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PREFACE TO THE THIRD GERMAN EDITION

HEREAS the second edition (September, 1920) diflered

V essentially only in the mathematical notes from the first
edition, the third edition is a complete revision.

My aim was, above all, to promote order in the general series
spectra. In the earlier editions these, together with the hydrogen
spectrum, received mention rather through incidental comparisons
in the argument of the fourth chapter; now they have been set
out in detail in Chapter VI. I attach particular importance to
the introduction of the inner quantum numbers (Chap. VI, §5),
and to the systematic arrangement of the anomalous Zeeman

effects (Chap. VI, § 7). The regularities that here obtain through
out are primarily of an empirical nature, but their integral character
demands from the outset that they be clothed in the language of

quanta. This mode of explanation, just like the regularities them
selves, is fully established and is unique. Even at the present
early stage it has shown itself in many respects to be fruitful and

suggestive. Doubts can arise only with respect to the interpreta
tion in terms of the models. This interpretation has been attempted
in Chapter VI on the basis of Paschen’s thesis that the term
multiplicities arise from an intra-atomic magnetic field. “The
Law of Displacement” and “The Law of Exchange " or “Cross
Law" (these terms are used synonymously in the English tewt)
have been carried further in the new account (§ 6) than before.
The explanation of the various series terms by means of the intra
atomic electric field (§ 2), of course, constitutes as before the

foundation of the theory. .

The band-spectra, too, which before were sketched only in the
notes, are now treated, with due regard to their importance, in
Chapter VII. Following on them are the continuous emission
and absorption spectra (Chap. VII, § 7).
Fortunately the systematic structure of Rontgen spectra has

recently been investigated both experimentally and theoretically
so far that the possible energy levels and the rules of selection
that govern them have been made quite clear. Various gaps and
errors in the second edition have been removed. Here, too, the

V
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account is developed along quantum lines, but it-is essentially
empirical and culminates in an attempt to sketch a complete table
of all Rontgen terms (Chap. VIII, §6) which would in a certain
sense represent the consummation of practical Rontgen spec
troscopy. As before, the general and the more simple questions
are treated first in the third chapter, and the finer questions in
5 and 6 of the eighth chapter. For the present, however, the
interpretation of the Rontgen spectra on the basis of models has
been left out almost entirely. Whatever the further researches of
Bohr may reveal to us concerning the shell structure of the atom,
I feel certain that nothing will be changed in the laws of Rontgen
spectra here described.

The last chapter of the previous edition, “Wellentheorie und
Quantentheorie,” has now become the fifth chapter. This was
done to make the rules of selection and polarisation available for
the sequel, and in order to allow the use of the normal Zeeman
effect of the Balmer lines as a model for the anomalous Zeeman
effects of the doublet- and triplet-systems. The fine structure and
its relativistic basis, which was formerly treated in Chapter V,
has now been placed at the conclusion of the book to crown the
whole.

Will the view-point of the classical wave theory adopted in
Chapter V and the idea of the continuous spherical wave stand
the test of time? It is possible that we are even now passing
through a critical period in the history of the wave theory. Yet
in this as in other scientific revolutions we shall certainly take
much of the older view over into the new one.
The following changes of detail deserve special mention. In

order not to introduce the quantum theory too late the photo
electric effect and Einstein’s law for its maximum velocities have
been included in the first chapter on introductory facts. Through
this the chief doctrine of the quantum theory is first introduced
purely empirically. In Chapter II the former discussions of
molecular models and atomic volumes have been thoroughly
pared down. To balance this, §6 on nuclear physics and §§5
and 7 on isotopes and sub-atomic chemistry have been added.
In Chapter III the crystal structures so far known have been
tabulated. The last section of Chapter IV, which deals with
spatial quantising, also broaches the still rather involved question
of the magneton. In Chapter V we have added §7 on the
adiabatic hypothesis, its historical origin and its manifold ap
plications. As the most direct confirmation of the general
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foundations of Bohr’s theory we have appended in §3 of Chapter
VI the method of electronic collision so far as present results take
us. The manuscript of this part was kindly checked by Messrs.
J. Franck and H. Ran. In Chapter VIII, 4, in dealing with the
pictures of the fine structure of A = 4686, I am happily able to
make known for the first time a curve obtained by photometry
which still further strengthens the final conclusions here to be
drawn. The mathematical addenda have in part been reduced
and in part been reinforced (contact transformations, principle of
correspondence, adiabatic invariance of phase integrals).
The object of the book remains the same as before, namely, to

give a comprehensive account, not however too difficult, which
will also allow the non-academic reader to enter into the new
physics of the atom and to grasp the meaning of spectral lines.
Hence inordinately abstract mathematical developments had to be
avoided or left to the notes at the end. An endeavour has been
made to render the account throughout as vivid as possible. I
hope that the rather more systematic points of view developed by

Bohr in latter years (degenerate systems, etc.) have not been
pushed too far into the background.
All things considered, I have a somewhat easier conscience in

presenting this edition than when the first appeared. At that time
much still seemed unripe and uncertain. Even now the subject
matter is still in a state of violent ferment, but in the course of the
years that have elapsed since the first edition much has already
separated out as a definite residue. In particular, the way in which
the facts of Rontgen spectra, of term multiplicities, of Zeeman
efi'ects, have been put together, half empirically and half by means
of the quantum theory, will presumably remain unaffected by later
developments. Bohr’s recent far-reaching ideas will, indeed, add
much that is new, but will not throw doubts on what now appears
to be established.

In this edition, too, my collaborators have rendered friendly
and valuable assistance, A. Kratzer in the band spectra and in
reading the proof sheets generally, VV. Pauli in the mathematical
addenda and in reading a great part of the manuscript, G. Wentzel
in the Rontgen spectra, and in making the index. How much of
their own ideas has passed over into my account is not manifest in
the text. My hearty thanks are due to them for their help as well
as to the publishers.

A. SOMMERFELD
Mumcn
January, 1922



EXTRACT FROM THE PREFACE TO THE
FIRST GERMAN EDITION

FTER the discovery of spectral-analysis no one trained in
Aphysics could doubt that the problem of the atom would

be solved when physicists had learned to understand the

language of spectra. So manifold was the enormous amount of
material that had been accumulated in sixty years of spectroscopic
research that it seemed at first beyond the possibility of disen
tanglement. An almost greater enlightenment has resulted from
the seven years of Rontgen spectroscopy, inasmuch as it has
attacked the problem of the atom at its very root, and illuminates
the interior. VVhat we are nowadays hearing of the language of

spectra is a true
“ music of the spheres

”
within the atom, chords

of integral relationships, an order and harmony that becomes ever

more perfect in spite of the manifold variety. The theory of
spectral lines will bear the name of Bohr for all time. But yet
another name will be permanently associated with it

,

that of

Planck. All integral laws of spectral lines and of atomic theory
spring originally from the quantum theory. It is the mysterious
organon on which Nature plays her music of the spectra, and
according to the rhythm of which she regulates the structure of
the atoms and nuclei.

Sepia ntlwr, 1919

viii



TRANS LATOR’S NOTE

7

I
‘HE English rendering of Professor Sommerfeld’s book
departs from the German original of the third edition only
in minor details. It was the expressed wish of the author

that the translation should not be too literal, and that omissions
and alterations were to be left to the discretion of the translator.

It is hoped that the exercise of this privilege has caused no change
in sense whilst conferring freedom of idiom. I wish to take this
opportunity of thanking Professor Sommerfeld for his repeated
assistance and courtesy. No physicist can fail to be grateful to
him for embodying the most important of recent developments in
spectroscopy and atomic physics in this easily intelligible form.
He, himself, and his collaborators have contributed no mean share
to these results, indeed more than is outwardly apparent in this
book.

Since the appearance of the last German edition—on which
this translation is 1n0delled—new important facts have been dis
covered tending to confirm certain ideas put forward here. Chief
among these is the confirmation of the magnetic moment of the
silver atom by Gerlach and Stern (Zcitschrzft fiir Physik). It is
strong evidence in favour of the theory in Chap. IV, § 7 concerning
directional quantizing in the magnetic field, and opens up new
regions of research which may lead to undreamed-of consequences.
From their measurements Gerlach and Stern have deduced that,
within the limits of error of their experiments, the magnetic
moment of the normal silver atom in the gaseous state is one
Bohr magneton (see page 249). In a recent issue of the Zeitschrvlft
fiir Physik Einstein and Ehrenfest have discussed the important
question as to how the magnetic atoms of silver can alter their
directions at all under the influence of a magnetic field. Difficulties

appear to arise akin to that of the “time of accumulation” of

energy quanta for Rontgen rays (see page 44).
The experiment itself consisted in sending a stream of silver

atoms in a high vacuum (10" to 10* mm. of Hg) very closely past
1X
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\

the edge of the wedge-shaped pole of an electro-magnet, that is
,

the silver atoms were made to pass through a very strong hetero
geneous magnetic field. They were finally deposited as a thin
invisible layer on a glass plate. This layer was developed photo
graphically, and it was then found that the silver atoms were
separated into two discrete rays, showing that some of the atoms

had been attracted towards the pole and others repelled from it.
Another new result is the proof of the existence of N-radiation

(see Coster, Phil. Mag). Then there is the discovery of Hafnium
(Atomic Number 72).
It is perhaps not inappropriate to add a few words about the

English equivalents of certain German terms. In cases where a

suitable English expression has not readily suggested itself, I have
considered it advisable to quote the German original (both in the
text and in the index). It was felt that this would be of service
to those who wish to pursue the subject further in original papers.
In doubtful or diflicult cases I have conferred with other physicists
and have adopted whatever was favoured by the consensus of

opinion. Only in two instances have expressions been used
synonymously and indiscriminately: (1) the Law of Exchange
= the Cross Law (Weclzselsatz), page 379 et seq.; ('2) the zero
line = the null line (Null-lvlnie), page 419. It is hoped that con
fusion will be averted by mentioning them here specifically.
Much help in reading and correcting the proofs and in offering

fruitful suggestions was rendered, above all, by Mr. H. O. Newboult,
B.A. (Scholar of Balliol College), also by Mr. H. F. Biggs, M.A.
(Trinity College), and Mr. V. A. Bailey, M.A., D.Phil. (Queen's
College), to whom I here wish to tender warm thanks. No effort
has been spared to make the text accurate, and it is hoped that
there will at least be no errors such as would make the reading
irksome.

HENRY L. BROSE
Gmusu: Cannon, Oxrosn .

March 25th, 1923

l
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ATOMIC STRUCTURE AND
SPECTRAL LINES

CHAPTER I

INTRODUCTORY FACTS

§ 1. Retrospect of the Development of Electrodynamics

N the first half of the nineteenth century Electrodynamics consisted

Io
f

a series of disconnected elementary laws formed analogously to
Newton’s Laws of Gravitation ; they asserted the existence of

direct action at a distance, which, starting from the seat of an electric

charge or of magnetism and leaping over the intervening space was sup
posed to act at the seat of a second electric or magnetic charge.
Opposed to this there arose in the second half of the nineteenth cen

tury a view which followed the course of the continuously extended
electromagnetic field from point to point and moment to moment; it
was called the “ Field Theory

" in contradistinction to the “ Theory of
Action at a Distance.” It was propounded by Faraday, worked out by

Maxwell, and completed by Heinrich Hertz. According to this view
the electromagnetic field is represented by the course, in space and time,

of the electric and magnetic lines of force. Maxwell's equations teach
us how electric and magnetic lines of force are linked with one another,
how magnetic changes at any point of the field call up electrical forces,
and how electric currents are surrounded by magnetic forces. The inter

vening medium, even if non-conducting, is supposed to have a certain

transparency (permeability) and receptivity (dielectric capacity) towards

magnetic and electric lines of force; hence it acts at every point of

space on the distribution of the electromagnetic field according to its
constitution at each point.
The greatest triumph of this view occurred when Hertz succeeded in

connecting light, the phenomenon of physical nature with which we are

most familiar, with electromagnetism, which was at that time the most

perplexing phenomenon. After Maxwell had already surmised that light
was an alternating electromagnetic field (he succeeded in calculating the

velocity of light from purely electrical measurements made b_\' Kohl

1
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rausch), Hertz produced his “rays of electric force," which, just like

light, are reflected, refracted, and brought to a focus by appropriate
mirrors, and which are propagated in space with the velocity of light.
The electric waves produced by Hertz had a wave-length of several
metres. From them an almost unbroken chain of phenomena leads

by way of heat rays and infra-red rays to the true light rays, whose

wave-lengths are no more than fractions of ;;.. The greatest link in

this chain came later as a direct result of Hertz’s experiments, namely
the waves of wireless telegraphy, whose wave-lengths have to be reckoned
in kilometres. (N auen sends out waves having a wave-length of 12 kilo
metres, or 71}miles) ; the smallest and most delicate link is added at the

other end of the chain, as we shall see, in the form of Rontgen rays, and

the still shorter 7-rays which are of a similar nature.
Hertz died on 1st Jan., 1894, at the age of thirty-seven years. It would

be natural to conclude that the later years of his short life and the work of
his followers were occupied with an elaboration of his wave experiments
and of his theory of electromagnetic fields. But the last experimental
work of Hertz, “ Concerning the Passage of Cathode Rays through Thin
Metallic Layers," already pointed in a new direction.
The field theory had diverted attention from the origin of lines of

force, and had chiefly served to illuminate their general course in a
regular distribution of the field. The next question was to study the

sing'u»la'r-it1'es of the field, the charges. The best conditions for doing so
are offered by cathode ray tubes, which have a very high vacuum exceed
that of the so-called Geissler tubes (which were investigated by Pliicker
and Hittorf). Here we have electricity in a pure form, unadulterated by
ordinary matter, and, in addition, moving in a straight line at an ex
tremely high speed; cathode rays are corpuscular rays of negative
electricity. It was not, of course, Hertz himself but his eminent pupil
Lenard, who was instrumental in getting this view of cathode rays
accepted; but Hertz had recognised the important value of the in
vestigation of cathode rays for the future. Thus he had in this way
helped personally in attracting workers from the field of physical know
ledge just opened up by him towards pioneer work in a new field. In
the sequel, the greatest interest became centred not on the propagation of
the lines of force but on the charges, as the origin of these lines of force.
The original theory of Maxwell which had been perfected by Hertz
retained its significance for phenomena on a large scale, such as in
electrotechnics and wireless telegraphy, and gave an easy means of
determining the mean values of the electrical phase quantities (i.e.
quantities that define the state of the field). But to render possible
deeper research leading to a knowledge of elementary phenomena, s

deepened view became necessary. Maxwell’s Electrodynamics had to
give way to Lorentz's Dynamics of the Electron; the theory of the con
tinuous field became replaced by the discontinuous theory, that of the
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atomicity of electricity. So the theory of action at a distance and the
theory of action through fields was succeeded by the atomistic view of
electromagnetism, the theory of electrons, which still holds to-day.

§2. The Atomicity of Electricity. Ions and Electrons

The theory of the atomicity of matter has existed ever since there was
a science of chemistry; it is indispensable if the fundamental chemical
law, that of multiple proportions, is to be intelligible. Nevertheless there
has been no lack of opponents to atomicity. Goethe was one of them.
It was repugnant to him to destroy the beautiful appearance of phe
nomena by dismembering it and adding human elements. The eminent
scientist and philosopher Ernst Mach regarded the “Atomic Hypothesis

"

as merely transitory. He favoured the description of events in terms
of continuously distributed matter and continuously acting laws. The
last opponent of atomic theory was the keen-witted author of works
on Energetics, Wilhelm Ostwald (who has now been converted to
a belief in atoms). Objections to the theory have died into silence
in the face of its sweeping successes in all branches of physical know

ledge. The perfect explanation of the Brownian molecular movements
which confirms by ocular demonstration in the case of fluids the branch
of atomic hypothesis concerned with the theory of heat has contributed
much to this acceptance. No less impressive is the confirmation of the
atomic structure of solid bodies which was given by Lane's discovery
and which will be discussed in Chapter III.
A necessary consequence of the atomicity of matter is the atomicity

of electricity. This was stated simultaneously by Helmholtz and Stoney.
Helmholtz remarked in his Faraday Lecture * of 1881, as a result of the
laws of electrolysis which Faraday discovered and expressed in figures:
“ If we assume atoms of chemical elements, we cannot escape from
drawing the further inference that electricity, too, positive as well as

negative, is divided into definite elementary quanta that behave like
atoms of electricity. Each ion,+ as long as it is moving in the liquid,
must remain associated with an electrical equivalent for each of its

valency units."
Faraday's Law of Electrolysis actually states: Om and the same

quantity of electricity, in discharging through various electrolytes, always
sets free chemically eq'ui'valent qua-nt/ities of the dissociated products. In
the case of univalent elements quantities are called chemically equivalent
when they are in the ratio of their corresponding atomic weights, thus

1 grm. of H 35'5 grms. of Cl 107'9 grins. of Ag.

‘Helmholtz, Vorlrltge und Baden, Bd. 2, S. 272. The parallel work of Stoney
bears the title : “ Physical Units of Nature,” and appeared in February, 1981, in the
Proceedings of the Dublin Phil. Soc., and in Vol. 11 of Phil. Mag.
+As is well known, ions are the “ wandering

” constituents of electrolytes during
electrolysis, the cation being the positively charged constituent which moves in the
direction of the positive current, “ downwards," so to speak, the anion being the nega
tively charged constituent which moves “ upwards."
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To dissociate these quantities, we always require, according to Fara

day's Law, to make the same quantity of electricity pass through the

electrolytes, namely the electrochemical equivalent :

F = 96,494 coulombs* = 96494 c.g.s. units.
The constant ratios of weight 1 grm. H, 35'5 grms. Cl, and 107'9

grms. Ag become intelligible to us on the supposition of the atomicity
of matter: 1 grm. of H is composed of just as many atoms of H as
35'5 grms. of Cl contains Cl atoms, or 107'9 grms. Ag contains Ag
atoms. The equivalent charge F which is the same for each then
becomes clear to us in the same way if we accept the atomicity of

electricity: the equivalent charge F consists of just as many atoms of
electricity or “ elementary charges e," as 1 grm. of H contains H atoms,
or 355 gr-ms. of Cl contain Cl atoms, and so forth. There is associated
with every univalent atom (or more generally with every univalent ion)
an elementary charge e, whilst there are associated with every divalent
atom or ion two elementary charges, and so forth for atoms of higher
valency. Just as the atornicity of matter is a direct outcome of
fundamental chemical facts, so the atomicity of electricity is a direct

outcome of fundamental electrochemical facts.
For the sake of brevity of expression we shall define two further

terms. Following Ostwald we shall take a mol to be that number of

grammes which is given by the number expressing the molecular weight of
the substance in question. Thus 1 mol of H20 = 18 grms., and 1 mol
of H2 = 2 grrns. (In the case of monatomic elements we use the term

grammatom instead of mol, e.g. 1 grammatom of H = 1 grm.) Further
more, Loschmidt's number L denotes the number of molecules (or atoms,
respectively) contained in one mol (or grammatom, respectively) of the
substance in question. For example, in the case of water, or dissociated
hydrogen, this number will be defined by the equations:

18 gr-ms. = L'rn,,,o and 1 grm. = Inna respectively,

whereby mg denotes the mass, measured in grammes, of a hydrogen atom,
and mm, denotes the mass, similarly measured, of a molecule of water.
VVith regard to this term it must be mentioned that recently, in German

physical literature, the expression “ Avogadro's number
"
is often used in

place of
“ Loschmidt's number," for the reason that it also plays a part

in Avogadrds law of gases. But as Loschmidt was the first to determine
this number successfully (by means of the kinetic theory of gases), it
seems more in keeping with the facts to associate his name with it. The
fact that he made his calculations for the cubic centimetre and not for
the mol, is a mere matter of form. If necessary the number L as defined
above could be called “ Loschmidt’s number per mol."
The equivalent charge F contains, as we saw, just as many elementary

" A coulomb = 1‘, of the so-called absolute unit of charge, that is the unit of charge
defined in the c.g.s. system and measured electromagnetically.
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charges e as 1 grm. of hydrogen contains atoms of mm or, as we may
now say, the electrochemical equivalent contains L elementary charges e.
\Ve therefore write :

9649-4 c.g.s. units = Le 1 grm. = Lm"
e _ c.g.s. units 1 grm.

whence
£1“;
= 9649 4 inns mu

= L . . (1)

The ratio of the charge to the mass is called the specific charge of the

ion in question. In the case of the positive hydrogen ion, this specific
charge is thus 96494, whereas for the divalent positive copper ion it is

2e _ 2 . 9649-4
07%.;
_
G3'6

and for the univalent negative chlorine ion, it is

1
:“
: = __ and so forth.

Electrolysis shows, 'as Helmholtz pointed out, that positive as well

as negative electricity is composed of elementary quanta i e. But there

is a great difference between positive and negative electricity in a certain

respect. We know positive electricity only as an ion, that is, associated

indissolubly with ordinary matter: as we saw above, negative electricity
also presents itself in electrolysis in the form of ions. But we also know
the latter in its free state, dissociated from all ordinary matter, as abstract

‘electricity, so to speak. This is an all-important result of the researches
on cathode rays, to which we have already referred in the preceding
paragraph, and to which we shall again refer in the next.
The special position occupied b

y

negative electricity, its occurrence as

pure atoms of electricity calls for a special name. Following the example
of Stoney,* we shall call the negative atom of electricity electron.
In saying that the electron is not encumbered by ordinary matter,

we do not imply that it is devoid of inertia. On the contrary, the mere

presence of electric charges, or, generally, of energy of every kind, entails
a certain mass effect. The mass which is associated with the electron
in this way used to be called "electromagnetic

"
mass. This term is,

however, as the newer developments of fundamental physical conceptions
compel us to recognise, too narrow: not only electric charges produce a
mass efiect, but so does the cohesive energy (gravitational energy?) that

keeps the charge together and prevents it
, in a way as yet unknown to

us, from exploding. Therefore we nowadays prefer to speak outright of
the electronic mass m, and to regard it as a fact presented by our experi
ments with cathode rays.

A great gap divides the electronic mass, as regards its magnitude,
from the ordinary masses of atoms and ions. The electronic mass m is

‘Cf. Trans. Dublin Phil. Soc., Bd. 4, 1891. In the mathematical development of
the theory of electrons by H. A. Lorentz (An Atw-mpt at rt Theory o

f Electrical and
Optical Phenomena in Moving Bodies, Leiden, 1895) the word electron does not occur:
Lorentz retains the word ion in this essay.
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about 1800 times as small as the mass mu of the lightest atom. Accord
ingly, the specific charge of the electron, the ratio of the elementary charge
e to the electronic mass m, is in the same proportion greater than the
specific charge of the hydrogen atom. The most exact value* of this
ratio at present known, is

0

,4
"; = 1'769 . 107 . . . . (2)

But it is not the researches on cathode rays that have led to a know

ledge of this value of A more accurate value of the ratio was derived

from optical experiments, measurements of spectral lines, to which we
shall return in Chapter IV, and of spectral lines separated by magnetic
fields, to which we shall return in Chapter V. (The value given above is

taken from spectroscopic measurements made by Paschenxi) The general
course of the refraction of light in passing through transparent bodies

(solids and gases), as calculated on Dr11de’s Theory of Dispersion, gives

us values of

7
% of the same order of magnitude. But in the conduction of

currents along metals, we see electrons at work, as also in radioactive
processes, in the production of Rdntgen rays (X-rays), in the photo-electric
effect, and so forth. From this we conclude: the electron is a -universal
clement o

f structure o
f all matter. Whether it is flowing along slowly in

an electric current, or hastening through space at an extremely high rate
as a cathode ray, whether it is emitted in radioactive disruption or in a

photo-electric process, whether it is vibrating in our lamps (or, as we
should nowadays prefer to express it

,

“jumping
" in our lamps), whether

it effects the course of light in telescopes, it is always the same physical
unit, proving its identity by exhibiting the same charge and the same
mass,I in particular by keeping the ratio of charge to mass constant.
If we now wish to form a picture of the electron in accordance with

the foregoing statements, only scant material offers itself. An electron is,
like every negative charge, essentially nothing more than a place at
which the electric lines of force from all directions end. In the case of an

‘In electromagnetic c.g.s. units. The power of 10 that is added denotes, as we
know, by how many places the decimal point is to be shifted to the right; in the case
of a negative index the decimal point is to be shifted by so many places to the left, as

is indicated by the index number. This method of representation is to be recommended
not only for its brevity, but also because, without it, we should be compelled to add
after the number given four zeros which would not be founded on experience and which
would violate the physicist‘s respect for truth.
In general, it must be remarked that in the following pages the data of experiments

will be given to just that degree of accuracy which is known to be justified. We do
this for the purpose of keeping before the notice of the reader that even in the boldest
speculations of modern theory, we are concerned with things that have an exact
numerical counterpart in experience.
-I-Cf. L. Flamm, Physikal. Zeitschr-., 19, 518 (1917).

1 The “ same mass
" is more correctly expressed by the “ same statical mass," i.e.

mass which is not moving with respect to the system of reference, cf. §-1, equation (2)
of this chapter.
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electron at rest, these lines of forces are straight lines that come in uniformly
from all directions. But the same picture holds, according to the ideas of
the theory of relativity, for an electron moving in any way whatsoever,

as long as the picture of the lines of force is regarded as being conceived

by an observer moving with the electron, that is if the lines of force are

drawn in a space that participates in the motion of the electron. In other
cases, when the electron moves with regard to the observer who is mapping
out its field, the electric lines of force would still, indeed, be straight lines,

but would become compressed towards the central plane which is per

pendicular to the direction of motion, and, moreover, would be accom

panied by magnetic lines of force.
From the point of view of our present ideas, it is better to refrain from

endeavouring to give the electron a definite volume or size. This could

be calculated only on the assumption that the whole mass effect is electro

_i-pi -\l//;\.i<_i_ ?>-___\l//;\
Fro. la. Fro. ls.

Electron. H-ion.

5 = 1-769.10? _“ = 96,494
-m 112,,

e = 1-591 . 10'2" e = l'591 . 10'2"
-m = O'899 . 10"” mu = 1.649 . 10"“

L = 1 = 0-606.1024
mu

magnetic in origin, and this assumption is, on account of the necessity
for a cohesive energy (ride above), not justified. Moreover, we should be

compelled in this case to make the arbitrary assumption that the electronic

charge e occupies uniformly, either the volume or the surface of a sphere,
for which there is no support in our experience. Nevertheless it is worthy
of remark that whatever way the detailed calculation is carried out we
arrive at la sub-atomic value for the extent of the electron, an extent that
is about 10'“ times as small as that of an ordinary atom.

The picture of an ion, for example, of the positive hydrogen ion, shows
itse quite similar to that of the electron. As the lines of force
start out from positive charges, they are to be furnished with arrows in

the reverse direction to that for electrons; they are likewise rectilinear
and uniformly distributed, if we here also suppose the observer to be at
rest relatively to the ion. In contradistinction to the electron, shown in

-_

/0*‘

1
;‘
_ V
/

J 7
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Fig. IA, the ion has, in general, a definite size, which is indicated in

Fig. ln. It happens that in the special case of the hydrogen ion, which
is reduced to a mere nucleus (cf. Chap. II, § 3, No. 2), this size becomes
illusory and, as in the case of the electron, assumes sub-atomic dimen
sions. The subscription of Fig. 113 refers to the hydrogen ion, but the

figure itself has been drawn for any arbitrary spatially extended ion.
We have furnished our drawings with the characteristic values of the

specific charge, as well as with the values of the absolute charge and the
mass, so that they may serve as a reference note for the properties of the
electron and of the ion. The origin of these numbers will be explained
in part in the next paragraph.

§3. Cathode Rays and Canal Rays

The cathode of a vacuum tube is
,

according to the terminology that
we explained in connexion with the word cation (cf. note on p. 3),
the electrode to which the positive current flows, that is from which the

negative current emerges. The fact that the cathode rays start from the
cathode is already an indication that we are dealing with a flow of negative
electricity. In the case of a high vacuum and a sufiiciently high potential
difference, this flow does not follow the form of the tube as in the case of
the ordinary Geissler tubes, but spreads out rectilinearly from the cathode
along the normals of the latter. Assuming the results of the decades of
research* on cathode rays ranging from Hittorf to J. J. Thomson and
Lenard, we shall speak of cathode ray particles, or rather, of cathode ray

electrons. These electrons owe their velocity to the potential gradient at

the cathode, so that the kinetic energy of the electron i
s equal to the work

that the drop in potential does on the electron. Inasmuch as the kinetic

energy is proportional to the electronic mass m, and the amount of work

is proportional to the electronic charge c, we see that the velocity 'v of the

electron is determined by its specific charge st and by the voltage drop

of the vacuum tube 1
‘ V (volts multiplied by 108). The formula (which is

nothing more than the law of the conservation of energy) is:

7
% = ev, 1: = (/gv . . . . (1)

It is justifiable to say that the experiments with cathode rays are the
simplest and most perfect confirmations of the principles of mechanics,

more perfect than experiments with projected stones, and simpler than

the motion of heavenly bodies. As we shall later have to apply the

principles of mechanics frequently to the electronic motions in the atom,

‘Details may be found in the excellent account by Kaufmann, Miiller-Po-uillet,
Vol. 4

, fifth book; a still more elaborate description is contained in the work of
Lenard: Qua-ntitatwes fiber Kathodenslrahlen allcr Geschwindiglwiten, Heidelberg,
Verlag Winter, 1918. _ _ _
1-The potential difierence expressed in volts 18 converted into absolute electro

magnetic c.g.s. units by multiplying by 103.
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we shall do well to convince ourselves, at this stage, of their validity in
the cathode ray tube.
A good apparatus for our experiments is a Wehnelt tube (potential

difference 110 volts, pressure about 0'1 mm. of mercury, cathode
furnished with a spot of OaO, which, at a red heat, assists the emission
of electrons). The phenomena of illumination in the tube, which are

very striking, are due only indirectly, as we must mention at the outset,
to the cathode ray electrons, and arise from the impact of the latter with

FIG. 2A.

the remains of the gaseous content. By means of our tube we now
confirm the following mechanical laws :—

1. In the absence of external forces a body describes a straight line
with crmstant velocity. Corresponding to this law we see in Fig. 2A how
the beam of cathode rays are emitted perpendicularly to the cathode K,
and disappear into the anti-cathode AK. (Above th: beam of cathode
rays we see in this and in the following picture a bright image that is
formed by reflection from the glass sides.) The anti-cathode is not in

general connected with the source of voltage, and is to be distinguished
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from the anode A. The fact that the beam of cathode rays diverges

(becomes “scattered") as its distance from its source increases, is due
to the influence of the remaining gas molecules on the paths of the
electrons. The high value of the velocities of the electrons compared
with the relatively small voltage of 110 volts is worthy of notice. From

(1) it follows, that, in round figures,

o = 6 . 108 cms. per sec. = 3'60,
where c = 3. 101° cms. per sec. = velocity of light.

2. Under the influence of a centripetal force, that i
s, one which is every

where perpcndicular to the orbit, a body describes a circle at a constant

rate. The centripetal force is equal to the inertial resistance which is

directed perpendicularly to the orbit and is called the
“ centrifugal force."

We shall produce the centripetal force that is necessary for the experi
ment by a magnetic field, which arises from an ordinary bar-magnet
MM. A magnetic field acts on moving charges (“current-elements")
with a force that is perpendicular to the magnetic lines of force and to
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the direction of motion. In Fig. 2B. the magnetic lines of force run
from the front to the back, so that the centripetal force in question lies
in the plane of the page. We see the beam of cathode rays become
curved under its influence into a. circle (or into a spiral, if the initial
direction of the cathode rays and the direction of the magnetic field are
not exactly perpendicular to one another: in our case we should then
get a curve of variable curvature because the magnetic field is not
homogeneous). It is pretty to see how the circle increases or decreases
as the magnet moves away or approaches. Expressing this in a formula
we find that if H denotes the intensity of the magnetic field, p the radius
of the circle (more generally the radius of curvature of the curve), then

e1>H =

W
t? . . . . . (2)

On the left is the centripetal force due to the magnetic field, on the right

is the inertial resistance of the electron, or, expressed shortly, the

centrifugal force. In this case, too, as we see, the ratio 1 occurs as a

m

determining factor. From (2) we get

e

v - ;LpH . . . . . (2a)

3
. In a homogeneous and parallel field of force, as, for example, is

representerl b
y gravity on the earth's surface, a body describes a parabola,

the form o
f which depends on the value g o
f the acceleration in falling, or,

more generallg/, on the acceleration in the field o
f

force in question. In
our tube we generate the necessary field of force as an electric field by
charging the anti-cathode negatively, as by connecting it with the
cathode by hand. The field that results in this way is confined to the

neighbourhood of the anti-cathode, and is tolerably homogeneous there.
The cathode rays that previously disappeared at the anti-cathode are
now bent backwards into a parabolic shape (cf. Fig. 20, p. 12). (Above
the anti-cathode there is a kind of dark space that somewhat disturbs
the regularity of the parabola.) If F is the field intensity, then we get
for the accelerative force that acts in this case:

g=,;‘;F.....(3)
These and similar experiments clearly lead to determinations of

7
% by various methods. We may, for example, combine (1) and (2a),

eliminate v, and determinate i from the three measurable quantities
m

p
, H, V. This value, when it was first discovered, led to the rliscorery of

the electron. For as it was almost 2000 times greater than the value of

e i that was derived from experiments in electrolysis, it pointed to thell

L
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existence of a micro-mass which is almost 2000 times smaller than the

mass of the hydrogen atom.

Certain results connected with the absorption of cathode rays are of

particular interest for questions of atomic structure. Lenard was the

first to lead the cathode rays out of their capacity in the tube by allowing
them to enter into the air through extremely thin metal folia (so-called
Lenard windows). Although they here also soon came to a dead stop
owing to repeated obstruction by air molecules, nevertheless they clearly

Fm. 2c.

exhibited their corpuscular existence independently of the producing tube.
Systematic experiments on absorption now showed that the absorption,
i.e. the arresting (bringing to a stop) of an electron depends solely on the
mass of the atoms of the absorbing substance, not on its physical state or
its chemical composition. On the other hand, according to the kinetic
theory the mean sum (average) of the atoms would be the decisive factor
in the collisions and hence in the stoppage of a cathode ray. The com
parison of the actual circumstances with those of the kinetic theory led
Lenard to form the following picture of the structure of matter: Only a
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vanishingly small fraction of the space apparently occupied by matter is

really impenetrable (at least for rapid cathode rays); the electrons
can fly without obstruction through the whole intervening space.
The impenetrable centres are called dynamides by Lenard.* They are

regarded as electric fields of force and exercise an attraction on the
electrons, which are no longer effective for great velocities at a moderate
distance from the centres of force. In the case of small velocities the
range of action of the attraction increases up to the extent of the range of
action given by the kinetic theory of gases. Lenard has to set the number
of dynamides per atom proportional to the mass of the atom, that is to
the atomic weight, to get the law of absorption for rapid cathode rays.
The whole method of representation developed by Lenard as early as

1903 coincides strikingly with the nuclear theory that Rutherford built up
in 1913 from a totally different set of facts (ride Chap. II, §2). We
need only replace dynamide by nucleus, and number of dynamides per
atom by nuclear charge, to translate Lenard’s results into the language
now in use. In addition, the sub-atomic size of the dynamides, as
calculated by Lenard, is in approximate agreement with the order of

magnitude of the nuclei, as deduced by Rutherford. Proportionality
of the number of dynamides with the mass of the atom then de

notes proportionality of the nuclear charge with the atomic weight (cf
Chap. II, § 2). A difference which is essential for the fruitfulness of the
picture consists in the circumstance that, in the case of an element whose
atomic number is Z (and which, in some cases, then has the atomic

weight 2Z), Lenard assumes Z individual dynamides, generally separated
in space, whereas Rutherford assumes a single nucleus carrying a charge
Z. For the rest, our comparison of these two sets of ideas merely con
firms the observation, which often forces itself on us, that important
scientific facts, when once ripe for discovery, present themselves to various

investigators independently.
The antithesis electron and positive ion is analogous to that of cathode

rays and canal rays.+ The canal rays also obtain their velocity as a result
of the potential drop at the cathode, but they run backwards in the
direction opposite to that of the cathode rays (Goldstein, 1886). They
are thus oppositely charged to the particles of the cathode rays; they are

accordingly positive rays. To enable them to pursue their paths back

wards from the cathode, the latter has to be pierced with holes (“ canals ").
The canal rays, like the cathode rays, follow rectilinear paths. They are

likewise deflected by magnetic or electric fields, but in a direction opposite
to that of cathode rays, corresponding to their reversed charge. Besides
this, the deflection is considerably less than in the case of cathode rays.
For if these deflection experiments are used to determine the specific

‘Ann. <1.Physik.,12, '114(190a).
1A comprehensive account is to be found in Hamlbuch dcr Radiologie, Bd. 4.

Leipzig, 1917, W. Wien.
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charge of the particles in the canal rays, we find a value having the order
of magnitude of the electrochemical equivalent, and indeed we get the

exact value

5
1
;, as given in §2, Fig. 1B, in the case of canal rays of

hydrogen, that is when the tube is filled with hydrogen; we get a value
200 times as small in the case of canal rays of mercury (atomic weight of
mercury = 200), that is when the tube contains mercury, and so forth.
It may be mentioned that in the latter case, we also get multiples of this
value, a fact that points to a multiple charge of the mercury atom (to the
number of eight elementary quanta, according to J. J. Thomson). In the
former case we observe in addition to the full equivalent charge, also half
of this quantity, and this points to the formation of positively- charged
hydrogen molecules (mol-ions as contrasted with atom-ions).
Altogether, the conditions in the case of canal rays are not so typically

simple and easy to grasp as in the case of cathode rays. This is due to
the frequent transference of charges among the ions of the cathode rays

(W. \Vien). They become neutralised after a short distance by taking up
electrons, and become positively charged again through the loss of one or
more electrons in subsequent collisions (sometimes they become negatively
charged owing to the absorption of electrons). For this reason the
phenomena in the case of canal rays are, on the other hand, much more
manifold and instructive, inasmuch as the canal rays, as ions, possess the
power of emitting light of their own (J. Stark). The luminescent phe
nomena of canal rays (cf. Chap. V, the Stark effect) have furnished
modern physics with invaluable material in just the province that
concerns us here.

The opposite character possessed by ions and electrons manifests
itself, too, in the velocities of canal rays and cathode rays. The relatively
large mass of the ions of canal rays, for a constant voltage of the tube,
assumes a much smaller velocity than the small mass of the electron of
cathode rays. The corresponding velocities are theoretically in the ratio
of the square roots of the masses of the electrons and the ions, since

equation (1) remains valid for velocities that are imparted to the ions of
canal rays. In the case of cathode rays we get for a tension of 30,000

volts, for'example, a velocity of 101“ ems. per sec. =

g
; in the case of

canal rays we scarcely get beyond 2 . 108 cms. per sec. =

So far, in the case of both the ion and the electron, we have been

concerned only with the measurement of the specific charge. On the

other hand, we also mentioned the absolute value of the elementary charge

e at the end of the preceding section as being an equal, invariable, and

universal quantity for ions and electrons. We must therefore complete
our account by stating how the elementary charge itself may be deter

mined. It is obvious that if we know the absolute charge then (by
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comparing it with the specific charge) we can also find the electronic
mass m and the absolute mass of the hydrogen atom mu, as well as the

Loschmidt number and the mass of all other atoms. The values of

m, mu, and L found in this way are also noted at the end of the pre
ceding section.

There are many ways of deriving the elementary charge e. From our
discussions about the theory of spectral lines we shall get a spectroscopic
determination of e which promises to give us the most accurate values

(cf. the final paragraph of Chap. VIII.). At present, however, the surest
road seems to be that which has been followed with particular success by
Millikan?‘
A macro-ion, that is a charged particle of matter composed of many

atoms, preferably a drop of oil, on account of its shape, is kept suspended
by balancing an electric field against its weight, or it is allowed to drop
slowly by altering the field or its own charge. By means of radiation
from radioactive bodies or Réntgen rays (X-rays) the charge may be
varied to the extent of one or several units of charge e. By noting the
times‘ taken to fall in the case of one and the same particle, we get the
data necessary for calculating both the size of the particle and also its

charge. The result of measurements repeated by Millikan over a span of
several years is :

e = (4'774 i 'OO4)1O-1° . . . . (4)

In (4) the elementary charge is given in so-called electrostatic units

(E.S.U.). We may express its value in electromagnetic units (E.l\I.U.),
which are usual in the case of the specific charge, by dividing the above

valuebyc = 3.101“:
e = (l'591 i '001)1O"2° E.M.U. . . . (5)

This was the value noted at the end of the preceding section.

§4. a- and B-rays

Not only are canal rays and cathode rays produced artifically, but

they also occur naturally, being emitted during the disintegration of radio
active elementsn‘ The positively charged c-rays correspond to the canal
rays, and the negatively charged B-rays correspond to the cathode rays.

These natural corpuscular rays are much more violent and teinpestuous
than those produced artifically. In this way they testify directly to the
immense stores of energy available in the interior of the atom, with
which even those released in our modern evacuated bulbs are ridiculous
in oomparision. As the fields of force in the interior of the atom are

‘Phil. Mag. (6)_,34, 1 (1_917). _ _ _ _ _
1-For general inlormation on radioactive radiations mde St. Meyer and E. V.

Schweidler, Radioaktiiiitdt, Leipzig, 1916, and E. Rutherford, Radioactive Sub
stances and their Radiations, C-amb. Univ. Press.
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later to be subjected to a special investigation, it will be good to get at
this early stage an idea of their elemental power.
The velocity of the a-rays of radium C amounts to 2 . 109 cms. per sec.
It is about ten times as great as the velocity attained by canal rays. It
follows from equation (1) of the preceding section that the energy that is

necessary to produce this ten times greater velocity is 100 times greater
than, or, if we take into account the carriers of the at-rays (ride below),
even 400 times greater than the canal rays of hydrogen. Hence, whereas
we work a canal ray tube by means of a potential difi"erence of 30,000
volts, i.e. 30 kilo-volts (KV), we should require a voltage of about 12,000
KV to produce the energy of a-rays. A comparison of cathode rays with
,6-rays gives similar results. We may produce artificial cathode rays

having a velocity ranging from

(5
; to g
, whereas natural ,8-rays are

known whose velocities difi"er by only 1 per cent and less from c. Since,

as we shall see later, the velocity of light, c, represents an unsurpassable
limit for every velocity of material particles, a limit which may be

approximated to only when the energy applied is increased without limits,

we see that to a velocity which approaches to within 1 per cent of c,
there corresponds a voltage of the same order of magnitude as was just

given for a-rays.
For cases in which the velocities of the ,8-rays approximate so closely

to the velocity of light, it is clearly convenient to express these velocities

by giving their ratio to c instead of giving their absolute values '0 in cms.

per second. This ratio, which is always a proper fraction, is usually
denoted by the letter )6

,

thus:

6

/i=5, 0<fi-<1. . . . . (1)

From experiments on the deflection of 11- and B-rays the specific

charge has been found to be half the value of the equivalent chargefi
in the case of a-rays, and considerably greater in the case of ,8-rays,

namely, of the order of magnitude of the specific charge o
f the electron,

The latter discovery confirms our above statement that ,8-rays are par
ticularly rapid cathode rays. But the former discovery set physicists
before a triple choice from which experiments on deflection offered an

escape only after the efl'ect of each single a-particle could be successfully
demonstrated, that is, after a means of counting a-particles had been
discovered. A decision had to be pronounced in favour of one of the
three following possibilities, all of which were compatible with the value
of the specific charge of the a-rays particle :—

1
.

mi, i.e. the a-particles, are singly charged hydrogen molecules
"2

(that i
s molecules, each of which carry a unit charge).
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2.

7
%
,

i.e. the a-particles are singly charged atoms of an element :0,

hitherto unknown, and having the atomic weight 2.

3
.

3
;
, i.e. the a-particles are doubly charged helium atoms (atomic

He

weight of He is 4‘OO).

The experimental researches mentioned have demonstrated the truth

of the third suggestion. This means that the radioactive elements are able

to produce from within thernselues doubly charged positive helium atoms.

By demonstrating the presence of the He spectrum physicists succeeded
in confirming this conclusion by direct observation.
In consequence of this we now understand the difference between the

general properties of a- and ,8-rays. On account of their great mass

(4m,,), the a.-rays pursue their paths with great persistency. They shatter

the obstacles which they encounter in the form of air molecules. The
latter thereby become ionised, that is

,

they become split up into positively
and negatively charged ions. And, indeed, the a-rays in their passage
through atmospheric air form several thousand ions in every millimeter
of their paths. The B-rays, on the other hand, being of extremely small
mass are much more easily deflected from their paths. They exert a

comparatively small influence on the air molecules with which they come
into contact and form ions only now and then (5 or 10 per mm. according
to their velocities).
These properties of a.- and ,8-rays were exhibited in a striking way by

some beautiful photographs of C. T. R. Wilson,* which have often been
reproduced and which we must consider here also. His method con
sisted in bringing a radio-active substance into the vicinity of a vessel

“‘C. T. R. Wilson, Phil. Trans., 193, p. 289, 1899.

2
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which contained super-saturated water vapour; by this means, a- and

)8-rays were introduced into the closed chamber. The gaseous ions which
are formed by these rays serve, just as in the case of the gaseous ions or
particles of dust that are instrumental in the production of rain in the
atmosphere, as nuclei about which the super-saturated water vapour may
condense when the moist air is suddenly allowed to expand. The drops
of water which thus form and collect rapidly are what we see on the

photographs.

The path of an a.-particle is characterised on the plates as a dense,

apparently continuous, mark (indicative of strong ionisation), but, in

reality, it consists of individual drops of condensed vapour. In general,
its course is a straight line (due to its great mass). Fig. 3A shows a
sheaf of a.-rays which start out from the end of a wire which has been
made radioactive, like the divergent rays of the sun at dawn. Fig. 33
was produced by a-rays that originate at a point of convergence outside
the picture. Several of them show, towards the ends of their paths, where
their speeds have already been weakened, pronounced hooks (sudden

bends). We here call particular attention to this apparently subsidiary
phenomenon for the reason that, as we shall see later (Chap. II, §2),
far-reaching consequences arise through it.

On the other hand, the path of a B-particle is deflected much more

mm i- — - <-q
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often and much more easily (on account of its small mass) and is punctuated
only rarely with drops of water vapour, as is manifest on the photographic
negative (this indicates feeble ionisation). In Fig. 4 we see in particular,
besides diffusely scattered drops of water, the paths of two such B-rays,
of which one is strongly curved several times. In Fig. 5 we see, in
addition to the thick (highly magnified) path of an a-particle (with a
pronounced hook towards the end), several traces of the paths of B-rays.
To shed further light on the nature of B-rays we shall enlist the aid

of another scientific document, one of the deflection-pictures obtained in
the famous experiments on ,8-rays by Kaufmann*: it is here reproduced

about six times magnified. The sheaf of ,8-rays emitted by a radium
salt and singled out by means of a series of fine apertures is exposed to
the simultaneous action of a magnetic and an electric field. The lines
of force of both fields are parallel to one another and to the photographic
plate. The electric lines of force divert the [3-ray electrons from their
ordinary paths, to the right in our figure, to the left when the field is
reversed by commutation. The magnetic lines of force cause a deflection
at right angles to themselves, in Fig. 6 this is upwards. Both deflec
tions depend on the velocity. The greater the velocity, the smaller the

‘ W. Kn-uimann performed these experiments in the period 1901-1906 : a résumé
of them is given in Ann. d. Phys., 19, 487 (1906).
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deflection. For each velocity of the B-electron, therefore, a diflerent
“deflected point" or, if we commutate, too, each time, a different
deflected point-pair will be recorded on the plate to the right and left.

Now since this beam of ,8-rays may contain all possible velocities reach

ing almost to the velocity of light, a continuous section of line marked

by the points of deflection will be produced, or, rather, two branches of

F10. 6.

that of light.

a curve are produced that converge towards the
point of departure on the path of the undeflected
beam. The latter path is also recorded on the

plate thanks to the photographic action of the
undeflected y-rays (cf. §5). From formulae (2)
and (3) of the preceding section we can easily
verify that the branches of the curve would have
to be two parabolas that touch, having a common
vertical tangent at the last undeflected point if
the electronic mass m were constant, that is, the
same for all velocities. As an experimental fact
the two branches do not touch (cf. the tangents
l and t’ which have been sketched into Fig. 6),
but run into one another, inclined at a certain

angle. From this it is to be inferred that the
electronic mass depends on the velocity and that it

increases beyond all l'l'flL'ilS as it (the velocity of the electron) approaches

This result excited great astonishment, as is easy to understand , for

_ _
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it shattered the time-honoured dogma that mass is constant. But
Kaufmann wished to read still more from his negatives. He wished to
learn from them the law according to which the mass of the electron alters
with the velocity. In this connexion there were two opposing theories
which led to different forms for this law, namely, the older theory of the

absolute ether (the original theory of Lorentz, elaborated in particular

by Abraham for the questions here under consideration), and its younger
rival, the theory of the relativity of motions (founded by Einstein). The

latter theory gives rise to a particularly simple form of the law govern
ing the change of mass with motion, namely to the formula :

mo
m = . . . . (2)

In it B is the velocity, as explained in equation (1), expressed in terms
of the velocity of light c; 'n1.,, is the mass at rest or “statical mass,"

corresponding to the velocity ,8 = O; m is the mass of the moving
electron. The theory of relativity asserts that this is true not only for
the electronic mass m, but also for any arbitrary mass of matter. This
means that every arbz't-ra'ry mass must increase as ,8 increases and must
become infinitely great when ,8 = 1. From this the thesis, stated right
at the beginning of this section, that the velocity of light represents for
all velocities of material bodies a limit that cannot be exceeded, i.e. that
the velocity of light can only be approached asymptotically but never

passed, would already follow as a natural consequence.
It can easily be grasped from this that the deflection experiments of

B-rays were regarded for a long time as the esvper-rmentum crucis which
was to decide for or against the doctrine of the relativity of motions, and
that they were thus to determine our fundamental views of space, time,
motion, and the ether. As far as Kaufmann's experiments are con
cerned, it has been proved that they were not sufliciently accurate to
give a decisive answer. Later experiments have established more and
more definitely the correctness of the relativistic formula for mass
In our spectroscopic discussions later we shall likewise arrive at a con
firmation of this formula by a method that far exceeds all others in

accuracy (see the final paragraph of Chap. VIII).
We might well close our brief survey of corpuscular rays here, were

it not that we have still to discuss several general questions dealing with
the nature of electricity. Are we to regard electricity as unitary or
dualistic? Is it made of matter or of energy, of substance or of force?
The question as to whether it is of one kind or of two kinds has been

proposed long ago particularly with reference to Voltaic currents. Does
only one type of electricity or do two contrary types, in opposite
directions, move along a conducting wire? The battle resolved into one
of words, as no decisive experiments on this point could be suggested.
Even nowadays we have really advanced no further in this question as
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far as current electricity is concerned, but by adducing other evidence
about electrons we are justified in asserting that what flows in a
conducting wire can only be negative electricity; and that even a current
of electricity in metals is a current of electrons. In this field our view is
thus unitary.
In the realm of atomic physics, however, we are inclined to take the

dualistic view. A positive charge signifies more than the absence of a
negative charge. Positive electricity is always associated with ordinalry
matte'r. We have thus to deal with two types of electricity that differ
not only in sign but also in nature. As representatives of negative and
positive electricity we have the electron and the positively charged
H-atom.
There is no reason why we should not claim these two representatives

as negative and positive electrons, respectively. Just as all negative
electricity consists of the ordinary negative electrons, so all matter,
according to the old hypothesis of Prout and the newest results of
Aston (cf. § 5 of the next chapter), very probably resolves into positive
hydrogen ions. Hence, as the fundamental elementary constituent of
matter and of positive electricity, the positive hydrogen ion deserves the
name of positive electron. In using the term “positive and negative
electron," we have already adopted the dualistic view, even if not the
dualism of two elements of a like type, but of two that difi'er radically in

respect of mass.

In the following respect, too, there is a difierence of type between
negative and positive electricity. We can picture an atom (or a body)
as highly charged negatively as we like, that is, we can add to it any
number of negative electrons. But we can increase the positive charge
only to a certain maximum amount so long as we do not considerably
alter the mass. For we can abstract from the atom only just as many
electrons as it possesses from the outset. In the case of the He-atom,
as we shall see, this maximum limit is already reached when it has two

positive charges, in the case of the H-ion when it has only one. A
further increase in the positive charge could be effected only by simul

taneously increasing the mass, that is, by adding positively charged
matter.

This really furnishes us at the same time with the answer to the second

question, as to whether we are to imagine electricity as a substance. To
us nowadays negative electricity certainly denotes a substance. It is one
of two universal and fundamental substances of which positively charged
matter is the other; both are equally entitled to being called such. If
we regard an unalterable constitution as the characteristic of substance,
then the charge (positive as well as negative) is more truly a substance
than matter (electronic mass or ordinary mass). As a matter of fact we
saw, as an inference from Kaufmann's experiments, that every mass
varies according to its state of motion at the time under consideration
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(more correctly, according to the state of motion relative to the observer
in question). In the case of the theory of relativity, too, no change‘ in
the electric charge enters into question. In consequence of its absolute
im-mutability the charge, in contradistinction to the mass, proves itself to
be true substance. The charge and the mass are hereby indissolnbly as
soc-iated with one another, the negative charge -with the electronic mass, the
positive charge with the hydrogen mass.

§5. Riintgen Rays and y-rays

R6ntgen's discovery was made in the year 1895. He was working
with a highly evacuated cathode ray tube and observed the presence of
penetrating rays that started out from the part of the tube at which the
cathode rays struck the glass wall. These rays propagate themselves in
all directions in straight lines from their source and are not deflected by
a magnet.* For this reason Rontgen himself had looked on his “ X-rays "

as wave-radiation. At first it remained undetermined whether they were
longitudinal or transverse in character. As we know, improvements
in the construction of X-ray tubes have brought it about that the X-rays
are no longer produced at the glass wall but at an anti-cathode placed in
the path of the beam of cathode rays : it is found preferable to make the
anti-cathode of a metal with a high melting-point (e.g. platinum, tungsten,
molybdenum, etc.). The cathode rays that strike it are thus brought to
rest. By giving the cathode the shape of a soup-plate the focal point of
the beam of cathode rays is made as small as possible.
The question whether the rays were longitudinal or transverse was

decided by Barkla ten years after R6ntgen's discovery. Even in the

original researches of Rbntgen it had been ascertained that all bodies,

especially metals, on which X-rays impinge, serve as sources of new

(“secondary”) X-rays. In the same way secondary X-rays generate
tertiary X-rays. Now, Barkla discovered that primary X-rays are

partially polarised, secondary X-rays are wholly polarised in certain
directions. He succeeded in proving this with the help of tertiary X-rays,
that is with the help of the secondary rays produced by secondary rays.
For reasons to be given later, Barkla used as the generator of secondary
rays not metals, but substances that are composed only of light atoms

(charcoal, paraflin, paper). We must parenthetically mention another

product of the action of impinging X-rays, namely secondary cathode rays
which were discovered in 1900 by Dorn. They occur simultaneously
with secondary X-rays and are similar in velocity to the primary cathode

rays that produced these X-rays.
Polarisation signifies that a ray favours a certain plane passing

through it more than the one perpendicular to this plane. In the case

’ The older developments of the work with which we are concerned in this section
have been collected together by R. Pohl, Die Physik dcr Rimtgenstrahlen, Brann
schweig, 1912 (Sammlung Wissenschaft).
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of longitudinal vibrations, that is, vibrations that occur in the direction
of the ray, there is symmetry about the ray and no such preference can
be imagined. Longitudinal radiation must therefore be unpolarised. In
the case of transversal vibrations, however, a favoured plane (including,
of course, all parallel planes) is determined by the direction of vibration
and the direction of the ray. It is only when no direction of vibration
is favoured that a ray composed of transverse vibrations can be un

polarised. We here interpret the direction of vibration not as being the
direction of a motion or of matter, but only of the electric force which

participates in the wave-radiation. With this electric force is associated
a perpendicular magnetic force.
Let us first discuss in a general sense the production of electromagnetic

waves. In doing so, we shall adopt the standpoint of classical electro
dynamics and of the theory of electrons. The fact that the newest

developments have led to the partial
rejection of this view is not to disturb
us for the present.
A charge e which moves non-uni

formly radiates energy, for it generates
an electromagnetic field which propagates
itself with the velocity of light. (A charge
moving with uniform motion, such as a
cathode ray particle, carries its electro

magnetic field along with it
,

and hence

does not radiate.) Consequently the in
tensity of the radiated field is in general

F,(_,_ 7
_ proportional to the acceleration * v of the

- charge; in particular, in the direction

r = OP (cf. Fig. 7
, in which O is the position of the charge, P that

of the observer, briefly called the initial point) it is proportional to the
component of acceleration +,_, which lies in the plane through v and r,
and which is perpendicular to 'r. We describe a sphere through P,
about O as centre, with the radius r, and mark as its north and south

poles N and S
,

the two points at which the acceleration vector, when

produced, meets the sphere. Let us fix the position of P on the sphere
by means of the angle 6 (complement of the geographical latitude).
Then

in 0.4
.

F ll $1 cn

The electric force lies in the meridian plane ONP, the magnetic force is

the tangent to the small circle PP’. These forces are of equal magnitude

* Following Newton. we indicate the increase with respect to time by a dot thus:
- iv.V = dt v

in the case hem considered in which the velocity is supposed to have a constant direc
tion, 1

3

denotes the value of i when the direction is disregarded.
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if
, as is natural, we measure E in the electric (“electrostatic") system

and H in the magnetic (“ electromagnetic ") system, namely
e1'r,,

E = H _ 0,7 . . . . . (1)

(the charge e is measured in electrostatic units, just like E). The de

pendence of these quantities on r, as expressed in the equation, may
easily be seen a priori. During the process of emission of radiation, the
same flux of energy passes through each spherical shell. Since the
surface of each increases proportionately to r2, the specific flux of energy

S
, the so-called Poynting vector, must decrease as r2 increases. But, if

we disregard the factor £
1
; which depends on the system of measure

ment, S is equal to the product of E and H (at least, when H and H are
perpendicular to one another; cf. Note 1 at the end of the book), thus in
our case:

c ea» e"b2 .

S =
47;

= =
47rc3T2

S1112 0 . .

From this (by integrating over the surface of the sphere, cf. also Note 1)

we get fa. L31‘:‘otal flux of energy
22-2

'

s=§“cff. . . . . (3)

Our representation (1) of the field is a necessary consequence of the
established principles of electrodynamics. It shows the transrersal
character o

f the field (E and H are perpendicular to r, that is, to the
direction of the ray S). In addition, it shows that in the longitwlinal
direction, that is, in the direction o

f the acceleration 1
'7
,

the emission o
f

radiation becomes zero (sin 0 = 0). This fact is used practically in wireless

telegraphy: in the direction of the antenna (that is, of the alternating
current, corresponding to our fr) the emission is zero: it is a maximum

in the direction at right angles to the antenna. The position of H, too,

corresponds to the well-known circumstances that attend the passage of

alternating currents through a wire: the lines of magnetic force are
circles around the wire (corresponding to our small circle PP’ in Fig. 7).
After these preliminary remarks, we have now to imagine secondary

X-rays to be produced as follows: Every body, whether solid, liquid, or
gaseous, is built up of electrons and positively charged matter. In Fig. 8,

let 1 he the direction of the primary beam from R (Rontgen, or X-ray,
bulb) to K (the scattering body). We assume that at the outset the
primary ray is unpolarised and that it consists of transversal vibrations (the
possibility of longitudinal vibrations is already excluded owing to the mere
fact of polarisation). Let us then resolve the electric force, as shown at
the bottom of the figure on the left, along the two perpendicular directions

2 and 3
, which are perpendicular to 1; we get two equally intense

component forces along 2 and 3
. When the component 3 has arrived

at the surface of K, it sets the electrons in motion along the direction 3.
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These electrons thus become the source of a new radiation. This radia~
tion gives us, as we saw, no intensity along 3, but maximum radiation in
the direction 2. In the same way the component force 2 sets the
electrons of K into motion. The radiation thus produced gives no
intensity in the direction (2), but maximum radiation in the direction 3.
From this it follows that the secondary radiations s, which are propagated
in the direction 2, are derived from electronic vibrations in the direction
3 and likewise vibrate in this direction. They are thus completely

polarised. The same is true of the secondary rays that are propagated
in the direction of 3 and which vibrate in the direction 2; and it is true
of all secondary rays that are propagated at right angles to the primary
direction 1. (The secondary rays that are obliquely inclined to 1 are
partially polarised.)
But how can we recognise the complete polarisation of the secondary

ray s in the absence of a Nicol for X-rays? By repeating the process,
we place a second scattering body
K’ in the path of the secondary ray
s and measure the tertiary X-rays.
These are produced by electronic
vibrations that take place exclusively
in the direction 3. They emit max
imum radiation in the direction K’1,
and none at all in the direction K'3.
The perpendicular set of lines pst in
the directions 1, 2, 3 proves by the

vanishing of the intensity of the
tertiary rays K'3 both the complete

3 polarisation of the secondary rays and
FIG- 9- the transversal nature of the primary

rays.
In Barkla's experiments the scattering bodies K and K’ consisted of

charcoal. The intensity of the tertiary rays was measured electroscopically
by their ionising action on the air space of a condenser (ionisation chamber),
which is very sensitive towards X-rays and which had already been per
fected and used in the original experiments of Rdntgen. Provided that
the primary radiation was fully unpolarised, K2 and K3 would have to
show the same degree of intensity under similar conditions of measure
ment. In reality, as Barkla, and later Bassler, found, the secondary rays
already show differences of intensity with direction. They thus indibate
a partial polarisation of the primary radiation.
The latter circumstance leads us still more deeply into the process of

production of the primary X-rays. In Fig. 9 let K be the plate-shaped
cathode and AA the anti-cathode. When the cathode rays strike the
anti-cathode, they are arrested; their average direction of retardation is
represented in the figure by the arrow \"r. This change of velocity causes
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radiation to be produced, which is the shorter in wave-length and the
more intense, the greater the change of velocity. This radiation is to be

regarded as the reason (or better, a reason) for the occurrence of X-rays.
The resultant field is described by the earlier Fig. 7. In it the direction
SN is now represented by the direction KA of the cathode rays. The
electric force lies in the meridian planes, that is, now, in the plane KAR
through the cathode ray and the X-ray. The process of formation of

X-rays thus points directly at a favoured plane for the electric force.
The observations (of Barkla and others) have confirmed this position of the

plane of polarisation.
According to our argument we should actually expect a complete

polarisation of the primary X-rays. What is the cause of the incomplete
character of the polarisation? A reason that immediately suggests itself
is that there are changes in the direction of the impinging cathode rays
before and after they have been stopped by the material of the anti
cathode. Through them the direction of the arrow <1and hence also of
the direction of polarisation becomes blurred. But there is a still deeper
reason.

Barkla has discovered that every
material substance when bombarded R R

with cathode rays emits a radiation
B

characteristic of the substance (called A
“characteristic radiation," Eigen- K

-
, v

st-rahlung). Whereas we may com

pare the radiation considered just R A

above (“impulse radiation," Bre'ms- Fro. 9.

strahlung) with the forced vibrations
that occur in mechanics—as a necessary consequence of the sudden

stoppage—this characteristic vibration corresponds to the free or nat

ural vibrations of mechanics. Through the agency of the cathode rays
the electrons of the material of the anti-cathode are thrown out of

their positions of rest (or out of their stable orbits) and tend to return

to these. In doing so they emit the frequencies natural to, or char
acteristic of, the material of which the anti-cathode is composed. This

circumstance gives the process a resemblance to optical fluorescence, in

which, likewise, a frequency of vibration occurs which is characteristic

of the fluorescent material but differs from the frequency of the incident

radiation. The phenomenon occurs freely, being excited by the cathode

ray but, especially in regard to direction, is not subject to conditions.

Thus the characteristic radiation is nnpolarised, and the total radiation

(impulse radiation + characteristic radiation) is only partially polarised.
As a result of the polarisation experiments above discussed, there is

no doubt that the radiation of X-rays is of the transverse wave type.

Nowadays we speak of Rbntgen light or X-ray light and distinguish
it from visible light only by its greater hardness (penetrative power).
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This general character of Rontgen light is shown very strikingly in a
photograph, here reproduced in Fig. 10, by G. T. R. Wilson (cf. § 4,
p. 17). In contrast with the former photographs (Figs. 3, 4, 5), we see
here no rectilinear nor curved corpuscular paths, but a thick bundle of
rays that traverse the space of the condensation chamber in a horizontal
direction. This bundle of rays is made visible to us photographically not
directly but indirectly by the secondary cathode rays (see p. 23), that is,

by the electrons that have been set free from air molecules and molecules
of water vapour by the X-rays, and which fly out laterally and irregularly,
and cause the water vapour to condense.
The hardness of Rfintgen light represents what we usually call colour

in the case of ordinary light. Great hardness denotes great frequency of
vibration or small wave-length. Moderate hardness or greater “ softness

”

denotes smaller frequency and greater wave-length. This terminology
introduces no difliculty in the case of characteristic radiation. We called

this free vibration and are tempted to ascribe to it a period (or a series of
periods) of vibration characteristic of the material of the anti-cathode.
This we may actually do, for experimental researches have fully confirmed
this conclusion. The characteristic radiation is not only “characteristic

”

but also “ homogeneous.” It consists of a few sharply defined kinds of
vibration, each of which corresponds to a homogeneous monochromatic
type of light. When we have become acquainted with the spectral
resolution of X-rays (Chap. III), we shall see that the characteristic
radiation assumes the form of a line-spectrum.
To supplement our earlier statements we must add the following:

As the atomic weight of the body emitting the characteristic radiation
increases, so does the hardness and the intensity of the characteristic
radiation. Anti-cathodes of heavy metals produce copious and hard
characteristic vibrations, whereas charcoal, paraflin, etc., produce only
scant characteristic vibration, which is soft, being absorbed after traversing
only a few centimetres of ordinary atmospheric air, and which, therefore,
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hardly deserves the name of Rontgen radiation. Hence we understand

why Barkla, to prevent being disturbed by the characteristic radiation of
the scattering body, had to use bodies of small atomic weight for his

experiments on polarisation. On the other hand, makers of X-ray
appliances had to resort to heavy metals for their anti-cathodes so as to
make use of characteristic vibration as well as the impulse radiation.
Our explanation of hardness does not seem to be so readily applicable

to the case of impulse radiation. The process of impulse radiation is a

single event; that is to say, it is non-periodic. Consequently the con

ceptions of period of oscillation and wave-length here seem out of place.
During the time required in coming to a stop (length of impulse) a single
shock emanates from the anti-cathode; an electromagnetic impulse is
emitted out into space; its field is contained between two spheres that
are described about the place at which the retardation or stoppage is
effected, and that widen out with the speed of light. The distance
between the two spherical shells gives the measure of the width of the
zone of disturbance; it is the “ width of the impulse.” Thus instead of

wave-length, width of impulse was formerly the term used in speaking
of Riint-gen radiation.
Now, it is a simple mathematical truth that a single unperiodic occur

rence may be represented as composed of a number of purely periodic
occurrences superposed on one another. For example, the crack of a gun
may be represented by a continuous series of musical tones, if these are
chosen of the proper intensity and phase (Fourier’s integral representation
of an arbitrary function). The physical realisation of this mathematical
mode of representation is called the spectrum of the occurrence in question.
From the moment that the spectrum of such an event can be specified,
the spectral picture will be preferred on account of its fixed quantitative
character. This moment had arrived, in the case of X-rays, when Laue
made his discovery. Since then, we speak of the spectrum, wave-length,
and frequency of vibration in the case of impulse radiation too. Instead
of one width of impulse we have then a continuous series of wave-lengths,
to each of which there corresponds a purely periodic vibration of definite

intensity. Accordingly the spectrum is not as in the case of the
characteristic radiation a line-spectrum but a continuous spectrum. It
resembles the spectrum of white light and is therefore occasionally called
the while Rontgen spectrum. The difference between the white Rontgen
spectrum and that of white light, for example, is only in the order of

magnitude of the dominant region of wave-lengths, of the region of maxi
mum intensity. The mean wave-length of this region is in the case of

X-ray spectra 10,000 times smaller than in that of the solar spectrum.
As we saw, the hardness of the characteristic radiation depends on

the atomic weight of the emissive material of the anti-cathode. On the
other hand, the hardness of impulse radiation depends essentially on the

voltage of the X-my bulb, or on what is the same, according to equation
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(1) of § 3, the velocity of the impinging cathode rays; as is well known,
the hardness increases with the voltage of the bulb. In the language of
spectra. this means that the reg-ion of wave-lengths of greatest intensity
in the continuous spectrum sh-i]'ts toicards the smaller wave-lengths as the

voltage increases. We shall pursue this fundamental law further in the
next paragraph. To do so, we must discard the view-point of classical

electrodynamics here adopted, and must build up on the basis of the
modern quantum theory.

For our special purpose—atomic structure and spectral lines—the
characteristic radiation with its line-spectrum, which is characteristic of
the emitting atom, will of course be more important than the impulse
radiation with its continuous spectrum essentially conditioned by" the

voltage of the tube. But firstly we have yet to call attention to various
observations about the latter that are intelligible on the basis of classical

electrodynamics and mechanics.

We inquire into the total scattered secondary radiation that is emitted

per unit of time by a body (radiator) struck by primary X-rays. The
scattered secondary radiation, in contrast with the simultaneous secondary
characteristic radiation of the radiator, has the same hardness, or in more

precise terms, the same continuous spectrum as the primary radiation.
Its intensity, calculated for a single emitting electron, is given by equation

(3). We shall write it down here for the unit volume of the radiator and
take n as the number of atoms per unit volume, Z the number of electrons

per atom. (The radiator is assumed to be a chemical element ; in the

case of a compound the various atoms would have to be differentiated.)
We then obtain from (3) .

2 W12
S = . . . . .

This implies the assumption that the quantities of energy emitted by the
individual electrons of the atom become simply superposed, an assumption
which no longer holds for white light (cf. Note 2) and which even in the
case of excitation by X-rays is not true for all directions of the scattered
radiation (cf. again Note 2).
The acceleration v of the individual electron is closely connected with

the electric intensity of field E, (of the primary X-ray which impinges on

it
) by the equation

'm\'7 = — eE,, . . . . . (5)

In (5) we have assumed the electron to be free. If it is bound to a

position of rest, the restoring force has to be added. In the case of
sufiiciently hard X-rays, we may discard this force ; in the case of optical
frequencies it must be taken into account (cf. Note 2). By inserting (5)
into (4) we get

2 4s= §";c3E,ZnZ . . (6)
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Again, we determine the energy P of the primary radiation that falls per
unit of time on the unit of area of the radiator and excites secondary
radiations in it. We get (cf. eqn. (2), in which H = E = BF)

c 2P =
L.rr.:,,

. . . . . (7)

From (6) and (7) we get
s st *

»F=15—-73354-nZ.
. . . . (s)

The energy S is produced at the expense of the energy P and hence
causes a decrease in the latter, an “ absorption through scattering.” The

S _ ~ . . . ,, .
ratio F is called the “absorption coefficient due to scattering and is

designated by s. From it we pass on to the absorption coefficient of mass

ii by dividing by the density p. Whereas s is a measure of the scatter
P

ing per unit of volume, i is a measure of the scattering per unit of mass.
P

Now
M

- p = nmHM = nu
. . . . . (9)

in which M is the atomic weight of hydrogen, 5 1, and thus m,,M is the
mass of a single atom; and n'n1,,,1\/Iis the mass of the atoms contained in

. 1 .
'

unit volume, i.e. it denotes the density p; L =
7?“
is (see p. 4)

“ L0schmidt's number per mol."

From (8) and (9) we get
s 81r e4L Z Z_ =__ = K _ _
P 3 mic,‘ M M . . . . (10)

The factor K is a universal quantity independent of the nature of the
radiator. Its value may be calculated according to the data at the end of

§ 2 in Figs. la and 1B. In doing this, it must be observed that we have
here reckoned e in electrostatic units, and hence according to the remark
at the end of §3 we must divide it by c to reduce it to electromagnetic
units. We then obtainl

" - 1-77 10' “L 9-65 103
‘
1- -2—— . ',_= . ,--= 59.10°

Ww 0 c

hence

K = 0'40 . . . . . (11)

From this we can determine the ratio
1%
from (10) if the absorption

coefiicient of mass is found by observation. Such observations have been
made by Barkla (for air) and by Barkla and Sadler (for C, Al, Cu, Ag).
In the case of air, C and Al, the value attained (in cms. and grms.) is

S-= 0-2 . . . . . 12
P

( )
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For Cu and Ag, greater values (0-4 and 0'5) were found, but in their cases
we are no longer dealing with pure scattering, for secondary characteristic
radiations occur, as well scattered secondary rays, and these increase the
demand for primary radiation and hence increase the absorption co
efficient of mass. Taking this into consideration we may say: for small

atomic weights measurements lead to the uniform value 0'2 for '3
,

whereas

for greater atomic weights the values obtained do not condradict th
e

ass'unqJ
tion that the same value holds generally to a certain degree o

f approximation

so long as we are concerned only with the absorption due to scattering.
Now, from (10), (11), and (12) the remarkable result follows

Z O‘2 1

M
-
mo
-

2 (13)

The number o
f electrons per atom is half as great as the atomic weight

(proved for atomic weights smaller than 27; extrapolated for higher
atomic weights, and in their case, as we shall see later, this rule is only
approximately true).
For the sake of completeness we must emphasise that the law con

tained in (12) is subject to a very noteworthy exception in the case of

extremely hard X-rays. We get for them values offi that continuously

P
and systematically fall below 0'2 as the wave-length decreases. For
further details we refer to Note 2 and merely remark here that the oc
currence of this exception for just the shortest wave-lengths is very sur

prising. In the case of long waves for which the distances of the
electrons from one another in the atom compared with the wave-lengths
can no longer be regarded as great, the vibrations emitted by the in

dividual electrons would interfere with one another, analogously to what

happens in optics, so that in their case we should be able to understand

a departure from (12), since it takes no account of such an interference
but assumes a simple superposition of energy. Nevertheless in the case
of short wave-lengths this departure-must be due to another reason.

Presumably it hints again at the limits of validity of the classical theory
and the necessity of supplementing it by the quantum theory
From the secondary rays we return once more to the primary ray

and inquire whether their mode of generation (sudden stoppage of

cathode rays at the anti-cathode) can be proved in greater detail by
observations. To answer this we must first generalise formulze (1) a

little. These formulae related to the radiation that was emitted by a

single electron that was subjected to an acceleration 1
'1
,

but that possesses
no velocity comparable with c. They cannot, therefore, be applied to

Prather rapid cathode rays

(B

= =
3(say)>

without same modification.
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They must be replaced, if B is not very small, by (see Note 1)—
e\'7,, ev sin 6

E = H =
5-'¢(1
1 je cos of

_
62¢ (1
- Bncos 0)1* ' (14)

in which 0 denotes, as in Fig. 7, the angle between the direction of the
X-ray under consideration and the direction of v (being the same as the
direction of the generating cathode ray). In place of (2) we then get for
the energy radiation S at the angle 0 and measured per unit of time and
surface: '

e2v2 sin? 0
S I‘
4-n-c“r2 (1
- ,8?)sId)“ ' ' ' (15)

This is the radiation emitted during any arbitrary moment of the
process of stopping: B denotes the velocity still left at this moment,

divided by c. To arrive at the total radiation § emitted during the whole
process of stopping, we must sum all the amounts S (i.e. integrate over
the time). We get (cf. Note 1), if we keep 13constant,

_ e”v sin” 0 1
S =
161rc'lr” cos0 - Boos 6)‘

_
1)
' ‘ (16)

In contradistinction to (15) B here denotes the initial velocity of the
cathode ray, which becomes reduced to zero through the stoppage. For
values of B that are much less than 1 (slow cathode rays) we get from (16)

- e213B _
B0
=
4fl_c.,T.,

s1n20 . - . . . (17)

The result of this calculation is depicted in Fig. 11. The curve 1% re

presents the emission of radiation for B = 116< 1*, according to equation
(17), for every angle 0 between 0° and 180°. It exhibits a maximum for
6 = 90°, as we ascertained earlier in the case of scattered secondary
radiation, and a symmetrical decrease on both sides of 6 = 90°. Of
course, the figure must be imagined three-dimensional by supposing it

rotated about the direction of the cathode ray. The curve 5- has been

drawn for B = §. The maximum is here displaced in the direction of

smaller 0's, and is indicated by a small circle: it is still further displaced
in the outermost curve which holds for B = For B E 1 ’r we should
get a pear-shaped figure for the curve of emission, with a maximum near

0 = 0. For 0 = 0° itself, as for 0 = 180°, the emitted radiation, on
account of the factor sin” 0, is necessarily zero under all circumstances,

as has already been mentioned above in the discussion on secondary
radiation. Concerning the size relationships of the figure, it is to be re

marked that all three curves have been drawn for the same v.

This progressive advance of the maacirnum was derived by the author

theoretically as long ago as 1909 I and has been confirmed by observation

’ < signifies considerably less than, > signifies considerably greater than.
1-N signifies 1

1
.;

o
f the order. 1 Physik. Zeitschr., 10, 969 (1909).

3
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several times, with the greatest accuracy in a work by W. L6be.* In the
experimental observations the differences of intensity are not so pro
nounced as in our figure, because in this case there is superposed on the

impulse radiation the unpolarised radiation, particularly the characteristic
radiation of the anti-cathode, which is equally intense in all directions.
Besides the d'i_[ferences of intensity primary X-ray radiation exhibits

diflbrences in hardness. The hardness increases uniformly from 0 = 180°
to 0 = 0° as we may prove by a simple geometrical consideration in
volving Doppler's Principlett These differences in hardness have also
been actually observed.
It is hoped that the latter reflections will help to give the reader a

picture of how successful and how trustworthy in detail are the classical
methods of calculating radiation. That, notwithstanding this, they have

yet to be refined by the intro
‘ duction of the quantum theory

is no longer open to doubt.
The radioactive ~/-rays bear

the same relation to X-rays
as 0.- and B-rays bear to the
canal and cathode rays. Like
X-rays they are a wave radia
tion; likewise they cannot be
deflected by electric or mag
netic fields. We have already
encountered them in Kauf
mann's Fig. 6 of the previous
paragraph (at the point of non
deflection on these). - The
7-rays, too, may be resolved

F‘G- 11- spectrally. The result has been
a line-spectrum of -y-radiation

which links up continuously with the hardest characteristic X-rays and
extends towards the region of decreasing wave-lengths to waves about
twenty times smaller. It is possible that there exists considerably harder
y-rays than those hitherto known. In any case it may be stated that the
difference in hardness between X-rays and 7-rays is by no means as great
as that between visible light and X-rays (the ratio of the wave-lengths is
in the latter case given by a factor of about 10"). Whether, in addition
to the line-spectrum, there is also a contimwus background in the 7-spectrum
has not yet been decided. Experiments carried out by Edgar Meyer}.
seem to favour of a one-sidedness in the emission of -y-rays, similar to
that which occurs in the case of Rontgen rays, but, in conformity with

" Ann. d. Phys., 44, 1033 (1914). -I-Physik. Zeitschr., 10, 969 (1909).
1 Ann. d. Phys., 37, 700 (1912); cf. also E. Buchwald, idem, 39, 41 (1912).
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the greater hardness, this characteristic is correspondingly more strongly
pronounced. The -y-rays, too, produce scattered secondary radiation and

secondary ,8-radiation. In radio-therapy, 7-radiation alone is effective:
it is surmised that its effectiveness is due solely to the secondary ,8
radiation generated in the diseased tissues, which thereby causes their

disintegration (cf. Fig. 10, in which the corresponding process is exhibited
for the case of air that is traversed by X-rays). In particular, it is the
7-rays of R-aC and MsTh2 (cf. Table 1 of §7 in this chapter) that are
applied in medical practice.
All things considered, there is no doubt about the similarity of nature

between -y-rays and X-rays.

§ 6. The Photo-electric Effect and its Reversal. Glimpses of the

Quantum Hypothesis

Just like the modern development of the doctrine of cathode rays
(cf. § 2), so the knowledge of the photo-electric effect

* is to be traced back
to a paper by H. Hertz (Concerning an Effect of Ultrct-violet Light on
Electric Discharge, 1887). Following in Hertz’s footsteps, Hallwachs
showed that when a metal plate is exposed to short wave radiation, it
becomes positively charged; and again, as in the case of cathode rays
phenomena, it was Lenard ‘r who recognised that the true cause of this
whole category of phenomena was to be sought in the corpuscular

negative rays, the photo-electric cathode rays. Their specific charge
Si

was found to be equal to that of ordinary cathode rays, but their velocity
was found to be only a fraction of the latter. \/Vhereas in the Wehnelt
tube we met with particularly slow cathode rays excited by a voltage of
110 volts, the photo-electric cathode rays, when reduced in the same way
to an imagined excitation voltage, correspond to only one or two volts
(according to equation (1), p. 8). They thus have a velocity that is ten
times smaller than the already “low" velocity (amounting to only six
million cms. per second) in the Wehnelt tube (cf. p. 10).
The following discoveries of Lenard are of very great importancel

‘For further details see Pohl and Pringsheim, Die lichlelektrischen Erschei
mmgen, Sammlung Vieweg, Nr. 1, Braunschweig. 1914. This also contains a.descrip
tion of the interesting “ selective photo-electric effect" which originated in researches
of Elster and Geitel and which was further investigated by Pohl and Pringsheim.
They show that there is an increase in the number but not in the velocity of the
escaping electrons when the plate is exposed to wave-lengths that lie in the
neighbourhoodof _a certain favoured or resonance wave-length, especially when the
plane of polarisation is perpendicular to the plane of incidence. In the text we
restrict ourselves to the socalled “ normal photo-electric effect,” which is independent
of the polarisation of the exciting light. An exhaustive discussion of the literature as
far as 1912 is to be found in Hallwachs, “Handbuch der Radiologie," Bd. 3. See also
Pringsheim, Flunrescenz and Phosphorescenz im Lichte der neuaren Atomtheorie,
Springer, Berlin, 1921.
+P. Lenard, Erzeugzmg van Katlwdenstrahlen durch ultraviolettes Licht, Wiener

Akademie, 103, 11319(1s99).

I P. Lenard, Ube-r die lichtelektrische Wirkung, Ann. d. Phys., 8, 149 (1902).
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The intensity of the exciting light has no influence on the velocity of the
excited photo-electric cathode rays; the intensity determines only the
number of electrons emitted, which is exactly proportional to the intensity.
The velocity of the escaping electrons depends primarily on the colour of
the exciting light. Ultra-violet light produces the quickest photo-electrons,
and that is why its photo-electric activity was discovered first (by Hertz).
Red light endows the photo-electrons with so small a velocity that in the
case of most metals (i

t is difficult to prove the photo-electric effect in the
case of non-conductors) they remain embedded in the surface. The
alkalies alone form an exception in this respect for reasons that are
connected with their chemical behaviour in other directions (with their

electropositive character).

A still greater degree of photo-electric activity than that of ultra-violet
light is possessed by X-rays.
To bring into prominence the essential peculiarity of these discoveries

we shall refer to the well-known conceptions of thermodynamics in this
connexion. Thermodynamics investigates the conditions that govern the
transformation of heat into work and, in particular, then, the production
of kinetic energy. It teaches us to recognise temperature as the measure
of the work-value of heat. Heat of higher temperature is richer, is capable
of doing more work, than heat of lower temperature. Work may be
regarded as heat of an infinitely high temperature, as unconditionally
available heat.

In the case of the photo-electric effect, too, we are dealing with the
production of kinetic energy which is drawn from the energy supply of
the incident radiation (the fraction that is absorbed). We should expect
more intense light to produce a greater photo-electric effect, than less
intense light. But this, as we saw, is not true. The power of the light is

not determined by its intensity but by its frequency. Blue light has great
power, red light but little. The intensity determines only the quantity,
but not the quality of the photo-electric action. These facts are very
strange and depart greatly from the usual theoretical conceptions: they
could not be explained on the basis of classical mechanics and optics.
The key to them was furnished by the modern theory o

f

quanta.

The quantum theory is a product of the twentieth century. It came to
life on 14th December, 1900, when Max Planck gave the Deutsche Physika
lische Gesellschaft a method of deriving the law of black body radiation,
discovered by him shortly before, on the basis of a novel physical idea. As

is well known, we apply the term black body radiation to that condition
of equilibrium of heat radiation which comes about in a space enclosed by
bodies of any kind, but at the same steady temperature. The term itself

is due to the fact that radiation of just this intensity and spectral com
position is also emitted by a black body, that is, a non-reflecting body at
the same temperature.

The problem of radiation is rooted, on the one hand, then, in thermo
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dynamics, in the laws of the equilibrium of heat; on the other hand, in

electrodynamics, in the laws according to which light- and heat-vibrations
are excited, propagated, and absorbed. Planck spent years of consistently
planned work in seeking to penetrate into the realm of electrodynamics
with thermodynamic principles. To retain agreement with observation
and experiment he finally saw himself compelled to take a bold step
leading away from the main road of our usual wave theory and to

propound his hypothesis of energy-qiianta. He postulated that energy of
radiation of any frequency v whatsoever can be emitted and absorbed

only -in whole multiples of an elementary quantum of energy,

c=hv . . . . . . (1)

h is Planck’s quantum of action. From measurements of radiation Planck
soon succeeded in determining the value of his constant

h = 6'55 . 10"” erg secs. . . . . (2)

(Its dimensions are: energy x time, the same as those of the mechanical
“ action " that occurs in the Principle of Least Action.)
This postulate does indeed upset our usual ideas of the wave theory.
If wave energy is propagated continuously in space and becomes dispersed,
how can it then condense at individual places so as to be absorbed in

quanta of finite size? Moreover, how can it be emitted in finite quanta

if
,

according to the laws ofclassical electrodynamics (cf. for example,
equation (2) of p. 25), every change of motion of the centre of vibration,

which emits radiation, is accompanied by an instantaneous emission of

radiation ?

The hypothesis of energy-quanta, however, also affects classical
statistics, that is, the method by which, for example, in the kinetic theory
of gases we calculate the average result of many individual events which
are not known to us separately. Like every problem of heat, so the
problem of the equilibrium of radiation is ultimately a statistical question.
The radiation that we observe is composed of an immense number of

separate rays and separate events that occur in the emitting body. Now,

Planck’s investigations showed that classical mechanics could never lead
to Planck's law of radiation, which has been verified by observation so

excellently, and that, on the contrary, it would lead to a spectrum of

heat radiation that would be in irreconcilable contradiction to the facts
of experience.

2

It was just this statistical aspect of radiation that engaged the special
attention of the discoverer of the quantum theory. He purposely brought
the elementary atomistic phenomena which lie at the basis of radiation

under one scheme, by operating with a “harmonic oscillator," a con

figuration that emits and absorbs radiation in a manner different from

that of the real atoms. Einstein (and also Stark) maintained the opinion
that the quantum conception must be valid not only in the statistical

'\
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equilibrium of radiation, but also in the elementary atomic phenomena.
Einstein * called his extension of the principles of the quantum idea. “ a
heuristic view-point concerning the production and transformation of

light."
Disregarding for the present all obstacles we shall follow Einstein and
describe the photo-electric effect thus. The radiation that is active photo
electrically is absorbed in energy-quanta hv according to equation (1), and
in a manner depending on its vibration number v, it may generate an
amount of kinetic energy hv in the electrons dislodged from the metal.
In this process the kinetic energy that we measure in our observations is
less than that originally absorbed since the electron, in passing through
the surface of the metal, has to perform work to get away. This work
of escape P keeps the free electrons back in the metal if there is no
photo-electric excitation, and it is different for different conductors. The
difference in the values of P for two different metals finds expression in
Volta/s series of contact potentials, and is equal to the difference between
the two contact potentials. Accordingly, we get for the velocity of escape
'v of the electrons, if m denotes the electronic mass:

m/02

—§=1w-P. . . (3)

VVe shall leave unanswered the question whether P is a measure of
only the work of escape from the surface of the metal or whether it is

simultaneously a measure of the velocity of escape out of the atom (the
so-called work of ionisation). If there are really free electrons in metals,
then the latter work would be zero, and P would be a direct measure of
the work of escape out of the metal; otherwise, P would be the sum of
both amounts of work.
At the time that Einstein set up the relation (3), only qualitative

evidence was available on which it could be based: the velocity of

electrons emitted photo-electrically increased with increasing frequency
of the exciting light (greater hv) and with the increasing electropositive
character of metals (small P): ultra-violet light had been found to be
more effective than red light ; potassium, which is situated at the extreme

end of the electropositive metals, was more sensitive than copper and

silver. Quantitatively, Einstein could confirm the law only as far as

order of magnitude was concerned. The wave-length of blue light is

A = 0'4); = 4.10"“ cms.
'

The vibration number (frequency, or number of vibrations per second)
corresponding to it is

< ll

>
’I
Q ll

h
F~
|C
A
D

i—
*

O1‘ sec"

" Ann. d. Phys., 17, 132 (1905); cf. idem., M, 199 (1906) Zur Thc01ie der Lickin
zeugung und Absorption.
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and the corresponding energy-quantum according to equation (1) is

hv = 6'55 . 10-27 . Q . 1015 = 5 . 10*“ ergs.

According to (3) the kinetic energy of the escaping electrons is just
as great, provided that we disregard the work of escape P for the present.
Now, if we calculate the potential V which a cathode ray tube would have
to possess to produce the same kinetic energy 1}'ru/v2in a cathode ray tube,

we also get
eV = 5 . 10"".

If we take for e its value in the electromagnetic system, that is,
e = 1'6.10"’° (see p. 15),

we get
V = 3 . 108 electromagnetic C.G.S. units = 3 volts.

The same order of magnitude, namely 1 to 2 volts, characterises the
contact dilference of potential between two somewhat distant metals of
the Voltaic series, and hence also our work of escape P (which is, so to
speak, the difference of contact potential of the metal relative to a

vacuum). For the kinetic energy of the escaping electrons there then
remains, according to (3), if we take P into account in our calculation,
likewise an amount of 1 or 2 volts, corresponding to the above
mentioned order of magnitude of the results of observation.
The order of magnitude changes if we pass from visible light to

Rontgen light (X-rays). The wave-length of the latter is, as we
mentioned in the preceding paragraph, about 10‘ times smaller, and

hence their vibration frequencies about 10‘ times greater, than the

corresponding quantities in the visible region. If we carry out the same
calculations for X-rays as made just above for blue light, we get for the
kinetic energy of X-ray photo-electric cathode rays, or for the potential
corresponding to this energy, in place of 3 volts, 30 kilovolts, that is,

a voltage such as is usual for working a moderately hard X-ray tube.
Clearly, the work of escape P, being only of a few volts, is to be neglected
in comparison with a voltage of this magnitude. W'e thus arrive at an
amount of energy that corresponds to that of the secondary cathode rays
mentioned on page 23, of which we said that it is equal to that of the

corresponding primary rays. This shows that the secondary cathode

rays are to be regarded as a photo-electric effect of the primary X-rays
and that their energy, too, is expressed by Einstein's formula as far as
the order of magnitude is concerned.

Ten years after Einstein had proposed his law, it became clear that
it was not only true in order of magnitude but that it gives the exact,

quantitative expression for the photo-electric effect. This was shown in

particular by Millikan* for the case of the sharply defined greatest energy

‘R. A. Millikan, A Direct Photo-electric Determination of Planck's “h,” Phys.
Rev.‘ 7, 356 (1916).
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which monochromatic light (light corresponding to a definite spectral line)
is capable of generating. For if we plot the greatest energies that are
obtained by using various spectral lines in a diagram, in which we plot
the energies as ordinates and the vibration frequencies of the spectral
lines used to produce them as abscissa-1, the line connecting the points
plotted exhibits a linear increase, the magnitude of which is given by the
constant h.

That there is a maximum value of the energy generated and that just
this and not some mean value of the energy follows Einstein's law is, in
fact, to be expected according to quantum ideas. For the energy
quantum hv denotes the energy which the incident radiation initially
puts at the disposal of the electron for the purpose of photo-electric
emission. This energy can, indeed, be reduced through secondary losses
of energy in the metal, but it can never be exceeded. \Ve have, there
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fore, to regard the photo-electric maximum * of energy as being primarily
given and determined by the theory of quanta. It appears that this
maximum of energy obeys Einstein's law very accurately.
We demonstrate this in the following picture (Fig. 12) by Millikan,

which has been obtained for the case of lithium; the result for sodium
looks quite similar. Millikan used as a source of light five mercury lines
in succession. The corresponding five points of observation are in
dicated in the figure b

y small circles. The frequency number of the line

" About the same time as Millikan, Ramsauer investigated the photo-electric law

o
f distribution, that is, ho\v often, relatively, the various values of the kinetic energy,

for light of a given frequency v, are represented in the photo-electric emission. He
found the distribution to follow a universal form, independent of the nature of the
metal used and of the light used. The energy that occurs most often (corresponding
to the maximum of the curve of distribution) follows, according to Ramsauer, a law
that expresses linear dependence on the exciting

irequencg
v, which is of the kind

given by Einstein and Millikan for the maximum energy. f. Ann. d. Phys., 45, 1121,
(1914).
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corresponding to the shortest wave-length, the so-called resonance-line
of mercury A = 25365 = Angstrom unit = 10's cms. = T15 p.,u) is
v = 1'18 . 1015; the frequencies of the others can be read off from the
figure along the :1:-axis. Opposite the Li-plate is a so-called Faraday
cage, carefully sheltered from electrostatic influences, which is connected
with the electrometer: the plate gives up the photo-electric cathode rays,
released by incident radiation, to this Faraday cage. The plate and the

cage are kept in a vacuum. If the plate is now charged positively, the
ejected electrons experience a restoring force. A certain intensity of
charge just suffices to turn back all electrons, including those that are
emitted perpendicularly to the plate with the maximum velocity. The
reversing potential, in volts, corresponding to this charge is at the same
time, according to the law of energy, a measure of the maximum kinetic

energy of the incident light. Corresponding to every vibration frequency
of the incident light there is a different photo-electric maximum of energy,
that is, a different voltage of the reversing potential. Millikan next

proceeds, by means of an auxiliary figure (see Fig. 12, the right-hand
bottom corner), to determine graphically the voltage of the reversing
potential for which the photo-electric current becomes just equal to
zero.*
In the main part of Fig. 12 this voltage number is mapped out as the

ordinate and the same is done in the case of the other four frequencies.
The points obtained lie beautifully on a straight line (departing from it

'by less than 0'5 per cent). The inclination of the line, expressed in
C.G.S. units, is :

h = 6.58 . 10-27 erg secs. in the case of Li
and It = 6'57 . 10-*7 erg secs. in the case of Na

agreeing fully with Planck's value of h in equation (2).
In the realm of X-rays, too, we may regard Einstein's law as an exact

expression of the facts and not only as being correct in order of

magnitude: here we may state it in the simplified form in which the
work of escape P is omitted (cf. p 38). Thus we write

@v=1‘§2=zw
. . . (4)

If we read this equation from right to left, it represents the process of
generating secondary cathode rays by primary X-rays: it determines
from the frequency v of a monochromatic Rontgen radiation the
maximum velocity 'v of the cathode rays which this radiation is able to
release when it impinges on any arbitrary material substance, and it

likewise determines the corresponding voltage that is equivalent to the

" The particular advance made by Millikan beyond his predecessors consisted in
the accuracy with which he determined this reversing potential. This is expressed in
the circumstance that the curve of our auxiliary figure cuts the w-axis in a well
defined point at an angle that is not excessively acute.
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maximum velocity generated in the cathode rays. We have, as in the

photo-electric effect, the transformation of ware--radiation into corpuscular"
radiation. The same equation, however, represents the transformat-ion
of corpuscular radiation into ware radiation. For if we read it from left
to right, V denotes the voltage of the X-ray tube. This produces the
primary cathode rays of velocity 12: when the latter strike the anti
cathode, they produce X-rays, characteristic radiation, and impact
radiation. The spectrum of the impulse radiation is, as we saw in the

previous paragraph, continuous. This spectrum stretches from a small
v (soft X-rays) up to a sharply defined limit in the region of short fre
quencies, which corresponds with the hardest X-rays that can be pro
duced by the voltage V; the frequency corresponding to this limit is
given by equation (4). So, here too, the relation between the ’L‘0li(lgB V of
the til-be and the limiting frequency v is expressed by Einstein’s linear la/u:.
As V increases, the short wave limit of the continuous spectrum moves
to higher frequencies. The frequency of the greatest intensity, as also
the average hardness of the radiation, becomes displaced in the same
sense. The well-known law (cf. p. 30), that the hardness increases
with the voltage of the tube is thus likewise a consequence of Einstein’s
law; it is, in a sense, a more sketchy form of it.
In particular, we get as a direct result of the double reading of

Einstein’s law the equality, emphasised above (p. 23), between the velocity
of primary and secondary cathode rays. The production of secondary
cathode rays from primary X-rays seems a direct reversal of the pheno-‘
menon of the production of primary X-rays from primary cathode rays.
The existence of the short wave limit of the continuous spectrum is a

main feature in the complete picture of X-ray phenomena. There seems
no possibility of success in attempting to explain it from the poirit of view
of the classical theory of radiation. However we may care to picture the
details of the phenomenon of impulse radiation, the resolution of the

radiation emitted into Fourier terms would, according to classical electro

dynamics, lead to a spectrum that would stretch to infinity on the side of

higher frequencies. Thus the existence of the short wave limit is an
unmistakable hint that we must go further than the classical theory of
radiation and work out a quantum theory. Einstein’s law formulates this
fact as compactly and precisely as can be desired. That it is quantitatively
correct will be seen in Chapter III, §7. Just as in the case of the photo
electric effect, the measurement of the short wave limit of the continuous

X-ray spectrum may be elaborated so as to lead to a precise determination
of the constant of radiation h.
We shall now at once go a step further to the extreme end of the scale

of frequencies—to the y-rays—and we shall discuss their connexion with

,3-rays. Concerning this connexion there are particularly convincing
researches,* by Rutherford, Robinson, and Rawlinson, undertaken in the

- mm. Mag., 26, 717 (1913), and 23, 281 (1914).

