (a, » + 0) is also quantised, and corresponds
also to the quantum number n. But this correspondence does not mean
that now the formula
nh
w+0) = = . . . . (19
ma*(w + 0) 9r (19)

holds, which would contradict the preceding eqn. (18); but rather, (18)
still remains valid. 'Whereas, however, the left side of (19) denotes the
moment of momentum in the static system of reference, the left side of
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(18) represents the moment of momentum in the system of reference of
which the precession is + 0. Thus the latter, not the former, is quan-
tised. This is extended still further then to the general case of elliptic
motion. The precessional orbits in the magnetic field correspond to the same
quantum numbers as the Kepler ellipses in the case when no magnetic field
18 present ; but the phase integrals are not to be calculated with reference to
the static, but with reference to the precessional co-ordinate system.

This was, as a matter of fact, the method that we followed in the
previous section (p. 298), and which is accordingly justified by the
adiabatic hypothesis. The particular simplicity of the Zeeman effect
now consists in the circumstance that in it the adiabatically altered orbits
are identical in shape with the original orbits, and differ from them only
in their precessional motion.

We now give a second application of the adiabatic hypothesis. In
the case of an electric field (Stark effect), we showed that the orbits of
which the equatorial quantum number is zero are to be rejected, because,
finally, they would approach infinitely near the nucleus. We follow
Bohr in concluding from this that, in the case of the magnetic field
(Zeeman effect), the orbits of which the equatorial quantum number is
zero are inadmissible, although in this case there is no question of a
collision with the nucleus. The orbits that were not allowable in the
electric field were such as were shown in Fig. 79; they were situated in
a fixed meridian plane through the electric lines of force. The orbits
that are to be rejected in the magnetic field are Kepler ellipses, which
lie in a meridian plane through the magnetic lines of force, and are
rotated around these.

To prove this, we imagine superimposed on the initial electric field
a magnetic field of force increasing adiabatically from zero, and with its
lines of force having the same direction. All that then happens is that
the orbits due to the Stark effect are made to execute a precession in
which their shape and rate of rotation are preserved. As a matter of
fact, we proved Larmor’s theorem on page 297 not only for a single
nucleus, but for arbitrary centres of force, situated on the axis of revolu-
tion. The homogeneous electric field parallel to the axis of revolution,
therefore, also falls within the scope of Larmor’s theorem. We may
now let the magnetic field increase to a desired amount, and afterwards
allow the electric field to decrease adiabatically to zero. We thus trans-
form in a perfectly continuous way the orbits of the Stark effect into
the precessional orbits of the Zeeman effect. Here, quantised orbits
remain quantised, allowable orbits remain allowable, and inadmissible
ones remain inadmissible. Thus the equatorial quantum number zero is
inadmissible in the Zeeman effect because it is inadmissible in the Stark
effect.

A final application of the adiabatic hypothesis concerns the shape and
position of the orbits in the Stark effect for the limit when the electric
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field becomes vanishingly small, Lim F —-0. We know (p. 284) that
these orbits are Kepler ellipses, but that they differ from the Kepler
ellipses in the case of no forces, or, better expressed, from those in the
magnetic field of vanishing field intensity Lim H —>0. Our object is to
prove the relationship between the two groups of Kepler ellipses; we
abbreviate them thus Kpy = 0, Ky = 0.

The field F is to be in the direction of the z-axis (cf. Fig. 79). The
potential energy of the electron in the field is ¢eFz. The total energy is
W, and is composed partly of kinetic energy, partly of potential energy
in the field of the nucleus and in the external field F ; it remains constant
during the motion so long as the external field is kept constant. If
it is altered by an amount 3F, the total energy alters by tbe amount
8W = exdF. Since the change 8F of the field is to take place infinitely
slowly, we may replace z by the time-mean # for one or more revolutions
and write : :
8W = ezdF.

We calculate z from the time of revolution + by means. of the
formula :

e 1 1)

0

If the field increases from 0 to F, the change of energy is:
F
AW = [SW = [ezF = zF . . . (31)
0

In the last term of this equation we have taken Z to be independent
of F. In other words, we have neglected the change of Z due to the
increasing field, as it entails in the expression of AW only a term in F%,
with which we are not concerned. In particular, then, we may also
calculate T for the case I = 0 and accordingly take the integration in
(20) over the orbit curve Kg - o.

On the other hand, we take AW from eqn. (1) of § 5. Here — W
was developed in powers of ¥ and the higher powers were neglected ;
thus AW is equal to the term in F. We accordingly get, if we equate
the two expressions for AW :

3h?F

et = — g (1 — m)(my + 7y + 7y
- 3h?
T = - 8imet (n2 - nl)(nl + Ny + ny) . . (21)

On the right-hand side we introduce the major axis of the ellipse out
of eqn. (18) on page 236, namely :

a + ny + ng)° . . . . (292)

= ftmg™
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In this, we have set E = e (hydrogen) and n + #n’ = n, + 7n, + ng, cor-
responding with our present nomenclature of the quantum sum. The
circumstance that a has the same value for our present ellipses Ky - o a8
for our earlier ones Ky - o, follows from the fact that we are comparing
orbits having the same energy, and that, according to (19) on page 236,
for orbits of equal energy a is the same. By substituting (22) in (21),
we get
. 3 -,

So far we have calculated Z from energy considerations. We now
express it geometrically in terms of elements of the orbit. For this
purpose we introduce into the orbital plane of the ellipse rectangular
co-ordinates z’, 4" whose origin is at the nucleus and whose z'-axis lies
along the major axis. We form z’ and %’ along the lines of eqn. (20).
By symmetry y’ = 0. If 6 and » are the inclinations of the z'- and the
9y'-axis to the z-axis we get

T=1cos0.Z +cosyn.y =cos6.% . . . (24)

By the law of sectorial areas, p = m7’¢ (where r and ¢ are polar co-
ordinates in the z'- y'-plane, so that ' = 7 cos ¢), we have

dt = ]?rqus )
and hence
f=jd %j’dqs, T.E'=j =%‘j cospdp. . (26)
d 0 0 0
If we write the equation to the ellipse in the form (cf. p. 235, eqn. (11))
1
‘=A(1+€COS¢), A=‘-i(1—_—(2) . . . (27)
then, by (26),
2Qrm -, 2mm .,
T pAZJ T =pA3J . . . . (28)

The integrals here denoted by J and J’ have the significance :
21 2r

J_lj dé J,_ij' cos ¢ d¢
" 27 ) (1 + ecos ¢)? T 27 ) (1 + ecos¢)?
0 - 0
J is worked out in Note 6 under () ; J’ follows from it by differentiation
3 1 1aJ 3 €

J' =

T e V= Cad =ags o )
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Hence by (28) and (27)

- ¥ 3 3

z =H=‘2A1-€é=2’“" ... (80)
and by (24) and (23)

n, — n,
€cos f = ms

Whereas in the case of the Kepler ellipse Ky - o (cf. eqn. (14) on p. 235),
the eccentricity « was fized by the quantum numbers alone (there they were
n and n'), there enters into the expression e for the Kepler ellipse Kp —o the
non-quantised angle 6. The limiting cases Ky - o and Kp - ¢ thus actually
differ from one another.

Our eqn. (23), deduced from adiabatic considerations, allows us to
form a conclusion not only about the shape but also about the position
of the orbits. For we read out of (23) that : if n, > n,, then  must >0,
that is, the electron in traversing its orbit remains longer on the front side
of the nucleus than on the rear side ; if n, < n,, then <0, and the orbit
conversely i3 longer on the rear side than on the front side of the mucleus.
Here the front side denotes that which faces in the direction of the lines
of force (x> 0).

As is clear from formula (4) on page 286 for the displacement of the
lines in the Stark effect, the sign of Av is the same as that of (£, — ;). The
line-displacement due to the initial orbit always exceeds considerably
that due to the final orbit. Thus k& > k, produces a positive Av, that is,
a component on the short-wave side of the original line, whereas k; <%,
produces a negative Av, a long-wave component. Combining this with
the preceding result, we may say: the short-wave (long-wave) components
in the Stark effect are due to transitions in which the initial orbits lie more
on the front side (rear side, respectively) of the nucleus.

This remark is useful for interpreting * certain differences of intensity
between the long- and short-wave components,t which have been ob-
served in rapid canal rays of hydrogen.

The author owes the latter arguments about the Stark effect to Mr.
W.Pauli. They show how extraordinarily easily the adiabatic hypothesis
allows us to solve problems which otherwise could be treated only by
complicated calculations.