4 i _ _



§ 6. The Photo-electric Effect and its Reversal 43

years 1913 and 1914, which give quantitative evidence. The /2-rays of
certain radium preparations (RaB and RaC, cf. the following section) have
velocities which, over a certain region, approach the velocity of light, but

within this region of velocity they, in the main, assemble at individual,

discrete points. By means of magnetic deflection they can be resolved
into a “velocity-spectrum.” This velocity-spectrum is then observed
once, at the beginning, with a wire brushed with the radium preparation,
and then, after the wire has been surrounded by a lead envelope that
absorbs the B-rays, the spectrum of the secondary rays is observed. In
the latter case the primary ,8-rays remain imprisoned in the absorbing
layer. But they absorb secondary -y-rays, for which the layer is trans

parent. \‘-Vhat we observe when we apply magnetic deflection are the

secondary ,3-rays produced in their turn by the y-rays—in particular, those

,8-rays that are produced near the surface of the absorbing envelope and
which escape without any considerable reduction of velocity. A com
parison of the primary with the secondary spectrum shows that they are

exactly identical (except for a certain broadening in the region of lesser

velocities). This proves that the transition

B-rays Z 7-rays
is a reversible phenomenon that is regulated accurately by the hv-relation.
We have now to take only one step further to arrive from Einstein's

law to one of the main pillars of Bohr's theory of spectral lines.
We have seen how energy of monochromatic frequency hv is taken up

by a metal atom and how it reappears as kinetic energy of a photo-electric
electron. If we now suppose that the absorbed energy of vibration does
not suffice to release the electron from the atom, then it will only eflect a

re-adjustment in the atom, in which the atom passes from a lower to a

higher step of energy. We can imagine this transition to be similar to

that of a weight which is lifted from a lower initial position to a higher
final position. If W, and W, (> W,,) are the initial and final energies of
the atom, respectively, then we get, as a counterpart to Einstein's photo
electric equation, Bohr's fn-ndamental equation for a phenomenon of optical
absorption :

hv = W, - W, . . . . (5)

We saw, on the other hand, that an initially given amount of energy
of cathode rays or its equivalent volt-number produces Rontgen radiation,

the maximum hv of which is equal to the initial energy. _This maximum

hv is not reached in every elementary process because in general a fraction

of the available cathode ray energy W, is transformed into wave radiation
and another (indefinite) fraction VV, remains in the form of cathode-ray
energy. If we now suppose that the primary energy originates in the
change of configuration of the atom, of which the initial energy is W, and
the final energy \V,< W,,, so we may here too, expect a radiation to appear
thus

hv = W, - W, . . . . (6)
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This radiation is now strictly monoch/romatic, because in this case W, as
well as W, is fixed as a discontinuous quantity by the configuration of the
atom. In equation (6) we have Boh.r’s fundamental eq-u-at-ion for the
phenomenon of optical emission.
Just like Einstein’s law, this extension of it by Bohr claims to be valid

with absolute accuracy in the entire spectral region from the slowest heat

rays to the most rapid X-rays and -y-rays. Thus this quantum law regu
lates in the same way as Einstein’s law the transition of wave radiation
into corpuscular radiation as well as the reverse process; it governs the

phenomena of absorption as well as those of emission, in optical regions
as well as in the region of high frequencies. There is no doubt that we
are here dealing with one of the most mysterious of physical laws.
The photo-electric phenomena and the other phenomena of absorption

in optical and X-ray regions certainly give the impression that wave

energy as well as the energy of corpuscular radiation is concentrated at
certain points. This brings us to the extreme View that light consists of
“ light-quanta” that leave the centre of emission with the speed of light.
Particularly the facts of the production of secondary cathode rays by
X-rays seems to admit of no other interpretation. In phenomena of
optical absorption we see the same transformation of radiation energy hv
into mechanical work exerted on the electron take place in the interior of
the atom. How is this transformation to be interpreted if the wave
energy is not concentrated in the form of light-quanta, and is not
available all at once?
There has been no dearth of attempts to reduce the contradiction be

tween the “ quantum
” and the “ classical

” view of energy transference.
In conjunction with Debye the author has put forward a view of photo
electric phenomena and a method of deriving Einstein's law,* which does
not deprive radiation of the character demanded of it by the wave theory,
that is, which does not require the use of compact elements of energy of
amount hv and which, instead, ascribes to the atom the property of being
able to pile up energy of radiation to a limiting amount determined by the
constant h. As soon as this limit is reached, the electron is supposed to
be released from the atom and to escape with the energy which it has
collected. Under certain conditions (chosen in rather an artificial manner)
Einstein’s law for the energy of the escaping electrons may be deduced.
At the same time the “time of accumulation

"
that is necessary for the

heaping-up of the energy hv may be calculated. If a powerful source of
light is assumed, then this time in the case of the photo-electric effect
comes out fairly small (fraction of a second), but when the calculation is
made for the conditions of the X-ray photo-electric effect, for which
the energy-element hv is much greater and the intensity of radiation is,
in general, much smaller, impossible “accumulation times

"
come out,

times of the order of magnitude of years! Yet experiment shows that, in
* Ann. <1.Phys., 41, 873 (1913).
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the case of X-rays as well as in that of ordinary light, the emission of
electrons commences immediately, as soon as the exposure to the incident
light begins, and ceases the moment the exposure is stopped. From the
point of view of the wave theory the source of the great energy of emission
remains incomprehensible. The phenomena actually occur as if in light
of frequency v there are v energy-elements of the magnitude hv, which are
ready at any moment to become transformed, according to Einstein’s law

(in atoms that are appropriate), into kinetic energy of electrons. Later,
when we come to speak of the absorption and excitation of spectral lines, we
shall find ourselves compelled to adopt this standpoint of “ light-quanta.”
On the other hand the continuous propagation of wave-energy is so

firmly established for phenomena of interference and diffraction (also in
the region of X-rays, owing to the Laue effect, cf. Chap. III) that it
makes the idea of light-quanta appear quite out of the question. Modern

physics is thus for the present confronted with irreconcilable contradic
tions and must frankly confess its “ non liquet."

§7. Radioactivity.

Hitherto we have considered only the physical manifestations of
radioactive processes. A few remarks about the chemical carriers in
volved must now be added.*
A characteristic feature of radioactivity is that it occurs essentially only
in the case of the elements of greatest atomic weight. Uranium (Ur-ahn
= original ancestor of the radium family) is the heaviest element, having
an atomic weight 238'2. Thorium, the parent substance of the thorium
family, is the second heaviest of the elements that were known before
radioactivity (as its atomic weight = 232-15). It is therefore allowable
to regard atoms that are too heavily loaded with matter as hypertrophic,
configurations that are unstable and disintegrate into simpler forms.
\Ve shall take for granted the sum-total of radio-chemical research in

the form of the genealogical tree given in Table 1. How it became
possible to set up these lines of descent will be made clear below (in the
theory of disintegration), and also partly in the next chapter (§ 5,

“ Laws
of Displacement"). It need only be remarked here that without this
theory as a kind of Ariadne’s thread it would have been impossible to
find a means of locating the members of this manifold series of new
elements. On the other hand we must mention that it is only the extra
ordinary sensitiveness of electroscopic observations of radioactivity, a
sensitiveness which far exceeds that of the balance, that has enabled us
to prove the existence of the products of disintegration, for these are
often present in only very minute quantities.

' C-f., besides the comprehensive works mentioned in § 3, the résumé of Fajans in
Jahrg. 16 der Physik. Zeitschr., 1915: Dris pcriodische. System der Elemente, die
radionktiron Umwandlungen und die Struktur der Atoma. Cf. also Radioaktivifdt
und die neucstc Entwickelzmg dar Lehre van den chemischen Elamenlen. 3. Aufl.,
1921, by the same author in Sammlung Vieweg.
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Formerly, three radioactive families were distinguished, the Uranium
radium Group, the Actinium Group, and the Thorium Group. It was,
however, conjectured that the actinium series was a branch of the
uranium series. This has been confirmed by Hahn and Meitner’s

discovery of protactinium; the exact point at which the branching
commences is not quite certain (i

t is at Uranium II in our table). Thus
there remain only two families: the Uranium family and the Thorium

family (vide Table 1 on the following page).
The upper rows of our genealogical tree shows the stages of develop

ment from the two parent substances U and Th as far as the three
emanations (the inert gases). The subsequent development, which runs

parallel in the three, now distinct, families, is shown in the lower rows.
In each case they end with an element having the character of lead.
The actinium series ends with AcD (actinium lead), and the thorium
series ends with ThD (thorium lead), but we are not yet certain whether
these are really permanent final products or only intermediate pro
ducts that disintegrate exceedingly slowly and whose further disinte

gration is yet unknown. In the radium series the analogous substance
RaD is certainly not a final product: to it there is linked the series RaE,
RaF = polonium, and BaG = radium lead. The similarity of the three
trees of descent between the emanations and the D-products is shown not

only in the number of products of disintegration and their position in the
natural series of elements (cf. Table 4 in Chap. II, §5) but also in the
mode of disintegration (denoted in our table by the letters a and B printed
above the arrow used to signify transformation; y denotes that 7-rays
are present). At corresponding positions in the genealogical trees the
disintegration is effected either by an a.-transformation (emission of

helium) or a B-transformation (electron emission), or by a simultaneous
a- and B-transformation. The notation here adopted takes due account of
this parallelism of disintegration. It has been suggested by Stefan Meyer
and Schweidler and differs from that formerly in use (which arose

historically and which is thus less systematic) in the names given to the
C- and D-products.
Below the symbol of each element we have recorded the “half-value
time”; this is the time which has elapsed when half the body is disinte
grated. It is proportional to the “ mean duration of life ” of the ele
ment. We shall explain later how it is determined. The abbreviations
a, d

,

h
,

m, s, denote : year (annus), day, hour, minute, second. We thus
have long lived elements with spans of life stretching over millions of
years (UI has a half-value time of 5 . 109 years, and-.Th has one twice as
long) and short-lived elements which live only for seconds or fractions of
a second. The elements whose lives are shortest are to be found among
those designated by C’ :

RaC' has 10" seconds, AcC' 5. 10'“ s, ThC’ 10-“ s.
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These numbers like all the bracketed half-value times have been found,
not from observation, but from calculation. Within the region above
mentioned (from the emanation to the lead group) there is also a certain

parallelism between the half-value times of the three families.
The branching between RaC and RaD over RaC' and RaC", and the

exactly corresponding branching of the Th- and Ac-tree is of special
interest. The fact that RaC is transformed into different products (RaC'
and RaC") according as it disintegrates by a B- or an a-transformation,
is intelligible. But the fact that these products, when subjected to the
same transformations but interchanged (i.e. by an <1- and a fl-trans
formation respectively), resolve into the same element RaD will be made

plausible by the displacement laws of Chap. II, §5, but it is not em
pirically certain. In addition to these ramifications we have in our table
also the (at present hypothetical) branch at UII which is supposed to
consist of a double at-radiation. The branch product UZ (half-value time
6'7 hours), which emits ,8-radiation and was discovered by O. Hahn,* has
not been included in our table as the point at which it branches olf

(UX, ?) and its further development are not known with certainty.
We thus see that in virtue of these ramifications there are represented

in our genealogical tree not only children and grand-children but also
brothers and cousins of the first degree as well as of higher degrees.
Our next step is to give a short note on the laws of radioactive

disintegration. These laws arise directly and are of an extraordinarily
simple type. Being fully independent of temperature and pressure, they
thus difi'er fundamentally from the laws that govern ordinary chemical
transformations. Nor are they dependent on whether the active sub
stance is present as an element or a salt, whether it is pure or mixed with
other substances. Everything seems to support the view that we are not

dealing with an action of one atom on another but rather with some inner
atomic process.
In Fig. 13 we consider a particularly simple case. We are dealing

with the disintegration from U into UX, or, more exactly, from UI into
UX1, that is, with the process that stands at the head of our table. Let
us take the ,8-ray activity as an indicator. That is we shall suppose the

at-rays to be eliminated by absorption for the sake of our present argu
ment.+ Only the /3

- and y-rays penetrate into the electroscope, ionise
the air, and produce a charge which flows into the leaves of the electro
scope and which serves as a measure of the number of ions formed. But
since -y-rays are ineffective in forming ions, as compared with fit-rays, we
need here regard the activity as referring solely to B-ray activity ; “ in
active

”
means “ producing

"
no ,8-rays.

The preparation with which we start is not pure uranium but already
contains a certain very small percentage of UX. It is possible to
‘Ber. d. Deutsch. Chem. Ges., 54, 1131 (1921); Naturwissenschaiten, 1921, p. 84.

-f-1-3-6mm. of Al are suflicient to absorb the most rapid a-rays almost entirely.
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precipitate the latter from the uranium by repeated application of barium
sulphate. The UX thus isolated carries away the whole activity of the
preparation with it

,

and the U itself is left behind entirely inactive at
first. In the figure we have thus set the initial activity of U equal to
zero, and that of UX equal to 1. From these initial states onwards the
activity of the UX diminishes regularly to zero, whereas that of U
simultaneously recovers and increases from O to 1

. By comparing the
two curves we see that their ordinates at each corresponding point add
up to 1. If J1(t) is the activity of UX at the time t, and J2(t) that of U

at the same moment, then we have:

nm=1-aw . . . . m

Hence although these products are distinct from one another
(chemically, and, for example, separated by a considerable distance in

space) they yet continue to act in full accord with one another: the

1,0

_ U

0,8

0.6

0,4
X

180

IlI
*i
ii\0,2

U

activity lost by the one is gained by the other; the sum of their activities
is constant just as would have been the case if we had not separated
them chemically.
According to the disintegration theory of Rutherford and Soddy, the

explanation is as follows. The constitution of the atom, and this alone,
invests any arbitrarily chosen atom with a certain probability that it will
disintegrate in an arbitrarily chosen unit of time. This probability is

called the radioactive constant (or decay constant) of the atom. From

this there follows the essential principle of the theory of disintegration :

The number of atoms that decay per unit of time is equal to the radio

active constant multiplied by the number of atoms still present (namely,
equal to the probability of decay of an atom multiplied b

y the number of

atoms). On the other hand the activity of the prepared substance is,

except for a constant depending on the apparatus, equal to the number
of atoms that decay per unit of time (in our case the atoms disintegrated

4
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by the ,6’-transformation). In conjunction with the above principle, this
leads to :

J (t) = C)m . . . . . (2)

where J = activity at the time t, G = the apparatus constant, A = the
radioactive constant, and n = the number of radioactive atoms at the

time t.

We next apply this principle to the two curves of Fig. 13.

I. In the case of UX isolated from its parent substance, the number
of atoms n is changed only through the decay of the atoms present.
Therefore the number of atoms that decay in time dt is — dn. From
this, and from the principle of the disintegration theory we get the

following dilferential equation for the disintegration of UX : -

—(ln=)\ndt. . . . . (3)

Thence it follows that if no denotes the initial number of atoms of UX,
and if e is the base of natural logarithms,

n = noe-M . . (4)
and, b

y

(2),

J(t) = CMz0e"“ . . . . (5)

In our figure we chose our unit so that J (O) = 1
. Hence we must set

CMLO
= 1 . . . . . (6)

and thus get

J1(t) = e"'\' . . . . . (7)

The curve in Fig. 13, which was obtained from direct observation, agrees

exactly with this exponential law. Its rate of decline allows us to

determine the decay or radioactive constant A.

II. In the case of the U that has been purified of UX, let N be the
number of uranium atoms at the time t, No the initial number, Athe
radioactive constant of uranium. The decay again takes place according
to the law (3), which now assumes the form :

— (ZN = ANdt, N = Noe-A‘ . . . (8)

Now the radioactive constant A of the uranium is extremely small com

pared with the radioactive constant A of the UX, i.e.

A< A . . . . . (9 )

Hence, within a period of observation that is not reckoned in millions of

years, we may reasonably set :

At = 0
, e-A‘ = 1 . . (10)

and hence, by (8),
an

N=N0, —m~=ANo . . (11)
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Measurement of the activity in this case discloses nothing of this change,
since it is an a-transformation. For this measurement depends only on
the B-transformation of the UX. Now a UX-atom arises from each U
atom. If the latter were not to decay, we should have simply dn= — dN
and, by (11),

d
H%L=AN0, n=AN0t. . . . (12)

The number n of UX-atoms and therefore also the activity J (t) of UX
would thus increase uniformly with the time, and would thus be repre
sented by a straight line in Fig. 13, namely the initial tangent of the
curve there shown as J._,(t). But the increase does not continue inde

finitely, for the UX-atoms decay in their turn: a state of equilibrium is

gradually reached, in which just as many UX-atoms decay as are formed.
If no is the number when equilibrium is reached, then the number of
UX-atoms which decay per unit of time is, according to (3), Ano, the
number of those being formed is equal to the U-atoms that are decaying,
and = AN0, by (11). Hence, in radioactive equilibrium :

Ano
= AN0 . . . . . (13)

In the state of radioactive equit-ibriium, the number of atoms of parent
substance and child product are in the inverse ratio o

f the corresponding
rad-ioactire constants.
This state of equilibrium existed during the initial separation of the

U and the UX. The equilibrium number no just calculated is thus
identical with the initial number of atoms no of UX in equation In
the state of equilibrium the activity of UX will be, according to (2)
and (6),

'

J., = Gang = 1
.

Our curve J.,(t) which was originally an oblique straight line thus curves
round into a horizontal straight line, which is at unit distance from the
time axis.
If, further, we wish to find the law of curvature, we must complete

(12) thus:
dn
‘E6
= ANO

—- X7!’

by taking account not only of the production of the UX-atoms but also
of their decay. As a result of (13) this equation may be written :

dn

fit +
M1, = Ana

and may be integrated by simple mathematical rules, if we take into
consideration the initial conditions n = O

,
t = O
,

thus:

n = no(l — e"").
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By multiplying this by CA we get the activity J2(t) = CM». From (6) we
get for the latter:

J2(t) = 1 — e-M . . . . (14)

Thus J'2(t) irwreases according to the same exponential law as that by
which J,(t) decreases. J2(1)) and J ,(t) sum up to unity.
This is the full explanation of Fig. 13. The same diagram gives us

the semi-decay time of UX. For it
,

the relation holds:

e"\‘ = 1 - e"\' or e"'\‘=§~ . . . (15)

The abscissa of the point of intersection is thus the time which has

elapsed when the exponential function has diminished to a half of its
initial value, i.e. at the time t = O

. In our case the curve tells us that
the half-value (or semi-decay) time t,

, is equal to 23-8 days.

In addition to the half-value time we also arrive at the radioactive
constant. For from 15 it follows that

>c,,=1<>g,2=-693 . . . . (16)

The radioactive constants are in the inverse ratio of their half-value
times. The values of these times are given in Table 1.

Closely related to the conception of half-value time we have the con

ception of mean length o
f

life or a/ve-rage life. If we denote the latter by
t,,, we get in place of (16),

ML = 1 . . . . . (17)

For, as in social statistics, we define the mean length of life by first

multiplying each age by the relative number of the individuals that just
attain this age but do not exceed it and then summing all these products
of age and relative number. In our case, as we see from (3) and (4),- dn is the number of atoms which at the time 1, decay within the time
interval dt, and no the total number of atoms initially present, thus

— rln

"'0

= he
- "zit

signifies the relative number with which we are here concerned. By
multiplying it with the corresponding t and summing for all t's. we

get the required average length of life :

i,= t

“l”
=.- te-'\')\dt . (18)

no

I) U

Equation (17) follows simply from this definition i
f we multiply both sides

of (18) by A and introduce a:
= M as a new variable of integration :

ML =
Ia:e"d1:
- 1.

U
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By comparing (16) with (17) we see that we get the average lengths of
life of the radioactive elements by dividing the numbers of Table 1 by "693.
In general, conditions are not as simple as in the example we have

so far discussed. This simplicity was due in the first place to the fact
that the life of UI is very long compared with that of UX1. We made
use of the resultant simplification (A< A) in passing from equation (8) to
equation (11). But then the further fact comes into consideration that
the life of UX, (tn = 1'15 minutes) is very short compared with the life
of UXI (cf. Table 1), and that the life of UII is again extraordinarily long
(ta = 2.10‘ years). The result is that immediately following on the dis

integration of each UX1-atom, i.e. at intervals of probably about a minute,
the decay of the new-born UX2-atom and the transition to the UH-atom
takes place. The decay is accompanied by ,B- and 7-radiation, and there
fore increases the ionisation produced by the decay of UX1. In fact,
on account of the greater hardness of the B-radiation of UX2, it forms
the main part of the entire ionisation that is observed. The addition of
the decay of UX2 does not, however, bring about to any appreciable extent
a delay in the rate at which the activity dies down, or a change in the

exponential la.w given by the curve. This allowed us to use the short term
“ UX," as referring to a uniform product, in our explanation of Fig. 13,
thus treating the two elements UX1 and UX2 conjointly as was the

practice formerly before these two elements had been separated. Nor does
the activity of UII, which remains after the decay of UXI and UX2,
cause a change in the course of the activity curve, since, being an 0.

activity, it evades measurement.
We get a complete picture of the great possibilities of the theory of

decay only when we consider the course of the activity in a case in

which several products of approximately the same length of life par
ticipate. The classical example is given by the precipitate which is

produced by radium emanation. This precipitate consists of a mixture
of RaA, RaB, RaC, which becomes transformed into the long-lived RaD.
The short-lived products RaC’ and RaC” are included here under the

symbol RaC. The a-activity curve of this mixture is shown in Fig. 14.
Since RaB emits only B- and 7-rays (cf. Table 1), it does not come into
account for the measurement of a-activity, except in so far as it becomes

changed into RaC. At the beginning of the measurement the products
A, B, and C are in equilibrium. By (13) we then have

)\‘.N,,=)\,,.N,,=)\,~_.N,,,

if NA, NB, NC, denote the amounts of these products present (properly the
numbers of atoms of each). These amounts are different. By (2),
however, the activities of RaA and RaC, which we shall denote

briefly by A and C, are equal when in radioactive equilibrium, as
long as the apparatus constant that comes into question may be

regarded as constant. In the case of RaB, which has no a-activity,
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this constant is equal to zero. In Fig. 14 we therefore make the curves
A and C start with the same co-ordinate, whilst B starts with the
ordinate zero. The curve B, which represents the indirect contribution
of RaB to the a.-radioactivity (this contribution asserts itself gradually),
ascends by degrees, like the curve for J2 in Fig. 13, in proportion as
RaB produces RaC, but not to a constant value, as did J2(t) earlier, but
to a maximum (on account of the limited life of RaB), and then gradually
drops to O again. The sum of‘ the ordinates of B and C has been plotted
as the curve L = B + C and shows the activity of the whole RaC that is
present (namely that which is originally present and gradually dissociates,
and the RaC which is developed from RaB). In actual measurement we
get the curve L + A = A + B + C for the whole activity. Its quick
descent at the -beginning betrays the presence of the comparatively short

1oo ,
*

0 120

Time in Minutes
. Fro. 14.

lived component A (half-value time 3 minutes). Its later more gradual

descent points to components whose lives are longer (half-value time of

RaB is 27 minutes, of RaC is 19'-5 minutes). The theory of decay gives
us as the theoretical representation of this curve, A + B + C, the sum of
three exponential functions whose exponents are - )\,,t, - Ant, - Act and
whose coefficients depend only on AA, AB, AC. We must use analysis to

find these three unknowns AA, AB, Ac. The fact that this analysis is

possible, that is, that the results of observation may be represented

accurately by superposing three exponential curves with appropriately
chosen exponents and coefficients, proves that only three components
whose lives are of the same order of length have contributed to the

activity that has been measured. It may be remarked that in the pre
ceding case a direct separation of the products A, B, and C is also possible

by physical and chemical methods.
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These few examples of the observations furnished by radioactive
researches conclude our note on the radioactive series of transformations.

It is hoped that they will have given the reader on the one hand a picture
of the simplicity and capabilities of the theory of decay, on the other
hand an idea of the methods that have led to the genetic relationships
recorded in Table 1. We have now only to touch on two points of more

general significance.

Our first question is whether radioactivity is a peculiarity of the heavy
metals uranium and thorium or whether it is a general property of
matter. The only certain fact that can be stated is that potassium
and rubidium both exhibit a feeble ,8-activity. So that even if a high
atomic weight doubtless favours radioactive decay, it is not the deciding
factor for this activity. The assumption, that there are also genetic
relationships between other elements and that they can be proved by the
existence of radioactive transformations, is at any rate supported by the

examples of K and Rb. It receives weight from the regular connexion
between the atomic weights of the periodic system, to which we shall turn
our attention in the next chapter.
Then there is the second question: Whence does the energy of

radioactive actions come? At the beginning of §3 we saw that the

energy of the 11-and ,8-rays is many times more than that which any of
our present technical means will allow us to produce in the case of canal
and cathode rays. When the rays are kept back in the prepared sub
stance, they produce and maintain an increase in the temperature of the
substance, which is several degrees higher than that of the surrounding
air. The heat energy generated by 1 grm. of radium amounts to about
100 calories per hour. A familiar problem of long standing asks how
the energy which the sun loses by radiation is continually replaced. In
this case, too, reference has been made to the apparently inexhaustible

supplies of energy derived from radioactive processes. V/hence does all
this energy come? The answer is: from the interior of the atom, or,
more precisely, from the innermost part of the atom, from the “ nucleus"
of the atom. \Ve thus indicate the role which has to be assigned to
rodioactivity in our theory of the atom. The sources of energy which
thus make their entrance into the outer world are of an order of magni
tude quite different from the energies of other physical or chemical

charges. They bear witness to the powerful forces that are active in the
interior of the atoms (in the nuclei). This inner world of the atom is

generally quite shut off from the outer world. It is not influenced by
the temperature or pressure conditions that exist outside. It is governed
by the law of probability, the law of spontaneous decay that can in no
wise be influenced. Only as an exception is a door left open which leads
from the inner world of the atom into the outer world. The 11- and

,8-rays that are hereby emitted are emissaries from a world otherwise
closed.



CHAPTER II

THE NATURAL SYSTEM OF ELEMENTS

§ 1. Small and Great Periods. Atomic Weights and Atomic Numbers

N the face of the manifold of elements which were brought to light by

Ithe alchemists
of the Middle Ages and by the research chemists of the

eighteenth and nineteenth centuries the human intellect has never quite
lost the View that unity and order exist among them. The old postulate
of natural philosophy that there must be a common basic substance in all
matter recurred again and again, particularly in the form of Prout’s

hypothesis (1815), because only the fulfilment of this condition could give
us hope that we should succeed in understanding fully chemical action.
This goal has assumed a more definite shape since the discovery of

the natural or periodic system of the elements by Lothar Meyer and
Mendeleef about 1870. In this system, as is well known, the elements
are written down in the order of increasing-atomic weights, the series

being broken ofi at appropriate points. Chemically related elements are
written in the same vertical column, e.g. the alkalies, Li, Na, K, Rb, Cs,
in the first column ; the halogens, F, Cl, Br, J, in Column VII ; since 1895
(Rayleigh and Ramsay) the inert gases, He, Ne, A, Kr, X, Em, have
become added as Column VIII (cf. Table 2).
In general, the number of the column is the same as the oxygen

valency of the elements contained in it. The valency increases by one
for every step from left to right in the periodic system. On the other
hand, a different kind of valency, the hydrogen-valency, increases in the
periodic system from right to left; this is particularly pronounced in the
columns from VII to IV. As the oxygen-valency increases the electro
positive character (basic nature) becomes stronger and passes over into
the electronegative character (acidity).
In this mode of tabulation the system of elements seems, externally at
least, to be built up of periods of eight. Before the discovery of the
inert gases they were true “ octaves

” in the musical sense, i.e. periods of
seven (Newlands, 1864). The structure in periods of eight is, however,
only apparent, for the periodic system has not so simple a periodicity_
At the beginning, for example, there is a period of only two elements (H
and He). Then there follow two periods of eight, the two “small

"

periods of eight exactly corresponding elements. They are succeeded by
two “ great

"
periods of eighteen elements, which can be forced into the

56
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scheme of series of eight only by somewhat artificial reasoning. As a
matter of fact the alkalies, halogens, inert gases, and altogether the

elements which exhibit exactly corresponding chemical behaviour follow
one another after a further eighteen steps and are thus separated in our
scheme by an intermediate series. By writing the terms on the right
or left side of the individual spaces we succeed in making only those

elements that correspond exactly lie in a vertical line. The fact that H,
strictly speaking, belongs neither to the series of the alkalies nor to that
of the precious metals, Cu, Ag, Au, is indicated by placing H in the
middle of the space. Likewise C and Si are placed in the middle be
tween the two sub-groups of Column IV. It is to be noted, however.
that the elements that lie consecutively in the same vertical column
but are not written in an exact vertical line, are related in certain ways,
For example, Cu and Ag are univalent just like the alkalies in the same
column; Zn and Cd are divalent like the alkaline earths, and so forth.
This “secondary” relationship becomes weaker at the end of the hori
zontal series, particularly in Column VIII, in which we group with the
inert gases the triads, Fe, Co, Ni, and Ru, Rh, Pd, constellations of ele
ments that are interrelated among themselves, but are absolutely dis
similar from the inert gases. It is only by uniting these triads in one
column that the number 18 of the great period can be adapted to fit
the double number 2 . 8 of the small periods.
The great periods are then followed by a very great period of thirty-two

elements which begins in the regular fashion with an alkali (Cs) and ends
with an inert gas (Em). It, too, has its representative in Column VIII, a
triad Os, Ir, Pt. But the whole series of rare earths (stretching from La
to Tu“), sixteen in number, will admit no periodicity and can in no way be
inserted in the Columns I to'VIII. As we are dealing, in their case as well
as in that of the triads, with elements that are closely related chemically,
we may group them together into a “ hexadecade

”
(a group of sixteen), for

which there are two empty spaces in the Columns III and IV. If it were
possible to print them so, we should insert this hexadecade in Columns
III and IV; instead of this, however, they had to be printed separately
below. Written in this way the period of thirty-two elements also appears
distributed among the spaces of two horizontal series, whereby exactly
corresponding elements, separated by a horizontal row lie below the

corresponding elements of the period of 18, thus W lies under Cr and
Mo, Au under Ag and so forth.
This greatest period is followed by a series of only six elements which

end with the heaviest element uranium. But it is quite admissible to
imagine this series continued, say to the number of thirty-two terms, and
to assume that it is only due to reasons of instability that the later elements
no longer exist. The facts of radioactive decay (cf. Chap. I, § 7), indeed
encourage the view that elements heavier than uranium are possible in
themselves although they cannot exist under the conditions of our earth.

______ __ _ _ ,__~ rm 4- _ __
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The periodic numbers 2, 8, 18, 32, with which we are thus left may
finally be written in the following somewhat cabalistic form suggested by
Rydberg:

2 = 2.12, 8 = 2.22, 18 = 2.32, 32 = 2.42.

The newest reflections of Bohr, as expressed in his letter, “Atomic
Structure,” in Nature (24th March, 1921), seem to show the way in which
this series of numbers is to be interpreted. To make their physical
meaning clear he has written the right-hand factors in the following
form:

'

2= 1.2, 8 = 2.4, 18= 3.6, 32 =4.8.

When we write down the natural system of the elements in the order
of increasing atomic weightsl we find that at four points the natural order
is transgressed. There is no doubt that we must write the inert gas A
before the alkali K, although the atomic weight of the former is greater
than that of the latter. Furthermore, Co must come before Ni and Te
before -I

, in spite of the order of atomic weights. After the recent

discovery of protactinium we have the fourth exception, for we must set
the series Th and Pa in the reverse order of their atomic weights. These
necessary reversals of order have been indicated in the table by a double
arrow. The method of X-ray analysis will remove these blemishes in the
system and will restore the natural order of the elements. This method
will show that the atomic weight is not the true regulative principle in
the natural system, but that it is only a complicated and as yet unex

plained function of the true “atomic number” (Ordnnngszahl).
The true atomic (or series) number is simply the number which gives the

position o
f I-he element in the natural system when due account is taken o
f

chemical relationships in deciding the order o
f each element. In our table

this number is printed directly before each element.

By arguing on the basis of the periodic system it was possible some
time ago to predict unknown elements and to discover them subsequently.
These are the elements bearing the national names, Gallium (1875, Lecoq
de Boisbaudran), Scandium (1879, Nilson), Germanium (1886, Winkler),
Polonium (1898, Madame Curie). The former three had been predicted
by Mendeleef and their properties had been accurately described.
Nowadays we can give the exact number, five, of the still existing gaps in
the system by means of the method of X-ray spectroscopy. These have
been marked in the table by a star. In conformity with the position of
the missing elements, they should be called eka-manganese, eka-ekar
manganese, eka-iodine, and eka-caesium; the fifth unknown element is

situated in the group of rare earths. ,

The atomic weights, with a regularity far exceeding the bounds set by
the laws of probability, are integral numbers or very nearly so when
referred to oxygen = 16. This integral property agrees with Prout's

hypothesis (that elements are composed of hydrogen atoms). There are
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certain exceptions (e.g. Cl = 3-5'46, and C11

I20

100

I
K I

x
X

X

=- 63'57), but they are rare.
We shall revert to these ex
ceptions and to their elimina
tion by F. \V. Aston in the
fifth section of this chapter.
\Vhole numbers of the form,
4n and 4n + 3, are particu
larly frequent, the former
generally in even spaces, the
latter in places where the
atomic number is odd.
Thus, if we compare an

element with the next but
one element, we get for the
difference of their atomic
weights as a rule approxi
mately four. Hence the
average increase in the
atomic weight as we pass
from element to element is
not one but two. Or, in
other words, the atomic
number of the element does
not on the average coincide

with the atomic weight, but
with the half of the atomic
weight. This rule certainly
holds only at the beginning
of the system (as far as Ca) ;
thence onwards systematic
deviations occur in the sense
that the semi-atomic weight
increases more rapidly than
the atomic number and ex
hibits a greater and greater
difference. As this rule will
be of importance in the
following section we shall
impress it on our minds by
means of Fig. 15.
For the sake of economis

ing space we have marked
ofi" the atomic numbers (the
abscissaa) alternately to the
right and to the left after

" _ m _ ..-<
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every twenty steps, so that the first branch of the line corresponds to the
elements from H to Ca, the second to those from Ca to Zr, and so forth.
The ordinates represent for the one part the atomic numbers themselves

(continuous line), for the other part half the atomic weights (crosses).
We see that the latter, in the mean, increase to the same extent as the

atomic numbers, but that with the exception of the lowest branch they
lie above the corresponding points of the atomic numbers, the difference

increasing as the atomic number increases. Thus our diagram gives us a

picture of the above-mentioned complicated relationship between atomic

weight and atomic number.

Concerning the arrangement of the periodic system in our table, it
cannot fail to be recognised that it is in many ways arbitrary. We have

already pointed out the arbitrary nature of the eight columns into which
we could insert the great periods only by force, as it were. A further
arbitrary adjustment consists in having placed the eighth column On the

right, next to the seventh column. As is often done, we may place it as
the Oth column in front of the first on the left. The Oth column would
then contain the elements of “ valency zero," that is the chemically inert

gases (at the same time, however, it would contain the triads, which
have in a certain sense a high valency, unless we renounce the grouping
of the triads and inert gases in one column; but then this grouping seems

very plausible, inasmuch as the one row fits so well into the gaps of the
other and thus completes the whole structure of the periodic system).
By some physicists the inert gases have been placed into the middle
column of the table; this has the advantage that electropositive elements
are on the right and electronegative elements link up on the left. As is
self-evident from the cyclic character of the system, the table may be

split at any vertical row and then joined at the former edges.
To dispose of this arbitrariness, the table is often imagined written, not

on a plane, but on a cylinder (Chancourtois, Lothar Meyer, Harkins),*
whereby the secondary relationships within the great periods and the

departure of the rare earths from periodicity is exhibited very well by
passing from the surface into the interior of the cylinder at appropriate
points. Representations in which plane spirals are used have also been

suggested. It must be clearly understood that the arbitrariness concerns
the type of description but not the essence of the matter. In spite of the
manifold nature of the elements, the relations between them follow in

logical sequence.
The general doctrine, however, that we derive from our consideration

of the natural system is that which we stated at the beginning of this

chapter.

The atoms of the various elements are mt difierent by natqrre but-, in
1=i1t-useof the uniform connexions which exist between them, they must be

' William D. Harkins and R. E. Hall, American Chemical Society, 38 (1916), or
Zeitschr. f. anorgan. Chemie, 97, 175 (1916).
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similarly constituted and must be built up of identical units. This gives
the lie to the name atom, which signifies indivisible. We now seek to
penetrate into the interior of the atom.

§2. Nuclear Charge and Atomic Number. The Atom as a Planetary
System

The absorption of cathode rays and the dependence of the absorption
on the velocity suggested to Lenard, as we remarked above (Chap. I, § 3),
as early as 1903, that matter has a perforated structure and that only a

vanishingly small part of the space occupied by it is impenetrable by
rapid cathode rays, whereas the whole remaining space allows them to

pass freely. (We shall call this the Nuclear Theory of
Matter; Lenard called it the Dynamide Theory.)
Ten years later Rutherford was led to the same

conclusion, expressed in a quantitative form, by experi
ments on the scattering of <1-rays. In passing through
thin metal leaves a bundle of <1-rays at first undergoes a

general scattering, which is distributed in conformity
with the laws of chance. Just as the shots from a gun
at a target, so the points of impact of a-particles cluster
about a mean position of greatest probability, the elonga
tion of the incident beam of a.-particles, and occur less
and less frequently in all other directions as we move
outwards from this mean position. A fluorescent screen,
such as is used in spinthariscopes, allows us to observe
the impact of individual particles owing to the scintilla
tion produced. But there are occasional departures from
the incident direction, which amount to as much as 150°,
and which seem contrary to the laws of chance. They
are few in number (e.g. in the case when platinum is the

scattering leaf and a-rays from radium C are used for the
scattered radiation, they ampunt to 1 in 8000 of the

F1e.16. incident particles), but this number is much greater
than is to be expected according to the law of scatter

ing for small angles. Butherford* and his collaborators, Geiger and

Marsden,+ made an accurate investigation of the distribution of these

abnormal deflections among the various angular segments for a series of

metal laminae, using u.-rays of various velocities. \Ve have met with

corresponding abnormal deflections in \Vilson's photographs, in the form

of hooks at the end of the paths of the 11-rays produced, not by atoms of

metal, but by air molecules. We reproduce in Fig. 16 the picture of a

particularly striking case (this is an enlargement of a portion of our

former picture, Fig. 31:).

- Phil. Ma.g., 21, 669 (1911). + Ibid., 25, 604 (1913).
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What has happened to the o.-particle at this bend ? Rutherford traces
the effect back to very intense electric fields that start out from a very
small element of space, the “nucleus.” Since the magnitude of the
abnormal deflections increases with the atomic weight of the deflecting
element, the intensity of the deflecting field must also increase with the
atomic weight. If we consider the field produced by a point-charge con
centrated in the nucleus, and if we suppose this charge to act according
to Coulomb's law, we can calculate the magnitude of the charge that
is necessary to account for the observed deflections. At the suggestion
of Rutherford, Chadwick* has made very careful measurements of the
deflections caused by thin laminae of Pt, Ag, and Cu, and has] succeeded
in determining with an accuracy which allows an error of about 1 per
cent the charges that must be assumed in the corresponding nuclei. He

gets the numbers 77'4, 46'3, and 29'3 for Pt, Ag, and Cu respectively,
these numbers giving multiples of the elementary charge e. These
numbers agree, within the limits of error, with the position of the cor

responding element in the periodic system, namely, with the atomic
numbers 78, 47, and 29. Thus we follow Rutherford in enunciating the
fundamental thesis: The nuclear charge is equal to the atomic number

numerically. If in the general case we designate the atomic number by
Z, then the nuclear charge of each element is Ze, the nuclear number

being Z.
The nuclear charge, in itself, might just as well be negative as

positive, that is, the deflections might be regarded just as well as due to

attractions instead of to repulsions. But our general observations about

ions and electrons lead us to decide in favour of the positive sign for the

nuclear charges. For the nucleus must possess not only a considerable
charge but also a high resistivity, that is

,

must have a great mass in order
to bring about the great deflections of the <1-particles. Now it was the

positive charge (cf. p. 5
) that was, by nature, associated with

gravitational matter, whereas the negative charge was a property of the

light and mobile electron. Electrons, as centres of negative charges, may
be adduced to explain the small deflection in the regular scattering,
whereas we must fall back on the heavy positive nucleus to explain the
abnormal deflections.

We thus arrive at the following summarised statement. The positively

charged a—])(t7‘i'iCl6 i
s repelled b
y the positively charged nucleus, if it passes

e.rce_ptionall-g close to the latter. In the neighbourhood of the nucleus there

is an atmosphere o
f negative charges, electrons, by which the a-particle is

attracted. These attractions, which are superposed according to the laws

of chance, explain the regular scattering o
f slight angular deflection, whilst

repulsions explain the comparatively rare bends o
f great angle.

Observations of a-rays also allow us to make deductions about the

- Phil. Mag., 40, 734 (1920).
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size of the nuclei. The distribution of the deflections among various
angles was calculated by Rutherford and Chadwick on the assumption
that the nuclear charge is concentrated at a point. So far as the ob
served deflections agree with those calculated, they thus show that the
size of the nucleus did not interfere with the paths of the particles. The
greatest deflections that have been observed thus give us an upper limit
for the possible size of the nucleus. In the case of gold, Darwin * has ob
tained a value 3. 10-12 cms.; in that of water he obtained 2. 10"“ cms.
This estimate by no means precludes the nucleus from being actually
smaller, but it cannot be larger if a disagreement with the observations of
a-rays is to be avoided. We may thus at least affirm with certainty that
the nucleus (as also the electron, see p. 12) can be at most of sub-atom-ic
seze.

On the whole, atoms must be electrically neutral. Consequently the
number of electronst per atom must equal the number of elementary
positive charges concentrated in the nucleus. Hence we get our second
thesis. The atomic number is equal to the nuclear charge (numerically),
and both are equal to the number of electrons around the nucleus.
This thesis is supported by a result arising from the theory as well as

from the measurement of Rontgen radiation : this result is the value
found for the amount of scattered radiation per atom. As we saw earlier

(Chap. I, §5, eqn. (13)), this amount led us to conclude that the number
of excited electrons per atom that emit scattered radiation is equal to half
the atomic weight. Whereas in the case of optical waves only the out
side or loosely bound electrons (so called dispersion or valency electrons)
are perceptibly excited—the inner electrons are too rigidly fixed to be
aflected by the optical excitation to which they are exposed—-the X-rays
which are of high frequency, affect the inner electrons (those nearer the

nucleus). The above result about the scattered radiation was interpreted
earlier as follows. The total number of electrons in the atom is approxi
mately equal to half the atomic we-ight and is exactly equal to the atomic
number of the element; this accords with Fig. 15 of the previous para

graph in which we saw that the atomic number is approximately equal to
half the atomic weight.
So far our theses are supported by comparatively meagre observations.
In the next chapter the facts given by the X-ray spectra will furnish us
with much stronger evidence. Assuming these results for the moment, we
affirm: for each step forward in the periodic system of the elements the

" C. G. Darwin, Phil. Mag., 2'1, 506 (1914) ; cf. Rutherford, ibid., 494 (1914).
+ In more accurate language, we mean the number of electrons present in the

atom outside the nucleus. For, later, the facts of radioactivity will compel us to
assume that there are also electrons in the interior of the nucleus. In determining the
nuclear charge these are subtracted from the positive charge present. Hence “ nuclear
charge

" denotes, not the positive charge of the nucleus, but the algebraic sum of the
positive charge of the nuclear matter and the negative charge of the electrons contained
in. the nucleus. For further remarks see § 6 of this chapter.
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nuclear charge grows by one unit and the nuclear mass becomes increased
by approximately turo units. For since the electrons contribute only a
vanishingly small amount to the atomic weight, the latter must be repre
sented essentially by the mass of the nucleus. And further: each element
in the periodic system contains one electron more than the preceding element
(we do not here take into consideration the nuclear electrons mentioned
in the last foot-note).
The question arises : how can the electrons of the atom maintain

themselves in opposition to the attractive action of the nuclear charge?
Will this action not cause them to fall into the nucleus? The answer—a
possible one which is particularly simple and satisfactory—-is furnished
by the conditions of the solar system. The earth fails to fall into the sun
for the reason that it develops centrifugal forces owing to its motion in
its own orbit, and these forces are in equilibrium with the sun's attraction.
If we transpose these ideas to our atomic model we arrive at the following
view. The atom is a. planetary system in which the planets are electrons.
They circulate about the central body, the nucleus. The atom of which
the atomic number is Z is composed of Z planets each charged with a
single negative charge, and of a sun
charged with Z positive units. The
gravitational attraction, as expressed
in NeWton's law, is represented by
the electrical attraction as given by

_e
.

Coulomb's law; these laws are alike +2e~
in form. There is a difference in that Fm 17_
the planets repel one another in our
atomic microcosm—likewise according to Coulomb's law—whereas, in
the case of the solar macrocosm they undergo attraction not only from
the sun but also from themselves. The fact that the dynamical laws—
we just now introduced them in using the popular expression, centrifugal
force—hold in our microcosm just as exactly as in the astronomical
macrocosm, will be fully exhibited in all our later discussion.
Bearing in mind the picture of the planetary system, let us once again

consider the phenomenon of c-ray deflection. We shoot an a-particle, a
comet, through our planetary system. In general it pursues a rectilinear
path (as is shown in the top and bottom paths of Fig. 17) and is attracted

(scattered) only slightly by the nearest small planets. But if it strikes
the sun directly or passes near by (central path of Fig. 17), it undergoes
a comparatively great and immediate repulsion. It then describes a
hyperbolic orbit, in the focus of which is the nucleus; the angle of
deflection is equal to the angle between the two asymptotes of the
hyperbola.

This astronomical description of the phenomenon hints, too, at the
method of calculation, and Rutherford was the first to apply it in the
discussion of the measurements of u-ray deflections and on it he founded
5
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his nuclear theory. The historical remark must be added that van den

Broek* was the first clearly to formulate the idea of a nuclear charge
increasing with the atomic number and of the electronic number, and he
substantiated these ideas with chemical facts.

§3. The Simplest Examples of Atomic Models.

1. The hydrogen atom (Niels Bohr,’r 1913). The simplest atom is the

hydrogen atom; for this, Z = 1. It consists of a nucleus with one posit-ire
charge, and of an electron that revolves about this nucleus. In Fig. 18
we have designated by * the nucleus as the centre of the lines of force.
Three circles have been drawn as examples of the path of the revolving
electron. The sense of revolution is of course arbitrary, as is also the

position of the plane of the orbit in space. It seems at first as if the size
of the circles is arbitrary. For we may make the electron run along a
circle of any radius whatsoever as long as we give it a velocity such that

the centrifugal force due to the revolution exactly balances the attraction
due to the nucleus. Nevertheless, we
afiirm that actually only certain dis

a crete values of the radii of the orbits
may occur when the atom is in a

I stable condition. We indicate this in
the figure by marking the radii a1,
a2, a3, which are to be regarded as of
definite lengths given by a certain law.

(This will be discussed in the follow
ing section.) At any rate the motion

Fro. 18. must encounter no resistance if station
ary orbits are to be possible; in our

case, this means that no radiation may take place.
We observed in Chapter I, §5, that the accelerated electron radiates

energy of an amount depending on its acceleration. Uniform rotation is
an accelerated motion (since the direction of the velocity is altering con

tinually, although its magnitude remains unaltered). So that according
to classical electrodynamics a rotating electron must also be radiating
energy. Hence our atomic models deliberately contradict ordinary
electrodynamics, as far as the radiation of energy is concerned.
These two postulates that the orbits be discrete and free from radiation,

not only in the case of the hydrogen atom but also in all others, seem at
first rather bizarre. But they are quite indispensable and are supported
by two fundamental facts: the discreteness and sharpness of the spectral
lines on the one hand, the existence and permanence of the atoms on

“ Physik. Zeitschr., 14, 32 (1913).
1-The writings of Bohr that laid the foundation to this theory appeared under the

title: “ On the Constitution of Atoms and Molecules," 1913, in Phil. Ma.g., 26, 1,
467, 857.
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the other. We postpone the discussion of all scruples against these

postulates till later when we deal with the ideas of the quantum theory.
In § 6, Chapter I, we sketched one branch of the quantum theory; the

general introduction will be given in § 1, Chapter IV. Whereas in Chapter
I we limit ourselves to the phenomena of radiation, we shall in the fourth
chapter apply the quantum theory to any mechanical motions whatsoever,

setting up definite rules according to which certain orbits will possess a
unique character among all possible ones. According to the nature of the
motion these rules will be concerned with the energy or with the moment
of momentum, with the form or with the position of the orbit. In the
first case they make the energy, in the second the moment of momen
tum, and so forth, consist of an integral number of elementary quanta of
the corresponding quantity. According as we set this number, which
we may call the quantum number, equal to 1, 2, 3, . . ., we obtain a
discrete series of quantum paths or orbits, which thus correspond in turn
to the discrete series of whole numbers or integers. The quantum theory
asserts that all these quantum orbits are stationary states of motion, that
is that they are traversed without radiation being emitted.
In the matter of discrete orbits our planetary system of atomic

dimensions differs decidedly from the solar system.* In other respects,
however, the analogy may be carried further, as follows. Just as in
the solar system the general motion of the electron about the nucleus is
an ellipse, at a focus of which the nucleus is situated; but these “ Kepler
ellipses," further, form a discrete series, the members of which are
characterised arithmetically by quite determinate eccentricities and

major axes in conformity with quantum conditions. But these are details
of the model, the existence of which we shall only be able to demonstrate
much later (in the last chapter, when dealing with the hydrogen doublets).
For the present it is sufficient to imagine exclusively circular paths as
depicted in Fig. 18.

'

Concerning the appearance of these various circular orbits we may
already here remark the following. The innermost orbit (radius a, in the

figure) is the most stable; as a rule the hydrogen electron is to be found
in this orbit. By excitation from without (heat motion, electric fields,

collisions) the electron is occasionally removed into one of the outer
orbits (radii a2, a3, . . . in the figure), which it also traverses as a stationary
orbit, but with less stability. When left to itself it falls earlier or later

back into the innermost orbit or, more generally, into one that is situated

further inside. It is only during these transitions that energy is radiated
out, namely the difference of energy in the initial and the final path of

the electron.
' In drawing this comparison we feel compelled to mention the well-known rule of

Titius Bode, which asserts that the radii of the planetary orbits are approximately
connected by a simply arithmetical relation. We decline to regard this as a result of
the quantum theory or to compare this rule with our laws which give discrete atomic
orbits.
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The hydrogen atom is the prototype of all further atomic models, and
the whole theory of spectral lines has been deoeloped_fr0m it. The reason is

easy to grasp. Only in the case of the hydrogen atom are we dealing with

the simple case of the problem of two bodies ; in the case of all other atoms

we meet with the notoriously difficult problem of three bodies or more.

2. The hydrogen -ion. Still simpler than the hydrogen atom we find

the hydrogen ion, which bears a single positive charge. It is so simple
that we appropriately dispense with a pictorial representation of it.
After it has lost its only electron it consists solely of a solitary nucleus of
vanishingly small spatial dimensions as compared with atomic dimensions.

We might find a connexion between this special constitution of the

hydrogen ion and its unusual mobility in electrolysis, and with its activity
in acids—we could well do this, were it not that there are several other
ions, e.g. the hydroxyl (OH), that likewise possess unusually great mobility,
ions which undoubtedly have a more extended constitution. Moreover, it
is known that the electrolytic ions are loaded with multiple water mole
cules (or, more generally, with molecules of the solvent). Hence the real

hydrogen ion, as it occurs in electrolytes, is by no means of sub-atomic
dimensions but is an extended complex.
On the other hand, another inference that may be drawn from the

constitution of the hydrogen ion is well founded: it is impossible to picture
as a physical reality a hydrogen ion carrying two positive cllarges. If a
chemist should ever succeed in producing such a one, we should be com

pelled to declare all that follows in this book to be false. In his analysis
of canal rays, J. J. Thomson * has actually never found doubly positively
charged hydrogen atoms (just as little as trebly positive helium atoms),
whereas in the case of mercury positive charges up to eight units occurred

(cf. Chap. I, §3). The impossibility of having a hydrogen atom with a
double positive charge is connected with the general dilference between

positive and negative charges, which was emphasised at the end of Chapter
I, § 4 : a negative charge may be increased to any extent, a positive charge
only to a certain limit, namely, to that at which all electrons have been
removed from the atom.

3. The neutral helium atom. “ Hier stock’ ich sohon, wer It-ilfl mir
weiler fort," says Faust. This atom would have to consist of a doubly
charged positive nucleus, the“ helium nucleus," four times as heavy as
the hydrogen nucleus, and two electrons. But how do the electrons
rotate around the nucleus‘? Here we stumble over the three-body
problem.

‘ Sir J. J. Thomson, Rays of Positive Electricity, Longmans, Green & Co., 1921.
Thomson emphasises the certainty of this statement by the following words on p. 53
of this book : “No hydrogen atom with more than one charge has ever been
observed, though as the hydrogen lines occur practically on every plate more obser
vations have been made on the hydrogen lines than on those of any other element."
The non-existence of H‘l‘+ was first proved by W. Nammer, contrary to Sir J. J.
Thomson's assertion (Ann. d. Phys., 43, 686, 1914), and was only later taken over by
the latter.
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Niels Bohr, directly extending his hydrogen model, hasxsuggested for
the He-atom the model represented in Fig. 19. Two electrons are to
rotate at opposite ends of a diameter about the nucleus on the same
circle, and hence at the same speed. Unfortunately, for various reasons,
this picture may no longer be regarded as true. It would behave para
magnetically in a magnetic field, whereas real helium is diamagnetic. If
we calculate the work that is necessary to detach one of the t,w0 electrons,
the so-called “work of ionisation" or ionisation potential (i

f it is

measured in volts), it comes out to be too great (28'8 volts instead of the
observed value of 254 volts, cf. Chap. VI, §3). As regards dynamical
behaviour, our model is unstable with respect to certain perturbations,
and is unable to continue existing when subjected to certain compara
tively minor influences, and so forth. It seems rather that, according
to the optical behaviour of He gas, as has been observed during ordinary
refraction of light, in the real atomic-model of helium one of the two
electrons must form a close bond with the nucleus, so that the other
electron can circulate around both as in the case of the hydrogen atom.
The inner system then acts on the external electron with an “ effective
nuclear charge” of 1

, that is
,

with the positive excess of charge:
+ 2 — 1 = + 1

. The exact position, however, is still , _e
a mystery, which will be solved only when the numeri- ~

cal explanation of the spectra of neutral helium has
been found. Obviously, to overcome the extraordinary
mathematical difficulties, new methods will have to be
thought out. We hope that these are already available
in Bohr's newest ideas about atomic structure.* _

4
. The ionised helium atom. On the other hand, F,G_19_

the positively charged helium atom, the He+-ion, which
has been deprived of one electron through electrical or thermal agency,

is very simple. Consisting of a doubly charged nucleus and one electron,

it is represented by the same picture as the hydrogen atom. Like the
latter, it thus also comes under the scheme of the two-body problem.
It differs from the H-atom only in size. It is easy to understand that

the two-fold attraction of the He-nucleus on the electron diminishes the
orbit of the rotating electron as compared with that of the electron that
rotates around the singly charged H-nucleus, and, indeed, it is reduced to

one-half the size (cf. the following paragraph). Hence, we may again use

Fig. 18 as a picture to represent the He+-ion, but we must consider the

nuclear charge increased to 2e, and the radii decreased by one-half.
In the theory of spectral lines ionised helium has become of great

importance, and has shown itself superior in some respects to H. The
broad outline of the theory has been developed and confirmed by the

spectrum of H, whereas the finer details have been suggested and proved
by the ionised helium.

’ Cf. N. Bohr, in the letter called “Atomic Structure,” in Nature, 24th March,
1921.
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5. The a.-my particle. The next picture, that of doubly ionised
helium, the helium atom with two positive elementary charges, is very
characteristic and satisfactory. It is, like the simply positive hydrogen
ion, a mere nucleus without real extension. The unique part played by
this system as an a-particle in radioactive phenomena now becomes

clear. The enormous penetrative power of o.-particles, their comet-like
intrusion int_o the planetary systems of foreign atoms, their double positive

charge, which corresponds to the loss of all electrons in the helium, the
non-existence of three-fold positively charged helium, give it a special
role. In addition, the circumstance that, hitherto, a characteristic light
emission of a.-rays has never been observed, speaks in favour of our

model. In the first chapter we spoke of the luminescence of canal rays
and of the similarity of nature between canal rays and a.-rays. This
similarity, as we now see, cannot extend to the luminescence. YVe are

acquainted with helium canal rays that consist of neutral and also of

simply ionised helium atoms. These are recognised, among other

methods, by the characteristic lines that they radiate out. To render this

emission of spectral lines possible, there must be present at least one

electron, which alters its position during the process of emission. But
the doubly ionised helium atom is devoid of electrons, and hence of the

means of radiating. It becomes immediately obvious that the helium
nucleus, in travelling as an a-ray through the atmosphere or other matter

with its enormous velocity (almost T16 - velocity of light), cannot carry an

electron with it on the way or draw one to itself.
It must also be mentioned that already in Fig. 17 we have made use

of the exceedingly minute size of the a-particle. When, arguing from this

figure, we derived an upper limit for the nuclear size of an atom,

deducing it from the deflection of a.-ray comets, we assumed tacitly that

the a-particles could be justifiably treated as points. In more correct
language, this determination of size gave us the sum of the nuclear radii

of the atom in question and of the helium atom. Inasmuch as the sum

was found to be sub-atomic, it was clear that, besides the atomic nucleus

under consideration, the a-particle itself can have no appreciable size.

Whereas scruples may be raised against the later spectral evidence of

our atomic theory, on the ground that it requires diverse theoretical inter

mediate steps, the observable properties of the at-particle follow directly
from our fundamental views of nuclear charge and nuclear size, of atomic

number, and the number of associated electrons in the atom.

Our picture of the a.-particle is so convincing that it seems justifiable
to infer from it that there is no gap between hydrogen and helium in the

periodic system. In the upper strata of the atmosphere and in stellar
nebulae lines have been found that scientists have hitherto not been able

to ascribe to known elements, but that seem to hint at elements having
an atomic weight of 2 or 3 (Nebulium, Coronium, and Protofluor).* The

“ Bourget, Febry, and Buisson, Compt. rend., 158, 1017 (1914) (Photographs of the
nebula. of Orion).
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existence of elements between hydrogen and helium has been demanded
on certain alleged grounds of chemical systematics. (Rydberg concluded
that there were two such elements; C. Schmid that there were three.)
These inferences, which are quite uncertain in themselves, seem very
doubtful in the light of our system of atomic models. If there were two
or three new * elements between H and He, then He would not have a
nuclear charge 2, but one of 4 or 5. But then the a.-particle would not be
a mere He-nucleus, but one with two or three outer electrons. But this
would be irreconcilable with our general experiences of a.-rays. An exact
mathematical analysis of 11-ray spectra also speaks against an increase of
the atomic number Z of all the heavier elements by even a few units, and
this would be necessary if unknown elements were inserted at the
beginning of the natural system. We shall, therefore, regard it as proved
that helium has the atomic number Z = 2.
6. The Li-atom. It consists of a trebly charged nucleus and of three

electrons that rotate around the nucleus in certain orbits unknown to us.
Probably one of the electrons is situated at a relatively great distance
from the nucleus. We surmise that this is generally true for the alkalies
on account of their great atomic volume (cf. §7 of this chapter); the
other two electrons would then form a more intimate bond with the
nucleus.
Nor can anything very exact be said about simply ionised lithium.
Its orbits, just like those of the neutral helium atom, come into the
category of three-body problems. On the other hand, the doubly ionised
lithium atom is exactly of the hydrogen type: it is a triply charged
nucleus with one electron rotating around it in orbits that are a third as

great as those of the hydrogen electron. It would be very well worth
while for some one to prepare this doubly ionised helium and to measure
out its spectrum. To achieve this, we should have to bombard lithium
with the strongest means available (by canal rays). The superiority
which we above claimed for He+ as a test of spectral theory is possessed
by Li"+ to a still greater degree. Without doubt, experimenters will
succeed in finding ways and means of realising this state of ionisation of
lithium.
Finally, triply ionised lithium is a mere nucleus that gives rise to no

spectral phenomena at all.
7. The atoms of the heavier elements. As the number of electrons

increases so do the difliculties that oppose themselves to the theoretical

synthesis of atomic structure. In the case of the N-atom we should
have to describe the position and motion of seven electrons, in that of the

O-atom eight, and in that of the Uranium-atom we actually have to fit

ninety-two electrons into definite positions or orbits.
For the present we shall have to rest satisfied with asking general
‘ The existence oi “ isotopes" of H or He of atomic weight 2 or 3 (cf. §5 of this

chapter and also §6) is not excluded by these remarks.
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questions concerning the arrangement of the electrons. Are the electrons
subdivided into groups? Do they form rings that surround the nucleus,
or shells arranged in space? Do the rings lie in a plane or are they
inclined‘ to one another? Or have the shells a symmetrical form? What
is the number of innermost electrons in the atom? How many electrons
are to be found in the outermost region? We shall see that several of
these questions, even at the present stage of our knowledge, will receive
a more or less definite answer. Whereas the questions concerning the
innermost shells of the atom will be dealt with in the next chapter,
which is concerned with the theory of X-rays, the questions about the
constitution of the electronic envelope is to be treated in connexion with
the natural system of elements, that is, in this chapter.
In reviewing the substance of this section we cannot but regret the

comparatively scant number of atomic models that have hitherto been
established as certain. We feel quite sure about the model of the

hydrogen atom and of the very similar atoms, He + and Li++, of which
the latter has not yet been made accessible to experiment. Concerning
the neutral He-atom, the atom of Li+ and the heavier atoms, we have
been able to make only provisional and insufiicient assumptions.
To the future falls the task of working out a complete topology of the

interior of the atom and, beyond this, a system of mathematical chemistry,
that is

,

one which will tell us the exact position of the electrons in the
atomic envelope and how this qualifies the atom to form molecules and
to enter into chemical compounds.
The subject of mathematical physics has been in existence for more

than one hundred years; a system of mathematical chemistry that can
achieve what we have just mentioned, that can shed light on the still
very obscure conception of valency and can, at least in typical cases,

predict the reactions that must occur, is only on the point of being
created.

g4. Auxiliary Mathematical Reflections. Molecular Models

To begin with, we shall supplement quantitatively what we have said
about the hydrogen atom.

Let al be the radius of the smallest circular orbit that, according to
Bohr, the electron can describe about the hydrogen nucleus, or, let al be
the radius of the first Bohr circle as we shall call it. In addition to this
first orbit it can move in the second, third, . . . n"' Bohr circle. The
radii of the latter are :

Q 1
:, ll 22.111, as = 3‘*.a1, a,, = n?.a1 . . (1)

We shall use the same terminology as that used in (1) of the preceding
section and shall call n the quantum number of the circle under con

sideration. We then, in general, call the n“‘ Bohr circle the n“' quantum
orbit.
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In the case of the ionised helium atom, as in that of the doubly ionised
lithium atom, and so forth, the corresponding radius is only one-half, one
third, . . . as large as that of hydrogen on account of the double, treble,
. . . charge of the nucleus. The proof of this as well as of (1) will be
furnished later in Chapter IV, § 3. In general the radius of the n“‘ Bohr
circle for a nucleus with a Z-fold charge around which one electron
rotates is given by

nfia
a,, =

—Z~1
. . . .

For the sake of later applications this formula must be extended in two
directions.

(a) Let the nucleus be surrounded by a certain number of electrons,
say p; suppose there is a further electron at a comparatively great
distance away. This external electron is to be considered moving in such
a way that in a certain circular orbit it is in dynamical equilibrium under
the combined influence of the nuclear attraction, the repulsion of the
inner electrons and its own centrifugal force. (The same may be
assumed for the inner electrons.) Then the force that acts on the outer
electron is no longer the whole nuclear charge Ze but the “effective
nuclear charge" :

Ze—pe=Z,,.e Z,,=Z-p. . . (3)

(b) Further, suppose that in the outer orbit there is not one electron
but q, which are distributed at equal distances on their common circular
orbit. Then, not only do the p inner electrons act as a screen, but also
the q outer electrons, the latter, of course, not with the full electric force

corresponding to their total number q but only with a fraction of it,
which we shall call sq. This
fraction may be calculated, as
we shall presently show, for the

general case by an easy method.

For the present let the hint
sufiice that the repulsions which
the q - 1 electrons exert on the
remaining electron combine in

pairs to form resultants, which,

when continued backwards,

pass exactly through the nu
cleus (cf. in Fig. 20 the re-

F‘°" 2°‘

sultant PR, which is composed of two equal repulsions PQI, PQ2 that
are images of one another in an imaginary mirror along PR). For an
even value of q (in the figure, q = 6) there is

,

in addition to the

symmetrical pairs of electrons, the one diametrically opposite to the one
under discussion, and this one exerts a repulsion along PR. In the
case of both odd and even values of q, the total effect of these repulsions
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can lead to nothing more than a
that is, a further screen-eifect that

weakening of the nuclear attraction,
must be added to (3). In place of (3)

we thus get the effective nuclear charge

Z,,=Z -1) — 8'1 . . . . (4)

and in place of (2) we get for the radius of the n"‘ Bohr circle, in which
our ring of q electrons can circulate,

nzaa,,=‘1 . . . . . (5)
Z11!

(0
) Our next step is to calculate arithmetically the quantity sq intro

duced into (4). Let n be the number of electrons and a the radius of the

k 2

,

. ‘ ‘ .

F113. 21.

our first and our (k + 1)“ electron,

ring. Each two neighbouring elec
trons are separated from one another
by a

. distance that subtends the angle

0. = % at the centre. Hence an initial
11. .

electron P is separated from the
(k + 1)“‘ electron q by an angle

21:45

Ir = J. = .Q
n
23

In Fig. 21, the half of this angle, if

we use the triangle OPM, allows us
to calculate half the distance between
that is to calculate

1 . . k

§r,Q = a sin B = a sin 1
% . . . (6)

According to Coulomb s elementary law, two charges e and e
’

separated

ee'
by a distance r act on one another with a force —.—. Accordingly the'r‘ ’

force which Q exerts on P in the direction QP is

40.’

8
2

Wk
. . (7)

sin? —
n

To form the resultant, however, we do not need the whole force but
only its component PP’ in the direction of OP. This is obtained from

(7) by multiplication with

cos /MPO = sin /MOP = sin B = an

and has thus the value

_ wk
'

4a2 sin —

‘2

. (s)

TL
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The resultant of all the electrical repulsions at P then becomes simply
I=n—]
e’ ~- 1

Z ‘”’ we
- (9)

:=| Sin?
in which the sum is to be taken by beginning with the electron (k = 1)
succeeding our initial one up to the last electron before the initial one

(l
o = n - 1). The quantity

1k=n—l 1

8,, =

Z 5 . (10)
k=1 Sln I

is that fraction of Coulomb's force with which the ring electrons act

repulsively on a single one of them ; thus, the symtol s,, corresponds to
that used in equation r

We arrive a little more simply still at the same quantity s,,, if we in
quire into the potential electrical energy of our electron ring. The
Coulomb energy, that is, the useful work contained in the field of two
charges e and e

’ and due to the mutual Coulomb attraction, is
ea’

7 . . . . . . (11)

On account of (6) this gives for our electron ring

e
2 1 _2e“

7,,
‘*’
_
,,;; 73» . . . . (12)

SID
‘T7

if we write down only those terms in which a definite initial electron plays

a part. To arrive at the full potential energy V, we have yet to multiply
this expression by n (we may choose each electron of this ring in turn as
the “initial” electron), and to halve the value obtained (otherwise we
should be reckoning the mutual action between two ring electrons twice

over). We thus get

v ‘*
2

13=
Ens"

. . ( )

For n = 2
, we obviously get from (2)

1 1 1 _
s2~ ;__;_&-O25.

S111

Q
‘

For n = 3
, we get

1 1 1 1 1

.= _ _ = = 0' ,

5
3

4 _ 1r
+

. 211'
=

2 Sin 60° T 577

Bin SID 3

K
i-
\
C
»
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For n = 4, we get
1 1 1

5-,=z __+_+ 13
1+2,/§)=0-957.

. 7|’ . 7T . 71'

S111; S111? SID?

For higher values of n we use trigonometrical tables. In this way we

get

ll

lfi
l
)-
‘

/\

TABLE 8

n = 1 s,, = 0'0 n = 9 s,, = 3-328
= 2 = 0-25 = 10 = 3-863
= 3 = 0-577 = 11 = 4-416
= 4 = 0-957 = 12 = 4-984
= 5 = 1-377 = 13 = 5-565
= 6 = 1-B28 = 14 = 6-159
= 7 = 2-305 = 15 = 6-764
= 8 = 2-805 = 16 = '7-379

For great values of n, direct calculation becomes cumbersome. In
this case we may use the following approximation formula, the results of

2
+
e
T

lllh|..

.-mm||u||||||
l""flfl"F"

'l' E 3

Fro. 2-2.

""
""
E
;

5

l
I

‘Q
-T
),

which agree well with even the last values in the table and which is
useful for forming general estimates :

8,, =
%_(log,

n + 0-12) . . . . (14)

(It is derived in an essay by the author by means of substituting for the
sum an integral, see Ann. d

.

Phys., 53, 511 (1917).) The formula shows
that s,, increases to infinite values with in.

(d) The hydrogen molecule. We shall now describe a little more

fully the model that Bohr has suggested for the constitution of the

hydrogen molecule H2, although, nowadays, we can take only a historical
interest in it. It is certain that the hydrogen molecule must consist of
two hydrogen nuclei; each composed of one positive charge + e

, and two
electrons, each having the charge - e. Is there an arrangement in which
these four charges are in dynamical equilibrium with one another?
The answer is given in Fig. 22. The two nuclei form the axis of the
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molecule and are at rest. The two electrons rotate diametrically opposite

one another in the plane bisecting the line connecting the nuclei about

this line as axis. Let a. be the radius of the electron circle, b the distance

of the nuclei from the middle plane. We must first determine the ratio

0. : b
. The nuclei are subject only to electrical forces. According to

Coul0mb’s law we have, for example, a repulsion at the upper nucleus,

due to the lower nucleus, of magnitude

e
2

. . . . . 15
4b”

( )

and two attractions, due to the electrons, of magnitude

"'
. (16)a2+bz

. . . .

These three forces acting on the nucleus must be in equilibrium. In
the figure they are represented by the arrows 12, 13, 14. Equilibrium
certainly comes about if the forces are equal in magnitude and act at

equal angles. If they are equal in magnitude we get from (15) and (16)

a“+b2=4b‘*, a=b./3 . . .(17)

If they are equally inclined to one another then the two nuclei and each
electron in turn form an equilateral triangle. In Fig. 22 one of these
two triangles is distinguished by being shaded.
Through the relation (17) the equilibrium of the forces is established

as far as the nuclei are concerned. What is the position as far as the

equilibrium of forces on the electrons is’ concerned?
We see at once that this equilibrium can be brought about by suitably

choosing the rate of rotation. If there were no or only a very small
velocity of rotation both electrons would be drawn inwards owing to the
attraction of the nuclei : in the case of very great velocities of rotation the
centrifugal forces would become predominant and drive the electron out
wards, so to speak. It is easy to determine by formula that magnitude of
the velocity of rotation for which the centrifugal forces are in equilibrium
with the electrical forces.
The electrical attraction which each electron experiences from both

nuclei is
,

as in (16),

8
2

Q. + %

The resultant ofboth falls in the direction of the orbital radius a and has
the magnitude

2e” a 3~/E e
"

————~<—T=~——-b' 17 . 18
a,+b.,~/“Mb, 4 a,(i( )) ()

Then there is to be added the electrical repulsion of the other electron,
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which also acts in the direction of the radius a, but in the reverse
direction to that given by (18). Its magnitude is

He

)—
*

Q

<
\_

I

lv-MT. . . . . (19)

Let the angular velocity of the electrons be 1», and hence the linear
velocity aw. The centrifugal inertial force, which arises in this rotation,
amounts to

'nz.aw“ . . . . . (20)

The forces (18), (19), (20) are to be in equilibrium. This requires that

2 _ 3,‘/§ - 1 e
a

mam _i4_(? . . . (21)

Equation (17) determines the form of the hydrogen molecule, equation

(21) the velocity of its electrons. There is still wanting a third equation
that determines the size of the model. This missing equation can be
furnished only by the quantum theory. Bohr applies it to each of the
two electrons in the molecule just as to the single electron in the hydro
gen atom (cf. Chap. IV). This would complete the molecular model.
But is it correct? Only a short while ago, even while this book was

in its first edition, we were inclined to accept it. Particularly after

Debye* had calculated the refraction of light in a gas composed of such
models and had found it to agree with the empirical behaviour of hydro

gen gas. Since then, however, a series of properties have been remarked,
in which the model departs from reality in its behaviour, above all, in its

magnetic behaviour (i
t is paramagnetic in the model, diamagnetic in

reality); also in the instability of the model when subjected to certain
small disturbances; further, the decrease of the specific heat correspond
ing to the rotational degrees of freedom at low temperatures, to explain
which we must assume a smaller moment of inertia than that possessed by
the model; finally, the magnitude of the ionisation voltage and the heat of
dissociation, that is

,

the amounts of work respectively that are necessary to
detach an electron and to separate the two nuclei from one another come
out somewhat differently when calculated for the model from what has
been observed. These objections, as we see, coincide partly with those
which, in paragraph 3 of the previous section, we were obliged to raise

against Bohr’s He-model. Thus the true model of the H3-molecule is still
unknown. It will hardly be as symmetrically built as the model exhibited
in Fig. 22. On account of the magnetic properties the two electrons
cannot rotate in the same sense but must do so in opposite directions.
For the oxygen and the nitrogen molecule the author has proposed

models that were formed along the lines of Bohr’s model of the hydrogen
molecule. These, too, seemed at first to be satisfactory as far as the pheno
mena of the refraction of light are concerned, but on closer examination

' Miinchener akademie, 1915, p. 1.
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they withstand criticism even less than the hydrogen model, especially
because, in this case, the number of outer electrons rotating in the same
direction (four in the case of O2, six in that of N2) are greater than in the
former case. For a particular reason we add in § 6, Fig. 23, a picture of
this model of oxygen (which is rejected later). In the last section of this
chapter we shall return to the suggestions of cube models that have
come from another quarter.

(e
) The positive H2-ion. The problem is here simpler than in the case

of the H2-molecule, because the orbit of only one electron requires to be
determined: without involving an undue error we may disregard the
counter motion of the nuclei. A dynamically possible type of orbit for
the electron suggests itself at once: a circular orbit in the plane at right
angles to and bisecting the line connecting the nuclei. The size of this
circle will again be determined by the quantum theory; according to
the particular quantum number n, there will be a first, second, . . .

n“‘ circle. VVe add details in note 14 at the end of the book.

Again, however, the question arises whether this model gives a true

picture of the hydrogen ion. Definite empirical criteria have so far not
been available. We must therefore rest our decision on a theoretical
consideration of the stability of the model. In this direction calculations
by W. Pauli * show that the circular orbit of minimum radius is

,

indeed,

more stable than any other form of motion, for example, than motion in
those orbits that lie, not in the median plane, but in a meridian plane
through both nuclei. For it may be proved that the transition from the
smallest circular orbit to any other type of orbit requires a positive

addition of energy; thus the electron cannot spontaneously leave this orbit
unless excited from without. The state of motion ascribed to the electron
thus seems to represent the state in the natural configuration of the ion.
The fact that we call this configuration only metastable and not stable is due
to the circumstance that the dissociated state (H+, H) is still more stable
from the energetic standpoint. Further details on this are to be found
in note 14.

All in all, the final result in the case of molecular models seems to be
even more unfavourable than in that of atomic models. Here we can
assert nothing even in the simplest case of the H2-molecule. The H2-ion
was successfully constructed theoretically, it is true, but owing to a lack
of empirical evidence, has not been confirmed.

§5. The Laws of Radioactive Displacement and the Theory of Isotopes

The characteristic properties of the 11-particle (its double charge, its

great penetrative power, and so forth) have already served us as a direct
and obvious confirmation of our fundamental views, namely, those of
Rutherford, Bohr, and van den Broek, on nuclei, nuclear charge, and atomic

' Zeitschr. f. Phys., 19:21.
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number (cf. 3, 5). Radioactivity, however, can furnish us with still
more information on this question.
Let us consider the genealogical tree of the radium family in Table 1

of p. 47, and discuss the position of Ra itself. Since it was first inserted

into the table there has been no doubt that it belonged to the group of
alkaline earths Ca, Sr, Ba. In particular, Ra is so closely related to Ba.
chemically that, originally, it was difiicult to separate them from one
another; the similarity in the spectra of the two is also perfect. On the
other hand, radium emanation, in virtue of its chemically inert behaviour,

beyond doubt belongs to the group of inert gases. It occupies the space
left for the last element of the sixth period (in our representation of the

table), which was vacant before its discovery, just as Ra filled in a gap
in the seventh period, occupying the second space of it after the gap of
eka-caesium.

Now, this mutual position of Ra and RaEm in the periodic system is
just such as is demanded by our nuclear theory. Ra disintegrates, pro
ducing RaEm and emitting a-radiation. The doubly charged positive a.
particles comes out of the niwleus of the Ra-atom and thus diminishes its

positive charge by two units, 2e. Hence the atomic number of the

resulting element must also be reduced by two, that is, the newly produced
element must precede the Ra in the system of elements by two places.
The nuclear mass becomes reduced simultaneously with the nuclear

charge, namely, by four units corresponding to the atomic weight of He.
According to Honigschmid the atomic weight of Ra is 226'0. Hence, in
the scheme of p. 57 the atomic weight 226 - 4 = 222 has been ascribed
to the emanation; it has been surrounded by brackets because it is not
a result of direct measurement. But as far as measurement was possible
it did not conflict with this deduction for, from the determination of the

density of the very small amount of emanation available and on the

assumption that it is monatomic, the result obtained was 223 t 4 (the
roughness of the approximation is obvious under these circumstances).
We generalise the remark just made about Ra and RaEm and

enunciate the first law of radioactive displacement thus. In every process
of radioactive disintegration which is accompanied by the emission of
<1-rays (<1-transformation) a product results, the atomic number of which
-in the periodic system is reduced by two units; the element moves two
places to the left in the table. At the same time its atomic weight decreases
by four units.
Now what happens in the case of ,8-transformations, that is, of those

radioactive processes during which B-rays are omitted? Does the ,8-ray
electron in this case come out of the electronic shell of the element or out
of its nucleus? In the former case, the character of the element and its
position in the periodic system would remain unaltered. We should have
before us a process to which the term ionisation would have to be applied.
The element would become positively charged to the extent of one unit,
but would retain its chemical properties. But we know that ,8-trans
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formations also cause new elements to be formed. Hence the /3-emission,
like the a-emission must come out of the nucleus.
We must assume (this will be discussed in detail in the following

section) that in a nucleus of atomic number Z there must be in addition

to the Z positive unit charges that determine this atomic number, further

positive and negative charges which are mutually bound and which
neutralise one another (cf. also the note on p. 64). Now if a negative
unit charge (an electron) is thrown out oi this neutral stock of charges, a

positive unit of charge is free, that is, unbalanced by a negative charge.
But then the nuclear charge must increase by one unit. Hence we get
the second law of radioactive displacement. In the case of B-transf0'rma
tions, the atomic number of the element undergoing change increases by one
unit, and moves to the nert position on the right in the periodic table.
The diminution in the atomic weight in this process, however, is ina-ppreci
able on account of the small mass of the electron.
In fact, the atomic weight does not become reduced at all if we take

into account the fact that the atom which, owing to the B-transformation,
has become positive, will soon neutralise itself by drawing to itself a free
electron from without. Such free electrons, so we may assume, are

always available in the interior of a metal and in an atmosphere con

tinually subject to radioactive radiations and hence ionised. Of course,

the external electron just mentioned does not enter into the nucleus but
into the electronic shell. In this way it makes the number of electrons
that is properly due to the new element derived by the ,8-transformation
complete. Hence the charging process of the ,8-transformation is followed

by a process of neutralisation. The small diminution of atomic weight
that is initially caused by the loss of the B-electron is thus rectified again.
After the a-transformation, too, a process of neutralisation will also

take place. For the atom which has arisen through the u.-61I1lSSlOl1 will
at first have two electrons more than the number corresponding to its

nuclear charge. It will therefore give up two of its electrons to its
surroundings, not, of course, in the form of ,8-radiation, but by way of

balancing its charge without the generation of considerable kinetic

energy. The decrease of atomic weight to the extent of four units,

which corresponds to the a.-emission, thus becomes slightly more marked

owing to this additional loss.
It is of historical interest to note that Fajans* and Soddyt share

about equally the honour of having discovered these laws of displace
ment.,’{ Soddy first enunciated the law of displacement for a-transforma
tions. Fajans tested it on further material and added the law of dis

placement for ,8-transformations. He and, a little later, Soddy formulated

' Habilitationsschrift Karlsruhe, 1912; Physik. Zeitschr., 14, 131 and 136 (1913).
-I-Die Chemie der Radioelemente, Leipzig, 1912 (English, 1911); Chem. News,

Vol. 107, p. 97 (1913). _ _
1 The general law was being sought almost simultaneously by A. S. Russell (cf.

Chem. News, Vol. 107, p. 52), but his formulation was not quite correct.
6
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both laws of displacement in the form which is now generally accepted
as valid.
In our account we have read the laws of displacement directly out

of the theory of nuclear structure. Historically, the state of atlairs was
of course different. When these laws were first enunciated this nuclear

theory did not exist nor was it possible at that time to arrange the radio
active products into the groups of the periodic system in all cases. It
was rather the laws of displacement that have led to the present arrange
ment of the radioactive elements into the scheme, and at the same time

they have given the theory of nuclear charges a sound foundation.
Table 4 shows on the one hand the distribution of the radio-elements

in the periodic system, on the other, in the vertical columns, their dis
tribution in the scale of atomic weights. The character of the radiation
emitted is, as in the former table on p. 47, indicated by the letters a, ,8
prefixed to the symbol of the element under consideration.

Let us, for example, follow out the radium family, beginning with Ra

and proceeding with the zig-zag step prescribed by the laws of displace
ment. We get from Ra (Column II, At. Wgt. 226) to RaEm (Column
VIII, At. Wgt. 222), to RaA (Column VI, At. Wgt. 218), to RaB (Column
IV, At. Wgt. 214) by successive rt-transformations. Next, from RaB we
get by a B-transformation to RaC (Column V, At. Wgt. 214). At RaC
the interesting branching that was discussed earlier (on p. 48) takes

place : by an a-transformation we get to RaC” (Column III, At. Wgt. 210)
and then by a ,8-transformation to the long-lived RaD (Column IV, At.
\¢Vgt. 210) ; on the other hand, from RaC by a ,8-transformation to RaC’

(Column VI, At. Wgt. 214) ; to this transformation we owe the emission
of intense -y-rays by RaC ; then by an a-transformation we likewise get to

RaD. From RaD a two-fold B-transformation leads to RaE (Column V)
and Bali‘ (= Polonium, Column VI) in which the atomic weight 210 is
retained. The position of polonium in the periodic system may, accord

ing to Marckwald, be verified by chemical methods. It is more electro
negative than Bi (in the sense elucidated in § 1, p. 56) and this con
forms with the position which has been assigned to it

,

namely that

immediately succeeding Bi. A final a.-transformation changes polonium
into RaG, also called radium lead (Column IV, At. Wgt. 206), which is less
than the atomic weight of ordinary lead, 207-2. Radium lead is the final

product of the radium series. As far as we know, the thorium and the
actinium series also end at the same point of the periodic system, at
thorium lead (ThD) and actinium lead (AcD).
It may be left to the reader to go through the parallel transformations

of thorium and actinium in the table, so that we need now consider only
the beginnings of the radium series from uranium downwards, whereby
the origin of the actinium series will become clear, as already exhibited in
Table 1 of the radioactive tree of descent (Chap. I, § 7).
The parent substance is U1 (Column VI, At. VVgt. 238); by an 0.
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transformation UX, (Column IV, At. Wgt. 234) is produced ; by a two-fold
,8-radiation we get UX2 and the long-lived U11 at the same position as

U1 (At. Wgt. 234). By an a.-transformation there is produced from U11 the
long-lived Io (Column IV) and, by a further u.-transformation, radium

(Column II). Investigations (cf. p. 46) by Hahn and Meitner, however,
established with certainty that actinium, too, must ulimately come from
uranium, and their researches make it seem probable that the branching
of the actinium series takes place at U11, which, owing to an a-transforma
tion, changes not only into the long-lived ionium but also into the short
lived UY ; both products are in Column IV (At. Wgt. 230). The occurrence
of two different a-transformations at the same element U11 with a different
final result (Io and UY), that is

,
a “ branching due to a.-radiation alone,"

has never been observed in any other instance. It is assumed that the
UY becomes transformed through a ,8-transformation into the parent
substance of actinium, known as protactinium (Column V

,

At. Wgt. 230).
Since Ac is produced from the latter by an emission of <1-radiation, it

belongs to Column III, as has been long known : its atomic weight, 226, is
the same as that of radium.
VVe must next refer to the interesting complex of facts, to which the

name isotopes is applied collectively. Isotope signifies “ occupying the same

position;" isotopes are elements that occupy the same position in the
periodic system. The totality of isotope elements in one compartment of the

system is called a pleiad. The pleiads of lead and polonium include no less

than eight and seven members respectively. The individual members difl'er

among themselves in atomic weight up to as many as eight units, but are

yet so similar that, in some quarters, their character of being distinct
elements is disallowed. For -isotopic elements cannot be separated from one
avwther b

y chemical mans at all and exhibit identical physical properties
throughout. The only means of separating them chemically or physically

is that olfered by the difference in the atomic weights which may manifest
itself in a difference in their gravitational and inertial action.
The most convincing confirmation has been found for the theory of

isotopes in the case of lead. When the atomic weights of lead isotopes of

varying origin were compared with one another, it was shown that lead
from radium minerals (RaG) has the atomic weight 206'O and lead from
the thorium minerals has the atomic weight 207'9, whereas ordinary lead
has an atomic weight 207-2.

On account of the interposition of isotopes the traditional framework
of the periodic system must be extended. Since there are now several
claimants to one space of the system, the scheme on one plane no longer

gives a non-ambiguous (uniform) allocation of the elements. It is best
to extend the scheme spatially. We imagine the isotopes to be placed
behind one another in order of their longevity, say. The longest-lived
element forms the chief representative of the pleiad in question and would
stand furthest back in our spatial scheme, in the same vertical plane as
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the permanent elements which are not suspected of being radioactive.
From this longest-lived element the series of isotopes of varying longevity
would then be successfully arrayed outwards and upwards perpendicular
to the plane scheme. Thus in the two-dimensional table of elements, we
should, to be more accurate, have to place in the lowest space below
uranium U1, whereas the isotope UH would have to be placed in front of
it (out in space). In the last place but one, protactinium stands as the
longest-lived element of its type (its stretch of life is at least 12,000

years), whereas the element UX2 (also called brevium) that has hitherto
been installed there has a life of only 1'15 minutes and would thus have
to be brought forward out of the table. Of the three emanations Ra-Em
is the longest lived (3'85 days) and must therefore stand as the repre
sentative of the inert gases in the sixth period. In the former table the
chief representatives of the corresponding type of elements was emphasised
by being printed in dark type. We maintain rigorously that the remaining
isotopes are also true elements. They are distinguished from one another
by their origin, their later developments, and their radioactive manifesta
tions. Theoretically, we should be able to separate them from one another
by diffusion in the gaseous state, by using centrifugal and similar methods
in which the mass of the element is involved, provided that sufiicient

quantities were available and that the mode of measurement was sufi‘i
ciently accurate. But for the ordinary methods of analytical chemistry, a
mixture of isotopes would behave as a uniform element.
Through the discovery of isotopes atomic weight has been displaced from

its posit-ion of sovereign-ity by the mwlea-r charge. We are acquainted with
elements, for example, RaG and BaB, or Po and RaA, which differ in
atomic weight by eight units and yet (as isotopes) they behave identically
alike in chemical reactions. On the other hand, we know elements, for

example, RaD and Po that behave chemically as differently as C and O,
which belong, namely, to the fourth and sixth column of the periodic
system, and yet they have the same atomic weight. Pairs of elements of
the latter type are to be found in Table 4 in a horizontal line; pairs of
elements of the former type occur vertically. Thus atomic weight is,
within certain limits, of no account so far as the chemical character of
the element is concerned. On the other hand, the nuclear charge
determines uniquely the chemical character in that from within out
wards it regulates the arrangement of the electrons in our models up to
the outer boundary of the electronic atmosphere, the region of chemical

valency.

Not only among decaying elements but also among permanent ele
ments there are isotopes. Nor do they occur as exceptions; indeed,

they are the rule. Of the elements that have hitherto been investigated
for signs of isotopy just about as many have shown themselves to be
multiform as uniform. Those that have been proved to be uniform, that
is of a single kind, are
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H He C N F O P S As J
1'008 4'00 12'0O 14601 19'0 16'O0 31'04 32‘06 74‘96 12692

and the multiple ones are

Li B Ne Mg Si Cl A Br Kr X Hg
6'9 11'0 20'2 24'?» 28'3 3546 39'88 '79'92 82-92 130'2 200"6

We see that the atomic weights that have been printed below the
symbols for the elements are in the case of the simple (uniform) elements,
in particular, of the lighter ones—almost exactly whole numbers; on the
other hand, they diverge considerably from integers in the case of ele
ments that have been recognised as multiform. Further, the elementary
constituents into which the latter may be resolved, are here, as we shall
see, exactly whole numbers, within the limits of error.
We are indebted for this important knowledge to the work * of F.
Aston, who, for his part, added a new link to the analysis of canal rays

(“ positive rays ") carried out by J. J. Thomson (cf. p. 14). In the canal
ray tube there are manifold fragments of matter, simply and multiply
charged, atom-ions and mol-ions. In an electrical field they are deflected
by a force proportional to their charge and inversely proportional to their
mass. Hence in the case of two isotopes of the same charge and different
mass the heavier constituent will be less deflected than the lighter. Fur
thermore, the amount of the deflection depends on the velocity that has
been acquired by particle in question. The advantage of Aston’s method
over Thomson's was gained by connecting up behind the electrical field a

magnetic field, the intensity and direction of which was so chosen that all

particles of the same mass are concentrated at one and the same spot:
The photographs so obtained are called “ mass-spectrograms."
The first result of Aston states: Neon consists of two isotopes of

atomic weight 20'OO and 22'OO, “ neon
"
and “ meta-neon." The atomic

weight obtained by chemical means, 20'2, results from a mixture of both
in a. constant proportion.
The resolution of chlorine into two isotopes of atomic weight 35'0 and

37'0 (in addition to which there are also indications of one of at. wgt. 39)
is particularly impressive. The chemical atomic weight of chlorine, 35-46,
which among the lighter elements is the first serious contradiction to the
integral (whole number) character of the atomic weight, comes about

owing to the fact that, as is shown from the photographic plate, the C185
is present in greater quantity than the C137; the proportion is 3:1. In
addition to the spots of 35 and 37 we see in the mass-spectrogram of the Gl

photographs, also the spots 36 and 38 present in about equal proportions :
these are to be interpreted as HCI35 and HCIS7. Then, again, there are

spots 17'5 and 18-5 that represent doubly charged C135 and C137. (In a
spectrogram double the charge acts like half the mass.)

‘Phil. Ma.g., 39, 449 and 611 (1920). See also Isotopes, F. W. Aston, 1922,
Edward Arnold & 00., London. -
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In the case of the neutral gases krypton and xenon, not less than six
and five isotopes, respectively, have been disclosed, of which the atomic
weights differ up to 8 in the case of Kr, and 7 in that of X. Thus we
have here pleiads as manifold as those occurring among the radio-ele
ments (cf. Table 4). The same is true of the not yet fully resolved pleiad
of mercury. Further details are given in the following scheme, in which
the bracketed numbers denote suggested or uncertain cases :

Li B Ne Mg Si 01 A Br Kr‘ x Hg
6 10 20 24 2s as as 79 vs ‘(12s) 197-200
7 11 (21) 25 29 37 40 s1 so 129 202

22 26 (so) (s9) s2 (130) 204
es 131
s4 132
so 134

136

\Ve restrict ourselves to these few data here and must refrain from
reproducing Aston’s spectrograms (which can be seen in his book Isotopes)
or describing them in detail. On the other hand, an optical spectrogram
(band-spectra of HCI) will later serve us as a striking document of the
double nature of chlorine (cf. Chap. VII).
At present only atoms in the gaseous state may be treated by Aston's

method; this explains the comparatively small number of elements that
have hitherto been examined for signs of isotopic character. Mg has been

investigated by A. J. Dempster* by a canal-ray method differing from
that of Aston; in this case the three isotopes are present in the approxi
mate proportion 6 : 1 : 1.
In view of all these discoveries the traditional term “ atomic weight "

is no longer properly appropriate to express the quantity with which the
chemist is familiar. The true atomic weights of the simple constituents
are whole or nearly whole numbers. The usual atomic weights which in

many instances vary from integral values should rather be called “ mix

ture-weights." The constant values of the latter must be interpreted as

showing that the isotopes of the mixture came into existence before the
earth’s crust had solidified, in epochs in which their uniform commingling
was possible and inevitable. This alone would explain why the chemist

everywhere and at all times finds them occurring in the same proportions.
The striking characteristic of elementary atomic weights, that of being

integral, restores Pro'ut's hypothesis to its position of honour: according to
this hypothesis, all atoms are supposed to be built up of hydrogen—of

hydrogen nuclei and electrons, as we may nowadays say, or else (cf.
p. 22) of

“
positive and negative electrons." The fact that hydrogen

itself is simple—in spite of the slight departure of its atomic weight, 1-008

from unity—has been proved not only by Aston but also by Stern and

Volmer + by another method (fractionated diffusion of hydrogen and

oxygen).

' Phys. Bev., 11, 316 (1918), and 17, 427 (1921). +Ann. <1.Phys., 59, 225 (1919).
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If, in accordance with the sense of Prout’s hypothesis, H-nuclei are
the real elementary “bricks

"
of which all gravitational matter is built up,

it must cause surprise that in the radioactive transformations “ H-rays
"

have never been observed. VVhy does not the hydrogen nucleus occur as
a decay product of the higher elements just as well as the less simple
He-nucleus? According to what law of displacement would such an
“ H-transformation

"
take place‘? Since the H-nucleus is endowed with

a simple positive charge and since it has the atomic weight 1, the law
must clearly be: Displacement in the periodic system by one unit to the

left and simultaneously a decrease of the atomic weight by one unit.

Actually, such H-transformations have never been observed among the

spontaneous radioactive processes, however much they may have been

sought. We might, with Fajans, see a vague indication of it in the
circumstance that hydrogen so often occurs locked up in the rare earths.
There is a type of artificial radioactive decay which is familiar as pro
ducing H-rays, namely Rutherford's disintegration of nitrogen. We
shall speak of this in the next paragraph.
Finally, let us consider the regularity in the succession of the atomic

weights from the point of view of the displacement laws. We saw in the
first paragraph of this chapter that, corresponding to the even atomic
numbers Z = 2n, there occur particularly frequently atomic weights of
the form 4n; corresponding to the odd atomic numbers Z = 2n + 1,
there are those of the form 4n + 3. This occurs in a particularly striking
manner in the region between C and Ca. Here we get, if we separate
the natural order into an even and an odd series of atomic numbers
and atomic weights :

TABLE 5

n= s 4

I

5 6 7 s 9 10

Z=2n 6 s
12 16Even

series{At wgh '= 4
”’

'

. Z=2n+1. . 7 9 11 13 15 17 19
Odd seneB{At.wgt.=4n+3. 14* isl 23 27 31 as as

In writing down this table we have made use of Aston's results; that

is
,

whenever various isotopes existed, we chose the atomic weight that fits
into our scheme ; for example, in the case of A we chose 36 (not 40). In
looking at these series it is difiicult to avoid the impression that we are
here dealing with two series o

f a-transformations, each of which indepen
dently obeys the displacement law for 11-transformations (regular decrease
of the atomic number by 2, and of the atomic weight by 4

, in passing
from right to left). The only exception is to be found at the point Z = 7

,

which has been marked b
y an asterisk, namely the case of nitrogen where
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we should expect an atomic weight of 15 in place of 14. This exception
is of particular interest in connexion with the artificial disintegration of

nitrogen just mentioned. But another observation occurs to us as we
look at Table 5. Our two series may possibly be connected together by
an H-transfornuztion of such a kind that the two series branch out from
a parent substance, the series of atomic weight 4n arising by a succession
of (1-transformations, the series 4n — 1 by a single H-transformation and
then a succession of 11-transformations.
It is hardly necessary to emphasise that in this speculation we are, at

present at any rate, leaving the firm ground of fact, and that in the case
of the elements here under discussion, no trace can be shown of either an
H-transformation or even any spontaneous decay at all. Nevertheless
such reflections are at the present time inevitable. The proof of the fact
that there are isotopes among non-radioactive substances is a direct

challenge to us to seek out genetic relationships in the periodic system,
and to extend the laws of displacement to the whole system.* This fact
makes it seem highly probable that the nuclei, too, are of a composite
nature and may be synthesised. This opens up a new chapter in the

annals of research, about which we must now say a few words, namely
nuclear physics.

§6. Observations on Nuclear Physics

There is no doubt that the radioactive nuclei contain helium nuclei
and electrons, which they emit as ¢1- and B-rays. Prout's hypothesis
and its confirmation in Aston's experiments requires beyond this that
all nuclei of atoms be ultimately composed of H-nuclei and electrons
(“positive and negative electrons "). In the case of He-nuclei this
necessarily leads to the assumption that they are composed of H-nuclei
that are connected by two electrons. (We shall illustrate in a figure
below how this is to be pictured.)
In general we may assert that a nucleus of atomic weight A and

atomic number Z will contain altogether

K = A - Z . . . . . (1)

electrons. For A (which, with Aston, we assume to be a whole number)
denotes the number of hydrogen nuclei and, at the same time, the total
number of positive charges; Z gives as the nuclear charge the uncom

pensated positive charge that acts outwards. The diflerence of these two
must be compensated by nuclear electrons.
Of these nuclear electrons a large proportion is in the form of He

nuclei. For atoms of weight A = 4n, Z = 2n (cf. p. 88) we have,
according to the experiments of Rutherford discussed below, to assume
that they consist of n He-nuclei. In this case, we get, by (1), K = 2n,
which is not greater than is necessary to bind the n He-nuclei together.

" Cf, van den Broek, Physik. Zeitschr., 22 164 (1921).
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At the same time,
2
= Z in this case. The excess A of the semi-atomic

weight over the atomic number, which we recorded and studied in Fig. 15,
shows in each case the presence of nuclear electrons that are not con
tained as He-nuclei.
We proceed to prove this generally, not only for atomic weights of the

form 41¢, but also for those of the form 4n + a(a = 1, 2, or 3). Let a: be
the number of He-nuclei, y and z the number of electrons and H-nuclei
respectively that are not combined together into He-nuclei. We then
clearly have

A=4.I7-{-2
Z=2;1:+z-y

thus A=g-Z='_1/-2

i.e.
3/=A+%.

The number of electrons y that are not included in the He-nuclei is thus
at least equal to the excess A, which is illustrated in Fig. 15. According
to this figure the number y increases systematically with the atomic
number.

We shall now follow L. Meitner * and assume that nuclear electrons
that are not included in helium nuclei, may in part be attached to them.
Thus, in addition to doubly charged helium nuclei, there will also be
helium nuclei that are neutralised by association with two electrons. We
shall call the first, as usual, a-particles, and the neutralising electrons, on
account of their presently-to-be-shown connexion with ‘B-rays, ,8-particles ;

finally, we shall call the helium nuclei, to which these ,8-particles attach
themselves, a’-particles, so that a neutralised helium configuration of this

type receives the name
“
(a.' + 2/3)-particle." In addition to isolated

H-nuclei and further electrons, we thus also reckon as nuclear con
stituents

a.-particles and (a
'

+ 2,8)-particles.

The radioactive branches of descent (p. 47) teach us that these ideas are
no mere fictions;

For, at the very beginning of the uranium series there is the succes
sion a - ,8 — ,8

.

We shall assume that this a-radiation in the case of

U I is an <1’-radiation, that is, that it is derived from a neutralised helium
configuration. When this configuration is deprived of an 11'-particle, the

two B-particles also become free; this is why two ,8-transformations
follow the emission of the o.’-particle. The same phenomenon occurs at

the beginning of the thorium series.
But how will the configuration (a
'

+ 2/3) behave when its decay

begins with, not an a-radiation but a B-radiation? Two ways are then
* Zeitschr. f. Phys., 4,4146 (1921).
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open. Either the second electron of the group follows with a ,3-radiation,
and then the a’-particle; or else the a’-particle is emitted first and fol
lowed by the second ,8-particle. The typical branching of the radioactive
trees of descent at the points occupied by C-products show that both ways
are followed, although not equally often (measured by the percentage
ratio of branching). That both ways must lead to the same final result is
theoretically clear, even if it has not been proved experimentally : for the
result finally is that the whole group (a' + 2,8) is detached. Whereas, in
the thorium and actinium series the final result of branching represents
simultaneously the end of the whole tree of descent, in the case of the
radium series the decay-sequence ,8 - ,8 — 0. still follows. In this case,
too, we have the characteristic phenomenon of two ,8-radiations occurring
conjointly with an a-radiation (a'-radiation). We should be inclined to

expect a branching at this point, too, that is, in addition to B - /2 -a’, also
B — 0

.’ — ,8
.

There is nothing to stop us from assuming that the ratio of
branching is vanishingly small for the second of these ways, and so has

escaped notice up till now.
Finally, the repeated succession of a.-radiations that occur, for example,

between UH and RaB can easily be accounted for. Such radiations are,
of course, not <1’-radiations, but are to be regarded as a-radiations in the
narrower sense used above. The number of the a-particles in the
nucleus is much greater than that of the a.’-particles ; as a matter of fact,
the comparatively small value of A shows that most nuclear electrons are
built into a-particles, and that, relatively, only a few are used in the
formation of a’-particles. It is thus more probable that an a-radiation
should be succeeded by further such radiations, in view of the pre
dominating number of a-particles, than that an a’-particle or one of the

B-particles interlocked with it should become loosened.

Concerning further consequences, e.g. the branching of the actinium
series at UY, we must refer to the work of L. Meitner quoted above. Our
object here was only to show that speculations on the structure of nuclei
are already suggested by the well-known facts of the radioactive tree of
descent.

These speculations have now entered on an entirely new stage, since
Rutherford * succeeded in 1919 in splitting up by artificial means nuclei
of lighter elements, as exemplified at present, in the nucleus of nitrogen.
This was the first occasion on which H-nuclei were proved to be elemen

tary constituents of the nucleus, and became accessible to measurement.

Rutherford worked with a-rays of RaC. Their velocity is 2 . 10° cms.

per sec. ; their range is 7 cms., that is, in air at atmospheric pressure they
excite scintillations in a fluorescent screen (of ZnS) at distances up to

7 cms., but not at greater distances. Such a-rays represent the most

powerful concentration of energy at our disposal. When they strike

hydrogen molecules or bodies containing hydrogen, they set free H-nuclei

“Phil. Mag., 37, 537, 562, 571, 581 (1919).
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as high-speed “H-rays." This happens, certainly, only when the He
nucleus exactly hits the H-nucleus or passes in very close proximity to it.
The range of these secondary H-rays is

,

corresponding to their smaller
mass, greater than that of primary o.-rays; namely, it is 28 cms. in air.
They can thus be easily distinguished from the former by means of a.
fluorescent screen.

But H-rays can be proved to be present not only in gases containing

hydrogen but also in air free from water vapour. In pure nitrogen con
siderably more scintillations occur than in a mixture of nitrogen and

oxygen. From this it was inferred that the H-rays a-rise from the
nitrogen nucleus. Magnetic deflection also led to the correct value of

7
%
. In this way the artificial transformation of an atom was achieved

H

for the first time and a dream of the alchemists attained realisation.
Rutherford succeeded in shattering, besides nitrogen, the following

atoms by means of a-rays of RaG:

B, F, Na, Al, P.

Here, too, the scintillation method was used as a proof. In the case of
the following elements, the result remained uncertain :

Li, Be, Mg, Si, Cl,

Rays of long range were found to be missing with certainty in the case of :

COSCaTiMnCu Sn
12 16 32 40 48 56 63'6 118'7.

The figures below the last row of elements show that we are here dealing
with atomic weights of the form 4n essentially. As at the beginning of
this section we may assume that such elements are composed only of
He-nuclei and that they contain no free H-nuclei. Rutherford therefore
comes to the conclusion that only elements of atomic weight

4n+awherea=1,2,3

may become disintegrated b
y losing H-rays. The emission of whole He

nuclei would be demonstrated by our present means only if they possessed
a greater range than that of the primary rays: in fact, all mass-rays of
less range would be beyond observation.‘ We shall give reasons below in

support of the view that the He-nuclei in their turn are not shattered—
neither the impinging He-nuclei nor those built into the atom that is

struck.
In the case of Al and P the observations of the scintillations disclosed

surprisingly great ranges: for Al the range was at least 80 cms. ! If, as

is to be presumed, we are here dealing with H-rays, their initial energy
in this case would be 28 per cent greater than the energy of the exciting
a-rays. (If the carrier were of greater mass, this energy would obviously
be still greater.)
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In view of these facts we cannot regard the shattering of the atom
other than as radioactivity that has been set going by forcible means. In
spite of the great energy of the impinging a-rays, it does not suflice to
account for the energy of the secondary mass-ray. At least a fraction of
this energy comes from the shattered nucleus itself. The action of the
impinging energy is essentially to loosen and to excite the constituents of
the nucleus.
What becomes of the shattered atom in each case cannot yet be de

termined with certainty. It is surmised that N gives ofi' two H-nuclei
and becomes transformed_into C.
In addition to H-rays, Rutherford believed that he would have to

assume the presence of He-rays in the case of scintillations that corres
ponded to a distance of 9 cms. Their behaviour in a magnetic field led
him to conclude that they were He-nuclei with a charge 2 and a mass 3,
that is, an isotope of helium. Recently, however, Rutherford has come
to the conclusion that this inference is not inevitable.
It is easy to understand why only rather light nuclei can be artifically

disintegrated. In the case of greater nuclear charges the approaching
11-particles lose too much speed to be effective. They run themselves to
a standstill in the field of the nuclear charge. Let us work this out for
the case of Pb, in which Z = 82. The work done by the electric re
pulsion which the charge 82e exerts on the charge 2e of the 0.-particle
when the latter approaches from infinity to within a distance a, is:

2 . 82 . e2

—a—— . . . . . (3)

(e is measured in E.S. units). The initial energy of the v.-particle is for
1; = 2 . 10° cms. per sec. = 3‘-};c2

1 2 2

§m,,;u2
= 2m“ 02 . (4)

The velocity will have been reduced to zero when

2 2 2 . 8239 _ S2 . e§,,,,,,
2m“ 02 =

a
, i.e. a =

2 \ 2
. (5)

mu

Here =
§
= 1-59.10-10 and

6;;-""
= 9649 (cf p. 5). Hence

H

a = 2'9.1O-12 cms.

If the radius of the Pb-nucleus is smaller than this value, the a-particle
will reverse its direction before getting to the periphery of the nucleus.
If the radius is greater than this, the a-particle will be able to penetrate
into the Pb-nucleus, but only with considerably reduced velocity. Hence

it is unlikely that a.-rays will be able to shatter heavy atomic nuclei.
Even in the case of the lighter elements this reduction of the initial
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velocity of the 0.-rays is to be taken into account. Our inference, earlier,

that the energy of the mass-rays observed by Rutherford do not arise from
the impinging projectile but from the struck nucleus, holds a fortiori in
view of this reduction of velocity.
The above calculation at the same time gives us a lower limit for the

nuclear radius of the substance emitting the a-rays. RaC is an isotope of
Bismuth, for which Z = 83. If the a-particle leaves the periphery of its
parent nucleus with zero velocity and if it owes its velocity only to the
repulsion of this nucleus, the process by which its velocity increases from
the value zero up to the value '0, which it attains at infinitely great
distances, will be described exactly by equation (5), in which a now signifies
the radius of the parent substance (the difference between 82 and 83 is
clearly of no account for the accuracy of the calculation). Hence we
conclude that the nuclear radius of RaC is at least equal to 2'9 . 10"“ cms.
If it were less the velocity of the a.-rays of RaC would have to be greater
than 2 . 109 cms. per sec. If it is greater, we need only assume that the
a.-particle of the periphery of the nucleus starts out with a certain initial
velocity. It is worth noticing that the lower limit thus obtained for the
size of the nucleus agrees fairly well with that mentioned on page 56, which
was derived empirically. '

There is a further possibility that we must not lose sight of, namely,
that in heavy atoms there may be, in addition to He-nuclei, still other

groups of positive and negative electrons that are more closely inter
related among themselves than with the other constituents of the nucleus.
As yet, there is no empirical evidence in support of this. Only the He
group of four H+ and. two electrons has been shown with certainty by the

general laws of radioactive decay to be a generally present element of
nuclear structure. We have now to deal with the latter in greater detail.
That the He-nuclei cannot be pure point-charges but must contain

negative charges, too, seems clear when we consider how often atomic

weights of the form 4n occur, in so far as we imagine these built up of
n He-nuclei and held together by electrical forces. If they were pure
positive charges, they would have to repel one another throughout. Only
the presence of negative charges inside the He-nuclei renders it possible
for several He-nuclei to be so interlocked that the attractive action between
the positive and the negative parts preponderates and keeps the whole

together.

The atomic weight of He appears to contradict the view that it is

composed of four H-nuclei. According to the most accurate measure
ments, the atomic weight of H is 1'0O77 ; that of He is 4'00 (the data
fluctuate between 3'99 and 4'OO2). Hence when these four H-nuclei
combine to form He, they must suffer a loss in mass, which, calculated
for the gramme-atom, is given by

Am = 4 . 1'O077 — 4'00 =- 0'03 . (6)

~7 ...____- _ i —
jfi t
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We have neglected the mass of the two electrons that should really be
added to that of the four H-nuclei, since they affect only higher decimal

places of Am.
This defect of mass is, however, only a seeming contradiction to the

statement that He is built up of four H's. In reality, it accounts in a
very satisfactory way for the great stability of the He-nucleus.
As early as 1900, Lorentz concluded from the electromagnetic point

of view of inertia that the mass of a system of very close positive and

negative charges must be smaller than the sum of the individual masses
of these charges. The theory of relativity has intensified and generalised
this result. According to Einstein (cf. Chap. VIII, § 1) every form of
energy (not only electromagnetic energy) possesses inertia. Each amount
of energy E corresponds to a mass m that is given by the equation

Es ll
=
=
|
$

Hence if any system looses energy (e.g. by radiation), it suffers a loss in
mass. Conversely, we may infer that a loss of mass Am is due to a loss

of energy of the magnitude
Ae = c*A'm . . . . . (7)

Accordingly we shall assume that when the four H-nuclei combine to
form the He-nucleus, they emit the energy determined by (7). We are
familiar with such a loss of energy in the case of atomic chemical com

pounds. In this case we call it
,

expressed in heat-units, “heat of com
bination," and, moreover, we call a process of combination exothermic if

it is accompanied by loss of energy. This way of regarding things and
this terminology is to be applied to our nuclear reaction. The loss of

energy, according to (6) and (7), amounts to

AE = o?Am = 00302 . . . . (8)

when calculated for the gramme-atom of He.
At the same time this quantity expresses the work that has to be done

to separate each He-nucleus of the gramme-atom into its four H-nuclei;
and hence it furnishes us with a measure of the stability of the He-nucleus.
This amount of work is so great that no means of physics at our disposal
can yield it. Let us compare it

, for example, with the energy that is

available in the motion of a.-particles of RaC. According to equation (4)
this is, per gramme-atom, U5-50” = 000902. It is thus three times smaller
than the energy (8), calculated in the same terms, that is, per gramme
atom.

By dividing AE by the mechanical equivalent of heat we express AE
in terms of major calories (1 major calorie = 4'19 . 101” ergs) and we then

speak, as in the case of chemical compounds of atoms, of the heat of
formation or combination Q of our nuclear compound, thus:

. 2_ 0030 _ _ . _Q —
471? ‘~16,-0
- 6 3. 10° major cals.
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As a means of comparison we mention the datum that the heat of com

bination in usual chemical processes is of the order 100 major cals. In

the proportion of these two figures our He-nuclear compound is more

stable than ordinary chemical compounds. Whereas in the case of the

latter, thermal motion in many instances leads to a splitting up of the

compounds, in the case of our nuclear compound not even the energy of

the most rapid <1-rays sufliees to achieve this.

From these noteworthy general considerations which require no par

ticular form for the constitution of the nucleus but only the trustworthy
“ Principle of the Inertia of Energy," we see that the stability of the He

nucleus is firmly established and that it seems impossible to explode this

nucleus into four H-nuclei by the means at present available. Applied

to Rutherford's experiments these reflections mean that not only the

bombarded He-units but also the impinging o.-particles are very stable.

Of course, our conclusion of stability is restricted to the assumption that

the He-nucleus dissociates

directly into four H-nuclei.
In the event of only a partial
disintegration, e.g. splitting off

b~

Fm 23_
If, as Aston's experiments

seem to indicate, all higher
atomic weights will ultimately come out as whole numbers, this would

lead us to conclude that in the further construction of He-nuclei, H-nuclei,

etc., no nuclear reactions occur that could compare with the He-nucleus

Finally, we wish, without committing ourselves, to try to form a model
of the possible construction of the He-nucleus from H-nuclei. In doing so
we follow a suggestion of W. Lenz,* which we illustrate in Fig. 23. As a
development from Bohr's model of the H2-molecule, this represents in the
first place a model of the O2-molecule that was formerly suggested by the

of one H-nucleus, nothing
can be asserted about the

energy of the resultant re

maining product, and there
fore no statement about stabil

ity can be made.

in closeness of union. Otherwise departures from the ruleiof integral
numbers would have to become perceptible in the case of higher atomic

weights also. In this connexion we may regard it as a particularly
fortunate circumstance that in chemistry the atomic weights are referred
not to H = 1 but to O = 16. VVith H = 1 the rule of whole numbers
would be entirely obscured.

" Miinchener Akademie, 1918, p. B55. In this paper the above relativistic-energetic
reasoning for the stability of the He-nucleus is developed; it applies independently of
the special model. Similar views we1'e put forward earlier by Hal-kins and Wilson,
Zeitschr. f. anorgan Chem., 95, 1 (1916).

l

l

l
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author: four electrons — e are to move uniformly in a circle around the
line connecting the two remnants of the oxygen atom (not atomic nuclei).
Since each oxygen atom has lost two electrons from the equatorial electron

ring of the model, it acts outwards in both cases with the charge + 2e, as
indicated in the figure. It was pointed out earlier (p. 79) that this model
does not, according to our modern view, correctly represent the constitu
tion of the O,-molecule. -

Lenz calls his model of the He-nucleus an “inverted oxygen mole
cule.” This has the following sense. When, in Fig. 23, the four negative
electrons are replaced by four positive H-nuclei, and the two positive
atomic remnants are replaced by two negative electrons, a configuration
results, which has the mass 4m,, and the nuclear charge (4 — 2)e = + 2e,
as is to be demanded of a model for an He-nucleus. Just as little as in
the case of the O2-model do we know, a priori, whether this conforms with

reality and can only prove it by experimental tests. In the case of the
He-nucleus the following data, admittedly rather unconvincing, present
themselves :—~
1. The distribution of H-rays that are generated in hydrogen gas by

n-particles is very different from that which we should expect if the

a-particles acted as point-charges. Indeed, Rutherford says: The observed

ejfects are of such a as would arise if
,

for example, the helium nucleus
consisted o

f a charged disc o
f approximately the radius 3 . 10'1" cms., wh-ich

in the a-rays sets itself perpendicular to the direction o
f rnotion. Now, our

model with the four H-nuclei circulating in one plane actually bears a

certain resemblance to a charged disc.

2
. If we apply the same laws of the quantum theory, which served to

fix numerically the size of the atomic models, to our He-nuclear model,

we get for the radius of the H-nuclei an order of magnitude which is

smaller in the ratio ii (that is, to the extent 112000) than the radius
we

of the H-atom. Thus, in this way, we arrive at sub-atomic dimensions
for the He-nucleus; certainly these are still considerably greater, according
to Rutherford, than is estimated from the observations.

3
. In addition to this insuflicient agreement in size there is
,

as Lenz
has remarked, an insufiicient stability of the model. Even hard X-rays
should suffice to disintegrate the model. To escape both these objections
Lenz suggests that we should no longer regard Coulomb's law as
valid in such concentrated fields of force as must exist in the interior
of nuclei.
In Chapter IV we shall develop the laws of the quantum theory and

shall apply it in particular to the model of the hydrogen atom. There
we shall refer once again briefly to the model of the He-nucleus and the
determination of its size. We feel impelled to express the conviction
here that the construction of nuclei out of elementary constituents very
probably takes place according to the same principles as underlie the
Pr

I
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construction of atoms out of nuclei and electrons, namely, according to

the rules of the quantum theory.

§7. Peripheral and Central Properties of the Atom. Visible and
X-ray Spectra. Configurations of the Inert Gases

In the representation of the periodic system given in the first para
graph we followed the example of Mendeleef essentially, both in the setting
out of the table as in giving valency the predominant position as the regu
lative principle for the various groups of elements. The great periods
of eighteen to thirty-two elements were thereby inserted somewhat
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forcibly into the rows of eight given by the smaller periods. It remains
now to develop the representation that Lothar Meyer gave the periodic

system at the same time as Mendeleef. Its crowning feat is the classical
curve of atomic volumes, which, since the date when it was made known,
1870, has excited the astonishment and interest of chemists and physicists
alike.
As we know, atomic volume denotes the ratio

atomic weight
density

'

This ratio has the dimensions of a volume (cm.3); it denotes, how
ever, not the volume of one atom, but of so many atoms as are contained

J
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in the number of grammes given by the atomic weight. Instead of atomic
volume we might say more correctly gramme-atom volume. We shall,
however, retain the term that has been sanctioned by usage.
The atomic volume is, of course, defined only for the solid and liquid

state. The gaseous state admits of no proper volume that is characteristic
of a substance (unless we calculate such a volume from van der \Vaal's
gas equation). In the case of the so-called permanent gases we must,
therefore, in defining the atomic volume, derive the density from the
liquefied state. In the case of solids that occur in various allotropic
modifications (diamond, graphite), we get several values. We exhibit
Table 6 set up by Stefan Meyer* for the atomic volumes (“ At. Vol.").
We plot the values of this table as ordinates in Fig. 24.
As abscissze we naturally use nowadays in place of the atomic weights

the atomic numbers, which smooth out several irregularities of the curve

(for example, at Se and Te).
We call attention to the following prominent features of the curve:

the steep maxima at the points occupied by the alkalies, the immediately
following descending branches of the curve, the flat minimum in the
middle of the period, the ascending branches before the next successive
alkali, the likewise high ordinates of the points occupied by the inert

gases, and particularly the similarity of appearance between the great
periods of 18, 18, and 32 elements with the small periods of 8 and again

TABLE 6

z = 1 H 13-2 z = 11 N4 23-7 z = 21 So _
2 He 27-4 12 Mg 13-4 22 Ti 10-7
3 Li 13-0 13 41 10-0 23 v 9-27
4 B3 4-72 14 31 12-1 24 Cr 7-76
5 B 4-4 17-0 25 Mn 7-43

C
5-4

15 P
{13-5 26 F6 7-10

Q 3-42 16 s 15-5 27 05 6-36
7 N 13-6 17 01 20-6 23 Ni 6-67
3 0 11-22 13 Ar 23-0 29 Cu 7-12
9 F 16-7 19 K 45-5 30 Zn 9-21
10 Ne -- 20 Ga 25'9

z = 31 Ga 11-3 z 41 Nb
{1§__§6

z = 51 Sb 16-1

32 Ge 13-3 42 M6 10-7 52 Te 20-4
33 .43 12-1 43 2 - 53 J 25-7
34 Se 16-5 44 Ru 3-29 54 Xe 37
35 Br 25-4 45 Rh 3-50 55 04 70-6
36 K1 33-4 46 Pd 9-23 56 B3. 36-2
37 Rb 56-25 47 Ag 10-3 57 La 22-6

33 Sr 34-5 43 06 13-6 53 Ce 20-6

39 Y 23-4 7 49 In 15-9 59 Pr 21-7
40 Zr 14-2 l 50 Sn 16-3 60 Nd 20-7

z = 62 Sa 19-3 z 73 Pt 9-12 z = 33 Bi 21-2

73 T4 10-93 79 Au 10-2 36 Em 39

74 W0 9-63 so Hg 13-95 33 R3. 33

76 04 3-49 31 Tl 17-2 90 Th 21-1

77 11 3-62 32 Pb 13-3 92 U 12-74

‘ Elster and Geitel-Festschriit, Braunschweig, 1915, p. 152.



100 Chapter II. The Natural System of Elements

8 members ; this similarity is such that in this representation of the periodic
system there is no sign of a subdivision of the great periods into two
small periods.
Later, a series of other properties were discoverediwhich exhibited an

analogous behaviour in their mode of dependence on the atomic weight

(or atomic number, respectively). In Fig. 25 we exhibit as examples of
such properties: the compressibility K, the coeflicient of expansion :1, the

reciprocal of the melting-point (as an inverse measure of the tendency

of the element in question to be a solid); these are properties that con
cern not the filling of space itself as in the case of the atomic volume, but
the alteration of the volume occupied owing to pressure and temperature
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changes. In a broad sense, these curves run parallel to those of the
atomic volumes, but they seem a little less regular. In the curve of the
reciprocal melting-points, the maxima are not at the alkalies but, as is

easy to understand, at the inert gases, which show the least inclination
towards becoming solids.

All these things concern a pronounced external property of the atom,
namely its claim on space. Its connexion with valency conditions and
the structure of the periodic system in Lothar Meyer’s curve shows that
chemical actions, too, depend on external properties o

f the atom. In actual
fact, they regulate the external relations of atoms to one another and

depend on the number and arrangement of the external electrons that

determine the valency. Also the elastic and cohesive properties of atoms,
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their thermal behaviour as shown by Dulong and Petit's law of specific
heats, the electrical conductivity, and the magnetic permeability give a

picture analogous to that given, by atomic volumes, and thereby prove that

they too are external properties of the atom.
But also the phenomena that give rise to the emission of visible spectra

occur at the periphery of the atom. The spectra of the alkalies exhibit an

essentially similar structure in spite of their greatly different atomic num
bers, Z = 3, 11,‘19, 37, 55, and the consequent increase in complexity of
the interior atomic structure. Only the peripheral arrangement of
electrons in the series of alkalies is similar; but this suflices to bring
about an essential similarity in their visible spectra. The same corres

pondence exists between the spectra of the alkaline earths Mg, Ca, Sr, Ba,

as well as between Zn, Cd, Hg. Almost in every case the posit-ion of the
element in its period and not its position in the system as a whole, its

atomic number, is the decisive factor. The latter (atomic number) gives
only a slight sign of itself, in that the spectral lines are in general not

simple lines but consist of two or three lines that belong together and are
more or less close together in the spectrum. The diflerences between the

frequencies of this “doublet” and “triplet” increase regularly with the
atomic weight, as used to be stated, or, as we now say, with the atomic
number or nuclear charge. But the part played by the nuclear charge in

the optical spectra is but a minor one.
This is different in the case of X-ray spectra. For this, the atomic

number is the chief factor, in that from the atomic number of the element
the corresponding X-ray line and, conversely, from the X-ray spectrum the
atomic number could be determined uniquely. The frequency of a
definite X-ray line, for example, the principle line of the x-series (cf. the
next chapter, §4), increases uniformly and continuously with the atomic
number throughout the whole system of elements without showing a trace
of periodicity. In this case it is not the position of the element within
the period of the system but its position in the system as a whole that is
the all-important factor.
Now, what does it signify that in X-ray spectra the atomic number of

the element, its nuclear charge, exhibits itself so strikingly, whereas in the

spectra of the visible region it hides itself? This signifies that the region
-in which the X-ray spectrum takes its origin is the innermost part of the
atom, the immediate "vicinity of the nucleus, and that, on the other hand, at
the periphery of the atom, where the optical spectra are produced, the
nuclear charge is screened of by the cloud of inner electrons or just shines
faintly through them. It is owing to the fact that the X-ray spectra take
their origin from the central region near the nucleus, where the forces are

strongest and least weakened, that their penetrative power and hardness
is so great. In contrast with this, the visible spectra require for their
excitation only small amounts of energy, compared with the extraordinary
amounts that are available in the interior of the atom and that are
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necessary to excite X-rays. At the surface of the atom the events occur

on a moderate scale but in the interior of the atom they become ex

aggerated to an extreme degree.

The nucleus and the innermost regions of the atom around it are not

built up periodically but, in view of the intensity of the fields of force,

their structure is a continuous growth in conformity with the continuous
increase of the atomic number. The X-ray spectra reflect this systematic
increase of growth and thereby loose all connexion with the periodic
structure of the natural system. Periodicity is an external, and not an
internal, property of atomic structure.
A general inference about the arrangement of the electrons about the

nucleus may be drawn from observations concerning isotopes. Two

isotopes of an element canrwt be separated by chemical means (e.g. radium

and mesothorium, thorium and radiothorium, neon and metaneon, or

CIS5 and C137) ; that is
,

the peripheral parts of their atoms are built up
similarly, since it is these parts that are of account in chemical reactions.
Moreover, two isotopic elements have similar spectra * in the visible and the
ultra-violet regions (for example, thorium and ionium or mixtures of the

two): this similarity also leads us to conclude with great certainty that
the arrangement of the external elements is the same. But two isotopic
elements have also the same X-ray spectra (e.g. in the case of lead and RaCr,
according to Siegbahn and Stenstromz hence they are also alike in the

arrangement of the internal electrons. Hence the whole atomic structure

is determined uniquely by the nuclear charge; given the same nuclear

charge we get the same atomic structure, in spite of varying atomic
weights; this applies, in particular, to the radioactive elements. As the

decay continues and the nuclear charge alters, the new arrangement of
the electrons that corresponds to the new nuclear charge is effected auto
matically. Although we do not know the atomic structure in detail, we
know the law b

y which it is governed, the law that is dictated by the nuclear
charge through the agency o

f electrical attractions and -rcpulsions. 17te

atomic structure is uniformly regulated b
y electrical agency from within

outwards as far as the periphery 0
/‘ the atom by the magnitude o
f the

nuclear charge.

The question as to how the electrons are distributed numerically among
the individual shells of the atom is more difficult to answer. The X-ray
spectra do, indeed, furnish us with the evidence in which the definite
answer will be found, but we are not yet in a position to interpret these
data completely. The next chapter will give us further clues. Here we
shall just speak of the information that we get from the periodic system
of elements for the outermost shell of the atom.

‘In the case of the line A = 4058A of lead, difiereuces between uranium lead
thorium lead, and ordinary lead have been observed by Harkins and Aronberg on the
one hand, and Merton on the other (cf. Nature, 104, 406 (1919)). But they amount to
only a millionth of the whole value.
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VVe picture to ourselves the progressive synthesis of the atoms in the
order of the periodic system. At each step a new electron is added. In
general the new electron attaches itself to the outside, as we may assume
that in the interior of the atom there is no room for the immigration of
additional electrons. As the number of external electrons increases, step
by step, a limit is reached which, for reasons of stability, cannot be ex
ceeded. From that point onwards a new outer shell begins to form, the
previous outermost shell contracting inwards. To picture this, we need

only remember the rings of a tree in its yearly growth.
The alkalies are decidedly univalent and electropositive. There can

be no doubt that we must assign to them in each period one outer electron
in the outermost shell.. The alkaline earths are divalent, the earths are
trivalent; to these must be ascribed, respectively, one, two, and three
outer electrons (valency-electrons). In general we ascribe to the electro
positive atoms at the beginnihg of each period just as many outer electrons
as is expressed by their valency with respect to oxygen (cf. p. 56).
Electropositive character denotes readiness to part with electrons. Electro

negative character denotes readiness to take up electrons (“ electron

hunger"). The electronegative atoms lack just as many electrons as

they have hydrogen-valency; fluorine wants one, oxygen two, nitrogen
three. These electrons are not wanting in them for electrical neutralisa
tion but for electro-mechanical stabilisation.
Between the electropositive elements following the end of a period

and the electronegative elements preceding it there is situated in each

case an inert gas. \Vhen the electropositive elements give up their

valency-electrons, they reduce their configu/ra.ti0n to that of inert gases;
whereas when the electronegative elements satisfy their valencies by
taking up electrons, they complete themselves as configurations of the inert

gases. Thus both parties strive towards this goal. Hence we must

assume that the configuration of inert gases possesses a special degree of

stability, and we see why in the progressive synthesis of the atoms in the
natural system each period ends with an inert gas and that then a new
shell begins. To avoid misunderstanding, we must, however, emphasise
that we only assert the stability of the configuration of the inert gases as

a chemical fact but cannot yet give reasons for it.
The two small periods each contain eight elements. The inert gases

neon and argon that stand at the end of these periods are thus entitled to

eight electrons in the outer shell. Bohr gives good reasons (cf. the end

of this section) for thinking that the other inert gases, also, as far as the

emanation are to be credited with eight outer electrons. Instead of

configuration of inert gases we might just as well say
“ 8-shell." Helium

with its two outer electrons is
,

of course, an exception.

The union of electropositive and electronegative elements denotes in

the simplest cases the creation of one or more 8-shells. We call to mind
HF, I:I._,O, NH3. Fluorine, by taking from H the electron that it lacks,
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completes itself as an 8-shell ; in the same way, oxygen and nitrogen do
likewise by depriving two or three hydrogen atoms of their electrons. In
all cases the result is the neon configuration with attached hydrogen
nuclei. How these nuclei lie with respect to the neon shell, whether, for
example, in the case of water they are arranged diametrally and sym
metrically, whether they have definite positions at all, is still open to
discussion. Further, in the formation of NaCl two full 8-shells come
about: the outer electron of Na emigrates to Cl; Cl becomes raised to_
the argon type, and Na becomes lowered to the neon type. The ions
Na+ and Cl-, on the formation and electrical attraction of which the
compound NaCl doubtless depends, both have in their external con

figuration the character of inert gases. They are distinguished from Ne
and A only by a 1' 1 difference in the nuclear charge. The same holds
for all alkali halogen salts and for univalent polar compounds. In the
case of divalent polar compounds two electro'ns emigrate from the electro

positive to the electronegative component. In this way there result, for
example, in the case of CaO two 8-shells, the one, Ca++, being of the

argon type, the other, 0"“, being of the neon type.
W. Kossel,* by reviving Berzelius' theory, has worked out fully this

view of chemical action and has tested it in Werner's complex compounds
in addition to the typical simple polar compounds. He arrives at the
result that in all compounds that are given as forming ions or that are
built up analogously to ion-forming compounds, the atoms are present as
ions in the undissociated state also. Consequently the single forces

represented in the old chemical scheme by hyphens with their mystic
directions become replaced by the physically more intelligible electric
forces of the ions. Of course, on this view we cannot occount for homoeo

polart combinations, that is, combinations in which ions cannot be
assumed, as, for example, those of di-atomic gases: the difliculty of

understanding the latter presented itself to us sufliciently clearly in §-1 in
the case of the simplest homcnopolar problem, that of the H,-molecule.
But apart from this the successes achieved by the electrical scheme are

astonishing. It would take us much too fa/r from our true object to offer
even only a sketch of it.
Almost at the same time as Kossel, G. N. Lewis I recognised the part

played by the configuration type of inert gases as the goal of chemical
reactions, and pictured them in the special form of a cube, in the eight
corners of which the electrons of the 8-shell are stationed. The same

picture was sketched out a second time by Born and Landé,§ being

‘In his long paper: Uber M0_l_ek'itlbiZdung als Frage des Atombaues, Ann. d.
Phys., 49, 229 (1916). Cf. also: Uber die physikalische Natur der Valcnzkrafle,
Naturwiss., 7, 889 and 360 (1919), or the monograph: Valenzkrdfte und R6ntgen
spektren (Springer, 1921).
1-This term is due to R. Abegg, who prepared the way for Kossel's theory.
I-Iourn. Amer. Chem. Soc., 38, 762 (1916); cf. also, as an extension of these views,
J. Langmuir, @btz., 41, scs (1919).
§Born and Landé, Verh. d. D. Phys. Ges., 20, 210 (1918); Born, ibid.,-20, 230

(1918).
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based, indeed, on exact calculations of the density and compressibility
of crystals of the type NaCl. Landé * then set himself the difficult task

of investigating the dynamical possibility of the cubic arrangement, which
was, originally, only a postulate. He proceeded, not by supposing the

electrons fixed in the corners of the cube (statical cubic model), but by
inquiring after orbits in which they can keep themselves dynamically in

equilibrium, whilst preserving their cubical symmetry. It is indeed
enticing to bring the sacred number 8 of the periodic system into re

lationship with the number of corners of a cube and to picture .the

chemical ideal of the 8-shell in the form of the cube. At any rate this is

a first step towards solving the problem, proposed at the end of § 3, of

getting tangible ideas of the shell arrangement of the electrons in the

atom. But, apart from the fact that a more detailed discussion of this

question would again take us too far, we must not omit to mention that

recently Bohr (in the letter to “Nature
”
quoted on pp. 59 and 69) has

raised objections of a general character against this perhaps already too

specialised picture. Presumably the symmetry of arrangement that was
demanded by Born to explain in particular the compressibility of regular
crystals, remains unaffected by these objections.
It has been held up as a reproach to Kossel’s line of reasoning, that,

in the effort to trace chemical actions back to electrostatic forces alone,
it has neglected the quintessence of the modern physics of the atom,

namely, the quantum theory. The author is of the opinion that in

Kossel’s theory the quantum ingredient is represented by the fact that,

going beyond Berzelius, Kossel takes the atomic volumes (better, the
ionic values) into account whereby, for example, the decrease in the

intensity of the polar union with increase of atomic size is explained
according to Coulomb's law. In fact, the size of atoms is given, according
to our modern view, merely by the extent of their peripheral electronic
orbits, and these, in turn, are determined essentially by quantum relations
and quantum numbers (cf. what was said about hydrogen in §§ 3 and 4).
So that as Kossel works with impenetrable atomic shells, latent quantum
effects are involved in his calculations.
This brings us for a moment back once again to the curve of atomic

volumes, with which we started this section. The downward course of

the curve at the beginning of each period may be made clear quite simply,
if superficially, by the following consideration. In the case of a neutral
atom of an alkali metal, an external electron is situated in the field of an
atomic residue carrying a single positive charge. In the case of a metal
of the alkaline earths, or of the following group, if they are elec rically
neutral we have two or three outer electrons in the field of a doubly or

trebly charged positive atomic residue. If we assume that these two or
three electrons move in a circle diametrally, or at equal distances from

' Berliner Sitzungsben, 1919, p. 101; Verh. d. D. Phys. Ges., 21, 2, 644, 653 (1919);
Zeitschr. f. Phys, 2, sa, aso (1920).
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one another, respectively (which need not be accepted, of course), and if
we extend this idea to the following column of the vertical system (for
which the arrangement in a circle obviously seems very doubtful, in view of
the tetrahedral valencies of carbon), we may make use of equation (5), of

page 74, to determine the orbital radius of the outer electrons. In every
period this radius, then, comes out as inversely proportional to Z,’ =
Z -1) - s,,. Here q is, for all columns from the first to the fourth, equal
to 1, 2, 3, 4, and s,,, according to Table 3

, of page 76, is equal to O‘OO, 0'25,
0'577, O'957. Further, Z — p, that is, the nuclear charge mimz-s the
number of electrons of the atomic residue that screens it off, is likewise,
on account of the neutrality of the whole atom, equal to 1, 2

,

3
, 4
. \Ve

may, therefore, write down the following table :—

TABLE 7

I

q 1 2 3 4

Z.’ . 1 2-0'25 3-0-577 4-0-957

,L . 1 0-57 0-41 0-33
4,, v

The bottom line gives, according to equation (5) of page 74, a measure
for the radius of the peripheral shell (imagined circular) of the atom, and

it shows how it diminishes step by step under the influence of the

gradually increasing charge of the atomic residue. We have thus a

qua1itative* counterpart to the descending branches of the curve of
atomic volumes. Our argument clearly furnishes us with no analogy for
the ascending branches at the ends of the periods, particularly if we
retain the idea of a circular ring (which is in this case certainly inad

missible).
Qf greater practical importance for chemical purposes, we find the

ionic volume, inasmuch as it asserts itself directly in the polar com

pounds of the solid crystalline state. From the point of view of theory,
too, the ionic volume is better defined and more easily accessible than the
atomic volume, in the interpretation of which the dilliculties of the

homceopolar union, and in the case of metals, in particular, our ignorance

“ It is very surprising that if we form the “ relative atomic volumes " from Lothar
Meyer’s curve in each case, that is, the atomic volume in the second, third, and
fourth column divided by that of the preceding alkali in the first column, we get
almost the same figures, and, indeed, the same for each period. This might tempt
us, for example, to calculate the not yet experimentally determined atomic volume of
scandium from that of potassium, which is the alkali that precedes: we would get
0'41 . 45~5= 18-6. In the previous editions of this book, the remarkable parallelism
between the seal course of the atomic volumes and the calculation of atomic radii,
sketched out above, was discussed further. In its quantitative aspect, it is an
unsolved mystery, for atomic volume is the third power of a length, whereas our
atomic radius is the first power of a length. Consequently we have restricted our
selves to the brief indications of the text.
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of the disposition of the conduction of electrons, makes itself felt. Thanks
to the courtesy of Mr. H. Grimm * the author is in a position to exhibit a
curve (Fig. 26) of ionic sizes, as a counterpart to the Lothar Meyer curve.
There are still gaps in it

,

and its absolute values are a little uncertain, but
its course is characteristic and full of meaning.
The atomic numbers are marked off along the abscissa, and the ionic

sizes R (defined as the radii of the sphere circumscribed about the 8-con
figuration in question) are marked off along the ordinate axis. Branch I

of the curve represents all those ions that tend to the neon type from the
one side or the other ; the curves II, III, and IV relate to those ions
that, similarly, belong to A, Kr, and X respectively. For example, on the
branch I we find, besides Ne itself, if we start from Ne and pass succes
sively downwards, that is,

to smaller ionic sizes and m _

greater atomic numbers, ‘-3- :1
1

'; l-T-;

Na+, ;\Ig++, and, on the
1'2 --

’J

other side, that is, to 1.1 .L '§- s'
_

X-w
greater ionic radii and Lo

‘i
h

smaller atomic numbers,
M 5

0
.-

K
rb
,

F", O‘ . Corresponding / __§,"

to this, we find for the M

%

‘I
,

Argon branch, on the one 0.1

side, the group K+, Ca++, M N°/
and on the other Clr, S— ".

M

%
;The steep slope of all the ‘~
_

branches is explicable from °"
.14?

the same point of view as 0.! ".
_

receives expression in the M ‘\

descending branches of the

“

curve of atomic volumes
0'1

of Table 7
,

namely, the

same outer shell of elec

trons as occurs in the

l0 20 30 40 50 60

F10. 26

neutral inert gas is contracted b
y electrostatic attraction when the nuclear

charge increases, and becomes distended by electrostatic repulsion as the

nuclear charge decreases. For example, we get the rule that the negative
ions are greater than the positive ions. The unique position of the alkalies

that was so prominent at the maxima of the curve of atomic volumes,

has vanished entirely in our ionic curves. This is easy to understand,
since the single valency electron that was responsible for this unique
position of the alkalies is no longer present in the ions.
In Fig. 26 we have drawn in addition to the curves that run from

above to below and that belong to the same period, two connecting lines,
from left to right, that link up the ions in the same group of the periodic

‘Cf. Zeitschr. f. Physikal. Chem., 1921.
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system, namely, the alkali and the halogen ions.» Concerning the dif
ferences between the consecutive steps of these connecting lines, we read

from the figure the following rule :

III>IIIIV>IIIII.
And, indeed, this rule holds not only for ionic sizes but also for numerous

other physical properties, and not only for the alkalies and the halogens,
but also for other groups of the periodic system. In particular, the
height of the step I II tells us why, in isomorphic crystals, the ions II,
III, and IV can be represented by one another isomorphically but not
by I;

'

Concerning the empirical origin of the ionic radii, the hint must

suffice that it is founded on the measurement and calculation of the

width of mesh of crystal lattices of the type NaCl. Fajans, Grimm, and
Herzfeld,* starting from the cube conception, have set up and tested

simple linear formulas that connect the molecular volumes of crystallised
salts with one another, and their lattice constant with the ionic size of the

component parts. In the case of the inert gases, of course, the ionic radii
(here atomic radii) could not be determined in this way, but they have

been inserted as the arithmetic means of the alkali and halogen ions. A
check for this is furnished by the work, determined spectroscopically, that

is necessary to form the ions, starting from an initial netural state (cf.
Chap. VI, §
So much for the outer shells of atoms and ions. Now, what does the

periodic system tell us about the inner shells and how they are occupied

by electrons? As already explained above, we may assume that each
new period marks the beginning of a new shell, whereby the one just

completed becomes the shell second from without. Thus, the periodic
numbers

2, 8, 8, 18, 18, 32

give us an index of the probable numbers of the electrons that occupy the

successive inner shells.
But this does not imply that, as we proceed in the system, the

numbers of electrons in the inner shells remain the same, or even the
same as the numbers of electrons which occupied the same shells when
these formerly were complete as outer shells of a former element. It is
easy to see that the conditions of stability in an inner shell are different,
and indeed more favourable, than when the same shell formed the

periphery of the atom. As an inner shell it would thus (as a consequence
of the repulsive action of the newly added outer electrons) be able to hold
more electrons than when it formed the periphery of the atom. Hence
it may happen that at certain points of the periodic system a new electron
that is added is not attached to the outside, but takes up a position in an
inner shell. The points that come into question for this phenomenon are

" Zcitschr. f. Phys., 2, 299 and 309 (19:20).
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the triads, FeCoNi, RuRhPd, OsIrPt, and the whole group of rare earths.
These elements are closely related chemically and hence we surmise that
the number and arrangement of their external electrons is the same.
These considerations which were undertaken some time ago,* have

received a much firmer foundation through the later views of Bohr, which
were accompanied by calculations, and which he communicated to us at
the conclusion of his letter to “Nature " (cf. p. 69). According to these
views, the successive shells in the case of the inert gases are occupied by
the following number of electrons :-—

TABLE 8

He . 2 Kr . . 2 8 18 B
Ne . . . . 2 8 X . . 2 8 18 18 8
A . . . . . 2 8 8 Em. . 2 8 18 32 18 8

As we see, these numbers at first increase and then decrease to 8 again.
A ll inert gases are surrounded by an outer 8-shell. The numbers of elements
in the periods of the natural system do, indeed, furnish us with the
correct strengths (Besetzungszahlen) of the shells, but, in general, not in the

-right order of sequence.
How are we to represent to ourselves the difference between the period

numbers of the system and the strengths of the shells in individual cases?
Between A and Kr a first rearrangement of the electronic configuration
occurs. The completed 8-shell of A is not preserved in the case of Kr,
but is re-formed into an 18-shell. The point of the periodic system, at
which this occurs, is occupied by the triad FeCoNi. The same arrange
ment occurs a second time between Kr and X, namely, at the point
occupied by the triad RuRhPd. The third revolution is very radical and
leads to the formation of an inner shell of thirty-two electrons; it has a
connexion with the occurrence of the rare earths in the periodic system.
From these remarks we see how the problems of atomic structure are

transfused with questions relating to the periodic system, and we recognise
that advances in problems of the former kind also entail the unravelling
of those latter types.

"'Physikal. Zeitschr., 19, 229 (1918). Cf. also L. Ladenburg, Naturwiss., 1920,
Heft 1, in which he conjectures that a rearrangement of the external shell of electrons
takes place before the middle of the great periods, and in which he comes to the
conclusion that not only the inert gases Ne and A, but also Kr and X must have an
8-shell on the outside.



CHAPTER III

X-RAY SPECTRA

§1. La.ue's Discovery*

N our introductory note on Rdntgen or X-rays (Chap. I, § 5), we saw

Ithat Rontgen
radiation is a radiation of transverse waves. We

spoke of the wave-length and of the spectrum of X-ray radiation,
both in the case of the cha.ra.cteristic radiation, which is the part that is
characteristic of the material composing the anti-cathode, corresponding to
the free vibrations of the electrons of the anti-cathode, and in that of the

impulse radiation, which is the part that is characteristic of the voltage of
the X-ray tube, corresponding to forced radiation of the electrons of the
cathode rays. Assuming the results of experiment, we described the
spectrum of the characteristic radiation as a line-spectrum, that is, as a
discrete series of individual wave-lengths, and the spectrum of impulse
radiation as a continuous spectrum which stretches from long wave
lengths over a region of maximum intensity to a sharply defined edge of
short wave-length. In both cases the wave-length (the dominant wave
length, the region of greatest intensity) is an inverse measure of the hard
ness, a direct measure of the softness, of X-rays.
How are the wave-lengths of X-rays measured ? The general properties

of X-rays, compared with those of visible light, show that their wave

lengths must be very much smaller than optical wave-lengths. In optics
the best method of measuring wave-lengths, and the only method that
leads to absolute determination of them, is that founded on di[7”ract-ion.
By measuring the positions of the maxima and minima of diffraction, we
compare the wave-length with the dimensions of the diffracting aperture
and in this way reduce it to absolute measure. The greater the wave
length of the light used, the less will be the distances between the dif
fraction fringes and the more will the path of the ray deviate from that
of a straight line. Bed will be dififracted more than blue, the diffracting
aperture being of the same size for both. Conversely, the smaller the dif
fracting aperture, the greater will be the angle of diffraction for a constant
wave-length of light. From this it is clear that the dimensions of the

“Laue has given a comprehensive account of his discovery in Jahrbuch fiir
Radioaktivitiit und Elektronik, 11, 308 (1914). Its application to crystal analysis is
described in the book, “X-Rays and Crystal Structure," by W. H. Bragg. London,
1916 (Bell).
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diffraction apparatus must be chosen much finer in the case of Biintgen

rays than in that of ordinary light.
As early as 1895 Rtintgen himself had made tentative diffraction ex

periments with his X-rays, but the result was negative. Results by other

experimenters, which were claimed to be positive, were later proved to be
due to optical illusions, half-shadow effects arising from the scattering of
the secondary radiation. Accurate diffraction photographs were first
obtained in 1900 by Haga and Wind, who used a slit that was placed
perpendicular to the course of the ray; the jaws of the slit were not, as is
usual, parallel to one another, but met at the lower end, so that its opening,
which had a width of several ,u at the upper end, became reduced to
several }L].Lat the lower end. The diffraction effect was to manifest itself
in a broadening of the dark band of the negative at the lower end of the
slit. These photographs were repeated with greater refinement by Walter
and Pohl. The plates were worked

out by the author, after P. P. Koch* M I
(of Hamburg) had measured them

out photometrically with great care

by his own method. From a photo
graph taken with hard Riintgen radia

tion the dominant wave-length

(“ width of impulse," as it was called

at that time) was found by calculation

to be ItQ 4 . 10-9 cms. Contrast with
this the wave-length of yellow light,
which is 6 . 10*‘ cms.

The fact that the wave-length de

termines qualitatively the hardness of I I
the X-ray tube becomes clear when Fro. 27 (a) and (b)
we compare the two diffraction nega
tives which have been worked out photometrically by Koch in Fig. 27 (a)
and (b). The negatives were produced by Haga and Wind ; in the case (a)
they used a very soft tube, in the case (b) a very hard one. They both

present the left half of the picture of the wedge-shaped slit, of which the

geometrical shadow is indicated by the dotted line (the right half is to be

imagined added symmetrically about the middle line MM). The con
tinuous lines are lines of equal darkness on the photographic plate, and we

see that the intensity of darkness decreases from the middle to the side.

In the absence of diffraction (wave-length A = O) darkness would occur
only within the geometrical shadow of the slit and a neighbouring region
of penumbra. Now, a characteristic feature is exhibited in that, in Fig.
27 (b) (hard tube), the curves of equal darkness are closer to the geo

metrical projection of the slit than in Fig. 27 (a) (soft tube). Thus, the
diffraction, that is, the deviation of the path of the ray from that demanded

‘P. P. Koch, Ann. d. Phys., 38, 507 (1912).
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by geometrical optics, is thus less in the case of greater hardness; greater
hardness corresponds to shorter wave-length.

Only a year after these results were made known, this determination
of wave-lengths was to be surpassed in accuracy and certainty in an un
dreamt-of manner by Lane's discovery.
In optics, the diffraction grating is more effective than the diffraction

slit, both as regards the intensity of its light and its resolving power.
The action of the diffraction grating depends on the regular succession of
the lines of the grating, the distance between which we shall call the
“ grating constant

"
a. The width of the form of these lines have no in

fluence on the angle of difl’raction and are only of secondary importance
even for the distribution of intensity among the spectra of various orders.
The theory of the diflraction grating is one of the most familiar

branches of the optics of the wave theory. Nevertheless, to lay bare the
root of Laue's discovery, we must here set out some of its essentials.
In Fig. 28 we exhibit a section of the grating; 1, 2, 3, . . . are the

traces of the lines of the grating; the distances (1,2) = (2, 3) = . . .
are equal to the grating constant a. Let
the angle between the incident beam of

rays and the trace of the grating 1
_. 2
,

3
,

. . . have the direction cosine <10, the
direction cosine of the emergent beam and
the same line 1, 2, 3, . . . being 0.. (<10and
a. are simultaneously the sines of the angles
of incidence and emergence.) Using
Huyghen's Principle, let us imagine rays
starting out from each grating line in all

directions. Thus, for the present, we may regard a. as any arbitrary

angle whatsoever. In the figure the case of transmitted light is pictured.
By folding the diffracted rays in the figure about the axis 1

,

2
,

3
, . . .,

we get the case of light reflected by diffraction.

The theory of the diffraction grating is contained in the equation:

FIG 28.

(l(r1
—
110) = IM . . . . (1)

In (1) the left-hand side denotes the difference in length of path
between the ray, for example, that goes through aperture 1 and that which

goes through aperture 2 (and, generally, the difference of path between

any such ray and its neighbours). For ca. = 1P is the difference of path
between the diffracted rays through 1 and 2

, and likewise (10.0 is the
difference between the lengths of path of the incident rays through 2 and

1
. Thus our equation demands that the path-difference in the whole

course of the rays be equal to a wave-length, or a multiple of the wave

length (that is
,
h must be an integer). In this case we get an amplifica

tion of intensity through interference, that is
,

a difi°1‘&Qti0n maximum
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YVe get difiraction minima, that is, a neutralisation of intensity by
choosing h = Q

»
,

or h = an integer + Q
.

In the first place, equation (1) shows that the diffraction grating is a

spectral apparatus, inasmuch as it gives for each wave-length A a definite
angle of diffraction. Hence incident white light is analysed into its

spectral components. Again, red is more strongly diffracted than blue.
For h = 1

, we get a spectrum o
f the first order; for h = 2
, we get one of

the second order, and so forth. Corresponding to the case h = O is direct
light, which is not resolved spectrally. On the other side of the direct
ray spectra. of the first, second, . . . order also occur, namely, for h =- - 1,

h = — 2
, and so forth. The separation of the colours (the dispersion) is

double as great for a spectrum of the second order as for one of the first
order, and so forth. Further, equation (1) tells us that the grating
constant a must be greater than A

,

but not t-00 much greater. For if

A A

a <)\, we should have ha) 1
, and hence

h
a could not be equal to

a. — 110,as is demanded by (1) (since 0.
— 0.0, being the dilference between

two cosines, is < 1). If, on the other hand, a >)\, then a — 0.0 will
become very small for moderate values of h

,

and the spectra of first,

second, . . . order, if caught on a screen, would lie very close to the
direct light; the dispersion would be insuflicient and the grating would
fail to be of use as a spectral apparatus. In the case of Rowland gratings,

which are of perfect construction

g

amounts to less than 10 units.

Besides the grating constant a, a decisive feature for the excellence of
a grating is the number of lines N of the grating. It conditions not only
the brightness of the difiraction spectra, as is immediately apparent, but
also the resolving power of the grating, that is

,

the power to separate
and make measurable spectral lines whose wave-lengths differ only
slightly from one another. The resolving power is given directly by the
number of lines N.
From the simple line-grating we pass on to the crossed zratinz, or

lattice. Every one knows the beautiful diffraction spectra that are pre
sented to the eye when we look at a distant source of light through
gauze. We shall confine our attention in particular to a quadratic
system of fine apertures, that is, we suppose the threads of the web or
network to nm at right angles to one another and suppose them to be

comparatively thick, so that the intermediate spaces that let through the
light may be regarded as mere points. The distance between each two

neighbouring apertures is to be called the “ lattice constant" a. In
Fig. 29 we take two rows of such apertures as our a:- and y-axis; we
draw a 2-axis perpendicular to both. We cannot picture the course of
the beam for the incident and diffracted rays since their paths lie in space.
Nevertheless we may say exactly as in Fig. 28 let 0.0, B0 be the direction
cosines of the incident ray with respect to the a:- and y-axis, respectively;

8
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let 0., ,8 be those of the diffracted ray. In the diffracted ray the con
tributions of all apertures are to strengthen one another additively as a
result of the inference. For example, let us consider the contributions of
1 and 2. If they strengthen one another then

a(a-¢10)=h,)\ . . . . (2)

where hl = an integer. The projection of the distance a of the lattice

points 1 and 2 on the incident and the diffracted ray gives us precisely
Fig. 28 (only that, where necessary, the upper and lower half-planes in

Fig. 28 must now be considered inclined to one another) and thus proves
the truth of (2). In the same way the contributions of 1 and 2’ are to
act additively through interference. To assure this, we must have

(l(fl—,B0)=h2>\ . . . . (2')

where h, = an integer. This equation, too, may be read off from Fig. 28, if

we project the distance between 1 and 2’ on the incident and the diflracted

ray. But if 1 acts together with 2 and 2’ to produce increase of bright
ness as a result of the interference, then every

Y
opening acts in the same sense, since, then, the
difference of path between each two openings is

equal to a whole number of wave-lengths.
Likewise the lattice (crossed grating) resolves

the incident light into its spectral components.
For, from equations (2) and (2'), if hl and kg are

‘ 2 3 4
given, there is defined for each A a different direc

Fm“ 29_
tion of the difiracted rays. We construct the path
of this ray as follows. We describe about the

ax-axis of Fig. 29 a cone such that the cosine of its angle of aperture is
equal to the direction cosine a, as obtained from equation (2). In the
same way we describe about the (1/-axis a cone which is similarly de
termined by the direction cosine B given by (2'). These cones intersect
in the ray whose position we require (as well as in the ray that is sym
metrical to the latter with respect to the my-plane, the lattice acting, so to
speak, as a reflecting plane). Our construction holds for a definite wave
length /\. For a new A the apertures of the cones must be altered to accord
with (2) and (2'), and thus we get a new direction for the diffracted ray.
Hence, for given values of hl and ll/

2 we obtain a spectrum, which cor
responds to the two order numbers h,, hz, and by varying hl, h, we get a

two-fold manifold o
f spectra. Each of these spectra repeats the complete

series of spectral colours from red (on the outside) to violet (on the inside),
with the exception of the spectrum (O'O), the continuation of the incident
ray, which is not analysed in this special case. The spectra (1'0), (2'0),
(3'O) . . . lie in the plane through the incident ray and the as-axis; the
spectra (0-1), (O'2), (O'3) . . . lie in the plane through the incident ray

._
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and the y-axis. The spectra (1'1), (2-2), (3'3) . . ., further, are situated
in the plane through the incident ray and the bisectors of the angle between
the ze-axis and the y-axis, and so forth for the other spectra. Besides the

spectra (+ hl, + hi), there are, alloted to the other quadrants of the ay
plane, spectra (+ hl, - h2), (- h,, + I112)’ and (—_h1, — he). As in the
case of the line-grating we must have a > A but we cannot allow a >A.
The equations (2) and (2’) comprise the whole theory of the crossed grating
or lattice, just as equation (1) comprised the theory of the line-grating.
Concerning the resolving power of the lattice, the numbers N1, N2 of the
lattice aperture in the one or the other direction serve as indices.
From the crossed grating or plane-lattice we pass on to consider the

case of a space-lattice, for example, a cubical space-lattice. We may
imagine that there is added to the quadratic system of openings of Fig.
29 a whole system of similar systems placed one behind another at equal
distances a-. For this purpose we prefer to talk, not of “ apertures,” but
of “lattice-points," which act as “diflraction centres" or as “scattering
points.” Thus we have a cubical system of lattice-points, of which each
two neighbours are separated by a distance equal to the lattice constant a

along the direction of each axis, 0:, y, z. VVe allow light to fall into the

system of lattice-points in the direction an/ioyo (these being the direction
cosines with respect to the three axes, respectively). At each of our

lattice-points a fraction of the incident light will be diffracted or scattered
in all directions, for example, in the direction afiy. At a great distance
from our space-lattice the waves that emerge in the direction afiy from
each lattice-point form a homogeneous ray, namely, the ray a,8y diffracted

by our space-lattice. (In order that this ray might form without obstruc
tion in all directions, it was necessary to replace the idea of “diffraction

apertures" by that of “diffraction centres,” otherwise the formation of
the diffracted ray would be impeded by the diffracting screens that we
should have to assume between the diffraction apertures.)
The diffracted ray a,B'y, however, is appreciably bright only when the

contributions of all the lattice-points act together in the same phase in

producing it. For this it is necessary that the path-difierence of the rays
from neighbouring lattice-points be a whole number of wave-lengths.
Thus we arrive at three conditions, one for the direction of a: (that is, for
two neighbours that are at a distance a from one another in the direction
of 1'), one for the y-direction, and one for the 2-direction :

tl(a.
-—-
0.0)
= liq)» . . (3)

<1(B
"
B0) = huh - (3')

0.('y — yo) = ha/\ . . . . (3”)

“Then these conditions are fulfilled, the effect of interference is to

amplify the intensity, and indeed, not only of that due to two neighbours
but generally, to that due to any two of our lattice-points, since for them

the path-difference is a whole multiple of the difference of path for two



116 Chapter III. X-ray Spectra

neighbours. These rays that are thus intensified as a result of inter
ference from all the lattice-points are, furthermore, the only ones that are

appreciably bright. For, in the case of a sufiiciently great number of

lattice-points (N 1, N2, N3 in the three co-ordinate directions), rays that are
intensified through the combined action of only a fraction of these lattice

points (for example, only the lattice-points, N, and N2) would appear
infinitely faint compared with those discussed above.

Equation (3) comprises the essential features of the theory of the space
lattice. We read out of it that : every interfering ray is characterised by
three whole numbers (hl, h2, hx) the order numbers of the interference pheno
menon in question. We cannot, however, as before speak of a spectrum of
the order (hl, h.2, ha). The light that is difl'ra.cted by the space-lattice no

longer contains all the wave-lengths in juxtaposition, as happens in the
case of the crossed grating or plane-lattice; it is, on the contrary, mono
chromatic light.

From equation (3) it follows that

A A
@=-1.,+h.,;. /1=a,+h.§. r=v0+h.-;&- <4)

Moreover, we have the Pythagorean relation between the direction cosines :

11° + B‘: + 7
‘-
'

= 1
, and likewise 0.3 + B3 + 7
3 = 1 . (5)

By squaring each member of (4) and then summing, using (5), we get

1 - 1 + 2<1».a.. + ma. + h..a>§+ (hi + +

and hence,

h_ hi"-o + he/go + :i“/0A _ - 2a . . . (6)

Thus, the wave-length that can be difiracted in the interference ray of
order (hl, h-2, ha) i

s fully determined for a given direction of incidence.
We may express this in some such terms as these: The third condition
that becomes added to those of the plane-lattice, when we deal with

space-lattices, singles out one wave-length from al1_ those of the plane
lattice, and excludes the others. We illustrate this by a conical con

struction analagous to that which we have already used in the case of the

plane-lattice. About the :1:-, y-, z-axis in turn we describe cones whose

angular apertures have cosines such as are demanded by equation
Two of these will intersect, whereas the third will not, in general, pass

through a line of intersection of the other two. But the latter condition

is absolutely necessary if the amplification produced by interference is to

reach full strength. Hence, for an arbitrarily chosen A
, there will, in

general, be no diffracted ray. By altering A we also alter, according to
(4), the conical apertures continuously. We may carry out the change of

A in such a way that the sheet of our third cone gradually approaches the

intersection of our first two cones. If we proceed in this way we shall

\ aI
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succeed, at a certain value of /\, in making all three cones have a common
line of intersection. This is the interference ray (afiy) ; the corresponding
wave-length is that which was calculated in (6).
From equation we shall straightway make a further deduction.
For this purpose we introduce the following symbols (cf. Fig. 30) : 20 is to
denote the angle between the incident and the diffracted ray, that is

,
6 is

the angle which the incident or the dilfracted makes with the middle
plane MM between both. We then have

cos 20 = uao + 3,80 + yyo . . . . (7)

By squaring each member of (3), then summing and using (5) and (7),
we get

(1
1 —

<10)’+ (B

-
Bu)” + (7

—
70)”
= 2 - 2<=<>$29= 4BiI1’9

2- <1»; + +
t->g.,. <8)

Taking the square root, we get

We shall find that this equation will be of funda
mental importance in § 3

.

In the region of optics our space-lattice is

only a fiction, a model which we have conceived
so as to generalise the scheme of diffraction as .
presented by ordinary diffraction gratings. The
art of the mechanic and of the weaver are of no
avail for producing such space-lattices. In the
realm of Rontgen radiation, the position is differ
ent. The brilliance of Laue’s idea consisted in
his recognising that the space-structure of

crystals is just as happily adapted to the wave

length of Rfiintgen radiation, as the structure of

a Rowland grating was adapted to the wave-length of ordinary light,
that is, that we can take directly out of the hands of Nature the diffraction

apparatus necessary for Rontgen rays, in the form of one of her master

pieces, a crystal of regular growth.
It was a favourite idea of mineralogists and mathematicians (Hauy,

Bravais, Sohnke, Fedorow, Schonflies) to account for the regular shape
and structure of crystals by the regular arrangement of their elements of
structure, of their molecules or atoms. According to this, a lattice of the
cubical type would have to be ascribed to a crystal of the regular or
cubical system. If we determine the lattice constant a of such a crystal
from the density of the crystal and the mass of the atoms composing it

(as we shall do at the end of §3 of this chapter for the case of rock

salt), we find that a is of the order of magnitude 10-8 (for example,
a = 5'6 . 10"“ in the case of NaGl). This is the same order as that

"0 50 70

F10. B0.
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which has been found for the sphere of action of molecules, according to
various methods of determination founded on the kinetic theory of gases.
On the other hand, we saw at the beginning of this section that the wave
length of Rontgen rays is to be placed between the orders of magnitude
10-*3 and 10-9 cms. (4 . 10-9 for a hard tube, according to a rough calcula
tion based on the diffraction). We assert then that the lattice constant a
of the crystal is greater than the wave-length A of the Rontgen rays, but not
too great in comparison with them. Thus a and A are related to one
another in just the way that we found above is necessary if a diffraction
apparatus is to be effective. We can read the same condition out of

equation (9) ; if
2
is a proper fraction that is not too small, we get for the

angle of diffraction 20, a possible and not too small value. The atoms
that compose our space-lattice are directly effective as lattice-points. We

/, encountered in Chapter I, 5,
their property of forming diffrac
tion (or scattering) centres for
Rontgen rays; there we saw that
their scattering is proportional to
the number of electrons Z con
tained in them.
Figs. 31, 32, 33 are reproduc

tions of the famous photographs
taken by Laue, Friedrich, and
Knipping early in 1912. The
experiment was arranged very
simply. By means of lead guides
(screens with holes), a fine beam
was separated out of the light
from an X-ray bulb. This beam

falls on a crystal plate—in the plates reproduced these were of zinc
blende, ZnS—about 0‘5 mm. thick, 5 mm. wide and long, which was
mounted on a spectrometer table, and capable of being accurately
adjusted with it. When the incident “ primary " ray traverses the
crystal plate, secondary

“ interference " rays are deflected out of it owing
to diflraction by the atomic lattices of the crystal. These interference
rays emerge from the crystal as a widely divergent beam of many mem
bers. Several centimetres behind the crystal is the photographic plate.
On it there is traced besides the primary ray (greatly magnified owing to
irradiation) the track of the beam of interference rays. In the first
photographs the time of exposure was many hours ; the tube was run with
about 3 milliamps. and 60 kilovolts. The plate and the crystal were
protected by being surrounded by lead.
In Figs. 31 and 32 the crystal plate was cut parallel to the edge of the

cube and placed at right angles to the incident ray, with the difference
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that in Fig. 31, the photographic plate was 3'5 cms. from the crystal,
whereas in Fig. 32, the distance was only 1 cm. Thus Fig. 32 is a section
through the same interference beam as Fig. 31, but greatly compressed
and reduced in size. In Fig. 31 as well as in Fig. 32 the primary ray
travelled in the direction of the four-fold axis of symmetry (edge of the

cube). Correspondingly, the respective diffraction pictures are of four
fold symmetry. They have four planes of symmetry, two parallel to the

edges, two parallel to the diagonals of the cube surface. Every spot that
lies on one of these planes of symmetry in the picture occurs four times
whereas every other spot occurs eight times. Each such group of con
nected spots that again arises from itself by rotation and reflection
shows the same intevzsity and is marked on the plate by the same wave

length. If the photographic plate and our retina were sensitive to the
imaginary colour of Rontgen rays, we should see each such group of

points shining forth in one pure colour and each two different groups of

\
\

Fio. 3-2. FIG. 33.

points in general emitting different colours. For example, there belong
to the two particularly strongly pronounced 8-groups of spots in Figs. 31

and 32, the fractional numbers

A 2_ = .._ (1
(L 27

an

Since the lattice constant for zinc blende is found to be

a = 5'43 . 10's cms.

we get the corresponding wave-lengths as

A = 4'02 . 10-“ cms. and A = 3-11 . 10'” cms.

In Fig. 33, the crystal plate was cut parallel to a space diagonal of
the cube, which represents a triply symmetrical axis for the substance of

the crystal. The primary Rontgen radiation again fell perpendicularly on

the plate, and thus traversed the crystal in the direction of one of its three

fold axes. Corresponding to this, Fig. 33 is of three-fold symmetry: it

2
1
> ll

3
%
!» espectively.
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possesses three planes of symmetry inclined to one another at an angle of
120°. In general, each spot occurs six times, but in a particular position
on one of these planes of symmetry it occurs three-fold. Each 3- or 6

group of spots, respectively, is produced by the same wave-length. For
example, in the case of the very prominent 6-group of spots we have

Q
I>
’ ll

~a<0 kc
“
a
ll A = 3'30 . 10-9 cms.

The wave-lengths that are singled out in this way by the crystal
structure and are diffracted to definite points of the photographic plate are
all contained in the primary bundle of rays, just as the colours of the rain
bow are contained in the white light of the sun. In Laue’s method the
contirmoas spectrum is used to produce the interference picture. This
continuous spectrum, however, is not, as in the case of the line-grating or

plane lattice (crossed grating), mapped out completely, but certain in
dividual wave-lengths (more accurately, several narrow regions of wave

lengths) that are appropriate for the crystal structure are selected from
the continuous manifold of the spectrum and made prominent. The

prominence of certain wave-lengths in the interference picture is partly
due to the fact that they are particularly strongly represented in the

primary spectrum (the region of maximum intensity of the continuous

spectrum), and partly due to the fact that the photographic plate reacts
particularly strongly to them (selective sensitivity of the silver bromide).
Lane's method tells us nothing of the livw-spectrum, of which the discrete

wave-lengths are not in general adapted to the crystal structure. Since
the line-spectrum, as the characteristic radiation of the atoms of the anti
cathode, is particularly important for the study of atomic structure, we
shall not require to draw further from Lane's original method. Of course,
the spectrometric methods that we shall discuss in the sequel will differ
from Laue's method only in the mode of arrangement, not in the root
idea. This idea, of using the crystal as an analyser for Riintgen rays, is

as essential in them as in the original method.
So far we have given Laue’s theory for the case of the regular system

with the lattice constant a. How this is to be extended to the other
systems of crystals suggests itself to us immediately. In the case of the
rhombic system, which is built upon three mutually perpendicular axes, it

is only necessary to replace the quantity a in equation (3) by the lattice
constants, a, b, c, in the directions of the three axes respectively. We
then get in place of equation (6)

gl‘1<>+€:3B0+%3'7u
10"=‘2

h” IL? h-'—' ' ' ()
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In the same way, equation (9) now becomes .

- _ X li'~'#lCl?" h;-'
s1n0-§\LT_:+%7_,-+6,‘

.
I

(11)

The case of the tetragonal system is given by setting b = a. In the
remaining crystal systems, in which the axes of the lattice are in general
inclined against one another (oblique), the direction angles of the crystal
axes appear in the corresponding formulae, besides the lengths of the edges.
The roads of research opened up by Laue's discovery branch off in two

directions. In one case u'e measure out the Riintgen spectrum of a. given
tube and of an anti-cathode of given material in terms of the lattice con
stants of a suitably chosen crystal. On the other hand, we measure out
the structure of a given crystal in terms of a suitably chosen wave-length of
a Rent-gen ray. The results of the former type of research form the

proper content of the present chapter. The following section gives a few
indications of the second type of research, which does not belong to our
real theme.

§2. Results of Crystal Analysis

In our description of Lane's discovery we have tacitly assumed the
space-lattice to be formed exclusively of similar lattice-points, for example,
as a simple cubical lattice. In reality, this is not the actual case. In
dealing with non-elementary substances we are always concerned with

lattices of different types of atoms fixed within each other. The structural

elements of the crystal lattice are not crystal molecules but crystal atoms,

The conception of molecules finds a place only in the gaseous and liquid
state (in the latter, on account of varying polymerisation, it is already
somewhat indeterminate), whereas in the solid, that is, the crystalline
state, it is essentially resolved into the notion of atoms in juxtaposition.
\Ve do not deny that, in the structure of crystals, groups of atoms occur
that are more closely related among themselves than with the remaining
atoms of the crystal (for example, the group CO3 in the structure of fel

spar CaCO3). Nevertheless we have a certain right to say that the whole

crystal forms a single giant molecule. It would be arbitrary and would
set an artificial restriction on many of the crystal models known at pre
sent to isolate from the totality of systematically arranged atoms, in
dividual crystal molecules, corresponding to the chemical formula.

Accordingly, the object of crystal analysis is not only to determine the
lattice constants of the system (linear and angular dimensions), but also
to determine the mutual position of all atoms that participate in the

crystal structure. The possibility of differentiating the various atoms
from one another depends on the fact that their power of dilfracting or

scattering Bbntgen rays varies. As we know (cf. Chap. I, § 5, p. 30, and
Note 2), this scattering power is proportional to the number of scattering
electrons contained in the atom, that is proportional to the atomic
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number Z. Therefore the heavier atoms contribute more to the inter
ference of X-rays than the lighter atoms. More precisely expressed, in
the case of polar salts it is not, as we already know, the atoms themselves
but their positive or negative ions that form the elements of structure of
the crystal.* Hence we must regard as the measure of the scattering
power, not the electronic number Z of the neutral atoms, but the number
of ions, which difl'ers from the former by one or, in the case of multi
valent ions, by several units. For example, in the case of rock-salt,
NaCl, Z = 11 for Na and Z = 17 for Cl. But since the electropositive
Na gives one of its electrons to the electronegative Cl, the scattering
power of the ions actually present in NaCl is 10 in the case of Na*, and
18 in that of Cl". In sylvine, KCl, the two ions K* and Cl- have an
equally great scattering power, since the electronic numbers, Z = 19 for
K, and Z = 17 for Cl, equalise themselves in the corresponding ions to
the electronic number 18 which is that of the argon configuration (cf. the
final section of the preceding chapter, p. 103).
For a more detailed investigation into the structure of crystals, the

use of the line-spectrum proves to be more productive than that of the
continuous spectrum. Whereas in La.ue's method the wave-length varies
from spot to spot and has to be carried along as an unknown in the

interpretation of the interference picture, we avoid this unknown if we
use the line-spectrum, and thus the problem is simplified. We shall see
in the next paragraph how the experimental arrangements have to be
altered for this process. The successes which Sir William Bragg and his
son, Professor W. L. Bragg, have obtained in investigating crystal
structure is widely ascribed to the fact that they used the “reflection

method” as contrasted with Laue's “transmission method." But this

view is erroneous. The advantage and the simplicity of their method is

due essentially to the fact that they used discontinuous line-spectra.
Thus the antithesis is not: reflection method and transm-iss1'0n metlwd, but

discontinuous spectrum and continuous spectrmn.

A few examples will serve to illustrate the present state of crystal

analysis. NaCl consists of a cubical lattice whose points are formed by
alternate Na+- and Cl--ions, in such a way that each Cl-ion is surrounded

by six Na neighbours (cf. Fig. 34, in which the two kinds of ions are re

presented by white and black beads respectively).
The Na-ions, taken alone, form a “face-centred

" cubical lattice, like

wise the Cl-ions taken alone. The lattices, both of which are congruent
in themselves are placed within one another so that the points of one

space-lattice occupy the centres of the edges of the other space-lattice.
KCl, KBr, KI, LiCl, RbCl, and PbS (galena) have the same structure, the
magnitude of a changing gradually.
On the other hand, in CsCl, the Cs-ions, for their own part, form a

" This beautiful and obvious result has been proved experimentally for the case of
LiF by Debye and Scherrer (Phys. Zeitschn, 19, 1918, p. 474).
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simple cubical lattice, and the points of each lattice are situated in the
middle points of the elementary cubes of the other lattice. Since it is
known that CsCl becomes a modification of another form at the tempera
ture 479° C., we may assume that this other modification will be of the
same face-centred type as the other alkaline halides. Further, we may
assume that NaCl, etc., may also occur in two modifications but that the

point at which the transformation into the simple cubical type takes place
lie considerably below the room temperature. This assumption is sup
ported by the fact that in the case of NH4Cl both modifications are
known and have been measured by means of Rontgen rays: at 20° C. the

simple cubical form was found, whereas at 250° C. the face-centred type
was found to be present. The point of tranformation is at 184° C.

NH4Br and NH4I gave similar results, the transformation points being
137° C. and — 18° C. respectively.

Most of the regular elements, for example, Cu, Ag, Au, Al, Ni, Pb,

and Th, crystallise in the form of simple face-centred lattices, as is
shown in Fig. 34, if we imagine one type of ions removed from it. As,
at present, we can make no certain statements about the state of ionisa
tion of their structural elements, we speak, in
this case, of atoms rather than of ions, without

'

wishing to indicate, however, that they are

necessarily uncharged. 1
It is characteristic of the stability of the

face-centred arrangement that the lattice struc
ture and the lattice distance remain quite un-

FIG 34
altered even when the metals are produced by
“spotting” or in sizes extending to the colloidal state. The individual
particles in this state appear to consist only of a few hundred atoms.
Tungsten forms a space-centred lattice; its atoms are situated in the

corners and in the centres of the space of the cube; the centres of the
surfaces remain unoccupied. The same type of lattice has been found
in the case of Li, Na, Fe, Cr, Mo, and Ta. A peculiar combination of
space-centred and face-centred lattice occurs in cuprite, CuO2. In it the
Cu-atoms form a space-centred lattice, whereas the O-atoms form a face
centred lattice. Their relative position may be described thus: connect
the centre of a cube that is occupied by a Cu-atom with its eight corners;

place in the middle of each alternate semi-diagonal an O-atom, leaving
the intermediate diagonals unoccupied. In this way each Cu-atom is
surrounded by a tetrahedron of O-atoms: all O-atoms together form a
face-centred lattice, which is interlocked with the space-centred lattice
of Cu-atoms.
A series of metals that crystallise hexagonally, namely, Mg, Zn

(probably also Cd), and Be have a lattice form that is built up as follows:
Fill up a plane in the form of a regular triangle with spheres that touch
one another; place a second layer of spheres over these according to the
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same scheme, so that they sink into the gaps of the first layer; the third

layer then lies vertically above the first and sinks into the gaps of the
second; the fourth layer lies vertically over the second, and so forth.
The middle point of the spherical pile then corresponds “ essentially

"
to

the mid-points of the atoms in the hexagonal metals quoted (this is not
to be taken as meaning that the surfaces of the atoms touch in just the
same way as the spheres in our picture). “Essentially” signifies that
the arrangement in the form of regular triangles is exactly realised not

only in the horizontal plane but that in the vertical direction, too, the
distance between the layers bears almost the same ratio to the side of the

triangle as in the case of the spherical pile, with slight deviations between
the individual elements.
From the point of view of crystallography this arrangement could be

resolved into two interlocked hexagonal lattices of the simple Bravais

type, the one consisting of the layers 1, 3, 5, . . ., the other of the layers
2, 4, 6, . . . The circumstance, however, that just in the case of

elementary substances always two such hexagonal crystals appear in
conjunction, and that the ratio of their axes approximates to that of our

spherical pile shows clearly that, not the resolution into two simple
hexagonal lattices, but our description by means of the spherical pile is,
from the physical point of view, the description appropriate to the nature
of the case.
The relationship that we get between this view and that given by the

face-centred lattice, the other form in which simple elements present
themselves, is also remarkable. For instance, if, starting from our first
and our second layeis, we build in the next layer not so that it lies

perpendicularly over the first layer, but over the gaps left by the second
layer, that is, so that the fourth, fifth, and sixth layers will be the first
repetitions of the first, second, and third layers, we get exactly the face
centred lattices of the regular type built up on the octahedral surface as
base. Thus the hexagonal and the face-centred regular lattice form pass
into one another by means of a system of regular slidings along the
octahedral surface, or, as we may say, by a sort of twin-formation. The
face-centred regular lattice, like the double hexagonal lattice, may be
regarded as a special form of spherical pile.
Continuing from NaCl we may describe the structure of CaCO3 in

the following way: Let us imagine the NaCl-lattice placed with its space
diagonal upright and let us replace Na everywhere by Ca, and Cl by C.
Let us then surround each C-atom (cf. Fig. 35) by a wreath of three
O~atoms, whose plane is perpendicular to the vertically placed diagonal.
As a result of this arrangement of the three O-atoms about the vertical
axis, more space, so to speak, is used up in the horizontal plane than in
the vertical axis. The original cube, therefore, becomes extended hori
zontally and becomes a rhombohedron, as is well known from the sur
faces -of cleavage of fluor-spar. Carbonates and nitrates that are
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isomorphic with fluor-spar have the same structure with slightly changed
rhombohedral edges.
The structure of zinc-blende may be described as a cubical face

centred lattice of Zn++-ions and a similar lattice of S ' ‘ -ions, which is
displaced with respect to the former by a quarter of a space diagonal.
The- polar nature of this axis that shows itself in the crystal form of
zinc-blende (tetrahedral hemihedrism of the regular system *) and in its

physical properties (pyro- and piezo-electricity), exhibits itself strikingly
by the uneven occupation of the space-diagonals by Zn- and S-ions.
In order not to confuse Fig. 36, we have filled in only the Zn- and S-ions
on a diagonal (placed vertically) and have only sketched lightly the edges
of the cube of the corresponding Zn- and S-lattices.
From the lattice of zinc-blende we get that of fluor-spar, CaF2, by sub

stituting Zn++ by Ca++, and S- " by F" and then adding a second
ion, F -, symmetrically on the other side, which is diametral to the first

'2

Zn

FIG. 35. Fm. 36.

F -. As a consequence of this symmetrical arrangement F " Ca++ F '
of the three-fold axis, its polar character is destroyed.
From zinc-blende we pass on to the diamond by replacing both the

Zn- and the S-ions by C-atoms. The polar nature of the three-fold axes
is thus again destroyed ; the symmetry becomes holohedric, which is as it
should be for diamond. But further: each C-atom lies at the centre of a
regular tetrahedron whose corners are occupied by C-atoms. Cf. Fig. 37
which represents a tetrahedron of this type that has been cut out of the
crystal structure. The old chemical idea of the tetrahedron valencies
of carbon (van ’t Hoff and Le Bel) is thus beautifully confirmed by the
crystal modelt of diamond. Of course we have had the same relative

" Cf. W. H. Bragg and W. L. Bragg, “ X-Rays and Crystal Structure," Bell & Sons,
p. 146. This book contains a detailed discussion of the points enumerated in this
section. H. L. B.
1-Proved by W. H. Bragg and W. L. Bragg, 1913; it was surmised by A. Nold

[Chem. Ztg., 29, 174 (l905)] and A. Schonflies (Vtrrtrage fiber die kinetische Theorie der
Mater-ie, Gottingen, 1913, Teub. S. 66 der 1. Aufl.).
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position of the atoms already in the case of zinc-blende, as its constructed

space-model (in contradistinction to our schematic sketch of Fig. 36)
immediately shows: in this case, too, each Zn-atom lies at the centre of

a tetrahedron of S-atoms and vice versa. The same lattice as that of
diamond is possessed by the element Si, which is chemically related to it.
If the diamond model is uniformly stretched in the direction of the three

fold axis, which was placed upright in Fig. 36, we get from the cubical

c
crystal form one that is of rhombohedral symmetry.
This form belongs to Bi, Sb, As, the stretching in

creasing gradually. Since in the new form of
symmetry the two face-centred lattices that are
interlocked in diamond are no longer determinate

C but may be slid along the three-fold axis, their dis
O 0 tance from one another need no longer, as in the

Fm 37_ cubical case, amount to a quarter of the principal
diagonal; indeed, in the case of Sb, for which it has

been determined, it appears to be considerably greater.
The structure of the other modification of carbon, graphite, has also

been ascertainable by means of Rontgen rays. Its horizontal planes (base
planes, planes of cleavage of graphite) are hexagons that join up with one
another as in the case of honeycombs (cf. Fig. 38). The crystal system
is rhombohedral (trigonal). In this case, too, the carbon is tetravalent in
action. But only the three horizontal
valency bonds that connect one of the

F

hexagonal points with three neighbours are
equal to one another; the fourth valency
bond, directed upwards, which links up the
point of the one horizontal plane with a
point above or below it on the neighbouring
horizontal plane, is much longer and
hence much weaker. The exceptional
tendency of graphite to cleave along the

basal plane is connected with this fact.
'We get this graphite lattice from the

F|G. 38.two face-centred regular component lattices
of diamond if we displace these relatively,
not as in Fig. 36 by a quarter of the greatest diagonal, but by a third. In
this reciprocal position the middle C-atom in Fig. 37 moves into the basal
plane of the tetrahedron shown, and at the same time the system of
tetrahedral diagonals darkened in Fig. 37 passes over into the hexagonal
system of axes shown in dark type in Fig. 38. Finally we have yet to
stretch the whole lattice uniformly in the direction of the vertical axis
without altering the horizontal projections, which are exactly equal in the
case of diamond and graphite.
Moreover, so-called amorphous carbon derived from the most varied



§3. Methods of Measuring Wave-lengths 1927

sources has shown itself to be micro-crystalline graphite on examination

by Rontgen rays. Hence there are only two chemical forms of carbon :
the diamond lattice, tetrahedral in structure, being the type of aliphatic
combinations of carbon, and the hexagonally constructed graphite lattice,
the archetype of all aromatic compounds of carbon (Debye).
By the same process of sliding as that by which we passed from the

face-centred lattice of the regular elements to the hexagonal lattices of
Zn, Mg, etc., we clearly also get from the two interpenetrating face-centred
lattices of diamond to a new lattice of hexagonal structure. The tetra
hedral arrangement of atoms is not hereby destroyed; that is, we get a
lattice in which, as in diamond, each atom is connected by four valency
links with its neighbour atoms. It was natural that, originally, we were
inclined to attribute this lattice—we call it “ pseudo-graphite lattice

"

to graphite. But, although later experimental investigations of graphite
disclosed a different lattice system, our pseudo-graphite lattice seems very
probably to belong to a second modification of ZnS, namely, wurtzite; it
has been shown with certainty to exist in the case of ZnO, red zincite.
Of the other dimorphic crystals TiO., has been examined in the form

of anatas and rutil: both are tetragonal but their axial ratios differ and
likewise their lattice structures.
The knowledge of a great number of other crystals is so far incom

plete, that is, only the position of individual atomic groups and the
lattice distance of their crystallographic basal form is known. Among
these are ice, quartz, sulphur, and the crystals of the aluminium group.
Figures and references about the lattices above described are added

in note 3 at the end of the book.*

§ 3. Methods of Measuring Wave-lengths ’r

Whereas in the first paragraph we have discussed the diffraction by
lattices exclusively from Laue’s point of view, we shall now pass on to
that of W. H. and W. L. Bragg. For this purpose, we prove the follow
ing theorems :——
1. The median plane MM between the incident ray (aofloyo) and the

diffracted ray (a.,8-y) is a net plane of the crystal, that is, a plane that cuts
an infinite net of points out of the crystal lattice, and may therefore be
regarded as a possible crystallographic boundary surface.
2. The diffracted rays may be regarded as being generated by a reflec

tion at this net plane.
In proving 1, we restrict ourselves, as in the first section, to the

regular system.

' Cf. also, besides the book by W. H. and W. L. Bragg, the consecutive account
in the Zeitschrift iiir Kristallographie, edited by P. Niggli, particularly the concluding
sections of each issue since 1921.
.1-The experimental methods of Riintgen ray s ectroscopy have been enumerated

in detail by E. Wagner, Physika]. Zeitschr., 18 Jahrg" 1917, p. 405, and M. Siegbahn,
Jahrb. d. Radioaktivitiit u. Elektronik, 13, 296 (1916).
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In Fig. 30, above, let the distances

OP = OQ = 1.

If we choose O as. the origin of a rectangular system of co-ordinates,
which coincides with the crystal axes, then the co-ordinates

of P are a,,,B0-yo, and of Q are afly.

Let the co-ordinates of any point M in the median plane be 1r, y, 2. The
median plane is the geometrical locus of equal distances, PM = QLI.
Thus its equation is :

'<w- a..>2+ <
1
1

-a>2+ (Z —*/@)*=(w— ¢>='+ c -/1>=+<z -yr
or, after reduction,

("
- _

“elm +(/‘I
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Y _
Yolz = 0

If we insert into this the interference conditions (3) of § 1
, we get

hlx + h2y + hsz = O . . . . (1)

Let n be some common division of the order numbers hl, h2, h3, that is

h
l =nhf, h
n
z

= nh?_.', h
a = rzhff . . . (2)

whereby hf, h?_,‘,hf} have no common factor. Equation (1) then states
that a plane that is parallel to MM has intercepts on the crystallographic
axes that are inversely proportional to the integers hf, hf, hff, which are
prime to one another. The numbers hf, I11‘, 113,‘;are called the indices of
the surface MM. The fundamental law of crystallography, the “law
of rational indices ” states that every surface that has integral indices is

a possible surface of a crystal. (As in the case of all physical laws in
which rational ratios occur, rational indices denote such as are repre
sentable by the ratios of small integers.) From the point of view of the
lattice idea, this law is self-evident. It states nothing else than that
every boundary surface of a crystal is occupied by a full net of lattice
points.
We have thus seen that the median plane MM between the incident

and the difiracted ray is a net plane o
f the crystal: the order numbers

hl, h2, ha o
f the interference phenomenon determine simultaneously the in.

dices hf, hif, o
f this net plane.

The incident and the diffracted ray make equal angles with this plane,
namely, the angle 0 in Fig. 30. Thus there is nothing to prevent us
from interpreting the phenomenon of diffraction as a reflection at this
net plane. This is, however, not surface reflection, but space reflection.
On the one hand, it is not necessary that the reflecting net plane of the
crystal be a bounding plane of it : the reflection takes place just as well
at the inner virtual crystal planes as at the external real ones. On the
other hand, the whole system of parallel net planes reflects concurrently
with the individual plane MM. As we saw in the first section, all lattice
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points on which the primary ray impinges contribute to the interference
phenomenon. The lattice-points contained in the individual net planes
would furnish only a vanishing fraction of the whole intensity. Even in
the particular case in which MM is a bounding surface of the crystal, the
intensity does not depend on the quality of the surface, as is the case in
optical surface reflection; we may roughen the boundary surface without
thereby making the reflection weaker or more diffuse. Thus the reflected
intensity is rleri-ved from the interior of the crystal.
But, further, we are here dealing not with a general reflection of all

icare-lengths, but with a selective reflection of certain favoured wave-lengths.
“ \\’hite light " is not reflected back as white light, as occurs in optics,
but reappears “ coloured

"
(we are applying the language of optics here,

as on p. 119, to Riintgen light). \Vhereas all other wave-lengths remain
appreciably united in the primary ray, and traverse the crystal in a
straight line, certain wave-lengths, of appropriate length for the lattice
structure, are selected by the reflection. This selective colour of inter
ference rays has already been met with in the first section.
Let OA, OQ be the incident and reflected rays at the lattice-point A,

and let PC, CR be the incident and reflected rays at the lattice-point C,
which is situated in the plane parallel and adjacent to MM. The
difference between the lengths of path of both sets of rays is found by
dropping from A the perpendiculars AB and AD on to PC and CR. The
difference of path is, if ¢l denotes the distance AC between the net planes,

BC + CD = 2d sin 0.

This must be a whole multiple of /\ if the two reflected rays AQ and CR
are to he in phase and are to strengthen one another by interference.
This gives us the fundamental relation

2dsin0=n)\ . . . . . (3)

But in deriving this relation we have made an unnecessary specialisa
tion. It is not necessary that the two lattice-points A and C, in Fig. 39,
which are being compared, lie directly behind one another, that is, on
the same normal to MM as we found it convenient to assume for the
sake of simplicity in the figure. Rather, we may displace the point C

arbitrarily in its net plane to C’. The course of the rays P’C’ll.’ (dotted
in Fig. 39) clearly has the same optical length as the course PCR, pro
vided that the two points PP’ and RR’ are assumed, in particular, to lie
on a wave plane through the incident and reflected ray, respectively.
This is shown clearly in Fig. 40, in which the points RR’ are placed still
more specially, namely, symmetrically to PP’ with respect to the plane
of symmetry SS there drawn ; this has no effect on the phase-difference
at R and R’. We see that the optical paths PCR and lt’C’P' are images
of one another. If the two rays incident at P and P’ are in phase, then
also the two reflected rays at R and R’ will be in phase. But then it
9
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follows from Fig. 39 that in it
,

too, there is the same difference of path

between the reflected rays C’R' and AQ as between CR and AQ, namely,
the difference nk; the former strengthen one another by interference
just as much as the latter.
In fact, generally, any two lattice-points of the crystal, no matter

whether they lie on two neighbouring net planes or on two net planes

that are distant from one another by various multiples of d
,

no matter

whether they lie in the plane of incidence (that of the page) or not,

will strengthen one another by interference, provided only that the Wave
length and the angle of incidence are related to one another by the

condition postulated in (3). It is not even necessary for the points
CC’ . . . to be arranged in lattice form, that is, equidistantly, within

their net plane. What is important for reflection at the system of planes

MM is merely the regular sequence of these planes, not the regular
sequence of points within a plane of the system. The latter factor

comes into account only when we wish to change the reflection plane,

that is
,

when the crystal, besides reflecting from the system of planes
MM, is also to reflect from other net planes running through the crystal.

O C'
d

*~ d

Fro. 39. Fro. 40.

For this, that is
,

for the existence of further net planes and for their
action by interference, the necessary condition is that the lattice-points
be regularly arranged in the first system of net planes.
In optics we are familiar with the process of O. Wiener, in which, by

means of stationary waves, silver particles are precipitated in parallel
equidistant planes in a layer of silver chloride. The silver particles
succeed each other irregularly within each plane, but the planes succeed
each other regularly at a distance equal to half that between two crests of
the stationary light, that is

,

equal to half the wave-length of the mono
chromatic light used. These strata of Wiener have been used, as we
know, in Lippmann’s process of photography in natural colours. Here
we have the case assumed above of a regularly stratified system of
planes, which, for their part, are irregularly occupied by silver granules.
In interpreting such phenomena our equation (3) played a part,* long
before its importance in the realm of Rfiintgen rays could be surmised in
any way.

Of course this equation must be identical with the formulae (9) and

* In the theory of W. Zenker. Cf. his Lehrbuch der Photachromie, Berlin, 1868,
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(11) for the wave-length. In fact, on the view that the quantities
hf, Ir}, h; are surface indices we see by a simple geometrical argument
that the distance d between two successive planes of the group parallel
to MM is given in the cubic‘ and the rhombic system, respectively, by

_ 1 1 1 hf,” /r=~ —
6 ,/h,‘ + lb,‘ + h,". 5

=

$
4
, +

6+, +~cif,
. . (4)G

.+

If, taking account of (2), we introduce these values into (9) and (11) of
the first section, both these equations resolve into our present equation (3).
We see from the method by which it has now been derived, that it is not
confined to the case of the regular system but is generally valid. The
meaning, too, of the integral number n in
troduced in equation (2) (i

t is the greatest

common factor of the order numbers hl, ha,

h
x of the interference effect) i
s now also

intelligible physically: n denotes the order
number of the reflection phenomenon, that is,
the number of wave-lengths by which each
reflected ray differs from its neighbouring
rays that are reflected from the next or the

preceding net plane.
For a given angle of reflection 0 and

given distance rl between the net planes,
equation (3) determines one and only one

quite definite wave-length, A
, of the first

order (for n = 1
) that is capable of reflec

tion, and likewise one of the second, third, ,
P

/\ )4
.

2-».
. . .order,)\.3=2—1,)t3=§l,... (forn=2, "-.__%_

,

3 . . .)
. Hence if we wish to reflect the 1"’--__1_ P

whole spectrum from one and the same P

1

crystal surface, for example, in the first Fic. 41.
order, then 9 must be made variable. For
the short-wave side of the spectrum, 6 is to be chosen small, for the long
wave side it must be chosen correspondingly great. This consideration

leads us on directly to the method of revolving crystals, which in the

hands of Y/V. H. and W. L. Bragg* has led to brilliant results, and,
indeed, in the two directions characterised on page 121, the analysis of

Bontgen rays by means of crystals, and the analysis of crystal structure

by Rontgen rays. ~

Fig. 41 gives a schematic horizontal section of the arrangement of

apparatus in the method of revolving crystals. At the top the Riintgen
tube is indicated by its cathode K and its anti-cathode A. The slit S, in a

' They used the ionisation method (see below). De Broglie first used the revolv
ing crystal method for taking photograph s.
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lead plate singles out from the rays emitted from the focus of the anti
cathode a narrow beam of rays. S2 is a second small slit of lead, which
serves to limit the pencil of rays still further. This beam then falls on
the crystal Kr, which is set up on a table T, carrying vernier divisions,
in such a way that the front reflecting net_ plane of the crystal (for ex
ample, a cleavage plane of rock-salt) passes through the vertical axis of
rotation O of the vernier table. The latter is slowly turned about the
axis O within a certain range of angles. All wave-lengths of a certain
range of wave-lengths then impinge on the table successively at the
necessary angle of incidence 0 (or “glancing angle ") and are separated
spectrally by the reflection. They delineate themselves sharply on the
photographic film FF, which is best fixed (see below) along the circle
SIPPI that passes through S1; for a small range of angles, it may also
be replaced by the plane photographic plate P’P’. Now, P, is the locus
of the film, at which is marked the primary radiation of the Rontgen
tube that has traversed the crystal without reflection; there follow con
secutively on the film the shortest wave-lengths contained in the primary
beam of X-rays, and then the longer ones. The longest wave-length
which, according to equation (3), may be reflected by a crystal with a
given distance d between the net planes is A = 2d ; the corresponding

71'
angle 6 =

2.
The locus or track of the wave-length on the film would

coincide with S1. It is obvious that this maximum wave-length can be
reflected only in the first order (n = 1).
The scale of the A’s appears distorted in a certain way not only on the

plane plate P'P’ but also on the film that is fixed circularly. If P is the
spot at which a certain wave-length A leaves its mark, then the distance
P,P that is measured on the unrolled film is proportional to 20, whereas
A itself, according to (3), is proportional to sin 0. Hence the X-ray spec
trum so obtained is drawn according to scale and in its natural pro
portions only for small values of 0 (hard wave-lengths). As 6 increases,
the dispersion of this spectral picture increases more and more rapidly

and finally becomes infinitely great for 6 = For, by equation (3), we

get that, for two wave-lengths A and A + (IA that difl'er by very little, and
their corresponding angles 20 and 2(0 + (16),

dd r ..

cK=2d:os0=0ofor0=2
' ' ' (U)

Hence if we wish to resolve a part of the spectrum very sharply (for
example, the region of a line-doublet), we must look for a crystal that
reflects the region of wave-lengths in question at the greatest possible

angle 0. By equation (3), this is a crystal with d =
7%
for the reflection

of the n"“ order. Only for comparatively great Afs (A > 10-5 cms.) will it
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be possible to realise this condition in the first order; for smaller Xs we
should have to carry out the measurements in an appropriate higher
order.