(31)

* Cf. N. Bohr, Phil. Mag., 30, 405 (1915) ; A. Sommerfeld, Jahrbuch f. Rad. und
Elektr., 17, 417 (1921) ; A. Rubinowicz, Zeitschr. f. Phys., §, 331 (1921).

+ J. Stark, Elektr. Spektralanalyse, § 14 and § 83; H. Lunelund, Ann. d. Phys.,
5, 517 (1914).

Google



CHAPTER VI
SERIES SPECTRA IN GENERAL

§ 1. Empirical Data of the Scheme of Series

at & number of physical points of view which enable them to

arrange the lines into distinct series. These points of view
are based on the structure and multiplicity of the lines, the ease with
which they are produced, their blurredness or sharpness, their behaviour
in the Zeeman effect, and so forth. There thus arose as the final criteria
as to whether lines belonged to a certain series, the possibility of express-
ing in a formula their regular sequence. For the sake of brevity, we
shall begin here by describing the series in formule ; the individual
phenomena may then be conveniently derived from this description.

We must preface our remarks by saying that the existence of series
cannot be proved for all elements (for further details, see §6). The series
character predominates only in the first three columns of the periodic
system. In the fourth, fifth, and six columns, series relationships have
been discovered only exceptionally (for example, in the case of O, 8, Se,
Mn). Towards the end of the periodic system, in the sixth, seventh,
and eighth columns, the number of lines increases enormously (cf. the
Fe-lines, and, indeed, those of all triad elements), to such an extent that
hitherto it has been impossible to order the lines and combine them into
series. Throughout, corresponding elements, that is, those that are in
one vertical column in the periodic system, exhibit an analogous be-
haviour spectroscopically, in that they all have the series character, or
are all devoid of it. This agrees with the view already expressed in
Chapter II, § 7, that the visible spectra arise at the periphery of the atom,
and hence behave similarly as regards structure if the peripheral structure
is the same.

Each series is calculated, like Balmer's, as the difference of two
“terms,” a constant first term and a variable second term. We call the
latter the current term. Just as in Balmer’s case, the term is a function
of an integer m, and of certain parameters that characterise the atom.
We next give the usual nomenclature of the current term of the Princi-
pal Series, and of the First and Second Subsidiary Series.

314

Q S a result of extensive researches, spectroscopists have arrived
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§ 1. Empirical Data of the Scheme of Series 315

The Principal 8eries (Hauptserie) is characterised by the letter p; its
current term is written thus:

HS. . . . mp.

The integer m is called the current number; it distinguishes the indi-
vidual successive members of the series from each other. The symbol
o hints at the special atomic constants that are of account for this term. |

The First Subsidiary Series (I Nebenserie) is also called the Diffuse
Subsidiary Series owing to the blurred appearance of its lines; it is
characterised by the letter d. The current term of the First Subsidiary
Series is written thus:

I NS. . . . md.

The Second Subsidiary Series (II Nebenserie) consists, as a rule, of
sharp lines, and is also called the Sharp Subsidiary Series. Hence the
letter s is used to denote its current term :

II N.S. . . . ms.

To these three series types that have been known for some consider-
able time there became added later, when the infra-red part of the spec-
trum first became accessible to analysis, the so-called Bergmann Series
{called briefly, B.S.). We shall denote it by the letter * b, and shall
write its current term :

B.S. . . . mb.

A survey of the totality of these series terms is given by the scheme
1s 2s 3s 4s 5s 6s . ..

2p 3p 4p 5p 6p ...
3d 4d 5d 6d . ..

4b 5b 6b . ..
5x 6xr . ..
6y . ..

It expresses that the current number m in the s-term may take all
integral values from 1 to o, in the p-térm all values from 2 to oo, and
so forth. Further, it indicates in the bottom terms that still higher
terms follow the b-term, in which m has values beginning from 5, 6, etc. ;
for the first of such terms we have proposed the symbol mz and my, ete.

Next, concerning the constant term of our various series, this coincides

* The use of the symbol Ap instead of b is due to Ritz: it was chosen on the as-
sumption, which has since not been confirmed, that there is a numerical relationship
between the series constants of the B.S. and the H.S. The name ‘ Fundamental
Series '’ (in place of Bergmann Series), which is usual in English and American litera-
ture where it is characterised by mf instead of mb, is founded on the * hydrogen-like "
character of the Bergmann Series.  We shall see on p. 317 that this is not a decisive
charcteristic of the B.S. If we wish to call a series term * fundamental,” it should
be the term LS., which is, indeed, least * hydrogen-like,” but is associated with the
« fundamental orbit " of the atom (cf. the end of this section).
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316 Chapter VI. Series Spectra in General

in the Principal Series with the term of the Second Subsidiary Series for
m = 1; the constant term in the two subsidiary series is the term of the
Principal Series for which m = 3; the constant term of the Bergmann
Series is the term of the First Subsidiary Series for m = 3. We thus
have, so far as the constant term is concerned :

H.S. . . . . 1s

I NS. . . . . %
II N.8. . . . . 2
B.S. . . . ) 3d

The final mode of representing the series thus becomes in our four
cases :

H.S. . . v=1s — mp m=234.
I N.S. . . v=2p - md m=34,5.
IINS. . . v=2% —ms m=2234.. .0
B.S. . . v =38d - mb m=4,56 .

We next define how a single series term is represented quanti-
tatively. As an abbreviative symbol we write (m, k) and (m, %, «)
respectively, and follow Rydberg or Ritz, according to the degree of
accuracy required, by writing :

. Rydberg

(2)
Ritz

R is the universal Rydberg-Ritz constant, which derives its name
from this mode of representation in terms; k as well as x denote the
empirical parameters above indicated by s, p, d, which are characteristic
of the element in question and of the series of that element under con-
sideration. For k& = 0, or k¥ = «x = 0, respectively, both expressions for
the terms pass over into the form that we know well from hydrogen:

mm=%wmm L. (@)

In Ritz's form the term is represented not explicitly, but implicitly, in
that the term also occurs in the denominator of the expression, though
only as a small correction involving also «.

For k& we must substitute in formulee (2) the letter s in the terms of
the II N.S., and the letters p, d, b for those of the H.S., the I N.S,, and
the B.S., respectively. Correspondingly, we write for the Ritz coefficient
« in these four term types the letters o, =, 8, 8. It is noteworthy that the
series constants s, p, d, b decrease in the case of every element in the
order written (cf. in this connexion § 6, Table 43), likewise the Ritz
constants ¢, m, §, 8. We may also express this in the following way. In
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§ 1. Empirical Data of the Scheme of Series 317

the scheme of series terms ms, mp, md, mb, . . . on page 316, the resem-
blance with hydrogen increases steadily as we proceed downwards. The
d-terms are more hydrogen-like than the p-terms. The Bergmann
terms are already to a marked extent hydrogen-like (cf. the note on
p. 315); to a still higher degree are the z- and the y-terms hydrogen-
like, as also the succeeding terms that have not been written down.
According to eqn. (2a), the hydrogen character is fully attained when
Ek=x=0.

In the foregoing remarks, we have departed from spectroscopic usage
in that we have also written down the current number of the s-term as
whole numbers. Usually they are set, not equal to ms, but to

(m + 1, s) = 1:53, 2:5s, 3:5s, etec.

The reason for this is that in the case of the alkalies (and only in their
case) the excess of the denominator of the term above the whole number
m seems to approach the value 1 so much the more, the smaller the
atomic weight. For example, in the case of Na this excess is 0-65, for
Li it is 0-59. Whether the subtraction of the amount 1 is justified by
theory is as yet undecided. We shall return to this point in the sequel
(cf. § 2, Note to p. 329, and § 6 in the remarks connected with Table 63).
In our description we shall also use the integral nomenclature ms for the
s-term, that is, we shall suppose the amount 1 taken up in the series
parameter s. In using the halves the eqn. (1) for the H.S. and the
II N.8. would have to be altered as follows :

HS. . . v=15s—mp . . .m=12,3,4...}3
IINS. . . v=%-(m+2s . .m=2384...6

It is just this method of transeription that earlier seemed to justify
the name “ H.8. and II N.S. of hydrogen " for the He*-series (of Fowler
and Pickering, cf. p. 207). If, namely, for the purpose of representing
them we insert the special value s = p = 0 in the general definition (2)
of the series term, then there arise from eqns. (3) exactly the eqns. (6)
and (7) on page 207. But, on the other hand, as the series became
reduced to the integral Balmer form, the eqns. (6a) and (7a) on page 208,
the use of the halves has in general lost ground.