At the same time, equation (5) shows that the revolution of neigh
bouring wave-lengths in the photographic picture increases with the

magnitude of the order number n, as has already been pointed out in the
first section for the case of the optical diffraction grating, and as will be
come manifest in the specimens of spectral photographs of Fig. 44. As
an actual fact narrow doublets are often measured in the second order
and occasionally even in the fourth or fifth* order. The advantage of
greater resolution is

,

however, counterbalanced by the disadvantage of

diminished intensity. Fig. 44 gives a clear picture of this, too.
We have yet to mention several refinements of the method of the
revolving crystal. Among these is the elimination of the faults o

f the
crystal. Even a naturally grown crystal
surface, or_0ne that i

s carefully prepared
by cleavage is not free from faults and

local irregularities. If we use a crystal
that is fixed in position, then every ray
and every wave-length of the incident

pencil of rays will be reflected at only
one point of the crystal, and the faults

of the crystal at this spot will have

their full effect and will betray them

selves by fogging the continuous spec
trum or by distorting the rectilinear

course of the line-spectrum, as actually
took place in the older photographs, in

which the crystal was kept fixed. On P
,

the other hand, in the case of the re

volving crystal, in which the ray glides

along over the crystal surface and finds in each position of the crystal the

appropriate angle of reflection 6 for each wave-length in question, the

faults neutralise one another (cf. Fig. 42).
Let the position AA of the crystal be chosen so that the central ray of

the pencil escaping through the lead slit S falls on to the middle O of the

crystal at the correct angle 9 for the wave-length A under consideration.

W'e describe the circle SIOBP through S1, which touches the line AA.
Every point B of this circle is the apex of an angle at the circumference,
standing on the arc S10, and all these angles SIBO = 0

. Draw BOB; by
doing this, we obtain a new orientation of the crystal, in which the same

wave-length A of the ray SIB is reflected at the spot B of the crystal sur
face. By continuously turning the crystal from the position AA to the
position BB, the point of reflection glides continuously from O to B along
' CL, for example, Duane and Stenstrom, Phys. Rev., 15, 329 1920).

Fro. 42.
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the crystal. This gliding motion ceases only at the boundary of the

crystal surface or at the boundary of the incident pencil of rays.
Our Fig. 42 exhibits a further advantage of the method, namely, its

power tofocu-s the reflected rays of the same wave-length at one point. Let
P be the point at which the ray reflected at O meets the circle S1OB.
Then SIOP = 1r — 20 is the angle subtended by the arc S,P at the cir
cumference. Thus the angle SIBP = 1r — 20, too, since it stands on the
same arc. From this it follows, if we suppose the reflecting crystal plate
in the position BB at which the ray SIB is incident at the angle 0, that
BP is likewise inclined at an angle 6 to BB, and thus represents the re
flected ray. Hence, while the ray glides along the revolving crystal plate
in the process of reflection, it always passes through P: all rays with the
same A are focussed at P. If we pass on to consider a different A, the
position AA of the crystal plate, for which this A is reflected at O, will
indeed change, as also the circle SIOP and the position of P. But the
distance OP = OS, will remain fixed. Hence each successive focus P
will lie on the fixed circle with its centre at O and with the radius OSI.
We thus get a sharply defined photographic picture of the whole extent oj
the spectrum tf we bend the film, as was depicted in Fig. 41, so that it lies
along the circle described about O as centre with the radius OS1, that is along
the circle SIPP, of Figs. 41 and 42.
The sharp definition of the photograph is, on the other hand, reduced

by the circumstance that the revolving crystal averages over the crystal
faults of the region of surface used in the reflection. To counteract this,
the sharpness of the lines is increased by allowing the radiation to fall on
a minimum portion of the surface. This is secured if a carefully selected
good part of the crystal is narrowed off by a slit that is fixed close to the
surface of the crystal. Thus the ideal arrangement (which is, however,
as we shall see below, possible only in the case of comparatively soft

rays) would be a revolving crystal, of which only a very small part, free
from imperfections, was used. The consequent loss of intensity may be
balanced by lengthening the time of exposure. Whether the crystal is
turned continuously by clockwork or, in stages, by hand, is of no con

sequence: nor does it matter whether the crystal is turned with respect
to the X-ray bulb or vice versa. Seemann and Friedrich* produce the
slit that is to be fixed just in front of the crystal surface by bringing a
metal edge close up to the latter; the other side of the slit is furnished

by the crystal itself.
In the case of hard rays the revolving crystal must be rejected, and

we use, instead of the rays reflected at the surface, transmitted rays.
For, on account of the depth of penetration of hard rays, the resulting

deep position of the system of reflecting layers would bring about a

broadening of the lines that would make impossible an accurate measure

‘ Physikal. Zeitschn, 20, 55 (1919).
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ment of the angle of incidence. In the case of transmitted Rontgen
light, the reflecting layers are inner net planes which, at least in the case
of regular crystals, lie perpendicularly to the surface. The slit must then
be fixed beh-ind the crystal plate. It marks off the emergent pencil and
sharply defines the angle of reflection. A similar method has been used
by Rutherford and Andrade * for analysing y-rays (see § 6 of this chapter).
It has been converted into a precision method by Si8gba.hn.‘l‘ The dif
ferent angles of incidence that are requisite for the reflection of different
wave-lengths must be furnished by adjusting the aperture of the incident
pencil of rays. In spite of the absence of rotation, extremely sharp lines
are obtained, provided that the slit is sufiiciently narrow. The correct

position of the lines cannot be checked from an individual photograph,
but is secured in the precision measurements of Siegbahn (see § 5 of this

chapter) by the simple artifice of comparing with one another two photo
graphs taken in two positions of the crystal that are symmetrical with

respect to the direction of the ray.
If very soft rays, which are strongly absorbed in several centimetres

of air at atmospheric pressure, are to be photographed, the whole course
of the rays must lie ‘in cacao. This requirement leads to the construc
tion of vacuum spectrographs, which have been developed by Siegbahn
along the lines of Moseley. The whole apparatus (see Fig. 41) from the
circle SIPPI up to and including the plate P'P' has for this reason been
enclosed in a brass case connected with an air-pump. The X-ray tube is
also to be considered in this figure as connected with this brass case by a
tube S1 that may be evacuated.

\Ve now proceed to discuss two other methods of X-ray spectroscopy,
the first being the ionisation method of W. H. Bragg. In it the photo
graphic plate or film is replaced by an ionisation chamber, that is, by a
vessel that is filled with a (preferably heavy) gas, which receives the
reflected radiation at P (Fig. 41). The gaseous content becomes con
ducting (ionised) in proportion to the radiation absorbed; the conductivity
is measured by electrometers. The ionisation chamber must be turned,

step by step, along the circle PIPS of Fig. 41 to the same extent as the
crystal is turned forward, step by step, when we pass from one wave

length of the spectrum to another that is neighbouring to it. Thus, in
this case, the spectrum is represented not by a continuous distribution of
darkened spots, but by a discontinuous succession of electrometer de
flections. The method has its advantage in measuring the intensities in
the X-ray spectrum, and, through the use of electrometers, it is specially
sensitive and allows quantitative comparisons (on account of the approxi
mate proportionality between X-ray intensity and ionisation). The
method has been so far perfected, particularly by L. Webster and W.

‘ Rutherford and Andrade, Phil. Mag., 28, 263 (1914).
1“Siegbahn and Jbnsson, Physika]. Zeitschr., 20, 251 (1919).
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Duane, that it can compete with the photographic method of measuring

wave-lengths. _

Secondly, in the method of crystal powders, devised by Debye and
Scherrer, the various angles of incidence that are requisite for the various

wave-lengths of the spectrum are furnished by the natural lack of order
in the crystal powder. The same method has been developed in America

by A. W. Hull. It is a typical example of the inevitableness of scientific
development that, in spite of the blockade due to the war, the same idea

sprang up almost simultaneously in Germany and America. A narrow

pencil of Bontgen rays falls into a little tube which is filled with a micro

crystalline powder, and strikes one and the same crystal surface in all

possible orientations. For each wave-length there are crystal surfaces
inclined at the correct angles, and indeed in all positions around the

direction of the incident ray. Hence, the reflected radiation forms for

each wave-length a cone about the incident ray. A circularly cylindrical
film placed in position, will be

" ll‘ °' darkened by the reflected

‘ radiation at its curve of inter

6
section with this cone. If the
primary ray travels along hori

' ' zontally, the mantle (sheet) ofII
F , the cylindrical film is placed

vertically. The arrangement
' is particularly simple and has

already been of great service

5 to crystal analysis, since most

F1G_ 43_ minerals occur more often in
the powder form, so-called

amorphous form, than in that of well-grown crystals; if necessary, the
fineness of the granules may be increased artificially. For the purposes
of true X-ray analysis, however, this method hardly comes into question.
We now give an indication of the power of X-ray spectroscopy by

reproducing some typical photographs. Fig. 43 is the spectrum of a tube
with a platinum anti-cathode, photographed from a revolving crystal of
rock-salt: the picture is magnified four times in the reproduction. The
wave-lengths increase from left to right. On the less exposed right side
of the figure the characteristic lines of platinum (so-called L-series, denoted
by u.,By8) stand out very conspicuously as straight lines, accompanied by
several weaker lines of iridium, that is related to platinum, and several
mercury lines. On the left side of the figure, which was exposed to the
reflected rays more often owing to the manner of adjustment of the

crystal, and was therefore darkened relatively more than the background
of the right side of the picture, we see the contin'uous spectrum depicted
as a fairly uniformly darkened field. The intensity of the darkness de
creases at the point marked d (“bromine band," cf. § 7 of this chapter)
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in a strikingly sudden way towards the right, owing to the selective sen
sitivity of the photographic layer of silver for X-rays. Hence we here get
a document which gives the two components of X-rays, often mentioned
above, namely the continuous spectrum and the line-spectrum (impulse

radiation).
The next picture is one of a series of systematic photographs by means

of which W. H. and W. L. Bragg have unravelled the structure of rock
salt (Fig. 44). The source of radiation was a tube with a rhodium anti
cathode. This gives, in addition to a weak continuous spectrum, two
lines in particular, one, the more intense but softer <1-line, and the other, the
weaker but harder B-line of the so-called K-series. The cube surface of
rock-salt served as the reflecting crystal surface. The intensity of reflec
tion was measured by the ionisation method. The ordinates of the figure
are thus electrometer deflections giving the intensity of the ionisation
current; the abscissa-3 denote the angles 26 (cf. Fig. 41), through which
the ionisation chamber must be turned so as to be able to receive the
reflected intensity under consideration in turn. The figure shows the
two lines a. and B in three different positions. The difference between
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the lines, which gives a measure of the spectroscopic resolution, increases
with the order-number of the reflection ; at the same time, however, the
intensity of the lines rapidly decreases (the amount of this decrease de
pends not only on the general conditions of the diffraction, but also on
the particular structure of the crystal used). Both facts, increase of re
solution and decrease of intensity, have already been emphasised above.
In addition to the line-spectrum, the continuous background appears
faintly. The sharpness of the lines, compared with the preceding photo
graph, is by no means great in this ionisation picture.
VVe give as our third picture a photograph,* taken by Debye and

Scherrer, of very finely powdered LiF. The source of radiation, a tube
with a Cu-anti-cathode, again emits, in particular, two characteristic
wave-lengths, the a.- and the ,8-line of the K-series, the former being a
little more intense than the latter. The dark lines of the photograph are

produced by these two wave-lengths, whereas the continuous spectrum
of the Cu-tube has produced no appreciable darkening. These dark lines
are, as we remarked above, the intersections of the film with the circular

' Taken from the Gottinger Nachrichten of the year 1916.
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cones that start out from the crystal powder, and are described about the
direction axis of the incident X-ray pencil. In the middle of the picture
the lines of darkness are straight, because the circular cone that is de
scribed about the primary ray becomes a plane when its angle of aperture is
90°, and it therefore intersects the films in a straight line. Towards the

right and the left ends of the picture (emergent and incident directions
of the primary ray) the curvature of the lines of intersection increases.
The very dark lines correspond throughout to the a-line of Cu, likewise
the moderately dark ones; the weak lines correspond to the ,8-line, in
the main. The a-radiation and likewise the ,8-radiation gives us not only
one, but several dark images, because it is reflected appreciably at several
surfaces of the micro-crystals (octahedral, dodecahedral, cubic surface,
and, indeed, not only in the first order, but also in the second, third, and
fourth orders), whereby these surfaces must in each case have the ap
propriate orientation towards the incident Rontgen light. This photo

graph, like all obtained by this method, serves the purpose of discovering
the crystal form and crystal structure of the crystal powder which is

traversed by rays, and which cannot be measured out in any other way.
But as it also allows us to
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_ I I scopy above described.

_f:',,.,:, But we must now follow
the purpose stated in the title

'~- -I155‘ \ J---— '- of this section——the measure
FIG- 45- nwnt of the wave-length of

Rontgen rays. This depends,
as is clear from equation (3) and from Lane's own fundamental idea, on
a comparison of the wave-length sought with the dimensions of the
crystal lattice, in particular, with the distance d between the net planes.
Let us return to the method of the revolving crystal and assume that a

number of lines are photographed very distinctly and sharply on the film
FF of Fig. 41. The distance of an individual line from the primary ray
gives us the angle 20 directly (cf. Fig. 41). From this we calculate 0 and
sin 0. Thus, so long as d is known, A can also be given directly from (3).
We find A to be of the order of magnitude 10'“ cms.
It only remains for us to decribe how d is found.* To do this, we

must refer to the remarks in the preceding paragraph about the construc
tion of crystals from their atoms. Very careful measurements are made
of the cube-surfaces by using a piece of rock-salt that has been obtained

a
by cleavage. For such a piece (cf. Fig. 34) d = 2, that is, equals half

" Cf. the detailed discussion by E. Wagner, Ann. d. Phys., 49, 625 (1916).
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the edge of the cube, in which Na-ions, on the one hand, and Cl-ions on

the other, are arranged. In each cube plane we have a quadratic net, the

distance between the meshes of which is
Z,
and which is formed alter

nately by Na- and Cl-ions. The neighbouring net plane is at a distance

d =
Z’
from this one, and is occupied by the same net, whereby, however,

a Cl-ion is situated directly above an Na-ion and vice versa. If we
imagine a cube (13 described about each Na- and Cl-ion as centre, then

these cubes completely fill the crystal. Hence, in the space 2d“ there

will be a mass my. + 'mC,. This mass amounts to

_ _ __ 58-46 _ 58-46 _23
(2300 + 3546)mH _ E __

606
.10 ,

that is, the sum of the atomic weights of Na and Cl multiplied by the
mass mu of the hydrogen atom, or, more accurately)‘-' with the reciprocal
of L, Loschmidt’s number per mol, the value of which we get from
Fig. ls on page 7.
We get in this way, for the density of mass of rock-salt,

58-46 .
" = 6-06 . 2d='

1°C”

This density of mass is, on the other hand, known from direct observa
tion, or can be determined experimentally for the crystal of rock-salt used
in each particular case. A very exact measurement by Rontgen gives

p = 2164.

By comparing the two values of p we find

3 5846 . 10-23
= 74--7 - -- = ' . 1 I8 .‘I

\/
2

. 2-164 . 6-06

2 814 0 °ms

The most uncertain value of those used is Loschmidt’s number, the error

' As we are here dealing with an experimentally precise determination_0f d,_which
will afieet the accuracy of all later data about wave-lengths, the following circum
stance must be emphasised. Our atomic weights, as we know, are referred to

0 = 16; the atomic weight of hydrogen then becomes not 1
,

but 1‘O08. When we set

c

TIL",

we intended mu to signify, not the mass of a real hydrogen atom, but the mass of an

imaginary atom, which would be exactly units in our table of atomic weights. We

shall distinguish the true hydrogen atom by the symbol ml, from the imagined hydro

the electrochemical equivalent charge of the mol,9649'4 in Chapter 1
,
§ 2
,

aqua-1to

gen atom -mg. The two are related by: 111:,= 1'O08 .mH. Loschmidt‘s number L,

' 1

which refers to the mol of exactly 1 grm., is not equal to m:, but toml_.
In the text

H n

above, too, as well as throughout Chapter I, mg is to be taken as standing for the

imagined hydrogen atom, and not for the real ma. Only when we get to Chapter
IV,

in which we deal with the spectrum of real hydrogen, will the real mass 111:,of the

hydrogen atom first come into question.
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in which is at most 1 per cent ; as a result, the limit of error which may
be imputed to the value of the lattice constant d is less than ~}per cent.

The value d = 2'814 was used in the first determinations of wave

lengths by Moseley (1913), and has served for most of the later investiga
tions, in particular for those of Siegbahn, as the standard value for

calculating the wave-lengths A from the measured angle 0. If we carry
out our observations, not with rock-salt, but with another crystal of, say,
even an unknown structure (gypsum, mica, Prussian blue), it is sufficient
to compare a wave-length in both scales, so as to be able to refer the
lattice constant d of the new crystal to that of rock-salt, and hence to be

able to calculate the wave-lengths from the measured angles 0 without

incurring new errors.
The use of a standard lattice constant is indispensable for absolute

measurements, as was pointed out in particular by E. Wagne1'.* Whether
the lattice constant is exactly known is only of secondary importance.
The main thing is that all measurements must be referred to the same
lattice constant. The conventional character of the “ d

”
of rock-salt is

clearly recognisable from the circumstance that, in the more recent work
which has been done in Siegbahn's laboratory, (Z has been given the
numerical value 281400, and this is the value used in calculations ; it is
thus not a result of measurement, but an ideal value that has been fixed

by convention. Of course, it may be found convenient to pass from rock
salt to calcspar, d = 3'O29 (or d = 3'O2900), which is more appropriate
on account of its crystalline constitution. But this, too, could not be
done for an individual case, but would have to be agreed upon generally

by convention.

$4. Survey of the K-, L-, and M-series and the Corresponding
Limits of Excitation

We now enter into a region of physical research which was founded

only in 1913 and which, in spite of the unfavourable conditions of the

intervening years, has already been developed so far that to-day its
structure is exposed to our gaze with greater clearness and harmony of
detail than the regions which have been explored much longer and from
which the new researches have borrowed their aims and methods. It is
in fact true that the spectroscopy of Rdntgen rays shows in many ways
simpler and more satisfactory results than the illimitable spectroscopy of
the visible region.

The reason for this striking fact was touched on at the end of the

preceding chapter: the X-rays came from the inner part of the atom
where the electrons, owing to the influence of the unweakened nuclear

charge, obey simple laws: visible spectra start out from the periphery of
the atom, where the electrons accumulate and the nuclear charge loses

~Ann. a. Pt,-8., 49, 646 (1916).
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its regulative power. A further reason must be added: right from the
outset X-ray spectroscopy had the new atomic theory of Bohr (1913) to
guide it and direct it

,

whereas optical spectroscopy was for decades without
theoretical guidance and had first to generate from within, as it were, the
facts on which the atomic theory could be founded.
Let us next cast a glance at our knowledge of Riintgen radiation

before Lane's discovery, that is at the characteristic radiation o
f the

elements. Barkla, whose works are almost the only ones that come
into account for this question, showed that every element, on to which
cathode rays or X-rays are allowed to fall, emits characteristic primary
or secondary Rontgen rays of quite definite hardness. The hardness was
measured by noting the coefficient of absorption of the radiation in the
case of, say, aluminium. The simplicity of the law of absorption led
to the conclusion that characteristic X-rays must to a great extent be

lzonwgeneous. Moreover, it was found that there is a_ simple relation
between the hardness of radiation and the atomic weight of the element

emitting it. The hardness increases (that is, the absorption decreases) as
the atomic weight increases. In the case of compounds, the characteristic
radiation emitted was found to he the sum of the characteristic radiations

of the elements constituting the compound. This proved that the
characteristic part of the Rontgen radiation was a fundamental property
of the atom and that it was conditioned by the atomic weight.
Barkla succeeded in showing the existence of two series of charac

teristic radiation which, he called the K-series and the L-series. He

observed the K-series of rays in the case of the lighter metals (as far as

Ag) and the L-series in that of heavy metals (e.g. Au, Pt). The extra

polation of the observed L-rays for the case of the light elements made it

evident that they would be so soft that, with the means at that time
available, their presence could not be detected. For it is a general law
of the excitation of a characteristic radiation that the errcitting radiation
mu-st be harder than that which is excited. (Hence, if the characteristic

X-ray radiation is produced as a secondary radiation by means of a

primary one, the latter must be harder than the former. If it is produced
as primary Rdntgen radiation by cathode rays, the latter must exceed a

certain limit of hardness, that is, of velocity, here.) This law of excitation

pointed to an analogy in the realm of optics, namely to Stokes’ rule for
light produced b

y

fluorescence. If a fluorescent substance is to be made
to fluoresce, the incident light must in general be of shorter wave-length
than that of the light emitted by fluorescence. In this case, too, then,
the exciting light must be “ harder" than that which is excited. Hence
Barkla also called characteristic X-rays fluorescent light, thus characteris

ing their origin fittingly. Just as the fluorescence light is determined by
the nature of the fluorescent body and is different in nature from the
exciting light, so the fluorescence X-ray light is determined by the
structure of the emitting atom, independently of the constitution of the
exciting radiation, provided that the latter is sufiiciently hard.
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After Laue's discovery all these relations became incomparably more
certain and definite. The qualitative measurement of hardness by means
of absorption was replaced by the quantitative measurement of ware

length, which was free from all arbitrariness. The homogeneity of the
characteristic radiation was on the one hand sharpened and on the other
narrowed down. The spectroscopic resolution of the characteristic radia
tion disclosed a spectrum of sharp lines, of which each, taken alone,

represents Rontgen light of very great homogeneity, but the totality of
which signifies an emission of light of a certain degree of heterogeneity.
The general dependence of the hardness on the atomic weight could
now, after the arbitrary mode of measurement by absorption had been
replaced by the natural method of measuring wave-lengths, and after,
thanks to Bohr’s theory, the somewhat indefinite atomic weight had
been replaced by the simpler quantity, atomic number, be expressed as a

simple numerical law between wave-length and atomic number. It also
became possible to express the condition of arcitation quantitatively.
When the exciting radiation was resolved spectroscopically, it was seen

by how much its short-wave end had to exceed the excited radiation in
hardness, in the sense of Stokes’ rule. Finally, it became possible to
add to the two characteristic emissions of Barkla, the K- and L-radia
tions, still a third which was appropriately called M-radiation.
We next give a general graphical survey of the wave-lengths of K-,
L-, and M-radiation, which is derived from an account given by M.
Siegbahn, the discoverer of M-rays (Fig. 46). We mark 0E the wave

lengths horizontally, whereas vertically, starting from the top, we
measure off the increasing atomic numbers of the elements emitting these

wave-lengths. The horizontal line thus signifies in a certain sense the
extent of the spectrum in question, and the vertical direction, in steps of
3 units at a time, the series of the natural system of the elements. The
K-radiation is the hardest of the three types of rays; it has been observed
for cases ranging from the lightest elements (Na, Z = 11), for which
even the K-radiation is already somewhat soft, to cases for which the

rays are extremely hard (for example, this was carried out with par
ticular accuracy for tungsten, Z = 74). The L-radiation is, for one and
the same element, considerably softer than the K-radiation ; it has been
observed for Cu, Z = 29, for which it is still a little softer than the
K-radiation of Na. The L-radiation has been drawn in the figure
as far as Bi, Z = 83. It has been measured beyond this as far
as the heaviest element U, Z = 92. Still softer than the L-radiation

there is the M-radiation, which has so far been observed only in the

case of the heaviest elements, and even then special precautions (vacuum

spectrograph, cf. p. 135) were rendered necessary. Each of these three

types of radiation consists, as the figure indicates, of several lines; as

the atomic number increases, each type becomes harder.
To this survey of the experimental results we shall immediately add
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the theoretical picture to which the harmonious combination of experi
mental results has led. To develop it fully we should certainly require
a rather lengthy introduction, which we shall give later. Consequently,
we shall here restrict ourselves to the more pictorial features of the

theory, and shall for the present omit the foundations and the numerical
details.

The theory of Béntgen spectra rests entirely on the atomic model
which was developed in the preceding chapter. This model was com

posed of the positive nucleus as the central body and the planetary system
of electrons surrounding it. Concerning the arrangement of this planetary
system, the general facts of the periodicity of chemical properties gave
us some provisional information. According to this, the electrons are

apparently arranged

in individual shells.
W'hen one shell is
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We shall call the Fm 46_
shells in turn, count

ing from within outwards, the K-, L-, M-, N-, . . . shell. In the
schematic picture of Fig. 47, we shall represent them by circles described

about the nucleus as centre; in this sense, we often speak of a “ K-,
L-, . . . ring.”
We shall now describe (0.) the phenomenon of excitation, (b) the pro

cess of emission for the K-, L-, M-radiation according to the plan of
VV. Kossel,* whose views seem to be more and more confirmed by the

facts.

To excite K-radiation, an electron must be removed from the inner
most shell, the K-ring, and transferred to the periphery of the atom. If
the excitation occurs through the agency of cathode rays, it is easy to

' W. Kossel, Verh. d. Deutschen Physikal. Gesellsch., 1914, pp. 899 and 953 ; 1916,

p
. 339.
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imagine that the tearing-off of the “ K-electron
” is effected by the impact

of a cathode-ray particle that has penetrated into the atom. To detach
the K-electron, a certain energy, lifting power, is necessary. The energy
of the impinging cathode ray must be at least as great as this lifting
energy. This sets a definite limit to the excitation necessary to produce
the K-radiation, that is, there is a lower limit to the necessary hardness

of the cathode rays. This agrees with the results of Barkla’s researches
as given above. If the excitation is effected not by cathode rays, but by
primary Rontgen radiation, then we must demand for the corresponding
minimum of its hardness, that its hv (cf. Chap. I, 6) is at least as great
as the lifting power required to do the work of transference.
To excite the L-radiation, it is necessary to remove an electron from

the L-shell to an outer position. The lifting work necessary is less than

the corresponding work for the same atom in the case of a K-electron.
Hence, for the L-electron, the hardness of the exciting cathode rays or

Riintgen rays is less. To generate the M-radiation, whereby the attack is
made on the M-shell, the necessary work
of lifting and the hardness are corre

spondingly reduced. In Fig. 47 the
1 process of excitation is represented

5 diagrammatically by the arrows that
7 point from within outwards. They bear
the signs K-Gr. (K-Grenze = K-limit),

LC-r L-Gr. (L-limit), and so forth.
Through the excitation the atom is

prepared for the following process of
Fie. 47. em-ission. When the K-atom has been

torn out, the K-shell strives to com

plete itself again. The missing electron may be furnished by either
the L-shell or the M-shell, or some other. Whereas the process of exci
tation was accompanied by a gain of energy (work of lifting, absorption of
energy), the converse process takes place with the loss of energy (energy
of falling, emission). When, in our planetary system, an electron jumps
into an orbit nearer the nucleus, the potential energy of the planetary
system certainly becomes diminished. We shall show by a calculation
later that the total energy (kinetic + potential) decreases. Hence energy
is liberated. We assume that this appears in the form of energy of radia
tion, and that it is emitted as monochromatic radiation, that is, as
radiation of one wave-length, in each case. According as, the missing
electron, however, returns to the K-ring from the L-, M-, or N-ring, the
energy set free will be different in amount: correspondingly there will be
various possible K-radiations, each of which is represented by a definite
wave-length. We talk of the Kn.-line (transition from the L- to the K
shell), of the KB-line (transition from the M- to the K-shell), of the Ky
line (transition from the N- to the K-shell). The lines Ka, KB, K7

KGI
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together constitute the K-series. KB is harder than Ka, and Ky is harder
than KB on account of the successive increase in the energy of falling
that is available. On the other hand, K0. is more intense than KB, and

KB is more intense than Ky owing to the fact that the probability of the
occurrence of the transition becomes successively smaller. It seems very
plausible to suppose that the replacement of the missing electron is effected
more often by the neighbouring shell than by the next or some later shell.
In Fig. 47 these electronic transitions are represented by the arrows that
point inwards to the nucleus; they are distinguished, in so far as they
belong to the emission of K-lines, by the symbols Ka, KB, Ky.
Whereas all electronic jumps that end in the K-shell belong to the K

series, all these that end in the L-shell belong to the lines of the L-series.
If a place in the L-shell has become vacant owing to a preceding excita
tion, the L-shell seeks to restore its full complement of electrons at the
expense of the M- or the N-shell, and so forth, The energy that is hereby
set free again appears as monochromatic radiation. We speak of the La.
line (transition from the M- to the L-shell), of the Ly-line (jump from the
N - to the L-shell), and so forth. Ly must be harder than La, because
the energy-difference between the N- and the L-shell is greater than that
between the M- and the L-shell. On the other hand La. will be more
intense than Ly, because the transition from the neighbouring M-shell
seems more probable than from the more distant N-shell. In Fig. 47,
the inwardly directed arrows La and Ly end in the L-shell. Concerning
the naming of these arrows it must be remarked that there are also lines
L,B and L8 which, however, like a series of further lines of the L-series,
have not yet been successfully fitted into our provisional scheme. The
following sections will deal further with this circumstance.
Finally, electronic transitions that end in the M-shell, furnish dif

ferences of energy that correspond to emissions of lines of the M-series.
In our figure this series is represented by only one line, Ma, corresponding
to the transition from the N- into the M-shell. Actually, it

,

too, consists

of several lines.

In several absorption experiments with light substances (water, alu
minium, paper) Barkla believed in 1917 that he had detected signs of a
radiation still harder than K-radiation ; he called it J-radiation. Repeated
tests by other observers have, however, not been able to confirm the
existence of this radiation.* Nor has the theory a place for such radia
tion, so that we must regard K-radiation as the hardest possible radiation ;

this is expressed in our figure.
In succession to Fig. 47 we give Fig. 48 as a still more schematic

illustration of the process of emission of Rontgen rays. This diagram
has an advantage in that it takes more account of the quantitative aspect
of the phenomenon. In it we visualise the various shells not by their

" Cf. the summarised remarks of Ritchmeyer, Phys. Rev., 17, 483 (1921).

10
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relative positions in the atom but by their relative energy-dilferences.
Thus we draw a succession of energy-steps such that the difference of
height between two steps gives the energy that is liberated when an electron
drops from the higher to the lower step (orbit). The lowest step bears
the sign K, the next L, and so forth. The energy-level of the nucleus is
to be considered at - oo. The highest dotted limit of the steps corre
sponds to the periphery of the atom. The quantitative drawing of the
picture leads us to assign to the successive steps K, L, M, N, . . . the
series of integral “ quantum numbers" 1, 2, 3, 4, . . . in such a way that
the position of each step below the highest level is

,

at least to a certain
degree of approximation, proportional to

1.1 1

T*’F‘§*’ “l
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Accordingly we make the height of the steps in the figure decrease, from
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1
,

-1
,,

%
,

. . . written at the side (on the right). Moreover, we again draw
the arrows Ka, K/3, . . . , La. . . . that correspond to the various pos
sibilities of energy-emission, and the arrows K-Gr, L-Gr, which corre
spond to the various kinds of energy-absorption.
This theoretical diagram enables us to understand at once the general

laws for the hardness of Rontgen lines that came into evidence in Fig. 46
We must thereby bear in mind the fundamental quantum principle that
we deduced in Chapter I, § 6

,

eqn. 6 from the photo-electric effect, namely :

the greater the available difi'erence o
f energy, the greater the hardness o
f the

consequent Riintgen radiation (and therefore, the smaller its wave-length).
Or, in symbols,

hv = W, — W, . . . . (1)

Here h is Planck's quantum of action (see p. 37); v is the oscillation
frequency of the emitted Rontgen line under consideration (inversely pro
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portional to its wave-length). The right side of the equation denotes the

energy-difference of the atom between its initial and its final configuration,
and is, therefore, represented quantitatively in Fig. 48 by the length of the
arrow that represents the Rontgen lines in question. That is, the arrows
-in our figure show by their length the hardness of the cor-responding Rontgen
radiation. According to equation (5) of Chapter I, § 6, the same holds for
the arrows of the excitation limits that signify the absorption of cor

puscular energ or wave-energy. In this case, we need merely reverse
the sign of the right side of equation (1), for this corresponds to reversing
the direction of the arrow in the figure.
Hence it follows: for one and the same atom the K-series is harder than

the L-series which, in turn, is harder than the M-series. Within the K
series the hardness increases from K0. beyond K/3 _to K-y, but in ever

decreasing steps, and finally arrives approximately at the hardness of the
K-limit. The same holds for the L-series, and the same for the others.
But further, the available differences of energy depend essentially on the
amount of the nuclear charge. The greater the nuclear charge (and hence
the atomic number of the element), the more intense is the electric field
around the nucleus. The energy-steps become greater as the Z increases

(as a rough approximation, they increase proportionately to Z”, as we shall
see later). But this means that the hardness of each series or line in
creases for each step forward in the natural system of elements. A glance
at Fig. 46 shows how perfectly these theoretical deductions agree with the
facts of observation.

§ 5. The K-series. Its Bearing on the Periodic System of Elements

Following in the footsteps of Barkla, Moseley* was the first to bring
the emission of the Rtintgen lines into relationship with the scheme of

the natural system.
His first photographs (1913) dealt with the K-series of the elements

between Ca, Z = 20, and Cu, Z -= 29, inclusive. The elements were

successively fixed into the X-ray bulb as anti-cathodes. Thus the

characteristic rays were excited directly by means of cathode rays; this

has the advantage that the excited rays are more intense than when

produced by the method of secondary rays (excitation by primary X-rays).
Moseley further increased the intensity by fixing the slit that limited the

X-ray pencil very close to radiating cathode in the X-ray bulb. In this
way he simultaneously obtained a wide angular aperture for the emergent

pencil and also the possibility of establishing the region of wave-lengths
of the_K-series by means of the position of the crystal which was fixed

for each element, but had to be appropriately altered in passing from one
element to the next.
Thus Moseley did not use the method of the revolving crystal (cf. § 3).

‘H. G. J. Moseley, The High Frequency Spectra of the Elements, Phil. Mag.,
26, 1024 (1913); 2'7, 703 (1914).
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Referring to Fig. 41, which depicts the latter method, we may describe
his arrangement as follows. In place of the slits S1, S2 a slit S is fixed
very close to the anti-cathode A. The crystal stands on the spectrometer
table T, which may be rotated, but which is kept fixed for each photo
graph. The position of the crystal towards the very divergent incident

pencil is chosen so that reflection angles that are necessary for the wave

lengths to be photographed lie within the limits of the incident angles.
The photographic plate is set up in accordance with the focal condition
discussed in § 2, that is

,

at the same distance from the crystal as that
between the crystal and the slit S

,

and, further, the plate is turned corre

spondingly when the crystal is turned as we pass from element to element.
Let us next look at a now famous figure in Moseley's paper. The

photographs have here been pasted above each other successively so that

positions vertically below
one another denote equal

wave-lengths. The wave

lengths increase as we pass
from the left to the right.
We learn from Fig. 49 :—
'

1
. As the atomic number

increases, corresponding
lines in the spectra move
regularly and successively
towards the region of
smaller wave-lengths. The
hardness of the lines in
creases as Z increases. \\"'e

are familiar with this fact
through Barkla's investiga
tions (cf. the preceding
paragraph), in which it as
sumed a less definite form.
This law is true not only

of the K-series but also of the L- and M-series, as we learn from Fig. 46.

2
. In the case of each element, two lines occur: they are the more

intense but softer line Ka and the less intense but harrler line Kfl, which
we have already met under the same names in the preceding paragraph.
The faint line K-y that was also mentioned earlier is not distinguishable
from the KB, and appears only when refined spectroscopic methods are
applied. .

3
. The X-ray spectra are a pure property of the atom, and, indeed,

an additive property. The last picture of the series, which represents
brass, that is, an alloy of Cu and Zn, accordingly exhibits the same lines
as the preceding element Cu and the following element Zn (not shown in
our figure). Further, we observe in the case of Co, which it is diflicult



The K-series 149

to separate from Ni and Fe (first triad of the periodic system), besides
the a.- and ,8-line of Co also less intense images of the a-lines of Fe and Ni.
4. The order of C0 and Ni in the periodic system is rectified by this

result of X-ray analysis. Whereas, according to the values of the atomic

weights, Ni should precede Co (at. wgts. being 5868 and 5B'97 respect
ively), we had to write Co before Ni in the chemical scheme of Table 2,
page 57. The X-rays are not deceived by the atomic weight and so they
confirm the true order CoNi. Not the atomic weight, but the atomic
nwmber governs the 73 MI

Réntgen spectra. The 9 V V
atomic number intro
duces order into the
natural system, where
as the atomic weight
introduces disorder.
The same is true of 34 Se

the order of Te and J
and this is likewise

established properly by
Biintgen analysis (cf.
Fig. 51). The third

space of the natural

system with the un- 37 Rb

natural order of the
elements (according to

atomic weight) was
A, K (Z = 18 and 19).
The Rontgen spectrum
of argon is

,

indeed, still

wanting, but there can 41 Nb

be no doubt that it
,

too, will decide against ' .

the atomic weight and V _

in favour of the atomic . ' 4:’ Rh

33 As

35 Br

38 Sr

number. M ‘ —

As Rutherford in- F“‘- 50

cidentally remarks, the original problem that Moseley was trying to solve

when he set about his experiment was to determine whether it was not

the nuclear charge, instead of the atomic weight, that decided the nature

and the hardness of the characteristic Rontgen radiation.
5. Since the discovery of the periodic system, particular interest was

centred on the presence of gaps and the prediction of new elements in

the system (cf. p. 72). In Moseley’s figure, the rare element scandium

is missing between Ca and Ti. Its absence is betrayed by a great leap
between the elements Ca and Ti that succeed one another in the figure.
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The regular increase (that was emphasised in 1) in the hardness as Z

increases reveals infallibly every gap in the system. Whereas, in the

case quoted, we were dealing with the known element Sc, we shall see in

Figs. 50 and 51 a similar gap at Z = 43 (eka-manganese) that points to

an element not yet discovered. Also the remaining gaps in the system

(Z = 61, 75, B5, 87, cf. Table 2) have been confirmed by the method of

Rontgen rays. In this way the Rontgen spectra have led to the definite
conclusion that the nu/mber of gaps must be five.
Partly to continue Moseley’s figure in the direction of increasing

atomic numbers and partly to bring into evidence the advances that have
been made in photographing Rontgen rays, we give as our next illustration

Fig. 50, by Siegbahn : it represents the elements from As, Z = 33, to Rh,

Z = 45. In this case the spectra have been taken by the method of the
revolving crystal; as a result, the lines are sharper than in Moseley’s
case and more completely separated. Besides the second most intense line

KB, we see here also the faint line Ky (to the left, and hence harder than
K/2), the origin of which we know from the preceding section. Further,

we see that the most intense line Kn. of the doublet (a, ct
’) has been re

solved (a'» i
s to the right of 0., and hence is softer). Besides these lines,

the zero mark (on the extreme left) has been photographed; i
t is made by

the undiifracted primary radiation.
The same remarks apply to this figure as to the former; the hardness

increases for each line as the atomic number increases; the Sr-line
adulterates to the Rb-spectrum; gaps occur in the succession of the ele
ments, exhibited by irregularly great diiferences in the hardness, namely,
between Br, Z = 35, and Rb, Z = 37, the inert gas Kr, Z = 36, is missing.
As in the case of A above, it is difiicult to get an X-ray spectrum of Kr.
Between Sr, Z = 39, and Nb, Z = 41, there are missing Y and Zr, Z =
39 and 40 respectively. Finally, between Nb and Rh three elements,
namely, Mo, Ru, and the unknown element eka-manganese, are missing.
Before giving the complete list of the wave-lengths of the principal

lines of the K-series as far as they have been measured, we give in Table

9 a little. list of the notation of the various lines, and, partly to revive our
earlier remarks, of the origin and intensity of the lines.

TABLE 9

Our notation. Siegbahn. Origin. Intensities.

0
.’

419 8

a } cl 10

B B1 4

7 B2 1za
p
s

H
tt

W
H
E
N

The lines are arranged in order of increasing hardness. In Siegbahifs
notation two groups of lines are distinguished, ithe soft a.-lines and the
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harder fl-lines; he numbers the lines in both groups according to their

intensity. A number of fainter lines that occur only in the case of the
lowest atomic numbers, and that are to bear the names 0.3, 114,115,116,B3, B’
according to Siegbahn, are not included in our list. All data about in
tensity are fairly rough estimates and merely denote relative numbers.
The data concerning the origin of the lines agree with the account

given in the preceding section. All transitions end in the K-shell; to
produce Kn, the electron jumps from the L-shell, to produce KB it jumps
from the M-shell, and to produce Ky from the N-shell. But now, to
supplement the preceding section, we must subdivide the L-shell into

two pa-rts, which we call the L,- and the L2-shell. In the picture of Fig.
48 the L,-shell would lie below the L1-shell (there called L-shell) ; in the

picture of Fig. 47, the L2-ring would lie within the L,-ring (which is
there the L-ring).
In Table 9 the lines <1’,a are bracketed together to indicate that they

form a related doublet (which is not the case with the fly lines). The

exact definition of what we call “doublet
”
cannot be developed except in

conjunction with the facts discussed in the next section. A necessary if

not a sufiicient condition fora doublet, is that either the initial level or
the final level (as in the case of K0. and Kn/) of the transition must coin

cide for the lines of the doublet.

Turning next to Table 10 we must first say a word or two about the

choice of the wave-lengths. In optical regions we measure wave-lengths
in Angstrom units (A), which are such that

1 K = 10 ' 8 cms. = 1‘5*‘".
In the case of Réintgenu rays, too, the older measurements were usually
expressed in terms of Angstrom units. But when Siegbahn,* in 1919,
by means of an elaborate refinement of the apparatus and of the means

of taking readings (from a double photograph of the same line for two

different but exactly determinable positions of the crystal), succeeded in

increasing the accuracy of measurement a hundred-fold, it was found to

be expedient to introduce a more convenient unit of smaller value. The

new unit proposed by Siegbahn is

1 X = 10-11 cms.

The wave-lengths of X-rays are then described in X-units just as the

wave-lengths in the visible are described in Angstrom units : for example,
according to our table, for the

K0. of Ca: A = 3351'86 X-units,

and as a parallel to this we have in the visible spectrum the Fraunhofer
line Q

K of Ca: A = 393383 A-units.

* Riintgenspektroscopische Priizisionsmcssungcn, Ann. d. Phys., 59, 56 (1919).
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In our table the more recent precision measurements appear to two
decimal places, the older measurements only in whole X-units. The
abbreviations which follow the numbers signify the observers; the key to
these letters is :—

M. = J. Malmer, Dissertation, Lund, 1915.
S. Fr. = M. Siegbahn and E. Friman, Ann. d. Phys., 49, 611 (1916).
S. St. = M. Siegbahn and W. Stenstriim, Physikal. Zeitschr., 17, 48, and 318

(1916).
U. C. = H. S. Uhler and E. D. Cooksey, Phys. Rev., 10, 645 (1917).
D. Hu. = W. Duane and Kang-Fuh-Hu, 'ibid., 11, 489 (1918), and 14, 369 (1919).
S. = M. Siegbahn, Ann. d. Phys., 59, 56 (1919).
H. = E. Hjalmar, Zeitschr. f. Phys., 1, 489 (1920).
Ste. = N. Stensson, ibid., 3, 60 (1920).
D. St. = W. Duane and W. Stenstriim, Proc. Nat. Acad., 6, 477 (1920).

The measurements first deal with the angle of incidence 6. From
them we calculate the wave-lengths according to the method given at

the end of 3' 3. At the top of the table the lines a, :1
’

have not yet been

separated. The fact that, of the metals of atomic number greater than
60, it is just tungsten that is quoted, is due to the use of tungsten as the
anti-cathode in the Coolidge tube. \Vhereas the other gaps are obviously
merely accidental (for example, the inert gases are as yet all missing), the

y-line seems to reach its limit in the neighbourhood of Ca, Z = 20, and

is absent in the case of lighter elements. The reason is clearly to be
discerned in the incomplete development of the outer electronic shells as
the atomic number becomes smaller. Whether and where the B-line
reaches a corresponding limit is not yet decided. 8
In our table the values of A vary from 12 A to 0.2 A. At the limits

(both of the hard and of the soft rays), technical difliculties arise in photo
graphing the lines, which at present prevent a further extension of the
series of observations.

The difiiculty due to the strong absorption of very soft rays is over
come by constructing a vacuum spectograph (cf. p. 135). But the

difliculty offered by the lattice constant remains. The fundamental

equation (3) of page 129.

. __ nit
Sln 6 . . . . .

requires also for n = 1 (observation in the first order of reflection, to
which we may restrict ourselves in dealing with very soft rays) that

2(z>>......(2)
The lattice constant for the cube surface of rock-salt was, as we cal

culated at the end of § 3
, d = 2814 . 10-8 cms. According to this rock

salt may be used only as far as wave-lengths not exceeding A = 5 A
.

Fortunately gypsum and mica are available as two good crystals that
have a considerably greater lattice constant. (This is in conformity with
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TABLE 10

Wave-lengths of the K-series

Z a’ a B 7

11 Sodium . 11883-6 H. 11591 H —
12 Magnesium . 9867-75 ,, 9534-50 ,, —
13 Aluminium '. 8319-40 ,, 7940-50 _,, —
14 Silicon . . 7109-17 ,, 6739-33 ,, —
15 Phosphorus . 6141-71 ,, 5785-13 ,, —
16 Sulphur. . 5360-66 ,, 5019-13 ,, _
17 Chlorine . 4721-85 Ste. 4718-70 S. 4394-50 ,, —
19 Potassium . 3737-25 ,, 3733-86 ,, 3446-38 ,, . -
20 Calcium . . 3355-12 ,, 3351-86 ,, 3082-97 ,, 3067-40 H.
21 Scandium . 3028-63 ., 3025-26 ,, 2773-66 ,, 2755-(5) ,,
22 Titanium . 2746 S. St. 2742 S. St. 2508-74 ,, 2493-67 .,
23 Vanadium . 2502 ,, 2498 ,, 2279-68 ,, 2265-37 ,,
24 Chromium . 2289-28 Ste. 2285-17 S. 2081-44 S. 2071 [S. St.]
25 Manganese . 2097 S. St. 2093 S. St. 1902 S. St. 1892 ,,
26 Iron . . 1936-60 Ste. 1932-39 S. 1753-97 S. 1742 ,,
27 Cobalt . . 1789-52 ,, 1785-24 ,, 1617-15 H. 1606 ,,
28 Nickel . . 1658-60 ,, 1654-67 ,, 1496-69 ,, 1488 ,,
29 Copper . . 1541-22 ,, 1537-36 ,, 1388-87 ,, 1377 ,,
30 Zinc . . 1437 S. St. 1433 S. St. 1294 S. St. 1281 ,,
31 Gallium . . 1341-61 U. C. 1337-B5 U. O. 1205-91 U. C. ——

32 Germanium . 1261 S. St. 1257 S. St. 1131 S. St. 1121 ,,
38 Arsenic . . 1174 S. Fr. 1170 S. Fr. 1052 S. Fr. 1038 S. Fr.
34 Selenium . 1109 ,, 1104 ,, 993 ,, —
35 Bromine . 1040 ,, 1035 ,, 929 ,, 914 ,,
37 Rubidium . 926 ,, 922 ,, 825 ,, 813 ,,
38 Strontium . 876 ,, 871 ,, 779 ,, 767 ,.
39 Yttrium . 840 M. 835 M. 746 M. 733 M.
40 Zirconium . 793 ,. 788 ,, 705 ,, —
41 Niobium . 754 S. Fr. 749 S. Fr. 669 S. Fr. 657 S. Fr.
42 Molybdenum . 712-12 D.Hu. 707-83 D.Hu. 631-10 D.Hu 619-7 D. Hu
44 Ruthenium . -— 645 M. 574 M. ——

45 Rhodium . 616-4 _, 612-1 D.Hu 545-3 D.Hu. 534-2 ,,
46 Palladium . 590 M. 586 M. 521 M. —
47 Silver . _ 567 ,, 562 ,, 501 ,, 491 M.
48 Cadmium . 543 ,, 538 ,, 479 ,, -—

49 Indium . . 515 ,, 510 ,, 453 ,, 440 .,
50 '1‘in . . 490 ,, 487 ,, 432 ,, -
51 Antimony . 472 ,, 468 ,, 416 ,, 408 ,,
52 Tellurium . -—- 456 ,, 404 ,, —
53 Iodine . _ - 437 ,, 388 ,, —
55 Caesium . . 402 ,. 398 ,, 352 ,, —

56 Barium . . 393 ,. 338 ,, 343 ,, —
57 Ianthanium . 376 ,, 372 ,, 329 ,, -
58 Cerium . . 360 ,, 355 ,, 314 ,, -—

5") Praseodymium 347 ,, 342 ,, 301 ,, —
60 Neodymium . 335 ,, 330 ,, 292 ,, -
74 Tungsten . 213-41 D. St. 208-60 D. St. 184-20 D. St. 179-01 D. St.

the immediately obvious rule that, usually, net planes of crystals that

cleave very readily have a large lattice constant.) The lattice constant

of gypsum is d = 7-621 . 10
' 3 cms. (according to a remark at the end of

§ 3, it may be obtained from the lattice constant cl of rock-salt by photo

graphing one and the same line with the two crystalsin turn). By
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\

condition (2) then, gypsum sufiices as far as wave-lengths not exceeding
A = 15 A. As a matter of fact, the soft lines of Table 14 were obtained

by means of an analyser of gypsum. If, later, we should wish to pass
on to still greater wave-lengths, the crystal of gypsum would also have

too small meshes. We should then have to resort to organic crystals of

complex molecular structure.
On the other hand, the difficulties offered by very hard rays are that

the angle 0 in (1) becomes too small, thus depreciating the accuracy very
much. When A/d is very small, we are dealing with a glancing angle of

incidence and of reflection between the Rontgen rays and the crystal

plate. We may escape this, on the one hand, by making observations in

a higher order (cf. the factor n in eqn. (1)), on the other hand, by using
net planes whose distance apart, d, is as small as possible. Changing the

crystal does not help us much in the latter respect. Whereas we had in
the case of rock-salt a = 2d = 5'63 . 10*”, we have in the case of the
crystal of smallest known lattice constant, namely, diamond, a = 3'55 . 10"“.
Greater advantage is obtained by passing from one crystal surface (for ex

ample, from the cube surface 100) to another with higher indices (for
example, the octahedral surface 111), whereby d becomes smaller (e.g. in

the ratio ~/ 1;
,

cf. eqn. (4) in § 3). But both these advantages, gained by
using a higher order of reflection and surfaces with higher indices, are
obtained at the expense of intensity.

i

From the wave-lengths A we pass on to the wave-numbers (,mm1,e,

o
f

wave-lengths that occur in 1 cm. of a l-ight-my). Following the usual
practice of spectroscopy, we use (in a strict sense, wrongly) the same
letter as for the vibration number or frequency (number of full vibrations
that occur per sec.). We thus have the two meanings for v, which difl'er
in their dimensions :

v = = wave-numbers (cm. '1) . . (3)

1 0

1v =

1
: = X

= frequency (sec.- ) . . . (4)

It is the latter meaning that we always have in mind when we speak
of the energy-quantum hv ; we are referring to the former when we write
down spectral formulae. For the rest, we shall not always keep strictly
to the term wave-number, but shall occasionally replace it by the more
usual term “frequency” in spectroscopy.
Furthermore, we introduce a universal wave-number which will serve

as the unit of measure for all remaining wave-numbers, namely, the
Rydberg-Ritz constant. We give it this name because it first played a
fundamental part in the series formulae of Rydberg, and later in those of
Ritz (cf. Chap. VI, § 1). We assign to it the symbol R (instead of the
spectroscopically more usual letter N, which we used in the preceding
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editions of this book) ; its numerical value, according to Paschen (cf. Chap.
IV, § 4), is

R = 109737 cm. " 1 . . . . (5)

The term Rydberg frequency which we shall often have occasion to

use is just as little correct as the term
“ vibration number” for i , since

it corresponds, not to the dimensions cm.-1, but to sec.'1. To retain the
strict sense of the word we should have to apply the term Rydberg fre

quency to the quantity :
0B = 3'00 . 101° . 109737 = 3'29 . 10"’ sec."1 . . (6)

For the ratio

1
%
,

however, which will alone concern us later, the dif

ference (3, 4
) and (5, 6) i
s of no account. By forming this ratio we arrive

at an un-named number independent of the units of measure, which,
moreover, is of a convenient order of magnitude for all X-ray measure
ments. Thus Table 11 represents in the first four columns the values of

E

for the principal lines of the K-series. Next to these, in the last two

columns, are the values of for the two lines Ka and KB (at the head

of the columns these numbers are briefly called ~/0. and respectively).
We first direct our attention to these last two columns. They form

an arithmetic series, that is, there is a constant increase in passing from
element to element. This increase is particularly regular at the beginning
of the table ; later, it increases a little. We read this off from Fig. 51, in

which, following Siegbahn, we plot the values of

’\
/ as a function of the

atomic numbers. The 41-and B-lines (the two middle lines of the figure)
ascend regularly and, except for a small curvature for larger Z's, they are
straight lines. The neighbouring lines o

.’ and -y (the two extreme lines)
follow the same course.
In this figure our earlier statements about the behaviour of X-ray

spectra and their relation to the natural system of elements are made
particularly clear. We see the uniform (in our picture, linear) increase
of the hardness with the atomic number and conclude from it that the
hardness is determined by the nuclear charge of the element. This

strengthens our belief that the Rontgen spectra arise through changes of
configuration that occur near the nucleus, in the innermost region of the
atom (cf. Chap. II, §7). There is not a trace of the periodicity of the
elements here. We interpreted this earlier as signifying that only the

peripheral parts of the atom are periodic in structure, but that energetic
conditions in the interior of the atom alter uniformly with the nuclear

charge.

Gaps in the system of the elements are exposed with particular
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TABLE 11

v/R values of the K-series

Z
I
u’ a B

11 Na 76'683 78'62
12 Mg 92348 95'576
13 Al 109'535 1l4'762
14 Si 128-182 l35'217
15 P 148'374 157'-519
16 S 169'992 181'559
17 Cl . 192'99 193'12 207'366
19 K . 243'83 244'06 264‘413
20 Ca . 271'61 271'87 295'581
21 Sc . 300'88 301'22 328-544
22 Ti . 331'9 332'3 363'238
23 V . 364'2 36-1'8 399'735
24 Cr . 398'06 398'78 437'81
25 Mn . 43-1'6 435'4 479'1
26 Fe . 4'T0'55 471'58 519'55
27 C0 . 509'23 510'45 563'503
28 Ni . 549'42 550‘73 608'8-56
29 Cu . 591'26 592'75 656'122
30 Zn . 634'1 635'9 704‘2
31 Ga . 679'23 681‘14 755'67
32 Ge . 722'? 725'0 305"?
33 As . 776‘2 778'9 866'2
34 Se . 821'7 825'4 917'6
35 Br . 876'2 8805 980'9
37 Rb . 984'1 989'-i 1105
38 Sr . 1040 1046 1170
39 Y . 1085 1091 1222
40 Z1‘ . 1149 1156 1293
41 Nb . 1209 1216 1362
42 M0 . 12796,, 1287'4l 14439,
44 Ru -- 1413 1588
45 Rh . 1478‘5 1488‘8 1671'1
46 Pd . 1545 1555 1749
47 Ag . 1607 1621 1819
48 Cd . 1678 1694 1902
49 In . 1769 1787 2012
50 Sn . 1860 1871 2109
51 Sb . 1931 1947 2191
52 Te -—— 1998 2256
53 J — 2085 2349
55 Cs . 2267 2289 2589
56 Ba . 2319 2348 2657
57 La . 2424 2450 2770
58 Ce . 2531 2567 2902
59 Pr . 2626 2665 3027
60 Nd . 2720 2761 3127
74 W . 4270'0 4368'5 4947'2

7

I

297'082
330'7
365433 l
402-260
440'0
481'6
523‘1
567'4
612'4
661'8
711'4

812-92
877'9

997'0
1121
1188
1243

1387
1470'5

1705'9

1856

2071

2234

I
§gI

~/11

8'75?
9'610
10'466
11'322
12'l81
13‘038
13'897
15'622
16'-188
17'356
18'23
19'10
19‘969
20'87
21'716
22'59-3
23'-468
2-P347
25'22
26'099
26'93
27‘91
28‘73
29'67
31'44
32 '34
33'03
3-1'00
3-1'87
35'772
37'59
38'585
39'-13
40'26
41'16
42'27
43'26
44 '13
44'70
45'66
47'85
48'46
49 '50
50-67
51-63
52'56
66'095

~/6

3-367
9-776
10-713
11-623
12-556
13-474
14-400 \
16-261
17-190
13-126
19-059
19-993
20-924

21-69
22-794
23-733
24-675
25-615
26-53
27-490
23-39
29-43
30-29
31-32
33-24
34-21
34-96
35-96
36-91
3300
39-95
40-33
41-s2
42-65
43-62
44-36
45-93
46-31
47-49
43-43
50-37
51-55
52-64
53 -ss
5503
55-92
70-336

clearness and certainty by this mode of representation.
been drawn without taking into account the gap at Z = 43 (eka
manganese), a discontinuity would have come to light in the diagram of the
line, and would immediately have betrayed the missing element. Notice,
also, the order of Te (Z = 52) and J (Z = 53), which cannot be doubted

If the figure had
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in our figure and which satisfies the requirements of chemical theory
(since J thereby comes below F, Cl, Br, in the seventh vertical line).
But it is also interesting to consider the amount of the increase in
J;/‘R in Table 11, particularly in the case of Ka. It is about

0-see =

x
/i
t

_

4

Consequently we may express the linear increase in Fig 51, for the
present, by the following formula :—— '

T 3

\/
R =

\/z(Z
‘

*)
"

K-Series8

Y
T

M
h
1
l:
l

l%_"=

1
“
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z
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I7 I4 If ll 7|? I1 26 1| 2| 30 Ii 3! $5 H O0 U M ll OB W 52 H M Bl ‘O
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i

8 A Ca Ti Cr Fe Ni Zn Ge Se Kr Sr Zr Moiiu Pd Cd8n To X BaCo Nd

Fro. 51.

It further follows from the figure that the constant s here introduced is

almost equal to 1
. We thus arrive at the following representation of the

wave-number, developed earlier b
y Moseley :—

-A - §(z = 1)? = (z -
1)*<1
-

i) = (z

-
1)'lG.,

— - (7)

This formula shows a close analogy to Balmer's expression for the
Hydrogen series (cf. Chap. IV, §2) and may be interpreted in the sense

W

Q I

H
i
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of eqn. (1), page146, of the preceding section as follows. The transition
electron comes from the initial energy-level of the L-Shell

wfi=~RfiZ‘D2. (mN
.) u
.

andvfalls to the energy-level of the K-shell

m=-MMTW. . . . @1;

No importance is attached to the use of the negative signs before the

energy amounts ; they occur because, in Fig. 48, we calculated the energy
steps from the surface of the atom and called the energy-step of the
nucleus — co. By adding a sufiiciently great constant that would cancel
out in the energy difierences, we could make both amounts of energy (8)
and (9) positive. By forming, in accordance with eqn. (1) of the preceding
paragraph, the quantity hv = VV, - W,, we get, if we cancel the common
factor It

, the value of v from eqn. (7) just above.
According to the most recent view of the theory, we may no longer

regard Moseley’s equation (7) as exact. A complete description of the
Ka.-line for all atomic numbers Z should also be able to account for the

slight curvature of the plotted line in Fig. 51: nor could it rest satisfied
with the above approximate determination of the constant s = 1

. The

theory attains this, on the one hand, by applying a relativity correct-ion
to Moseley's formula (cf. the last chapter), on the other, b

y penetrating
further into the nature of the atomic model and to find a reason for the
finer constitution of the K- and L-level. Nevertheless it will never fail
to excite wonder that Moseley, in his first entrance into the realm of

quantitative X-ray spectroscopy, also made the first and most important
step in giving the theoretical interpretation of high-frequency spectra.

§6. The L-series and the M-series. Doublet Relationship

The simplicity of the spectral laws that distinguishes the Rontgen
from the visible region is founded, according to the opening words of § 4

,

in the circumstance that in the interior of the atom, under the influence
of the true nuclear charge, the electrons are arranged according to simple
laws, whereas towards the periphery of the atom, at which the visible

spectra originate, the arrangement of the electrons becomes gradually

more complex and more difiicult to grasp. For this reason, too, we find
even the L-series to be of more complex structure than the K-series.
This increase of complexity in the L-series manifests itself largely in

the fact that its lines occur in greater number. Table 12 on page 159 gives

a survey of the various names, the supposed origin, and the approximate
intensities of the main lines; besides the lines there included there are
various other weaker lines that have been observed only in the case of a
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few elements. We shall return to the latter lines in the last chapter.
We have already given a picture of the L-series of platinum in Fig. 43, § 3.
Our nomenclature agrees with Moseley's, as far as his goes (Moseley

measured and named only the lines /3,.y, 8, ¢), and seeks to extend it

systematically by using the later letters in the order in which they occur
at the beginning and end of the Greek alphabet. On the other hand

Siegbahn’s nomenclature recognises three group of lines that may be

distinguished roughly by their varying hardness, namely: a rather soft

rr-group, a medium [3-group, and a rather hard y-group, whereby, however,

the degree of hardness or softness of course changes with the atomic

number as we pass along the elements in succession. Siegbahn numbers

the lines within each group according to their intensity. The intensities
are given as relative terms ; their values fluctuate a little for each element,

and must, therefore, be regarded merely as estimated averages.

TABLE 12

Sommerfelcl Siegbahn Origin Intensities

{
(1
') "-2 M2 "'> Ll 3

a. 0., Ml —->L, 10

B J. B
1

M2 -9 L2 8
1'7’ —' N4 "> L1 0
l~'Y

}

B
2

N3 -> L1 6

5 71 N4 -> L2 4

6
}

_ l M, —>L, 3

1
1

1
:

M» —>L2 0

g
“

}

B, 0 -—>L, 1

9 72»70 O "> L: 1

I
}

B8 N7 -> L] 0

K 75 N7 '-> Lg O

{
W 34 M4 -—>L3 2

‘P B
a M5 “> La 3

{
X
' 72' ‘Y1 N6 '-> 1-‘: 1

x n Na —>L3 1

4
‘ 74 O —>Ls 1

The order followed in our Table 12 does not entirely agree with the

order of the hardness of the lines. We always have, indeed, u. softer than

,8
,

and y softer than 8
, but )8 i
s not in the case of all elements softer than

y. The softest line in the case of all elements is e (discovered by Siegbahn,
and called by him l)

. Manifold overlapping occurs among the lines ,8
,

y,

and q
t. Further details may be found by the reader in Figs. 53 and 54.

The latter figure also shows the complex conditions that obtain between

the lines X, X’ and 0
. In the case of the lowest atomic numbers, 0 is

softer than X and X
’, but in highest atomic numbers it is harder. In the

case of Pt and Au, 0 coincides with X’ ; in that of Pb and Bi, it coincides
with X. In the preceding editions of this book we followed Friman by
identifying 0 with X’; this, in the case of \/V, would apparently lead to a

contradiction to Stokes’ Fluorescence Law (cf. Note 1
,

p. 184).
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‘Concerning the origin of the lines the following suggestions are
contained in Table 12. As already indicated in Figs. 47 and 48, the line
Lu. corresponds to the transition of an electron from the M- into the L
shell, the line L-y to the transition from the N- into the L-shell. It now
becomes necessary, however, to subdivide these shells further. Even in
Table 9 of the preceding section, we distinguish two L-shells, L, and L2 ;
it now becomes necessary to assume a third energy-level L3. In the case
of the M-shell, we have to distinguish five such steps, M1, M._,, M8, M4, M5.
The N-shell is also to be subdivided, and indeed, still more than the
M-shell. The deeper theoretical reason for this at present apparently
arbitrary differentiation can be given only when we get to the last
chapter.

As is indicated by the brackets in the first column of Table 12 (on the
right of the symbols for the lines), the line-pairs (u.'/3), (7/8), (<17), ((0), (u<),
belong together as regularly given doublets. VVe call them L-doublets.

They are designated by the successive letters of the Greek alphabet.
Their characteristic feature is: both lines of an L-doublet have the same
-initial le-vet, the softer line ending in the L,-level, the harder one in the

L,-level.
In all these doublets the softer line of the doublet is the more intense

line (this holds for the doublets 11'/3 and 7'8 in so far as we take into
account the intensity of the two related lines ac’ and 77' respectively,
for these, together, are then considerably more intense than B or 8

respectively).

We call the line-pairs (ah) and (¢’¢) M-doublets, because, in them,

the related lines have as their final level the same L-level, but dijfere-nt
M-levels as 1lm'tial levels. For an equivalent reason, the line-pairs (-y'-y) and

(x'x) are called N-doublets. The M- and N-doublets are made recognisable
in Table 12 by brackets placed at the left of their symbols. The symbol for
the softer doublet-line is distinguished from that for the harder line only
by the accent. In contradistinction to the case of L-doublets, the softer
components in the case of the M-doublet (a'a) and the N-doublet (7/7) is
the weaker component. In the doublets (4>'¢) and both of which
have L3 as final level (final letters of the Greek alphabet), the softer
component of the doublet is only inappreciably or not at all weaker than
the harder component.
To bring our comments on Table 12 to a close for the present, we

have yet to remark that the combination of the L-lines into doublets and
the tracing of their origin to common or diflerent initial and final levels
has enabled us to get a preliminary survey of the manifold of emissions
that is possible.

In Table 13 the more recent precision measurements (Siegbahn,
Hjalmar, Coster) may be distinguished from the older measurements

(Friman) by the decimal places. The precision measurements for
Z = 29 to Z = 73 are due to E. Hjalmar (Zeitschr. f. Phys., 3, 262, 1920),
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those for Z = 76 to Z = 92 are due to D. Coster (ib1Id., 4, 178, 1921);
tungsten, Z = 74, has been measured very carefully by various ex
perimenters. Our numbers are taken from Siegbahn * (Physikal. Zeitschr.,
20, 533, 1919); the numbers for 0, X’

,

X in the case of Ta, Z = 73, and
W, Z = 74, have been added in accordance with Coster (Compt. rend.,
173, 77, 1921). The older, less exact, observations were given in Friman’s
dissertation (Lund, 1915; see also Ann. d. Phys, 49, 616, 1916). For the
elements, Z < 74, we have corrected Friman’s values in accordance with
the method of Hjalmar, based on his precision measurements of the main
lines. (Correspondingly, in Table 10, the wave-lengths of K-y have been
corrected on the basis of Hjalmar's precision measurements of KB.)
The present gaps which occur particularly among the weaker lines, are
for the most part probably of an accidental nature; it cannot yet be
stated definitely whether several lines (for example, c and 1

;) cease when
we get to the lighter elements.
The hardest and the softest wave-lengths of this table are of the same

order of magnitude as the hardest and softest lines of the K-series in

Table 10. But of course in this case the same hardness or the same
softness occurs at much higher atomic numbers than in the former case.
The measurement of the soft wave-lengths demands the same precautions

(vacuum spectrograph, gypsum crystal in place of rock-salt) as in the
case of the K-series.

A bold incursion into the region of very soft rays has been initiated
by Millikan,+ not from the side of the Rontgen spectra, but from that of
ultra-violet spectra. He makes his observations not with a crystal
lattice but with an artificial line grating, the production of which he is
systematically improving; he uses high-tension “ vacuum sparks.” Thus

at A > 360 K he has found lines that he ascribes to the ‘L-series of carbon
We hear that recently, on the one hand, Millikan, on the other, P. D. Foote,
has succeeded in extending the measurement of the L-series systematically
as far as sodium. Moseley’s laws, which, according to Fig. 53, are ap
plicable to the L-series, seem to remain valid as far as this region.
In Table 13 a first characteristic property of our doublet asserts itself.

Vile calculate in each case the differences A/\ between the wave-lengths of
two related doublet lines. We then find as a general result that, through
out the whole series of elements, related doublet lines give almost equal

difleren-ces o
f wave-length AA. Or, expressed more accurately, we com

bine such and only such lines into doublets as are separated by almost
equal distances in the scale of wave-lengths.
Let us consider Fig. 52. In it we have plotted our L-doublets (C17),

(a/B), (7/8), ((6), (tn). The curve ¢-Iq lies highest, the curve a.’—B lies
below it

,

and so forth, in the order of the hardness of the line-pairs.

" In the case of tungsten, our g“-line is different from that called B5 by Siegbahn.
+Astrophys. Joum., 52, 47 and 286 (1920); 53, 150 (1921).
11
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TABLE 13. Wave-lengths

Z e u.’ a 11 ¢’ x B

29 Copper . . — — 13309-1 — — -— —
30 Zinc . . — — 12222-5 — -— — 11951
32 Germanium . — -— 10413-6 — -— — —
33 Arsenic . . — — 9650-3 — —- — 9394-0
34 Selenium . — — 8970-6 —- — — 8717-2
35 Bromine . . — — 8356-6 -- - — 8107-6
37 Rubidium . —- — 7302-7 — — — 7060-4
38 Strontium . — _ 6847-8 — -- -- 6609-2
39 Yttrium . ——~ — 6434-9 — — _ 6198-4
40 Zirconium . —— -— 6055-9 — — — 5822-8
41 Niobium . . — 5717 5711-3 -— - — 5479-6
42 Molybdenum . — 5400 5394-3 _ _ _ 5165-B
44 Ruthenium . -—— 4843-67 4835-67 — — —- 4611-00
45 Rhodium . — 4595-56 4587-78 — _ - 4364-90
46 Palladium . — 4366-60 4358-50 — 4065 __ 4137-30
47 Silver . — 4153-82 4145-64 — 3861-09 _ 3926-64
48 Cadmium . — 8956-36 3947-82 — 3674-25 - 3730-08
49 Indium . . — 3772-42 3763-67 — — —- 3547-83
50 Tin . — 3600-83 3591-93 — 3333 —- 3377-62
51 Antimony . —- 3440-75 3431-77 — 3181 - 3218-36
52 Tellurium . — 3290-70 3281-69 — 3039-71 — 3069-64
53 Iodine . — 3150-57 3141-36 — 2906 — 2930-60
55 Caesium . — 2895-27 2885-87 — 2660-19 — 2677-50
56 Barium . . — 2778-69 2769-31 — 2549-76 _ 2562-24
57 Lanthanium . — 2668-56 2659-31 — 2443-90 — 2452-94
58 Cerium . . — 2564-76 2555-59 — 2345-11 - 2350-61
59 Praseodymium —- 2467-28 2457-35 — 2254 — 2253-53
60 Neodymium . — 2375-26 2364-94 — 2162 - 2161-81
62 Samarium . — 2205-30 2194-63 — —- — 1993-17
63 Europium . — 2126-95 2115-95 — 1921 _ 1915-91
64 Gadolinium . — 2052-24 2041-55 — 1848 _ 1842-08
65 Te!-bium . . -— 1981-91 1971-09 1933 1781 — 1772-28
66 Dysprosium . — 1915-22 1904-18 — 1718 - 1706-16
67 Holmium . — 1851-65 1840-57 — 1653 - 1643-12
68 Erbium . . - 1791-00 1780-00 1722 1596 - 1583-04
70 Aldebaranium. 1890 1678-5 1667-39 1616 1488 - 1472
71 Cassiopeium . 1830 1625-96 1615-11 — 1434 — 1417
78 Tantalum . — 1528-90 1517-71 1433 1341 — 1323-12
74 Tungsten. . 1675-05 1484-52 1473-48 1417-7 1298-74 1287-1 1279-17
76 Qsmium . . — 1398-2 1388-16 —- 1215-0 1204-8 1194-59
77 Iridium . . — 1359-39 1348-34 — 1176-4 1171-7 1154-95
78 Platinum . 1497-23 1321-21 1310-08 1240-1 1139-8 1139-8 1117-22
79 Gold . . 1456-54 1284-89 1273-55 1199-5 1104-4 1110-6 1080-93
81 Thallium . — 1216-O3 1204-71 1125 1037-1 1048-O 1012-66
82 Lead . . 1344-54 1183-52 1172-02 1087 1004-69 1018-8 979-90
83 Bismuth . . 1312-95 1153-3 1141-15 10574 975-4 991-6 949-30
90 Thorium . . 1112-41 965-24 953-42 -- 789 826-2 762-59
92 Uranium. . 1064-77 920-14 908-33 B02-9 745-4 786-56 718-07

But within each curve the AXs are almost constant for the whole system
of elements from Z = 40 to Z = 92 (axis of abscissas); there is just a
slight decrease as we pass from lower to higher atomic numbers.
The Ali's of our M-doublets (a’o.) and (¢’</>)are much more constant

still. The graphical curves a'—a and ¢'—¢ run almost exactly parallel
to the abscissa-axis, the first at a distance of 40 X-units, the second at a
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of the L-series (in X-units)

I
1 <2 '1 § K 5 9 x’ x ¢'

4
Y _ -_. _._ _ __ ._. _ __ _

J _ _ _ _ _ _ _ _ _
I _ 5295-1 — - _ — _ - -_ _ _ - 4711-1 — - - -_ _ - _ 4172-32 — - - -- _ - - 3935-7 — - - -
4025 3399 — - 3716-36 ~ 3594 -
3324-45 3693-33 — — 3514-35 - - _ -
3636-42 3507 _ _ 332300 — -4 - -_ 3332 —- — 3155-29 — - — —
3297-33 3163-54 - - 2994-60 — 2397 2335 2327

3145-14 3017 - - 2345-07 —- 2779 —

3001-00 2377 -_ _ 2706-13 — - — —
2367 2745-75 - - 2577-12 _ - ~ -
2622-59 2507 - _ 2342-17 - 2244 -
2511-00 2399-23 — — 2236-25 — _ _ —

2404-95 2293 - _ 2136-30 - - - —
2304-53 2203 - - 2044 -_ 1995 _
2212-00 2114-31 - _ 1956-41 - 1931-39| 1925-54

-
2121-90 2031 _ _ 1373-43 — 1301 1773
1953 1377 _ -_ 1722-69 — 1657 _
1336 1307 _ _ 1659 - 1593 1533 _
1309 1741 _ _ 1533-22 _ 1554 1549 —
1742-16 1673-35 1656 _ 1529 — 1474 1463 1434
1630 1619-33 — — 1467 _ 1419 1415 -
1616-37 1563-25 - - 1412 _ 1366 1361 —
1556 1510-3 — — 1363 _ 1320 1313 -
1443 1412 — _ 1265 -_ 1225 1221 _
1395 1366 - - 1220 _ 1134 1130 —
‘
1303 1230-35 - ~ 1134 1110-0 11020 1096-2 -
1260-00 1241-91 1213-3 1123-4 1095-53 1072-0 1065-34 1059-69 1026-47
1177-2 1163-33 1140 - 1022-47 - - — —
1137-9 1132-37 1103-0 _ 933-41 963-6 963-6 956-6 _
1099-50 1099-50 1070-1 934 955-45 931-7 931-7 925-6 -395-0
1060-9 1067-75 1033-2 - 924-37 901-25 901-25 395-63 366-3

997-3 1007-36 973-3 334-2 365-29 341-7 344-7 337-9 310-0
~ 966-02 979-90 949-52 366 337-03 313-70 313-2 313-70 733-6
935-7 952-93 922-3 337-3 310-65 737-4 792-9 737-4 761
752-1 79103 762-59 _ 651-03 630-1' — -— -
703-4 752-63 724-13 - 612-33 592-6 604-4 597-0 573-3

distance of (10 1 1) X-units. In the same way xix is almost a con
stant and equal to about 5 X-units: on account of the smallness of this
difference the corresponding graphical curve could not be shown in Fig. 52.

The dilference -y'—y is still smaller (about 1'5 X-units). Since the levels

N3 and N4 are separated by only an extremely small distance, the lines

y’ and 7 are so near to one another that only in the case of uranium could
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it be shown that they are distinct lines (cf. A. Dauvillier, Compt. rend.,
172, 1350 (1921)). But (with the help of the complete scheme of the
lines, §6, Chap. VIII) the distance between them may be calculated
indirectly and is then also shown to be constant. Since 7' and -y differ
only imperceptibly from one another, we were justified in Fig. 52 in re

placing the difference y’-8 by the difference -y-8. The existence of a
soft associate y’ for y was first postulated by the author as a necessity for
the completeness of the system.

In Table 14 we pass on from values of A to values o -i
, cf.

eqn. (3) on p. 154; R = 109737 cms."1, cf. eqn. (5) on p. 155), with which
the later investigations will be concerned.
Before we deduce from this table the relationships between the lines,

we shall consider a graphical representation (Fig. 53) of the values of

I-
6
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we shall restrict ourselves to the lines 11, ,3

,

-y, 8
,

e
,

1;, ¢
. The atomic

numbers are again plotted as abscissae. Here, too, the course of the lines
traced is essentially rectilinear, which indicates that v increases nearly
proportionately with Z”. The curvature of the lines, however, is greater
than before, particularly in the case of the line 8

. This is on account of
the “relativity correction" mentioned on page 158. Furthermore, we
see in the figure the overlapping which was mentioned earlier and which
was found to be absent in the K-series. The line fi cuts the line y at
Pb, Z = 82; beyond 82, it is harder than 7: below 82, i

t is softer. More
over, ¢ and 7 intersect at Pt, Z = 78. From this we see that the re

lationship between the lines is not so simple and rigorous as in the case
of the lines of the K-series.
In Table 14 the L-doublets are again distinguished by a characteristic

property. We have calculated the difierences

%
' of the values of

fi for

all related doublet-lines and have tabulated them in Table 15. If, this
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time, we compare, not the doublets of difierent elements, but the different
L-doublets of the same element, we learn from Table 15 that all of them

Av
have, within the limits of error, the same difference F, that is:

B—fI.,=8-—‘Y’=1)—(=.0_C=K-|_

L-Series.
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Unfortunately, as mentioned above, 7' has been measured as distinct from

7 only in the case of uranium; hence i
t is only possible to show that

8--y nearly agrees with the other differences of wave-length. In reality
8-y is slightly smaller than the latter and than 8-y’. The distance
between the lines ‘B-<1 (Table 15, first column) differs noticeably more
from the doublet differences )6’-0.’, and, indeed, for the same reason as
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TABLE 14

Z e a’ a 17 4
1
’

I B

29 Cu . _ _ es-47 - - _ _
30 Zn . — — 74'55 — — — 76-25
32 Ge . — — 87'50 —— -— — -—

83 As . — -—— 94'42 — —— — 97'00
34 Se . . — — 101'5S — —— — 104'53
35 Br . . -—— — lO9'O4 -— -—— — 1l2'39
37 Rb . — — 124‘7B — — —- 129'O6
38 Sr . — —— 13-3'07 — — -— 137'87
39 Y . . — — 14l'61 —— —— -— 147'01
4O Zr . —— — 15047 — — — 15650
41 Nb . — 159'4 159'55 ._. - —- 166329
42 Mo . — 168'? 168'93 -—— — — 176'4O
44 Ru . — 18813 188'-44 — — — l97'62
45 Rh . —- 19829 198132 — — — 20577
46 Pd . — 203‘69 209‘07 —— 224'1 — 220'25
47 Ag . — 219‘37 2l9'8O —- 236'Ol -—— 232'06
48 Cd . -— 230'32 230'B2 — 248'OO —- 24429
49 In . . —— 241'55 242'12 — —— — 256‘S4
50 Sn . — 253'O6 253'69 — 273'4 — 269‘79
51 Sb . . — 264'84 26553 —- 286'5 — 28313
52 Te . . — 276'9l 277'67 -—— 299'77 4- 296'85
53 J . . — 289'23 290'O7 — 31S'6 —— 310'94
55 Cs . -— 314'73 315'76 - 342'55 — 340‘-33
56 Ba . — 327'94 329‘O5 — 357'38 — 355'64
57 La. . . — 34147 342136 -— 372'B6 —— 37l'4S
58 Ce . — 355'28 356'57 — 38857 —- 387156
59 Pr . — 36933 370-82 —- 404'3 -— 404‘-96
60 Nd . . — 383154 395'.‘-31 — 421'5 — 421'5O
62 S111 . — 413'22 415'2l — -- — 457'l7
63 Eu . — 428'42 430135 — 474'4 -— 475'61
64 Gd . — 444'O2 446'34 — 493'O —- 494'6S
65 Tb . — 459'78 462'3O 471'4 51113 — 514°1G
66 Dy . . — 475'79 47854 — 530'5 -—— 534'09
67 H0 . — 492'12 495'O9 -—— 551'3 -— 554'58
GS Er . . —- 5OS'7S 511'93 529'2 571'1 — 575'63
70 Ad . 482'2 542'90 546'51 563'9 612'5 —- l519'0
71 Cp . 498‘O 560'43 564'2O G359 635'6 — 642'9
73 TB. . —- 596'(X) bOO'4O —— 67913 — 688'7O
74 WV . 544'O2 6l3'85 61845 642'78 70l'66 70803 7l2'39
76 Os . . — (i51'S() 656'45 —- 748'25 756'33 762-83
77 Ir . — 670'35 675‘S4 — 774'62 777'75 783'99
78 Pt . 608134 689'73 69558 734'82 799'52 799'52 81-5'65
79 Au . 625153 709'22 715'53 759'97 B25'15 820'51 B4302
81 Tl . — 749'39 75642 81030 878'64 86949 899‘8B
82 Pb . 677'75 76996 777'51 838'26 907'O1 894'50 929'9S
83 Bi . fi94'O7 79020 798'54 862'-32 934'2‘2 9lS‘97 95993
90 Th . 819‘19 94408 955'78 — l155'OO 1102'7S 1194‘94
92 U . . 855'84 990'37 1(X)3’23 1134'95 1222‘53 1158'7O l269'OS

does 8-y; this will become evident in Fig. 55. It is very striking that
the ,8-line, as the second most intense line of the L-series, forms the
characteristic doublet difference not with (1, the most intense line, but
with 0.’, its weak associate. We must remark, however, that we shall also
find this phenomenon to be characteristic of the visible region (cf. §5,
Chap. VI, for the case of the so-called “composite doublets” ; there, too,
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v/R-values of the L-series

-P '1 § K 5 9 x’ x 4

- 17209 - - - - _ - —_ _ - - 198-42 - _ - -- _ - - 218-38 _ _ _ __ _ - - 231-53 - _ - -
226-4 233-7 - - 245-19 - 253-6 -
238-27 246-69 — - 259-15 _ _ _ -
250-59 259-8 - - 273-81 _- _ _ -
— 273-5 -— -— 288-79 — -- — —
276-35 287-59 — -— 304-29 — 314-6 315-8 322-3
289-73 302-0 — — 820-29 —- 328-0 —
303-65 316-7 — —- 336-73 -— — — —
317-8 331-87 _ — 353-59 — -- — —
347-46 363-5 _ _ 889-05 - 406-1 -
962-89 379-so - - 401-43 _ _ _ _
378-90 396-5 _ _- 426-45 _ _ _ -
395-40 413-6 - - 445-8 _ 456-8 -
412-14 481-00 - - 465-77 -- 4'71-80] 473-29 —
429-44 448-8 - - 486-40 -_ 506-2 514-0
465-4 485-5 — — 528-96 -_ 550-1 -—

483-2 504-8 - - 549-2 _ 570-1 573-8 -
503-8 523-9 -_ _ 573-75 _ 586-5 588-3 _
523-05 542-78 _ 550-2 - 596-1 - 618-2 620-9 635-2
542-6 562-71 _ _ 621-2 - 642-2 644-0 —
563-75 582-91 _ _ 645-4 _ 667-8 669-3 -
585-5 603-16 _ _ 668-4 _ 690-5 694-0 -
629-1 645-4 - - 720-4 _ 743-6 746-2 -
653-4 667-2 _ —- 746-9 -— 769-6 772-5 —
699-4 711-70 _ — 803-7 820-96 826-92 831-30 —
723-23 733-76 751-O7 807-57 831-81 850-07 854-98 859-94 887-77
774-08 780-58 799-65 _ 891-25 _ _- — —
800-82 804-39 826-18 _ 921-96 945-69 945-69 952-64 _
828-80 828-B0 851-57 926-20 953-77 978-07 978-07 984-52 1018-17
858-94 853-46 877-70 - 985-83 1011-12 1011-12 1017-41 1051-86
919-23 904-16 931-47 1019-14 1053-12 1082-65 1078-81 1087-56 1125-00
943-80 929-98 959-72 1052-57 1088-37 1119-97 1113-75 1119-97 1162-89
973-85 956-28 987-98 1087-75 1124-10 1157-55 1149-20 1157-55 1196-89
1211-67 1151-93 1194-94 . — 1399-74 1446-20 -— — —
1286-29 1210-70 1258-43 -—- 1486-98 1537-45 1507-73 1526-42 1588

the weak ass:>ciato'of the principal line, not the latter itself, forms a
doublet with a second line).
The distances between both the components of M-doublets and those

of the N-doublets are not related among themselves, nor are they related
to the distance which separates the components of the L-doublet.
In the last column of Table 15 the fourth roots of the characteristic
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TABLE 15

Element B—a B—a.’ 8—-y -4-1 0—§ x—z a.—a.' ¢—¢’ X-—x' 1/B——-a’

41 Nb 6'74 6'89 — -—- —— — 0'15 — -—- 1'620
42 Mo 7'47 7'70 —— — — — 0'23 — — 1'666
44 Ru 9'18 9'49 -— —- —-— — 0'31 — —- 1'755
45 Rh 10'15 10'48 — — — — 0'33 -— —- 1'799
46 Pd 11'18 11'56 11'5 — — -— 0'38 2'3 — 1'S44
47 Ag 12'26 12'69 12'46 -—- — — 0'43 2'26 —- 1'887
48 Cd 13'47 13'97 14'0 -—- —- —- 0'50 2'59 — 1'933
49 In 14'72 15'29 15'3 — — — 0'57 - —- 1'977
50 Sn 16'1O 16'73 16'70 — — — 0'63 3'0 1'2 2'O22
51 Sb 17'6O 18'29 18'3 — -— ' — 0'69 3'2 —— 2'O68
52 Te 19-18 19-94 20-0 — —- — 0'76 3-88 - 2-113
53 J 20'87 21.71 21'72 — —- — 0'84 4'2 ~— 2'159
55 Cs 24'57 25'60 25'6 — — — 1'03 4'91 — 2'249
56 Ba 26'59 27'7O 27'68 — -— — 1'11 5'51 — 2'294
57 La 28'82 30'O1 30'0 — — — 1'19 6'04 — 2'341
58 Ue 31'09 32'38 32'2 — — — 1'29 6'83 — 2'385
59 Pr 3-3'54 35'O3 34'77 — — —— 1'49 7'8 1'49 2'43-'3
60 Nd 36'19 37'86 37'6 -- -- - 1'67 7'9 -—- 2'481
62 Sm 41'96 43'95 43'5 — — — 1'99 —— -— 2'575
63 Eu 44'96 47'19 44'9 —- — -— 2'23 8'8 3'7 2'621
64 Gd 48'34 50'66 50'5 —- -— — 2'32 10'8 1'8 2'668
65 Tb 51'86 54'38 53'3 -— — — 2'52 11'4 2'7 2'716
66 Dy 55'55 58'3O 58'5 — — — 2'75 12'1 1'8 2'763
67 H0 59'49 62'46 62'5 — -—- — 2'97 12'5 2'0 2'811
68 Er 63'70 66'85 65'2 —— — — 3'15 14'4 3'5 2'859
70 Ad 72'5 76'1 75'O B1'7(?) -—- — 3'61 16'6 2'6 2“954
71 Cp 78'7 82'5 79'7 — -—- ~—— 3'77 17'8 2'9 3'01
73 Ta 88'3O 92'70 92'0 — — _ 4'40 l9'8 4'38 3'10
74 W 93'94 98'54 98'05 98'76 99 00 99'54 4'60 21'57 4'96 3'151
76 Os 106'38 111'08 110'67 — — — 4'7 25'83 — 3'246
77 Ir 113'15 118'64 117'57 —— 119'54 — 5'49 26'20 6'95 3'300
78 Pt 120'O7 125'92 124'97 126'18 126'50 126'68 5'85 29'28 6'45 3'350
79 Au 127'49 133'80 132'37 134'34 133'42 —- 6'31 33'79 6'29 3'401
81 Tl 143'46 150'49 148'96 — 151'18 149'65 7'03 34'59 8'75 3'-502
82 Pb 152'47 160'02 158'39 160'51 160'25 158'07 7'55 36'-30 6'22 3'557
83 Bi 161'39 169'73 167'82 168'25 169'57 168'78 8'3 39'63 8'75 3.609
90 Th 239'16 250'86 247'81 — 251'26 — 11'7O 56'67 -— l 3'980
92 U 265'85 278'71 276'28 279'11 279'O2 281 12'86 63'76 18'69 4'O86

difiference of the L-doublets,

9
1
% = ,8 — <1’,are given. These form an

arithmetic series, as may easily be confirmed. As Z increases, these
numbers increase steadily by a constant amount of about 0-043. The
particular interest which attaches to this at present empirical fact will be
referred to at the end of this section. The fourth roots of the M- and N

doublet-distances also increase linearly with Z.
Fig. 54 shows for several selected cases how the L-, M-, and N-doublets

overlap and alter their relative distances as Z increases (corresponding to
the intersections of Fig. 53). Each individual spectrum of our series has
been drawn in the scale of v (not of A), as it is in this scale alone that the

equality of the distances between the components of the doublets (doublet

distances) come into evidence. But the ratio of the scales of the super
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posed spectra has been chosen so that the L-doublets are equal in each
case, as actually occurs when we compare real spectral photographs of
diflerent elements.
Now, the law of the constancy of the differences in wave-length im

mediately becomes clear if we accept the assumptions that were made in
Table 12 about the origin of the lines. According to these assumptions
two associated lines of an L-doublet differ only in their final level (L1 or

L2). As a matter of fact, the ,B-, 8-, 17-, 0-, K-ll[1€S are harder than the a.-,

7-, or 11'-, -y’-, e-, Z,’-,1-lines, respectively; the difference of energy that cor

responds to the former is greater than that corresponding to the latter

(L2-level is lower than the L1-level), and hence has also a greater wave~[
‘ “'" H ‘ 1¢'t;3w 1 J1’!-9 W

' <='° '1 1 'P'1fiw£ -< v’ 1'9-1 w~ Au

' ~'¢ 1/ -avflw C 1- J 04'; w1~ [ M
I “vi '1 W15 W7 z - J an w

H \ ' 1

56 Ba

"'“ Mr w v 0'

Fm. 54.

length. The differences of hardness between the associated line-pairs

(a/B), (-/8), (:11), ((0), (tn), however, are equal; they are represented, in

dependently of the initial level of the transition in question, by the fixed
difference of level between the L1- and the L,-shell. The a-, y-, <-, Q‘-,
1-lines are also more intense than the B-, 8-, 1;-, 0-, x-lines; clearly, to the
former there corresponds a greater probability of transition. The (so to

speak) normal L,-level is attained more often as the final position than
the L2-level.
But if an electron can pass to the Lz- as well as to the L1-shell from

a higher level, then it will also be able to pass from the L,-level as well as
from the L1-level to the lower K-level. But the transition L -> K denoted
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the line Ka. We see now that this line must be a doublet, and we under

stand the origin of the line Kc’ that has already been indicated in Table 9
on page 150, and that is illustrated in detail in Fig. 55. (Concerning the

description of this figure, see also p. 175.) Emklently, in aceordaowe with

our theory, the doublet-interval (a'a) in the K-ser-ies must be equal to the
doublet-interval (a',B) -in the L-series, and hence also to the remaining

L-doublets (7/8), (<17),((0), (u<)—of course, all measured in terms of v or fig
,

respectively. Actually, this interval is determined in all cases by the
diiference of energy between the L,-level and the L2-level in our figure.
On the other hand, the interval between the lines Lu. and LB that form
no true L-doublet, measured in wave-numbers, is less than (LIL2). Our

figure also tells us that the line Kc’, starting from the less probable
energy-level L2, is weaker than the line Ka, starting from the L1-level,
just as the line LB, directed at the L2-level, was weaker than the line Lo.

directed at the L1-level. This i
s indicated by the

:1

thickness of the arrows. In the matter of intensity,

7

the Kc’ line thus corresponds to the line LB, the line
“' Ka to the line La. But in the matter of hardness the
I’ relation is reversed, as a glance at Fig. 55 tells us, for
the reason that the L,- and the L,-level forms the

1-; initial level for our K-lines, whereas they form the
final level for the L-series. Hence there is the
following characteristic difference between the K
and the L-series: in the K-series the weaker a’-line

is softer than the 1n‘-£11-ctpal line a. (smaller difference of
level in the figure), but -in the L-series the weaker

B-ltn/e is ha7'de1' than the pr-inc-ipal line <1or a
.’

respec

tively (greater difference of level or “distance of

falling").
As we know, this qualitative theoretical deduction agrees perfectly

with the facts of observation. But the quantitative deduction that the
doublet-intervals (dc) in the K-series are equal to that of the

“ L-doublet
"

in the L-series is fully confirmed by the measurements. Certainly, the
measurements of the relatively small dilference of hardness (au.’) in the
hard K-series is comparatively inexact, being much more uncertain than
the measurements of the differences of hardness in the L-doublet of the
L-series. To be certain of our quantitative deductions we must there
fore restrict ourselves to the few elements for which precision measure
ments of the K-lines are available and for which the L-series is also
known. These elements number only three: Mo, Rh, and W. In their
cases, however, the agreement is perfect, as is shown by Table 16.
In the case of the remaining elements only an average equality may

be expected. The confirmation of this is given in Fig. 56. It contains,
besides tungsten, all elements (between Z = 41 and Z = 60) for which

L1
I

Flo. 55.
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i
TABLE 16

42 Mo 45 Rh 74W

(n.'a)K . . 7'75 10'3 98"5

(a'B)L . . . . 7'7 10-48 98'54

the measurements of the K-series and of the L-series extend beyond one
another, and for which, in addition to the K-doublet, at least one L-doublet

has been measured. The values of denoted by ><have been formed

from Table 11 as the difference of the Z values for K0. and Kai’ ; the values
R

of

‘%
3 denoted by 0 have been taken from the second column of Table 15.

From Table 10 we see that the K-doublet (or more correctly the L

doublet of the K-series) also obeys 4,,‘
the law of constant differences %

d
"

“

ii
of wave-lengths. In actual fact .,

A,’ - A, is constant throughout 1° _
'

the whole series of elements and

3

is equal to about 4 or 5 X-units.
We conclude our present pro- 20

10 '

40

visional statements about the L

series and L-doublets with some
historical notes. The law of ap
proxima e y cons an ware eng

60 6°

'

t l t t * -l th i;
z

Fro. 56.
differences was set up by the
author as long ago as 1916,* and
was used to arrange into order the lines of the L-series. Further, it

furnishes a convenient auxiliary means of finding doublet lines that belong
together. Concerning its theoretical grounds we shall soon have some

thing to say. The L-doublets (a'B), (718), (cq), ((0) were already known
earlier as a result of the law of approximately constant differences of

wave-length and as a result of their exactly constant differences of

frequency for each element. The doublet (LK), in the light of more
recent measurements, has here been added.
On the other hand, the doublet (¢'¢) was previously called (v¢),

owing to a false interpretation by the author. For it seemed, according
to the measurements then available, that there was the same difference
of wave-number between the lines X and u

p as between ¢
' and ¢, and

hence this difference of wave-number was attributed to a difference of
level in the L-shell. The doublets (¢'4>) and (X111) which were conse

quently surmised to exist, were called A-doublets in contrast to the true
' Ann. d. Phys., 51, 125 (1916), cf., in particular, pp. 137 and 138, from which our

Fig. 52 has been taken.
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L-doublets. This interpretation was also used in the previous edition of
this book. The incorrectness of this view was disclosed by measurements
of the L-absorption limits carried out by G. Hertz (cf. the next section),
and was confirmed by A. Smekal* and D. Costert in the improved
measurements now available. The two latter physicists set up in

dependently of one another the scheme for the interpretation of the
L-lines which we adopted (with unimportant changes) in our Table 12.
We here parenthetically add a few remarks about the Rontgen spectra

of isotopic elements. Siegbahn and Stenstréim have photographed the

L-series of ordinary lead (at. wgt. 207'2) and of radium lead (RaG,
at. wgt. 206) under identical conditions; they found not the slightest
difference in the wave-lengths of their L-lines.I We had already
anticipated this result in Chapter II, §7 (cf. p. 102) and had concluded
that isotopic elements agree in the arrangement of their central electrons.
For the same two elements it has also been shown that their visible and
ultra-violet spectra are almost exactly identical. From this and from the

circumstance that they cannot be separated chemically, we concluded:

isotopic elements are also alike in the arrangement of their peripheral
electrons.

On the other hand Rutherford and Andrade§ have taken photographs
of Ra spectra, which they have ascribed to proper or natural 7-radiation,
that is to spontaneous Riintgen radiation in contrast with the Réntgen
radiation that is excited by impinging cathode rays, such as we just
now mentioned in the case of RaG. But we may conjecture that here
we have essentially the same case as in the previous section, namely, that
we are dealing with secondary X-rays that are excited by the ,8-radiation
of Ra. Photographs of the softer part of the spectrum produced wave

lengths which partly coincided with the L-lines of Pb, and partly with
those of Bi. This is explained by the theory of isotopes as follows: Ra
contains among other things two of its descendants, RaB and RaC, which
are isotopes of Pb and Bi respectively; they, therefore, lead to L-spectra
that are identical with those of Pb and Bi. In the harder part of the
spectrum, on the other hand, Rutherford and Andrade have found wave

lengths that seem to .be identical with wave-lengths (hitherto not directly
measured, but only obtainable by extrapolation) of the K-series of Pb and
Bi. This K-radiation, also, is presumably of a secondary nature. Proper
primary y-radiation is probably essentially harder. Interpreted in this
sense, the experiments of Rutherford and Andrade seem to bring nothing
new, or nothing that goes beyond the results of the experiments of
Seigbahn and Stenstrom ; but like the latter, they represent a beautiful
confirmation of the theory of isotopes. -

" Zeitschr. f. Phys., 5. 91 and 121 (1921). +Ibid., 5, 189 (1921).
1Physikal. Zeitschr., 18, 547 (1917). It is of course not out of the question that

if the measurements are carried out to an extreme degree of refinement, a. very small
difference may become manifest, as in the visible region (cf. p. 102, footnote 1).
§Phil. Mag., Q, 263 (1914).
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TABLE 17

Stenstrom
l
Origin Intensity

{
¢
'] _ N,->M, 1

¢ N, -—>M, s

3 I N, —>M, 5

-, l N,
—>M, 1

5 O -—>M, 1

5 i N4_>M‘ 1

We now come to the third, the softest, series of Réintgen spectra,
namely, the M-series discovered by Siegbahn.* Table 17 is to serve as
a key to the terminology, origin, and so forth.