It must not be imagined that the combination of the lines into series
and their resolution into two terms is a mere trile. Rather it demands
special experience and ingenuity. First of all, the lines of the various
series are all mixed together and must be separated out in accordance
with the criteria indicated at the beginning of this section. There are
usually only a moderate number of lines of & single series present, as the
higher members of the series, on account of their feeble intensity, are
less accurate than the more intense lower members. To derive the
series limit and hence the constant first term of the series by extrapolation,
the analytical expression for the current term, for example in the Ritz
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318 Chapter VI. Series Spectra in General

form, must be used as a basis. The series limit is then obtained, as well
as the indeterminate parameters that occur in the series law (in general
denoted in (2) by %, «), by a graphical or arithmetical process of approxi-
mation.* It almost always appears that the first member (or members)
of the series is not given with sufficient accuracy. From this we must
conclude that not only Rydberg’s but also Ritz’s form represent only an
approximation to the strict series law and are true only for the greater
values of m. We shall see in the next section how the law is to be
supplemented from the theoretical point of view, so as to be of service
for smaller values of m. The task of calculating the series becomes
much easier if other series or series limits of the same element are
already known. On account of the relationships of *combination "
(explained in the sequel) between the different series, we have always
to strike a balance between the calculations of several series. It is
unnecessary to emphasise that the wave-lengths measured are first
reduced to measurements * in vacuo’’ and referred to normals, and that
finally the wave-numbers must be expressed in international units.

In the representation (1) the following laws are contained, which his-
torically preceded the description by terms and gave rise to it :—

1. The series limits of the first and second subsidiary series coincide.
For, by (1), both occur at the wave-number v = 2p. The limit of the
Bergmann series occurs at the wave-number v = 3d. As stated, these
limits in most cases cannot be observed, but can only be calculated by
extrapolation.

2. The series limit of the principal series has the wave-number v = 1s.
The difference between the wave-numbers of these series limits and of the
common limit of the first and second subsidiary series is equal to the wave-
number of the first member of the principal series (Rydberg-Schuster rule) ;
the second subsidiary series, too, if we extrapolate its expression in series
for m = 1, leads to the same wave-number with the sign reversed.

So far we have tacitly spoken of series of simple lines. But fre-
quently the series lines consist of several components; they are doublets
or triplets, and in this respect, too, the elements that occur in the same
column of the periodic system behave alike. This multiplicity of lines is
due in the first place to the term of the principal series. On the other
hand the term of the second subsidiary series is always simple. Also
the term of the diffuse series has the same complexity as the term of the
principal series, namely double or treble according as the term of the
principal series consists of doublets or triplets (cf. § 5). But the separation
of the components in the d-term is much smaller than in the b-term.
For the general orientation of the series scheme with which we are for
the present concerned, the multiplicity of the d-term and still more that
of the b-term need not be taken into account. We indicate the multi-

* This process that has mainly been worked out by Paschen and his co-workers is
described by E. Fues in his Miinchener Dissertation: Ann. d. Phys., 63, 1 (1920).
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§ 1. Empirical Data of the Scheme of Series 319

plicity of the term of the principal series by considering mp in (1)
replaced by :
—— {z =12 doublet series
Pili=1,9,3 triplet series.

If we fix our attention on the lines with the same index 4, we speak of a
Partial Series. For the partial series contained in a doublet or a triplet
series the following laws, which have been particularly useful in distin-
guishing principal and subsidiary series, hold :—

8. For the first and the second subsidiary series the law of constant
differences of frequency (difference of wave-number) hold. That is: the
doublet or triplet differences in the I and II N.S. have a difference Av
(measured in wave-numbers), which is independent of the member
number m of the lines and is identical in the I and II subsidiary series.
Moreover, it coincides with the wave-number difference in the first
member of the principal series This follows immediately from the
fact that the multiplicity of the subsidiary series is due to the constant
term 2p;. In §5 we shall illustrate in the case of Li that this law is, on
account of the additional multiplicity of the d-term, only a law of approxi-
mation in I N.S.