TABLE 18

Wcwa-lengths o
f the l\I-series in X-units (Stenstrihn)

a.’ a B 7 5 5

66 Ds . . —- 9509 9313 -— -—— _
67 Ho . . -—— 9123 8930 — — —

‘ 68 Er . . —- 8770 8561 — - _
70 Ad . . — 8123 7895 — -_- _
'71 Cp . . - 7818 7587 _ _ _
73 Ta . . — 7237 7011'5 — __ _

, 74 W . . — 6973 6745 6091 — -—

76 Os . . —— 6477 6250 —- — —
77 Ir . . — 6245 6029 - -—— -
78 Pt . . —— 6028 5812 5311 — —
79 Au . . -— 5819 5601 5115 —- -—
81 Tl . . 5461 5449'!) 5233'4 4802 — —
82 Pb . . 5287 5275-1 5064-8 4663'7 — —
83 Bi . . 5119 5107'2 4899'3 4523'8 -— -—
9O Th . . 4143 4129'15 3933'3 3656'5 3127 3006
92 U . . 3916 3901'4 3708‘3 3471'4 2943 2313

In Tables 18 and 19 the wave-lengths A and the wave-numbers v =

ii

divided by the Rydberg frequency R = 109737 are tabulated. The
measurements for the elements Tl to U have been carried out more
correctly (felspar was the analyser) than those for Ds to Au (for which
a crystal of gypsum was used).
The discovery of associated doublet lines is not quite definite owing

to the somewhat incomplete nature of the measurements. As we have
indicated in Table 17 by brackets and have explained by giving the origin
of the lines, (o.’,B) and (ye) are to be regarded as M-doublets, (a/,8) in the
rigorous sense and (-y<) in the slightly broader sense, analogously to the

(afi) and (yS) lines of the L-series; (a'a.) is to be regarded as an N-doublet.

‘Siegbahn, Verb. d
.

Deutschen Physikal. Ges., 18, 278 (1916); Stenstriim, Ann.
d. Phys., 57, 347 (1918), and his Dissertation, Lund, 1919.
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It is true that neither of these doublets is known for more than five
elements. On account of the small numerical difference of the energy
levels in the N -shell, however, the line-pair <1/3,which represents no real
doublet, differs only imperceptibly from u’,8. Consequently our criterion
of almost constant wave-length differences AA, by which we associated
the doublet lines in the L-series, holds here approximately as well for the
line-pair (a,B) as for (u',B); of this we may convince ourselves in Table 18.
In the case of those elements in which a

.’ is not separate from <1,((1,8) is

to be regarded as a doublet in the same sense as ()\<),,, (a,8)L, and

TABLE 19

v/R-values o
f the M-series (Stcnstriim)

l

Z 1' a B 7 y 5 6

66 DB . . -— 95'83 97'85 ~——— —- ——

G7 H0 . . -— 99'88 102'0 ~— — -—
68 E1‘ . . — 103'9 1064 — —- —
70 Ad . . —— 112'2 1154 — — —
71 Cp . . —— 116‘6 ]20'1 -—- —- -
73 T8. . . — 125'9 1300 — —- —
74 W . . — 130'7 135‘1 1~l9'6 —— —
76 OS . . — 140'7 145'S —- — -
77 I1‘ . . —— 145'9 151'1 —- — -
78 Pt . . — 151'2 156'8 171'6 -— -—

79 All . . —- 156'6 162'7 17B'2 — —
81 Tl . . 16G'9 157'21 173'96 189-8 —— —
82 Pb . . 1'/2'4 172'75 179‘92 195'-$0 -— —
S3 Bi . . 1731) 17843 1B6'(X) 20144 — —
90 Th . . 220'0 220'7O 231'68 24922 2914 303'1
92 U . . 2-32'7 23358 245‘75 262‘51 30913 3239

Towards clearing up the mutual relationships between the L- and the
M-series, the following remark of R. Swinne is of particular interest?‘
The d-iflerence B

’ — u. in the M-series is equal to the dijference 0. — o
.’ in the

L-series. Table 20 shows to what extent this equality holds; the numbers

again denote the é
g values of the line-pairs written at the top. In the

case of elements for which Ma.’ could not be measured separately, (a’,B),,

is replaced by ((13),.
We thus find the same relationship to hold between the M- and the L

series as prembusly between the L- and lthe K-series. Our nomenclature
has been chosen so that this relationship is brought into clear evidence.

Namely, (a.',B),, = (a.'a.)L

is fully analogous to

(<1'/3)t = ('1'<1)x

*Physikal. Zeitschr., 17, 485 (1916). Swinne here compares the doublets (a’¢)[,
and (aB)M. It was pointed out by the author in Zeitschr. f. Phys., 1, 135 (1920), that

it is more accurate and more logical to replace (all); by (¢’B)M.
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TABLE 20

- 1

1 1-71>» 1-'->1 Z 1 1-'51»
1
1-'-11

;
1 1 1
cs D4 . 202 2-75 77 Ir . . 5-2 5-40 1
67110 . 2'16 2-97 78Pt . . as 5-as 1
68Er . 2-6 3-15 79111 . . 6'1 6-31
70.111 . 3-2 a-s1 s1 1'1 . .

1
709 703 1

1 71 Cp . s-5 3-77 s2 Pb . . 1 7-61 1 7-55 1

1
73111 . 4-1 4-40 as Bi . .

I

s-00 1 s-34 1
74 w . 4-4 4-60 sort . . 11-as

y
11-70

1 76 04 . 5-1 4-7 92U . . i 12-92 12-as
1 1 1

\Ve see the reason of this directly from Fig. 55. Here we have repre
sented the two highest M-levels, M, and M2 (we were able to suppress the
lower levels, M3, M4, and M_,,, which occured in Tables 12 and 17), just as

we have drawn only the two highest levels L1, L2 (omitting the lowest

level L3). Finally, the N-shell, too, is represented only by its two highest
levels N1, N2. If an electron sinks from one of these two N-levels into
the M-shell, giving rise to the emission of a line of the M-series, it may

stop at the M,-level or at the M2-level. In the latter case the emitted line

(MB) is harder than that of the former case (Mo. or Ma’). Thereby the

difference of wave-length of the lines Ma and MB becomes nearly equal
to the difference of level of the energy-levels M, and M2, whilst the dif

ference of wave-length of the lines Ma.’ and MB becomes exactly equal to
this difference of levels. We see that actually, in Table 17 and Fig. 55,

Mu’ and MB start out from the same initial level N2, and Ma and MB, on
the other hand, start out from the two somewhat different energy-levels
N, and N2. We may now again allow the electron to sink further from
M, or M2 to Ll, whereby the line-pair (aa/) of the L-series is produced,
having the same doublet interval as that given by MIMQ. At the same

time the same characteristic reversal of hardness and intensity occurs as

between the corresponding lines in the L- and the K-series: whereas -in
the M-series the weaker line B lies on the “hard” side of 0., in the L-series
the weaker line o

.’ lies on the soft side o
f the principal line <1.

We see that in spite of complicated and manifold conditions the
structure of atoms and its reflection in the structure of X-ray spectra is

marked by wonderful uniformity and logical consistency.
These general considerations may be concluded by some preliminary

remarks on the quantitative theory of the X-ray doublets, just as we closed

the preceding section by a preliminary remark of a quantitative nature,

namely, Moseley's formula for K0,.

From the definition of wave-number

1y=.

A
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there follows, for the doublet interval measured in wave-numbers,

1 1 AA
A = _ — _ = ___~V

A2 *1 A132

Taking v as a mean wave-number for the two doublet lines, we write I
Av = A)\.i/2 . . . . . (1)

We next use the law that for each true doublet the difference of wave

length AA of its members is constant, that is, independent of Z. For

example, if we set AA = a", we get, by taking the fourth root,

1/§=a~/I1. . . . . (2)

By the last column of Table 15 the left side is a linear function of Z;
according to Moseley's law the same is true of the right side, and, indeed,

not only for the line Ka but also for the other K-, L-, and M-lines.
So far our empirical data in Table 15, combined with Moseley's law,

state no more.than the law of the approximate constancy of AA, which we

here used as our basis. But for the case of our L-doublets (a.'B),.('yd), etc.,

we may now insert numerical values in equation (2) on the ground of our

empirical Table 15. As already remarked in connexion with this table,

1/ /W1? increases by O'O43 for each increase of Z by one unit. Further

more, from the last column of Table 15 we may derive that value of Z for

which Av would vanish, if we extrapolate the rectilinear law that holds for
greater Z’s. In this way we get Z = 3'5. Consequently the equation
(2) may be rewritten in the form

1/%T= 0-043(z
_
3-5) . . . (3)

If we raise both sides to the fourth power and, for the sake of convenience
multiply the numerator and the denominator by 2*, we get

5-3.10%
W_(z-3-5)* . . . (4)

5°]

'3 u

This law gives us a deep glimpse into the mechanics of the interior of
the atom. It points very definitely not only to the rules of the quantum
theory that reign in the interior of the atom (Chap. IV), but also to the
laws of the theory of relativity (Chap. VIII). Whereas the wave-n'umbers
themselves increase, according to Moseley, proportionally to the square of the
atomic number, the ware-length dijferertces of the doublets depend on the

fourth power of the atomic mtrnlier. This is true not only of the L-doublets,
as here derived, but also of all other regular doublets, for example, the
M-doublet (a.'a) of the L-series or the similar doublet (u.’/3) of the M-series.
In the latter case the denominator 24 is only to be replaced by 2 . 3*, and
the number 3-5 is to be replaced by a greater number which is to be
determined experimentally. The law that AA is nearly constant for all
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such doublets now follows directly from equation (1). Since AA is here

represented as the quotient of a bi-quadratic function by the square of a

quadratic function of Z, it becomes appreciably independent of Z for

greater values of Z.
In conclusion we must add a word about the troublesome question of

nomenclature. All terms used to describe physical quantities are arbitrary
and too narrow in view of the manifold character of Nature. Our
nomenclature, which is intended to be no more than an extension of
Moseley's, has the advantage of being systematic to a certain degree and
of allowing a fairly easy survey of details. But, for example, in the L
series, it soon reaches the limit at which the Greek letters no longer
suflice, when new lines are observed, and would be demolished if lines
that have been observed earlier were to receive a new interpretation.
On the other hand, Siegbahn's nomenclature has the undeniable advan

tage that it has any number of indices at its disposal for the inclusion of
new lines, and also that the lines whose intensity is to be estimated, for

example, the a.- (or the B-, -y-) group mostly occur on the same plate.
But it is a little diflicult to remember and does not give an easy survey.
There is, however, one way of escape which the spectroscopy of the

visible region prescribes to us, a purely systematic method. The arbitrary
symbols with which Fraunhofer designated his lines are nowadays hardly
more in use, but rather we have had to make up our minds to designate
each line by its series relationships. For example, the D-line of Na is
represented by ls — 2]) (cf. Chap. VI). Corresponding to this we must
say in the Rontgen region, not Ka, LB, . . . but L1 -> K, M.) -> L2, . . .
or K — L,, L, - M2, . . . These formula-1, consisting of two terms, so
to speak, are very little more cumbersome than the conventional ones and
are yet free from all arbitrariness. They certainly take for granted that
we have succeeded finally in interpreting the lines. Till this is attained
we shall have to help ourselves out, for experimental purposes, with
Siegbahn's nomenclature, or, for theoretical considerations, with our
nomenclature of the Moseley type.

§7. Excitation and Absorption Limits, Regularities in the Absorption

Ooeficient

In next passing from the line-spectrum of X-rays to the continuous
spectrum, we have once again to emphasise the fundamental fact that the
latter has a sharp limit or edge on the side of short--waves or high frequencies,
a fact for which classical electrodynamics could find no explanation and

which invokes the aid of the quantum theory. This limit, expressed in

wave-lengths by )\,,,;,,, and in frequencies by vvm, is determined by
the voltage V of the Rontgen tube, being independent of the material of
the anti-cathode, according to Einstein’s law (cf. p. 41) :

eV = iivm, =

A
h
? . . . (1)

Hllll
12
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If we fix our attention on a definite v, then, as the voltage is made to
pass through a series of increasing values there is a value V,,,,-,, at which
this v appears for the first time although only with vanishing intensity;
v forms the short-wave limit corresponding to this V,,,,-,,. As V increases
beyond this value, the intensity with which our v is represented in the

spectrum increases,-indeed, linearly. Hence if we observe the intensity
in a small region of wave-lengths, when the rays have been separated
spectrally (this measurement is probably best effected by the action of
the rays on an ionisation chamber), the excitation voltage V,,,,-,, may be

sharply determined for each'v ; by dividing the exciting voltage by its

corresponding v, we get at once the factor of proportionality given in (1),
and hence also, since e is known, the value of the quantum of action h.
Everything seems to favour this as making possible a precision determina
tion of h, provided that the voltage remains constant and is well defined

(this is attained by using a great battery of accumulators).
'

The following, Fig. 57, taken from Duane and Hunt,* shows how

hmm“ sharply the excitation voltage
V,,,,~,,may be determined by this
method of observation. The
voltages in kilovolts are plotted
as the abscissze, and the deflec

tions of the electrometer, giving
the ionisation measured in the
spectrometer, are plotted as

ordinates. The curves may be
called isochromates since each

24 36 23 30 32 34 36 38 40 Kilovolts one refers to a definite colour,

488 424 377 345 318 308 = A . 109 and hence frequency v. At the
6'44 6'37 6'34 6'33 6'41 6'39 = 7‘-10“ foot of each of these ionisation

FIG‘ 57'
curves, that is directly below

the intersections with the ac-axis, we have written the corresponding wave
lengths in X-units (10

- 11
cms.) and also the value of the quantum of

action, h, calculated from these numbers, and expressed in erg-secs., cor
responding to the dimensions: energy x time. More recent researches
by D. L. Webster,i' VVebster and Clark,1 Blake and Duane,§ and E.
Wagner, I] in which the same method was used have considerably reduced
the uncertainty in the determination of h; they lead to the values

h = 6'53 .10 - *7,

h = 6'55 . 10 - 27.
When we stated above that the limit or edge of the continuous spec

trum was found to be independent of the material of the anti-cathode,

" Phys. Rev., 6, 166 (1915).

+ Proc. Nat. Acad., 2
,

90 (1916); Phys. Rev., 7
,

599 (1916).

~
;

Proc. Nat. Aca.d., 3, 1s1 (1917). § Phys. Rev-, 9. 568; 10, 93, 624 (1917).

ll Ann. d. Phys., 57, 401 (1918) ; Physika]. Zeitschrift, 21. 621 (1920).
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we did not intend this to apply to the increase of intensity at the excita
tion edge, or, indeed, to the intensity at all. The intensity, both the total
and the maximum, of the continuous or “ impulse

"
spectrum is observed *

to be propmtional to the atomic number of the material of the anti-cathode,
and, for the rest, about proportional to the square of the excitat-ion voltage
V. So far we have not succeeded in finding a theoretical explanation of
these interesting and important laws, that is

,

to link them up with our

present views of atomic structure.

Compared with the continuous spectrum of X-rays, what is now the

position of the line-spectrum, the
“ characteristic

"
spectrum? Does

equation (1) hold for this, too? We already know from §4 that this
question is to be answered in the negative. There we spoke of the ew
citation limit or edge of the K-lines, and we use this term to denote the

energy that the cathode rays must at least have in order to remove an
electron from the K-shell to the periphery of the atom, and thus to pre
pare it for the emission of the K-series. In Fig. 48, this excitation limit
was represented for the K-series (K-limit) by an energy-level that is

higher than the energy-levels of K,,, KB, or even K7. It is equal to the
difference of level between the zero-level of the periphery of the atom and
the K-level. If, in accordance with the hv-law, we ascribe to it a

frequency I/K, then the latter satisfies the inequality:

vK>v.,>v,g>va . . . . (2)

The e:z:cita.tion limit measured in this way as a frequency is thus the
series limit, to which the K-lines tend and at which they accumulate (of.
the dotted line in Fig. 58 above). This leads us to certain inferences.
Suppose that we allow the voltage or V applied to a cathode-ray tube to
be increased gradually up to the value eV,, = hva ; we ask when the line
K“, characteristic for the material of the anti-cathode of the tube is

emitted for the first time. In contradicton to (1) it is not emitted when
the voltage is Va. W'e allow the voltage to increase still further, to V); ;

again, neither the line K; nor even K, is yet emitted. Rather we must
increase the voltage to the excitation limit e = hvx or even further.
Then the lines K“, K3, K7, appear siinmltarzeonsly. This was actually
confirmed by very careful experiments of Webster (loo. cit.). We follow
E. Wagner in calling the difference between 1/K and 11,,the Stokes lag of
the line K, and thus link up with Barkla’s term, “ fluorescent radiation,"
for the characteristic radiation. The Stokes lag of K5 is less than that of
K“, and that of K, is vanishingly small. Stokes’ Rule of Fluorescence in
the visible region is confirmed without exception in the region of X-rays.
In the visible region, where conditions are less simple and less funda
mental than in the Rontgen region, there occur occasionally apparent
exceptions to Stokes’ rule (but cf. p. 184).
The circumstances of the excitation of the L-series are still more

" G. T. Ulrey, Phys. R.ev., 11, 401 (1918).
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interesting. In Fig. 48 we drew the excitation limit for the lines 11,y,
. . . of the L-series. In consideration of the necessary subdivision of
the L-level into three minor levels L1, L2, L3 we must, to be accurate,

designate as the L-limit, the limit intended in Fig. 48. If we again
define a frequency v,“ corresponding to the energy-level L1, then this will

be the series limit for the lines 0.,7, <, {, Lof the L-series (cf. the preceding
section, Table 12), thus

vLl>v;>vy>v.>v,,>v, . . . (3)

The second energy-level L2 lies, as we saw, deeper than the energy
level L, ; the lines /3

,
8
,

17, 0
,

K that end in this level are harder than the doublet
lines a, y, e, {, L allocated to them. To excite these lines, it is necessary to lift
an electron from the level L2 to the surface of the atom. The frequency
11,,”defined by the hv-relation now becomes the series limit of the second

set of doublet lines, and we find the inequality to hold :

v1,=>v0>va>v,>vp>v,,.

Thus we have a doublet of excitation limits for the L-series. The fact

that the distance between these excitation limits v,_2 — v,,l is, as we would

expect after what has gone before, equal, in the case of each element, to

the doublet A1/L studied in the preceding paragraph, will soon be cor

roborated by the evidence of direct measurements.
Again we infer : to excite the La-line, the cathode-ray energy equiva

lent to v,, is not sufficient. Rather, it is necessary to go as far as the

voltage given by eV = II/FL‘, when all the lines a, -y, e
,

{
, I. of the L-series will

appear simultaneously, but not yet the lines B
,
8
,

1;, 0
, K. To excite these,

the energy o
f the cathode rays must again increase till the second e.1'c-itation

limit is reached. In the case of energies that lie between those of the first
and second ercital-ion limits, only the soft-er line o

f each L-doublet is pro
duced. Just as in the K-series the excitation limit 1/K coincides per
ceptibly with the hardest K-line 7, so in the L-series the limits v|_l and

vL: coincide perceptibly with the lines § and 6 of the hardest doublets, as

is shown graphically in the lower part of Fig. 58.
But there is yet a third energy-level L3, below L2, at which the lines

¢¢', xx'ip end. These lines do not at once appear when the second ex
citation limit is passed. The voltage V has again to be increased to a

third excitation limit, given by the equation eV = hi/L1. It is only then
that the L-series is completely formed. And v, almost coincides with
the line L¢, and we get

1/L“
> vq,> vx > vx' > 11¢> 1/4,‘.

Exact foundations for all these assertions are given b
y

extremely careful
measurements carried out by 1/Vebster and Clark *, \Vebster 1'

,

and Hoyt 1

" D. L. Webster and H. Clark, Proc. Nat. Acad., 3, 181 (1917).

-t D. L. Webster, ibid., 6, 26 (1920). 1
*. F. G. Hoyt, ibid., p. 639.
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for Pt and W. In the case of W, the three excitation limits, calcu
lated from the frequencies of the lines (0 and 1

//
,

are :

L,-limit . . . v = 10-2 kilovolts
L,-limit . v = 11-6 ,,

L3-limit . . . v = 12-0 ,,

By adjusting the voltage to values in the vicinity of these, the appear
ance or disappearance of the lines, or their change of intensity could be
observed, partly by photographic means, and partly by the ionisation
method. According to Hoyt, the following lines are certainly to be
allocated to the three limits thus :

L1-limit . €0.'G.)'CL

L2-limit . . . 17,88

La-limit . . .

in full agreement with the scheme of the preceding section. In the case
of X, X

’, and x the final allocation is left open. A comparison of their
photographic intensities at 12-0 and 12'5 kilovolts seems to favour their
inclusion at present in L3. According to our scheme, X and X

’ should

actually belong to L3, but K which forms an L-doublet with L, must be
added to L2. For the same reason, we must count the line 0 as belonging
to L2 ; in the case of W, it was too weak to be observed by Hoyt ; in that
of Pt it is just exactly covered by X

’. Of course, experiments of this kind
are the surest means of an-iving at an unambiguous conclusion about the

significance of the individual lines.
Earlier, the author, arguing from the supposed existence of an “ A
doublet

"
(cf. p. 171), had assumed that, besides the limits L

,

and L2, there

were two further limits A1 and A2 in the L-series, of which A, was sup
posed almost to coincide with L2. This assumption falls to the ground
with the “ A-doublet,” and is, in particular, refuted by Hoyt's measure
ments.

Now what happens to the incident energy E of the cathode rays at
the excitation limits ? It is used to drive the K- or the L-electron to the
periphery of the atom and is therefore absorbed. What happens, on the
other hand, if we allow primary X-rays to fall on to the same material in

place of cathode rays? These too, if sufficiently hard, are able, as we
know, to excite the characteristic radiation of the matter of the anti
cathode, in accordance with the general law of equivalence E = hv. But
then they must make available for the expulsion of the K- or the L-elec
tron, the same amount of energy E as that furnished in the excitation by
cathode rays. The energy of the primary X-rays becomes reduced by
this amount when it passes through matter, in which it excites secondary
radiation.
That is : the excitation limits become marked in the continuous X-ray

spectrum as absorption limits.
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In Fig. 58 this is suggested by the continuous tinted bands which are
added to the corresponding line-spectra. For example, let us consider
the excitation limit vx of the K-series. Let the primary Rontgen radiation
be that of a tube of about 40 kilovolts tension, that is

,
it is to have a

continuous spectrum which is to extend to wave-lengths of 300 X-units

(cf. Fig. 57). Let the matter receiving the radiation be a silver leaf. In
the case of Ag (cf. Table 21), the excitation voltage of the K-series is at

the wave-length AK = 485 X-units. The softer portions of the incident

spectrally resolved continuous spectrum A > AK are only slightly weakened
as they undergo only a general absorption, which, moreover, decreases as

the hardness increases. At A = AK a strong selective absorption suddenly
occurs. This persists also for )\<)\K up to the limit of the continuous
spectrum; it gradually becomes less, corresponding to the uniform

decrease of the absorptive power with the increase of hardness.

Fig. 58 exhibits these conditions as they appear on a photographic

plate placed directly behind the Ag-leaf.* At the left half of the upper
band, for )\>AK, the absorp
tion is weak, that is the

darkening of the plate is in

tense, and indeed the more

intense the longer the wave

length, that is
,
it increases to

wards the left. At A = AK, the
selective absorption of the

silver in the leaf comes into

av: P 1 ct, .: 0L, tr, action. On the right side of
Fm, 53, the band the photographic

plate is thus strongly screened
by the Ag-leaf. We have at first a region of little darkening and then,
as the hardness of the rays increases, a slow increase of the darkening,
corresponding to a slow increase in the transparency of the Ag-leaf.
Similar results are found for the L-series. Let the matter through

which the radiation is transmitted be, for example, a gold leaf. In the
case of Au the three L-absorption or excitation limits L1, L2, L3 are at

AL‘
= 1038, AL:

= 899, AL”
= 861 X-units (cf. Table 22). Let the

radiating X-ray tube emit softer radiations than before, so that it may
furnish the region of wave-lengths under consideration with sufficient

intensity. For )\>)tL1 the absorption i
s uniformly weak; at A = AL‘ a

strong band of absorption asserts itself; at X = )\,,_, a second somewhat

less intense one appears (corresponding to the smaller intensity of the
second lines of the L-doublets in comparison with that of the first) ; and
at A = AL“ a third band appears, which i

s only weakly represented.

‘We here disregard altogether the specific action of silver in the photographic
layer, which partly reverses the action of the absorbing silver leaf. This action is
lustrated in Fig -59.
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Accordingly, a photographic plate which is placed behind the Au-leaf

and of which the darkening is shown in Fig. 58 (lower half), exhibits
intense darkening to the left of the first limit L1; immediately to the

right of this it appears very bright, on account of the selective absorption
in the Au-leaf. The darkening increases slowly towards the light till it
decreases suddenly at the second limit L2, though less suddenly than at

the limit L1; at the third limit L3 a third weak brightening follows.
With increasing hardness the darkening beyond L3 increases continuously.
Concerning Fig. 58, we have yet to remark that, towards the left in

the upper part of the figure, the L-absorption limits, towards the right
in the lower part of the figure the K-absorption limit, may be imagined
to be added, but at a considerable distance away. In the case of Ag the
L-limits are so soft that they have escaped observation so far; in the
case of Au the K-limit is known, but it would lie quite outside our figure.
After the schematic Fig. 58, we consider in Fig. 59 a spectrum, that

was photographed by E. Wagner and J. Brentano, of a tungsten anti
cathode; in the lower part no absorbing layer was interposed, whereas

in the upper part the radiation had been made to pass through an

W-1>_TQQ.A9. 7' 5

FIG. 59.

aluminium plate 1'4 mm. thick. The big spot on the left is the

over-exposed point of intersection of the primary radiation with the

photographic plate. A revolving crystal has spread out the wave-lengths

in increasing order towards the right, that is, in the opposite direction

to that in the schematic Fig. 58. At the right end of the lower part of

the figure we see the comparatively soft L-lines of the tungsten anti

cathode marked out with extraordinary clearness on the weakly tinted

background, which represents the continuous spectrum of the anti

cathode. The lines a. and a’ were too distant to be taken on the plate.

The photographed lines are successively, counted from right to left,

4,’, /3
,

¢
,

-y, 8
,

X
’,

X, 1/1; the three most intense lines /3
,
7 and 8 have been

made recognisable as such in the margin. In the upper part of the

figure the softer L-lines and, for the greater part, also the continuous

background has been extinguished by absorption in the aluminium

sheet (this i
s the general, not the selective absorption; the selective

K-absorption of Al occurs at much softer wave-lengths and would

be obtainable only in tho vacuum spectrograph, and still more so the

L-absorption edges). If we follow the continuous spectrum towards
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the left, in the lower part of the figure, we come across several striking
sharply defined absorption edges that here (namely, in the scale of
wave-lengths) extend towards the left with decreasing darkening. What
do these absorption edges in the lower part of the figure denote, in view
of the fact that no absorbing medium intervenes? It has been ascer
tained from indisputable and unambiguous experiments that they are
due to the photographic silver bromide layer. The intense band on the
left is the K-absorption edge of Ag and it is repeated in the weak band
furthest to the right; the extended band between these is the K-absorp
tion band of Br. Corresponding to its position in the natural system
(Br, Z = 35; Ag, Z = 47) the Br-band is softer than the Ag-band. The
former is entirely extinguished by the Al-sheet whereas the latter is not
absorbed either in the second order or in the first. Of course, actually,
the Ag-band reflected in the second order has the same wave-length as
that in the first order. This explains the circumstance, which at first
sight seems paradoxical, that the Br-band is weakened more in its
passage through the absorbing Al than the Ag-band of the second order,
which, according to its position in the figure, seems softer, but which is
in reality much harder. To conclude the description of this instructive
figure we have now only to mention that the photographic darkening is
dependent on the quantity of the absorbed energy. That is why the plate
becomes dark, particularly where the wave-lengths absorbed selectively
by the Ag or the Br meets it. The AgBr layer acts simultaneously
as an absorber and as an indication of the absorbed energy, and its
increased absorption is indicated by increased darkening. A bolometric
or an ionisation measurement of the radiation transmitted by the AgBr
layer would, on the other hand, indicate increased absorption by exhibit
ing a lessening of the energy.
We now give figures of the absorption limits. The v/R values have

been placed alongside of the A-values, and in the case of the L-series the

values of the
%'
doublets are also shown. Table 21 gives the K-edges

or limits, Table 22 the L-edges.
A comparison of Tables 21 and 10 confirms that the K-limits lie hard

by the line Ky, and, indeed, in accordance with Stokes’ law they are dis
placed a little towards the direction of shorter wave-lengths,* by about i
per cent, as Duane and Stenstrom have proved for W by means of pre
cision measurements.-l- The same remark follows from a comparison
of Tables 22 and 13, with regard to the L-edges, and the lines L{, L6,

‘The opinion held by H. Fricke, Phys. Rev., 16, 202 (1920), that the K-limit of
Mg is softer than the line KB (K-y was not observed in this case) is contradicted by the
KB measurement of Hjalmar (given in our Table 10). In the L-series, Duane and
Patterson, Proc. Nat. Acad-. 6, 508 (1920), have felt themselves obliged to register an
infringement of Stokes‘ law in the case of tungsten. For the lines which we have
called (0 (cf. Table 13) this is, however, not so.
fProc. Nat. Acad., 6, 477 (1920).
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and Lip. But, further, a comparison with Table 15 shows that the ab

sorption doublets of the L-series coincide, with-in the limits of erro-r, with the
emission doublets. The significance of this fact in the atomic model be
comes particularly clear in the light of Fig. 55: the absorption doublet
is given as the difference in the energy-levels by the energy-step between
the L1- and the L2-level, in the same way as the emission doublet is
given as the depression in passing to the new energy-level.

TABLE 21

Absorption Limits of the K-series

Element A in X-units y/R Element Ain X-units 1//R

I
12 Mg . 9511-2 95-81 45 Rh . . 533-0 1709-7
13 Al . 7947-0 114-67 46 Pd 507 5 1795-6
15 P 575!-3'0 158-26 47 Ag 485'0 1878-9
16 S 5012-3 181-81 48 C-d 463-2 1967-3
17 Cl 4384-4 207-84 49 In 443-4 2055-2
18 A 3865-7 235-73 50 Sn 424-2 2148-2
19 K 3434-5 265-83 51 Sb 406-5 2241-7
20 Ga . 3063-3 297-48 52 Te 389-6 2339-0
21 Sc . 2751-7 331-17 53 J 373-7 2438-5
22 Ti . 2493-7 365-43 55 Cs 344-4 2646-0
23 V . 2265-3 402-27 56 Ba. 830-7 2755-6
24 Cr . 2067-5 441-14 57 La . 318-8 2858-4
25 Mn . 1889-2 482-36 58 Ce . 306-S 2970-2
26 Fe . 1739-6 523-84 59 Pr 294-6 3093

l 27 C0 ~. 1601-8 568-90 60 Nd 283-5 3214
28 Ni . 1489 0 612-O0 62 Sm 263-6 3457
29 Cu . l378'5 661-06 63 Eu 254-3 3584
30 Zn . 1296-3 702-98 64 Gd 245-6 3710
31 Ga. . 1190-2 765-64 66 Ds 229-4 3972
32 Ge . 1114-6 817-57 67 H0 221-4 4116
33 As . 1043-5 873-28 74 W 178-06 5117-8
34 Se . 979-0 930-82 78 Pt 158-1 5764
35 Br . 917-9 992-78 79 Au 153-4 5941
37 Rb . 814-3 1119-1 80 Hg ! 149-1 6112
38 Sr . 769-6 1184-1 81 Tl 144-8 6293
39 Y . 725-5 1256-1 82 Pb 141-O 6463
40 Zr . 687-2 1326-1 83 Bi 137'2 6642
41 Nb . 650-3 1401-3 90 Th 113-1 8057
42 M0 . 618-O 1474-5 92 U . 1 107-5 8477
‘
44 Ru . . . 55s-4 1651-9 l

I

Observers: Fricke, Phys. Rev., 16, 202 (1920) (Elements 12 Mg to 24 Cr). Duane
and Kang-Fu-Hu, ibi(l., 14, 516 (1919) (Elements 25 Mu to 58 Ce). Siegbahn and
Jfinsson, Phys. Zeitschi-., 20, 251 (1919) (Elements 59 Pr to 67 Ho). Duane
and Stensti-6m, P1-oc. Nat. Aca.d., 6, 477 (1920) (74 W). Duane, Fricke and
Stenstriim, ib-id., 6, 607 (1920) (Elements 78 Pt to 92 U).

It is to be regarded as an outstanding achievement of science that
also the M-absorption limits have been fixed completely at least in the
case of the heaviest elements. In the cases of U and Th, Stenstrém
found three, and Coster five difierent limits, that is just as many as we
found it necessary to assume in the scheme of L-lines of emission to ex

plain their existence. The three softest limits were observed by Costel
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TABLE 22

Absorption Limits of the L-series

Wave-lengths Values of v/R

Element '7 7* " W7‘ '7'” '7' "777" *9 ’
%

L1 In I-
3 In I-2 L4

W _. _ _-

[

0_ .__ -_mi _. _2.-_ _ 5- . _ __ _

55 Cs 2459 2299 2157 370-6 396-4 422-5 25-8
56 Ba 2348 2194 2063 388-1 415-3 441-7 27-2
57 La 2250 2098 1971 405-0 434-4 462-3 29-4'

58 Ce 2158 2007 1887 422-3 454-0 482-9 31-7
5) Pr 2071 1922 1808 440-0 474-1 504-0 84-1
60 Nd 1992 1842 1736 457-5 494-7 524-9 37-2

74 W 1213-6 1072-6 1024 750-88 849-59 889-9 98-71
78 Pt 1070-5 932-1 888-5 851-26 977-65 1025-6 126-39
79 Au 1038-3 899-3 860-6 877-65 1013-2 1058-9 135-5
80 Hg 1006-7 870-0 833-5 905-20 1047-4 1093-3 142'2
81 Tl 977-6 841-5 805-5 932-15 1082-9 1131-3 150-7
82 Pb 949-7 813-3 780-3 959-53 1120-5 1167-8 160-9
83 Bi 921-6 787-2 753-2 988-79 1157-6 1209-9 168-8
90 Th 759-6 628-6 604-4 1199-7 1449-7 1507-7 250-0
92 U y 721-4 591-8 568-5 1263-2 1539-8 1602-9 276-6

Observers: G. Hertz, Zeitschr. f. Phys., 3, 19 (1920) (Z = 55 to 60). W. Duane and
R. A. Patterson, Proc. Nat. Acad., 6, 509 (1920) (Z = 74 to 92).

for Bi, too. The orderly sequence (cf. also Chap. VIII, § 5) in the num
ber of limits or energy-steps, namely, K1, L3, M5, N7, is worthy of
notice. The last number is used as a theoretical postulate for founding
Table 12, but for the present there seems little chance of verifying it ex

perimentally. As a matter of fact, even in the case of the absorption
limits of the M-series the experimental difliculties are extraordinarily
great. Not only is it necessary to use a vacuum spectrograph, but it is

also necessary to prepare the absorbing metallic salts in extremely small

quantities, for example, by soaking tissue paper in them. The result of
the measurements is given by Table 23, which, following Coster, we ex

press in wave numbers v/R.

92U . . 261-03 273-99

|

317'18 882-1

|

408-9

TABLE 23

M, M, Mt M.

y

Ml

as Bi . . 191-as 199-44 253-9 - -
90 Th. . 244-so 256-55 297-99 3544

|

381-6
}v/R-values

l

In placing the excitation and the absorption limits after the emission
lines we have simply followed the course of the historical development.
From the strictly systematic standpoint, however, we should have
reversed the order, as is actually and rightly done in a report by
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W. Duane on Réntgen spectra.* The behaviour of the atom as regards
energy expresses itself most clearly and most simply in the existence
of the absorption limits. They represent directly the portions of energy,
by the manifold combinations of which alone the emission lines are
able to be produced. Compared with the former, the latter are compli
cated expressions of the energetic structure of the atom.
The relation between absorption limits and emission lines in the
X-ray region is the same as that between the “terms” (cf. Chap. VI,
§ 1) and the wave-numbers of the lines in the visible region. The object

of spectroscopy is to determine the atomic states and their energy 'va-Ines.
These are represented directly by the series terms. The observation of

spectral lines is merely a means of arriving at the terms. Only when the

spectra-Z lines have been developed in series, and have been resolved into
terms, may the object of spectroscopy be said to have been attained.
The laws of selection according to which the energy-steps of the atom

conspire together to produce emission lines of Riintgen spectra will not
be given before Chapter VIII. More involved theoretical steps are
necessary before they can be made clear. Only then, too, shall we be in
a position to prove the correctness of our table of the methods of origin
by which the lines of the K-, L-, and M-series are produced. Each datum
of the table implies a quite definite numerical statement about a relation

ship between the energy-quanta or, what amounts to the same, the
wave-numbers of an emission line and of two absorption limits. For
example, when we denote the origin of La by the symbol M, -—>L,, we
assert that the following equation holds exactly between the wave-number
v of La. and the wave-numbers v,,‘, v,,l~of the limits L1, M1:

v = vb‘
—
11,,‘ . . . (2)

for which we may more conveniently write

v = L, - M, . . . . . (3)

It is to be remarked that, in the case of the K-series in Table 9, the
origins of KB and Ky were indicated only generally by the statements
M -—>K, N —>K, and no further details were given as to which M- or N
level here comes into consideration. Since rather subtle questions arise
in dealing with the origin of KB in particular, which we shall not be
able to treat before the last chapter (under the heading

“ Defective

Combinations"), we shall wait till then before adding the details that are
still wanting for the exact definition of KB and Kn.
When the origin of all the lines is known, we shall be able to replace

the tabulation of the lines by a mere tabulation of the limits together
with the rules of combination that correspond to the origin of the line in

question. Thus, in principle, the tables of this paragraph may replace
those of the preceding paragraph. Analogous conditions hold in the

" Bulletin of the National Research Council, 1, 388 (1920).
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visible region. Whereas earlier reference books used to contain detailed
tables of the wave-lengths, but could add no resolution into terms, the
tables of, for example, Dunz (cf. Chap. IV, §2) furnish, in addition to
the wave-lengths, the values of the terms which are of most interest to
us, and which are of the greatest physical importance. In future, indeed,
it will be sufiicient to know the terms alone, as long as the mode of
origin of the lines in question, that is their resolution into terms, is firmly
established. We actually put this point of view into practice for the
X-rays in Chapter VIII, § 6, under the heading “ Table of Term Values."
Hitherto we have dealt only with the position of the absorption limits.

Concerning the amount of the absorption we mentioned merely its general
decrease as the wave-length decreased and its sudden increase in pass
ing the absorption edge. The amount of the absorption is measured
numerically by the absorption coeficient ,1. This is defined by the state
ment that for homogeneous radiation the relative decrease of intensity in
the passage through a layer of depth d is e'l"‘. From the absorption
coeflicient /1, we pass on to the true absorption coefiioient )1 in which the
loss due to the coelficient of scattering s (cf. Chap. I, p. 31) has been
subtracted; and from this again, if we divide it by the number of atoms

per cubic centimeter, to the true absorpt-ion coefiioient per atom, which we
shall call ;7._,,. According to calculations by R. Glocker,* the way in

which the latter depends on the wave-length A of the absorbed radiation
and on the atomic number of the absorbing element is represented for
the neighbourhood of the K-absorption limit by the formulae (A being
measured in cms.) :

_ 22-8 . 10-“ Z4“ . A“ for )\>)\x
"-" = 1120.104 Z“'T‘l.)é*'s for >.<>,,,

' ' (4)

W's arrive at this formula if we plot the logarithms of the measured
values of the absorption coefficients as ordinates, and the logarithms of
the wave-lengths or the atomic numbers, respectively, as abscissae. The

points so obtained lie along segments of straight lines, from the position
of which the factors 228 and 1120, and from the inclinations of which
the exponents 2‘8, 4'28, and 3'72 are determined. The uncertainty of

the exponent 2'8 of )1 makes it fluctuate between 2'5 and 3-O,+ according
to experiment. The very unconvincing fractional form of the exponent
shows that we are dealing only with an empirical formula and that the

proper theory of the process of absorption is still wanting.
In this way we get for the dependence of log n on log A the character

istic picture of Fig. 60. Suppose we are dealing, for example, with Ag,
at first in the vicinity of the K-absorption edge, AK = 485 X-units. If

"Physikal. Z_eitschr., 19_, 66
£1918);

the formula given above for the atomic
absorption coefficient was lnndly urnished by Mr. Glocker for the purposes of this

moiiiiir extremely hard wave-lengths far below the absorption limit, measurements
by G. VV. Hewlett, Phys. Rev., 17, 284 (1921), indicate that )7
.

is proportional to N‘.
Cf. in this connexion Note 2 at the end of the book.
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we start from the less hard rays (A> AK, at the right end of the continuous
line in the figure), log )1

. decreases uniformly as log A decreases, as far as

A = AK. At the latter point, on account of the excitation of the character
istic radiation of Ag, increased absorption begins; the absorption co
eflicient suddenly jumps up, and, indeed, to a value seven times as great
as that before the jump; to this there corresponds in the logarithmic
representation a jump of the amount log 7 = 0'84. After the jump the
uniform decrease of the absorption recommences as the absorbed radiation
increases in hardness; the logarithmic value of the decrease as before

, Q-s
.-*1“.-1

,

, .

L

w\‘1‘L7B v

l_ --
l|_l_l_I.

I .‘°s*/ \ on o.1._

.4 B, A=B, 4

Flo. 60.

the jump, being again determined by the exponent 2'8 of A in equation

(2). If, on the other hand, we go towards the right into the dotted region
(which i

s not corroborated by measurements in the case of Ag), we arrive
at the L-absorption limits. The course is here, if we judge for instance
from the example of Au, similar to that for the K-absorption limit : there
are sudden jumps, the graph having a parallel course before and after the
jump. In the figure three such jumps, of decreasing intensity, have been
inserted, corresponding to the three absorption limits L1, L2, L3.
Concerning the rise of the absorption at the limit in question, it is not

quite sharp and sudden as was previously believed and

as it appears in Fig. 60. Rather, the limit has a

certain structure. Stenstroin showed this for the
M-limits, G. Hertz for the L-limits, and Fricke for
the K-limits of the lightest elements. Fig. 61 shows l

k K A B

F10. 61.

the K-limit of sulphur, according to H. Fricke,* as a
photometric record of the darkening of the plate. Great
values of the ordinates denote good transmission, that is

,

little darkening of the plate measured photometrically and corresponding
strong absorption in the absorption film placed in front of the plate. The

photograph for the case of sulphur shows a precipitous but nevertheless

steady rise of the absorption between k and K. The distance kK amounts
to about 5 X-units and is a measure, so to speak, of the breadth of the

K-edge. But the two absorption maxima behind K, called A and B in
the figure, are still more remarkable. (The small zig-zags are due

* Phys. Rev.,16, 202 (1920).
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to the granules of the photographic plate.) In the photographs the inter
vening minima appear as comparatively sharp lines of brightness.
Kossel* accounts for the successive maxima as follows. The main

limit K corresponds to the energy that is necessary to transport an electron
from the K-shell to the periphery of the atom, and the succeeding maxima
A and B correspond to the transitions of a “ K-electron " to certain virtual
orbits, characterised by certain quantum conditions, which lie outside the
atom. The amounts of energy necessary for this are, of course, greater
than that corresponding to the true K-limit. The maxima A, B, . . .
therefore lie on the side of greater vibration numbers. On Kossel’s view
it follows that the intervals separating these maxima from each other and
from K, when measured in wave-numbers, must be of the order of magni
tude of the Rydberg constant R, and this is confirmed by the figure.
Further, it follows that the phenomenon of a band-structure is accessible
to observation only in the case of very soft bands, that is

,

for the K-bands,
only in the case of the lightest elements. In the absorption edges in the
harder region, the successive maxima, when measured in wave-lengths,
crowd together.
This leads us to a fundamental question. Why is it that the visible

spectral lines may be observed both in emission and in absorption, but
the Réntgen rays occur only as emission lines? The ground of this is,
according to Kossel again, to be sought in the difference between the inner
regions of the atom and the outer regions. In the interior the shells (the
possible

“ quantum orbits ") are occupied by electrons and an electron that

is ejected out of the interior finds no vacant orbit and must therefore
escape to, at least, the periphery of the atom. In the outer regions of the
atom, however, the “quantum paths" of the electrons are free; they are
virtual not real electronic orbits. When excited, the electron that is re
moved out of its natural orbit can pass over into any of these virtual
orbits. Each such transition corresponds to a definite acquisition of
energy and hence, according to the hv-law, to the absorption of a definite

spectral line. In the Rontgen region, however, absorption lines occur
only as secondary phenomena accompanying the absorption edges in
transitions that stretch beyond the periphery of the atom into the outer
region of the atom unoccupied by electrons.
Whereas, in Fig. 60, Z was kept fixed and A was varied, the depend

ence of the absorption coefficient on Z is obtained from a logarithmic
graphical representation in which A is kept fixed and Z is varied. Here
too the course is along straight lines. According to investigations by
Bragg and Peircet the steepness of the descent is measured by the ex
ponent 4 of Z, and whereas, according to calculations of Glocker, the ex
ponent is 4'28 or 3'72 according as A> AR or A. < AK respectively. (It is

interesting to note that the two latter numbers differ by the same amount

' Zeitschr. f. Phys., 1.124 (1920). + Phil. Mag., 23, cos (1914).
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from 4.) Glocker’s determination, which is founded on more compre
hensive material than that of Bragg and Peirce, is without doubt the safer of
the two. The fact that the exponents of Z cannot be the same for >\>)\K
as for )1<)\K already follows from the circumstance that the absorption
jump measured by the ratio of the )7.’3before and after the jump diminishes

systematically as Z increases, whereas if the exponents were equal, as

given by Bragg and Peirce, it would be independent of Z. It is by no
means necessary that the absorbing substance be present in the form of
an element. The absorption of Riintgen rays is, like their emission (cf.
p. 148), an additive property of the atoms composing the substance.

Finally, we shall make a little digression into the region of medical

Rontgen photographs. These are, as we know, whether received on a
fluorescent screen or on the photographic plate, shadow pictures. They
are thus concerned only with the transmissive or the absorptive power of
the object through which the rays pass. The human body is essentially
composed of the elements H, C, N, O, P, Ca (for which Z = 1, 6, 7, 8,
15, 20). Now the atomic absorption increases, as we saw, approximately
in proportion to the fourth power of the atomic number, and the absorp
tion of a compound, of a mixture or of an aqueous solution is composed
of the additive absorptions of its constituents. Thus to know the absorp
tion of bone-substance Ca3(PO4)2, we have only to superpose the absorp
tions of Ca, P, and O, whereby each is to be counted the number of times
it occurs in the formula (thus, 3, 2, and 8), and to find the relative absorp
tion of the bones with respect to the surrounding tissues, we have to

compare them with the absorptions of H20, which is easily the prepon
derant constituent of the tissues. In this way we get:

3.20‘+2.15"+8.8" 54 154mm-—? = 3(2) + 2(3) + 8
As we see from this the amount for Ca considerably outweighs even that
for P; the fluorescent screen counts, so to speak, only the Ca-atoms.
But if a lead bullet (Pb, Z = 82) is lodged in the bone, its absorption ex
ceeds that of the bone to an extraordinary degree. The excellent contrast
effect produced by a solution of bismuth that has been introduced into the
stomach or the intestine is due to this; for its atomic number is 83. The
concentration of the bismuth solution need not even be high; on account
of the ten times higher atomic number of bismuth compared with

oxygen, a Bi-atom acts about as strongly as 10,000 O-atoms and 1 grm.
of Bi acts about as strongly as 1 kilogrm. of water. The same explanation
holds for the surprisingly strong absorptive action of iodine preparations
that are photographed, for example, as iodoform in the bandages ; for
iodine has the atomic number 53.
But the dependence of the absorption on the wave-length and its jump

at the absorption edge also comes into account for the medical use of
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Réintgen rays. For it is on this fact that one of the commonest hardness
gauges, that of Wehnelt and the attached Wehnelt scale is founded (or
Ben0ist’s hardness-gauge, which is based on the same principle). Its
construction is familiar: an aluminium wedge is placed alongside a silver
plate of uniform thickness. We read off that position of the aluminium
wedge at which it absorbs just as strongly as the silver plate, so that

equal brightness is caused in the fluorescent screen. Whereas Al absorbs
all rays regularly—for the K-edge of Al has such a soft wave-length that
it does not come into question practically—the Ag absorbs the harder
rays for which >~<485 X-units selectively and absorbs only the softer

rays regularly. Therefore, in the transition from soft to harder rays, the
point of equal brightness moves along the scale in the direction of the
thicker end of the Al-wedge, as then the Ag-absorption begins for a greater
part of the mixed rays and so the same thickness of silver becomes equiv
alent to a greater thickness of the aluminium wedge.
This may suflice to show that in the medical application of X-rays

the more refined results of physical research, in particular those concern
ing the absorption laws, come into account.



CHAPTER IV

-run HYDROGEN SPECTRUM

§1. Introduction to the Theory of Quanta. Oscillators and Rotators

F we wish to penetrate further into the nature of the theory of

Iquanta, we must not restrict ourselves to the special case of
vibrational energy, which we treated alone in Chapter I, §6.

This case takes precedence historically; it led Planck to formulate from
heat radiation a definition of his quantum of action h. The simple
oscillator was used by Planck in a certain sense as a theoretical resonator
to heat radiation ; by means of it he developed his hypothesis of energy
quanta (see p. 37). This hypothesis is the foundation of the photo-electric
law of Einstein and also of its extension as Bohr's hypothesis concerning
emitted and absorbed energy.

Adopting a more general standpoint we shall consider instead of a

special Planck oscillator any arbitrary mechanical s_1/stem whatsoever, or,
for the present, a little more specially, any arbitrary -moving point--mass,
whereby it matters little whether we assume it to be charged (an electron)
or not.
We find it expedient to begin by enunciating the form that Newton

gave the mechanical laws in his Primipia, in particular his Definitio II
and Lea: II (Defim't1'o I defines the conception of mass; Lea: I is the
law of inertia).
Deflnitio II: Quantitas motus est mensura ejusdem, orta ex velocitate

et quantitate materiae conjunctim.
“ The momentum (amount of motion) is the product of the mass and

the velocity."
Le! II: Mutationem motus proportionalem esse vi motrici impressae

et fieri secundum lineam rectam, qua vis illa imprimitur.
“ The change in the momentum (amount of motion) is proportional to

the impressed force and takes place in the direction in which that force
acts."
In place of amount of motion we say momentum or impulse; we

denote the impulse by p, and hence by Dejin-itio II we have:
p = -m/v . . . . . (1)

As usual, we designate the position of the point by rectilinear co-ordinates
as, y, z. For the sake of generalisation later, we shall, however, use,
13 193
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instead of different letters, different suflixes attached to the same letter

thus: ql = 2:, qz = y, qa = z. The velocity is then given in magnitude
and direction by

ll at ll. . d . .

q,,(where
ql

-(
T
i,

(12 = y,
etc.)

and if pl, 112,1),, are the corresponding components of the momentum or
impulse then, by (1),

1),. = mq, . . . . . (2)

The fact that the dynamical triplet of impulse co-ordinates occurs

conjointly with the geonwtwlcal triplet of the co-ordinates of position is of

great importance to us. Furthermore, the above formulation of the law
of motion, Newton's Lax II, is of particular importance to us, especially
with regard to the foundation of the theory of relativity (cf. Chap. VIII).
It is wrong to speak of Newton’s “ Law of Acceleration." It it not the
kinematic quantity accelerat-ion* but the dynamic q~ua,nllzIt_1/change of
momentum that -L

e

reg-ullaterl by th-is law. In this sense we write down
Lem II for each co-ordinate direction (l

a = 1
, 2
,

3
) separately:

_- _ _ - DEW,

'

pk — Kg —T . . . .

In (3) we assume that the force K is derivable from a potential energy
Epot (function of q,). The kinetic energy is:

I R + ‘§ + ‘B CM:E».-..= lgm + + In
fi
H
M
\.
/

2-m

by (2). We call the total energy, considered as a function of qk and pk,
Hamilton's fimction H. We have:

DH DE DH DE -H 1 =Ei1i+E ., i= pot,(1
1

P
)

k PM

Dqt bqt DP’: apt m

Consequently we may write the fundamental equations (2) and (3) in the
form: '

at = E a = _ 21 <4,
dt Dpkv bqk

. . . .

This Hamiltonian or canonical form of the equations of motion is

remarkable not only on account of its symmetry but also because it

remains preserved if any arbitrary new co-ordinates are introduced (cf.
Note 4) and because it holds not only for an individual point-mass but

1 Of course, when the mass is constant 1
) = mg' = mass x acceleration. But in

general the mass is not constant; in the theory of relativity it is not even constant for
a single particle of mass; and in ordinary mechanics it is not constant for a rigid
body, for then the role played by mass is taken over by the moment of inertia, and
this varies during motion. In these cases Newton's assertion about change of
momentum remains valid, but not the statement about mass x acceleration which has
wrongly become prevalent.
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also for any arbitrary mechanical system. For arbitrary co-ordinates
and systems* the impulse p is defined by:

bEki71pt
bqk

. . . (5)

in which the kinetic energy is to be regarded as expressed as a function of
the q,,’s and the q,,’s. For the individual mass-point, (5) clearly becomes
identical with (2) if rectangular co-ordinates are used.
The values of the co-ordinates q and p determine the corresponding

state or phase (in Gibbs’ terminology) of the system. To get a vivid

picture of the state of motion in terms of the position (q) and the velocity
or impulse Q1), respectively, we imagine, in the case of an individual

point-mass (which has three degrees of freedom), its three position co
ordinates q and its three impulse co-ordinates p drawn as perpendicular
co-ordinate axes in a space of six dimensions, so that each point of this

space represents a phase of our point-mass. In a system havingf degrees
of freedom this phase-space is of 2f dimensions.

Fortunately, we need not frighten off the reader by discussing our

problems in multi-dimensional space. We may rather for the present
restrict ourselves to systems of one degree of freedom, for which the

general phase-space resolves into a single phase-plane. Later, too, when
we shall have to consider systems of several degrees of freedom, we shall

be able to arrange so that we have only to discuss two-dimensional

sections of the phase-space, that is
,

again, certain simple phase-planes.
We draw q and p as rectangular co-ordinates in the phase-plane of our

system. In this plane we construct the phrase-paths or orbits, that is
,

the

sequence of those graph points that correspond to the successive states of
motion of the system. Choosing any point as an initial state we may
plot the phase-paths and densely cover the whole of the phase-plane.
The characteristic feature of the quantum theory, however, is that it

selects a discrete family of phase-orbits from the infinite manifold of

phase-orbits. To define these selected orbits, we shall first consider the

area of the phase-plane included between two arbitrary phase-orbits: we

shall call such an area a phase-area. We then draw our family of orbits

so that the phase-area between two neighbouring orbits is always equal
to the quantum of action h

. In this way h acquires the significance of
the elementary region (or element) o

f the phase-area. VVe shall regard this

significance as constituting the true definition of Planck’s quantum of
action h

. We shall next illustrate these rather abstract ideas by means

of two very important special cases, that of the oscillator and that of the
rotator.
We give the name linear oscillator to a point-mass m that is bound

elastically to its position of rest and that can be moved to either side of

‘We shall not discuss here how the definition is to be generalised for the case
when the acting forces have no potential.
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this central position only in a direction z = q or its reverse, whereby it

experiences a restoring force but no damping resistance. The oscillator
is the simplest instance of a centre of vibration such as is assumed in

Optics in the form of a “ quasi-elastically bound electron." We use the
more accurate term “ harmonic oscillator" if we wish to emphasise that
the latter is capable only of a definite characteristic or natural vibration
on account of its elastic attachment. Let the vibration number or

frequency of the oscillator (number of its free vibrations per unit of

time) be v. The vibration phenomenon is then expressed by:

av=q=asin2-n-vt . . . . (6)

In this case the impulse p simply becomes equal to (according to

(2), and in agreement with Hence

p = 2m/ma. cos 2-n-vt . . . . (7)

By eliminating t from (6) and (7) we get as our phase-orbit an ellipse in
the p-q-plane having the equation :

§+§=1. . @

in which the minor axis b is defined by

b = 211-v-ma . . . (9)

The area of the ellipse is then :

afhr = 21:-2|/ma'~’.

. . W
We next assert that this same quantity is also equal to —v—,where VV

denotes the energy, which remains constant during the vibration. If, for
example, we calculate W at the time t = O, the potential energy is zero,
and the kinetic energy is

m

§(l2(21rI/)2
= W . (10)

and hence, actually,

<

2
(tbrr = — . . . . . (11)

By altering VV we get in the phase-plane the phase-orbits as a family
b

of similar ellipses since, by (9), the ratio C; has the constant value 21:-wn.

We have now to make the selected ellipses of this family succeed one
another in such a way that the elliptic zones have each the same area h.
Then h is at the same time (see Fig. 62) the area of the first (or inner

most) ellipse; the second ellipse has thus the area 2h, the 11"‘ the area nh.
If W,, is the energy of the oscillator, when it describes the 12"‘ ellipse as
its orbit, then according to (11)

W" = nhv (12)
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Whereas in the classical theory all points of the phase-plane are of

equal value and represent possible states of the oscillator, the states for
which the graph points lie on one of the ellipses of our family are dis

tinguished. They represent the stationary states of the oscillator, that is,
such states as the oscillator may pass through without cessation and
without loss of energy, in other words, in the case of a charged point
mass, without radiating energy. Equation (12) shows that in these orbits
the energy is a whole multiple of the elementary quantum of energy <,
that is,

E = hi/, TV" = ‘Its . . . .

VVe thus arrive at the idea of energy-quanta that we hinted at in the
opening paragraph of this section and that we introduced on page 37.
\Vhen the oscillator retains its station

ary state with constant energy, its graph
point traverses during one vibration an

ellipse of the family in the phase-plane.
From time to time, however, the energy
of the oscillator changes, and when its

graph point jumps over to a smaller

ellipse it emits energy; but when its

graph point passes over to a larger
ellipse it absorbs energy. The emission
and absorption occurs in multiples of the energy quantum <.

Owing to the assumption of discrete phase-orbits and discrete energies,
the oscillator may only describe motions of definite amplitude (of
maximum displacement) and velocity. For from (6), (10), and (13) the
resulting magnitude of these two amplitudes is:

= 3 an . _ M
qmax 27", 7”

1 qmn: —
ilih“

W'e have given here the extreme form of the quantum theory, which

recognises only discontinuous transitions between the various motions of

the oscillator. To obviate this paradoxical idea, Planck later developed
a form of the quantum theory in which phase-points in the interior of

the elliptical zones may also be regarded as possible states of the oscillator,

that is a theory in which the graph point of the oscillator is not ex

clusively bound to the confines of the elementary regions. When energy
is absorbed, the graph point is to displace itself in a continuous manner

through the interior of the elementary region and is to jump from one

boundary curve to another only when energy is emitted. For our
purpose, however, the first form of the quantum theory will be more
appropriate. We therefore make the definite assertion (for the oscillator
and for every mechanical system of one degree of freedom): The graph

point (of the system) in the phase-plane is restricted to certain
“
qnantised

"

Fro. 62.
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phase-orbits characterise certain quanta). Between each orbit and
its successor there is an elementary region of area h. The n”‘ of these orbits

(if closed) has an area nh. Expressed as a formula this is :

Jjdpdq
= uh . . . . (14)

wherein the integral is to be taken over the interior of the n"‘ orbit. If
we carry out the integration with respect to p (corresponding to the

elementary formula
Jyda;
for the area of a curve y = f(.r)), we get

jpdq
= nh . . . . . (15)

This integral is to be taken along the n"* orbit itself. We shall call the
left member of this equation phase-integral and denote it by J, i.e.

J =Jpdq . . . . . (15a)

We consider the definitive formulation of the quantum hypothesis to
consist in the postulate that the phase-integral must be a whole multiple
of the quantum of action h. This postulate singles out of the continuous

manifold of all mechanically possible motions a discrete and infinite number

of real motions, that is such as are possible according to the theory of
quanta. In contradistinction to this general form of the quantum
hypothesis, the original hypothesis of energy-quanta that was formulated

by Planck for the phenomena of heat radiation is only a special result of
the general quantum postulate adapted to the oscillator. In the preced
ing, we were relieved from the task of evaluating the phase-integral (15)
only because we were able to calculate the area of the ellipses directly
from the formula alhr.
From the oscillator we pass on to the rotator. This term is to denote

a point-mass m, which rotates about a fixed centre uniformly in a circle
of radius a. The natural co-ordinate of position is here the angle qt
which the radius to the point-mass makes with an arbitrary initial radius

¢ = 0. I/Ve thus set p = ¢. The kinetic energy is

E,.,,,=1;‘@.2q-'. . . . . (16)

In the case of uniform rotation the potential energy will certainly be
independent of ¢>; it is indifferent to us whether this energy depends on
a since a is constant during the motion. Hence we may write

Em; = const.

The impulse or momentum co-ordinate in this case corresponding to the

co-ordinate q is by (5) and (16) :

1-
= - <17)
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It signifies the moment of momentum with respect to the centre of the
circular orbit. Since q'= const., this moment of momentum (Impuls

mo-ment) p is constant during the motion; this, in fact, follows immedi

ately from the equations of motion (4). Therefore the phase-orbit of the
rotation (the orbit in the phase-plane q-p) is a straight line parallel to
the q-axis (Fig. 63). Hence the phase-orbit is not a closed curve in this
case. Hence we have here first to define what is to be regarded as the
area of the phase-orbit.

The following remark accomplishes this: the phase of the rotator

(its position in the orbit and the direction of its momentum or impulse)
becomes repeated after every complete

rotation. Thus, the true phase-orbit is

not an infinitely long straight line but
a finite one that repeats itself. In the A
q-direction the phase-plane of the rota-

2"

tion has only the length 21r; we may, __ =¢
for example, cut it along the lines

'
q = i 11-and join the edges so as to form
a cylinder. The surface area of the FI‘G_ 63_

cylinder between the -nth and the

(n - 1)"‘ phase-orbit, being a rectangle on the base 21r, is equal to
211-(11,.— p,,_,). VVe have to set this surface equal to h. We then get
for the surface between the nth and the zero phase-orbit, which is repre
sented by the q-axis, the expression

21rp,, = nh . . . . (18)

1
’?

This is the surface that takes the place of the area of the closed curves in
the case of the oscillator.

From this we see that the rotator is to be quantised not in energy
quanta but in quanta of moment of momentum. In the case of the rotator

the moment of momentum must_be a whole multiple of g
fb
.

If
,

011 the
1-177'

other hand, we calculate the energy (kinetic energy) of the 1-otator, then

it follows from (16) and (17) that

Ekiaz =

and from (18), when v = -9-,
21!‘

h

'

h

E,,,-,, =""g§q;="7“ . . (19)

Here v denotes the rotation frequency of the rotator (number of full
revolutions per unit of time), which appropriately takes the place of the
vibration number of the oscillator. Hence if we wish to speak of energy
quanta hv in the case of the 1-otator, too (which is better avoided
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altogether), we should find its energy to be not a -u-hole multiple, but a half
-rn-ultiple of the energy-element hv.

By quantising the oscillator and the rotator we have already laid the
foundation of the numerical details of Bohr's hydrogen atom. As a
matter of fact, we shall see later that (18) determines the orbits, in
which the electron that belongs to hydrogen circulates round the

hydrogen nucleus. In the same way (13) determines the frequency of
the radiation that is emitted when the electron crosses from one such
orbit to another. But we shall even at this stage set the treatment of
the hydrogen atom and other atomic models on a broader basis. To
achieve this we pass on from the case of one degree of freedom, to which
we were able to restrict ourselves in dealing with the oscillator and the
rotator, to the case of any number of degrees of freedom. In this case
we must demand not one quantum condition of the form (15) but f
different quantum conditions, by which each of the f degrees of freedom
in a certain sense becomes fixed. We infer this, as a general result,
from the perfect sharpness of the spectral lines, which allows us to
conclude that the atomic phenomena underlying their origin are

fully determinate. For this purpose the author has adopted a direct
“ heuristic" method,* which leads to the same results as those simul

taneously obtained by Planckt as a consequence of a more systematic
investigation into the treatment, along quantum lines, of systems of
several degrees of freedom. The postulate of the author is: we must
impose the condition (15) on each -individual degree of freedom of the

system, that is, we must postulate the value of the phase-integral for the
km degree of freedom to be a whole multiple of h :

Ipkdqk
= nkh . . . . (20)

A little earlier than the author, W. Wilsoni developed the same
postulate from the law of heat radiation.

By setting 11-),= 1, 2 . . . in turn in (20) we fix the first, second . . .
quantised phase-orbit of the k"- degree of freedom. Since the system is

bound by each of its degrees of freedom to one of these orbits, the

required definiteness of its motions is attained. In certain exceptional
cases, so-called degenerate cases, the number of the necessary conditions
becomes reduced: then, for f degrees of freedom, less than f quantum
conditions already SUIIICG to assure the sharpness of the spectral lines
emitted by the system.

" “ Zur Theorie der Balmerschen Serie," Sitzungsberichte der Miinchener Akademie,
Dec., as also 1915, and Jan. 1916, Ann. d. Phys., 51, 1 (1916).
+M. Planck, “ Die Struktur des Phasenraumes," Ann. d. Phys, 50, 385 (1916).
QW. Wilson, “ The Quantum Theory of Radiation and Line-spectra," Phil. Mag.,

29, 795, June, 1915. A historical account has been given by N. Bohr, Kopenhagener
Akademie, 1918, Teil 1, in which a work by Hn. Ishiwara, simultaneous with that of
W. Wilson, is referred to.
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At this stage we may already state a general property of the phase
integral, which is of fundamental importance for all that follows: the
phase-integral J is a necessarily positive quantity; that is, the whole
number n in (20) is a positive integer. This property really follows from

the geometrical meaning of the phase-integral in (14) as a surface area

(regarded positive) of the (q
,

p)-plane. But we may easily convince

ourselves of this by analysis. For this, it may suflice if we take the
case of the oscillator. Here p = mzj, and hence

J =
(p
e
g

=
(mqdq

=
(mqm.

In the last integral all factors, in particular also the progress of the
time dt, are necessarily positive; hence the phase-integral itself will also
be a positive quantity. The proof for the other cases is exactly similar,

if the kinetic energy of the system contains only squares (not products)
of the velocity co-ordinates: this may always be secured by choosing
the co-ordinates suitably, whereby the place of the mass m is taken by a

positive function of the co-ordinates.

Concerning the integration limits of the variable qk in the phase
integral (20), we postulate that the variable qk is to traverse the whole

region that serves to characterise uniquely the phases o
f the system. In

the case of a cyclical co-ordinate (q = ¢, rotator), this is the region from
-11- to +~rr (cf. Fig. 63, folding of the plane into a cylinder); for a

variable radius vector r, it is the region from r,,,,-,, to 'r,,,,,,, and back again
ro r,,,,-,,. Further examples of the application of this rule, which clearly
arises quite naturally out of the idea of the phases of the motion, will be
found in this and in the succeeding chapter.

It is more difiicult to decide the question : which co-ordinates are to be
used informing the phase integral (20) ? It is clear that our general for
mulation of the quantum theory has a definite and unambiguous sense

only if it is supplemented by a rule regulating the choice of the co
ordinates qt pk that are to be used in equation (20) and fixing the choice

uniquely. In the simplest cases, which we shall treat in the sequel, in
particular in that of Kepler motions in the plane or in space, appropri
ate co-ordinates offer themselves immediately: namely, the cyclical
azimuth ¢ and the radius vector r; but even here the condition of
uniqueness raises difficulties (at least in the non-relativistic treatment;

cf. Note 8). In other cases an analytical rule of Schwarzschild and
Epstein, which is described in Note 7

, serves to determine the co

ordinates. But this rule, too, is restricted and applies only to a definite
class of motions (so-called conditionally periodic motions). How to pro
ceed in cases which do not fall under this heading is not yet known.
If we recapitulate what we, arguing from the sharpness of spectral lines,

have learned about the quantum treatment of the oscillator and the rotator
and about the application of quantum methods to general systems, we get
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ii

an entirely new type of view of natural phenomena. We thereby adopt
the extreme view of the original Planck theory, according to which the
quantum favoured states lie solely at the limits of the elementary regions,
whereas the interior of these regions remains quite free of phase-points.
These quantised states are distinguished from all other possibilities as
stationary states of the system by characteristic whole numbers; they do
not succeed each other continuously but form a net-work. In the quantum
orbits an electron moves, if undisturbed, permanently and without re
sistance, that is, without emitting radiation; the electron is thus, so
to speak, rendered immune by the quantum condition as regards the
emission of radiation. The phrase-space, being the manifold of all con
ceivable states, including non-stationary states, is crossed 'mesh-like by the

graph-curves of the stationary orbits. The size of the meshes is determined
by Planck's constant 11

..

3'2. Empirical Data about the Spectra of Hydrogen. The
Principle of Combination

Before we deal with the spectra of the simplest element H, for which

Z = 1
, it may be convenient to make here some preliminary remarks

about spectra in general.
\Vhereas solid bodies emit a continuous spectrum when they glow,

we observe in the case of gases and vapours (except for isolated regions
of continuous emission) line-spectra and band-spectra. The former belong
to the atom, the latter to the molecule. Hence in a Geissler tube the

hydrogen must first dissociate into atoms before its line-spectrum can

appear. In the case of iodine vapour, on the other

the/h1nd=spectra disappear in proportion as the dissociation /of J2 into J ro
gresses. The line-spectra consist of individual wellsdefined ‘lines or

complexes of lines; the band-spectra appear, if the dispersion is small,
as toned bands (often accompanied by

“ fiutings
"

(“ Kannelierungen ”)),
but they resolve under higher dispersion into a great number of neigh
bouring lines.
Within the line-spectra regular sequences of lines may be grouped

together into series. The distances between successive lines decrease

according to definite laws in each ‘series as we proceed towards the violet
end, and the lines accumulate at a series limit which is usually accessible
only by extrapolation. At the same time the intensity of the lines de
creases regularly towards this limit of the series, either, as is the rule,
from the beginning of the series, or from a definite point later. The
series character is particularly marked in the first three columns of the

periodic system (alkalies, alkaline earths, and earths). The lines of a
band-spectrum accumulate at the heads of the bands, but do not become
infinitely dense there as in the case of the series lines at the series limit;
the heads of the bands lie partly towards the violet and partly towards
the red.
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Line-spectra and band-spectra occur during emission as well as

during absorption. Indeed, the absorption spectra, in the form of Frann
hofer lines, primarily played the determining part in the historical

development of the measurement of wave-lengths. Absorption spectra
have a characteristic advantage over emission spectra in that they have
a greater number of lines. Whereas, under ordinary conditions, only
few lines of the emission series are sufliciently intense to be observed

(for example, those of the hydrogen series are known from photographs of
nebular clusters as far as the 33"‘ member of the series, and in vacuum
tubes, at the most as far as the 20"‘ member), the absorption series, also
under laboratory conditions, may be counted almost up to the series
limit, and they number as many as 50 lines.
In Fig. 64 we show the absorption spectrum of the so-called principal

series of sodium according to J. Holtzmark. The wonderful consistency
of the series law is brought into full evidence by this picture. The photo
graph has been cut off at the right end just at the series limit; here the
individual lines no longer appear separate. At the left end we see besides
the individual absorption lines a continuous absorption band. The line

*~fl=r:--,e*"1*!.' --r-»~ I

Fro. 64.

on the left corresponding to the longest wave is not the first line of the
Na-series (the well-known yellow D-line), but the line A = 2823, which

already lies in the ultra-violet region, for the photograph was arranged
so as to picture solely the ultra-violet lines. The D-line would lie out
side the figure towards the left and, provided the sensitivity of the plate
remained the same, would be much more intense still than the darkest
line of the photograph.
The first lines of the visible hydrogen spectrum were measured by

Fraunhofer as absorption lines of the solar spectrum and were called the
C, F, f, h lines, respectively. Nowadays we call them Hm, H5, H7, H5.
Their distances apart are shown by wave-numbers (reciprocal wave

lengths) schematically in Fig. 65. In this case, too, we have the same
regularity as in that of the Na-spectrum, indeed in a still purer form,

since the law of the hydrogen series is essentially an integral law.
It was J. J. Balmer, a teacher at a secondary school in Basel (Bale),

who, at the instigation of Hagenbach, sought out this law and exposed
its ideal form so clearly that we have nowadays to make only non
essential improvements on it (cf. the relativity correction in Chap. VIII).
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Balmer’s formula became the model of all later rational spectral formulae
and constitutes the firm foundation of the theory of spectral lines.
Balmer wrote his formula* thus:

2(=h’”2, ....(1)
mt — n‘

The integral numbers m and n have the values n = 2, in = 3, 4, 5, 6, for
Ha, Hp, Hy, H5 respectively. The factor h (which must not, of course,
be confused with Planck’s constant h) is, according to Balmer, if A is

measured in Angstrom units (IA = 10" cms., cf. p. 151), equal to 3645-6.
Nowadays we write Balmer’s formula thus (A in cms., v in cm.‘ 1) :

1 _ 1 1 R = 10967769
(2X" k=3,4,5,... ' ' ' )

Formula (2) arises from (1) (i
f we disregard the choice of units and the

present more exact determination of the numerical factor R) by setting
in (1), n = 2

,

and

< ll CU

n2 4

h = — = — . . (3)R R

n4 blur violei umuiolei _
poo soon gooo\._ IL\nA

isoooi

'

iooooi
' ' '

isooo —- ~ in cw“

Flo. 65.

I

Here R is the Rydberg constant (Rydberg-Ritz factor) already introduced
earlier. The slight difference in the numerical value of R as now given
and as given earlier on page 155 will be explained in § 4 of the present
chapter. What accuracy comes into consideration when we write down

a number of eight figures may be judged from the fact that the standard
metre measure itself is defined only to the extent of several p.'s, that is

to the, at the most, 10'°‘h part of its length.
The fact that the accuracy of Balmer’s formula is not overdrawn may

be recognised from the following table which gives a comparison, for the

‘Ann. d. Phys., 25, 80 (1885). Balmer remarked simply that the wave-lengths
of Ha, Hg, Hy, H5, may be represented in terms of the “ basic number" h

,

quoted in
the text, thus:

o
n
=
0

F‘ o
z:

ia

§‘ ll
16h 25 9 36

12 - nh» s"= s§"~

Enlarging the fractious g and 2 for Hp and H5 in the manner shown, he recognised
the successive numerators as the squares, S’, 4’, 5’, 6”, and the denominators as the
differences of squares, 3“ - 2’, 4” - 2“, 5’ - 2’, 6* - 22. With the discovery of the
basic number h Balmcr's formula so to speak blossomed into existence.

m - i— *
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first seven lines

(i
f Balmer's series, of the observed and the calculated*

wave-lengths in Angstrom units :-

TABLE 24

k=3 k=4 k=5

\-
k=
6 k=7 l:=8

‘

It-=9

A calculated . . 6563-07 4861-52 4340-64 ‘ 4101-90 3970-24 3889-21 3835-54

A observed . . 656304 486149 434066

|

4101'90 397025 3889'21 3835'53

This first example also serves to give the reader an idea of the extra

ordinary accuracy of spectroscopic measurement—accuracy of calculation
and of measurement——which overshadows even the famous “ astronomic
accuracy."
Balmer concluded his short account in 1885 with the remark that

the discovery of a corresponding “base number
” h for elements other

than hydrogen would be very difficult, and would be possible only in the
case of the most accurate measurement of wave-lengths. How astonished
he would have been to learn that the same base numer h or, respectively

(cf. 3), R = 2, occurs in the spectra of all other elements. To have re

cognised this is, above all, the achievement of Rydberg, and to a lesser

degree, of W. Ritz, who gave a more accurate expression.
The essential feature of Balmer's discovery is the denominator of the

formula (1), in that he recognised it as the difference between two in

tegers. From this we get formula (2) giving the diiference of two
“ terms," the first being the constant term, which, at the same time, gives
the series limit (k = co), the second being a variable term. This repre
sentation as the difference of two terms corresponds to the view of the
wave-number as the difference of level between two energy-steps, which
we treated in the preceding chapter (p. 187). There, too, we emphasised
the point that our real interest is in the terms or energy-steps and not in
the term-differences or wave-numbers.

Through his simple formula Balmer showed the way to the most

general and most fruitful principle of spectroscopy, which was introduced
in 1908 by W. Ritz, who recognised its fundamental importance, under the
name, “Principle of Combination" Ritz formulated the principle in his

original paper ’r thus: “By additive or subtractive combination, whether
of the series formulae themselves, or of the constants that occur in them,
formulae are formed that allow us to calculate certain newly discovered
lines from those known earlier." But the fundamental importance of the
principle of combination consists of the following: by expressing the

‘According to B. Dunz, Bearbeitung unserer Kenntnis von den Serien. Diss.
Tiibingen, 1911, p. 2.
+W. Ritz, Gesammelte Werke, published by the Schweizer Physikal. Gesell

schaft, p. 162. Paris, Gauthiers Villars, 1911.
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wave-number of a spectral line as the difference of two terms, we define

two different states or energy-levels of the atom in question. In this
way several lines or series of lines determine several atomic states or

energy-levels for the same element. The principle of combination now

asserts that it is admissible to pass from any one of these levels to any
lower level, and to derive from the difference of the two corresponding
terms a new wave-number of the element. That this new wave
number happens to be obtained by additive or subtractive combination,

as is stated in Ritz's original rule, is unessential. For example, if we
represent two lines by means of the term-differences A —B and C — D, then
we get new lines by combining the terms (BD) and (AC) with the wave
numbers D —B and C — A, which cannot thus be derived individually from
A — B and C —D by the simple process of addition or subtraction. It is
only when two terms of the original lines are themselves equal that the

above quoted formulation of the principle of combination sufiices.
The principle of combination has maintained itself in the whole region

of spectroscopy from infra-red to X-ray spectra as an exact physical law
with the degree of accuracy that characterises spectroscopic measure
ment. It constitutes the foundation on which Bohr’s theory of spectra
rests, and is, in essence, identical with Bohr’s law (cf. Chap. I, § 6,
eqn. (6)), which likewise taught us to regard the frequency of a spectral
emission as the difference between two energy-levels. But not all com
binations that may be formed from the terms or energy-levels are equally
probable. Rather, there are certain limitations (“rules of selection")
that, under certain circumstances, reject certain combinations. It will be
the object of the next chapter to found these limitations and to give the
conditions of excitation, under which the rules of selection may be trans

gressed and combinations may be forcefully effected that do not occur of
themselves. A first and particularly brilliant test of the principle of
combination was offered by the hydrogen spectrum. Even Balmer him
self raised the question whether the number n in his formula might not
also take the value 3, but the state of spectroscopy at that time did not
admit an answer. That is, he suspected lines with the wave-numbers:

1 1 1 1

v=R(@-1,) v=R<§,—§),etc. . .(4)

Ritz demanded the existence of these lines on the ground of his principle
of combination, since the first line of (4) may be obtained by forming the
difference of the wave-numbers of H5 and Ha, while the second line may
be obtained by forming the difference of H, and H“, and so forth. There
upon Paschen succeeded in finding in the infra-red region of the hydro
gen spectrum intense lines of wave-lengths A = 18751-3 and 128l7'5A,

respectively, corresponding exactly to the previously calculated values.
Since then, there is no doubt that Balmer's formula must be written,
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in conformity with the conjecture of its discoverer, with two integers,

thus:
1 1

t=R(F-- . . . (5)

Paschen's lines form the first two members of the infra-red series of
hydrogen, which are obtained by setting n = 3, m = 4, 5, 6, . . . Now,

what is the position of the series that corresponds to the values

n=1, k=2,3,4, . . .?
It lies in the ultra-violet and its limit v = R is four octaves higher than
the series limit of the ordinary Balmer spectrum v = R/4, which likewise

lies in the ultra-violet. The existence of this ultra-violet series of hydro

gen was the final confirmation of Balmer’s formula by Lyman. In
particular, the base line of this “ Lyman-series," namely,

R l_
1)(5 4

appears excellently sharply defined on all photographic plates obtained

by Millikan (cf. p. 161) for the extreme ultra-violet. Its wave-length is
,

A = 1215-721.

It is in a sense the prototype of all spectral lines, being the most funda
mental spectral line of the simplest whole numbers that can be imagined.
Balmer’s formula (5) maintained itself in the sequel not only as a

sit-fiic-ient, but also as a necessary condition of the hydrogen lines. That

is to say, not only are all the series of lines indicated by (5) actually
observed in the case of hydrogen, but also no other lines belong to the

hydrogen atom but those contained in (5). Until recently (1913, when
Bohr's theory was proposed) two further series were ascribed to hydro

gen, which were determined from the formulaa

ll

1

V=R<fi— h2=2,3,4,.. . (6)

< ll EU

Q
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F
"=
1and )k=2,3,4,.. . .(7)

They were called the “ Principal Series" and the “ Second Subsidiary
Series of Hydrogen," while Balmer’s series itself was called the “First
Subsidiary Series," in accordance with a terminology that will be de
veloped in Chapter VI, § 1

.

The series (6) was originally measured by A. Fowler-* in the spec
trum of a mixture of H and He; series (7) was discovered by Pickering
in the spectra of nebular clusters (§-Puppis). According to Bohr's

theory, however, both series are to be ascribed not to H but to He+, that
is, to ionised helium; at the same time formulae (6) and (7) are to be

" Monthly Notices, 73 (1912).
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remodelled and supplemented as follows (by multiplying numerator and

denominator by 4) :

1 1

v=4R.<§_2-F)
1,=4,5,6,__ . (6a)

1 1

v=4R(;;_k,) k=5,6,7,... . .(7a)

Written in this way, they come under Balmer's form (5), with the differ
ence that R is replaced by 4R, a fact that points to the double nuclear
charge of He (cf. eqn. (17) of the next paragraph), and with the further
difference that the value of R in (6a) and (7a) does not agree exactly with
the value of R in (5); this is explained by Bohr’s theory of motion of the
nucleus (cf. § 4 of the present chapter). But our reasons for denying
hydrogen the series (6) and (7) and ascribing them to helium are not

only of a theoretical nature, but rest on experimental evidence given by
precision measurements of A. Fowler* and F. Paschen,+ to which we
shall often have occasion to refer.
For the present we assert that the series (6) and (7) occur not only

in mixtures of hydrogen and helium, but also in quite pure helium.
We next remark that Pickering's series (7) includes only one-half of

the lines represented by (7a), namely, those for which la is odd; the
other half coincides nearly, but not quite (on account of the ab0ve-men
tioned small difference in the value of R) with the ordinary Balmer series.
In reality both together form a uniform series in that the lines of the
one type arrange themselves according to intensity continuously among
the lines of the other type. It is therefore unjustifiable and arbitrary to
detach one~half as the Pickering series and to ascribe it to hydrogen.
The other half was overlooked earlier only because it could not be

separated from the neighbouring true hydrogen lines. Further details
on this point are given in § 4, Fig. 69.
The same is true of the relation between the series (6) and (6a). Of

the lines represented by (6a), and actually observed, the series formula

(6) represents only the members for which k is even. Hence, if we regard
the series (6a), in the sense of (6), as the principal series of hydrogen, it
becomes arbitrarily subdivided into two parts, of which only the one
fits into the terminology of the hydrogen members. Actually, as Paschen
shows, both parts as regards the intensity of their lines as well as the
nature of their origin belong together, and form a uniform series.
We thus finally find our above assertion confirmed that the simple

and integral character of spectral laws expressed in Balmer’s formula

represents a necessary criterion of hydrogen emission. The spectral
laws (6) and (7) that depart from the integral type, and thus do not come

*“ Series Lines in Spark Spectra," Proc. Roy. Soc., 90, 4'26 (1914), and Phil.
Trans, 1914.
+Bohr's Heliumlinien, Ann. d. Phys., 50, 901 (1916).
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under Balmei-‘s formula, do not belong to hydrogen but to ionised
helium. Nevertheless, these laws are of the “hydrogen type.” They
will, therefore, be discussed with Balmer's series in this chapter.
The question arises whether doublets, or, more generally, multiple

lines occur in the case of hydrogen as in that of so many other elements

(cf. Chap. VI, § 1). Just in the case of hydrogen, this question is not
easy to answer, since its lines, at ordinary temperatures, are very blurred,
a result which is connected with its small atomic weight (and the con

sequent greatness of the Doppler efi'ect, cf. Chap. VIII, §4). Now,
older observations of Michelson, Fabry, and Buisson, and more recent
ones by Gehrcke and Lau have shown the lines of the Balmer series to be
doublets,* of which the difference of wave-lengths are very small (in the
case of Ha the doublet is of size, O'13A). From his precision measure
ments of He+, Paschen (cf. p. 208, foot-note 2) calculates the corre

sponding difference of wave-numbers to be
'

Av = 03645 i O'OO45 cms. r 1 . . . (10)

(Concerning the dimensions, cf. eqn. (3) of p. 154). The existence of
the doublets of hydrogen cannot yet be explained in this chapter; it led
to the elaboration of Bohr's theory described in Chapter VIII. There,
too, we shall learn more details of the above-mentioned results of obser
vation.
Besides the Balmer spectrum to be understood in the general sense

of equation (5), hydrogen possesses another spectrum of quite a different
nature, the so-called “many-lines spectrum" (Viellinienspektrum). In
contradistinction to Balmer's “ four-line spectrum” (called so, oc

casionally, in view of its four lines Hm H3, H7, H5 in the visible),
the many-lines spectrum is to be regarded as a band spectrum, although
it does not exhibit the external signs of band-spectra, namely the accumu
lation of the lines at certain heads of the bands and the repetition of these

bands, constituting flutings. From the great number of lines observed,

however, individual groups of lines may be separated out, which follow

the laws of band lines (set up by Deslandres 'l) and which also show
themselves to be related in that they behave similarly in the Zeeman
effect. The many-line spectrum arises in the Geissler tube at lower dis

charging potentials than the Balmer spectrum. The question as to the
carrier of the many-lines spectrum is a subject of great controversy. The
newest experimental investigations, in particular a work by E. Gehrcke,I
leave no room for doubt that its carrier is the hydrogen molecule and not
the hydrogen atom. From the point of view of theory, only the H2
molecule can come into question at all as the carrier of the many-lines
spectrum on account of the great complexity of the latter. Actually, we

" Cf. Chap. VIII, § 4
,

also for references to the literature.
1-Fulcher, Physikal. Zeitschr., 1912, p. 1140; Croze, Ann. d. Phys., 1, 37.
ICL Report of the Physikal.-Techn. Reichsanstalt, 1921.
14
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shall see in Chapter VII that the modern theory of band-spectra, even if
it cannot predict quantitatively the frequencies of the many-lines spectrum,

1: can at least completely account for its
- general character qualitatively if its calcula
‘

tions are based on the mass and size of the
H.,-molecule.-o
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1
6
0
0
0

is
q
p
y

1
5
0
0
0
1
4
0
0
0



§3. Bohr’s Theory of Balmer’s Series 211

a number of excrescences of which the difference of frequencies is
fairly accurate :

1 1
H; _ H, = 11%, _ (R = Rydberg's number).

A complete theory of the many-lines spectrum would also have to account
for the remarkable relationships here indicated between the many-lines
spectrum and Balmer's series.
Finally, hydrogen has also a continuous spectrum; it stretches from

the limit of Balmer’s series to the ultra-violet; its carrier is the H-atom.
It was first observed in stellar spectra and was then examined more
closely by Stark* in canal-ray tubes. This spectrum is also to be in
terpreted theoretically in Chapter VII.

3. Bohr’s Theory of Ba.1mer's Series.

We here make the simplest assumptions possible: a nucleus of

negligible size carrying a charge +e, an electron of charge —e is con
sidered likewise concentrated at a point, and the mass of the nucleus is
considered infinitely great compared with the mass m of the electron;

that is, we are confronted with a “one body problem" instead of the
actual “two body problem

"
; Coulomb's law is valid and likewise

ordinary (pre-relativistic) mechanics ; the electron moves in a circle about
the nucleus and is a simple “rotator.” Concerning these assumptions
we remark that for hydrogen, in particular, E = e ; the calculation with
E is worth doing because it also includes the case of He+ and Li++
(cf. Chap. II, §3, Nos. 4 and 6). The assumption that the nuclear mass
is infinitely great is a good approximation even for hydrogen (according
to earlier remarks, cf. eqn. (16) of the following section, m : 'n1.,,= 1 : 1847) ;
but in the next section we shall let this assumption drop.
The orbit of the electron is fixed by two conditions, one prescribed by

the classical theory, the other by the the quantum theory. The classical

theory requires that the external forces be in equilibrium with the inertial

forces. The inertial force of circular motion is the centrifugal force:

mu‘)
2— = ‘I72/Um= mam

a.

(a
v = aw is the linear velocity, w the angular velocity of the rotating

electron, a the radius of the orbit). The only external force is the

Coulomb force of electric attraction

2
1
%
.

Hence the condition of the

classical theory is :

mawg =
a.

or 1rm“w” = eE . . (1)

~Ann. <1.Phys., 52, 255, 1917.
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The quantum condition is given by the equation for the moment of

momentum of the rotator,* namely 21rp = nh (cf. eqn. (18), § 1 of this

chapter).

With our present symbols the moment of momentum takes the form :

11
= m-va = ma.%.

Hence we get the quantum condition as:

2-n~ma.2w= nh

, _ nh
i.e. 'rn.a,Zw= ii . (2)

Dividing by (1) and (2) we get
2 E

o = aw = 3; (3)

Inserting this value in (2),
n2h2 81r*'rne”E2

a‘ =
41:-”'nteh‘

w =
nah“

' ‘ ' (4)

Thanks to our two conditions, then, the two unknowns a. and w are
determined. Both together demand that the electron mo-ve only in certain
“
quantised

"
circles on the 1“, 2"”, . . . 11”‘ “ Bohr circle” ,' n is the

“quantum number
"
of the orbit. The radii of the circles are proportional

to the squares of the quantum numbers :

a,:a.2:a,3:...a.,,=1”:22:3’:...n’ . . (5)

The times of revolution (periods) r are inversely proportional to the

angular velocities

(i
.e
.

w = The times of revolution in the Bohr

circles are proportional to the cubes of the quantum numbers:

T1:-r2:...r,,=l3:2i‘:...n”. . . (6)

To bring out the analogy with the planetary system still more and to
prepare for later generalisations leading to elliptic orbits, we recapitulate
our results so far obtained in the form of Kepler's laws:
Kepler's First Law : The planet moves in a circle at the centre of which

the sun -i
s

s-itu-ated. There is a discrete infinite number of orbits; the
radius of the n‘“ orbit is given by the quantum number n.
Kepler's Second Law : The ra,d'i'us -vector from the sun to the planet'de

scribes equal areas in equal times. The surface-constant of the n“‘ orbit

(which is proportional to our moment of momentum p
)
is equal to 11.times

Planck's quantum of action.
Kepler's Third Law: The squares of the periodic times (of revolution)

" It is worthy of remark that, before Bohr, J. W. Nicholson (Monthly Notices,
72 (1912), cf. in particular p. 679) set up the quantum condition for the mtator, and
used it to interpret certain lines of the sun, as well as of nebulae. Since, however
Nicholson did not determine the emitted radiation in terms of quanta, like Bohr but

only
set it equal to the mechanical frequency, his theory is very difierent from that of

Bo r.
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are proportional to the cubes of the radii of the orbits. For, by (6) and (5),
the time of revolution is proportional to n3, and the orbital radius is pro
portional to rt”.
As above remarked, for hydrogen, E = e. The radius of the first Bohr

circle is therefore by (4) in the case of hydrogen 1

]2
a,=4w_fme,,. . . . . (7)

We next determine the velocity '0, in the first Bohr circle and divide it by

the velocity of light c. We call the ratio %
Simply a. By (3), we get:

'0 2e?
a=;1= Zh

. . . . (s)

Using the va.lues*: e = 4'77 . 10-1°, = 1'77 . 107 . 0, h= 6'55.1O"27

(cf. p. 37), we get by calculation

a1
= 0-532 . 10-8 cms. 11= 7'29 . 10'“ 0.’ = 5'31 . 10*“ (9)

The value of 11will be the determining factor, in the last chapter—as the
constant of the fine structure of spectral lines. From the value of a, we

get for the diameter 2a of the hydrogen atom in its “normal state
"
the

order of magnitude 10'“ cms., corresponding to the ideas that were gained
about atomic size in other ways (kinetic theory of gases, etc.).
The calculations just given supplement numerically our general data

about the hydrogen atom stated in Chapter II, 3, no. 1. As an illustra
tion we refer to Fig. 18 there drawn. In it we see the first three Bohr
circles of radii a1, a2 = 40,1, a»3= 9a,,*represented. The arrows at these

circles denote the velocities of revolution 'v1, 122= %, ’v;;
= (05 eqn- (3)) ;

the increasing time of revolution is indicated by the decreasing lengths of
the arrows outwards. These quantum-favoured orbits must exist as

stationary states of motion of the atom; an electron moving in any one

of them must not radiate.
We next calculate the energy of the electron in its various orbits and

take this opportunity to explain why we just now called the first orbit the
normal state of the atom. We again designate the nuclear charge by E.
The energy is composed of potential and kinetic energy. The potential

(Coulomb) energy is, in view of (4):

_ 2 2 2

EM a
"E = _ . . (10)

‘Here and in the sequel a is to be taken as measured in electric “electrostatic”
units, as is evident from the above statement for Coulomb's law. According to the con
cluding remark of Chap. I, § 3

,

we should therefore multiply the given values of c and

1
’.

by c = a-oo. 101".171,
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The negative sign indicates attraction. In the case of repulsion we should
have to exert work in bringing the electron from infinity up to the nucleus,
as in the case of a spring that we set; this would correspond to the posi
tive sign. When the force is attractive, we correspondingly gain energy,
and have thus to exert negative work.
In general we have the rule in a Coulomb field (see Note 5) that:

Eh-,, = — 1}EM . . . . (11)

We can immediately confirm this rule here. For, by (3),

m 2 "me2E2
Ekm = g '02 = . . . .

and this is
,

by (10), actually identical with half of the negative potential
energy with the sign reversed. If W denotes the total energy then by
(10) and (12)

-21,1 use 1

W = Ekfn + Epol = ~— '
7?;

' ' (13)

Thus we may supplement our third Kepler law by stating that the energy
constants o

f the carious orbits are in-versely proportional to the squares o
f

the correspoml-irig quantum numbers.
Our way of counting the energy entails that we give to an infinitely

great orbit the energy zero. As a result of this the energy constant for
all finite paths comes out negative. As we are concerned later only with
differences of energy the negative sign causes no difiiculty whatsoever,

although it appears to contradict the nature of energy. But, as already
remarked on page 158, we should immediately arrive at a positive value for
the energy if we were really to calculate the total energy of the moving
electron, and thus count besides the kinetic and potential energies also,
for example, the “ proper

”
energy contained in the field of the electron.

According to the view of the theory of relativity (cf. Chap. VIII, § 1, or
Chap. II, §6, p. 95) the latter energy is simply equal to mcz, that is

,

equal to an amount of energy, which is many times greater than the other

parts of the energy and which would therefore make the sign of the total
amount positive. In the same way, we could include the still consider
ably greaterpositive proper energy of the nucleus. But since these proper
energies are constant, they naturally cancel when we form energy-difl'er
ences and they are, therefore, more conveniently left out of account from
the very outset.

Our energy-constant \rV has the algebraically smallest value in the
first (innermost) orbit. If we call it W], then in the 2nd and 3rd orbits,
respectively, we have W2 = <}VV1W3 = }-,W,. These amounts are > W1,
since W1<0. Hence the electron can be lifted from an inner to an
outer orbit only by an addition of energy. It can fall from an outer to
an inner orbit when it loses energy. The innermost orbit is therefore
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most stable and represents, as we said earlier, the normal state of the
rotating electron.
Bohr’s theory has two quantum sources; it arises, as we stated in § 1

of this chapter, out of the quantum condition for the rotator, on the one
hand, and the oscillator, on the other. So far, we have used only the
first condition. The quantum condition for the oscillator comes into
force now when we turn our attention to the radiation of the atom.
VVe arrive at our goal by the shortest route, which is also essentially

the most expedient one, by referring to photo-electric phenomena. These
were brought together under Einstein’s law (cf. Chap. I, §6) and were
extended as far as Bohr’s frequency condition for spectral emission

(loc. cit. eqn. (6)) :

hv = W, — W,. . . . . (14)

This equation states that if the atom passes over from an initial state of
energy \V,, to a final state of lesser energy W,, then the excess of energy
is radiated out in the form of a monochromatic wave of light, the fre
quency 1/ of which is determined by just this eqn. (14). Each such
transition thus causes an emission of well-defined light and is observed
as a sharp spectral line. How the change of the liberated atomic energy
into light-energy is effected is still a matter of mystery. In the next
chapter we shall, indeed, investigate this phenomenon more closely from
the point of view of Maxwell's theory and shall draw from it inferences
about the polarisation of the resulting light-wave. In doing so, however,
we do not deri'ue eqn. (14) in our reasoning but use it as our basis of

argument. As we already emphasised earlier in dealing with Einstein’s
law, it is impossible to derive this equation from the idea of continuous

electromagnetic fields.

Merely to satisfy the wish for a physical interpretation we give an
account of a view of eqn. (14) that is taken from an essay by L. Flamm.*
But this view is in no wise to be regarded as a necessary foundation
of the equation, as is already evident from the auxiliary assumptions
that are to be noted specially in what follows, but merely as a means of

visualising the phenomenon involved.
In addition to the atom, which excites the radiation, we suppose an

“ ether" to exist, which transmits the radiation. Nowadays we like to
avoid speaking of the ether, since the theory of relativity has deprived it
of its material existence in the older sense (cf. Chap. VIII, §1). Here
we use the word ether to signify no more than that “states of vibration" are

possible that are propagated with the velocity c, as they are presented to
us on all sides in experience and are described more closely in the theory
of electrodynamic optics. In this sense we define the ether as an
oscillator. But the oscillator “ ether

"
differs (apart from the spatial

arrangement and the space-time distribution of its vibrations, with which

" Physikal Zeitschr., 19, 116 (1918) ; cf., in particular, p. 125.
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we are not concerned here), from the harmonic oscillator introduced on

page 196, essentially in that it is capable of executing vibration of _any
frequency v, that is, it can transmit radiation of any colour. The ether
therefore represents not on-e oscillator but an infinite system of oscillators
in which the proper frequency varies continuously from oscillator to
oscillator; it is, so to speak, a system of organ pipes with infinitely small
differences of pitch.
We suppose such a system of oscillators to be placed next to an atom.