4. The wave-number differences of the principal series decrease to zero as
the member number increases. The reason for this is that in this case the
multiplicity is conditioned by the variable term, whereas the constant
term is, strictly speaking, simple. For example, in a doublet series the
difference in frequency of corresponding members of the two partial
series Av = mp, — mp, and this difference, according to (2), becomes
smaller and smaller as m increases:

- Pt Py
R R 2 R( p 1 p 2) (m' + 9 )

(m +p)t  (m+p) (m + p,)*(m + Pg;( )
P =Py
T
where, in the denominator of the last expression, p is a mean value
between p, and p,.

From (3) and (4) it follows, in particular, for series limits that :

5. The partial series of a principal series approach, as the number of
the member increases, one and the sime series limit. The partial series of
one and the same subsidiary series have series limits that differ from each
other by the comstant wave-number difference of the partial series in
question ; but corresponding partial series of the first and second subsidiary
series approach the same series limit as m increases.

A further difference between principal series and subsidiary series
follows from the intensity of the lines in the doublet and the triplet series.

We next consider the example of the D-lines, the first member of the
principal series of the Na-spectrum already considered in Fig. 64; as is

Av
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320 Chapter VI. Series Spectra in General

well known, they form a doublet. The wave-length difference of the
lines D, and D, amounts fairly accurately to 6A. D, is of shorter wave-
length and more intense (twice as intense) as D,. This is to be interpreted
in the sense that the number of Na-atoms that emit D, is greater than
(twice as great as) the number of Na-atoms that emit D,; cf. also § 5,
eqn. (5). In Fig. 82 we show schematically, besides the lines D,D,, also
the next member of the principal series, in which the doublet interval is
already markedly smaller, as also one of the succeeding members, in
which the doublet no longer appears resolved. On the other hand, the
type of the two subsidiary series is indicated in Fig. 82. By Law 3 their
constant wave-number difference is equal to that in the first member of
the principal series. The distances of the series members from one
another, with which we are not at present concerned, have here (justasin
the case of the principal series) been chosen arbitrarily in the scale of
the v's. What are of essential interest to us at present are the conditions
of intensity. In the subsidiary series the more intense component of the
doublet is on the opposite side to that in the principal series. The reason

D, D,

H.8 1.and I1.N. 8
Fia. 82.

for this we see without difficulty by looking at the formule (1) is that
mp; occurs in the expression for the principal series with the reverse sign
to that of 2p; in the expressions for the subsidiary series. We generalise
this for arbitrary doublet and triplet series and enunciate our last propo-
sition as follows :—

6. The order of sequence of the intensities in the doublets and triplets of
a principal series is the reverse of that in the corresponding doublets and
triplets of a subsidiary series.

For the rest, we have already in Chapter III, §5, established the same
fact with reference to the Rontgen spectra for the intensities of Ka, Ka’
and La, LB, as well as for those of La, La’ and Me, MB. What was
here called, in connexion with series representation, reversal of sign,
appeared there, more vividly, as interchange of initial and final path in
the one or the other pair of lines. Of course this interpretation may be
taken over from Roéntgen spectra and applied to the visible spectra.

As a comprehensive example of the preceding theorems we shall
compare in Fig. 83 the line-spectra of potassium with one another; in
the first row is the principal series, in the middle is the second subsidiary
series, and in the bottom is the first subsidiary series. The lines have
been drawn on the correct scale of their frequencies quantitatively; but
we have magnified the doublet intervals ten times to make them per-
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§ 1. Empirical Data of the Scheme of Series 321

ceptible ; the weaker doublet lines have throughout been drawn as dotted
lines.

We see from the figure that the limits of the first and the subsidiary
series coincide (Theorem 1), both the continuous and the dotted limits
(Theorem 5). The limit of the principal series, diminished by the
common limit of the first and second subsidiary series, gives the frequency
of the first member of the principal series (Theorem 2, the Rydberg-
Schuster Law ; it is indicated for the continuous and dotted partial series
by the continuous and dotted arrow). The doublet intervals are equal
and constant in the two subsidiary series (Theorem 3); in the principal
series they decrease rapidly towards the violet (Theorem 4.) That is
why the limit of the principal series is simple, and that of the subsidiary
series is double (Theorem 5). The order of sequence of the intensities
of the doublet lines in the principal series is the reverse of that in the
subsidiary series (Theorem 6).
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The spectra of the alkalies being easy to grasp first led to the arrange-
ment of spectral lines into series and to the discovery of the relationships
embodied in them. In the elements of the second and third column
the character is much more manifold; here there are series types of
simple lines, series types of doublets and triplets which in their turn
again resolve into principal series, subsidiary series and Bergmann series.
For a time it was therefore conjectured that the complete series scheme
must consist of doublet, triplet, and simple lines. But this conjecture
only helped to obscure the true state of affairs. For, as we shall see in
§ 6, the doublet series correspond to a state of ionisation of the atom other
than that to which the simple series and the triplet series correspond,
which belong together. Doublet series never occur in the same atom (in
the same atomic state) in conjunction with triplet and simple series. In
the last columns of the periodic system the number of lines and their
character defies analysis, as we said above.

Besides the four series hitherto mentioned there are in the case of all
elements numerous other combination lines and combination series. For
example, we may combine the term 1s instead of 2s with the p-terms, or

21
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322 Chapter VI. Series Spectra in General

3p instead of 2p with the d-terms. In this way we arrive at a second
representative of the H.S. or of the I N.8. type, which may be represented
by formula analogous to (1):

HS. . . . v=28 - mp . . m=3,4,5...} 5

INS.. . . v=38p-md . . m=456... )
The following combination series are also often represented :
v=23d - mp . . m=4,56...\

vetb-md . . m=567..0" - 6

Ritz's Principle of Combination (p. 205) would even lead us to expect
that we may combine every term ms, mp, mb, md with every other. But
we shall see in the next paragraph that under normal conditions this
principle is subject to selective limitations. We are already familiar from
earlier remarks (p. 187) with the fact that it is the terms and not the lines
combined from them that constitute the true aim of spectroscopy.

Helium (neutral helium, not He*), the element which immediately
succeeds hydrogen, already shows a very complicated series scheme that
is in many ways very remarkable. It possesses two different series terms
that do not combine with one another. We follow Bohr in calling the
one orthohelium ; to it belongs, for example, the intense yellow He-line,
the Fraunhofer line D, for which A = 5876, v = 2p — 3d. We call the
other series system parhelium; it was originally ascribed to an element
possibly different from helium. The series of orthohelium consist of
very narrow double lines, the lines of parhelium are strictly simple.

‘We make use of the following * scheme of levels " (‘* Niveauschema').
Starting from the *energy-level zero” denoted by « (an electron at an
infinite distance from the atom) we plot the numerical value of each
series term downwards and draw a step that is to visualise the term.
Since the terms are proportional to the energy of the atom in the corre-
sponding states of motion, each step denotes a possible energy-level of the
atom—quite analogously to the earlier figures for the Rontgen region.
We distinguish the steps as s-, p-, d-levels, drawn on the left for parhelium
and on the left for orthohelium. It is found convenient to denote the
levels of parhelium by capitals (S, P, D), those of orthohelium by small
letters (s, p, d). This method of distinction agrees with the custom,
introduced by Paschen, of characterising simple series with capitals,
multiple series with small letters, wherever this is practicable. The two
dense lines of separation in the middle of the figure indicate that direct
transitions from the orthohelium levels to the parhelium levels are not
admissible. We have omitted the series of b-terms and higher terms, as
also the *“doubleness™ of the steps of orthohelium as, in any case, on
account of their closeness, they cannot be made clear in the scale of the
figure. The S-steps are numbered 1 to o, the P-steps from 2 to o, the
D-steps from 3 to . The step 1s is present only once, namely, in the case
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of parhelium ; all other steps are present both in the case of parhelium as
in that of orthohelium. The step 1s in the case of parhelium, and 2s in
that of orthohelium are drawn more densely to indicate their stability, or
meta-stability respectively (cf. § 3). The meaning of the upward drawn
arrows in the scheme of levels will not be explained till we get to § 3.
The arrows drawn downwards, being the difference of two terms,
represent the emission lines of ortho- and parhelium. Let us consider
first the I and II N.S. Their arrows end at the level 2p or 2P, re-
spectively, and begin at the level md, ms or mD, mS, respectively. To
be able to draw these arrows, the level 2p (2P) has been extended
by a dotted line in both directions. But the extension does not extend
beyond the central partition lines between ortho- and parhelium, since,
as we said, the levels of the two heliums never combine with one another.
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Fig. 84

The length of the arrows increases as the member number increases in
the series and finally approaches the limit, which is common to the I
and II N.S,, but different for ortho- and parhelium, and which is repre-
sented in the right and left half of the figure by the arrow o — 2p and
o —> 3P respectively