When the atom radiates, it is linked with this system of oscillators and
transfers energy to it. The atom does not, indeed, radiate when in its

stationary states of motion; but when an electron jumps from one orbit
to another, when it passes from an orbit further removed from the
nucleus to one that is nearer, energy is liberated. The sharpness of the
spectral lines points to the fact that this energy becomes converted into
nwmchromatic energy of vibration (first assumption), that is, that it
excites only one definite ether oscillator of our system. Which oscillator
is this? The answer is given by the quantum condition of the oscillator:
that oscillator will respond, for which the energy set free by the atom

equals a whole multiple (integral number) of its energy elements. Assum
ing this integral number to be 1 (second assumption), we have to set the

energy element of our ether oscillator equal to the energy W, — W, set
free by the atom. Thus we again arrive at our eqn. (14).
In (14) we insert the value of (13) for the energy. Let n be the

quantum number for the final orbit, and k(> n) that of the initial orbit.
We then get :

21#m4 E 2 1 1
" = '"1;='<'t)

‘ - <15)

Now E = c in the case of hydrogen, and if we set

2 42me
R= "h

,

. . . . (16)

we get from (15) exactly Balme'r’s series in its general form (5) on

page 207. For other atoms of the hydrogen type (He +
, Li ++, etc.) E = Ze,

where Z is, as earlier, the nuclear charge or the atomic number of the
atom. For such atoms we get, correspondingly, from (15) :

v=Rz»(%,—,§) . . . .(17)

But the sweeping success of B0hr’s theory is not founded only on the
derivation of Balmei-’s formula, but especially on the numerical calcula-'
tion of the Rydberg-Ritz constant R that occurs in it. Before Bohr,
A. E. Haas,* in particular, had already proved the universal nature of
this constant, and had shown how it was very probable that it could be

* Sitzungsbcr.;Wicner Akad., March, 1900.
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expressed in terms of h and electronic data. But Bohr’s theory first
brought complete clearness by giving the relation (16). If we use the
values given on page 213 :

e = 4'77 . 104° e/m = 1'77 . 107 .c h = 655.10"?
then it follows that

R = 3'27. 1015 sec.-1 . . . . (18)

Hereby it is to be noted that when we set the energy-element of the
oscillator equal to hv, we take v to mean the vibration number in the

ordinary sense, having dimensions sec. '1. But, for spectroscopic reasons,
we have wished to take v as meaning the wave-number, i.e. the reciprocal
of the wave-length, having dimensions cm.'1. We therefore contrast as
on page 154 in eqns. (3) and (4):

the proper vibration number or frequency, sec.“ . v =

. 1
the improper frequency or the wave-number, cm. '1 . . v =

X

Accordingly we have yet to divide our formulae (15) and (16) by
c = 3 . 101°, to get from the proper vibration number to the spectroscopic
wave-number. Consequently, there results from (16) and (18)

21:-*me"*
R -

hac
= 109.10" cms.'1 . . . (19)

This value of R agrees, except for the last, not quite certain, figure with
the observed value in eqn. (2) of page 204, in which R = 1'09678 . 105.
Bohr’s theory is thus confirmed very strikingly.

We shall now continue to reverse the sequence of results and use the
theoretical formula for Rydberg’s constant to correct one of the data
occurring in it

,

namely e
, m or h
. We actually know Rydberg’s number

to a degree of accuracy that we can never hope to attain in measurements

of e,

5
‘ or h
. This leads us to the problem o
f spectroscopic units, which

we shall, however, be able to solve only when in the next section we
have deepened the theory of Rydberg’s constant. The problem is to

calculate the universal constants e
, 5
,
h from purely spectroscopic data
’!7L

with “spectroscopic accuracy."
In Fig. 67 we once more summarise Bohr’s theory graphically. The

ultra-violet (Lyman) series (n = 1), the visible Balmcr series (n = 2),

and the infra-red Paschen-Ritz series (n = 3
) appear in it as counterparts

to the K-, L-, M-series of the X-ray spectra in Fig. 47. The fact that
Fig. 67 requires, on account of the “Principle of Selection," a correction
(namely elliptic orbits in place of circular orbits) will be accounted for in
Chapter V. at the close of § 2

. The figure shows, just like the calculation

(eqn. (4) of this section) how greatly the size of the hydrogen atom
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increases with the value of the quantum number n. Bohr * recognised
in this an explanation of the fact that the higher members of Balmer's
series, even in highly evacuated tubes, are most often not to be observed,
but are only known through spectra of nebulae. He argued in this way:
the mean distance between the atoms (which is essentially their mean
free path) must be greater than the diameter of the outer orbit of the
electron concerned in the production of the spectral line, if it is to be

possible for this line to be emitted at all at the gas-density in question.
For the 33rd line of Balmer's series this distance would have to be
greater than 1-2 . 10*” cms. and this would correspond to a gas pressure
of less than 0'02 mm. of mercury. In this way it seemed possible to
find an upper limit for the pressure of the hydrogen gas in nebula: which
radiate out Balmer's series.
More recent observations, however, as J. Franck + points out, have

demolished this view and its cosmological inference. The appearance of
the higher lines of the series is dependent above all on the energy of
excitation of these lines, which is

mm!"
necessary according to the hv-law, ”"""' ‘"*"

being supplied to the atom. When
the pressure is not very small, how
ever, the frequent collisions prevent
larger amounts of energy from being 51"”

collected in the exciting atom, unless
the collisions, as in the case of He,

N2 and other gases of small electro

affinity, take place without loss of r.i."i:':....

energy. Under such circumstances Fm, 07,

(e.g. if we have very little H2 in He
of, say, 40 mm. pressure) we find that in spite of the small free path
and frequent disturbances of the paths, the series lines are emitted very
richly.
The wealth of lines of the absorption series to which we called

attention on page 203 and represented in Fig. 64, is explained in the same

way ; in the beam of light that is absorbed all wave-lengths and therefore

all quantities of energy hv are present. Hence all absorption lines occur
at the same time.

§4. Relative Motion of the Nucleus

Our confidence in the theory of the hydrogen spectrum developed in
the preceding paragraph becomes strengthened if we can show that
certain more detailed inferences that result from Bohr’s picture of the

phenomenon of emission are confirmed by experience.

In the preceding section the nuclear mass was assumed to be infinite

" Phil. Mag., 26, 9 (1913). 1'Zeitschr. f. Phys., 1, 1 (1920).
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and the nucleus itself was assumed to be at rest. We now take into
account that the mass of the nucleus is finite and then see that it

,

too,
will move. Our first Kepler Law on page 212
will now accordingly be enunciated thus :

The planet and the sun each mooe in a circle
about their common centre o

f gravity.
In Fig. 68 let m be the mass of the planet,
M that of the sun. According to the law of con
servation of the centre of gravity, the centre of

gravity S of m and M remains at rest. m and M
move on their circles at the ends of a common Fm, 6@_
diameter with the common angular velocity w.
Let a be the distance Sm, A the distance SM. Then

am = AM . . . (1)

from which it follows

M
e=w+MM+W A=c+aMfim a

The classical condition (p. 211) now requires that the Coulomb attraction

is equal not only to the centrifugal force of the planet, but also to that of

the sun. Thus

'

mam’ = MAw2 =
eE
K 7

(a + AF
This double equation reduces, on account of (1), to a simple equation.
By substituting a from (2) and by using p

. as the “resultant” mass of

m and M, namely

Mm

M M + m (3)

we get p.((l + A)3m2 = eE . . (4)

We have also the following definition equivalent to (3)

1 1 1

_. = _ +_ . . . (5

/J
. m M )

The quantum condition next becomes added to the classical condition.

This deals with the moment of momentum p of the rotator. The latter

quantity is composed of the moment of momentum of the planet mafia»

and that of the sun MA2w, thus:

7
9 = ma":/J + M11201.

By eqns. (1), (2), and (3) we write for p successively:

])

= ma.(a + A)... M’"i1m(a
+ A)2w = /L(G: + A)%>
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The quantum condition requires that : 21:-p = nh, thus we get

, 1

,r(a+A)-t.=f2-‘g. . . .(s)

Equations (4) and (6) agree with equations (1) and (2) of the preceding
section, with the exception that ‘u

. and a + A takes the place of m and a.
Consequently we may use the solutions for these equations obtained from

(4) of the previous section. The result is: '

11.211,“ 81r3;u22E2
a + A — (1)=

n3h3"~
. .

The potential energy between the sun and the planet is now (cf. (10)
of the preceding section):

E 6E 47r2/.L82E2pot: _a’+A=
_ 7
ngli."

The kinetic energy is again half the potential energy with reversed

sign (this theorem is proved in Note 5 at the end of the book for moving
nuclei, too), hence the total energy is :

2 2 2E2
W = Era + Ea. = - "n’.j‘,,., . <8)

The circumstance that /1., the “ resultant
"
mass of the sun and planet

enters into this equation, points to the fact that we are now concerned
with the energy-constant of the common motion of both masses (their
relative motion}. For this common motion there is a discrete series
of quantised states of motion that are singled out of the manifold of

all states of motion by the quantum number, in exactly the same way
as previously for the cases in which the planetary orbits were alone

considered.

We now consider a transition from an initial state of motion (with
the energy-constant W,,, quantum number k) to a final state of motion

(with the energy-constant W,, quantum number n < k) and assume that
the energy set free again becomes transformed into monochromatic radia

tion, according to eqn. (14) of the previous section. The energy set

free is derived now, not only from the planet but also from the sun

during the transition; the sun’s orbit alters simultaneously with that of

the planet in a ratio definitely fixed by the change in the quantum
numbers. The spectral formula obtained in this way is clearly again

eqn. (15) of the previous section, but with p
. in place of m. Con

sequently we get for Rydberg's constant

R =
2lZ__;:£4

=
2-n-2'n1e“ : Rm _ I I (9)m m

n
=
(1 +

-M
)

1 +
M

¢
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Here we have inserted the value of )1 out of eqn. (3), whereby the

denominator was divided by M. The symbol Rm recalls the earlier

value of R in eqn. (16) of the previous paragraph, which was actually

obtained under the assumption that M = co. Eqn. (9) contains the
following remarkable result :—

Owing to the relative motion of the nucleus Rydberg’s constant be

comes reduced in the ratio
<1
+ : 1. Rydherg's constant is least for

hydrogen, for which its value is

R'@
RH =

1
m

. (10)
+
fin

Its value for helium is greater, being

RW R1)Rm, =
m
=
-It . (11)

1 + --~— 1 + i»
mfle ‘mu

and, for increasing atomic weight, approaches the universal limit Rw,
which is independent of the atomic weight, and which was designated as

Rydberg’s constant simply by R inithe previous section.
This result, too, we owe to Bohr. He remarked at once that from

the spectroscopic determination of RH and Rn, or, what is easier to carry

out in practice, from the determination of R5 and B-He, the quantity m/mg

could be obtained. It actually follows from (10) and (11) that

’I7L R39 — RH—— = »——————- . . . . 12
ma RH — filing

( )

The determination of m/mg in eqn. (12) is equivalent to the de-'
termination of the specific electronic charge e/m. We actually have

"L _ ‘.4/1&1
W75 8/m

. . . . (13)

Now, e/mg is the specific ionic charge, the electrochemical equivalent*
of ,§ 2, Chapter I, that is, a quantity that is very accurately known (its value
is 96,494 Coulombs). An exact spectroscopic determination of m/mg de

notes at the same time an exact knowledge of e/m, one that is presumably

‘Strictly speaking, the difference between mu and rn/ii = 1-008m“ ought to be
taken into account ; we called attention to this difference in the foot-note at the conclu
sion of Chapter III, § 3. In the relative motion of the nucleus we are dealing with the
true mass mi; of the hydrogen atom, not with the mass of the imaginary hydrogen
atom m1{= -1/L, to which we refer our quantities in electrolysis when We define the
chemical equivalent charge. Consequently in eqn. (13) mu would, strictly, have to be
replaced by mh, and e/mi; would have to be taken equal to 9649'4/1-008. In the same
way, in eqn. (10), we should have to write mil in place of mu, but not in eqn. (1l)—for
the true atomic weight of He is equal to four times the ideal, not the true, atomic
weight of H. As a result of this a correction should also be applied to eqn. (12), too,
and this has to be taken into account if we are carrying out exact numerical calcula
tions, but we may express this correction in the text.
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more accurate than can ever be obtained from experiments on the deflec
tion of cathode rays. We have thereby come a step nearer to the goal
that we set up as the problem of spectroscopic units in the preceding
section: Instead of using the one value of R = Rm in eqn. (16) of the
previous section, we use the two values RH and R3,, out of the above

eqns. (10) and (11), and we get, instead of one, two equations for deter

mining the three universal units e, e/m, and h. The necessary third such
relation we shall get to know in the last chapter.
We must next broach the question how the difference between R"

and RH, may be made evident in practice. This is made possible by the
series of ionised He, of which we spoke in §2.
Ionised helium is of the type of hydrogen (wasserstofl(1ihnlich. =

hydrogen-like). It consists, like the H-atom, of a nucleus and of an
electron and differs from it

,
at first sight, only in having a double nuclear

charge. Accordingly its spectral lines are contained in the general
formula (17) of Balmer’s type, mentioned in the previous section, if we
set Z = 2 in it. But on closer inspection a finer difference, which is at

|;=6 =7 =8 =9 =l0=11=l2'"He"'

M
1
5
0
0
0

3

-
2
0
0
0
0

~
.

L
Y I1
1
i.
Q“

L

2
5
0
0
0

:>‘l/

P H, P H

Fro. 69.

present of essential importance to us, is the difference in the nuclear
mass. This mass is not, as in the case of’ hydrogen, mu, but 'nz,,,,.
Consequently the earlier R = R“ is to be replaced by R5,. From
eqn. (17) of the previousparagraph, there thus arises in this way, if we
setn=4:

1 1 R,,,<%—l§>... k=2m

.t=4R,,(Z, 1

m

1

- . (14)

11,,.(_,-i,,)...I.-=2¢1i+19' (m+t)

The subdivision into two parts (which is not really contained in the

nature of the matter in question) brings into evidence the circumstance
that the component for which k is even (k = 2m) coincides very nearly
with Balmer’s series, whereas the other part (k = 2m + 1

) has the

form of Pickering's series that was given earlier in eqn. (7) of page 207.
The combination of the two partial series (which conforms with the

nature of the matter in hand) into one uniform series corresponds
to the earlier formula (7a) on page 208.
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In Fig. 69 we exhibit the positions of the He +-lines relatively to the
Balmer lines. The length of the lines is to denote diagrammatically
their intensity, on the assumption that we are dealing with a mixture of
He + and of H. For this reason the Balmer lines are drawn shorter than
the neighbouring He *-lines. The difference in the position of the two
series corresponds to the difference between RH, and RH. Since R“, > RH,
the helium lines, as compared with the Balmer lines are displaced a little
towards the violet end. The lines P of Pickering's series, that is, the
helium lines k = 2m + 1, arrange themselves between the helium lines
It = 2m, and, as emphasised on page 208 in order of steadily increasing
intensity.
The researches of Paschen mentioned on page 208 give for the wave

lengths of the helium lines and the neighbouring Balmer lines the

following values (here cut short at the first decimal place) in Angstrom
units, which confirm the displacement towards the violet, as predicted
by theory.

TABLE 25

4561'6 —
433B'7 4340'5 (H7)
4199 '9 —

I-let H

6560-1 6562-s (H...)
5411-6 -
4s59-3 4s61-3 (H5)

4100-0 4101-7 (H5)P
¢
'P
r'
P
:~
'P
:'
?:
~
P
¢
‘P
:‘

ll
II
ll
ll
ll
ll
ll

>
-|
-»
|

N
H
-¢
O
lO
m
Q
O
':

_~

According to our whole development of the question, this violet shift

of the helium lines with respect to the Balmer lines may be regarded as
a certain indication of the relative motion of the nuclei during the

stationary forms of motion of the atom, or, more accurately, of the

slightly dilferent relative motion of the heavier helium nucleus compared
with that of the lighter hydrogen nucleus. The difierences between the
lines, as exhibited in Fig. 69, depict the small distances bet-ween the cent-res

o
f g-rarity shown in Fig. 68. At the same time they give us definite

information to the efiect that in our intra-atomic planetary system the

law concerning the persistence o
f the common centre o
f gravity remains

in force.
It need hardly be mentioned that this exhaustive test of our atomic

model is possible only thanks to the extraordinary accuracy of spectro

scopic methods, by means of which dilferences of wave-length of 1} in

a million can still be determined with absolute certainty.
Of the series of ionised helium we have considered in detail that

which has the final quantum number n = 4 (Picker-ing's series), in §2
that with the final quantum number n = 3 (Fowler’s series) was touched
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on lightly. Also some of the representatives of the series with the final

quantum number 71.= 2 have been measured. The succession of its

lines is identical with that of the ordinary Balmer series except for the

factor

(E
Y = 4. The lines in question therefore lie in the extreme

e

ultra-violet; their wave-lengths are obtained from H., H3, . . . by
dividing by 4 (as long as we disregard the small difference in the

constants R, thus:

1 _ 1 _s560=1 09

41%? 1_T 64,

1 1 4859

v=4R(§2 1=T=1215.

The wave-lengths 1640 and 1215K have been found by Lyman* in
the spectrum of helium. On the other hand, the prospects of proving
the existence of the He +-lines with the final quantum number n = 1 are
unfavourable, since their wave-lengths are only a quarter of those of the

Lyman series, which themselves already lie in the extreme ultra-violet.
From the difference in the wave-lengths of the He +-lines and the H

lines, or from the wave-lengths of all the He +-lines that he measured,
Paschen determined the value of RH, and B11. He found (we here pur
posely give all the decimal places of the numbers) :

Rt. = 109722-144 1

004} (15)R 109677-691 i 0-06 ' '

According to eqn. (12), we may calculate ‘l
’ from these values (cf. also the

correction remarked on in the footnote to eqn. (13)) :

*

:1: ll

3
,5 I._ _ 1847. if 1-769.1010 . . . (16)

The latter value is almost identical with one obtained from the
Zeeman effect, that is by a semi-spectroscopic method (measurement of

a wave-length + the measurement of a magnetic field) and probably
represents the at present most accurate value of this quantity. According
to eqns. (10) or (11) We follow Paschen or Flamm, respectively, in de
ducing from RH or RH, that

Rm = 109737-11 t 0~0e . . . . (17)

In the series of spectra of the hydrogen type there would now become
linked with the H- and the He +-spectrum that of Li H", namely of
doubly ionised lithium. This Li ++ again consists of a nucleus and one

' Nature, 104, 565 (1920).
+Cf. L. Flamm, Physikal. Zeitschr., 18, 518 (1917). The values calculated by

Paschen difier from those given above by some millionths, since he takes the atomic
weight of He as 3'99 instead of 4'00.
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electron; its spectrum falls under the general category of the form given
by eqn. (17) of the previous section, but with Z = 3. Taking account of
the relative motion of the Li-nucleus, that is:

m,, = 6-94 m,,, Ru Rem
= _%

1 +
7?“

1 + (E "*7"
we write this equation in the two forms:

V-9R..<.;-e>

}m
-
1

" =
R"(<»/3r
'
(T1

The first of these forms is the more natural one; in the second, the

triple nuclear charge of the Li causes the deceptive occurrence of the
denominator 3 in the series formula, just as that of the denominator 2 in
the case of He +, which led to its lines being wrongly interpreted as the
“principal series

"
and “second subsidiary series” of hydrogen. Un

fortunately, these series of Li ++ have not yet been observed in the
laboratory. Bohr has, however, shown that it is probable that individual
lines in certain nebulae of the Wolf-Rayet type may have this origin.
These constellations show characteristically Pickering's series particularly
intensely. Their physical state therefore seems to favour the ionisation
of the atoms and might therefore lead to the production of Li ++. But
since these series have not yet been discovered completely in these
nebulae, we shall not enter into the numerical calculations of Bohr’s

conjecture here.

. (18)

§5. The Kc-1.1118 of Riintgen Spectra. The Model of the He-nucleus

Continuing from the preceding reflections on the spectra of He + and
Li ++, we shall proceed further in the sequence of spectra of the hydrogen
type, and, indeed, at once as far as elements of any arbitrary atomic

weight. Let us assume for a moment that the element of atomic number
Z had been deprived of all its electrons except one by intensive ionisa
tion, or, what comes to the same thing, suppose all its electrons but one
had been removed from the neighbourhood of the nucleus to the periphery
of the atom, then the orbits described by this remaining electron in the

vicinity of the nucleus would be governed by the same simple laws as in

the case of the hydrogen electron, and the spectra that result from the

jumps between these orbits would again be determined by eqn. (17) of

page 216. We shall be able to identify the Rydberg number R that
occurs here with our R1; . For the quantum numbers n and la> n we
shall insert the simplest values n = 1, k = 2. We then get

zit -21) - <1»‘E
U
!'< ll

15



226 Chapter IV. The Hydrogen Spectrum

In this we first call attention to the fact that the factor Z2, especially
in the case of the heavier elements, brings this vibration number out of
the visible region far into the ultra-violet. Even in the case of hydrogen

(Z = 1), the line defined by (1) belongs to the Lyman ultra-violet series

(cf. p. 207). As Z increases, the corresponding line passes over into the

Riintgen or X-ray region. As an actual fact, eqn. (1) represents essentially
the principal line of the K-series of the X-ray spectrum, namely the Ka
line. In Chapter III, §5, we deduced for this line, by an empirical
method, Moseley's formula (7) of page 157 :

-=(z_1)*(%-%). . . . (2)

The difference between the eqns. (1) and (2) consists essentially in the
substitution of Z — 1 for Z. Without attaching importance to this for the

present, we shall rather direct our attention to the general agreement
between what our theory led us to expect, leading to eqn. (1), and the

empirical datum expressed in eqn. (2). We may then make the assertion:

Independently of the more detailed structure of the atom, the field of the
nuclear charge predominates in its interior. The electron which produces
the Ka-line behaves in the main as it confronted the nucleus alone. The

spectral formula of the Ka-line is essentially of the simplest type, that of
hydrogen.

To arrive at a closer understanding of the Ka.-emission, we shall follow
the example of Debye * and drop the assumption that all electrons except
one have been removed from the vicinity of the nucleus. Rather, we
know from § 4 of the preceding chapter that in the excitation preparatory
to the K-emission, only one electron is taken out of the K-shell and
removed to the periphery of the atom. This one missing electron is then

replaced in the K-ring from the next following L-ring when the Ka-line
is produced. Let p be the normal number of electrons in the K-shell, q
that in the L-shell. We imagine both as circular rings and suppose the

p or q electrons, respectively, distributed at equidistant intervals along
them. The initial and final state of the atom in the K-emission may then
be characterised by the following scheme :—

w§

K-ring L-ring
Initial state . . . p — 1 q

Final state . . . . p g — 1

The outer rings that follow the L-ring are to be left out of considera
tion in this, since they are not (or at least not essentially) brought into
question by the K0.-6lI1lSSl0I1.

Our next step is to evaluate the energy constants W for the K- and
the L-ring, at first for the normal distribution of the electrons. We
assert that they are given by :

- “‘Physikal. Zeitschr., 18, 276 (1917).
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Rh
K-ring: W =- - p?Zf,, Z,,= Z - s,,

Rh
' (3)

L-ring: W = — q~22*Z,'~}, Z,, = Z - p —- sq

and that at the same time the radii of the rings, as calculated from eqn.

(5) on page 74 are given by: -

12
K-ring: a = zal, Z,, = Z — s,

,

2
.3
;

_ <4)

L-ring:a=Z1, Z,,=Z—p—s,,4

in which al, is the radius of the first Bohr circle for hydrogen, and sp, sq,
denote the quantities introduced on page 75.
To prove our assertions we set up, exactly as on page 211, the classical

and the quantum condition for the determination of a and m, the radius
and the angular velocity, whether in the K-ring or the L-ring. In deriv
ing the classical condition, we fix on any one electron of those in the ring
for which we are making the calculation and let this be subject not only
to the centrifugal force and the attraction of the nucleus but also to the

repulsion exerted by electrons of the same ring as that to which the
selected electron belongs. The latter repulsion, by eqns. (9) and (10) of

page 75 (n = p or q
, for the K- or L-ring respectively) amounts to:

2

Ic=u—1

e 1 1

E
‘! Sm Sn ='

4 Esin Wk‘h=1 n

In the case of the L-ring there becomes added also the repulsion
exerted by the inner K-ring on the selected electron of the L-ring. If we
suppose the K-ring, as an approximation, contracted into the nucleus,

the repulsion is expressed simply by The classical condition there

fore becomes

. e2Z c‘1s e"Z
for the K-ring: mam? = --;——— .,

" = _'-’
ax’ a~ a‘
e'tZ e2p cgs e"Z

' (5)
for the L-ring: rune»? == — —.,

— #1 = .,
"

a at a~ a

in which Z,, has the same significance as in (3) and (4).
Let the quantum condition be the same as in the case of hydrogen;

it requires that every electron of the K-ring rotate with one quantum of
moment of momentum, and every electron of the L-ring with two such
quanta. Thus

K-ring: 'rna'1o =
211-

6
)

L-ring‘ ma.’w = 2
—
h i I (

'

211'
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As is evident, the present conditions (5) and (6) arise from the earlier

eqn. (1) of page 211, and (2) of page 212, if we set in the latter

E = eZ,, and n = 1, or = 2, respectively . . (7)

For this reason we may also take the value of a for this equation out of
the eqn. (4) of § 3. But the latter becomes our present eqn. (4), if we
compare our present and the former eqn. (7). Our eqn. (4) is thereby
proved.

To pass on to eqn. (3), that is, to calculate the energy, we first write
down the potential energy of the nucleus and (in the case of the L-ring)
that of the K-electrons (that are nearer the nucleus) for the individual
electron, namely:

2
_eZand + 821)
a a

Next, the potential energy of the electrons of the ring under consideration
with respect to the selected electron (belonging to the same ring) is, by
eqn. (12) of page 75 (n = p or q for the K- and L-ring, respectively:

2e2s,,

a
.

The potential energy with respect to all the electrons of the ring in

question therefore becomes (cf. also eqn. (13) of p. 75) :

e2Z ,

_ 2Z 2
20 6

L-r1ng:—qea +qe(f’+qeas=q a

K-ring: —p?~+ —p»€%=p a’
e"’Z, (8)

But the expressions to be proved, contained in (3), arise from these if
we insert the value of (a) from (4) and take into account that here, too

(cf. Note 5) the total energy is equal to one-half of the potential energy.
The radiation emitted when the atom passes from the initial state to

the final state is governed by Bohr's frequency condition :
v

hv = W“ ~ W, . . . . . (9)

By inserting here the values from (3), the terms relating to the final state
appear with a positive sign, those relating to the initial state appear with
a negative sign. Concerning the dilferent meaning of Z,_, for the initial
and the final state, we refer to the above scheme for the generation of the
Ka-radiation. We get from (9) :

(Z
2 (Z )

If")
-
<11-1)
—‘ 2 i

<10)

+ <q - 1> ‘Z TF2; - Q“
" P
"55-*

S
C
"‘ ll

“G r-
I

The result so obtained looks much more complicated than our eqn. (1),
to which we were led by generalising directly Balmer’s formula. The
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fact that a closer relationship holds between (10) and (1) in spite of this,
becomes clear when we develop (10) in powers of Z. We get

1%
=
Z2<%2
-
é)
_
2z(D,,
_
D,-1’%9>+c . (11)

in which we use the abbreviations:

DP =13»
'“
(P
_
1) 89-1’ Du = qsq

_
(Q
_'
1) sq-1’

O =1”: - Q» — 1>s:-1+ <4 - 1)‘? +,f--‘>92 -

Thus we see : eqn (1) is the first member of the development of eqn. (10)
-in powers of Z. The fact that the K-emission is of the hydrogen type, is

explained not only if we assume provisionally as above, that, as in the case
of hydrogen, a single electron efleets this emission, but also if -we assume our
present picture of electronic -rings that are occupied by several electrons.
Our next step would be to choose our integers p and q so as to obtain

as close a connexion as possible between eqn. (10) and the observations
of the Ka.-line. According to J. K1-oo,* this is attained by using the
values :

p = 3, q = 9 . . . . . (12)

This connection is noteworthy but it is not perfect. We show this in the

following table calculated by Siegbahn.+ The first column contains the

TABLE 26

Z Theo:-. Exper. A

17 Cl . 192-73 193-12 — 0-39
19 K . 243-76 244-06 - 0'30
20 Ca 271-60 271-86 - 0-26
21 Sc 300-99 301-22 - 0-23
24 Gr 398-55 398-78 - 0'23
26 Fe 471-49 471-58 — 0-09
27 Go 510-84 510-45 - 0-11
28 Ni 550-80 550-73 + 0-07
29 Gu 592-85 592-75 + 0-1.0

elements and their atomic numbers; the second contains the theoretical

values of
{E
according to Kroo's assumption (12), in which, however, the

relativity correction is taken into account, which was already men
tioned on page 158 but which will not be set on a firm foundation till we
get to the final chapter. The formulae, completed in this way, are con
structed quite analogously to eqns. (10) and (11), but dilfer from them by

" Physikal. Zeitschr., 19, 307 (1918).
1-Ann. d. Phys., 59, 72 (1919). This is the same essay as that already quoted on

page 152, in which Siegbahn describes the method of his precision measurements.
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terms of small numerical value, that contain higher powers of Z and that
are due to the change of the electronic mass with high velocities. The
third column contains the experimental values of v/R in agreement with
our Table ll. The fourth column contains the difference A between the
theoretical and the experimental values. It shows that the course of the
values is regular and increases linearly with Z. It is impossible to
eliminate A by choosing other values for p and q. Is it possible to ex
plain it by refining further the above scheme of calculations ?

Continuing from Kroo's essay, the author has pointed out* that,
strictly speaking, not only the proper energies of the K-ring and the
L-ring, but also the mutual action between these rings themselves and
also with respect to the outer rings have to be taken into account, and
that the outer rings, which were neglected in our calculation, by con

tracting or expanding, according to the electrons present in the inner

rings, likewise contribute amounts of energy to the emission of Rontgen
rays. Moreover, these energies, due to mutual action, depend on whether
the rings are imagined co-planar (lying in one plane), or with their planes
inclined to one another in space. It was possible to prove, however,
that, although these amounts of energy were not negligible in themselves,

they, for the most part, cancelled one another.

On the other hand the question arises, whether the notion of plane
rings can be more than a rough approximation of the true arrangements.
We are inclined, at the outset, to answer in the negative. We shall ex

pect, not plane rings, but spatial shells (e.g. 8-shells, cf. p. 203). From
the point of view of the periodic system, the numbers p = 3, q = 9 cer
tainly do not inspire confidence. Rather, in conformity with the whole
structure of the system of elements, we must demand that p = 2 for the
K-shell, and q = 8 for the L-shell. Furthermore, we must demand that
the same numbers p and q, with which we represent the K0.-8II1lSSlOl1,
and the corresponding and fixed distribution numbers for the outer shells
account for not only the Ka.-line, but also for the remaining lines of the

K-spectrum as well as those of the L- and M-spectrum. Many tentative
calculations in this direction, in particular by L. Vegard, show that this
is impossible even if moderate accuracy and completeness is aimed at.
But there is another fundamental feature that must prevent us from

proceeding along the way that we have started along. The whole calcu
lation of this paragraph depends on the assumption that the q-electrons
of the L-shell are equivalent as regards their energy. This assumption
is certainly not right, as our later critical investigation of the “elliptic
complex

"
(Ellipserwerein) in Chapter VIII, § 5, will show, and it

leads to absurd consequences.
As a result of this, the detailed explanation of the Ka.-line here at

tempted has only limited importance. The similarity between Balmer's

~Physikal. Zeitschia, 19, 299 (1919).



§5. The Ka-line of Rontgen Spectra 231

and Moseley's formula demands an explanation. We showed that the
term in Z2 furnishes the clue, whether we consider only the motion of
a single electron, or whether we consider the transition of an electron
between shells occupied by several electrons. The similarity _o

f X-my
spectra with those o

f the hydrogen type extends thus far; but it does not
furnish a complete theory of the energy-levels of Rontgen rays.
Nor can we claim to have obtained final results in the next matter of

discussion, in which we are concerned with an experiment leading into
the region of nuclear physics, namely, in finding the quantum elaboration
of our model of the helium nucleus. Following the suggestion of Lenz,
we described this on page 97 as an inverse oxygen model, of which an
illustration was given in Fig. 23. It has two negative electrons separated
by a distance 2b, surrounded by four positive electrons or H-nuclei

(protons), the latter being distributed at equal distances along a circle of
radius a, and rotating with the uniform angular velocity .
We have two classical and one quantum condition for determining

the three unknowns a, b, w.
First, we have the condition of equilibrium for the negative electrons

under the action of their mutual repulsion, and of their attraction towards
the four positive electrons (protons), both according to Coulomb's law.
The repulsion amounts to 02/4b”; the attraction due to a single H-nucleus

is e*/(a.’ + b”), and has the component eib/(a2 + b2)? in the axial direction.
Hence the condition of equilibrium when four nuclei are present is:

4e"b

<a* + W‘‘f
ile
.

From this it follows that :

(a2 + b2)? = 16b3, 0,2 + b2 = 16§b’

1,2 - + 1.2-
l§“%"_1

- - 03>

=
( _ ’ _16 1 16

Then we have the mechanical condition of eqilibrium for one of the

rotating positive electrons. Its centrifugal force is mnaufi. The com
ponent of attraction, due to the individual negative electron, in the radial
direction amounts to ega/(0.2 + b2)” ; it must be doubled owing to the

presence of the two negative electrons. The repulsion due to the three

remaining electrons likewise acts in the radial direction, and is given,
according to eqns. (9) and (10) on page 75, by e2s,,/a2, where s4 has the

value O'957, according to Table 3
. Hence the condition of equilibrium

of the positive electrons in the radial direction is : -

' 2e20, e
2

. mHa,w2 =~i -—-F84 . . (14)

If we insert the value of a? + b2 from (13), it follows that

'nLHtl3w2 = e2[%(16T='
~ —

s4]
= O'58e“ . (15)
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Finally, we apply the quantum condition for the rotation of the
positive electrons (or protons). As in eqn. (6), we assume in the case of
the K-ring that each electron rotates with an amount of energy equal to
one rotation-quantum. We then have

2mmro=h. . . . . um
The essential difference between this and the determination of the size

of the hydrogen atom in §3 consists in the fact that the mass m of the
negative electron is replaced by the 2000 times greater mass mu of the

positive electron. The result is that the radius a of our model of the helium
nucleus is about 1000 times smaller than the radius al of our model of the
hydrogen atom. For we get from (15) and (16), by eliminating w:

h2

4 ’e2m,,
Q ll
Q Q

y
|l
—
*

@
or, taking into consideration the significance and the size of the hydro

gen radius a, in eqns. (7) and (9) on page 213, and the value of ,r
% in

eqn. (16) on p. 224, we get

0'53 . 10's
0'58

_ 1". _/711,.“—m,om u 5 bk!
-1
\'
l = 5'0 . 10"” cms. . (17)

The same quantum condition that determined the correct atomic size of

the model o
f the hydrogen atom leads to the result that our model o
f the

helium nucleus becomes o
f sub-atomic size and that it shrinks, compared

with the former model in the ratio
H

According to Rutherford’s experiments on deflections of <1-rays,
certainly, the true extent of the helium nucleus is markedly smaller,

namely 3 . 10-13 cms. We may explain our different result on the ground
that at such small distances and with such concentrations of energy
Coulomb’s law no longer remains valid (cf. p. 97), or by admitting that
the details of our model are not yet correct. In any case, our calculation

is worthy of notice, since it gives a hint as to how the smallness of the
dimensions of the nucleus and the holding together of the nuclear parts
comes about. As a matter of fact we have the firm conviction that the

quantum theory holds sway even in the interior of the nuclei, and that the
structure of the nuclei is governed by the same quantum laws as govern
the structure of the atoms.

§6. Elliptic Orbits in the Case of Hydrogen.

In §4 we subjected the model of the hydrogen atom to a first test by
demanding that the law of the persistence of the common centre of

gravity should hold for the two-body problem : nucleus + electron. This
leads to an elaboration of the first Kepler law and to a refinement of the
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definition of Rydberg’s number. We next apply a second test to our

hydrogen model, by asserting that elliptic orbits are possible as well as
circular orbits. In this sense we enunciate Kepler's first law in its
complete astronomical form :
The planet moves in an ellipse at one focus of which the sun is

situated.
In this formulation of Kepler’s law we have for the present disregarded

the relative motion of the nucleus; we can easily make up for this little

imperfection later.
Our chief concern is to select from the manifold of all mechanically

possible elliptic orbits those that are possible according to the quantum
theory. The motion in the elliptic path represents a problem of two

degrees of freedom, since the position of the electron is determined by two
co-ordinates, most simply by the polar co-ordinates measured from the
nucleus, namely the azimuth ¢ and the radius vector r. We then get for
the element of orbit ds of the electron

dsg = drg + r’d¢".

Hence the kinetic energy becomes .

EH» = (+2 + er) - . - <1)

and the potential energy becomes (we here again denote the nuclear

charge for the present E)

II
“I
3

E
E,,,,,=-/5; . . . . (2)

Corresponding to the position co-ordinates q = ¢ and q = r, respectively,
we define the corresponding impulse co-ordinates (momentum co-ordinates)

in accordance with § 1 of this Chapter (p. 195), namely

dEkinP=dq-.....(3)
We denote these impulse co-ordinates by p¢ and p,, and then we get, on

account of (1) and (3),

p4, = mr2<f>, p, = mr . . . . (4)

where p¢ is the moment of the momentum mo, namely the product of

the perpendicular distance r and the azimuthal component m/r96 of the
momentum, and p, is directly the radial component 'mr' of the momentum

(cf. Fig. 70, in which the component r of the velocity in the direction of
the radius vector and the component r¢

§

perpendicular to it in the direction

of qt increasing are shown). According to Kepler's second law (“the
radius vector sweeps out equal areas in equal times"), p¢ is a constant

during the motion, the so-called “areal constant." \Ve indicate this by

setting in future
p,;, = p . . . . . (5)
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In our general formulation of the quantum theory, §1iof this Chapter,
eqn. (20), the quantum conditions for our system of two degrees of freedom
3181

d>=21r

jp4,d¢
= nh p,dr = n'It . . . (6)

u
_fi
e

H Ii 7!

¢=n ¢=o

The limits of the integrals correspond to the rule for limits given on

p. 201. They include the full range of values of the position co-ordinates,

namely, in the case of ¢
,

the region from ¢ = 0 to 4» = 2-rr, and, in the
case of r, the region from r,,,,-,, to
r,,,,,,, and then back to rm,-,,

againéfor which in the case of the close

elliptic orbit, too (but not in the case
of an open orbit, such as we shall
later have to consider), we may
again write ¢ = O and ¢ = 211-.

For we want to ascribe to the

t g
m

70
perihelion r,,,,~,, the azimuth ¢ = O

' '
(cf.
Fig. _70); 4

5 = 1r then corre

sponds to the aphelion rm“. In the return ti
)

the perihelion ¢ again in
creases to the \-'alue¢ = 21r. The first equation (6) will be called the
azimuthal quantum condition, the second equation (6) will be called the
radial quantum condition.
On account of (5) the first equation (6) becomes

21rp = uh . . . . . (7)

namely, the quantum condition o
f the rotator given earlier (eqn. (18) on

p. 199). The second equation (6) has to be restated in terms of the
orbital equation of the ellipse.
According to elementary analytical geometry we write this equation

in polar co-ordinates thus:

1 1

,~’;=C,+C2cos¢ . . . . (8)

To determine the constants C
,

and C
2 that have for the present been

left indeterminate, the following relations are used (cf. Fig. 70) :

Major axis a = MP = MA,
Eccentricity ae = OM,

. . . OM
Numerical value of the eccentricity e = MP,

Minor axis b = MQ = a~/l — <2,
Perihelion ¢

> = O
, r = rm,-,, = OP =a(1 — e
),

hence, on account of (8),

1

“(I _ c)

= G
,

+ C
2

(9)
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Aphelion ¢ = Tr, T = Tmaz = OA = ll-(1 + e
),

and hence, on account of (8),

a(11+ Q

_ 0, - 0, . . (10)

From (9) and (10) we get

1 1 1 c

C1=d.1—c2’ C2=11._1—7c3'

and eqn. (8) becomes:

1 1 1 + 0
:

008 ¢
v

[F
Z W??? t . .

From this it follows zby logarithmic differentiation with respect to qt:

- 1 d'r = e sin 45 11
$3,; mg " * " " ( 3

')

In the radial quantum condition (6) we now write, in view of (4) and (5),

- (1/r - p

d
rl,='mr=m_. = -_-_P

d4>

‘i
’

T1 a¢
(12)

(1 - ‘ll 44>
I D

r -
d¢

On account of (11a) we therefore get

1 d 2 _

' 2

and our radial quantum condition becomes

211'

2 sin2¢w d = ,1

P€(l.(1+ecos¢)‘3

¢ nL

or, on account of (7),

2‘Z1r _ 2 I

”¢' =2
" (13)

0

The left side depends only on the eccentricity ¢. That is
,
¢ is determined

by the two integral quantum numbers n and 11.’. In Note 6
,

eqn. (7), at

the end of the book, it is shown that by carrying out the integration in

(13) we get :
*

1 2- n

-J17

;
é
z

hat IS, 1 - J =m . (14)

The areal constant 1) determines the size of the ellipse, the eccentricity e

determines its for-m. Hence, through the azimuthal and radial quantum

l P—* ll
=1
l 3, ‘cf

" W. Wilson derived the above eqns. (13) and (14) a little earlier than the author
from his

general
formulation of the quantum conditions quoted on page 200 (Wilson’s

essay in hil. Mag., 31, 161 (1916) was completed in Nov. ,1‘Jl5, the aulhor’s was
finished in Dec. 1915). But no application of these equations to Balmer’s series have
been made by Wilson .
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condition, eqns. (7) and (14), the size and form of the elliptic orbit is fixed
in accordance with the quantum theory. From the continuous manifold
of all possible ellipses there are thus selected a family of quantiserl ellipses,
given by the two positive integers n and n’.

We next turn to the calculation of the energy. The kinetic energy is
,

by (1), (4), (5) and (12).

_='l-2
2'2=._i(2

P“=P2 15112Eh”

2

(T + T lb) 2m
Pr +

1
*‘
)

2m1"‘l:<r 1
1
¢
) + 1 (15)

If we here use (11) and (Ila), we get

Eh-,, = [3 sin? ¢ + (1 + c cos ¢)”]

2 1 2

= + ‘

+ ¢ cos

¢
>

. . . (15a)

On the other hand we have, by (2) and (11),

eE _ eE 1 + cos ¢Er" =‘T-“7_1+.-»—' " " (16)

The sum of the kinetic and the potential energy must be independent of
the time, and hence also of ¢

,

namely it must equal the energy constant
W. From this it follows that the factor of e cos ¢ in this sum must
vanish. This gives

P
2

=
6E -_ i P

2

1

ma2(1
- as a(l - 2)’

a
meE(1
-
:1
) ' ' ( 7
)

The value of a obtained in this somewhat indirect and artificial way
might have been obtained more directly from diflferential equations of
the problem, but we wished to avoid writing down the latter. By re
writing h ne of a by means of (7) and (14) and adding the value oft eval

b(=a~/1 - <"),we get

2 1

h , h‘ ,

a =
4_n___,meE (

n + n)2, b =
Z1;2WwE‘!t(7t

+ n). . (18)

On the other hand, by using (15a) in (17) and then adding (16), we get

E 1

" EW = Ekin + Ea, =
&_(1.@._.€,) (2;

“ -

1
) =

-

%
- (19)

If we insert in this the value of a from (18), we have
2n-*'me2E‘l 1W _ —
hi

. . . (20)

This result is of the greatest consequence and is superlatively simple:
we have found for the energy of the elliptic orbits the same value as in eqn.
(13) on p. 214 for circular orbits, with the one difierence that the quantum
number n in the latter case is replaced by the quantum sum, n + n’
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Each of the quantised ellipses of our family has an amount of energy
equivalent to that of a definite Bohr circle.
We next consider an ellipse of the family as the initial orbit—let its

quantum numbers be k and k'—, and another as the final orbit—with
the quantum numbers n and n’. In order that the transition may be
free and accompanied by the emission of energy, we must certainly have
k + k'>n + n’ (cf. eqn. (20), in particular as regards the signs). We
calculate the energy radiated out according to the hv-law (Bohr's
Frequency Condition). We get a result quite analogous to eqn. (15),
page 216:

2T2 4 E 2 1 1me

(Z
)

“‘<1;'+i'?)

' ' (21)

For hydrogen E = e, this simplifies, if we introduce Rydberg’s
number R, to :

< ll
1 1 *

v_R<(T_kTv

. . . (22)

From the point of view of practical results, this spectral formula
again gives only Balmer’s series, but it has a deepened theoretical signifi
cance and its origin has now multiple roots. By the aclmission of our
elliptic orbits the series has gained no extra lines and has lost none o

f its
sharpness.

When the author, early in 1916, developed the above theory, he
referred at the outset to a series of indices* by which the various possi
bilities of generation contained in a Balmer line may be made manifest.

1
. In the natural state of the H-atom without a super-imposed field

the various possibilities of generation coincide only accidentally, as it
were, in one line. But if we allow an electric field to act on the lumin
escent atom, in the manner practised by Stark, the original quantum
orbits will be disturbed. It is evident that the disturbance will affect
the various ellipses differently; it will therefore alter the energy of the
various orbits differently in each ease. The result is the so-called
Stark eflect, to which we shall return in the next chapter. 2

.

Similar

consequences follow from the application of a magnetic field and the
result is the Zeeman eifect. Here, too—both in our theory and in the
older view based on the classical theory—the resolution of the lines is

not due to new possibilities of vibration being generated but to the cir
cumstance that lines which were originally coincident are differently
displaced and hence separated by the magnetic field. We shall also

study the Zeeman effect in the next chapter for the case of the hydrogen
atom. 3

. The most beautiful and most instructive manifestation of the
various elliptic orbits that belong to the same Balmer line is, however,

given by Nature herself without our agency in the fine structure of space
time conditions as reflected in the fine structure of spectral lines. The

"Sitzungsberichte der Miinchener Akademie, 1915, p. 425, cf., in particular, §6.
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last chapter will deal with this subject. 4. The coincident lines in the
case of hydrogen may be separated by an inner atomic field in place of
an external electric or magnetic field. Such an inner atomic field does
not, indeed, occur in the case of hydrogen itself or atoms of the hydrogen

type (an electron and a nucleus, singly or multiply charged) but in the
case of all other atoms (neutral He, Li, etc.). In the next chapter but
one we shall see that such atomic fields are the cause of the one Balmer

series of hydrogen in the elements not of the hydrogen type splitting up
into the series systems: Principal Series, First and Second Subsidiary
Series, etc.

We now enumerate the various possibilities of circular and elliptic
orbits that belong to a given value of n + 1t’. To begin with, we remark
that: (a) n’ = 0 denotes a circular orbit. For when n’ = O, then by
eqn. (14), c = O, and the focus and centre of the ellipse coincide, that

is, the ellipse degenerates into a circle. This could also be read off

more directly from the radial quantum condition (6), which shows that

when n’ vanishes, 11,, that is 1
‘, also vanishes, and hence 'r must be con

stant.

(b) n = 0 denotes a degenerate ellipse; i
t is the focal distance counted

twice. For when n == 0 we get from (14), < = 1
, i.e. the perihelion and

the aphelion coincide with the two foci. This follows more directly, too,

from the azimuthal quantum condition (6) and its connection with the
areal constant p. This denotes the area swept out by the radius vector
in the unit of time. If this is to vanish,* the orbit must degenerate into

a double line with a zero areal content. But the electron, in describing
this orbit woutd fall into the nucleus. Owing to the permanence of
atoms we regard this as impossible. Thus we declare the orbit n = O to
be impossible and do not include it among the following orbits. In Fig.
71 it is indicated by a dotted line.

The number of possibilities that belong to a given value of n + n’, for

example, n + n’ = 3
, is obtained from the apparently not very subtle

equation of resolution :

3=n+n’=3+O=2+1=1+2.
We thus have three possibilities; the fourth, 3 = O + 3 is excluded as

being fictitious by what was said under (b). In all three cases we have

2I

for hydrogen, by eqn. (18) (E = e
, a, = 4fl_.,£ne2

= radius of the first Bohr

circle), the same a, namely a = a, . 32.

On the other hand, b, by the same eqn. (18), changes in steps thus:

b=a,.3.3, b=a,.2.3, b=a,.1.3.
‘ We are here concerned with the limit p = 0. If we set p = 0 directly, that is, if

we let the electron fall into the nucleus without a blow from the side, then if we
suppose the nucleus to be penetrable, the electron could oscillate pendulum-like to
equal distances on the other side and back, moving to and fro. In reality, of course
both the orbits line 1
) = 0 and simplyp = 0 are to be rejected.
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After this, the following tabulation with the illustrations of Fig. 71

will be immediately intelligible :—

n + n’ = 1, one possibility.

n=1 n'=0 a.=a1=b
Circle.

n + n’ =1 2, two possibilities.
n=2 n'=0 a=22a.1 b=a
n=1 n’=1 a.=22a, b=a~/2

3
A circle, or an ellipse of eccentricity < = ig

n + n’ = 3, three possibilities.
n=3 n’=0 a.=3“‘a, b=a
n=2 n'=1 a=3”a1 b=-§~§-a

n=1 n’=2 a.=3*a, b=§-a,

. . . . .
_

15
Circle, or ellipses of eccentricities e = $ or s =
a. b. 'c. d.

Q Q ©
(—€——D ‘mi Q—i>
1| 4a, 9:,

FIG. 71

n + n’ = 4, four possibilities.

n=4 n'=0 a.=4‘*a1 b=a
n.-=3 n'=1 a=42a1 b=§a,
n=2 n’=2 a=42a.1 b=i,-la

_
n=1 n'=3 a=42a, b=}a.

. . . 7 I2
T

Circle or ellipses of eccentricities e = %, 6 = if-, or < =

The figures here drawn do not exactly correspond with reality: in the

first place, for the sake of economising space, we have not drawn them to

the same scale (cf. the accompanying arrows 0,1, 4a,, etc.); secondly, to

give a better survey of the curves we have drawn them concentrically

instead of confocally. But if we keep the position of the nucleus fixed in

the figure, then, not the centres, but the foci in which the nucleus (at rest)
is situated, coincide. In this way there result from Fig. 71 the following

figures which bring out the true conditions better. _

Now that we have investigated the various possibilities for the single

orbit when n + 'n' is‘ given, we can immediately\state the number of
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possibilities for the transition from an initial orbit (with a given It + la’)
and a final orbit (with a given n + n’). In general this number is equal
to the product (n + n’) (k + ls’), for example, in the case of the He +-line,

2
-l
l/
E

= ~

%
, it is equal to the product 3 . 4 = 12 (combination of one of

the four initial orbits of the fourth drawing of Fig. 72 with one of the
three final orbits of the third drawing of Fig. 72). In the same way we
get for the Balmer series the following number of possibilities of
generation :—

H. H5 H, H5

2 . 3 2 . 4 2 . 5 2 . 6

In thus enumerating all these possibilities of production we do not
wish to afiirm that they are all realised in nature. In the next chapter
we shall develop a "Principle of Selection" which separates out from the
totality of the possible transitions between orbits those that can excite the
emission of radiation. So far our enumeration has started purely from
the possibilities in the atom. Through the linking up of the atom with

11. b. (3, d
_

@<@@@
Fro. 72.

the “ether” both in respect to energy and impulse, several of these
possibilities become fictitious.
The relative motion of the nucleus that has so far been disregarded

may be added in the case of elliptic paths just as easily as in that of
circular orbits. From the equations of motion of the nucleus and the
electron separately we form, as for the astronomical Kepler problem, the

equations for the relative motion of the electron with respect to the
nucleus. These differ from the equations of motion for when the nucleus

is at rest, in that the “resultant mass " p. (eqn. (3) on p. 220) takes the

place of the electronic mass m. The same holds for the azimuthal and
the radial quantum condition. We first postulate that the sum of the

phase-integrals calculated for the motion of the electron and for that of
the nucleus, both for the qb as for the r co-ordinate, is equal to a multiple

(n or n’) of h
,

and therein we express the corresponding distances between
the centre of gravity in terms of the distance between the electron and
the nucleus in the relative motion. The result is the same quantum
conditions as in eqn. (6) of this section but with p
. instead of m. Con

sequently ,1
.

also takes the place of m in the expression for the energy.
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The result of this for the spectral formula is that RH, Rm, etc., take the
place of Ru), whereby these symbols have the same meaning as in eqns.
(9), (10), (11) of §4. We may conveniently refrain from carrying out
the calculations here sketched. Perhaps we may finally make two
observations regarding the method of calculation.
The above treatment of Kepler's problem was kept as elementary as

possible. But by using the methods of higher mechanics in our dis
cussion of the same problem in Note 8 at the end of the book, we shall
not only reduce the amount of calculation but also gain in precision.
For we shall be able to present points of views to show that the polar
co-ordinates here used are prescribed by the very nature of the problem
and thereby give an answer to the question which was raised in §1 of
this chapter on page 201. The method that is to be developed later is
unquestionably superior to that used in this paragraph. Moreover, the
method of treatment of this paragraph cannot quite escape the reproach
that it leaves a certain gap in not giving reasons for the choice of co
ordinates. Nevertheless it was inevitable that we should begin with the
visual methods of this section; they form the proper introduction to the
more abstract method of Note 8.
Our second remark, too, concerns a certain gap in the preceding

representation. For Kepler's problem belongs to those exceptional cases
of which we spoke on page 200; it is a so-called degenerate problem.
The external characteristic of a degenerate problem consists in the
circumstance that in it the choice of co-ordinates is not unique and
that, therefore, the quantum conditions, too, that depend on the choice of
co-ordinates, may be applied in various ways. In the case of our Kepler
problem, the so-called parabolic co-ordinates that we shall use in § 4 of
the next chapter, are in principle admissible as well as polar co-ordi
nates. By making use of these parabolic co-ordinates we should
get quantised ellipses selected from the group of Kepler orbits differ
ent from those which we get when polar co-ordinates are used.
The justification for favouring the latter is offered only when we have
performed a passage to a limit, namely, by treating our problem first
according to the laws of relativistic mechanics (cf. § 2 of Chap. VIII) and
then, by neglecting the relativistic variability of mass, passing over to
classical mechanics. The result obtained in this circuitous way agrees
exactly with the result of our above treatment. On the other hand, the
internal criterion for the degeneration of a problem consists in this, that,
to fix the energy and hence also to obtain sharp spectral lines, fewer

quantum numbers are necessary than there are degrees of freedom
involved in the problem. We have already characterised degenerate
systems in this way on page 200. In our case the quantum numbers n
and n’ do not actually enter into the expression (20) for the energy
individually, but only the quantum sum n + n’. Thus, from the view of
quanta, our problem has, so to speak, not two, but one degree of freedom.
16
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From the point of view of his own principles, Bohr* accordingly
denies that both conditions (6) are necessary for the treatment of the
non-relativistic Kepler problem. We must of course admit that this
view is incontestable, but, on the other hand, We can point to the fact
that, from the physical point of view, our problem is to be regarded only
as the limiting case of the non-degenerate relativistic problem, in which
both quantum conditions, the azimuthal and the radial condition, come
fully into their own.

§7. Quantising of the Spatial Position of Kepler Orbits. Theory
of the Magneton

In the preceding section we quantised the Kepler orbits with respect
to size and form, by means of the azimuthal quantum number 'n and the
radial quantum number n’. We wish to show that the quanta can
perform still more: they also determine the position of the orbits in space,
that is, they select from the continuous manifold of all possible positions
of the orbits in space a discrete number of orbits that conform with
certain quantum conditions.
It is possible to quantise spatially only, of course, when a certain

favoured direction is given with re

spect to which we may measure the
orientation of the orbits. Such a
favoured direction may be given
either by an external field of force or

by an internal atomic field. The first
case is simpler and will be considered
here. But in this case, too, we have
no longer, even for the hydrogen
atom, pure Kepler orbits. Rather,

B
these are deformed through the ex
ternal field of force. If we wish to
manage with the Kepler orbits, not

withstanding this, we must pass on

to the “limit when the force tends
to zero." In this passage to the

limit, on the one hand the disturbance of the orbits by the field of force
vanishes, but on the other hand the possibility of their orientation with

respect to the field of force remains. The reason for this is that, whereas

the disturbance of the orbits is a phenomenon which varies continuously
with the field of force, the orientation of the orbits is restricted to certain

discrete possibilities. That is why the latter remains after the passage
to the limit, whereas the former vanishes.

Fro. '73.

" Cf., for example, what he says on page xv of his introduction to his collected
essays on atomic structure, published in German by Vieweg dz Son, Braunschweig,
1921.
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We take the direction of the lines of force as the axis of a spatial
polar co-ordinate system r01/r; in Fig. 73 this is the axis SN. We as
sume the nucleus to be at rest in O; we draw the unit sphere (i.e. one
of unit radius) about O as centre. Let the variable radius OP point to
the present position of the electron. Let OK be called the common line
(“Knoten1inie"); it is the line of intersection of the equatorial plane

OKQ and the orbital plane OKP. The great circle KPAB is the trace
of the orbital plane on the unit sphere. The “latitude” 0 is represented
in the figure by PN, the longitude ([1

,

reckoned from the common line,

is represented by KQ; in addition, we consider the “orbital azimuth" q
b
,

which is given by KP. Let a. be the angle between the direction ON of
the lines of force and the normals OM to the orbital plane; 0. appears
in the figure as the arc MN, and at the same time as the angle at K in
the spherical triangle KQP, which is shaded in the figure.
Corresponding to our three degrees of freedom r0¢, we have now three

quantum conditions:

jt.dr=n'h; lptd¢=n.h: )t@d@=n.h
- <1)

The integration with respect to 1/
1 is from Oito 21r. The integration for

6 stretches (cf. p. 201) from 6,,,,-,,= NA beyond 0,,,,,_, = NB back to 9,1,,-,.;
the integration for r is as formerly (cf. p. 201) from 'r,,,,-,1over rm, back to
rm,-,,. Thus the radial quantum integral is not different from that in the
two-dimensional point of view. As in the preceding section, eqn. (14), it

gives us :

_ 21rp<~/1-H 1>=n’h. . . .(2)

and determines as before, through the eccentricity e, the form of the
orbit. p is the areal constant for the orbital azimuth ¢. The corres

ponding quantum condition is:

21r

[pas
= 21¢ = nh. . (3)

0

Let n be called as before, the azimuthal quantum number; as a means of

distinguishing n1, let it be called the equatorial quantum number. We

now assert that the azimuthal quantum number is equal to the sum of

the “ equatorial” number nl and the “latitudinal” quantum number n2:

n=n1+'fl~_, . . . . . (4)

The proof is contained in the definition of p, p,;,, and P9. In general
the following holds (cf. eqn. (5), § 1 of this chapter) for any arbitrary co

ordinates qp :

'

P =
DE,“-,,

Ek_ = 1

2(k)Pk.

1 I-1!.

2

qk
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The latter holds because Eh-,,, is a homogeneous quadratic form of the q's

(cf. also Note 4, eqn. In our case this yields, according as we use
plane polar co-ordinates rgb, or spatial polar co-ordinates r0;//:

= MW + Pi) = Mai + Pvé + mi)
From this it follows:

_ _ _

1>¢
= M + PW

or, integrated with respect to the time for the whole duration of a com

plete period :

(p(1¢=(p,de+(p,d¢ . . . . (5)

The integrals here indicated are our phase-integrals of eqns. (3) and (1) ;
their values are, in turn, nh, nlh, and nzh. Thus eqn. (5) is identical

with eqn.
But between the quantum numbers n and n1 there is also the relation

n1
= n cos 0. . . . . . (6)

For p is the whole moment of momentum of the rotating electron; p4, is
its component in the equatorial plane. The former is, in Fig. 73, drawn
as the vector in the direction of the normal OM to the orbital plane,
the latter as the normal ON to the equatorial plane. As Fig. 73 shows:
we have

p,;,=p00Sa . . . . . (7)

According to this, p4,, just like p, is constant during the motion. The

equatorial quantum condition (1) becomes on calculation
'

21rp,,, = nlh . . . . . '(8)

In virtue of this equation and of eqn. (3), (7) is shown to be identical
with (6).
Eqn. (6) already contains the remarkable result that there are certain

quantilm favoured spatial positions of the orbital plane characterised by
integral numbers. Combined with eqn. (4) it states:

cos a = "1
n1 + n2 = n . . . (9)

n1 + n2

We consider in turn the cases n = 1, 2, 3, . . . and represent them
by the Figs. 74A, B, 0. In them, the direction of the lines of force is

,

as

in the preceding figure, supposed to run from the top to the bottom. The
sense of rotation in the orbital plane is arbitrary, but is to be considered
the same in each part of Fig. 74.
n =- 1. In this case there are, according to eqns. (4) and (9), only

two possibilities :

nl = 1 n2
= O cos <1= 1

and

n1=O n2=1 c0So.==0
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Hence the orbital plane is either the equatorial plane (0
. =

O
) or a

meridian plane through the direction of the lines of force (<
1

=
1r/2).

Fig. 74A exhibits sections of both planes.
n = 2

.
According to eqns. (4) and (9) we have here three pos

sibilitiesz
n,=2 n2=0 GOSa.=1
n,=1 n.,=1 cosa=1)
n,=0 n2=2 cosa.=O

Besides the equatorial plane (<
1 =

O
) and the meridian plane

(0
. = -rr/2), there is a third possible inclination of the orbital plane,

namely, that making an angle of 60° with the equatorial plane (1
1 =

1r/3).
Fig. 74B shows those three positions in section. The orbital plane, in
clined at 60°, can of course be rotated arbitrarily about the direction of
the lines of force; in the figure this is indicated by drawing the optical
image of the one plane.

A B C

@

n = 3. Here there are four possibilities:

'n,=3 n2=O cosa.=1

n1=2 n,=1 cos¢=-§
n1=1 n,=2 cosa=-§
n1=0 n,,=3 COSa.=O

These four positions of the orbital plane may be constructed, as has
been done in Fig. 740, by dividing the radius into three equal parts. The

positions corresponding to the values cos a. = and cos a. = § have been
drawn twice, to indicate that the corresponding orbital planes may be
rotated about the direction of the lines of force.
So the process continues. In each of these orbital planes in space

the electron may clearly describe, besides the circular orbit indicated by
11, a series of elliptic orbits; for example, in the case n = 3

, it may
describe, besides the circular orbit n = 3

, n’ = O
,

also the elliptic orbits
n=3, 11/=1; n=3, n'=2; n=3, 'n/=3, . . . In the order of
sequence of Fig. 72, these are orbits, each of which is represented by

a different picture among those given; the circular orbit is represented

by Fig. 720 ; the first elliptic orbit by the ellipse of Fig. 721) that has the

smallest eccentricity, and so forth.
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Without doubt this spatial quantising is one of the most surprising
results of the quantum theory. When we consider the simplicity with
which the positions are derived and how simple is the result, it seems
almost like magic.
Spatial quantising, as long as we stop at the limiting case of the

external force tending to zero, has of course no effect on the calculation
of the energy of the orbits and the spectral consequences following there
from. The two quantum numbers n, and n2 then enter into the ex

pression for the energy only in the form of the sum: n = n, + 11.2; that
is, the expression for the energy and the spectral frequencies that are to
be derived from it remain the same as in the case of simple quantising
in the plane.
It is in connexion with this that the spatial Kepler problem is one

degree more
“
degenerate” than the plane Kepler problem. Whereas we

describe it mechanically by three co-ordinates as a problem involving
three degrees of freedom and determine it

,

according to quantum con
siderations, by three quantum conditions, only the quantum sum

n, + n2 + n
’

occurs in the expression for the energy. The necessity
of using three quantum conditions may therefore be disputed (cf. the
conclusion of the last section). But if we pass on from the case

“ in the
limit the force tends to zero," to a true field of force, the degenerate
character is eliminated and the existence of three quantum conditions
becomes essential.

In carrying out the latter transition, we get at the same time a

correction of the spatial possibilities enumerated above: in each case
the number is to be reduced by one, since, in each case, the last position
in our enumeration, the meridian position characterised by n, = O

,

cos a = 0
,

drops out. The reason is similar to that which in the

previous section led us to declare as fictitious the ellipses that had

degenerated to a double straight line (dotted in Fig. 71). Just as in
the case of the degenerate ellipses the electron would collide with the
nucleus, so we may show that in the meridian position of the orbital

plane the electron, under the influence o
f an electric force acting in this

plane, would finally approach infinitely near the nucleus. We cannot
furnish the proof before §5 of the next chapter, when we deal with the
Stark effect, and when we generalise it for forces other than electrical
forces in § 7 of the same chapter, in speaking of the Adiabatic Hypothesis.
But we must take the result, which also holds for the case “in the limit
the force tends to zero,” for granted here, to correct our above enumeration
of the possible orbits in space, which we now state as follows :—
For any arbitrary azimuthal quantum number n there are exactly n

quantiserl positions o
f the orbital plane which are characterised by whole

numbers. They correspond to all resolutions o
f the number n into n, + n.1,

including n2 = O (the equatorial position o
f the orbital plane), and excluding

n1
= 0 (the meridian position). These n positions are constructed b
y dividing



§7. Quantising of the Spatial Position of Kepler Orbits 247

a radius of the equator of the unit sphere into n equal parts and erecting
on the dividing points (excluding the centre of the unit sphere) right-angled
triangles according to the example given in Fig. 74. These figures them
selves are to be corrected by removing the diameter which is at right angles
to the equatorial plane from the series of the projections of the orbital

planes.

From this point of view we next return again to Fig. 71 of the

previous paragraph. Each part of it was drawn for a given quantum
sum s = n + n’, and consisted of s orbits, namely, a circular orbit (n = s,

n’=0) and s — 1 elliptic orbits (n=s — 1,n'= 1; n=s— 2,s'=2;
n = s — 3, n’ = 3, respectively, and so forth). By now adding the
spatial position of the orbits and taking into account the above theorem,
we see that each of these orbits may in their turn be produced in as many
ways as the numerical value of their azimuthal quantum number n; that
is, the circular orbit may be produced in s different ways, the first elliptic
orbit in s — 1 ways, the second in s - 2 ways, and so forth. Owing to
the lack of detailed knowledge, we regard all these spatial modes of

generation as equally probable and as occurring equally often empirically;
we thus arrive at the conclusion that the probability of the circular orbit
to that of the first, second, . . . elliptic orbit is as

s:s—l:s—2:...:2:l . . . (10)

We call this probability the “a prior-i probability." We hereby as
sume as in this whole section the presence of some direction of force or of
orientation in space, but on the other hand we assume that the force
that is present in no wise essentially affects the character of the Kepler
orbits.

Our “a priori probability” will later give us a certain support in
dealing with the difiicult question of the intensity of spectral lines.
Even now, however, it may already be remarked that this does not

suflice to settle the question finally, but that the “probability of tran
sition " between the initial and the final orbit plays an essential part in it.

To conclude this chapter we shall briefly consider a very important
but as yet very obscure problem of physics on which the spatial quantis
ing of electronic orbits promises to throw light, the problem of the
magneton.

The view that every paramagnetic substance (i.e. susceptibility > O)
has a definite magnetic molecular moment is old established among
physicists. It was elaborated in particular by Wilhelm Weber, and was
rendered certain by Langevin's theory of the dependence of paramagnet
ism on temperature. Within the last decades P. Weiss* has set out to
prove by means of a great number of detailed measurements that this

" Summaries are given by P. Weiss, Physikal. Zeitschr., 12, 935 (1911), or Verh.
d. D. Phys. Ges., 13, 718 (1911); R. H. Weber, Jahrbuch fiir Rad. u. Elektr., 12, 74
(1915); B. Cabrera, J. de Chimie Physique (Guye). 16, 442 (1915).
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moment occurs not as an arbitrary quantity but as a whole multiple of a
certain elementary moment. The value of this elementary moment, the
“
magneton

"

is
,

according to him :

M = 1123-5 gauss ><cm. per mol . . . (11)

The value of the elementary moment of the individual atom or, in
the case of compounds, of the individual molecule is obtained by dividing

(11) b
y Loschmidt's number, L = 6'07 . 1023, and is:

1123'
P
. = “I; = 1'85 . 1O'21 gauss x cm.

The assumption immediately forced itself on physicists that this
elementary magnetic quantum was no new constant but was probably
connected with the elementary electric quantum e and the quantum of
action h. Let us endeavour to find this connexion as simply as possible.
As we know, a magnetic moment is equivalent to an electric current:

Weber's electromagnetic measure of current in C.G.S. units depends just on
the fact that the current strength times the enclosed surface around which
the current flows is equal to the moment of the elementary magnet,
placed at right angles to the current surface, that produces, at a great
distance, the same magnetic field as the current. Let the current be a
circular current of radius a. and let it be produced by the revolution of
an electron about the atom. If m is the angular velocity of the electron,

then w/21r is its number of revolutions per second and is the current

strength, calculated as the quantity of electricity that passes through the
cross-section per second. Hence the magnetic moment fl. of our circular
current, calculated from the intensity of current and the circular surface :

[L = grog = gwa2 . t . . (12)

Our rotating electron is a rotator. Its moment of momentum is

detefmined on the quantum theory by the condition

moo? = g
t . . . . . (13)

Hence the mechanical moment of momentum and the magnetic
moment are expressed b

y 0) and a in the same way and their ratio to
one other is a universal constant. From magnetic measurements we
can arrive at the mechanical moment of momentum and its value accord
ing to the quantum theory. Just as there is an elementary quantum
of mechanical moment of momentum, so there exists theoretically an
elementary quantum of magnetic moment.
From (12) and (13) there follows

1
: ll

§|
<
‘

§|
_§
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The theoretical elementary quantum of magnetic moment is
,

therefore,

"s ll §|° 5i|
§

or, referred to the mol (or gramme-atom, respectively)

K u

3
|»

?|
e |.
-1

. (14)

that is, if we insert the known values of e/m, h
,

and L:
M = 5584 gauss x cm. . . . . (15)

that is almost exactly five times as great as Weiss’ magneton (11). We
shall call the value (15) the Bohr magneton.
Now, how does it happen that Weiss appears to get the smaller unit

in his measurements? What value is to be attached in particular to

the methods of calculation by which he obtains the value (11)? We

accept as the answer to this question an investigation by W. Pauli, jr.,
which we shall now describe.*

Concerning solid paramagnetic substances first, we must, in interpret

ing the measurements in question—at all events—take into consideration
their crystalline structure. The same applies to ferromagnetic substances,
all of which occur only in the crystalline or micro-crystalline form.

Whereas Weiss assumes that, in the state of saturation, all atomic

magnets point in the same direction, the crystal structure would seem
to favour a distribution of these directions among directions prescribed
by the symmetry of the crystal.
In the case of paramagnetic liquids, too, the theoretical interpretation

is rendered difiicult by the complicated character of the liquid state and

by the question as to how the diamagnetism of the solvent is to be taken
into consideration. In this case there is to be added that the magneton
numbers determined by Weiss are by no means exact multiples of his
fundamental unit.
There then remain the paramagnetic gases, of which measurements

have hitherto been possible only for the cases O
2 and NO. In this case

Langevin's theory of paramagnetism seems to ensure a trustworthy
calculation of the magnetic moment to be ascribed to the individual gas
molecule. Langevin’s theory asserts that the Curie constant C

,

that is,

the product of the absolute temperature and the susceptibility calculated
for a mol of the gas, is given ’r by :

M2

R

M is the magnetic moment of the mol; that is, L times the magnetic
moment ,u of the individual gas molecule; R is the gas constant referred

O l cos"0 . . . . . (16)

" W. Pauli, Quantentheorie und Magneton, Physikal. Zeitsehr., 21, 615 (1920).

6
1
- Cf., for example, M. Abraham, Thwrie der Elektrisitdt, Bd. 2
,

4
,

Aufl., §31,
p. 2 3

.
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to a mol ; 0 denotes the inclination of the magnetic axis of a gas molecule
to the direction of the magnetic field; the horizontal bar drawn above
the expression denotes that the average is taken for all angles of
inclination.
Of course, before the advent of the quantum theory, Langevin's

theory assumed 0 to be continuously variable. By treating, in addition,
all positions as equally probable (i

t is admissible to disregard favouring
the direction of the magnetic lines of force in the process of adjustment,
since it requires only a correction that is proportional to the intensity of

field), the theory set
cos” 0 = § . . . . . (17)

that is
,

made it just as great for the direction of the lines of force as for
two axes perpendicular to this direction. But, from the point of view o

f

spatial quantising, this is no longer admissible. Rather, we now have :—
For n = 1

. All orbits place themselves at right angles to the direc
tion of the lines of force, cf. Fig. 74A; we have excluded the other
theoretical possibility, the meridian position of the orbital plane. Hence,
for all orbits cos 0 = 1

, and therefore

cos“0 = 1 . . . . . (l7a)

For n = 2
. The orbital planes set themselves partly at right angles

and partly at angles of 30° to the lines of force; cf. Fig. 7412. Either
cos 0 = 1 or cos 0 = 4;; the theoretical possibility cos 0 = 0 is again to
be excluded. As on page 247 we regard both these possibilities as
equally probable. Consequently,

cos” 0 = ~}[1 + (-§)2] = 5 . . . (17b)

For n = 3
. There are three and only three cases, namely, cos 0 = 1
,

cos 6 = ;l
;, cos 0 = all three are equally probable. Accordingly

60$” 9 = til + Gr)” + (§)"] = -.1‘ (176)

In general. For the quantum number n, we have n equally probable
positions, and we get

2 = 1 22 ,7
‘ _ 1 2

..:;s¢2;.+.<;2
-a< W

H
}

I-
'1
-4

ll

co
ll-
‘
3
1
*-
‘

T
il

2n‘

Equal distribution (equi-partition) among all directions, in the
manner assumed by Langevin's formula (17), comes about, then, only in
the limit when n —> ca, as was to be foreseen. But this circumstance
has a considerable influence on the calculation of the value of the
magneton. As a matter of fact, Weiss bases his determinations of M
along the reasoning of Langevin on the following formula which arises
from (16) and (17) V

M = ~/also . . . . (18)



§ 7. Quantising of the Spatial Position of Kepler Orbits 251

Taking into consideration spatial quantising, he should base them on
the formulae :

In the case n = 1 [eqn. (16) and (l7a) M = ~/X . (18a)
In the case n = 2 [eqn. (16) and (17b) M = ~/BEIIC . (18b)

and so forth.

In the case n = 1, for which the magnetic moment amounts to 1
Bohr, that is 5 Weiss, magnetons, Weiss would obtain a value according
to eqn. (18) that is -\/3'times too great, namely:

5 -\/3 = 8'7 instead of 5 Weiss magnetons . . (19a)

In the case n = 2, for which the magnetic moment amounts to 2
Bohr and hence 10 Weiss magnetons, a comparison of (18) and (18b)
shows that Weiss’ method of calculation leads to a value that is too great

in the proportion ~/3: ~/§, thus

10 ~/‘1T“_= 13'7 instead of 10 Weiss magnetons . . (l9b)

Thus if we calculate by Weiss’ method, not taking into account the
position of the magnetic orbits of rotation, we cannot obtain integral
multiples of magnetons, whether we use the Bohr or the (five times too

small) Weiss unit. Actually, observations seem to show, too, that the
integral character afiirmed by Weiss is not in general true.
In the case of the gases NO and O2, the number of magnetons*

amounts, according to Weiss, Piccard and Bauer, to 9 and 14 (more
recent measurements have given the values 9'2 and 13'9 or 14'2). It is
worthy of note that these values lie in the neighbourhood of our numbers
8'7 and 13-7 in (19a) and (l9b). We are therefore inclined to surmise
that, in the case of these two very simple paramagnetic gases, we are

dealing with the two simplest cases of one and two Bohr magnetons,
whereby each O-atom, in NO as well as in Oz, would have one Bohr
magneton. We do not wish to assert that in the case of these gases
our numbers 8'7 and 13"7 should be accurately true, that is

,

that measure
ments free from error, when inserted in the Weiss-Langevin formula,
should lead exactly to the values 8‘7 and 13'7. Our spatial quantising
refers in the first place to the orbits of the hydrogen atom ; it may,
indeed, be straightway applied to other monatomic gases, whereby the
so-called invariable plane, that is

,

the plane of the total resultant moment
of momentum takes the place of the orbital plane. But the application
to diatomic gases is very doubtful. The molecular models of such gases
are entirely unknown to us ; according to their geometric structure, the

spatial quantising may come out difierently from that of the hydrogen
atom, and then the energy of rotation may affect its orbital positions
variously. When we just now concluded from the approximate number

" Weiss and Piccard, Compt. rend., 155, 1234 (1912); 157, 916 (1913); Bauer and

Piccard, Journ. de Phys., 1920, p. 97.
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of maguetons 9 and 14 that there were one and two Bohr magnetons,
respectively, present, we did so under the assumption that the behaviour
of diatomic gases, too, will not difi'er markedly from that of hydrogen
and that here, too, the ideal case of hydrogen allows us to predict in

general outline the approximate behaviour of the complicated cases.
Moreover, we did so, in the conviction that the true unit is the Bohr
magneton, not the Weiss magneton.
The object of the above discussion was clearly more negative than

positive. We wished to show that up to the present measurements have
not been able to contradict the quantum value (Bohr’s) of the magneton,
particularly not when it has been evaluated on the basis of Langevin's
formula, which takes no account of spatial quantising. On the other
hand, we could not adduce a certain positive contribution towards evalu
ating magnetic measurements either for crystalline paramagnetic solid,
or paramagnetic gases. The natural- conclusion that there is a Bohr
magneton for every O-atom was fraught with uncertainty on account of
our ignorance of the molecular models concerned. We have no doubt,
however, that, some day, the abundance of magnetic observations will
allow us to recognise unmistakably the existence of the Bohr magneton
or, what amounts to the same, Planck's quantum of action and that it,
just like the data of spectral observations, will bear striking testimony to
the quantum structure of matter.



CHAPTER V

WAVE THEORY AND QUANTUM THEORY

§1. The Spherical Wave and its Propagation. Conservation of
Energy and Momentum

EINRICH HERTZ,* in his discourse at the Heidelberg Session

Hof the Science Research Society (Naturforschergesellschaft) in
1889, drew certain general conclusions from his experiments

on electric waves and made the following remarks about the nature of

light 2
“What is light? Since the time of Young and Fresnel we know

that it is a wave motion. We know the velocity of the waves, we know
their lengths, and we know that they are transverse; in short, our

knowledge of the geometrical conditions of the motion is complete. A
doubt about these things is no longer possible; a refutation of these
views is inconceivable to the physicist. The wave theory of light is, from
the point of view of human beings, certainty."
Has this certainty meanwhile been shattered? Yes and no! In all

questions of interference and diffraction, the wave theory has not only
maintained its position but has, indeed, gained new ground; it has ex
tended its range of influence towards the side of small wave-lengths as
far down as Rontgen and y-rays, and towards the side of great wave

lengths as far as th_e waves of wireless telegraphy, whose length is
measured in kilometres. In all questions, however, which, to use
Einstein's language (cf. p. 38), concern the production and transformation
of light, we have the firm conviction that the optics of the undulatory
theory is, at least in its present form, insuflicient. The appropriate and
natural point of view to adopt towards these phenomena (photo-electricity,
secondary radiation, absorption and excitation limits) is that of propa
gation not in spherical waves but in light-quanta hv, in the manner ex

pressed by Einstein's photo-electric law. In these phenomena amounts
of energy occur such as the wave theory simply cannot place at our

disposal, not even if we enlist the help of an artificial accumulation of

energy (p. 44). The mildest modification that must be applied to the
wave theory is

,

therefore, that of disavowing the energy theorem for the
single radiation phenomenon and allowing it to be valid only on the

average for many processes. How this new type of localisation of

“ Gesammelte Werke, 1
, 340.
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energy or this denial of every localisation of energy is to be brought into
harmony with the laws of the electromagnetic field is still wrapt in ob

scurity. On the other hand, the most extreme view is that which regards
the field laws themselves, that is, Maxwell's equations, only as statistical

approximations and to consider the elementary phenomenon of individual
emission as a continual succession of light-quanta, which have a definite
direction. The connexion between these two views would then be
similar to that in the gas theory, in which the continuous equation of
state, is only a rough approximation, and the proper elementary process,
however, by which the gas pressure is produced takes place discontinu

ously and in impulses. But whereas we have been able to carry out the
statistical calculations for gas molecules and from it the continuous

equation of state quite rigorously, we are still far from carrying out the

corresponding statistical calculations for light-quanta. Only Einstein,*

again, has succeeded in taking a first step in this direction, in deriving
Planck's law of heat radiation by starting from elementary phenomena
of a markedly one-sided and discontinuous character. The phenomena of

light absorption and light transformation receive a natural interpretation
in this theory; but the phenomena of interference and diflraction find no

place in it. In particular, the spherical wave of optics becomes a con
figuration that is incoherent in itself, for it comes about as a result of aver

aging over elementary processes that are all independent of one another.
Both points of view, the classical continuous wave theory and the

discontinuous-statistical theory of light-quanta, each offer at present only
one-half of the truth. How the dilemma will be overcome finally, cannot
yet be gauged. At all events the classical wave theory in its application
to the phenomena of light propagation has not yet been supplanted by
something better. It is, indeed, astonishing how much of the wave
theory still remains even in spectroscopic processes of a decidedly
quantum character. Bohr has formulated this very definitely in his
Principle of Correspondence (cf. the end of § 3). For example, in describ
ing the continuous radiation of X-rays, we pointed out the effectiveness
of the classical wave theory (cf. p. 34).
In the sequel we shall take the view, as far as the propagation of light

is concerned, of the classical wave theory. We shall thus repress all
doubts about the idea of a spherical wave that is coherent in itself and
shall accept it as given in experience. Whether this view is the funda
mental and final one must be left an open question; it is at least ap
proximately justified by a general correspondence between wave theory
and quantum theory. To account for the production of light by the
process of atomic radiation, on the other hand, we must absolutely call
in the aid of the quantum theory, in particular Bohr’s frequency law :

hi/=W,,-W, . . . . (1)

‘Verb. <1.D. Phys. Ges., 1916, p. 318; Physikal. Zeitschr., 13, 121 (1917). See
also p. 106 of The Quantum Theory, F. Reiche. Methuen & Co., Ltd.
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This equation determines the frequency of the wave according to the

theory of quanta. Besides frequency, however, a light wave possesses
intensity, polarisation, and a certain measure of coherence (ability to inter

fere). The quantum theory seems at present unable to answer the finer

questions touching the form of the vibrations, their arrangement in space
and the space-time disposition of the train of waves. Here that is true,
which may be said of every purely energetic treatment: the equating of

energy—as is performed in our equation (1)—can never furnish more
than one equation determining the course of the phenomenon. In the
case of more than one degree of freedom the energetic view must be sup
plemented by a deeper dynamical treatment.
Let us next enumerate the determining factors, accessible to observa

tion, of a monochromatic spherical wave (or one practically monochrom

atic) starting out from the point at which emitting atom is situated. The

wave-length (or vibration number or frequency) is one determining factor,
the length of the train of waves, the “ coherence length" (number of

successive wave-lengths up to the point of perceptible extinction of the

phenomenon of “vibration") is a second determining factor. (Strictly
speaking, of course, a finite coherence length is not compatible with
exact monochromatism; we here mean the kind of approximate mono
chromatism such as is presented by a sharp but, of course, not infinitely
narrow spectral line.) Three further determining factors are presented by
considerations of intensity and polarisation. For if we draw two mutually
perpendicular planes through a direction of emission chosen at random,

we have in both of them a definite amplitude of the alternating electro

magnetic field and between both there is a certain phase difference of the

partial vibrations. With these three data, the observable intensity and
the character of the polarisation (linear, circular, or elliptic) is fixed for
one direction. But it is not sufiicient to furnish these data for any arbi

trary direction of emission, but rather this direction must be a unique
axis for the spherical wave, in order that through it the distribution of
intensity and the polarisation is determined for the whole spherical wave.
At first sight it would appear that the existence of a unique axis con

tradicts the notion of a spherical wave. For a spherical wave is usually
understood to mean a phenomenon that is propagated from the centre
of the source of light symmetrically in all directions and in every respect.
This view corresponds to our rough optical experiences but not to refined
observation such as forms the basis of the theory of light. According to
Maxwell's equations (as well as the older ideas of elasticity) a spherical
wave has always a unique axis both for the distribution of intensity as for

polarisation. Only the phase of the light is distributed with spherical
symmetry; and only the wave surfaces, that is the surfaces of points in
the same phase, in the case of a spherical wave, form a system of con
centric spherical surfaces. On the other hand the surfaces of points of
the same intensity are by no means spherical surfaces. Let us recall, for
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example, the simplest case, in which, in the language of the classical
wave theory a linearly vibrating electron emits the spherical wave. On
account of the general character of transversality of the light vibrations
no intensity is emitted in the direction of vibration of the electron; the
intensity is a maximum at right angles to this direction (cf. in this con
nexion the innermost curve in Fig. 11, which depicts this case of emitted

radiation). The surfaces of equal intensity have therefore by no means a
spherical shape, but, rather, the direction of vibration of the electron is at
the same time a unique axis of the distribution of intensity. The same is
true in the case, which, in the language of the classical theory, corre
sponds to an electron that executes circular vibrations. Here the axis
perpendicular to the vibration circle is a unique axis of polarisation,
namely, the direction in which circular polarisation is observed, whereas
in every direction inclined to this elliptic polarisation occurs, and in
directions perpendicular to it

,
linear polarisation takes place. At the

same time the axis mentioned is a unique axis o
f distribution o
f intensity.

In this axis the intensity is a maximum, being, namely, twice as great as,
for example, in the two directions at right angles to it.
Now, an axis that starts out from the centre of the sphere is defined

by two determining factors, for example, two angular measurements. If

we add to these the three determining factors which define the amplitude
and the phase of the vibrations for this axis, and also the two first-men
tioned data relating to frequency and coherence, we get in all: 2 + 3 + 2

= 7 determining factors or elements of definition for the spherical wave.

(We give quantitative details of this in Note 9.)
We require just as many equations of definition which will connect

the light emission in the spherical wave with the changes of state in the
emitting atom. Hereby we draw special attention to the following point :

in general, according to the quantum view the atom and the “ ether" are
not connected with one another ; * it is only during the process of
emission that they are coupled together. In contradistinction to this, on
the ordinary view of the wave theory, the electrons in the atom are

permanently coupled with the ether: every change of motion of the
electron produces wave radiation. According to this view we consider an
electron active at the origin of every spherical wave, which generates in
unison with the rhythm of its own motion the electromagnetic spherical
wave. However convenient and however much accepted this view may
be, yet we must free our minds of it. We must speak not of an electron
but of a solution of Maxwell's equations, which is determined by con
ditions of coupling in the process of emission between the atom and the
ether. The more abstract mode of expression, to which we are forced, is

" The objection has been raised against the account given here that in the stationary
ths, too, the coupling between the atom and the ether cannot be entirely detached :

libth the inner forces acting between the nuclei and electrons, as well as the external
forces of a possibly added electric or magnetic field are transmitted in the "ether."
The author finds himself compelled to admit that this objection is justified.
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inevitable if we wish to follow out logically the view of the quantum
theory.
Let us now collect together the necessary conditions of coupling that

may serve to determine the parameters of the spherical wave that enter
into the solution.
In eqn. (1) we have so far only one such determining equation, or

two, if we take into account that hv determines not only the frequency
but also the total energy of the spherical wave, that is, that eqn. (1)
contains also a statement about the observable total intensity of each
process of emission.
To arrive at further determining equations we consider, besides the

energy, the impulse or momentum of the atom, on the one hand, and of
the radiation on the other. In mechanics the fundamental law is that of
the conse-roation of momentum (Galileo's and Newton’s law of inertia),
or, respectively, the law of change of momentum by external forces

(Newton's second law). The law of conservation of energy is derived in
mechanics as a consequence of the law of momentum.
In mechanics there follows, further, from the law of momentum the

law of moment of momentum, in particular, the law of areas, which
asserts the conservation of the moment of momentum for vanishing
moments of the external forces. When, in the process of emission, the
atom is coupled with the surrounding ether, we demanded by eqn. (1) the
conservation of energy. The energy that is made available by the atom
should be entirely accounted for in the energy of radiation v, which is,
according to the quantum theory of the oscillator, equal to hv. With
the same right, we now demand the conservation of momentum and of
the moment of momentum : zf in a change of configuration of the atom,
its momentum or moment of momentum alters, then these quantities are to
be reproduced entirely and nmoeakened tn the momentum and moment of
momentum of the rad-iation. This postulate will furnish us with three
further determining equations of the spherical wave.

The conservation of momentum and of moment of momentum holds

hereby, as in mechanics, only when the atom is subject to no external
forces. If the atom happens to be in an external field of force, this in
general changes the momenta and reacts with them. The momenta may
then, instead of being transferred to the radiation, be partly passed on to
the external field of force. We show this in the third section.
To develop the equations in question—here for the case unem

cumbered by external forees—we must talk of momentum and moment
of momentum of the atom, and then also of the momentum and moment
of momentum of the “ ether.”

The momentum of the atom does not mean the momentum of a single
electron, which primarily brings about the emission of light through its

change of motion, but the whole momentum of the atomic configuration.
In the case of hydrogen, too, with its one electron, we are concerned
17
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not with the partial momentum of this electron, but with the whole

momentum of the electron and the nucleus. This is zero, if the centre

of gravity remains at rest while the electron rotates, no matter whether

we regard the mass of the nucleus as finite and take into account the

relative motion of the nucleus, or whether we consider the limiting case

of an infinitely heavy nucleus at rest. The same is true for an atom con

taining any number of electrons moving in any manner: on account of
the law of the persistence of the centre of gravity, the total momentum of the

atom is zero in its initial configuration; we assume that it is also zero in

its final configuration, that is, that the atom does not, in emitting radia

tion, acquire a velocity as a whole due to a sort of rebound. As a matter

of fact there is no sufiicient reason why the atom, when it emits a

spherical wave, should favour one direction of velocity more than any
other.* Hence the change of momentum as the atom passes from the

initial to the final configuration vanishes. No momentum is transferred
from the atom to the ether.
The position is, however, different in the case of the moment of momen

tum. \Ve designated this for the single electron, for example, the hydrogen
atom, by p (or pd, since it is allocated to the azimuth ¢ of the rotation).
In the case of the nucleus at rest, it was equal to nh/21r; when we took
into consideration the relative motion of the nucleus we had to set the
total moment of momentum of the electron + the nucleus equal to nh/2-Ir

(cf. Chap. IV, §4, eqn. (6), and also § 5, p. 227). But also in the case
of a more general atomic structure, which we need not consider in
further detail here, the resultant moment of the momenta of all masses

(electrons + nucleus) is given by nh/2-rr, in so far as no external field
acts on the atom and the law of areas therefore holds. Let n denote
also in this general case, the “ azimuthal quantum number."
Thus every change of the azimuthal quantum number n denotes a

change of the nwment of momentum. This amount of moment of m0'me'nt1tm
cannot be lost but must be transferred from the atom to the ether, if both
systems are coupled together during the process of emission.
Before proceeding further, we shall interpose, as we have already

done on page 215, a few remarks to excuse the use of the word “ ether."
From the point of view of the theory of relativity we must deny the
reality of a universal ether transmitting light. No optical system is
favoured more than any other. None may claim the true ether as its
own. If, in the interests of a convenient and short terminology, we
desire not to give up the term ether, we must allow every system of
reference its own ether, which enjoys no preference above that of any
other system. We hereby merely express that in every system of
reference the propagation of light follows the same laws, namely,

" According to the point of view of the elementary processes with a definite
direction (cf. p. 254), the position is diflcrent; according to Einstein the emitting atom
must then sullcr a.rebound.
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Maxwell's equations. This is true in particular of the system of reference
in which the emitting atom is at rest. We need not think of a material
substratum when we use the word ether; in our interpretation, the ether
has no properties other than such as light itself possesses and such as
arise out of the laws of the optical field.

Regarded from this angle, what interpretation are we to place on the
momentum of the ether when we talk of radiation ? Every one is aware
of the fact that light has energy which, taken from the source of light, is
radiated out with (he velocity of light. Thus the conception of energy
becomes extended from material systems to the electromagnetic system
of the ether. The necessity of ascribing to the electromagnetic field not
only energy but also momentum was pointed out by Lorentz and later

by Poincaré* and Abraham.‘l' We shall give two grounds for this

necessity, one that is experimental, and one that is theoretical. The

pressure of light may be regarded as an experimentally established fact.
A ray of light that falls on an absorbing body exerts on it a pressure in
the direction of the ray; a ray of light that is emitted by an emitting
body exerts a reaction on the latter, like that of a cannon-ball on the
cannon. The most striking theoretical evidence for the necessity of the

conception of momentum 'in radiation is furnished by the relativistic law
of the inertia of energy (cf. Chap. VIII, § 1). If energy has inertia and
is equivalent to a certain mass, being equal to the energy divided by 02',
the energy radiated out has momentum ; the mass that is equivalent to
theenergy here moves with the velocity 0, hence the momentum, being
mass times velocity, is equal to the energy divided by 0.

From this step we may conveniently arrive at the quantitative

expression for the momentum of the radiation. The electromagnetic
energy is, if measured in appropriate (so-called rational) units, per unit
of volume,

W, = 1}E‘1+ QB’.
In the field of radiation E is numerically equal to H but perpendicular

to it in direction, the direction of both being perpendicular to the
direction of the ray. In place of VV, we may, therefore, also write

W1= E2 = H2 = EH.

Let us denote the momentum, calculated for the unit of volume G.

According to the law of the inertia of energy, We have numerically

W EH
__-C_ca n

~
L

The direction of the momentum is the same as that of the propagation
of energy, that is the direction of the ray. We express this by writing

F33]

"2
;
V
1

G=

,.

=*
<2)

" Arch. Néer., 5, 252 (1900) (Lorentz-Festschrift).

-r Ann. d. Phys., 10, 105 (1903).
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In accordance with Note 1 at the end of the book [EH] the vector
product of E and H, or S, is the so-called Poynting vector of energy-flux.
By including (as in Note 1) the factor 411-in the denominator, we pass
from our rational to the ordinary conventional units. Eqn. (2) is an

expression of how closely connected momentum and radiation is, and
likewise the momentum vector G and Poynting’s vector S.
Hitherto we have spoken of the momentum in the single direction of

the ray, and now we must consider the momentum of the whole wave.
It is certain that the process of emission in the spherical wave is a
spherically symmetrical process: in spite of the above-mentioned diHer
ences of intensity and polarisation within the spherical wave the radiation
is in every radius equal and opposite to that in the corresponding dia

metral radius. From this it follows that the total impulse of the spherical
wave is zero, not only for unpolarised radiation but also for any arbitrary
state of polarisation. This result concurs with our above assumption
that the atom, too, does not furnish the ether with momentum when

they are coupled. Thus the conservation of momentum imposes no other
condition on the radiation produced than that it must be a spherically
symmetrical spherical ware. The corresponding equation of condition is,

so to speak, sat'isfied identically.
The position is different, however, in the case of the moment of

momentum of the spherical wave. The moment of momentum per unit
volume of the ether is calculated as the product of the momentum G and
the perpendicular from the centre of the spherical wave. It is most
simply expressed analytically, both in magnitude and direction, by the

vector product (cf. Note 1) :
M = [rG] . . . . .

(3)

where r is the radius vector from the centre to the unit volume under
consideration. From the moment of momentum of unit volume we pass
on to the moment of momentum that is radiated out in all directions in
the spherical wave by forming

N=(di([zsM
. . . . (4)

in which the first integral is taken over the whole time of the emission,
and the second over the whole spherical surface of radius r.
It certainly seems at first sight as if the moment M must vanish for

each individual direction and hence also the total moment N. For if, as
we said, G has the same direction as the ray and if this were the radial
direction the perpendicular from the centre of the sphere to G would be
zero and hence M would vanish. But we must notice that this deter
mination of the direction of the ray and the momentum is only asymp
totic and does not hold accurately for a finite r. Hence, in the integral
(4), M differs from zero when r has finite values; when r increases to
wards infinite values, M does, indeed, decrease to zero but at the same
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time the region of integration increases in proportion to the square of the
radius of the sphere. This allows us to understand that both influences
may compensate one another and that, in the limit for infinitely great
distances, as well as for finite distances, N may have a finite value. Thus
the total moment of momentum of the spherical wave is in general not equal
to zero but is finite in value. It is able to take up and keep the amount of
moment of momentum furnishetl by the atom.
The considerations here sketched already show that the calculation of

the moment of momentum of the radiation renders necessary the carry
ing out of a more elaborate passage to the limit; we have done this in
Note 9. The result is this : we calculate the moment of momentum N,

which is radiated out, from the emitted energy W and the vibration
number v, by means of the formula

\V 2ab sin -y
2 . . .N=2...-H, - <5>

To define a, b, and y, we first remark that a moment of momentum
has an axis and hence defines a plane that is perpendicular to it. The
axis of the moment of momentum is identical with what we called above
the unique axis of the spherical wave. If we represent the state of motion
by a vector potential (designated by H in Note 9), this vector potential
may be resolved into two perpendicular components that are contained
in the unique plane of the momentum. Then a and b denote the ampli
tudes of vibration of these two components of the vector potential, and y
is the phase difference between them ; a, b, and -ydefine what is called in the

usual wave theory the vibration ellipse of the exciting electron. Follow

the usual terminology, we should call the unique plane of the moment of

momentum the vibration plane. We must carefully note, however, that

even if we adopt the convenient terms vibration ellipse (or vibration circle)
and rib-ration plane, because we are familiar with them, we associate with

them a different meaning from that in the wave theory. As already
pointed out on page 256, we do not speak of an electron that describes

the vibration ellipse and that circulates in the vibration plane; in our
account, the vibration ellipse occurs only as a characteristic of the

phenomenon of emission and the vibration plane occurs only as the

favoured plane of this process or of the corresponding vector potential.
This potential itself is calculated, not from the motion of an electron, but

from the conditions of coupling of the atom and the ether.
How our view differs from the usual one based on the wave theory

manifests itself, too, in the way in which we define the different special
cases of polarisation. It is appropriate to our standpoint that we base
this definition not on the particular forms of motion of a vibrating
electron, but on the special values of the moment of momentum N, which,

according to our view, determines the phenomenon of radiation.
We thus state: the light is linearly polarised when the moment of
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momentum N vanishes. By (5) this occurs when either a or b or sin 7
vanishes. The vibration ellipse then degenerates to a straight line, which
has either the same direction as b (i

f a = O
) or of a (i
f b = 0) or of the

one or the other diagonal of the rectangle ab (if sin y = O). The straight
line is the axis o

f symmetry of the spherical wave. Its position allows
us to determine for each radius of the spherical wave the direction of the
electric force and the observable plane of polarisation according to the
rules of the wave theory.

The light is circularly polarised when the moment of momentum N
attains its maximum for a fixed intensity of the light (a2 + b

“ remains

fixed), the values of a, b
, and -y being otherwise variable. This maximum

occurs when a = b and sin 7 = 1
- 1 (phase angle 7 = f 1:-/2); hereby, the

factor depending on a, b
,
y in (5) becomes equal to +
1 1
. The vibration

ellipse becomes a vibration circle. Along the axis of the moment of
momentum, we have the circularly polarised light, being left or right

polarisation according as 7 = + 1r/2, or -y = - 1r/2. In all other direc
tions the light is polarised elliptically or, in particular, linearly (namely,
perpendicularly to the axis of the moment of momentum).
By setting the moment of momentum, calculated in (5), of the radia

tion equal to the moment of momentum (by the principle of the con
servation of the moment of momentum) which is placed at the disposal
of the ether by the atom when the latter changes its configuration, and
indeed, setting it equal both in direction and magnitude, we get three

determining equations of the geometric character of the resultant
emission. VVe thus get one equation by equating the magnitude, and
two by equating the directions of the two moments of momentum. If
one of the above-mentioned special cases occur, we also get a statement

concerning the character of the polarisation. The complete determination
of the defining factors enumerated in this section is, however, not yet
hereby attained. Whereas we enumerated seven such elements above,
we have here only five determining equations, namely, two in (1) and
three in (5). Concerning the “coherence length" in particular, which
we counted as one of the determining elements of the spherical wave, it

has been proved -by interference effects of light for great diflerences of

path, that such a coherence length must exist and must have a perceptible
size. Important evidence on this question is furnished by the quantita
tive measurements of the dying down (“ Abklingen ") of the luminescence
of canal rays carried out by WV. Wiess.* Whether we have from this to
deduce the duration of luminescence of the individual elementary pheno
mena or rather the so-called “length of stay

"

(“ Ver-weilzeit "), that is the
time that the excited electron persists in its initial orbit, is still undecided.
The problem of determining fully the elementary process of emission

has, indeed, been partially unravelled in the foregoing but it is not yet

“ Ann. d. Phys.. 60, 597 (1919).
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fully solved; we may say that 5/Tths of it are solved and the remaining

2/Tths are still in darkness. But even if the whole seven of the deter
mining elements were discovered, we should still have to investigate the

probability of the elementary processes, which alone defines the observ
able intensity of the spectral lines. This is a statistical question which
we touched on in Chapter IV, § 7, page 247, and shall consider more
thoroughly in Note 10; the steps here enumerated disclose nothing on
this subject.
In conclusion we shall point out those features in which our treatment

and the classical wave theory agree and those in which they differ.

They agree in their views of the phenomena that occur in the ether.

According to the wave theory, as well as ours, the ether vibrates, that is,
it propagates alternating electromagnetic fields. We take over Maxwell's

equations, which define the ether and regulate its vibrations, directly
from the wave theory.
They differ in their views of the excitation of the states of vibration.

According to the wave theory, the electron that excites the ether also
vibrates. It is forcibly coupled with the ether and impresses its time of
vibration on the latter, which, according to the wave theory, is prescribed
by the nature of the bond between the electron and the atom. According
to the view of the quantum theory, however, the coupling between the
ether and the electron is less strong or more superficial. In its stationary
orbits, the electron does not excite the ether at all, but is coupled to it

only during the transition from one stationary orbit to another. The
duration of vibration of the radiation has nothing to do with the revolu
tion of the electron in its stationary paths. Even during the transition
there is nothing in the atom that occurs in rhythm with the vibration
number v. The ether demands its hv, the atom furnishes it by giving up
an amount of energy W, —-W, The duration of vibration follows if these
two quantities are equated; at the same time, the polarisation follows if
we equate the two corresponding moments of momentum. It has, indeed,
been suggested that the transition from the stationary initial orbit to the

stationary final orbit takes place along a spiral, which is traversed with
the frequency v. This too specialised picture seems to us unfruitful. It
is not the atom that vibrates, but the ether. The coupling between the
atom and the ether is, as we said, more provisional in the quantum theory
than in the wave theory. The atom gives the ether a certain amount of

energy and moment of momentum. The ether does with this, what its
nature compels it to do, namely, it transforms these amounts into vibra
tions of a definite state of polarisation. The coupling is of an integral
kind, not of a differential kind that determines the infinitesimal elements
of.the process of vibration.
Is this state of the theory only transitory, or does it denote an actual

advantage of the quantum theory? A theory should, indeed, determine
the observable phenomena, but must not over-determine them. There
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are in the spherical wave, as we saw, only a definite number of deter

mining elements or factors. Consequently a definite number of deter

mining equations also sufifices. Our integral equations of coupling for
the energy and the moment of momentum do not, indeed, furnish a
suflicient number of such equations. But they determine several essential
factors of the ether vibration and allow the atom on the one side, and
the ether on the other, the necessary freedom to behave in their appro
priate manners, respectively, that is so that the atom suffers changes in

stationary electronic orbits, and the ether undergoes vibrations. Of
course, from the moment new empirical factors occur which do not fit

into the scheme of the spherical wave with its finite numbers of para
meters, effects such as one-sided emission or similar phenomena, the

theory must at once give up its general standpoint and must adopt new
and cautious hypotheses, also, for example, about the nature of the
transition from the initial to the final orbit.

3'2. Principle of Selection and Rule of Polarisation

In the preceding section we quoted the moment of momentum of the
radiation of a spherical wave and we have derived it in Note 9. It was

VV 2a-b sin y
N-=2?;?2+bZ . . . .

where W is the energy of the spherical wave; as we have to set the latter
quantity equal to hv, we get

i 2 b
_

1. a Sln

N=2+;?JF3rT7 - - - - <2)

where a, b, and -y denote amplitudes of vibration and the phase difference
of two mutually perpendicular directions in the plane which is at right
angles to the axis of N (“vibration plane "). Herein that which vibrates is
not the atom nor an electron in the atom, but the electromagnetic field
in the ether, which we described by means of a vector potential in Note 9.
The moment of momentum of the radiation must be equal to the

change which the moment of momentum of the atom undergoes during
the transition from its initial to its final configuration. The atom is a
closed mechanical system in which only internal forces act. Conse

quently the law of sectorial areas holds for each of its stationary forms
of motion; that is, the moment of momentum of the whole system re
mains constant during the motion ; there is a so-called invariable plane,
whose normal is the axis of the moment of momentum. As in the case
of the hydrogen atom this total moment of momentum p is fixed in terms
of whole numbers by the quantum condition of the rotator 21rp = nh.
Thus the change of the moment of momentum Ap is connected with the
change An of the azimuthal quantum number by the equation

A11= £rAn
. . . . . (3)
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By equating (2) and (3), it accordingly follows that

_2ab sin 7

This equation holds with respect to both magnitude and direction.
The numerical value of the right-hand sizie of eqn. (4) is less than or at

most as great as 1. We have actually, since (a — b)2 > O:
a2 + b2> 2ab . . . (5)

so much the more is
a2 + bi > 2ab sin 7 . . (5a)

In place of this inequality we have the equality

a2 + b2 = i 2ab sin 7 . . . . (5b)

only in the (case a = b, and sin 7 = i 1, that is, 7 = i 11-/2. In this
particular case the right-hand side of (4) becomes equal to i 1. Hence the
absolute value of the left-hand side of (4) is, at the most, equal to 1 :

|Anl§1. . . . . (6)

We first assume that the plane of the moment of momentum in the
atom (the invariable plane) is the same before and after the transition.
The vector p of the moment of momentum which is perpendicular to this
plane has therefore the same direction before and after the transition.
Its change Ap islequal to the algebraic difierence of the two similarly
directed vectors 1),, and 1),. Just like Ap, An is calculated from the
algebraic difference of the two integral quantum numbers n,, and n,, and
is thus itself also necessarily integral.
There are only three integers whose absolute value is not greater than

1, namely, the numbers

An=+1, An=O, ,An=-1.
In the cases An = 1 1, eqn. (5b) holds; the corresponding values of a,
b, and 7 are fully determined and already given by eqn. (5b). In the
case An = O, the numerator of the right-hand side must, by eqn. (4),
vanish. From this it follows that we must have either a = O, or b = O,
or sin 7 = O (i.e. 7 = O or 11').
For integral values of An we thus have three possibilities :

+1a=band7=+1r/2
An={

0a=Oorb=0or7=0,i.e.1i-=0 . (7)
—la=band7=—-rr/2.

According to the remarks on pages 261 and 262 of the previous para
graph the emitted light is left-circularly and right-circularly polarised
respectively in the first and third cases, but linearly polarised in the
second case.

In this way, by a remarkably rigorous process of deduction, reminis
cent of the incontrovertable logic of numerical calculation, we have
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arrived from the principle of the conservation of moment of momentum
at a principle of selection and a rule of polarisation.
The principle of selection states: the azimuthal quantum number

can at the most alter only by one unit at a time in changes of configuration

of the atom.
The rule of polarisation demands that if the azimuthal quantum

number alters by i 1, the light is circularly polarised; if the quantum
number remains constant, the light is linearly polarised.
The principle of selection and the rule of polarisation, as well as the

present method of deducing them are due to A. Rubinowicz.*
In the case of circular polarisation (An = j 1) there is a unique

direction of the ray (normal to the vibration plane, axis of the moment
of momentum in the ether) in which the polarisation appears circular,

whereas in the gradually inclining directions of the ray it appears as
more or less elliptic and finally linear. This unique axis of polarisation,
too, is fixed by our argument. For eqn. (4) holds, as we said, not only as
regards quantity but also as regards direction. On account of the

equality of direction the axis of the moment of
momentum N, that is the axis of the circular

polarisation must coincide with the normal to
the invariable plane of the atom before and after
the transition.
On the other hand, in the case of linear

polarisation (An = 0) the direction of polarisa
tion remains indeterminate; our determining
eqn. (4) assumes the form O = 0 and gives no
clue about the direction. The conclusion which

Fm 75_ at once suggests itself, although it is not inevi
table, that where the direction of polarisation is

thus indeterminate, nothing at all happens, that is that the case An = O
which could theoretically lead to linear polarisation can lead to no emission.

Hitherto we have assumed that the moment of momentum p of the
atom retains its axis during the change of configuration. We shall now
make the more general assumption that this axis, and hence also the
invariable plane of the atom (the orbital plane of the electron in the simple
Kepler motions) changes. Then Ap is to be constructed vectorially from
the moments of momentum p,, and p, before and after the transition, as
shown in Fig. 75. Let 6) be the angle between the axes of the two
moments of momentum before and after the transition. By Pythagoras’
theorem, we get

Ap = ~/pf,-'T11,” — 211,,72, cos -6.

" Bohrsclw Frequenzbedingung mid Erhaltunu] des Impulsmonwnles, Physikal.
Zeitschr., 19, 441 and 465 (1918).
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Moreover, on account of the relationship between p, Ap and n, An, ex

pressed in the figure, we also have

An = + — 2n,,n,, cosW(>") . . . (8)

At the same time, in the triangle formed from p,,p,, and Ap, the one
side Ap is in general, according to Euclid, greater than the difference
between the other two sides p,, and p,, thus

Apgip<I_P¢l

for which, on account of the proportionality between p and n, we may
also write

Angln,,—n,1. . . . . (9)

The sign of equality holds only when the triangle degenerates to a double

straight line, that is ® = O ; this is the case which we have already
considered, namely, in which p,, and p, are in the same direction.
The axis of the moment of momentum N of the spherical wave

coincides with the direction of Ap, as is indicated in the figure. At the
same time the vibration plane SS has been drawn in as a normal plane to
this direction.
According to eqn. (6) we now have

An g 1 _ (10)

and, by (9), still more is
l

|n_, -n,|_§1 . . . . . (11)

Thus our principle of selection still holds exactly as before under the
present general assumption, that is: the azimuthal quantum number can
change by at most one unit during a change of configuration.
In the first and third cases, n,, — n, = 1 1, we also have An = 1 owing

to the following double equation, arising out of (9) and (10) :

In-,,— n,|§An§1

hence we have, as remarked in the case of (9), ® = O. The relative
position of the vectors p, and p, is

,

therefore, actually not shown correctly
in Fig. 75; rather, this figure degenerates into one in which p, and p,.,
Ap and N all have the same direction. We then find ourselves again
confronted with the conditions above considered and our rule o

f polari
sation is also valid unchanged, that is : the light is circularly polarised and
the vibration plane coincides with the invariable plane before and after the
transition.
The position of things is not so simple in the second case n,, — n, = O

,

which is represented in Fig. 76. If we denote the common value of n,,
and n, by n, then, as a result of (8),

An = n — cos ®
) = 2n sin ®/2 . . (12)
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Hence from n,, — n, = O, it does not now follow that An = O. In Fig.
76, the vector N represents the axis of the moment of momentum of the
spherical wave, which coincides with the direction of Ap. The corre
sponding plane of vibration SS is then the plane of symmetry between

p,, and p,. From (10) and (12), we see that half the angle between the
directions of 1),. and 1), is subject to the limitation

. , 1
sin G)/2 g g . . . . (13)

But we further wish to show that we now also return to the case
initially considered in which pa and p, have the same direction, that is,
in which the angle of inclination G) = O. To do this we refer to the

spatial quantising of the orbits, which was treated in the last section of
the preceding chapter. As the spatial quantising could there be carried
out only for Kepler paths, we shall here also speak only of the orbital plane
of a single electron instead of the invariable plane of any arbitrary atomic

system, but we shall finally allow ourselves to extend this result to the

general case.

We certainly have not now, in conformity with our assumption, an

N
H h

external field of force to which we
pa I E, may refer the orientation of the orbital

9/2
Ap- An

g
in plane. In the absence of such a field,

P _n h we shall adopt the standpoint (cer

9
/

° cg? tainly rather risky) that the initial

S

B position of the orbital plane already

Flo. 76.
defines a favoured direction in space.
The normal of the initial orbit then

takes the place of the direction of the lines of force, of which we spoke
in Chapter IV, § 7

, and the equation which formerly determined the
inclination of the orbital plane to the field of force, now applies to the
inclination of the final orbit to the initial orbit. By correspondingly
replacing the former symbol a. for the angle by G), and taking 11,, n._, to
denote the quantum numbers of the final orbit in its orientation with
respect to the initial orbit, we may write the equation referred to thus:

G
)

n,
cos®=1—2sin~22 nl-Fnz, n1+nz=n

_ (14)

From this, it follows

sin”?
= . . (15)

On the other hand, by eqn. (13) :

. . ® 1sin‘

Q § W . . (16)

From (15) and (16) it follows that:

1

§°
|.
.=

u
/\
M
P

=..-l Q3 .1
/\

sq
>
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Now is a proper fraction, and n., is an integer. Hence the only value
n '

of n2 that is possible under these conditions is n2 = 0. But eqn. (14) then
states that

cos®=1, ®=O.

Thus the plane of the _final orbit coincides with that of the initial orbit.
Accordingly, the more general case in which p, and p, are in different
directions reduces to the previous case in which they had the same
direction, and this happens not only for changing quantum numbers
n,, — n,, = f 1, but also for quantum numbers that remain equal, i.e.
n,, — n, = O.

On the whole we have the remarkable result: the invariable plane of
the atomic planetary system (in the simplest Kepler case this is the orbital
plane) remains the same (i

s “inoariable") not only in the case o
f the

stationary motions themselves, but also in the transitions from one such
motion to another. If, in these transitions, the azimuthal quantum
number changes by one unit, the light emitted is circularly polarised. If

the azimuthal quantum number is to remain unaltered, only linear polari
sation can occur ; but since the direction o

f the latter is indeterminate, we
conclude that such transitions are not connected with emission. The general
case o

f elliptic polarisation is suppressed by the quantum conditions (if the
spatial quantising is applied).
In the whole of this section we have spoken solely of such transitions

in the atom as may give rise to monochromatic emission. It is only for
these that the preceding limitations and exclusions hold. Only when we
assumed the coupling between the atom and the ether, did we arrive at
our principle of selection and so forth, and only the combination of the
two postulates that energy and moment of momentum are transferred to
the ether, led to the eqn. (1) on page 264, from which we made our later
inferences. Phenomena that have nothing to do with monochromatic
wave radiation are not subject to the principle of selection. These

include, for example, electronic impacts which throw an atom from its
natural state into an excited state. In such a case we are dealing not
with the combination, atom and ether, but with the combination, atom
and impinging electron. Such occurrences have nothing to do with the

principle of selection.
How far have we got with the experimental proof of these results?
It is evident that in an atom not subject to forces the rule of polarisa

lion eludes experimental proof. In this case every position in space is of
equal value with every other. Hence if the individual occurrence exhibits
polarisation in conformity with the position of the atom, the observable
total phenomena will still appear totally free from polarisation. This
holds for hydrogen as well as for every other atom.
The position is more favourable as regards the rule o
f selection. In
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the case of atoms other than hydrogen, it leads to important restrictions
of the principle of combination, which we shall get to know in the next
section, and thus finds clear expression in the general series scheme of
these atoms. But in the case of the hydrogen spectrum, too, the rule of
selection is accompanied by surprising consequences. The azimuthal

quantum number n can change only into n 1 1. Hence it follows that,
for example, when H3 or H7 are emitted, a circular orb-it can never
transform into a circular orbit. For H3 (4->2) the initial orbit, if it
takes the form of a circle, would have the azimuthal quantum number
nu, = 4, the final orbit the azimuthal number ne = 2. This transition
cannot lead to an emission; the “ether” would not be able to take up
the moment of momentum An = 2. Thus the initial orbit of H5 and
likewise of Hy, H5, . . . must be an elliptic orbit; only in the case
of H, (3->2) can a circular orbit be transformed into a circular orbit.
The final orbit in the cases Ha, H3, . . . may be a circle, but need not
be so. From this we see that the various possible origins, which we
counted up on page 239, for Balmer’s lines, are considerably reduced by
the principle of selection, and that Fig. 67 on page 218, which makes a
circular orbit pass into a circular orbit for all Balmer lines, is incorrect.
The possibility of proving the principle of selection experimentally is

certainly as yet not offered as long as we maintain the standpoint adopted
in the preceding chapter. From that standpoint all possible transitions
coincide in one line and the differentiation between circular and elliptic
orbits seems at first sight impossible. This is different, however, if we

adopt the relativistic standpoint, as we shall do in the final chapter;
in this case each transition corresponds to a different component of a

fine structure, and then it also becomes possible to test the principle of
selection quantitatively by spectroscopic experiments.
But the rule of polarisation and the principle of selection enter fully

into action only when an external field of force is present, as in the Stark
effect and the Zeeman effect. The next section is to serve as an intro
duction to these phenomena.

§3. Emission in a Field of Force. Principle of Correspondence

VVe assume the field of force to be an electric field. On account of the
very small order of magnitude of atomic dimensions we may certainly
regard it as homogeneous. Thus the force has everywhere the same
magnitude and the same direction. \Ve determine the moment of the
force for a fixed point O of the atom, for example, for the nucleus situated
at an arbitrary initial point P, and represent it by a vector (at right
angles to the plane through O, P, and the direction of the lines of force).
The component of this vector in the direction of the lines of force is then
zero. According to mechanics, the moment of the force determines the
change in the moment of momentum; the moment of momentum is here
to be calculated as the sum of the moments of momentum of all the



§3. Emission in a Field of Force 271

particles of mass of the atom with respect to the same point O and is
likewise to be represented by a vector. Its component in the direction
of the lines of force now remains constant on account of the vanishing
of the corresponding component of the moment of the force, whereas the

perpendicular component in the plane continually changes. Thus the

law of areas holds, in its special form as the law of the conservation of
the sectorial velocity, only for the direction of the lines of force. It is
only for this direction that we have an areal (sectorial) constant.

Consequently, we may demand the conservation of the moment of

momentum during the coupling of the atom with the ether only for this

special direction. This already allows us to see that we can assign to
the components of the moment of momentum that are perpendicular to

the lines of force no definite constant amounts that would be transferred
from the atom to the ether during the process of emission. For these
components change in the atom with the phase of the motion, and hence
their difference in the initial and the final configuration would depend on

that phase of the motion, in which we imagine the initial configuration
to have ceased and the final configuration to have started. But in reality
the process of emission must be definite and free from such arbitrariness.
Hence we conclude that only the constant component of the moment of
momentum in the direction of the force can determine the emission.
This component of the moment of momentum, and not the whole

moment of momentum will now be equal to /nh/211-, according to the
quantum theory. Let n be called the equatorial quantum number. We

take the direction of the lines of force as our 2-axis, and the perpendicular

my-plane will be called the equatorial plane. Our present quantum
number n refers to the circulatory motion in the equatorial plane and
not as before to that in the invariable plane. Accordingly, let N, be the

component, in the direction of the lines of force, of the moment of
momentum of the emitted spherical wave. We take its mode of repre
sentation in terms of the amplitude and phase constants of the spherical
wave from eqn. (23) of Note 9. Since we have now defined our co
ordinate system with reference to the field of force, and not, as before,
with respect to the plane of vibration, three amplitude constants a, b, c,
now occur, of which the third, c, refers to the z-axis, whereas in our
former orientation with respect to the plane of vibration this third

amplitude constant dropped out. Moreover, there occurs in the quoted
eqn. (23) a phase constant y, which denotes the phase difference between
the a-vibration and the b-vibration (the a:- and the y-component). Our

representation of N, now becomes

_ /1
.

2absin-y
’.»‘:-2.;a2+1fi.¢a

" (1)

This z-component of the moment of momentum of the ether must be
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equal to the change in the corresponding component of the atomic
moment of momentum. We thus demand that

N,=lsn. . . . . (2)
21r

where An is the change in our present equatorial quantum number, that

is
,

simply the algebraic difference between its initial value n,, and its final
value n,.

From (1) and (2) it follows that

__ 2ab sin 7An -~Z . . . . (3)

Just as in the previous section we may now conclude: the numerical
value of the right-hand side of (3) is necessarily 5 1

, for, as in eqn. (5)
on page 265,

a“ + b"> 2ab

hence so much the more is

a2 + b
i

+ 02> 2ab sin 7.

Thus the right-hand side of (3) can be equal to i 1 only if simul
taneously

a=b, c=O, sin7= 11.

Accordingly the left-hand side of (3) must necessarily lie between the
limits 1 1. As it is itself an integer, being the difference of two integers,

it can have only the values

An= +1,0, -1.
When An= 1 1, we get

a=b, c=O, sin7= :1.
We have a circularly polarised spherical wave (left or right). Its

vibration plane is the equatorial plane (perpendicular to the direction of
the lines of force), and its unique axis coincides with the direction o

f the

force. The component o
f the vibration in the direction o
f the force,

measured by the amplitude c, vanishes. The vibration ellipse becomes

a vibration circle that is perpendicular to the direction of the force.
When An = 0

, we get, by (3), either a = O
, or b = 0
, or sin 7 = O
.

This suggests the conclusion that only the z-component o
f the vector

potential can be present, that is, that both a = _O and b = O
,

whereas only

c 7
4 O
. To determine this, we set up the following line of argument that

is not, however, inevitable. The polarisation must be fully determined
in this case as in every other. On account of the field of force the z-axis
and the equatorial plane my are uniquely determined, but within this

plane every direction is of no less and no more value than any other. If

a = O and b = 0
, then the y-axis would be favoured as a direction of

vibration as compared with the a:-axis. It b = 0 and a =
4

0
,

the 1'-axis
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would be favoured. If sin y = O, we should have a linear vibration in
the direction of the resultant of the two amplitude vectors a. and b, and
this direction would then be favoured above all other directions of the

equatorial plane. There is no physical reason that this should be so.
But the necessary equality of value (equivalence) of all equatorial
directions is, however, brought about if we set a = b = O, whereby the

eqn. (3) is likewise satisfied for the case An = O. Thus we are left with

only the amplitude of vibration c, which is actually favoured by being in
the direction of the lines of force. The spherical -wave produced is then

linearly polarised and the direction of the force -i
s the axis o
f symmetry o
f

the linear polarisation.
The difference in this result and in the mode of inference compared

with the case in which there is no field of force (p. 267) is to be noted.
In the latter case, the vibration vector (a, b) lay in the orbital plane (in
variable plane) of the atom ; in accordance with the definition there was
no c component perpendicular to this plane. The equivalence of all

directions within this plane therefore led to the conclusion: a = b

= c = 0
,

that is to no emission. In the present case, on the other hand,
the c-component is favoured by being in the direction of the lines of
force. Our corresponding conclusion is here, therefore, a = b = O

,

c 7
4 O
,

that is, linear pola-risation along the z-axis.
Moreover, whereas in the case in which no forces were present, we

could prove that the orbital plane (or the invariable plane, respectively)
was preserved during the transition from the initial to the final state,
there is no question of this in the present case. Under the influence of
an electric field the orbit of the hydrogen electron is not plane, and a
more general type of atom has no invariable plane. But even under the
influence of a magnetic field, in which we can, in a certain sense (cf. § 6)

speak of a plane orbit of the hydrogen electron, this plane is not pre
served in the transition.

Summing up, then, we may say that also in the presence of an ex
ternal field of force the rule o

f polarisation and the principle o
f selection

is confirmed provided the appropriate changes are introduced which are

given by the existence of a unique direction of the force. The rule o
f

polarisation states that the axis of symmetry of the linear or the unique
axis of the circular polarisation, respectively, now coincide with the
direction of the force, whereas, earlier, the same axes were only relatively
orientated to the state of motion of atom, but could have any arbitrary
position in space. The principle o

f selection now refers simply to the

equatorial quantum number, which is associated with the component of
the moment of momentum of the atom in the direction of the lines of
force, just as earlier the azimuthal quantum number was allocated to the
whole moment of momentum.
Through the restriction to one direction o

f the components the eject o
f

the principle o
f selection is clearly weakened. This is seen very simply if

18
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the assumptions are as in § 7 of Chaper IV (limiting case of a field of force
of intensity zero). There the azimuthal quantum number n allowed
itself to be resolved into two parts, the equatorial nl and the “latitudinal
quantum number” n2. By merely taking over this resolution and the
consequent change in terminology (n, in place of the previous n for the
equatorial quantum number, and n for the quantum sum nl + n2), we
may say: our principle of selection restricts only n, leaving n2 free.
But through this the limitation of n is partly removed. Instead of

| An |g I in the case without forces, we have now [A111 [é 1, whereas

An = An, + An-2 =

(J
5

(1
)) + An.z.

On account of the freedom of A112, An, too, is now capable of assuming
also values above 1 (or below

— 1
,

respectively).

We apply this to an actual case b
y

passing from the field with a
definite direction of the lines of force, as hitherto considered, to a field in
which the direction of the lines of force are unknown and change from
atom to atom.

Electrically such a field is realised by a discharge tube of high current

density. Free charges occur in it which produce spherical fields of force

distributed arbitrarily. Different atoms are then under the influence of
forces which differ in direction, and one and the same atom is subject

to forces that vary with the time.
In this case the component of the moment of momentum in the

direction of the lines of force and the corresponding equatorial quantum
number are not observable since the direction of the lines of force is not
defined. Only this equatorial quantum number, however, is restricted by
the principle of selection. In the case of the azimuthal quantum num
ber, which is alone observable, the principle of selection does not come
into effect. So we arrive at the following conclusion which has been ex

cellently confirmed by experiment (cf., for example, § 2 of the next

chapter): when the electric cm"re-nt density -in the (l'isch,arge tube is high
the principle o

f select-ion is rescinded.
What we have said here about electric force (in a definite direction)
will also be applied to magnetic force, but with certain alterations of the
argument, for which we refer to 5‘ 6 of this chapter.
Finally we have yet to speak of ideas of quite a different type, by

which Bohr has arrived at the same results as ours in his latest re
searches,* and has, indeed, partly gone considerably beyond them. Bohr
has set up a general “Principle of Correspondence between the \/Vave
Theory and the Quantum Theory

" which is added to the quantum

theory as something foreign to its nature. We sketch it here for only
the simplest case of purely periodic orbits; we give its general formula
tion in Note 10.

"
Kopenhagener Akademie, 1918 (so far, Parts 1 and 2 have appeared).
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In a mechanical system that periodically executes a cycle there
belong to the stationary orbits of infinitely great quantum numbers a

rotation number (“ Umlaufzahl") that agrees with the vibration number

(frequency) calculated according to the quantum theory for the transition
of the electron from one such stationary path to a neighbouring path (cf.
Note 10, in which the proof is straightway given for the general case of
a conditionally periodic system). Since, according to classical electro

dynamics, the rotation number of an electron coincides with the vibration
number of the light-wave which it emits, we may say that in the region
of infinitely great quantum numbers, the vibration frequencies coincide
in the classical and the quantum theory. Moreover, since in atomic

systems of the Bohr type the rotation ‘number decreases to zero as the
quantum number increases, this is in harmony with the theory of heat
radiation for which, likewise, in the region of infinitely slow vibrations
the results of the classical theory are confirmed by the quantum theory
as well as by experiment. But the classical theory makes definite state
ments not only about the frequency but also about the polarisation and
the intensity of the emitted vibrations. \Ve can raise no objection, in
the light of what we have just said, to regarding these statements as

trustworthy, too, in the region of infinitely slow vibrations. Now, Bohr
extends these statements, by extrapolation, to the region of rapid vibra
tions, too, that is he passes from infinitely great to finite quantum num
bers. The justification for this can be found only by agreement with

experiment. And experiment does, indeed, give convincing evidence in
favour of Bohr's extrapolation. For Bohr derives by this means not
only the rule of polarisation and the principle of selection as well as their
non-validity for cases in which external forces are superimposed, but he
and his pupil Kramers.* respectively, also find that when the intensity
of the spectral lines is determined in the above way the results agree
remarkably well with experiment.
Our object in the above discussion was the reverse of Bohr's. In

leaving incomplete our process of finding the determining elements, in
the wave theory, of the process of emission, we wished to fit wave theory
and quantum theory together according to the immediately evident
maxim of the conservation of energy and momentum and to prove that
the conception of two views are compatible with each other. On the
other hand, Bohr has discovered in his princ~i_72le of correspondence a
magic wand (which he himself calls a

“ formal " principle), which allows
us immediately to make use of the results of the classical wave theory in
the quantum theoiy. For the rest, in his discussion of the results, he
also refers to the conservation of the moment of momentum, as a
possible means of explanation, quite independently of, although simul
taneously with, Rubinowicz. It is a source of satisfaction that Bohr's

" H. A. Kramers, “ Intensities of Spectral Lines," Kopenhagener Al-iademie, 1919,
p. 287.
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method and our own, in spite of their opposite starting-points, agree in
their essential results.

Hereby Bohr’s method is not only of greater consequence in the

question of intensity, but also leads to sharper and more definite results
as regards the question of polarisation. Whereas we, in the case An = O

(cf. pp. 266 and 272), attained our object only as a result of plausible re
flections, the principle of correspondence comes to its decisions by un

ambiguous analytical criteria, namely, that in the case in which forces are
absent the radiation is absent, and that when there is a field of force
there is linear polarisation in the direction of the lines of force (details
in Note 10).
In the matter of method the principle of correspondence has the great

advantage that it postulates that Maxwell's theory be generally valid for

long waves (Hertzian vibrations of wireless telegraphy), and that it does
not throw overboard the many useful results, which the classical theory

gives for optical waves and Rontgen rays, but makes fundamental use
of them. From this point of view the quantum theory seems, as Bohr
has several times emphasised, not to deny the classical wave theory but

systematically to extend it.
We have to recognise the complete superiority of the principle of

correspondence in the matter of atomic models. For here Bohr seems
to have succeeded (cf. pp. 59 and 109), by using classical mechanics and

electrodynamics, in arriving at definite statements about the periodic
system and the atomic shells, which would have been inaccessible by any
other route.

§ 4. The Orbits of the Hydrogen Electron in the Stark Effect

The influence of the electric field on the emission of the Balmer lines
was discovered by J. Stark* in 1913 and was examined by him in the
succeeding years experimentally in an exemplary fashion as far as all the
details of the fine-structure ‘l and polarisation, not only for hydrogen, but
for a series of other elements, He, Li, etc. It was a happy coincidence
that in the same year, 1913, Bohr's spectral th ory was proposed and
was elaborated far enough to be able to grapple with the problem of the
electrical resolution of hydrogen lines. The solution of the problem
was obtained simultaneously and along essentially similar lines by K.
Schwarzschild I and P. Epstein§ in 1916. Whereas the classical theory
failed completely, the quantum theory yielded all the many details of
Stark’s observations of the fine-structure in such complete coincidence

* Berliner Sitzungsben, Nov., 1913; Ann. d. Phys., 43, 965 and 983 (1914). A
summary has been given by J. Stark, Elektrische Spektralanalysc. Leipzig (Hirzel),
1914.

'

+Gottinger Nachr., Nov., 1914.IK, Schwarzschild, Zur Quantentheorie, Berliner Sitzungsben, April, 1916, pub
lished on 11th May, the day of Schwarzschild’s death.
5P. S. Epstein, Zur Thcoric des Starkeflekles, Ann. d. Phys., 50, 498, (1916).
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with experiment that it was no longer possible to doubt the correctness

and unambiguity of the solution found.
We shall just shortly remark on the experimental difliculties of the

problem. The object was to subject hydrogen atoms during their emis

sion to a powerful electric field of, say, 100,000 volts per cm. This was

not possible with the ordinary arrangement of the Geissler tube, in which

the hydrogen lines are usually produced. Geissler tubes are compara

tively good conductors; an electric field in it simply collapses. Stark,

therefore, used in place of the Geissler tube the luminescence of a canal

ray tube in a layer directly behind the perforated cathode. By using an
oppositely charged electrode placed parallel and close to the cathode, he

was able to generate a uniform and measurable electric field in a space
of a few millimeters. The shortness of the space between the electrodes

of this additional field not only favours the production of the resulting

great potential drop but also prevents (in accordance with the peculiar
laws of the production of the dark space in discharge tubes) the occur

rence of a spontaneous discharge between the electrodes. "lhe potential
difference is great enough to influence effectively the canal-ray ions that

fly through the perforated cathode in the usual way and to distort per

ceptibly’the elec‘ronic orbits which are being traversed in them.
In contradistinction to Stark, Lo Surdo* uses as a means of influenc

ing the phenomenon of luminescence no additional field but the field of

the discharge tube itself, and, indeed, the part within the dark space of

the cathode. Thus his method sacrifices quantitative definiteness and

homogeneity of field but offers special advantages for the purpose of

qualitative observations.
The general experimental results of Stark and Lo Surdo, respectively,

were :

1. Every Balmer line becomes split up into a number of components.
2. The number of components increases with the series number of the

line.
3. The components are linearly polarised when viewed transoersally

(transverse etfect), being polarised partly parallel to the field (p-compon

ents) and partly perpendicularly to it (s-components).
We must then first define clearly what these terms usually signify.

In the case of the p-components the direction of the electric vibration in
the light ray at the point of observation is parallel to the lines of force
of the external field; in that of the s-components, the direction of the
electric vibration is perpendicular to these lines of force. Thus it is not
the position of the optical plane of polarisation, as shown by a Nicol's

prism, that is to serve to distinguish “p " and “ s." Since, as we know,
the plane of polarisation in the light ray is perpendicular to the direction
of electrical vibration (or, what is the same, it passes through the plane of

magnetic vibration), we should have to transpose the terms p and s if we

" Accad. dei Lincei, 23, 83, 117, 143, 252, 826 (1914).
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judged them according to the plane of polarisation. The use of the
words “ parallel

"
and “ perpendicular," as here applied, arose historically

out of the ideas of the classical wave theory. If we imagine a vibrating
electron to be added to the place at which the emitting atom is situated,
then the wave emitted by this electron would have, according to the
classical view, a direction of electric vibration that would have the same
direction as the component of acceleration of the electron (i2,, in Fig. 7)
that is effective in the direction of emission in question. The p- and the

s-components thus arise, in classical language, from vibrations of an ex
citing electron, which take place parallel or perpendicularly to the line
of force of the external field.

4. When viewed longitudinally (longitudinal effect) the p-components
are invisible and the s-components are unpolarised.
5. The intense p-components in general lie on the outside, and the

intense s-components on the inside.

6. In the case of hydrogen the resolution and the polarisation are
distributed symmetrically on both sides of the original line, but in the
case of other atoms, the distribution is largely unsymmetrical.
7. The distances of the components from the centre are, in the case

of hydrogen, whole multiplies of a certain smallest distance between the
lines, and indeed, measured in the scale of vibration numbers, there is
the same line-interval for the various hydrogen lines.
8. The resolution (in particular, this smallest line-interval) increases

proportionally with the field.
We have already formed in Chapter IV, page 237, a general theoretical

idea of the cause of the Stark effect. We spoke there of the various

possible ways in which one and the same Balmer line may be produced
by circular or elliptic orbits with the same quantum sum. These various
modes of origin certainly coincide in one line if no external field of force
is present (and if

,

see Chap. VIII, § 3, we leave out of consideration the
relativistic fine-structure). But they become separated if a powerful
electric field is imposed.

Thus the Stark e_/feet denotes the artificial separation o
f the carious

possible modes o
f production, which originally coincided in a Ballmcr line,

o
f the initial and the final o_rbit, this separation being ejfected by the appli

cation o
f an external electric field. And, owing to the spatial position of

the orbits, the composition of the same quantum sum out of three quantum
numbers n,, n2, and n3 i

s involved. This is easily understood from the
fact that the effect of the electric field on the orbits of the hydrogen
electron will be found to depend not only on the shape and size (two
quantum numbers) but also on the spatial position of the orbit with

respect to the electric lines of force (third quantum number). These
orbits are in the electric field, no longer, of course, circular and elliptic
but are more complicated curves. Our object is to select from the totality
of mechanically possible orbits those that are distinguished in the light
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of the quantum theory by choosing three appropriate quantum numbers

nl, n2, n3, and by representing the orbital energy as a function of these

quantum numbers. To each such quantum triplet 11,, n2, n3, in the initial
and the final orbit there corresponds in general a different component in
the Stark fine-structure. The increasing number of components in the
series of lines I-1,, H5, Hy, . . . becomes immediately intelligible from
this. As the quantum sum of the initial orbit gradually increases, the
number of the quantum triplets into which this sum may be resolved
also increases, and, in harmony with this number, the number of compon
ents of the corresponding picture of resolution in the Stark effect increases.
We now consider the mechanical problem: how does an electron

move when under the influence of a fixed nuclear charge E (in the case
of the hydrogen atom this E = e) and under the simultaneous action of
an external homogeneous electric field of force of the intensity F? This
problem is contained in the more general one: how does a point-mass
move when under the influence of two arbitrary and arbitrarily placed
fixed (N ewton-Coulomb) centres of attrac- .

tion? The appropriate co-ordinates for the
treatment of this general problem are (accord- 0118*

ing to Jacobi) the parameters of the families of
confocal ellipses and hyperbolas that are de

scribed about the two centres as foci, together '

with the angle counted from the line connect

ing the centres. If one of the centres is taken
ofl' to infinity whilst its attractive power corre

spondingly increases, the general problem re
duces to our special one; at the same time the

systems of confocal ellipses and hyperbola-3 re

solve into two families of confocal parabolas of which the second fixed
centre, the nucleus, is the focus, and the field direction through it is the
common axis. We call the parameters of these two parabolic systems
5 and 1;. They, together with the angle Ill counted from the direction
of the axis, are the co-ordinates which we shall have to use in our special
problem.
In Fig. 77, O represents the nucleus, as the direction of the lines of

force. The parabolas 5 = const., 1
; = const., respectively have the

equations:
'

ZTi+2.r=§2,
-2¢=1,=*. . . (1)

For each point P (.21, y) of the plane we calculate by means of these
equations the para 1 eters E

,
1
; of the two parabolas which intersect at P.

These two parameters may serve in place of ac, y to define the point P,

and hence also to determine the position of the electron within the plane
of the diagram (“ meridian plane "). To fix the position in space we use

as the third co-ordinate the angle it that the meridian plane which passes

IIIr

Fro. '77.

3
*]
‘fi
re
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through the position of the electron at the moment in question makes

with an arbitrary fixed meridian plane.
In the figure the lengths OP = r and PP’ = (ls are also drawn. The

potential and kinetic energies of the electron are calculated from them.

We show how these expressions are derived, and also how the parabolic
co-ordinates are naturally introduced that lead to the eqns. (1) in Note 11

at the end of the book: here we write down at once the expression W

for the total energy. In forming this expression as a function of the
co-ordinates of position 5, 1;, it and of the corresponding momentum
co-ordinates p;,p,,, pp we call it Hamilton's function H (cf. Chap. IV,

§ 1, p. 194) :

1 ,, _ 1 1

2,,,(§-z _|_ ,7-1) {
P
5 + P
i: + +

.,F>Pz,

- 4'm.eE + meF(E4 —

1
%
)} (2)

2‘ ll III ll

The relationship between the momentum co-ordinates p and the velocity

co-ordinates 5:17, is given by the first triplet of Hamilton’s equations,
of eqn. (4) on page 194:

‘E = DIE = _ 11: dv =
DH"
= ___r-, ‘ht =

DH = __1'\P
(3)d‘ 511: mt?‘ + 11”)’ dl 51'» ’"($” + 11”)’ '1‘ am m$”’7”

The second triplet of Hamilton's equations then states how the p's alter

dynamically:

dB_ “H %_ “E ‘l15~__°E_0 4(lt__5é’dl__D1]'(ll_ a./,"' U
The last of these equations shows that pt, is a constant. This is nothing
new to us for we saw on page 271 that in a homogeneous electric field
the moment of momentum about the direction of the lines of force (even
when the atom has a complex configuration) must be constant; accord

ingly, py, is the “ equatorial" areal constant.
The first two eqns. (4) are, if we replace H by the constant value VV

which it has after the differentiation has been performed :

4?: _ 1 Pl
W _ mg, + 17,){2mEW + E,

-
2m¢F;i})

(5)dp _ 1 p
f,

-IT"
- ff?+ 1'2) {2mr]VV + 7
7
,; +

2meF1,:sH

If we divide these two equations by the first two eqns. of (3) respectively,
the differentiation with respect to t drops out in accordancewith the
scheme :

it is M. ‘Ia
dt d5’ dt dq

IN
»

ll

5
~
“l
§"

ll
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and we get
d, 2

]>;dl£:‘=
2mVVf + — 2meF£3

(6)
ct ’ '

11,,(g
= 2m.W1; +

1
1
%+ 2meF1;3

It is worthy of note that the right-hand members of (6) are pure
functions of § and 1;. We may therefore integrate and thus get pg’ as a

function of $2 and p
,§ as a function of 17":

9

]1g= ~//Ros)", where f,(g) = 2ntW.f2 _ 1“ meFf_ 4 + C

£
2 1

t - (7)

P»
= ~/f2(1/), wheref-1(1)) = Qmwv’ —

‘3l‘+
MF11‘ + C

t}

C
1 and C
2 are constants of integration. They become reduced to only

one constant since 115,11,’ must satisfy the equation of energy (2). For

if we insert p§ + p
f, =f, +f2 from (7) into (2), it follows that C
,

+ C
.) =

4meE. Thus we may set

C
, = 2m(eE — B), C
2 = 2m(eE + B) . . (7a)

where ,8 is now the arbitrary solely remaining constant of integration.
Eqns. (7) are derived a little more shortly and less artificially by the
method o

f separation o
f variables in Note 11.

The essential result of our treatment so far is: the parabolic co
ordinates o

f momentum are square roots o
f simple rational functions o
f

the parabolic co-ordinates o
f position.

From this theorem a general inference may be drawn, without further
calculation, concerning the form of the orbital curves. Firstly, we see
from (7) that during the motion f is limited to values for which fl > O

,

since pa must be real. Hence the extreme values that 5 may assume are

the roots of f,(£) = O
.

We denote them by £,,,,-,, and f,,,,,,. In the case

F = O
, for which f, = O becomes a quadratic equation in 5", there are

only two positive roots. In the case F 74 O a third root comes from
infinity but it does not come into consideration for us; thus we take
$,,,,-,, and §,,,,,, to denote those two roots that proceed by continuous

development from those of the case F = O
.

We next show that in the course of the motion E increases continually
from 5,,"-,, to §,,,a,. For if 5 were to alter the sense of its progressive
increase, we should have to have = O

.

But then, by (3), 1); = O
. By

(7), however, p; cannot vanish if fl = O
,

that is if 5 = £,,u,,, or 5,,"-,,. Thus

E changes the sense of its progressive increase when it starts from

5 = £,,,;,,, for the first time at the point E = £,,,,,,. Whereas hitherto

p;>O, from now on, the negative sign of the square root holds; when

p;<0, we have, by (3), {5<O.
The decrease of E now continues until .5 = 5,,“-,, and then passes over

into a phase of increase, and so forth. We see that, in the motion 5 is
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confined to the region between fm,-,1and Em, and continually traverses this
in alternate senses. The same holds for 17. Here, too, the roots 1],,“-,1and
1;,,,,,, of f2(17) =0 form the reversion points or “librationlimits" (L-ibrati0ns
grenzen) for the progress of the -q-co-ordinate. At the same time we have
in this behaviour of E and 1; a typical example of the general course of
motion in the case of all “conditionally periodic systems" (cf. Note 7,
No. 2). The continuous libration of the co-ordinates is proved in the

general case just as in our special case.
The main features of the form of the orbits in the Stark effect are

now exposed. In Fig. 78 we exhibit the curved quadrangle which is
formed by the parabolas 5 = Em,-,., 5 = $,,,,,,, 1; = 17,,"-,,,and 1; = 1;,,,,,,.
The orbital cnrve is enclosed within these limits ; it alternately touches a

5- and an 1;-limit, and in the course of time closely covers the whole of the
curved quadrangle. Our figure exhibits the conditions only in the
meridian plane, that is, in a plane

ll! = const. Besides the motion in
this plane a rotation of the plane in

space about the direction of the lines
of force takes place in which the
moment of momentum pq, is constant.

By eqn. (3), there corresponds to it a
quantity, the rotational velocity, ill

,

which is variable within certain limits.

Hereby the plane orbital curve shown
in the figure becomes a spatial orbital
curve which continually circles round
the direction o

f the lines o
f

force.
Only in the special case pt, = O

,

in which also = O
,

the meridian Fm 73_
plane remains at rest; the electron
then describes a plane orbital curve in it. From the expression (7) for fl,

it
. follows that when p¢=O one of the roots of fl = 0 vanishes. For if

we multiply throughout by the denominator $2, we get

E*(2mW§2 — meFf4 + C1) = p

X

e
n
:

thus
$,,,,-,,= O when 11.1,= O

and likewise it follows that

1],,“-,,= O when pt, = O
.

But by Fig. 77, E = O and 1; = 0 respectively denote double the negative
or the positive :0-axis. Instead of the point of contact of the bounding
parabolas §,,,,-,, and 1],,"-,, in Fig. 78, there then occurs an intersection of
the a:-axis on both sides of the nucleus. The orbital curve then assumes
the form of Fig. 79.
Just as the Orbital curve in Fig. 78 everywhere closely filled the



§4. Orbits of the Hydrogen Electron in the Stark Effect 283

whole curved quadrangle between the bounding parabolas Em,-,,, €,,u,,,
-4,,“-,,,1;,,,,,,,, or the whole ring region, in a spatial sense, between the corre
sponding paraboloids, so also the whole curved two-sided space between
the bounding parabolas is everywhere closely occupied in the course of
the motion by our plane curve in Fig. 79. From this it follows that our
electron must finally, some time .

or other, collide with the nucleus.
X: "=7,

I11"

The special case 11¢ = 0 in the _
Stark effect is thus analogous to '\‘» {=5
the special case of an ellipse y ’ m“

that degenerates into a double /straight line in the case of the /
Kepler motion (cf. the dotted
lines in Figs. 71A, B, c, D). We
shall draw here the same infer
ence as in the Kepler case,

namely, that this orbit which
lies in the meridian plane and which collides with the nucleus cannot
exist as a stationary state of motion and is to be excluded from the series
of quantum states.
Now that we have discussed the essential features of the mechanical

aspect of the problem, we turn to the quantum aspect. It is clear that
we shall have to apply the quantum conditions to our co-ordinates 5, 1;, 1/

/.

Taking n1, n2, n3 to denote integers, we then postulate

Fro. 79.

Zlr

qgpgdf
= nlh,

fi~i]),,d1)
= n2h, jlpclbll

= nah - (5)

0

we call na the equatorial quantum number. The integration with respect
to ip is to be taken over all positions ip of the meridian plane from 0 to

211'. Since p4, is constant, we get

I

21rp,,, = 11311., 11¢,= 7132; . . . (9)

n3 may assume all integral positive values except zero. We exclude zero
on the ground of the collision between the electron and the nucleus con
sidered above.

Let n, and n2 be called parabolic quantum numbers. The integration
with respect to § and 17 refers to the whole of the region of values of these
variables, that is, in the case of E, from f,,,,-,, to §,,,,,, and back to 5,“,-,,, and
correspondingly for 1;. In eqns. (8)<this closed integration path is denoted
by the sign Q. It may also be replaced by twice the one way from
f,,,,-,, to §,,,,,,, or from -q,,,,;nto 17,,“ respectively. But it is better to take full

advantage of these simplifications that result fi om the circumstance that
the path of integration is closed. This occurs in Note 6 in sub-section f.

nl and nz may assume all positive integral values including zero. The
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case n, = O denotes that the integration path in the first integral (8)
shrinks to the length zero, that is, that $,,,,-,,= §,,,,,_.,,. In this case the
eqn. fl = O has two equal roots. The two bounding parabolas f = Em,-.,
and 5 = .f,,,,,,, in Fig. 73 merge into one and the orbital curve runs to and

fro on this bounding parabola between the limits 1;,,,,;,,and 1;,,m. Con

sidered spatially, it then lies on a paraboloid of revolution, of which it

everywhere completely covers a portion enclosed between two parallel
circles. The same is true for n2 = O, in which 1;,,,,-,,becomes equal to

1;,,,,,,. Since these paraboloidal orbital curves always remain at a finite

distance from the nucleus during the whole course of the motion, there

is no reason for excluding them from the family of stationary curves.

The case n, = 11.,= O also belongs to the possible stationary orbits.

It is characterised by two pairs of coincident roots: £,,.,-,, = $,,,,,,, and
simultaneously, 1;,,,,~,,= ~q,,,,,,,. The curved quadrangle of Fig 78 contracts
into a point and the orbit consists, regarded spatially, of a circle that is

described about the direction of the lines of force. Its centre does not,
however, coincide, as in the case in which no forces are present, with
the nucleus, but is displaced towards the side of the negative lines of

force (negative .1‘-axis), as we see at once, if we inquire into the equi
librium between the action of the nucleus and the external field of force.
In particular, there belongs to this simplest circular type of orbit the
unexcited natural 0-rbit of the hydrogen atom (for which the quantum
sum = 1) in the electric field. For if we are to have n, + 11.,+ n3 = 1,
then, on account of n3> 0, it follows of necessity that nl = n2 = O.
The totality of quantised orbits thus forms a triply infinite discon

tinuous group and is represented by the scheme of quantum numbers

n,=0,1,2..., n2=O,1,2..., n3=l,2,3...
In the limiting case F = O of a vanishing field each member of the

group becomes a, Kepler ellipse with the nucleus as a focus. We might
be led to suppose that in this limiting case our present group merges
into the triply infinite group which resulted from spatial quantising in

Chapter IV, §7, and which was represented by the scheme
n'=O,1,2..., -nz=O,1,2..., 'n.=1,2,...

But this is not so. Our present quantum numbers have a different
meaning than the former ones, since they are based on a different co
ordinate system. Accordingly, also the position and the shape of the

Kepler ellipses will now be different. We discuss this further in the
final section of this chapter. In mathematical language, the ambiguity
of this result is due to the fact that in the Kepler motion we are dealing
with a d0_r/enerate problem (cf. p. 241). As in such a case there are
several possible choices of co-ordinates, so there will be several different
results of quantising. But from the physical point of view no ambig
uity is admissible. Only one o[ our two methods of quantising can be
physically true,

-- &___.__.
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The following circumstance decides which of these two it is. The
Kepler motion without external forces is a degenerate problem only so
long as we consider it from the physically insulficient view-point of
classical mechanics. From the relativistic view there is, at least for the
plane problem, no ambiguity. On the other hand our treatment of the
Stark effect in parabolic co-ordinates is possible only when we start from
classical mechanics. That is, our quantising of the Stark effect holds

only so long as classical mechanics is applicable. This is the case with
strong electric fields but not with arbitrarily weak fields. Whether a
field is to be regarded as strong or weak in this sense may be most

simply determined as follows. Let Av, be the resolution that an electric
field F effects in a Balmer line. Let Av", on the other hand, be the
natural doublet interval of the Balmer lines (cf. p. 209) which is ac
counted for by relativistic mechanics. If A1/,,<Av,,, the field is called
weak ; if A:/F>Av,,, as is always the case when observations of the Stark
effect are made, the field is to be called strong. In the latter case the
quantising performed in this section is correct, in the former case it
fails. The passage to the limit for the field zero is thus not allowable.
In physical language, therefore, the present method of quantising the
Kepler motion for the case when no external forces are acting is wrong,
but the method of the preceding chapter remains true.
The question, interesting as regards method but difiicult, as to how

we are to quantise in the case of very weak electric fields has been
answered quite definitely by H. A. Kramers.* As it is of no account for
the interpretation of the Stark effect, after what we have just said, we
shall not discuss it. But in speaking of the Paschen-Back effect in

Chapter VIII, § 7, we shall again have to refer to it.
In saying above that when we quantise Kepler's problem in parabolic

co-ordinates different ellipses result than when we quantise in polar co

ordinates, this difference affects the shape, but not the energy of the orbits.

As we shall see at the beginning of the next section, the energy comes
out exactly the same by each method so long as the quantum sum that

enters into it is assumed the same in each. This holds not only for the

present case of Kepler ellipses, but generally for degenerate problems:
as far as the calculation of the energy and the spectral consequences that

result therefrom are concerned, the ambiguity that otherwise attaches to

degenerate systems disappears.

§5. The Resolution of the Balmer Lines in the Stark Effect

If in the first two eqns. (8) of the preceeding section we imagine
and written for pg and p,,, only two unknowns occur in the

left sides of (8), namely, the energy constant W and the integration con

" Zeitschr. f. Phys., 3, 199 (1920).
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stant B. These two constants are, by eqn. (8), brought into relation with

the two quantum numbers nl and n2 and may each be calculated separately
from these. Since pq, also occurs in the expressions for fl and f2, and
since, by (9), 11¢,is proportional to n3, the expressions that we are seeking
for W and ,8 will depend on all three quantum numbers nl, n2, n3.
What interests us above all is the eacpression for W. \Ve get for it

,

as

shown in Note 11, if we develop our expression in increasing powers of

the intensity of field F and stop at the first power:

2-n-me'lE'1 1 3h'lFT W = hr’ (111+ n2 + n;;)2+ 81r2mE (nz
_ nllml + n2 + na) (1)

The first term on the right denotes the energy of the electron when

the field is free. We designate it by — W0 and may write

_ = RM /_‘?)2_ _ _W0
(n1 + 1112+ -113)’

' ' (2)

P
1

Since we thus get the same value as when we quantise the Kepler motion
free of forces in polar co-ordinates, cf. eqn. (20), p. 236, we have proved
the statement made at the close of the preceding section: in spite of the
difference in the paths the energy is the same in both cases so long as
the quantum sum is the same (n, + nz + n3 = n + n’).
The second term on the right of eqn. (1) denotes the change of energy

in the electrical field. We designate it by — AW and then have

_ AVV —
.3£L2F1(n.z

— n,)(n, + ng + n3) . . (3)
81r fltlii

From the change in energy we may calculate the change in the vibration
number, or the resolution, according to the formula '

tat = AW, _ AW,.

Let the quantum numbers nl, n2, n3 refer to the final state e
, the quantum

numbers kl, kg, ks to the initial state a. Then we find

A” = 3-hFv{(7L1
‘
'”'1)("1 + "2 + nu)

“
(kz
“
k1)(kl + kz + ksll (4)Saintly

I/Va now assert that this eqn. (4) contains the whole o
f the e:rperimental

facts which the 'researches o
f Stark have exposed in the case o
f hydrogen.

Our result is a little more general in that it includes, besides hydrogen,
atoms of the hydrogen type. In the case of hydrogen itself we must set

E = e. Eqn. (4) is of course to be supplemented by the principle o
f

selection and the rule o
f p0la'rt'sation, as was developed in the case of an

electric field in § 3
.

Firstly, we read out of (4) the experimental facts described in 7 and
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8, on page 278: all resolutions of lines Av in the Balmer series are ’ll‘ll0l8
multiples of a smallest line-interval :

0-3"F . . . . .(s)
8-:r‘mE

As the.intensity of field increases, this smallest line-interval and
hence also the whole picture of the resolution of each Balmer line
becomes magnified proportionally to F.
We read the experimental fact 6 on page 265 out of eqn. (4) just as

directly: in the case of each Balmer line the resolution is symmetrical
about the original line. For if the transition

k,k2lc,, —> n,n2n3 . . . . . (6)

is possible according to the principle of selection, then so also is the
transition

kzklka -> 7lznl7L3 . . . . . (6a)

If the former gives rise to a component at a distance Av from the original
line, then, by 4, the latter gives rise to a component at a distance — Av.
The polarisation, too, is the same for each component. For this is
decided only by the equatorial quantum numbers, which are the same
for each pair of transitions such as (6) and (6a).
Concerning the type of the polarisation our rule of polarisation states:

if ks
=
n3
j 1 . . . . . (7)

then (cf. p. 272) a wave is emitted which is circularly polarised around
the direction of the lines of force. In the transverse effect such a wave
appears under all circumstances to be polarised perpendicularly to the

lines of force (in the sense defined more closely on p. 277). In the
longitudinal effect, it would be observed as a circular wave if only one

process of emission were to be seen. In reality each observation re
presents a section through many elementary phenomena. These split
up into two groups, as far as the hydrogen atoms are concerned, which

originally circulate around the lines of force in one or the other direction

respectively. Both directions of circulation are equally frequent and

cannot be distinguished energetically. The same quantum transition
that leads to the right-circular polarisation of the one group leads from
the, so to speak, antipodal standpoint of the other group, to left-circular

polarisation. The superposition of these two groups thus brings it about
that, in the direction of the lines of force, no polarisation is observed.
If, on the other hand,

ks
= n, . . . . . . (8)

the direction of vibration that is unique in the state of polarisation (cf.
p. 273) coincides with the direction of the lines of force. Consequently,
in the transverse effect linear polarisation is obserrerl parallel to the lines
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of force. In the longitudinal effect these same components of the resolu
tion are invisible according to the general rules of wave kinematics, which

does not allow emission at all in the direction of vibration. These de

ductions agree literally with the experimental results which we stated

under 3 and 4 on pages 277 and 278.

We next consider in turn the resolutions of H,,, Hp, H.,, H5, and use

the abbreviation

K = (/52 _ kl)(kl 'l' ks + kalv N = ("2 " '"'il(”'i + "'2 + "ash (9)

A=9;’=N-K. . . . .(10)(J

According to (4) and (5) A denotes the displacement, measured in

terms of the unit measure C, of the component in question compared
with the original line. We set up the totality of possible transitions in a

table and count them up according to the value of the azimuthal quantum
number ks, by letting ha decrease from its respective greatest value to its

smallest value 1. The value ks = O, just like the value n3 = O, is to be
excluded, according to page 283. Furthermore, we classify the transi

tions according to the type of polarisation. In the case of Hm we have

k,+h2+k3=3, n,+n2+n3=2
that is,

K = 3(lc,, — kl), N = 2(n., - nl).
For the parallel components (k3 = n3), the value ks = 3 drops out,

because n3 can have no value greater than 2. We thus begin our

enumeration with ks = 2. \Vhereas the corresponding final orbit is

fully determined, namely O02, there are two initial orbits belonging to

k3
= 2, namely (102) and (O12). The two transitions thus possible,
namely,

102 -> 002 and O12 -> O02

differ, however, like the transitions (6) and (6a) only in that the first
two quantum numbers are interchanged simultaneously and thus give rise
to components that lie symmetrically. In our table we show only the
first of the two transitions which lead to a positive A, and throughout
we imagine the symmetrical components, with a negative A added, that
arise through the simultaneous interchange of the first two quantum
numbers, and we also give the numbers K, N, and A in accordance with

(9) and (10). Then we consider ks = 1 and the corresponding final
orbits with n3 = 1. Here there are three transitions that lead to a

positive A and just as many that belong to an equally great negative A,

which will not be stated in the table. The electrically resolved line H,
thus consists, on both sides, of four components of which the line-in
tervals are to be read out of Table 27.



§5. Resolution of the Balmer Lines in the Stark Effect 289

Hut p-components, ks = na

TABLE 27

l

|

k:,k,k3 -> n1n._,-its K N A

l 102 ._> 002 — 3 0 3
111 ._> 101 0 — 2 2
201 _> 101 — 6 — 2 4
201 -> 011 i - 6 + 2 8

TABLE 28

H1, s-components, ka = n, -f 1

klkzka -> n1n,n3 K N A

*
003 -> O02 0 0 O
102 —:» 101 — 3 -—2 1
102 -—> O11 — 3 + 2 5
201 -> 002 - 6 O 6
111 O02l O O O

Passing on to the perpendicular components, we begin with ha = 3,

n3 = 2, corresponding to the first transition given in Table 28, namely,
O03 ->002; circular orbit->circular orbit (cf. p. 284). Starting from

k3
= 2 and k3 = 1, we get in each case two transitions, as may be read
from the table. The component A = 0 arises in two ways; besides this,
there are three transitions with a positive A, and, of course, just as many
with a negative A. _

We compare with this the result of the observations of Stark. Fig. 80
is a slightly altered copy of Stark's original diagram (re-drawn from the
scale of A)\'s to that of the Av’s). The length of the strokes indicates the

intensity of the resolved components as estimated by Stark. A sign of
interrogation denotes that the existence of the component in question is
uncertain. The accompanying numbers give the resolution (in wave

numbers) as multiples of the fundamental unit C, that is
,

our A.
Here we see that as far as A = 4 the theoretical predictions agree

perfectly with the observations made o
f Ha. For example the places O

and 1 are free of p-components and occupied by s-components, whereas
the reverse is the case with the places 2

,

3
, and 4
, both in theory as in

experiment. It is
,

however, true that the theory gives several components
of greater resolution, 8 as a p-component, and 5 and 6 as an s-component,
which were not shown up in the experiment.
Is this a reason for distrusting the theory? By no means. As we

have left the question of intensities quite out of consideration here, it

signifies little that we do not observe a theoretical component ; for theory
might disclose that the intensity of such a line is very feeble. This is

19
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completely confirmed by the dissertation of Kramers (cf. p. 273) in which
the question of intensity is treated with complete rigour according to
Bohr's principle of correspondence. On the other hand, Stark empha
tically leaves open the possibility, in particular in the case of H,,, that
in addition to the observed components, still other weaker ones may yet
be present.
If, however, a doubt should still remain about H,, it would be re

moved by a look at the complete picture of the resolutions of H5, H7, and

H5. It convinces us absolutely of the truth of the theory.
The following tables require no further explanation. In the case of

the p-components of H5 we have to begin our tabulation again with kg
= 2, on account of k3 = n3 and n3 § 2. There are two transitions from
k3
= 2, and four from k3 = 1, which, according to the principle of selec
tion, lead to p-components on the positive side (A > O). The symmetrical
components on the negative side here again arise by interchanging the
first two quantum numbers in the scheme of transition of the initial and
the final orbit, and are to be imagined added. The number of transitions
that lead to positive (or negative, respectively) s-components is just as

great, namely equal to 6.

TABLE 29

H5, p-comprments, ks = n_,

klkgks -—>nln-._,n3 K N A

202 -—> 002 — 8 0 8
112 -> O02 O 0 0
301 _> 011 - 12 + 2 14

3(_)1 -> 101 - 12 — 2 10
211 _> 101 — 4 + 2 6
211 __> 011 - 4 - 2 2 -

TABLE 30

H3, a-compoownts, It
, = nu i 1

l

klkglru -—>11,,'n,.,11,3 K N A

i
I

103 -—> O02 — 4 0 4

‘ 202 ——>011 — 8 + 2 10

I

202 _> 101 _ s _ 2 6

, 112 _, 011 0 +2 2

211 _> 002 - 4 O 4

1 301 .+ 002 -12 O 12

The agreement with the experimental picture of the resolution in Fig. 80

is again striking. All the theoretical components have been observed;
besides these, however, there are shown, in Fig 80 among the p-compon
ents, A = 4 as a. very weak line and A = 12 as questionable, and among
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the s-components A = O as weak and A = 8 as questionable. It may
very well be that a revision or repetition of these observations will dis
close these components as unreal or produced by a secondary effect.
The s-component, A = 4, which is observed as the most intense line
arises, according to our table, in two ways, and this partly explains its

predominating intensity. For a. more detailed discussion of questions of
intensity we must refer to Krarners.
In the case of H7 the agreement between theory and observation is

absolutely perfect. The theory gives the following picture :-
TABLE 31

Hy, p-components, ks = n3

1 l\.lI\.27\.a-—>n]1z.2n3 K t N A

_ _____ 1 _ ,r__

302 "-> 002 —-15 0 15
212 '-> O02 — 5 0 5
401 —> O11 — 20 + 2 22
401 + 101 — 20 —~2 18
311 —> O11 -—10 + 2 12
311 -—> 101 - 10 - 2 8
221 -—> O11 0 + 2

‘
2

TABLE 32

H7, s-components, ks = n, 1 1

k17r,k3 -—>’nl’!L2’!l'3 K N A

203 "> O02 — 10 0 10
113 '-> O02 0 0 0
302 '-> O11 — 15 + 2 17
30:2 -—> 101 — 15 -—2 13
212 -—> O11 -— 5 + 2 7
212 -—> 101 — 5 ~ 2 3
401 -—> O02 — 20 0 20
311 -—> O02 - 10 0 10
‘Z21 -—> 002 O 0 0

TABLE 38

H5, p-components, ks = n3

‘

7c1lr;,lr3—>11.]'n._,1z3 K N A

‘
402 -> 00:2 — 24 0 24

I 312 —> 002 - 12 0 12
222 -—> 002 0 0 0
501 -—> O11 - 30 + 2 32
501 -—> 101 — 30 -——2 28
411 -—> 011 — 18 + 2 20
411 —> 101 - 18 — 2 16
821 -—> 011 - 6 + 2 8
321 —> 101 - 6 - 2 4
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TABLE 34

Hs, s-components, 7:
,

= 11.3 -
1
;
1

klkgka —>n,n2n, K N

i

A

sos -> 002 _ 18 0 18
213 -> 002 - 6 0 6

402 -> O11 - 24 + 2 26
402 _> 101 — 24 — 2 22
312 ._> 011 - 12 + 2 14
312 __> 101 - 12 — 2 10
222 __, 011 0 +2 2

501 __, 002 - 30 0 so
411 __> 002

— 18 0 18
321 ._, 002 - 6 0 6

The observations, pictured in Fig. 80, are identical in every detail.
The same is true of H5.
The wonderful numerical regularity of the pictures exhibiting the

resolutions is brought to light in the following remarks.
In the case of Hp and H5, only eoen multiples of the interval A occur,

and, indeed, this is so both in theory and in experiment. (The theoretical
reason is that, in the case of H5 and H5, the common divisor 2 of the
quantum sum in the first and second term of their series-expression re
mains preserved in the quantity A = N - K.)
In the case of H5 the components are partially, in that of H, and H;

fully polarised, again both in theory and in experiment. (This is shown
in the theory in that the A-values of the p- and s-series in the scheme of
H; partly overlap.)
The succession o

f components in the sequence o
f lines Ha, H5, H7, H5

becomes less and less dense. The interval between neighbouring compo
nents is 1 unit for H,, 2 units for H5 3

,

or 4 units alternately for H7,

4 units without exception in the case of H7.
It now seems almost self-evident that, besides the ratios of the inter

vals of the components, also the absolute values o
f the distances will be

given correctly by the theory. The absolute value of the resolution is

given by our constant C in eqn. (5) and depends on the field F. The
latter cannot be determined very accurately experimentally (hardly to
within 1 per cent.). We may therefore correct the measured field inten
sity, as Epstein has done, by using the values calculated from the actual
resolution, and, trusting, justifiably, in the truth of the theory, use the
resolution in the Stark effect as a means of measuring accurately an
electric field, just as the resolution in the Zeeman effect has occasionally
been used to measure a magnetic field. The corrected field intensity
thus found differs from that measured by Stark by only very little (107,000
compared with 104,000 volt/cm.).
All in all, we may regard the theory of the Stark efi"ect as one of the

most striking achievements of the quantum theory in atomic physics.
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§6. The Zeeman Bfiect

In 1896 Zeeman discovered that the lines of the series spectra may
be influenced by magnetic means. In the simplest case there appear
instead of one line, when viewed longitudinally, that is when the ray is in

the direction of the magnetic lines of force, two lines (Zeeman doublet;

/ s, ,/\ longitudinal efl‘ect), but when viewed trans

rersely, that is when the ray is perpendicu

"'
l

mg"

l |

lar to the magnetic lines of force, instead
-—-> of one line, three lines are observed (Zeeman

b
) mm“

‘B ‘P ls

triplet; transverse eifect). Of the latter

Q three lines one occupies the position of the

current I 4,, = %
_ original unresolved line, and the other two

are displaced by equal amounts to greater
or smaller wave-lengths, and occupy the

same position in the spectrum as the two lines of the doublet in the

longitudinal effect (cf. Figs. 81, a and b). The displacement amounts to

FIG. on E"

5 n

§l
“ iii
“ n bP-70.10-5.H . . .(1)

where H = the intensity of the magnetic field in absolute units (Gauss).
If we wish to measure v in sec.-1, we have to take e on the right side of
the equation as the electrostatic charge of the electron ; but if we measure

v in cm.“ as a “wave number," then e is the charge on the electron
measured in electromagnetic units, and e/m ==1'77 . 107 is the specific
charge on the electron measured in the same way. The numerical value
4'70 . 10" in eqn. (1) refers to the latter method of measuring v, and thus
gives the displacement Av in the scale of wave numbers.
In the first observations of Zeeman the lines were not completely

separated, because the resolution was too feeble and the lines were too
wide. But he succeeded in establishing beyond doubt the presence of
polarised light at the extreme edges of the line configuration. The type
of the polarisation is indicated in our figure. The symbols p and s

(parallel and perpendicular, German senkrecht, to the lines of force)
mean the same as on page 277. They refer not to the position of the

optical plane of polarisation but to the direction of the electrical vibra
tions in the ray at the place of observation. In the longitudinal scheme
the circular arrows denote that circular polarisation was observed, and, as

is shown, the sense in the two lines of the doublet is opposite. In
general, in the short-wave component the sense of the circular polarisa
tion is the same as that of the positive current in the coils of the electro
magnet, which produces the magnetic field, and, of course, in the long
wave component the sense is reversed.
We first wish to emphasise that our two figures a and b express the

same facts under different circumstances of observation. The p-com
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ponent of the transverse effect must be ineffective in the longitudinal
effect and that is why in Fig. 81a no line occurs at the position of the
transverse p-component. Actually, this p-component arises from a
vibration phenomenon for which the direction of the lines of force is a
line of symmetry of the intensity (or, expressed in fhe language of the
older theory, it is due to the vibration of an electron, which moves in the
direction of the lines of force). But such a vibration, as we know and
have already used in the Stark effect on page 288, emits no light. On
the other hand, the circular components that occur in the longitudinal
effect are due to a vibration phenomenon, in which the plane of vibration
is perpendicular to the lines of force (in words of the old theory, due to
the vibration of an electron, which describes a circle in this plane). Such
a vibration phenomenon, however, sends out in a direction perpendicular
to its unique axis, that is, in the transverse direction, linearly polarised
light, whose electric force vibrates in the plane of vibration, that is per
pendicular to the magnetic lines of force, likewise analogous to the cir
cumstances in the Stark effect, cf. page 287. Hence the s-components
of the transversal scheme correspond to the circular components of the

longitudinal scheme. Accordingly, it is sufiicient to study the Zeeman
effect in only one direction, for example, in the transverse direction which
is more convenient for purposes of observation: then the picture that
must be obtained when observations are made in the longitudinal
direction may be derived from the latter quite easily.
The facts so far described are fully explained by Lorentz's Theory of

the Zeeman E_/feet. This is based on the assumption of quasi-elastically
bound electrons, which excite vibrations in the ether that are synchronous
and in constrained connexion with the vibrations of the electrons (cf. the
end of § 1). More precisely: the electron is considered bound to a

position of rest in the atom in such a way that when it is displaced a

restoring force acts on it proportional to this displacement from the

position of rest, and, indeed, the force is the same for all directions of the

displacement. We know nowadays that this picture is too simple and
restricts the true scope of atomic phenomena. Nevertheless it has

proved of great service for explaining the typical Zeeman effect.
For let us imagine the motion of such an electron in a magnetic field.

Whatev'er it may be in itself, we may resolve it into a linear component
which takes place in the direction of the magnetic lines of force and
into two circular components that take place perpendicularly to the latter
with reversed senses of revolution. The first component is not influenced

by the magnetic field, so that its frequency of vibration is the same as
when the magnetic field is not present. That is why we get the p-com
ponent in the position of the original line (when no field is present) when
the observations are made transversely. The two circular components are
for the one part accelerated and for the other retarded by the magnetic
field. Hence we hare the two circular components in the case of longitudinal
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observation, or respectively the two s-components in that of transverse
observation, displaced by an amount Av with respect to the line when no

field is present; and the displacement is the same in each direction and

proportional to the magnetic field H. Equation (1), which expresses
mathematically these facts, is a direct consequence of Lorentz’s theory of

the phenomenon. The value (1) will therefore still be called the Lorentz
difference of vibration or the Lorentz displacement. Its method of deri

vation assumes besides the idea of a quasi-elastically bound electron only
the recognised laws about the influence of magnetic forces on moving

charges (law of Biot and Savart). The sense of the circular polarisation
in the one or the other component of the Zeeman doublet also follows
from Lorentz’s theory if the negative sign of the electronic charge is taken
into account.
Lorentz’s theory, however, far from includes the whole complex of

facts of magneto-optic phenomena; rather, it is limited to lines of the

simplest structure.
In the case of multiple lines (doublets, triplets) there occur in place

of the “normal Zeeman effect“ of Fig. 81 the so-called anomalous or
complex Zeeman types. We shall treat these in detail in the next

chapter.

Here we deal only with the normal Zeeman effect and shall show how
this may be understood on the quantum theory. For this purpose we
consider the simplest atomic model, that of hydrogen, consisting of a

singly charged nucleus and an electron in the magnetic field. In the
last section of the previous chapter we have already spatially quantised
the orbits of the electron (the nuclear mass being co) for a field of force of
which the intensity is zero. We can reduce the action of an arbitrary

homogeneous magnetic field H to this case. For, following Larmor, we
state that the superimposed field H leaves the form of the orb-its and their
inclination to the magnetic lines of force, as also the motion in the orbit, un
altered, and merely leads to the addition of a uniform “precession” of the
orbit about the direction of the lines of force, the precessional velocity
being

o ll

n
o
n

3
|“

°l
lIl . .(2)

This law holds provided that the velocity imparted to the electron by the

precessional motion alone is small compared with the velocity that the
electron would have in its path without the precessional motion ; under
the circumstances of our atomic model this is the case even for the

strongest magnetic field that can be produced. The proof of Larmor's
theorem is based on the conception of Coriolis forces, which is known
from the mechanics of relative motions (for example, from the circum
stances of the rotating earth).
Generalising somewhat from the special conditions of the hydrogen

atom, we consider the motion of a point-mass m under the influence of
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forces that are distributed symmetrically about a certain axis A, which,

for example, arise from centres of force on this axis. We call the co

ordinate system of reference there used the static system of reference.

We next imagine the point-mass to traverse the same orbit at the same

rate but relatively to a system of reference which turns about the axis A

with the uniform velocity 0 relative to the static system of reference.
In this case the motion of the point-mass is no longer natural or free.
Rather, to maintain this motion, forces in addition to those acting in the

static system are necessary which just neutralise the inertial resistances
of the rotation. These inertial resistances are, in the first place, the

ordinary centrifugal force

Z = 'mO2p . . . . . (3)

where p signifies the respective distance of the point-mass from the axis
A; and, secondly, the composite centrifugal force or Coriolis force

C =' 2m[vo] . . . . . (4)

where v is the velocity of thelpoint-mass in the orbit that is being turned,

and [vo] is the vector product of v and the vector of rotation o drawn
in the direction of the axis A (cf. Note 1). Eqn. (4) determines not only
the magnitude but also the direction of C, the latter as the common
normal to the directions of v and A. On the other hand, the force, which
a magnetic field H exerts on the electronic charge (-- e) moving with the
velocity v is

,

according to the laws of electromagnetism,

K=-§.[vH]. . . . .(5)

This force exactly neutralises the Coriolis force if the direction of the
lines of force coincides with the direction of the axis A and if

,

also, the

condition for the magnetic field holds (we equate C and K) :

IQ
}
-l

§c
\

o
n2m/o=§H, o=_- _. . . .(s)

If we disregard the centrifugal force Z for the moment, then a magnetic
field of suitably chosen intensity is just able to bring into equilibrium the
inertial action of the electron in its rotating orbit. Thus, in the mag
netic field H, the rotating orbit is a natural orbit or, in other words, the
electron describes in the magnetic field the same path as when no magnetic

field is acting b-ut doing so with respect to a system o
f

reference which is

rotated with the velocity 0 determined b
y

the eqn. (2) or (6). Regarded

from the standpoint o
f this system o
f

reference the orbits are traversed as if

no field were present. Precession o
f the system o
f

reference and action o
f

the magnetic field are interchangeable and equivalent to one another.

Concerning the ordinary centrifugal force Z we may easily convince
ourselves, on the basis of the restriction made in Larmor’s theorem, that
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it may be neglected in comparison with C. This restriction is
,

in our

present symbols :

p0 <v . . . . . (6a)

As we see from the expressions (3) and (4), i
t is identical with

Z C.

We now revert to the hydrogen atom. We know the totality of its
orbits in the absence of a magnetic field (merely ordinary Kepler orbits).
By what has just been proved we also know the totality of its orbits
when a magnetic field is present (Kepler orbits with a motion of pre
cession about the direction of the lines of force). Thus we have a corn

plete survey of the mechanically possible orbital curves. We have now

only to select those that are possible on the quantum hypothesis. For
the “fieldless" case this has also been done in the preceding chapter:
we obtained Kepler orbits of a definite shape and with a definite in
clination to the direction of the lines of force. But now we have seen
that the orbits when a magnetic field is present are, from the standpoint
of the precessional system of reference, fieldless orbits. Hence if we

carry over the quantising of the fieldless orbits from the static system to
the precessional system of reference, we get for the quantised orbits with
a field the same orb-its -in the precessional system o

f
reference as 'we get with

out a field in the static system. In the next section we shall trace this
application of quanta, which was here introduced merely as an obvious

special step, back to a general principle.
Thus we set up the quantum conditions for the magnetic field just as

previously for the case when the “ field was zero." By introducing polar
co-ordinates r, 0, it in the precessional system o

f

reference, we have

‘\.1»/Ir

= n'h,
Ip9dl9

= 'n.,h,
-\_P¢dlP

= nlh . . (7)

From this we conclude as in Chapter IV, §7, eqns. (2), (3), (4), (9),
and (8):

2r])(7i1j - 1) = n'h, 2-up = (rt, +
n2)h1

rt
'
V
(8)

cos o. = _-L -, 21:-p4, = nlh Jrt, + n2

Here the quantities < and 0 are by definition independent of whether we
refer them to the static or the rotated system; on the other hand, the

quantities p and pa are, in conformity with their nature, to be measured
in the system o

f

refereme which is turned with the velocity 0. Hence we
take it explicitly as denoting the geographical longitude of the relative

position of the electron in the rotating system of reference and distinguish

it from the geographical longitude X in the static system of reference.
The connexion between these quantities is clearly

>'<=t+<>. ><=t+»¢ <9)
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VVe now form the ea:]rressi0nf0'r the kinetic energy of the elect'ron, first

when there is a magnetic field, Eh-,,(H), and again when there is none,

Ek,-,,(O). The latter expression is:

m ., ._ _ 9 .
Eh-,,(0) =§(r‘ + 7'20’ + T2 s1n~ 01//2) . . (10)

At the same time this denotes the kinetic energy.of the electron, when

there is a magnetic field, related to our rotating system of reference.

The kinetic energy, when there is a magnetic field, related to our static

system of reference, is therefore (we merely interchange upand X):
m .

E,,,».,,(H) = §(r2 + #91 +

'r
2

sin? 0,?) . . . (1011)

By substituting from (9), we get

113,“-,,(H) = g‘(+‘1 + T-191+ 'I'2S1D261i/2 +
2r-1 sin? 0.130+ . . .) (10b)

The last member (not written here) is quadratic in 0 and hence, owing to
the restriction contained in Larmor’s theorem, is to be neglected. If
we also take into account the significance of 11,’, :

DEM-,,(O) 2 _ 2

.
. = _ = 9114,

Ml
mr sin 4

/

as well as the expression for Ek,-,,(O) in eqn. (10), we may write in place
of (10b) :

Eki,L(H) = Ek,-,,(0) + Pa . 0 . . (106)

Finally, we introduce the expression

AEkin = ‘
Ekinto)

as the change in kinetic energy of the electron arising through the

magnetic field H, and express pa, by eqn. (8), in terms of the quantum
number nl. VVe thus get from (100)

AE;,i,, =
£01»

. . . . . (11)

On the other hand we have, as regards the potential energy,

AEW = O . . . . . (lla)
For the potential energy of the Coulomb attraction — ii undergoes no

change through the introduction of the magnetic field, since the distance

r in the precessional and the original orbit remains the same within the
limits of accuracy of our calculation.
Hence from (11) and (11a) we get for the magnetic change of the

total energy W of the electron

AW=l1oh. . . . .(12)
211'

Likewise we get for the difference of the total energy in the initial and
final orbit of the electron

AW“ ~ AW, = "1~;"1@oh . . (132»



300 Chapter V. \Nave Theory and Quantum Theory

Now, just as the frequency v of the emitted spectral line is determined
from Bohr's condition

hv = W,, — W,

so the effect of the magnetic field is given by the condition

hAv = AW“ — AW,

Hence eqn. (13) states that
n ,, - n

hAv = -ITVOIL
or, if we insert the meaning of 0 from (6):

Av = (nu, —
n,,)7% 1%

. . . . (14)

We firstly note that in the transition from (13) to (14), the quantum
of action, h, has characteristically cancelled out. In our final formula
(14) the quantum theory has in a certain sense become latent in that its
characteristic feature, the quantity h, has disappeared. In this we see a
reason that it was possible to develop magneto-optics in Lorentz's theory
to a certain degree on the classical, pre-quantum, basis. In electro
optics (Stark effect) and in the general optics of spectral lines this was

hopeless from the outset, because here the quantum of action h played,
not a latent, but an explicit part.
We next observe that our final formula (14) agrees not only in its

general structure but also in almost all its details with the result of
Lorentz's theory, that is with eqn. (1) and Fig. 81 at the beginning of
this section. To see this we have only to enlist the aid of our principle
of selection. In the magnetic field this concerns, as in the electric field,
only the equatorial quantum number n, (called n3 in the Stark effect) and
states that :

nla
—
nle = 1 1 or 0 . . (15)

From (14) we therefore get

Av=-:5-E01-Av=0. . . . (16)
m 41:-c

In this form our quantum result agrees fully with the result of
Lorentz's theory: we have before us not only the two lines of the Zeeman
triplet which are both displaced by the amount Av to greater and smaller

frequencies but also the undisplaced line Av = 0. In contradistinction to
(16), our original formula (14) would lead us to expect superfluous
components of the resolution that would be displaced two, three, . . .
times as much as the normal resolution. The fact that such components
are, under normal* circumstances, not observed is a strong confirmation
of our principle of selection in its application to the magnetic case.

' In the reproduction of a
photograph

of the Zeeman effect in hydrogen taken by
Paschen and Back, Ann. d. hys., 39, Plate VIII, Fig. 4, Bohr discerned a faint
impress of the lines of twice the normal resolution and ascribed it to the unintended
simultaneous action of an electric field. On the original photograph lines oi three times
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But not only the displacement of the Zeeman components but also their
polarisation comes out correctly in our theory. This becomes immediately
evident if we can convince ourselves that our rule of polarisation origin
ally derived for an electric field may be applied to the magnetic field.
For then we have circular polarisation in the case An = 1 1, and linear
polarisation parallel to the lines of force in the case An = O, correspond
ing to the two possibilities distinguished in eqn. (15). Applied to eqn.

(16) this means the following :——
Viewed longitudinally the two external components of the Zeeman

effect are circularly polarised, and, indeed, in opposite directions; the
plane of vibration is perpendicular to the magnetic lines of force. Viewed

transversely, these lines must consequently be linearly polarised at right
angles to the lines of force. The middle component of the Zeeman effect
is polarised linearly and perpendicularly to the lines of force.
Concerning the extension of the rule of polarisation and the principle

of selection from the electric to the magnetic case, we seek to justify it

by the following not quite inevitable reasoning :
Let us again picture to ourselves the orbit of the electron, both in

the precessional system in which its plane is firmly fixed, as in the
“ static system of reference," in which it is rotated through the action of
the magnetic field with the constant angular velocity 0. In the pre
cessional system of reference we erect the vector of the moment of
momentum as a normal to the orbital plane; here it has a constant
magnitude and direction, and hence also constant projections along the
direction of the lines of force and in the equatorial plane. Regarded
from the static system of reference, it describes a circular cone about the
direction of the lines of force with the constant angular velocity 0. From
the standpoint of the static system of reference, however, there becomes
added to the “ moment of momentum without rotation " “ the moment of
momentum of the rotation itself," which alters in magnitude and direc
tion, with the distance of the electron from the nucleus. Hence, strictly
speaking, the cone that is described in the static system of reference by
the vector of the total moment of momentum is not a circular cone. Its
projection in the equatorial plane of the static system is slowly rotated
in the course of the precession (corresponding to the circumstance that
there are no areal constants for the equatorial axes of the static system)
and also its projection on the direction of the lines of force is not exactly
constant (strictly speaking, the law of sectorial areas is also rescinded by
the action of the magnetic field for the direction of the lines of force.)
Nevertheless there is a great difference between the manner in which

this component is not constant along the direction of the lines of force

the normal resolution can be seen. Just as the lines of normal resolution confirm
the principle of selection, so the lines of double and triple resolution give a striking
example of how the principle of selection is rescinded by electric fields, as was explained
on page 274.
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and that in which it is not constant in the equatorial plane. The com

ponent along the lines of force exhibits only brief fluctuations (of the
same period as the period of revolution of the electron); the component
at right angles to it performs, besides, a slow rotation in the equatorial
plane (of the same period as that of the precession). In view of the
condition (6a), on which, alone, Larmor's theorem and our treatment of
the Zeeman problem is justified, even the variable part of the component
along the lines of force vanishes in comparison with the constant part.
On the other hand, in consequence of the same condition the rotation of
the equatorial component of the moment of momentum is

,

indeed,

infinitely retarded, but for a sufiicient lapse of time it entails a complete
reversal of the corresponding moment of momentum of the component in

question.

From this we conclude, as on page 271, for the case of an electric
field, that we can postulate the conservation of the moment of momentum
in the coupling of the atom with the ether only for the direction of the
lines of force. Hence only the equatorial quantum number nl that refers
to the rotation about the direction of the lines of force is bound by the
condition imposed by the principle of selection. From this there results
the eqn. (15) already used, and the corresponding rule of polarisation.
It is instructive to trace in detail the scheme of quantum transitions

and the position of the orbital planes in the Zeeman effect, for example,
for the line H,. We find it expedient to start from the scheme of quantum
transitions for the Stark effect, with which our present scheme agrees in

design but from which it dilfers in that the quantum numbers have other

meanings in the inferences. Our present quantum numbers 12.’, n.3, n,
correspond to 'r

,

0
,

1
//
.

In turn they replace the quantum numbers -n.1,n2, n3
in the Stark efl'ect. Our present equatorial quantum number n, is subject
to the same selective condition for the parallel and perpendicular com

ponents as the equatorial quantum number as formerly. Our present
quantum sum n

’

+ n2 + nl i
s, just like the former sum nl + n2 + n3,

equal to 2 for the final orbit of H,,. Our present quantum sum k’ + la
,

+ kl

for the initial orbit is, like the earlier sum kl + I0
2 + 11:3,equal to 3
. Thus

if we enquire as to what quantum numbers lead in the Zeeman effect to

parallel polarised light, we arrive at the same transitions kl = nl as were
enumerated in the first column of Table 25. But there is the following
difiference between the Stark effect and the Zeeman effect. Whereas in
the Stark effect the first two quantum numbers nl and n2 have essentially
the same meaning, in the sense that a simultaneous interchange of them
in the initial and the final state leads to two essentially equal resolutions

(differing only in sign), the meaning of the first two quantum numbers
11,’and n, in the Zeeman effect is entirely different. Thus two transitions
that differ through the simultaneous interchange of these two numbers
are therefore not of equal value (equivalent) in the Zeeman elfect. In
this way there becomes added, in the case of the p-components of H,, to
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the first column of the following table, which has been borrowed from
Table 25 dealing with the Stark effect, the second column in which (n’n2)
and (k'k2) have been interchanged.

But there is still a second difference. In the Kepler motion under
no external forces, all those transitions are excluded by our principle of
selection (p. 269), in which the sum n1 + 11.2does not alter by one unit.
Reasons of continuity make us inclined to regard this rule of exclusion
as valid in the magnetic field (this may be proved rigorously with the

help of Bohr's principle of correspondence). The transitions separated
out in this way are bracketed in the following table. Thus, of the eight
transitions only four remain. From our present non-relativistic stand

point, they of course all lead to the same parallel polarised component
Av = O. We shall see later in Chapter VIII that upon closer calculation
and observation they are slightly separate. Corresponding tables may
be set up for the s-components of H41, as for Hp, Hy, . . .

TABLE 35

H... 1.)-components

Ii k'k.,k1 -> n’n2n,
é
k’k,k, -> n’1|..,-11.,

l

(102 —> 002) U12 -> 002
111 ._> 101 (111 ._> 011)
(201 -—> O11) O21 —> O11
201 -> 110 l

(021 -_> 101)

In Table 35 the following circumstance is worthy of note. In the
non-bracketed orbits the number-pair Isak, is throughout different from

nznl. As this number-pair determines the position of the orbital plane

(cf. Chap. IV, § 7, eqn. (9)) in the initial and the final orbit, respectively,
it follows that the orbital plane changes position in the transitions that

here come into question (and partly also in those belonging to the s

components). In the first non-bracketed transition, for example, the
initial orbit is inclined at an angle of 60° with the equatorial (cf. Fig. 64b),
and the final orbit coincides with the equatorial plane, and so forth.
So we see, whereas in the Kepler motions, free of forces (cf. p. 269),

the orbital plane remains preserved, it alters in general in the Zeeman
effect; through spatial quantising a discontinuity is introduced into the

position of the orbital plane as compared with its position for Kepler
orbits. Here “orbital plane" refers to that in the rotating system of
reference.

Concerning the observation of the polarisation in the longitudinal
effect, the following difference in the Zeeman and the Stark effects is yet
to be noted. In the Stark effect the transitions that would lead to right
and left polarised light are equivalent energetically. They therefore

occur in one and the same line and produce unpolarised light. In the
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Zeeman effect they are distinguished from one another magnetically, and
therefore produce different line components circularly polarised in opposite
directions.
When in 1916 the author* investigated the Zeeman effect on the

basis of the quantum theory, he felt himself impelled to emphasise in a
concluding remark that “Bohr's energy equation hv = W, - W, (also
called frequency condition), being a scalar equation, can never account
for the polarisations." We now see that this gap has in the meanwhile
been successfully bridged over, as it was only necessary to add to the

energy equation the equation of the moment of momentum. As already
remarked at the beginning of this chapter, the observation of the polari
sation historically preceded the quantitative observation of the resolution
and was exhibited with greater certainty. Accordingly, the quantum
theory of the Zeeman efiiect can be regarded as quite complete and valid

only since the polarisation phenomena have been fitted into it.
In its present state the quantum treatment of the Zeeman effect

achieves just as much as Lorentz’s theory, but no more. It can account
for the normal triplet, including the conditions of polarisation, but hitherto
it has not been able to explain the complicated Zeeman types (p. 296).
The perfect agreement between final results obtained in two such different

ways is highly remarkable from the point of view of method, and again
betrays an intim rte and certainly not accidental correspondence between
the quantum and the classical view of radiation phenomena.

§ 7. The Adiabatic Hypothesis

At the first Solvay Congress,l' in the year 1911, H. A. Lorentz pro
posed the question as to how a simple pendulum behaves when its length
is shortened by holding the thread between two fingers and drawing it up
between them. If it has initially exactly the correct energy that corre
sponds as an energy element to its frequency, then at the end of the

process when the frequency has become increased this energy would no

longer suflice to make up a full energy element.
Einstein at once furnished the correct reply in saying that the sus

pending thread must be shortened infinitely slowly and then the energy
would increase proportionally to the frequency and would continue to
be equal to an energy element.

This answer is covered by Ehrenfest's Adiabatic Hypothesiai We

‘Physikal. Zeitschr., 17, 491 (1916). Cf. also the somewhat earlier work of
Debye, 1bid., p. 507, or Gottinger Nachr., June, 1916.
+Rapports du Gongrés, Paris, 1912, p. 450.
1Fi1st set up by P. Ehrenfest in connection with the problems of " cavity radia

tion" in Ann. d. Phys., 36, 91 (1911), §§ 2 and 5, and then applied by him to other
problems; see Verh. d. Dcutsch. Physikal. Ges., 15, 451 (1913); Amsturd. Academy,
22, 586 (1913); Phys. Zeitschr., 15, 657

(19141).
A detailed survey for systems of

several degrees of freedom is contained in Ann. . Phys., 51, 327 (1916). Cf. also J. M.
Burgers, ibi.d., 52, 195 (1917). Bohr, who early recognised the importance and the
fruitiulness of this method, calls it the “ Principle of Mechanical 'l‘1'8-118iormability."
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formulate it according to its general significance as follows : Let us con
sider any arbitrary mechanical system and an arbitrary initial state of
motion which is correctly quantised. We now alter the state infinitely
slowly by gradually imposing an arbitrary external field of force or by
gradually altering the inner constitution of the system (length, mass,

charge, connections). This causes the original state of motion to be
transformed by mechanical means to a new state of motion. For the
new conditions of the system this new state of motion is a. quantum
favoured state if the original state was so under the original conditions ;
it corresponds to the same quantum numbers nl, n2, . . . as the latter.
The expression “Adiabatic Hypothesis" is taken from thermodyna

mics. Just as in an adiabatic change of state in thermodynamics the
co-ordinates that determine the heat motion are not directly alfected, but

only indirectly while no heat is added from without and the conditions
of the system are altered (for example, the volume, the position in the

gravitational field, and so forth), so in the applications of the adiabatic

hypothesis to the quantum theory the motion of the system is not con
trolled directly by external agency; for such agency acts, not on the co
ordinates of the motion, but on a parameter of the system. Just as in
thermodynamics an adiabatic change of state is to be regarded as a chain
of states of thermal equilibrium, so in the quantum theory the adiabatic
transformation from the original to the final quantum state has to occur

infinitely slowly, that is by passing through intermediate states of equi
librium of motion. Quantities that remain unaltered during this trans
formation are called adiabatic invariants. The quantum numbers that
fix the original state are by the adiabatic hypothesis themselves such

invariants. All other adiabatic invariants must be expressible in terms
of these simplest invariants.
There are three characteristics that are both necessary and at the

same time sufficient for adiabatic processes. 1. The infinitely slow or
reversible element of the process. In thermodynamics phenomena are
also known that occur without the addition of heat but are irreversible

(for example, the diffusion of a gas when no cotton-wool aperture is used).
Such processes are not adiabatic in the present sense. 2. The eflect not
on the co-ordinates of the motion but on one or more parameters of the

system, that remains constant in the original motion. 3. The nnsyste
rnatio or -irregular nature of the injinerwe (effecting the alteration) in rela
tion to the phases of motion. Even in the case of the simple pendulum
we could intentionally carry out the shortening of the thread in such a

way that the energy of motion there remains constant, if we draw up
the thread only at the points at which the motion is periodically reversed.
In that case, as Warburg remarked at this Solvay Congress, a contradic
tion to Einstein's assertion and to the quantum theory would arise. Such

intentional or methodical alterations are then in no case to be included

in the category of adiabatic processes.
20
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We next consider the mechanical aspect of the question. The fact
that in ordinary mechanics we set aside the adiabatic processes is not
because they are less interesting, but because they are more difiicult in

comparison with the ordinary problems of mechanics. In the case of
the simple pendulum, we easily attain our object by direct calculation
without having to seek support from the general laws of adiabatic invari
ance, which we shall develop from this example.
Let I be the length of the pendulum, m its mass (concentrated at a

point), ¢ the angle of the instantaneous deflection, c the amplitude, and v
the frequency, so that

2v1r = ,~
/

J/
1 . . . . . (1)

The tension S acting on the thread is
,

as we know,

S = mg cos ¢ + 1/il¢;'1

in which the first part is due to gravity, the second to the centrifugal
force. If we shorten the thread infinitely slowly by [til |, we have to per
form work against the tension; its amount is

dA = §|dll = — mg»cos_<,bdl — 'rnl¢'>”dl . . (2)

The horizontal bar denotes that the time average is to be taken and indi
cates that during the shortening by the amount dl many swings of the
pendulum are to occur. The negative sign occurs because |dl i is to denote

a shortening, so that dl itself is negative. From

¢ = 0 Sin (21ri/Z + -y
)

it follows that

cos qt = 1 — 1}¢2 = 1

- =
(21rv)‘§ (3)D

IP
] O
w

a “
IQ

ll

w
-|
<
Q

$
1
o
n

thus

dA = -
m/<1
-
§)¢zz-mg§dz= —m (1

+ 2 dlJ 4 2 9

4

'

The one part, — mgdl, of this work dA is used to raise the mean
position of the weight mg. The remainder,

. 0
”

dA=—mg4Tdl . . . . (4)

increases the energy E of the motion of the pendulum. This total energy

E is twice as great as the mean kinetic energy:
3 -r

ck
E155" =

Q-l2<F=

- -

Hence the change in the mean total energy is

dE = 1nggdl+ mglcrlc . . (6)

By equating (4) and (6) we get
— gcdl = ldc.
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Integrating,

1}log Z = — log c + const.

Z30= const. . . . . . (7)

From this it follows that when the pendulum is shortened adiabatically
the angular amplitude c increases, as may easily be seen by performing
the experiment, whilst at the same time the linear amplitude lc decreases.

Concerning the energy we conclude by comparing (5) and (7) that it in
creases when the pendulum is shortened adiabatically, as is evident from
the work dA’ performed; it is inversely proportional to N/K
By squaring (7), and inserting the values of Z02from (5) and Jl from

(1), we may write (7) in the form

2
1
3 =const. . . (8)

and on account of the equality of Eu» and Em; in our special case this

entails that 2- is an adiabatic invariant, in accordance with the quan

V

tum law of the harmonic oscillator E = nhv. Eqn. (8) is an illustration
of the general law, the quantum of action (cf. Note 7

,
eqn. (5)) :

1 _ 2—

2lEi.-id:
= 2TEkin = ;EL-in . . (9)

U

taken over a period is an adiabatic constant.
The adiabatic invariance of the quantity (9) already played a part in

the general investigation made by Boltzmann to base the second law of
thermodynamics on statistical considerations. Its relation to the quantum
theory is clear from the equation 1

-‘3E1n» = Epkék,
2_[Ek|Tndb

=
2/ipidqk - - (10)

(cf. Note 4
,

eqn. (5)) which is valid for any arbitrary mechanical system.
If we take this integral for a purely periodic system over the time T of a

period, then we have on the right the sum of the phase integrals (cf.
p. 198). From here we have a bridge to the more general class of con
ditionally per-iorlic systems (Note 7

, No. 2) : here each -individual phase
integral or each o

f the correspond/ing quantum numbers is an adiabatic
invariant. By proving this theorem in Note 12, we show that from the
point of view of the adiabatic hypothesis our general quantum hypothesis
of page 200 is justified; if

,

on the other hand, we adopt the opposite view
of regarding this quantum hypothesis as an established fact, we prove the
adiabatic hypothesis for the whole class of conditionally periodic systems.

(In adiabatic transformations transitions through degenerate systems are
excluded, as Bohr has shown and as will be proved in Note 12.)
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We next use the adiabatic hypothesis to fill in various gaps that were
left in the preceding section, firstly in the Zeeman effect.
To deal at the outset with the simplest case we consider a hydrogen

atom in which the electronic orbits are circular in a plane which is per
pendicular to the magnetic lines of force. Let a and w be the radius and

angular velocity in the circular orbit when the field is zero, and let
a + Aa, to + Aw be the same quantities when the field H has been
imposed adiabatically. The flux of lines of force through the orbit is
H-n-a2. Since we regard it as a small quantity (of the order of the incre
ments Aa, Am, whose squares and products may be neglected) it sufiices
to use in it the original a instead of a + Aa. By Faraday's law of
induction, the flux of the lines of force gives the whole electromotive
force that is excited by the increasing field in the “ circular current" of
radius a, that is the work performed on the current “ unity." Our

rotating electron, the charge of which is e in E.S.U., represents a current
which, measured in E.M.U., is of intensity ev/c = em/21rc (cf. p. 248).
Thus, by setting the work performed equal to the change of energy AW
of the electron, we get

1Hm’.

5
7
1
:5 = AW or

§EeHa%
= AEL~in + AEPM . (11)

Now

E;-in =
qgtlzwg,

AE;,;,',, =1m(a2wAw + tlw2All)

,2

- <12)

Elm = - E, AE,,,,¢ =
a§Aa
= 'maw2Aa

In the last transformation the e uation for the centrifu al force‘l 8

.. e
5
’

mam _ 3 . . . . . (13)

By substituting (12) in (11) and dividing by 'm(l2m2, we get

Aw Aa e H-__ 2* = _ W . . . .
w
+
a 2m wt; (14)

A second equation is obtained from the circumstance that during the
adiabatic change of state the dynamical laws, here the equation of centri

fugal force, are to remain valid throughout.
In eqn. (13) we wrote down this equation only to a first approxi

mation for the field zero. In general it is

., o
i’

e

m(a + Aa.)(w + Aw)~ =

(0 + A61),
+
Eflaw

or, when multiplied by (a + Aa)2,

m(a + Aa)”(w + Aw)'~'
= e

2

+ finest, . . (15)C
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From this, by using (13) and dividing by 211l(L3w2,we get

Aw 3A0, 8 H
j-+§~;--§'T'w-Z . . . (16)

By comparing (16) and (14) we see at once that

Aa=O,
A..,=2‘7L§%[=<>

. . .(17)

Hence, when the magnetic field is introduced adiabatically the radius a
remains unchanged, the rate of rotation is changed by the arlzount 0 of the
Larmor precession (cf. eqn. (2) of p. 296), being increased or diminished ac

cording to the direction of the field.
The same calculation may be carried out for a circular or elliptic

path inclined to the lines of force, and the result is: as the magnetic
field increases gradually, the size and the shape of the orbit remains

preserved (corresponding to Aa = O); but the rate of rotation becomes

changed in that the angular velocity 0 about the axis of the lines of force
becomes added. But this means: the orbit as a whole performs a pre
cessional motion.

The limitation to a gradually, that is infinitely slowly, increasing field
is absolutely necessary. The precessional orbit arises from the original
one with the fixed orbital plane only if we pay due attention to the

necessary initial velocity of the electron in the direction of precession
(perpendicular to the lines of force). If the field is introduced suddenly,
the momentary velocity of the electron is not aflected; for a change of
velocity to come about it is necessary that the electron traverse its orbit
one or more times during the time that an appreciable change of the

magnetic intensity of field takes place.
So far we have been dealing with adiabatic mechanics. The q-ziantium

aspect of the adiabatic change comes into question only if we wish to
allocate quantum numbers to the changed motion. In the case of
the circular orbit that is simply placed perpendicular to the lines of
force, this has to occur, by the adiabatic hypothesis, thus: let the initial
circular orbit (a, w) be quantised, that is

,

let it be such that

ma%,=fl' . . . . .(1s)
21r

Then the altered motion (a, 0) -t 0) is also quantised, and corresponds
also to the quantum number n. But this correspondence does not mean
that now the formula

0 nh

_ ma (t
i
J: 0) - 2; . . . (19)

holds, which would contradict the preceding eqn. (18); but rather, (18)
still remains valid. Whereas, however, the left side of (19) denotes the
moment of momentum in the static system of reference, the left side of
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(18) represents the moment of momentum in the system of reference of
which the precession is j 0. Thus the latter, not the former, is quan
tised. This is extended still further then to the general case of elliptic
motion. The preeessional orbits in the magnetic field correspond to the same

quantum numbers as the Kepler ellipses in the case when no magnetic field
is present ; but the phase integrals are not to be calculated with reference to
the static, but with reference to the precessional co-ordinate system.
This was, as a matter of fact, the method that we followed in the

previous section (p. 298), and which is accordingly justified by the
adiabatic hypothesis. The particular simplicity of the Zeeman effect
now consists in the circumstance that in it the adiabatically altered orbits
are identical in shape with the original orbits, and differ from them only
in their precessional motion.
We now give a second application of the adiabatic hypothesis. In

the case of an electric field (Stark effect), we showed that the orbits of
which the equatorial quantum number is zero are to be rejected, because,
finally, they would approach infinitely near the nucleus. We follow
Bohr in concluding from this that, in the case of the magnetic field

(Zeeman effect), the orbits of which the equatorial quantum number is
zero are inadmissible, although in this case there is no question of a
collision with the nucleus. The orbits that were not allowable in the
electric field were such as were shown in Fig. 79 ; they were situated in
a fixed meridian plane through the electric lines of force. The orbits
that are to be rejected in the magnetic field are Kepler ellipses, which
lie in a meridian plane through the magnetic lines of force, and are
rotated around these.
To prove this, we imagine superimposed on the initial electric field

a magnetic field of force increasing adiabatically from zero, and with its
lines of force having the same direction. All that then happens is that
the orbits due to the Stark effect are made to execute a precession in
which their shape and rate of rotation are preserved. As a matter of
fact, we proved Larmor's theorem on page 297 not only for a single
nucleus, but for arbitrary centres of force, situated on the axis of revolu
tion. The homogeneous electric field parallel to the axis of revolution,
therefore, also falls within the scope of Larmor's theorem. We may
now let the magnetic field increase to a desired amount, and afterwards
allow the electric field to decrease adiabatically to zero. VVe thus trans
form in a perfectly continuous way the orbits of the Stark effect into
the precessional orbits of the Zeeman effect. Here, quantised orbits
remain quantised, allowable orbits remain allowable, and inadmissible
ones remain inadmissible. Thus the equatorial quantum number zero is
inadmissible in the Zeeman efiect because it is inadmissible in the Stark
eject.

A final application of the adiabatic hypothesis concerns the shape and
position of the orbits in the Stark effect for the limit when the electric
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field becomes vanishingly small, Lim F->0. We know (p. 284) that
these orbits are Kepler ellipses, but that they differ from the Kepler
ellipses in the case of no forces, or, better expressed, from those in the

magnetic field of vanishing field intensity Lim H -> O. Our object is to
prove the relationship between the two groups of Kepler ellipses; we
abbreviate them thus KP = O, Kn = O.
The field F is to be in the direction of the an-axis (cf. Fig. 79). The

potential energy of the electron in the field is eFar. The total energy is
W, and is composed partly of kinetic energy, partly of potential energy
in the field of the nucleus and in the external field F ; it remains constant
during the motion so long as the external field is kept constant. If
it is altered by an amount SF, the total energy alters by the amount
SW ==ea:8F. Since the change 8F of the field is to take place infinitely
slowly, we may replace as by the time-mean 5: for one or more revolutions
and write :

8W = ea?8F.

We calculate 5: from the time of revolution 1- by means. of the
formula: .

22= ljm . . . . (20)
T .
o

If the field increases from O to F, the change of energy is :
F

AW = jaw = J85,-sF = eEF . (21)
0

In the last term of this equation we have taken 5: to be independent
of F. In other words, we have neglected the change of 5 due to the
increasing field, as it entails in the expression of AW only a term in F2,
with which we are not concerned. In particular, then, we may also
calculate 5 for the case F = O and accordingly take the integration in
(20) over the orbit curve KF : 0.
On the other hand, we take AW from eqn. (1) of § 5. Here — W

was developed in powers of F and the higher powers were neglected;
thus AW is equal to the term in F. We accordingly get, if we equate
the two expressions for AW :

_ 3h2F
= - 8% ("'2 - nm + 1t)

_ 3h2
97= -

8,7-zmez ("2
_
"1)("1 + "2 + 7%) - - (21)

On the right-hand side we introduce the major axis of the ellipse out
of eqn. (18) on page 236, namely:

h“ ,
a =
Mame
,(n1 + n2 + n3)~ . (22)
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In this, we have set E = e (hydrogen) and n + n’ = n1 + 11,2+ na, cor
responding with our present nomenclature of the quantum sum. The

circumstance that a. has the same value for our present ellipses KF = 0 as
for our earlier ones K}; = 0, follows from the fact that we are comparing
orbits having the same energy, and that, according to (19) on page 236,
for orbits of equal energy a. is the same. By substituting (22) in (21),
we get

{
~
2
1

ll

b
O
|€
.0

Q
F-T.‘ +

1

E +gl
n1—n2 . (23)

So far we have calculated Ii: from energy considerations. We now

express it geometrically in terms of elements of the orbit. For this
purpose we introduce into the orbital plane of the ellipse rectangular
co-ordinates ac’, y’ Whose origin is at the nucleus and whose ac’-axis lies

along the major axis. We form? and? along the lines of eqn. (20).
By symmetry = 0

. If 6 and 17 are the inclinations of the and the

y’-axis to the :1:-axis we get

H ll 0

'
os0.E'+cosr;.gj’=cos0.5r'. . . (24)

By the law of sectorial areas, 1) = 'r11r‘3d>(where 1
' and ¢ are polar co

ordinates in the :v'- jg’-plane, so that m
’

= 'r cos ¢), we have

'm
dt =
]Tr2rl¢

. . (25)

and hence

1' ‘.!1r -r ‘hr

1' =

)4
» =

’l‘)¢=(1¢
,2? = jam = ’§I¢=*c<>s¢(1¢.

. (26)

0

P
0 0

I
0

If we write the equation to the ellipse in the form (cf. p. 235, eqn. (11))

1 1

7
; = A(1 + ecos ¢), A

(‘(1
_

£
2
) . . (27)

then, by (26),

21r'n e, 211-m ,

r=1T_;J, ,,,,=pA3J. . (28)

The integrals here denoted by J and J’ have the significance:

J=i2" d¢ J,=_1_
2'

cos¢d¢

21r0

(1 + cGOS ¢»)2'_ 21r0

(1 + ecos ¢)i*

J is worked out in Note 6 under (b) ; J’ follows from it by differentiation

1 , 1dJ 3 ¢J=~y .
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Hence by (28) and (27)
-, J’ _ 3 t _3

and by (24) and (23)

€COS9=~~ . . . . (31)
"i+'”'2+"s

Whereas in the case of the Kepler ellipse Kg = 0 (cf. eqn. (14) on p. 235),
the eccentricity 1 was fixed by lhe quantum numbers alone (there they were

n and n’), there enters into the expression 5 for the Kepler ellipse K;-=0 the
non-quantised angle 0. The limiting cases K1; = 0 and KF =0 thus actually

difler from one another.
Our eqn. (23), deduced from adiabatic considerations, allows us to

form a conclusion not only about the shape but also about the position
of the orbits. For we read out of (23) that : if n, > n2, then ii

: must > 0
,

that is, the electron in traversing its orbit remains longer on the front side

o
f the nucleus than on the rear side ; if n, < n2, then :7
:

< 0
, and the orbit

conversely is longer on the rear side than on the front side of the nucleus.
Here the front side denotes that which faces in the direction of the lines

of force (.
2 > 0).

As is clear from formula (4) on page 286 for the displacement of the

lines in the Stark effect, the sign of Avis the same as that of (kl
— kg). The

line-displacement due to the initial orbit always exceeds considerably
that due to the final orbit. Thus kl > k2 produces a positive Av, that is,

a component on the short-wave side of the original line, whereas kl < ls
,

produces a negative Av, a long-wave component. Combining this with
the preceding result, we may say: the short-we-ve (long-wave) components
in the Stark eflect are due to transitions in which the initial orbits lie more
on the front side (rear side, respectively) o

f the nucleus.
This remark is useful for interpreting * certain differences of intensity

between the long- and short-wave componentsfi which have been ob
served in rapid canal rays of hydrogen.
The author owes the latter arguments about the Stark eflect to Mr.
W. Pauli. They show how extraordinarily easily the adiabatic hypothesis
allows us to solve problems which otherwise could be treated only by
complicated calculations.

" Cf. N. Bohr, Phil. Mag., 30, 405 (1915) ; A. Sommerfeld, Jahrbuch f
. Rad. und

Elektr., 17, 417 (1921); A. Rubinowicz, Zeitschr. f. Phys., 5
, 331 (1921).

-1
- J. Stark, Elektr. Spektralanalyse, § 14 and § 33; H. Lunelund, Ann. (1. Phys.,

5
, 517 (1914).



CHAPTER VI

SERIES SPECTRA IN GENERAL

§1. Empirical Data of the Scheme of Series

S a result of extensive researches, spectroscopists have arrived

Aat a number of physical points of view which enable them to
arrange the lines into distinct series. These points of view

are based on the structure and multiplicity of the lines, the ease with
which they are produced, their blurredness or sharpness, their behaviour
in the Zeeman effect, and so forth. There thus arose as the final criteria

as to whether lines belonged to a certain series the possibility of express
ing in a formula their regular sequence. For the sake of brevity, we
shall begin here by describing the series in formulae; the individual

phenomena may then be conveniently derived from this description.
We must preface our remarks by saying that the existence of series

cannot be proved for all elements (for further details, see § 6). The series

character predominates only in the first three columns of the periodic

system. In the fourth, fifth, and six columns, series relationships have
been discovered only exceptionally (for example, in the case of O, S, Se,

Mn). Towards the end of the periodic system, in the sixth, seventh,

and eighth columns, the number of lines increases enormously (cf. the
Fe-lines, and, indeed, those of all triad elements), to such an extent that

hitherto it has been impossible to order the lines and combine them into

series. Throughout, corresponding elements, that is, those that are in

one vertical column in the periodic system, exhibit an analogous be

haviour spectroscopically, in that they all have the series character, or

are all devoid of it. This agrees with the view already expressed in

Chapter II, § 7, that the visible spectra arise at the periphery of the atom,
and hence behave similarly as regards structure if the peripheral structure

is the same.

Each series is calculated, like Balmer’s, as the difierence of two

“terms,” a constant first term and a variable second term. We call the

latter the current term. Just as in Balmer’s case, the term is a function
of an integer 'I7l, and of certain parameters that characterise the atom.

We next give the usual nomenclature of the current term of the Princi

pal Series, and of the First and Second Subsidiary Series.
314
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The Principal Series (Hauptserie) is characterised by the letter p; its
current term is written thus:

H.S. . . . mp.

The integer m is called the current number; it distinguishes the indi
vidual successive members of the _series from each other. The symbol
p hints at the special atomic constants that are of account for this term.
The First Subsidiary Series (I Nebenserie) is also called the Diffuse

Subsidiary Series owing to the blurred appearance of its lines; it is
characterised by the letter d. The current term of the First Subsidiary
Series is written thus:

I N.S. . . . md.

The Second Subsidiary Series (II Nebcnser-ie) consists, as a rule, of
sharp lines, and is also called the Sharp Subsidiary Series. Hence the
letter s is used to denote its current term :

II N.S. . . . ms.

To these three series types that have been known for some consider
able time there became added later, when the infra-red part of the spec
trum first became accessible to analysis, the so-called Bergmann Series

(called briefly, B.S.). We shall denote it by the letter* b, and shall
write its current term :

B.S. . . . mb.

A survey of the totality of these series terms is given by the scheme

1s 2s 3s 4s 5s 6s . . .

2p 3p 4p 5p 6p . .

3d 4d 5d 6d . .

4b 5b 6b..
5.2: 61:..
6y...

It expresses that the current number m in the s-term may take all
integral values from 1 to oo, in the p-term all values from 2 to oo, and
so forth. Further, it indicates in the bottom terms that still higher
terms follow the b-term, in which m has values beginning from 5, 6, etc. ;
for the first of such terms we have proposed the symbol ma: and my, etc.
Next, concerning the constant term of our various series, this coincides

" The use of the symbol Ap instead of b is due to Ritz : it was chosen on the as
sumption, which has since not been confirmed, that there is a numerical relationship
between the series constants of the B.S. and the H.S. The name “Fundamental
Series " (in place of Bergmann Series), which is usual in English and American liters.
ture where it is characterised by mf instead of mb, is founded on the

“ hydrogen-like
"

character of the Bergmann Series. We shall see on p. 317 that this is not a decisive
characteristic of the B.S. If we wish to call a series term "fundamental," it should
be the term I.S., which is, indeed, least "hydrogen-like,” but is associated with the
“ fundamental orbit" of the atom (of. the end of this section).
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in the Principal Series with the term of the Second Subsidiary Series for
m = 1 ; the constant term in the two subsidiary series is the term of the

Principal Series for which m = 2; the constant term of the Bergmann
Series is the term of the First Subsidiary Series for m = 3. We thus
have, so far as the constant term is concerned:

H.S. . . . . ls
I N.S. . 2p
II N.S. . 2p
B.S. . . . . 3d -

The final mode of representing the series thus becomes in our four

cases:

H.S. v=1s—mp . 'm.=2,3,4...
IN.S. v=2p—'md . . m=3,4,5...

1nus v=%-M . m=aar..U
B.S. . . v=3d—'mb . . 'm=4,5,6...

\Ve next define how a single series term is represented quanti
tatively. As an abbreviative symbol we write (m, la

) and (m, k
,

x
)

respectively, and follow Rydberg or Ritz, according to the degree of

accuracy required, by writing:

(rn, la
) = .

.Rydberg]

(2)
. _ R -

(rn, lt
,

x
) - . . Ritz

R is the universal Rydberg-Ritz constant, which derives its name
from this mode of representation in terms; la as well as x denote the

empirical parameters above indicated by s, p, d
, which are characteristic

of the element in question and of the series of that element under con
sideration. For It = O

,

or k = x = O
,

respectively, both expressions for

the terms pass over into the form that we know well from hydrogen:

@a=;@mm . .. ..(m
In Ritz's form the term is represented not explicitly, but implicitly, in

that the term also occurs in the denominator of the expression, though

only as a small correction involving also K.
For k we must substitute in formulae (2) the letter s in the terms of

the II N.S., and the letters p, d, b for those of the H.S., the I N.S., and
the B.S., respectively. Correspondingly, we write for the Ritz coefficient
x in these four term types the letters 0-, -rr, 8

,

B
. It is noteworthy that the

series constants s, p, d
,
b decrease in the case of every element in the

order written (cf. in this connexion § 6
, Table 43), likewise the Ritz

constants 0-, 1r, 8
,

)8
. We may also express this in the following way. In
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the scheme of series terms ms, mp, md, mb, . . . on page 316, the resem

blance with hydrogen increases steadily as we proceed downwards. The
d-terms are more hydrogen-like than the p-terms. The Bergmann
terms are already to a marked extent hydrogen-like (cf. the note on
p. 315); to a still higher degree are the a:- and the y-terms hydrogen
like, as also the succeeding terms that have not been written down.
According to eqn. (2a), the hydrogen character is fully attained when
lc = K = O.

In the foregoing remarks, we have departed from spectroscopic usage
in that we have also written down the current number of the s-term as
whole numbers. Usually they are set, not equal to ms, but to

(m + %, s) = 1'5s, 2'53, 3'5s, etc.

The reason for this is that in the case of the alkalies (and only in their

case) the excess of the denominator of the term above the whole number
m seems to approach the value so much the more, the smaller the
atomic weight. For example, in the case of Na this excess is 0'65, for
Li it is 0'59. Whether the subtraction of the amount é is justified by
theory is as yet undecided. We shall return to this point in the sequel

(cf. § 2, Note to p. 329, and § 6 in the remarks connected with Table 63).
In our description we shall also use the integral nomenclature ms for the
s-term, that is, we shall suppose the amount é taken up in the series
parameter s. In using the halves the eqn. (1) for the H.S. and the
II N.S. would have to be altered as follows :

.l
\'
>

P

u
m
a
w

H
P
1
4
>

H.S. . . v=l'5s—mp . . .m=
3IIN.S. . .v=2p-(m+.1.,s) . .'m= .. (l

It is just this method of transcription that earlier seemed to justify
the name “ H.S. and II N .S. of hydrogen " for the He+-series (of Fowler
and Pickering, cf. p. 207). If, namely, for the purpose of representing
them we insert the special value s = p = O in the general definition (2)
of the series term, then there arise from eqns. (3) exactly the eqns. (6)
and (7) on page 207. But, on the other hand, as the series became
reduced to the integral Balmer form, the eqns. (6a) and (7a) on page 208,
the use of the halves has in general lost ground.
It must not be imagined that the combination of the lines into series
and their resolution into two terms is a mere trifle. Rather it demands
special experience and ingenuity. First of all, the lines of the various
series are all mixed together and must be separated out in accordance
with the criteria indicated at the beginning of this section. There are
usually only a moderate number of lines of a single series present, as the
higher members of the series, on account of their feeble intensity, are
less accurate than the more intense lower members. To derive the
series limit and hence the constant first term of the series by extrapolation,
the analytical expression for the current term, for example in the Ritz
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form, must be used as a basis. The series limit is then obtained, as well
as the indeterminate parameters that occur in the series law (in general
denoted in (2) by ii

,

K), by a graphical or arithmetical process of approxi
mation.* It almost always appears that the first member (or members)
of the series is not given with sufficient accuracy. From this we must
conclude that not only Rydberg’s but also Ritz's form represent only an

approximation to the strict series law and are true only for the greater
values of m. VVe shall see in the next section how the law is to be

supplemented from the theoretical point of view, so as to be of service
for smaller values of m. The task of calculating the series becomes
much easier if other series or series limits of the same element are

already known. On account of the relationships of “ combination
"

(explained in the sequel) between the different series, we have always
to strike a balance between the calculations of several series. It is

unnecessary to emphasise that the wave-lengths measured are first
reduced to measurements “in 'uacu0 ” and referred to normals, and that
finally the wave-numbers must be expressed in international units.
In the representation (1) the following laws are contained, which his

torically preceded the description by terms and gave rise to it :—

1
. The series limits o
f the first and second subsidiary series coincide.

For, by (1), both occur at the wave-number v = 2p. The limit of the

Bergmann series occurs at the wave-number v = 3d. As stated, these
limits in most cases cannot be observed, but can only be calculated by
extrapolation.

2
. The series limit of the principal series has the wave-number v = ls.

The difierence between the wave-numbers o
f these series limits and o
f the

comrmm limit o
f the first and second subsidiary series is equal t
o the wave

nnmber o
f the first member of the principal series (Rydberg-ischuster rule) ;

the second subsidiary series, too, if we extrapolate its expression in series
for m = 1

, leads to the same wave-number with the sign reversed.
So far we have tacitly spoken of series o

f simple lines. But fre

quently the series lines consist of several components; they are doublets

or triplets, and in this respect, too, the elements that occur in the same
column of the periodic system behave alike. This multiplicity of lines is

due in the first place to the term of the principal series. On the other
hand the term of the second subsidiary series is always simple. Also
the term of the diffuse series has the same complexity as the term of the

principal series, namely double or treble according as the term of the

principal series consists of doublets or triplets (cf. § 5). But the separation
of the components in the d-term is much smaller than in the b-term.
For the general orientation of the series scheme with which we are for
the present concerned, the multiplicity of the d-term and still more that
of the b-term need not be taken into account. We indicate the multi

' This process that has mainly been worked out by Paschen and his co-workers is

described by E. Fues in his Miinchener Dissertation: Ann. d. Phys., 63, 1 (1920).
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plicity of the term of the principal series by considering my; in (1)
replaced by :

doublet series

triplet series.
§'3
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If we fix our attention on the lines with the same index i, we speak of a

Partial Series. For the partial series contained in a doublet or a triplet
series the following laws, which have been particularly useful in distin

guishing principal and subsidiary series, hold :—

3
. For the first and the second subsidiary series the law of constant

rliflererwes o
f frequency (difference o
f

ware-nnrnber) hold. That is: the
doublet or triplet dififerences in the I and II N.S. have a difference Av
(measured in wave-numbers), which is independent of the member

number m of the lines and is identical in the I and II subsidiary series.
Moreover, it coincides with the wave-number difference in the first
member of the principal series This follows immediately from the
fact that the multiplicity of the subsidiary series is due to the constant
term 2p,-. In § 5 we shall illustrate in the case of Li that this law is, on
account of the additional multiplicity of the cl-term, only a law of approxi
mation in I N.S.

4
.

The wave-number tlifiererwes o
f the principal series decrease to zero as

the member number increases. The reason for this is that in this case the
multiplicity is conditioned by the variable term, whereas the constant
term is

,

strictly speaking, simple. For example, in a doublet scriesthe
difference in frequency of corresponding members of the two partial
series Av = 7”/P2

— mp, and this difference, according to (2), becomes
smaller and smaller as m increases:

_ 7L'li’;
Av =

R _ R

= p'Z)("I'
+ I

2 Z
)

(""' + P2): (’"' + P1)? ("'7'+ P1)2(m +

)P " P2g (4)

where, in the denominator of the last expression, p is a mean value
between p, and p2.
From (3) and (4) it follows, in particular, for series limits that:

5
.

The partial series o
f a principal series approach, as the number o
f

the member increases, one and the same series limit. The partial series o
f

one and the sa-me subsidiary series have series limits that din/fer from each
other by the constant wave-number cl-ifierenee o

f the partial series in
question ,' but corresponding partial series o

f the first and second subsidiary
series approach the same series limit as m increases.

A further difference between principal series and subsidiary series
follows from the intensity of the lines in the doublet and the triplet series.
\Ve next consider the example of the D-lines, the first member of the

principal series of the Na-spectrum already considered in Fig. 64; as is
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well known, they form a doublet. The wave-length difference of the
lines D, and D2 amounts fairly accurately to 6A. D, is of shorter wave
length and more intense (twice as intense) as D1. This is to be interpreted
in the sense that the number of Na-atoms that emit D2 is greater than

(twice as great as) the number of Na-atoms that emit D1; cf. also §5,
eqn. (5). In Fig. 82 we show schematically, besides the lines D,D2, also
the next member of the principal series, in which the doublet interval is
already markedly smaller, as also one of the succeeding members, in
which the doublet no longer appears resolved. On the other hand, the

type of the two subsidiary series is indicated in Fig. 82. By Law 3 their
constant wave-number diflerence is equal to that in the first member of
the principal series. The distances of the series members from one
another, with which we are not at present concerned, have here (just as in
the case of the principal series) been chosen arbitrarily in the scale of
the v’s. What are of essential interest to us at present are the conditions
of intensity. In the subsidiary series the more intense component of the
doublet is on the opposite side to that in the principal series. The reason

D. D.

H.S Land I].N.S

Fro. 82.

for this we see without difiiculty by looking at the formulas (1) is that

mp; occurs in the expression for the principal series with the reverse sign
to that of 210,-in the expressions for the subsidiary series. We generalise
this for arbitrary doublet and triplet series and enunciate our last propo
sition as follows :—

6. The order of sequence of the intensities in the doublets and triplets of
a principal series is the reverse of that in the corresponding doublets and

triplets of a subsidiary series.

For the rest, we have already in Chapter III, §5, established the same
fact with reference to the Rontgen spectra for the intensities of K11, Kn.’
and La, LB, as well as for those of Lu, La’ and Ma, MB. What was
here called, in connexion with series representation, reversal of sign,
appeared there, more vividly, as interchange of initial and final path in

the one or the other pair of lilies. Of course this interpretation may be

taken over from Rontgen spectra and applied to the visible spectra.
As a comprehensive example of the preceding theorems we shall

compare in Fig. 83 the line-spectra of potassium with one another; in

the first row is the principal series, in the middle is the second subsidiary
series, and in the bottom is the first subsidiary series. The lines have

been drawn on the correct scale of their frequencies quantitatively; but

we have magnified the doublet intervals ten times to make them per
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ceptible ; the weaker doublet lines have throughout been drawn as dotted

lines.
We see from the figure that the limits of the first and the subsidiary

series coincide (Theorem 1), both the continuous and the dotted limits

(Theorem 5). The limit of the principal series, diminished by the

common limit of the first and second subsidiary series, gives the frequency
of the first member of the principal series (Theorem 2, the Rydberg
Schuster Law; it is indicated for the continuous and dotted partial series
by the continuous and dotted arrow). The doublet intervals are equal
and constant in the two subsidiary series (Theorem 3); in the principal
series they decrease rapidly towards the violet (Theorem 4.) That is

why the limit of the principal series is simple, and that of the subsidiary
series is double (Theorem 5). The order of sequence of the intensities

of the doublet lines in the principal series is the reverse of that in the

subsidiary series (Theorem 6).
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FIG. 83.

The spectra of the alkalies being easy to grasp first led to the arrange
ment of spectral lines into series and to the discovery of the relationships
embodied in them. In the elements of the second and third column
the character is much more manifold; here there are series types of

simple lines, series types of doublets and triplets which in their turn

again resolve into principal series, subsidiary series and Bergmann series.
For a time it was therefore conjectured that the complete series scheme
must consist of doublet, triplet, and simple lines. But this conjecture
only helped to obscure the true state of affairs. For, as we shall see in

§ 6, the doublet series correspond to a state of ionisation of the atom other
than that to which the simple series and the triplet series correspond,
which belong together. Doublet series never occur in the same atom (in
the same atomic state) in conjunction with triplet and simple series. In
the last columns of the periodic system the number of lines and their
character defies analysis, as we said above.

Besides the four series hitherto mentioned there are in the case of all
elements numerous other combination lines and combination series. For
example, we may combine the term ls instead of 2s with the p-terms, or
21
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3p instead of 2p with the d-terms. In this way we arrive at a second

representative of the H.S. or of the I N.S. type, which may be represented
by formulae analogous to (1) :
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The following combination series are also often represented:
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Ritz's Principle of Combination (p. 205) would even lead us to expect
that we may combine every term ms. mp, mb, md with every other. But

we shall see in the next paragraph that under normal conditions this

principle is subject to selective limitations. We are already familiar from

earlier remarks (p. 187) with the fact that i
t is the terms and not the lines

combined from them that constitute the true aim o
f spectroscopy.

Helium (neutral helium, not He+), the element which immediately
succeeds hydrogen, already shows a very complicated series scheme that

is in many ways very remarkable. It possesses two different series terms
that do not combine with one another. We follow Bohr in calling the
one orthohelium ; to it belongs, for example, the intense yellow He-line,

the Fraunhofer line D3 for which A = 5876, v = 2}) — 3d. We call the
other series system parhelium; it was originally ascribed to an element

possibly different from helium. The series of orthohelium consist of
very narrow double lines, the lines of parhelium are strictly simple.
We make use of the following “ scheme of levels

"

(“ N-i'uea'uschema").
Starting from the “ energy-level zero

"
denoted by co (an electron at an

infinite distance from the atom) we plot the numerical value of each
series term dowmowrds and draw a step that is to visualise the term.
Since the terms are proportional to the energy of the atom in the corre

sponding states of motion, each step denotes a possible energy-level of the

atom—quite analogously to the earlier figures for the Rontgen region.
We distinguish the steps as s-, p-, d-levels, drawn on the left for parhelium
and on the left for orthohelium. It is found convenient to denote the
levels of parhelium by capitals (S, P

,

D), those of orthohelium by small
letters (s

,

11, d). This method of distinction agrees with the custom,
introduced by Paschen, of characterising simple series with capitals,
multiple series with small letters, wherever this is practicable. The two
dense lines of separation in the middle of the figure indicate that direct
transitions from the orthohelium levels to the parhelium levels are not
admissible. We have omitted the series of b-terms and higher terms, as
also the “doubleness" of the steps of orthohelium as, in any case, on
account of their closeness, they cannot be made clear in the scale of the
figure. The S-steps are numbered 1 to co, the P-steps from 2 to co, the

1)-steps from 3 to co. The step ls is present only once, namely, in the case



§ 1. Empirical Data of the Scheme of Series 323

of parhelium ; all other steps are present both in the case of parhelium as
in that of orthohelium. The step 1s in the case of parhelium, and 2s in
that of orthohelium are drawn more densely to indicate their stability, or
meta-stability respectively (cf. § 3). The meaning of the upward drawn
arrows in the scheme of levels will not be explained till we get to § 3.
The arrows drawn downwards, being the difference of two terms,

represent the emission lines of ortho- and parhelium. Let us consider
first the I and II N.S. Their arrows end at the level 2p or 2P, re
spectively, and begin at the level md, ms or mD, mS, respectively. To
be able to draw these arrows, the level 2p (2P) has been extended

by a dotted line in both directions. But the extension does not extend

beyond the central partition lines between ortho- and parhelium, since,
as we said, the levels of the two heliums never combine with one another.
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The length of the arrows increases as the member number increases in
the series and finally approaches the limit, which is common to the I

and II N.S., but different for ortho- and parhelium, and which is repre
sented in the right and left half of the figure by the arrow co -> 2

]) and

co -> 2P respectively.
Passing on to the H.S. (Principal Series) we distinguish between the

H.S. with the symbol 1S — mP (cf. eqn. (1)) and those with the symbol
2S — mP and 2s — mp (cf. eqn. (5)). The H.S. with the symbol 1S —mP

lies in the extreme ultra-violet and is denoted in the left side of the figure

by dotted arrows. The lines
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are among these arrows.
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On the left of these there is drawn also the line

)\=585, v=1S-2S

we shall see in §3 how these lines that lie far beyond the visible region
may be measured.

There is a wide chasm between the levels 2S and 1S which is
indicated in the figure by an interruption in the arrows. The distance
(1S, 2S) is almost five times as great as the distance (2S, oo), so that it
could not be represented accurately to scale in the figure. Since the
level ls is missing in orthohelium, there is in its case no H.S. with the
symbol 1s — mp. The main series with the symbol 2s - mp, 2S - mP
are represented in both ortho- and parhelium. The majority of their
lines lie in the visible region; only the first line of both series is in the
infra-red, as is indicated by the shortness of the corresponding arrow.
Their wave-lengths are:

A = 10830A£ 1_u., V = 28 - 211 (orthohelium),
A = 20582Aif 2;1., v = 2S - 2P (parhelium).

The first, being the “ resonance line" of helium (cf. § 3), is particularly
interesting.

The levels with the same numerical coefiicients, for example 2s, 211,
or 3s, 3p, 3d, have been joined together in the two halves of the figure to a
continuous step-like line. As there is no level 2d or 2D, the first of these

step-lines breaks off at 2p (2P), the second at 3d (3D); to the step~line
4s, 4p, 4d there would become added, if we had included the Bergmann
series, the level 4b. The levels that have in this way been grouped
together by means of the common current number m are actually uniform
and correspond to one and the same Balmer term R/mg. It was partly
to preserve these classifications or co-ordination that we departed some
what in the foregoing from the usual nomenclature. The parhelium
terms that are usually called l‘5S, 2'5S, 3'5S (cf. eqn. (3)) we have called
2S, 3S, 4S. Our ground-level 1S, which is inaccessible to ordinary
spectroscopy, would be called 0'5S in the terminology which uses halves.
Our figure may be regarded as a particular piece of evidence showing
that the nomenclature of halves in the system of series is less well

adapted than our nomenclature of whole numbers for the 5- and s-terms.
Hitherto we have spoken only of emission lines. They result after

previous excitation, that is, after the atom has been raised out of its

naturally most stable state to one that is less stable (cf. p. 215), from
which it in turn strives to escape into one that is again more stable.
We call the most stable state of motion of the atom its natural orbit

(ground orbit, German Grundbahn). The ground orbit thus corresponds
to the least energy (algebraically), or what is the same, the highest term.
In the case of neutral helium it is represented by the level 1S (or 0'5S
in the ordinary nomenclature).
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The absorption lines, on the other hand, so far as they arise in cold

vapours, correspond to the unexcited natural state of the atom. The
initial level of the absorption lines is therefore the “ natural orbit

"
of the

atom. In our diagram the absorption lines would have to be represented
by arrows that start out from the natural or ground level and are directed

upwards. Hence the lines of the H.S. type ls — mP, dotted in the
figure, if inverted, therefore represent the absorption lines of cold He-gas
and presumably (cf. § 3) the only absorption lines. The fact that they
all lie in the extreme ultra-violet explains why He-gas is quite transparent
in the visible region.
Clearly the position of the absorption spectrum is of fundamental

importance for the knowledge of the series scheme. It makes us
acquainted with the natural or ground orbit of the atom ; it tells us that
in the case of He the lowest level accessible to spectroscopy (here 2s)
cannot be the true natural or ground orbit.

§2. Quantum Theory of the Series Scheme. The Principle of Selection
for the Azimuthal Quantum

The distinctive property of the hydrogen atom is, spectroscopically,
that it exhibits only one series spectrum, namely Balmer's. The division
into principal series and subsidiary series was here shown to be to no
purpose. We saw the reason of this in the preceding chapter: the most
general orbit of the hydrogen electron, the Kepler ellipse, when properly
quantised leads to the same energy and the same spectral lines as the
special circular orbits: the individual series term depends only on the
sum of the azimuthal and radial quantum numbers n + rt’, and not on
these numbers separately. The same holds for the atoms He" and Li+*'
which are of the hydrogen type.
The case is different for atoms that are not of the hydrogen type; that

is even for neutral He and Li. Here the pure Coloumb field with the
nuclear charge Ze no longer reigns. We distinguish between an ex
ternal “initial electron " (Aufelektron) which is thrown by some agency
of thermal or electric origin out of its stable position into an orbit further
removed from the nucleus, and the Z — 1 inner electrons which essen
tially describe their normal orbits (“ essentially

"
means except for per

turbations that arise from the respective position of the initial electron).
This external initial electron moves in the field of the nucleus, which is
screened off by the inner electrons. This field is still, indeed, asymp
totically a Coulomb field : for sufliciently great distances the nuclear
charge + Ze and the Z - 1 electrons near the nucleus act conjointly like
a simple point charge + e; but for moderate distances the individual dis
tribution of the electrons near the nucleus enters as a factor. It produces
a supplementary field that dififers from the Coulomb field. The orbits of
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the external electron are therefore no longer Kepler ellipses. Neverthe
less they are more or less related to the latter, being the more related the
further the orbit is removed from the nucleus.
We imagine the supplementary field idealised into a pure central field,

that is
,

we write its potential energy as a pure function of the distance r

between the nucleus and the external electron. The orbit of the latter
then becomes plane. In the plane of this orbital curve we measure an
azimuth it

. To the co-ordinates r and up there then correspond two quan
tum numbers n and n’, which have a meaning similar to that in the case
of hydrogen,* and which are likewise to be called the azimuthal and the
radial quanlurn number. _

The energy W of the orbit depends on n and n’, not only, however,
on the combination n + n’, but also on a more general function of n and
n’. There is one important property of this function that we may pre
dict from the outset. For great values of the azimuthal quantum number
n-—great values of n denote great areal constants and hence also great

average distances from the nucleus—it will resolve into the correspond

ing Balmer function. The same holds for the term — which is pro

portional to the energy; herein the energy of the initial orbit \V,, corre

sponds to the current term of the series (p. 314), the energy of the final
orbit W, of the constant term. If, for the present, we write the series
term of any arbitrary term in the form

¢(n, n’) . . (1)

we thus know that we shall have

' I R

¢(n,n) = (mg .

.v

. . (2)

As an abbreviated representation of the line-spectra which are not of the
hydrogen type we get in this nomenclature:

v = ¢(n, n’) — ¢(k, k’
)

. .

'

. . (3)

The parameters that occur in the function ¢ are to be determined from
the constitution of the atomic field, that is, from the number and dis
position of the inner electrons of the atoms.
Our generalised series formula (3) immediately, in the case of ele

ments not of the H type, leads to the dissociation of the Balmer series
into a system of series. For if in (3) we keep fixed, besides the quantum
numbers n and n’ of the final orbit, also one quantum number of the
initial orbit, namely k, but vary the other one, k’

,

then there results for
each definite value of la a definite series; in this way, for various k's, a
system of series arises.

" In the appendix to §7 of this chapter we shall give further details of the azimuthal
quantum number n in the mcdel, and its relation to the total moment of momentum
of the atom.
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A more detailed investigation which is given in Note 13 has led the
author to the following varyingly approximate expressions for the
function ¢(n, :—

(a) As a first approximation the atomic field may be regarded as a
Coulomb field (see above). Its potential energy with respect to the outer
electron is:

62E, ¢ = — -—.1-"1
T

Corresponding to this, we have as for hydrogen,

¢<n. nu
- R

. ea)
(n + 3-;

(b) For a second degree of approximation, let the potential energy of
the atomic field be represented by:

2
E,,,,, = -

%
<
1 _

The corresponding value of ¢ is:
R

¢(n, n) - . . . . (4b)

The quantity k,
,

here introduced depends, on the one hand, on the con
stant 01 of the atomic field, and, on the other hand, on the azimuthal

quantum number n, but it is independent of the radial quantum number
n’. As n increases, k,

,

vanishes in accordance with equation (2) (and,
indeed, on the particular assumptions of the calculation to be given
later, it tends to zero with 1r“).

(0
) As a third approximation the potential energy of the atomic field

is expressed with the help of two constants cl and 02 as:

e
2

c

EM, = -

;<
1 -

5

The calculated value of ¢ then comes out as

' = ,._____R_1__ .‘Mn’ n)

[n + n
’

+ k,
,

+ K,,¢(n, n’)]'*

' (46)

1

m
l?

The same as was just said of k,
,

is true of x,,: x,, depends, besides on the

constants of the atomic field, only on n and not on n’, and it vanishes
for n = 0:.
\Ve then get for our series term, if we denote the whole number

11,+ n’ by m, omitting the index n in k,
,

and K,, to a first, second, and
third degree of approximation :

(m, 0
) =

2
,, . (5a)

(m, k) =
(m_1_§_k),_,

. . . (st)

(m,/c, K) =
___Ri, . . (5c)
[m + la + :<(m, k

,

K)]
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But these are the same forms of the series terms, as those we enumerated
in our note on the empirical laws of series in the preceding paragraph as
the first, second, and third degree of development, namely, as the Balmer,

Rydberg, and Ritz forms of the series term. It is highly remarkable and
satisfactory that these three types of spectral formula, which have been

evolved slowly and laboriously, at widely distant times, from the data of
observation, arise naturally and simultaneously out 0/ our calculation.
The theory also indicates in what direction we may expect a rational

extension of the spectral formula. It arises when we retain in the ex
_ 1

pression for the potential energy higher (indeed, also even) powers of F
that is when we start from the most general form of central forces. The

corresponding extended expression for the term then becomes:

R
k . . . = ~ , ;,—» ,. -—. _,(m’ )

[m+k+K('m,/0 . . .)+|<(m,h . . .)-+:< (m,k . . .)"+. . .~
] (6)

The new series constants K
’,

K”, that have here been introduced, are again

independent of the radial quantum number n’ and hence also of the
current number m = n + n’, and they depend, besides on the constants
of the atomic field, only on the azimuthal quantum number n. This is

stated on the assumption that, on the whole, the atom is neutral, and that
the main body of the atom, in the field of which the outer electron
describes its orbits, has a surplus of a single charge. How the spectral
formula is to be altered when the atom is ionised as a whole will be dis
cussed in § 6

.

And now there can no longer be a doubt as to how we must fit the
hitherto separate principal series, subsidiary series, and so forth into our

general scheme. In the principal series m assumes, by eqn. (1) on page
316, the values 2

,

3
,

4 . . . We shall assume that for all lines of the
principal series the azimuthal quantum number n has the fixed value n = 2

,
whereas the radial quantum number may have all values n'=O, 1, 2 . . .
This is equivalent to m assuming all the values 2

, 3
,
4 . . . To get into

accord with the usual nomenclature we shall here write

lc=p, K=1r.

These quantities, being independent of n’, are characteristic constants of
the principal series.
On the other hand, in the first subsidiary series, m assumes succes

sively, by eqn. (1) on page 316, the values 3
,

4
,
5 . . . We shall assume

that in the current term o
f the first subsidiary series the azimuthal quantum

number n has the fixed value n = 3
, whereas the radial quantum nu/mber

may assume all numbers n’ = O
,

1
, 2 . . . ;at the same time we shall

write la = ll, K = 8
.

In the next section we shall see that the ideas which have been de
veloped about the individual terms along these lines also fit in naturally
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with the excitation conditions under which these series are found by ex
periment to come about. It is true that we are not yet in a position to
calculate the series constants s, 0-; p, 1r, . . . a priori from the atomic
models. The problem is, rather, the reverse, namely, to draw inferences
from the observed series constants about the coeflicients c in the develop
ment of the potential of the supplementary atomic field. But even this
cannot be satisfactorily accomplished at present, because the coeflicients
c to be obtained in this way are incompatible with the assumptions
(purely central supplementary field; electronic orbits lie only in the
outer* regions of the atom), which are assumed as the basis of our
problem in Note 13.
In spite of this the interpretation here obtained for the spectra which

are unlike that of hydrogen is of value. It explains not only the sepa
ration of the one hydrogen series into the
series systems that are observed in the case
of all other elements, as well as the Ryd
berg and the Ritz form of representation
of these series systems, but it also procures
for us definite pictures of the phenomena
when the principal series is emitted, or the F,G_ 85_
first subsidiary series, etc. (cf. Fig. 85, that
relates to the principal series). It is only in the first member of this
series that the initial orbit is circular (n = *2

,

~n'= 0
) ; in the subsequent

members the orbits assume an elliptic form of increasing eccentricity

(n = 2
, n’ = 1
,

2
,

3
,

. . In the figure the orbits are drawn as exact

' The condition that the orbit of the migratory electron (“ Aufelektr0'n") lie
entirely in the outer regions of the atom was tacitly assumed in our calculation of the
terms in that we started with a uniform expression for the supplementary field ; if the
electron penetrates into the interior of the atom, the expression for the supplementary
field would alter more or less discontinuously. Schrodinger has shown (Zeitschr. fiir
Phys., 4, 847 (1921)) that in the case of the s-term of the alkalies the migratory electron
would have to ss through the B-shell, and he has taken this into account in the initial
conditions for fi

e

supplementary field and the quantum conditions. He gets for the
denominator of the s-term by his very schematic calculation the values: _

m — 0'74 = 1'26; 2'26; 3'26; . . .

lt immediately suggests itself that we may bring these fractional values into relation
ship with the multiples of halves occurring in the s-term (cf. p. 317), although the
numerical values are widely difiereut at present. Thus the fact that the s-term o

f the
alkali-es is an integral nmnbm- Q

/' halves would accordingly be explaivwd b
y the entrance

o
f the migratory electron into the inner 8-shell.

It is also noteworthy that in Schr6dinger’s result the lowest term-denominator,
1'26, corresponds, not to the value -m= 1

,

but to m = 2. Schrodinger therefore as
sumes that the ground orbit of the alkalies is not a “ circular orbit " (n= 1

,

'n'=0), but
an “elliptic orbit" (n=1, n'=1), and accordingly designates it not by ls but by 2s.
Thus the circular type of orbit which is the simplest of the series of s-orbits would thus
be impossible dynamically and the series would begin with the simplest form of the
elliptic type. Rojdestvensky, too, starting from a more formal point of view (com
parison with the hydrogen

spectrumg,
comes to the conclusion that the ground orbit of

the alkalies is to be written as 2.! an not as ls; cf. Verhandl. des optisclum Instituts
in Petersburg, Bd. ll, Nr. 7, Berlin, 1921. Nevertheless, we consider it right for the
present to keep to denomination ls for the ground orbit, in particular in Fig. 86.
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ellipses, whereas they are, in reality, deformed by the atomic field
and their perihelions move. Furthermore, they have been drawn con
centrically whereas they are in reality confocal (cf. the points indicated

by small stars which denote the positions of the foci, which should in

reality coincide). The orbits that form the basis of the term of the first
subsidiary series are more extended (they have a great areal constant,
n = 3) than those that condition the term of the principal series (n = 2),
but they are otherwise similar to the latter. In the case of the term of
the first subsidiary series the departure from the hydrogen type is less
than in that of the term of the principal series; in that of the Bergmann
term (n = 4) this departure is already so small that this term may from
the outset be written down directly in Balmer’s form. In the following
terms* m.r, my that correspond to the quantum numbers n = 5, n = 6,

respectively, this is nowadays still adopted in the tables of Dunz, that is,
these tables are written :

3
,,

m=5, 6 . . .
m

Vle recognise in this a confirmation of the point of view set out at the

beginning of this section, according to which every atomic field acts, at a

sufiicient distance from the nucleus, asymptotically as a Coulomb field

and hence must produce a spectrum that is more and more closely related
to Balmer's spectrum. Finally, the above reflections tell us that the

Rydberg number R is a universal constant in the spectra of all elements
and explain why it is so.
But we only see with certainty that we are right in ascribing the s-,

p-, d-, b-terms to the azimuthal quantum numbers n = 1
,

2
, 3
,
4 when we

enlist the aid of our principle of selection (Chap. V, § 2). According to
this, we have to expect only those combinations of the s-, p-, d-, b-terms in
which the azimuthal quantum number diflers only b

y unity.
If we write down the array of series terms in the order of increasing

azimuthal quantum numbers:

II N.S. : 5 ;-_termD HS.
<11" = 3 d_

D I N.S. Ii,

cu. = 4 b
-

,,
D B's‘ ii"!

The arrows at the immediate right of the terms denote those transi
tions from an initial to a final state, in which the azimuthal quantum
number decreases by 1 (n,, - n, = + 1); those on the left denote transi
tions in which the azimuthal quantum number increases by 1 (n,, — "n,
= -

1
).

For example, the principal series arises through the transition at the
right-hand top corner, corresponding to its symbolic expression

v=18—-mp, m=2,3,4...
‘A detailed special study of these terms has been carried out by Rojdestvensky,

cf. Verhandl. dos oplischen Inslituts in Patersburg, Nr. 8
, Berlin, 1921.
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Its characteristic feature is the combination of the p-term (n, = 2) with
the s-term (n, = 1) ; the amount of the number m, which is, according to
our view, determined by the radial quantum number (m = n + n’, and in

the present case, m
= 2 + n’), remains arbitrary. It is clear that our

principle of selection also allows the series
'

v=2s—mp, v=3s—mp...

which likewise correspond to the transition from n,, = 2 to n, = 1. Its
occurrence was discussed in eqn. (5) of the preceding section and again
specially in Fig. 84 for the case of helium. The fact that it is in general
weaker than the true principal series v = ls — mp is easily explained on
the ground that here the number m must in general be greater than 2 to

give rise to a positive v, that is, to make possible a process of emission

accompanied by loss of energy.

The- first subsidiary series is characterised by the transition, at the

centre of the second column to the right, which corresponds to the

series formula

v=2p—md, m=3,4,5...
In it the essential feature is the combination of the p-term with the

d-term (n, = 2 and nu = 3); instead of 2p there might also be, according
to our principle of selection, 31) or 4p ; in either of these cases, however,
the minimum value of 'm would have to be raised beyond 3, and this
would entail a weakening of the corresponding lines. Such transitions
have actually been observed, even if less often than the lines of the first

subsidiary series in the narrower sense (cf. eqn. (5) on p. 322).
The lowest arrow on the right leads to the following symbol for the

Bergmann series
v=3d—mb, m=4,5,6...

or, in addition, to the Bergmann series of higher order

v=4(l~mb, m=5,6,7...
The combinations of the terms mx, my also fit in well with the prin

ciple of selection. According to Dunz, the following combinations occur
in the case of the alkalies, of He, and other elements :

4b - 50:, 5a: — 6y

which are written by him, on account of their similarity with the hydro
gen series (cf. p. 330), thus;

N N“P "gw 5;-r
'
ez

(where Ap and N take the place of Zrand R respectively).
These combinations exactly realise the quantum transitions here to

be expected, n,, = 5, 11,,= 4 and nu = 6, 1», = 5 respectively, which
would link up on the right with our scheme.
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\Vhereas the series 4b — ma: ordinarily lie in the infra-red region,
and hence mostly escape observation, they become displaced into the
visible region in the case of spark spectra (cf. §6). Fowler* has dis
covered a series of this kind, consisting of many lines, in the spark
spectrum of Mg, but has described it by the expression 4b — mb, which
is in contradiction with the principle of selection. This interpretation is
possible as an approximation only because the terms rnr are only very
slightly difierent from the terms mb (and both differ only slightly from
the Balmer terms). Nevertheless, Fowler is compelled in his interpre~
tation to talk of “inexact combinations ” between mb and 4b. The
correct interpretation of 4b - ma: has been brought out clearly by
Rojdestvensky (cf. p. 330); in it the infringement against the prin
ciple of selection, as also that against the principle of combination,
vanishes.

We now pass on to consider the left-hand side of our scheme. Here
the top arrow belongs to the second subsidiary series (II N.S.). It is
represented by : , .

v=2p~ms, nl=2,3,4...
For a corresponding increase in the minimum value of m, we may

again write 3p, 4p, . . . in place of 2]).
The two lower arrows on the left lead to series that have been

observed in the case Na, for example, and that have the form of eqn. (6)
in 3'1. They are, corresponding to the higher minimum values of m

necessary in this case, rarer and weaker than the better known series
previously discussed.

Recapitulating we state: The combinations which our principle of
selection allows in the first place lead to the most commonly occurring and
most intense series (Principal Series, First and Second Subsidiary Series,
Bergmann Series). Reasonable grounds may be adduced for the more

infrequent occurrence of the combinations allowed by our principle.
We may regard the above statement as confirming the alloeatibn of the
ra,r'i0us series terms to the azirnuthal quantum number n, and we may
regard it as convi-rwing evidence of the truth, of the principle of selection.
But there are also exceptions to the principle of selection; these

include transitions in which the azimuthal quantum remains unaltered

(n—>n), and also such in which it changes by more than one unit

(n->n - 2). Concerning this, investigations by J. Starkt and his
collaborators are particularly instructive. They show in the case of
neutral helium that anomalous series of this kind are invisible under

* Phil. Trans, 214A, 225 (1914).
'l'J. Stark. Neue im olektrischem Felde erscheinende Hauptserien des Heliums.

G. Ljebert, Der Efiekt des Elektrischen Feldes auf ultraviolette Linien des Heliums.
G. Liebert,Ei_ne neue Heliumserie unter der Wirkung des elektrischen Feldes.
O. Hardtke, Uher die Bedingungen £ii.r die Emission der Spektren des Stickstoffs,
Ann. d. Phys., 56, 577, 589, 610, 683 (1918).
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ordinary conditions of discharge and are called up only when strong
electric fields are applied.
The series in question are (in the notation corresponding to Fig. 84) I
- III N.S. . . v = 2p — mp m = 3, 4,

5)"Diffuse" H.S. v = 2s — md m = 3, 4, 5 . (7)

"Sharp" H.S. . v = 2s — ms m = 3, 4,5i

The expression “ Third Subsidiary Series (III N.S.)” is due to
Lenard, who first observed it in the alkalies. The two other expressions
have been suggested by Stark, but have not been happily chosen. The
series formula: themselves characterise the true state of things more
clearly and exhaustively than such expressions. The first and the third
series are examples of the transition n ->n; the second is an example
of the transition n->n — 2. In our scheme on page 330 the series
belonging to the transition d->s is represented by the dotted arrow
at the top on the right. Isolated lines of this series have also been
observed occasionally in other elements (cf. Dunz for the cases,
K, Rb, Tl, Ca, Ba). Indeed, Foote, Meggers, and Mohler* find that
when the current density is particularly high the line ls — 3d in
the spectrum of Na and K surpasses all the other lines in intensity.
Furthermore, there are combinations, that have been variously measured,
between the b- and the p-term (in the cases, Li, Na, K, Al, Tl, Zn, Cu,
Ag) which likewise contradict the principle of selection ; they are denoted
in our scheme on page 330 by the dotted arrow at the bottom on the
right. On account of the lack of definiteness of the conditions of excita
tion it is quite possible that in these cases, too, intensities of field due to
condensed discharges may have played a part. We may refer also to
Paschen's inclusion of the He+-line A = 4686 in the “ spark current

”

(cf. Chap. VIII, §4), which depicts in a particularly convincing fashion
the occurrence of component lines in the electric field that are otherwise
inadmissible.
In Chapter V, § 2, the principle of selection was specially derived

for emission in theiabsence of fields; in Chapter V, § 3, it was shown
that it is rendered invalid by intense electric fields. This case is proved
to occur experimentally in the experiments of Stark, Foote-Meggers
Mohler, and Paschen, and accounts, without artificiality, for the other
occasional exceptions to the principle.
The considerations of the preceding chapter at the same time shed

light on the true meaning of our azimuthal quantum number n (cf. foot
note 1 on page 326). That which is transported by the radiaton and is
fixed in integral numbers by a quantum condition is the total moment of
momentum of the atom, not that of an outer electron. The principle of
selection, as a deduction from the principle of emission, in proving itself

to be the deciding factor for the s-, p-, d-, b-terms, indicates that the
* The results are in course of publication.
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quantum number n that distinguishes these terms, and that was, to be
gin with, ascribed in our theoretical treatment of the series scheme to
the outer electron, must be closely related to the rotatory motion of the
whole electronic system of the atom. Further details on this point will
be found in the appendix to 7.

Konen, in his book, “Das Leuchten der Gase und Diimpfe," has
appended to his account of the principle of combination a criticism of
this same principle, in which he calls attention to the comparatively in

frequent occurrence of many of the combinations possible according to it.
In contradistinction to this, we see here that all those combinations that
are indicated by the principle of selection and by our interpretation of
the series terms actually occur, and are the rule, and that we have no
reason to be surprised at the absence of certain combinations, but
rather at the isolated occurrence of anomalous combinations. But the
latter, too, are also consonant with the sense of our principle since, in

agreement with the observations in the case of He and He+, they are

produced in Na and K exactly under the conditions that theory leads
us to expect.

Thus the principle of selection forms a necessary supplementary
limitation to the principle of combination; it restricts the boundlessness
of the former and raises its practical value. We oppose to Ritz's form
of the principle of combination, namely, e-very series term can be combined
with any other to form a spectral line, the more precise form: crery
series term can normally be combined with any other of which the azi
muthal quantum number difie-rs from that of the first by one unit;
combinations which overstep this limitation are not essentially excluded,
bnt they require special conditions of excitation.

Just as we concluded the preceding section by a description of the
series scheme of He, so we shall conclude the present one by considering
the particularly lucid and typical series scheme of the alkalies. Corre

sponding to their true physical definition, the terms will again be

depicted as energy-steps or energy-levels; the scale used corresponds to
sodium. The steps furthest to the left belong to the s-terms, those next
on the right to the p-terms, then those to the cl-terms, and so forth. The
numbers (1, 2, 3, . . . on the left) written next to the energy-steps de
note the quantum sums (azimuthal quantum number + radial quantum
number), so that, for example, the succession of steps 3 comprises the
terms 3s, 3p, 3d. Corresponding to the actual behaviour of the terms,

the height of the steps in the upper levels gradually decreases till at the
step oo, corresponding to the zero-level of the energy when the elec
tron under consideration is infinitely distant from the atom, the height
vanishes entirely, that is

,

becomes zero. The transitions from one level
to a lower level are characterised by arrows, and represent the lines of
the H.S., the I N.S., and so forth. Not only ls ~ 2p, but also 2s — mp

is designated as H.S. The D-line is represented by the arrow ls - 21)
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on the left. We could not in the figure take account of the two-foldness
of the p-level, so that the two components D1 and D2 are represented by
the same arrow. In contradistinction to Fig. 84, the “ground orbit

" ls
is optically accessible in the case of the alkalies (cf. the conclusion of

the preceding section). For the lines ls — mp of the H.S., among them
above all the D-lines, appear in cold Na-vapour as strong absorption
lines, and thereby indicate that we have before us in the optical level ls
the true ground orbit for the natural state of the Na-atom; the same is
true of the alkalies generally. The absorption spectrum of Na-vapour
has already been depicted in Fig. 64. The principle of selection comes
into action in the present figure in that all the arrows combine respec
tively only two such levels as are neighbouring in the sequence s, p, d, b ;

it is a particular consequence of this that to drawthe arrows it was only

s 2 p i d 1 b

Hr HEB“ 2

it

ma

e
a
->
0
8

II.N.S. ; j l.N.S.

l_;i__
_1:_ir.ih_“?__,
H.S.

FIG. 86.

necessary to continue (as a dotted line) each level to the series of terms
that follow directly on the right or on the left.
Further, we use our figure to make clear the relations between the

spectra unlike the hydrogen type to the hydrogen type itself. The
transition to the hydrogen spectrum is effected (see p. 317) by setting
all the series constants, s, 0-; p, 1r . . . equal to zero. The series of
levels of the quantum sums, 2

,

4 . . ., that appear as steps in our

Fig. 86, thereby become stretched into straight lines (or approximately
straight lines, if we take account of the fine-structure, Chapter VIII).
The transitions between the scheme of levels simplified in this way are
the Balmer lines, as is indicated on the left side of the figure.
Scheme I, shown below, shows in detail how the various lines of the

general series scheme are assigned to the various kinds of origin of the

B8».l.mer lines (cf. p. 238). We have already remarked on page 270 that
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the principle of selection considerably reduces the originally enumerated

possible modes of production of the Balmer lines. Our Scheme I now
shows that according to the principle of selection there are for ea-ch
Balmer line only three possible modes of production, which are represented
by the quantum sum n + n’ of the final and the initial orbit. To these
three possible modes of production there correspond three lines of the

general series scheme, being indeed one of the H.S., one of the I N .S.,
and one of the II N.S. This comparison of our two pictures brings out
particularly clearly how the lines that coincide in the case of hydrogen (or
that are close together in the picture which includes the fine-structure)
become dissociated into lines of the general scheme of the series that may
even be wide apart.

Scnmm I

{2+O<-3+0
2p—3d IN.S.

Hu_2+0<-1+2 211-3.: IIN.S.
l\1+1<_2+1 2s—3]J H.S.

{2+0<-3+1
2p-4d IN.S.

Hg 2+0<-1+3 2p—4s IIN.S.
l1+1+-2+2 2s—4p H.S.

‘2+O<-3+2
2p—5d IN.S.

HY 2 + O -@-'1 + 4 2])
— 5s II N.S.

‘l\1+l<-2+3 2s-5p H.S.

- SCHEME II
'13 — 2p Ly
ls ~ 3p ,, 2s — 3p H,

H.S. ls ~ 4]) ,, 2s — 4p H3 3s - 4;) Pa.-Ri-Fow
1s — 5]) ,, 2s — 5p H, 3s — 5p ,,

'2]; — 3d Ha I

I 2p — 4d» H3 3
]) — 4d Pa,-Ri-Fow

N.S.
‘
2})
— 5d H, 3

;) ~ 5d ,, 4
]) - 5d Pi

'21)
— 3s H,

II _ 212 — 4s H5 3p — 4s Pa-Ri-Fow
N.S. 2

]: — 5s H7 3
p — 5s ,, 4p - 5s Pi

'3d — 4b Pa,-Ri-Fow

B.S. - 3d - 51; ,, 4d - 5b Pi ‘

KIS.

{
$
1
1

—
4]) Pa.-R1-Fow |

l'
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In Scheme II the arrangement is reversed: the hydrogen lines have
been set down on the right next to the corresponding various types of
series (H.S., I N.S., II N.S., B.S.; K.S. = combination series) and these
are the hydrogen lines into which these series resolve when the atomic
field becomes vanishingly small. Here Ly denotes a line of the ultra
violet Lyman series (cf. p. 207); Pa-Ri denotes a line of the infra-red
series obsen/ed' by Paschen after having been calculated by Ritz; the
same series occurs in ionised helium as Fowler's series, and has been
denoted by the abbreviation Fowl Again, Pi points to the Pickering
series of ionised helium, the analogous series of which for hydrogen
would lie in the extreme infra-red and has not been observed.
From Scheme II as well as from Scheme I we read that each of the

Balmer lines corresponds to three diflerent lines of the general series
scheme, and in the same way the Paschen-Ritz or the Fowler lines,
respectively, each correspond to five differentlines. The latter number
is brought into striking evidence, as we shall see in §4 of the final
chapter, by Paschen's observations of Fowler's series.

§3. Testing the Series Scheme by the Method of Electronic Impact

The most direct test of Bohr’s ideas, the one that is most free of
theoretical elements, is the method of electronic impact.* It was
initiated by Franck and Hertzt in 1913 and during the war it was
developed in the United States particularly. At present it is being
brought to a greater and greater pitch of perfection by Franck and his
followers and is being applied to finer and finer problems.
The first investigations of Franck and Hertz were concerned with

the question of the elastic collisions between electrons on the one hand
and gaseous atoms or molecules on the other hand. In the final arrange
ment of 1914, electrons enter into the space occupied by gas and here
acquire a certain velocity through a. potential drop that may be finely
regulated. (According to eqn. (1) on page 8, the measure of this drop
in volts may at once be used as a measure of the velocity.) After finally
traversing a small constant retarding potential the electrons fall on to
an electrode and flow through a galvanometer to earth. In the case of
inert gases and, in general, of such gases as have no electron-aflinity (N 2
or vapours of electropositive metals) the galvanometer indicates, when
the potential is gradually raised in the gas chamber, a gradual increase
of the current passing to earth, but then a sharp limit occurs, which
marks the first occurrence of inelastic collisions, that is, of collisions that
are accompanied by loss of energy and that entail a change of constitution

“ Details are given in : Franck and Hertz, Phys. Zeitschr., 20, 132 (1919) ; Franck,
ibid., 22, 358 (1921) ; W. Gerlach, Die experirnentcllen Grundlagen der Quantenlheorie.
Sammlung Vie\veg, Braunschweig, 1921.
1'Verh. d. D. Phys. Ges., 15, 34, 373, 613, 929 ; 16, 1'2, 457, 512 (1914) 5 18, 213

(1916).
22'
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in the structure of the atom or molecule struck. This first maximum in
the potential-current curve is followed by other maxima or kinks,
which occur at regular intervals, showing that the electrons, after having
lost their velocities in a_ first inelastic encounter have fora second or
third time, owing to their further passage through the potential drop,
attained a velocity that once again permits them to lose their energy in
inelastic collisions. The distance between such successive bends of the
curve measures in volts the energy that was transferred to the atom
during the inelastic collision, that is

,

determines a characteristic constant
of the atom struck.
In the case of the Hg-atom the first inelastic collision obtained in this

way was given by 4'9 volts. Moreover, Franck and Hertz were at once
able to give the spectroscopic interpretation of this number. For they
observed that at a potential of 4'9 volts the Hg-line A = 2537 flashed up,
and they were able to show that the related hv corresponded exactly to
the energy due to 4‘9 volts. In the same way, in the case of He the first
inelastic collision occurred at 20'5 volts; for Ne it was at 16 volts, and
for A it was at 12 volts.
Lenard * must be mentioned as the predecessor of Franck and Hertz
in the production and measurement of slow electronic velocities. The
rather qualitative observations of Gehrcke and Seeliger+ (alteration of
the average colouring of the luminescence of gases as the velocity of the
exciting cathode rays is varied) also preceded the decisive experiments of
Franck and Hertz.
The original method was later elaborated in manifold ways. Instead

of allowing the electrons to acquire their velocities whilst incurring many
elastic encounters with gas molecules, it is preferable for many purposes
to accelerate them along a distance that is less than their mean free path

(that is, to use a low pressure). The electrons that have been endowed
with the desired velocity in this way are then allowed to enter into the
actual collision chamber, which is essentially free of fields, and the size
of which is made large and offers opportunity for a sufficient number of
collisions with the gas particles under examination. Finally, the elec
trons are completely debarred from making all further progress, owing
to the agency of a stronger opposing field. Thus they do not reach the

measuring electrode connected with the galvanometer at all. Rather,
what are measured by the galvanometer are the positive ions that are
formed, whether directly or indirectly, by the primary electrons during
the inelastic collisions. Positive ions are produced directly if the velocity
of the electrons is sufiicient to 'i011/ise the atoms struck. They are pro
duced ind-irectly if the transferred energy, although not able to eject an
electron right out of the atomic configuration, yet suffices to raise one of
the electrons belonging to the atom out of its natural orbit into one that

* Hcidelberger Akad. Abh., Nr. 34 (1911) ; Nr. 1'7(1914).

1
- Verh. d. D. Phys. Gcs., 14, 335 (1912).
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is richer in energy. When the electron belonging to the atom returns
from this new orbit to one that is poorer in energy (nearer the nucleus),
it emits light; in atoms that are more easily ionisable, which belong to
the struck electron or which, under certain circumstances, are mixed as
impurities with the gas under examination, this light acts photo-electri
cally and thus also produces positive charges that make themselves
observed in the current which flows through the galvanometer.
To discriminate between these two effects, namely, the direct ionisation

effect and the indirect photo-electric elfect, was a matter of great experi
mental importance. Bohr* was the first to call attention to the possi
bility of this indirect effect and showed numerically that it probably
occurred in Franck and Hertz's deduction of the values 4'9 volts for Hg,
and 20'5 volts for He. Davis and Gouchert succeeded in carrying
out experimentally the unambiguous differentiation between the original
ionisation and the photo-electric effect by means of an ingenious arrange
ment and connexion of fields for the case of Hg, and thereby fully con
firmed Bohr's point of view. We cannot here enter into the details of
the method and of the manifold improvements which have been made to
it in the sequel, but must refer the reader to the reports quoted at the

beginning of the chapter. There, too, will be found the interesting and
much varied forms of the current-voltage curves and their discontinuities.
In addition to the purely electrical method, in which electrical devices

are used not only to excite but also to observe the effect of the excita
tion by means of a galvanometer, there is also a more optical method in
which the occurrence of the various emissions of light is investigated by
means of a spectrograph. Ran I has obtained noteworthy results. He
found, particularly in the case of the lines of neutral He, that to excite
successive members the excitation voltage had to be increased from line
to line. This furnishes a quite general and decisive confirmation of
Bohr's series scheme: the higher members of a series require higher energy
levels, and hence higher excitation voltages become necessary. At the
same time, this is a general refutation of all the older theories of series
that regarded the higher members as, in some sense, overtones of the
lower members, and that sought to find a mechanical connexion be
tween their emission and that of the lower ones. While this fact holds
within one and the same series, another circumstance is of no less im

portance for us; it is concerned with a comparison of the excitation

voltages of lines of different series: the requisite excitation voltages in
crease in the sequence H.S., I N.S., and, as we may with reason add,
B.S. The H.S. appears first, that is at the smallest excitation; the first
subsidiary series is obtained with greater difficulty, and the Bergmann
series is obtained with the greatest difiiculty, and hence was the last to

* Phil. Mag., 30, 394 (1915), §e.
1-Phys. Rev.. 10, 101 (1917); 13, 1 (1919).
1Wiirzburger phys.-med. Gesellsch., 1914, p. 20.
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be found. This corresponds exactly with our views developed in the last
section. Actually, the most important factor for the excitation of a series
is the realisation of the corresponding initial orbits that correspond to
the second series term. This is the p-term in the case of principal series,
the d-term in the first subsidiary series, and the b-term in the Bergmann
series. According as the realisation of these initial orbits require smaller
or greater amounts of energy, the series may be excited with less or with

greater ease. If we compare, in particular, the initial orbits in the first
members of each series with each other, then the energy-level 2]) lies be
low the energy-level 3d, and this in turn below 4b. Hence the order
H.S., I N.S., B.S., follows. The position of the second subsidiary series
exhibits singularities as regards its excitation. In general, the second
subsidary series occurs simultaneously with the principal series; indeed,
in the case of He, it occurs, according to measurements of Ran, perhaps
in part even earlier than the latter. This, too, may be interpreted by
considering the relative position of the s- and the p-levels in Fig. 84.
Before passing on to the proper quantitative results of the method

of electronic collisions, we wish to give the transformation formula
which, by means of the hv-relation, leads us from the wave-length A of a

spectral line to the voltage necessary to excite it. It is clearly:

h.c/)\=e.V.
If we here express V in volts, that is, set V . 108 in place of the

potential difference V initially considered measured in electromagnetic
C.G.S. units, and if, further, we use for e the value 1'59 . 1O‘2° (that is,
electromagnetic C.G.S. units), and measure A

,

instead of in cms., in terms
of /.¢ = 10-4 cms., we get

V(volts) X >\(fL)

h
‘
' °

8

.10—4=1-234 . . (1)

Ladenburg* has called attention to the particular convenience of using
this formula.
For example, if we “calculate the excitation potential corresponding

to the Hg-line A = 2537A = 0254/1, and to the D-line of Na, A = 5890A
= O'589;r, we get by (1), respectively,

1'234 1'234V = 0,25;
= 4'9 V0ll'=S, V =

6589
= 2‘l volts . (la)

Let us, on the other hand, calculate the excitation potentials corre
sponding to the series limits to which these two series belong. The
series limits are given as limits of the values of terms in cm.‘ l. Now,
since

1 104

V =
Moms.)

=
x(I.§

it follows from (1) that

V (volts) = 1'234 . 1O'4v . . (2)
" Zeitschr. f. Elektrochemie, 1920, p. 265.

l
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From the spectroscopic tables (Dunz) we read off that the limit of the

principal series (see below) to which the Hg-line 2537 belongs is v= 84177 ;
for the principal series of sodium it is v = 41445. Hence from (2) it
follows, respectively, that

V = 1'234 . 8418 = 10'39, V = 1-234 . 4:145 = 5'11 volts (2a)

We call the last two potentials the ionisation potentials of the initially
neutral Hg- or Na-atom. For, just as the series limit is a measure of
the energy that is liberated when the electron makes atransition from

infinity, so the corresponding potential in volts is a measure of the

energy that must be used up to remove the electron to infinity. Thereby
we assume that the final orbit of the spectral process (the initial orbit of
the ionisation process) is actually the ground orbit of the neutral atom. For
example, in the case of the neutral He, we should certainly not, from the
conditions represented in Fig. 84, calculate its ionisation voltage from
the limit of the visible principal series, as in this case the final orbit
of the principal series (called 2s by us) lies far above the ground
orbit, in the energy scale.

But we use for the two numbers in volts calculated in (la) the now
customary term resonance potential, which we interpret as meaning the

following. If the work done in the electronic collision does not, indeed,
suflice to bring about ionisation, it may yet sufiice to lift an electron out
of its ground orbit ls into the (“ energetically") next highest orbit 2p.*
The atom that has been excited in this way will, if left to itself, tend to
return to the stable configuration of the ground orbit, thus causing the
emission of monochromatic light. For, according to the principle of
selection, the transition 2]; -—>ls will be possible for it

,

and it is the only
way in which the excited atom can revert to its unexcited state. In this
process the whole energy V that is given to the atom by the colliding elec
tron will be emitted as monochromatic radiation of wave-length A equi
valent, by eqn. (1), to V. This re-emission of the whole transferred
energy is called resonance (linking up with the old views of the theory
of vibrations) ; hence we get the expressions resonance line and resonance
potential. The conception of resonance line thus implies two things:
first, that its final orbit is the ground orbit of the atom, and second, that
its initial orbit is the (energetically) next highest orbit from which the
return to the ground orbit, and only to this, is possible, being accom

panied by the emission of monochromatic light.

‘In the case of the Earths Al, In, Tl, which exhibit pronounced doublet series,
the greatest s-term spectroscopically accessible is smaller than the term 21) (more ac
curately, than the two doublet terms 2p, and 2112,p. 319). Hence, if there is no greater
s-term inaccessible to ordinary spectroscopy, then 2]), and not ls, would be the ground
orbit of these atoms. We should expect as the absorption lines in cold vapour the
lines of the II N.S. 2p - ms (not those of the H.S. 1s - mp), and as a resonance line
the transition ls-> 21.1(instead of the transition 2p —>ls). The best method of decid
ing the existence or non-existence of a possibly deeper, spectroscopically inaccessible,
s-orbit is that of electronic collisions. In the case of Tl a start has already been made
with this method by Foote and Mohler; cf. Phil. Mag., 37, 33 (1919).
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Only in the case of the hydrogen atom, in which we have definite
theoretical knowledge of the ionisation potential or the resonance poten
tial of the various lines, is it possible to evaluate eqn. (2) without having
recourse to empirical data. Even in the case of H2 and He'l' it is neces

sary to adjoin an empirical number to be able to draw other purely
theoretical conclusions.
In the case of H the ionisation voltage is determined by the limit of

the Lyman series, that is, by Rydberg's number R. By eqn. (2), we get,
therefore, in volts :

V = 1'234 . 10'968 = 13-53 volts . . . (3)

In ergs it is given by the formula, identical with the latter,
- W = hvw = h . R = 2'15. 1O‘11 ergs . . (3a)

Here ww denotes the limiting frequency and R the Rydberg frequency,
both measured in sec."1. If we here also wish to measure vw and R as
wave-numbers in cms.'1, we must in (3a) write vmc and Re instead of vm
and R. The symbol - W is used to indicate that this same quantity,
except for its sign, at the same time represents the total energy of the

hydrogen atom in its ground orbit, that is, the energy that is liberated
when the electron, coming out of a position infinitely distant (energy
level zero), in which its energy is irrelevant, is entrapped by the nucleus,
and passes over into the state of motion defined by the ground orbit

(energy-level - VV).
We pass on from (3) to the excitation potentials (Am'eg1mgsspan

mmgen) of the Lyman and the Balmer lines. For the first line of the
Lyman series (cf. p. 207)

1 1 _ 9
V = R(f, - >1= 1210-7A .

we get, since its wave-number amounts to Q of that of the series limit, Q
of the ionisation potential, thus

V = g.13-as = 10-15 volts . . . (3b)

But for the first line of the Balmer series we do not get, as its v-value
might lead us to think, 5/36 of the ionisation potential, but rather, it
must be noted, that when the atom is in its natural state, that is in its

ground orbit, the electron must first be raised from its ground orbit into
the 2-quantum orbit and then into the 3-quantum initial orbit of the
line H,,,. In this way the excitation potential for H, comes out equal to
that of the second line of the Lyman series, that of H5 equal to the third
Lyman line, and so forth. Thus we get

for H, . . . '11= . 13'53 = 12'O3

for H3 . . . 1' = . 13'53 = 12'68, etc.

We have purposely refrained from using for the potential (3b) of the
first Lyman line the name resonance potential which immediately sug
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gests itself. It is true that with the excitation of lO'15 volts the
hydrogen atom would tend towards its ground orbit with the re-emission
of monochromatic radiation corresponding to the amount of energy which
it had previously received. But this process does not quite correspond
with the experimental conditions present in a true resonance pheno
menon. For in actual experiments the initial state of the hydrogen is
not the H-atom but the H2-molecule. The latter must first be resolved
into H-atoms by the addition of heat of dissociation or of the potential of
dissociation. We know this quantity from observation, but cannot check
it with theory as we do not know the model of H2 exactly. The dis
sociation potential amounts in volts fairly accurately to

D = 3'5 volts . . . . . (4)

The ionisation potential would have to be increased by this amount if it
is to be referred to the hydrogen molecule as the initial state in experi
ments, and likewise the excitation potential above calculated. Thus
we get

135 + 3'5 = l7‘O volts for the ionisation potential
lO‘2 + 3'5 = 13'7 volts for the excitation potential of )\= 1216A . (4a)
12‘O + 3'5 = 15'5 volts for the excitation otential of H_ p ,,, etc. ,

all these quantities having been calculated from the st-ate of the H2
molecule. The total energy of the H2-molecule becomes, if we use the
empirical value D = 3'5 in an analogous manner to the first line of (4a),

- \V = 3'5 + 13'5 + 13'5 = 30'5 volts . . (4b)

For if we wish to determine the total energy involved in the relative
positions and motions of two H-nuclei and two electrons, we may pro
ceed by resolving the whole system into its components. This is done
as indicated in (4b), by dissociating the molecule into its two atoms and
then ionising each atom separately.
We postpone the treatment of the difiicult question of the ionisation

potential of the H2-molecule necessary for forming a positive H2-ion till
Note 14 at the conclusion of the book. In spite of the extraordinary
amount of experimental and theoretical work that has been devoted to it
this question still seems not quite cleared up. Here we shall just
mention only two points of particular‘ interest.

(a) It is not possible to dissociate the hydrogen molecule by a mere
electronic collision of 3'5 volts. Therefore, in the current-potential curves

plotted for H2-gas no bend, that is, no inelastic action of any sort, occurs
at the point V = 3'5 volts. Rather, dissocation occurs only in conjunc
tion with ionisation or excitation of at least one of the two H-atoms
formed as a result of the dissociation, that is not before one of the

potentials given in (4a) is reached. The reason for this must be furnished

by the dynamics of electronic collision, which we do not yet know.
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(b) In the current-potential curves of H2-gas we find a pronounced
energy-step at about 11 volts, which used to be ascribed to the formation
of Hf-ions. According to Franck this interpretation is no longer
tenable, but rather it is probable that at 11 volts a characteristic ultra
violet band-spectrum is excited (corresponding to a wave-length of about

IOOA) which bears the same relation to the visible band-spectrum of the

H2-molecule, the many-lines spectrum (“ V-iellinienspektmm "), as the

Lyman series to the Balmer series in the H-atom.
Just as in the case of the H2-molecule we obtained the value 3-5 volts,

so in that of the He+-atom we must know its energy of formation from
the neutral atom empirically, that is, from observation, if we wish to
draw further conclusions based on the likeness of He+ to hydrogen. This
energy of formation is identical with the ionisation energy of the neutral
He-atom and will be denoted by I. Interesting considerations connected
with models arise from the value of I; these are described in Note 14.
According to many accurately carried out measurements I = 25'3 volts.
We may now write down, for example, the second order ionisation

potential of He. It is
I + 4.136 = 79'3 volts . . . . (5)

Actually, to deprive the hydrogen-like atom He+ of its electron, we re
quire work four times as great as in the case of the H-atom. As
shown by the formula, this follows at once from the factor Z2 in the
He-series ; in more pictorial language, we may say that one factor 2
arises out of the doubled nuclear charge of He+ as compared with H, and
the other factor 2 from the halved distance of the electron from the
nucleus as compared with that in the case of H. In the curves given by the
observations of Franck and Knipping,* as well as in those of F. Horton,+
an ionisation step occurs at 79'5 i O-3 and 80 volts respectively, which
clearly corresponds to the tearing ofi of both electrons of the He-atom in
one elementary act. Formula (5) gives, at the same time, the total

energy — W of the neutral helium atom.
We pass on to the excitation potential of the line

1 1
V _ 4a - P)

,
>
1 _ 468631

by removing the electrons of the He+-ion not to infinity but only as far

as the 4-quantum orbit, the initial orbit of 4686. The work necessary
for this is

41w»

(1

_
%)= %.4.13-5

= 50-1 volts.

Thus if we start from the neutral state of the He-atom the excitation

voltage of 4686 comes out as

I + 50']. = 7-5'4 Volts . . . . (59,)

’
Phys. Zeitschr., 20, 481 (1919). + Proc, Roy. Soc., 95, 408 (1920).
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Actually, this line occurred in the experiments of Rau mentioned at

potentials lying between 75 and 80 volts, in that at 75 volts no trace of
the line appeared but at 80 volts it was present with full intensity.
We now come to the metallic vapours, firstly to the alkalies which are

distinguished by the simplicity of the scheme giving their series. The
final orbit of the H.S. is here at the same time the ground orbit (cf. § 2,

p. 335) ; the principal series therefore appears as an absorption series in
the cold vapour. The first line of the H.S. (in the case of Na, this is the

D-line) is at the same time a resonance line, and its excitation potential
may straightway be calculated, by eqn. (1), from its wave-length known
from optical observations. The potential so determined leads to the first
inelastic collision. As a rule, the second inelastic collision after this first
one is found to be the ionisation limit. In this process there occurs in
the stream of positive atomic ions the possibility of the re-combination
into neutral atoms with the emission of some member of the H.S. Ac
cordingly, optical observation of the process of excitations distinguishes
between three stages: (a) below the resonance potential there is no
emission; (b) after this potential has been exceeded we get the ground
line of the H.S. (“one-line spectrum," Einlinienspektrimt); (0

) above

the ionisation potential the whole H.S. (“the more-lines spectrum,"
Mehrlinienspektrum) appears. Special precautions are necessary to call

up only one part of the lines of the H.S.
How perfectly observation and calculation agree even quantitatively

is shown in the following Table 36. In the column under “ obs. " (ob
served) the values of the resonance and ionisation potentials measured

TABLE 36

Alkalics

Resonance Resonance line Ionisation Series
potential _ o _ potential limit
in volts 1" A“"11ts in volfs in cm. '1 Observer

Obs. Cale. 1;—2p,- Obs. Cale. ls
I

Li —— 1'84 6708 5'36 43,485 -—

Na 2'13 2'O92 5896 5'11 41,445

‘2'09‘! 5890 Tate and Foote, Phil.
K 1-55 1-602 7699 4-32 35,006 I Mag, 36, 75, (1918)1'609 7664
Rb 1-6 4-15 33,685

1 Foam‘ Rognleyy
and

Cs 1-48 res sore 3-s7 31,407
M ° l‘ ' ° ‘- Phys

145 8521
Rev., 13, 59 (1919)

by the method of electronic collisions, and under “ calc." (calculated) the
values obtained for the same quantities from the optical data by eqns.

(1) or (2), respectively, are given. The optical data themselves are tabu

lated under the headings “ resonance line
"
and “ series limit." Whe1'eaS
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the limit ls of the principal series is simple, the resonance line ls - 21);,
'i = 1, 2, is double, but separated by so small an interval that it must

appear simple in electronic collision. In passing we must note that the
position of the series limit is given by numbers regularly decreasing as
the atomic number increases. (In the resonance line that is compounded
from the difference of two terms this regularity (cf. Li) is a little ob

scured.) This and the correspondingly proportional decrease of the
ionisation potential denotes at the same time a weakening of the electro

positive character of the alkalies as the atomic number increases, and
this may be explained by the parallel increase of the ionic size (cl'., for

example, Fig. 26).
The conditions are much more involved in the case of divalent metallic

vapours. Here, as already mentioned (p. 321; further details in §5),
there occur a series system of triplet lines and one of lines of a simple
structure, which combine among themselves. The former are denoted

by the symbols s, pi, (lg, . . . (-i = 1
,

2
,

3), the latter by the symbols

S
, P, D, . . . In the case of these vapours excitation by means of elec

tronic collisions was first investigated by McLennan and Henderson*
and led to the just now mentioned differentiation between the “ one-line

spectrum" (in the above sense, not in the sense of the symbols S
, P, D)

and of the “more-lines spectrum." But the whole matter became
cleared up through the work of Davis and Goucher (cf. p. 347) on the
excitation of Hg-vapour. The interest was here centred in the resonance
line of mercury A = 2537, which we have already mentioned several
times; the fact that it is, at the same time, the ground line of the ab

sorption spectrum shows that its final orbit also represents the ground
orbit in the Hg-atom. VVe call its term 1S (in Paschen's nomenclature

it is usually called 1'5S). As Paschen has shown,1‘ A = 2537 is a com
bination line of the system of simple and triplet lines. It has the formula,

1

w= X=1S—2p,

both terms are defined with perfect accuracy from our knowledge of the

triplet and the simple lines series. For we have

1S = 84177, 2122= 44767

and so we get the resolution

v = 39410 = 84177 — 44767.

Since, in the process of emission, the first term (we discard the sign)
determines the energy of the final orbit, and the second term determines
that of the initial orbit, we write at the lowest energy-level of Fig. 87 the
number, — 84177, and at the next lowest the number, - 44767. It is

* Proc. Roy. Soc., 91, 485 (1915) . and a series of continuations of this paper.

1
* Ann. d
.

Phys., 35, 876 (1911).
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between these two levels that both the process of emission (arrow down

wards) as well as that of absorption (arrow upwards) take place.

In addition, we consider the line A = 1849A situated still further in
the ultra-violet. As it likewise occurs not only as an emission line but
also as an absorption line in cold mercury vapour, it must start out from
or, respectively, tend towards the same ground level, the natural orbit of
the electron at the periphery of the atom. This is confirmed by its ex

pression in terms. For, according to Paschen (loo. cit), A = 1849 is the
line of the principal series of simple lines and is therefore expressed by
the formula,

< ll

>
'l
l—
*

=1S-2P

in which 2P = 30111, and we have the resolution

v = 54066 = 84177 -— 30111.

In accordance with this we have therefore to add in Fig. 87, above the
two energy-levels hitherto considered, one that is higher and to which we

assign the number -30111.
The emission and the absorp
tion of A = 1849 then takes

place between this upper level
and the lowest level, and they

are indicated by oppositely
directed arrows. Above this

upper level there has been
drawn in the figure a still

higher top level, which denotes
the removal of the electron to

infinity and represents the energy 0
. According to eqn. (2) the following

numbers of volts correspond to the above-mentioned wave-numbers :

Fro. 87.

v = 84177 V = 10'4 volts.
= 54066 = 6'7 ,,

= 39410 = 4'9 ,,

Actually, Davis and Goucher have confirmed that at the value 4'9 volts
given by Franck and Hertz (cf. p. 338) the line A = 2537 is flashed out.
At the same time, however, they succeeded in proving that an ionisation
of Hg-vapour did not yet occur at this potential. Furthermore, they
detected signs of the emission of the line A = 1849, likewise without
ionisation, when the potential was 6'7 volts. Ionisation was shown
beyond doubt to occur at q potential o

f 10'4 volts.
But these circumstances are exactly repeated in the case of all

elements of the second column of the periodic table. In all cases,
1S — 2}), is the first excitation limit, 1S - 2P the second, and 1S itself
the ionisation potential. How completely the measurements obtained



348 Chapter VI. Series Spectra in General

from electronic collisions agree with spectroscopic data is shown in
Table 37. The values tabulated under “calc." have here, too, been
determined from eqns. (1) and (2).

TABLE 87

Alkaline Earths

Excitation . . Series

P°“"‘"“l IS-2)), poteiioiillaiilollola
hm“ "1

in volts
1s_2P

' cmfl Observer

Obs. Cale. Obs. Cale. 1S

Mg . . 2-65 2'7 4572-65 7-75; 8~0 7'61 61,663 Foote and Mohler, Phil. Mag.,
4'42 4-83 2853-06 { 37, 33 (1919). Mohler, Foot-e‘

and Meggers, Journ. Opt.
Soc. Amen, 4. 364 (1920).
Bur. of Stand., Nr. 403, 1920.

Ca . . 1'90 1'88 6574'59 6'01 6'09 49,309 Mohler, Footc and Stimson,
2'85 2'92 4227'!) Bur. of Stand. Nr. 368, 19%;

Phys. Rev., 14, 534 (1920).
Sr. . . —— 1'79 6894-45 — 5'67 45,935 —

— 2-68 4608'61
Ba . . - 1-56 791i-3'52 - 5-19 42,030 —

— 2'23 553704
Zn . . 4-1; 4-18 4-01 3076'88 9-3; 9'5 9'35 75,759 Tateand Foote, Phil. Mag.,36,

5-65 5'77 2139'38 64 (1918). Mohler, Foote
and Meggers, l.c.

Cd . . 3'88; 3'95 3'78 3262'O9 8'92 8'95 72,533 As for Zn.
5'35 5'39 2288'79

Hg . . . 4'9; 4'76 4'86 253748 10'38;10-2 10-39 84,178 FranckandHertz,1.c. Franck
6'7; 6-45 6-67 1B49'6 and Einsporn, l.c. Mohler,

Foote and Meggeis, l.c.

In addition to these results very detailed measurements carried out
in the case of mercury in particular by Franck and Einsporn* have
brought into evidence a whole series of higher energy-levels, for example,
1S — 3P, 1S - 4P, 1S — 3112, 1S ~ 4122, in the current potential curves.
It is of particular interest that the transitions

1S -— 2p, and 1S — 2113

that are not observed optically and that are excluded by a selective

principle governing the inner quantum numbers (cf. § 5) make them

selves noticeable in the current-potential curves as bends. It occurs to
us immediately that the principle of selection, by the mode of its de
duction (cf. p. 269), restricts only the phenomena of monochromatic
emission, not the effects of electronic collisions. -

The ionisation potential of the second order, that is the formation of a
double positive ion has also been determined by Foote, Meggers, and
Mohler ‘r for the alkaline earths, the first being Mg. This ionisation

potential of the second order corresponds to the H.S. limit of the doublet

' Zeitschr. r. Phys., 2, s (1920). +Phys. Rev., 13, 12s (1921).
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lines of the spark, just as the ordinary ionisation potential corresponds
to the limit of the H.S. simple lines, and, of course, lies considerably
higher than the latter (15 volts as compared with 7'6 volts, in the
case of Mg). It is of particular interest as it is a measure -of the
“
l'V('Lrmetc'inung

"
(sum of the heat generated in a chemical reaction and

the external work performed) in the chemical union of divalent ions.
It is also of interest that it was possible to find the ionisation

potential of Pb* by electronic collisions, that is of an element whose
series system is still quite obscure. In this quarter a way seems open
to introduce order into the line-relations of Pb, after the limit of its H.S.
has been found.
Excitation experiments have also furnished valuable knowledge

about neutral helium. In the first place a decision was required con
cerning the question of its atomic model. Bohr's model (Fig. 19) with
its two electrons revolving at the ends of a diameter would require an
ionisation potential I = 28"7 volts, as we shall calculate in Note 14.
But observation led to I = 25'3 (cf. eqn. (5) above, or the following
Table 38). Thus Bohr's model had to be rejected.
Then the ground level of helium, 1S in Fig. 84, had to be found. It

already follows from the fact that helium gas is qu te transparent as far
down as the ultra-violet that this level is not identical with the final
orbit of the visible H.S., namely, 2S or 2s (as on p. 322, the capitals
refer to “parhelium," and the small letters to “orthohelium"). A

positive datum for the position of the ground level is the measurement
of the first inelastic collision at 20'5 volts by Franck and Hertz (cf. p.

338). If we express the limit of the H.S. of orthohelium v = 38453 in
terms of volts by eqn. (2), we get 1'23 . 3'85 = 4'75 volts; and by adding
this to 20'5, we get 2525 volts, that is the ionisation potential of
neutral He. From this we see that the ground level 1S lies 20'5 rolls
lower than the final level of the H.S. of orthohelium, the formula of which
we write as v = 2s - mp (in the usual notation v = 1"5s — mp).
The first inelastic collision of 20'5 volts (2045 volts according to

Franck and Knipping t) is therefore to be interpreted as

2045 volts = 1S — 2s.

Following Franck, we call this the transformation potential (“ Umwand

lungsspannung "). The slightly higher step, which is clearly distinguish
able from 20'-15 in the current-potential curves of Franck and Knipping,
is

21'25 volts = IS — 2s.
The difference

2l'25 — 2045 = 0'80 = 2s — 2S

corresponds exactly to the difference of the limits of the optical H.S. of
orthohelium and parhelium.

‘ Mohler, Foote and Stimson, Bureau of Standards, Nr. 368, 1920.
1-Physik. ZeitsclJ!‘., 20, 481 (1919); Zeitschr. f. Phys., 1, 320 (1920).
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These conditions have already been exhibited graphically in Fig. 84;
on the right side of the figure we see the compounding of the ionisation
potential out of the transformation potential 2045 and the H.S. limit of
orthohelium ; on the left side we see how it is compounded of the energy
level 21'25 and of the H.S. limit of parhelium.

Teena 38

Observed Calculated " Series name »Wave-lengths

20-45 _ 1s - 28 0103
2l'25 21'25 IS - 2S 585
, 21'9 2l'85 1S — 21’ 569 ,
2-5'6 23'? 1S - SP 52:3 1
2-5'3 25'23 1S 493

The next steps may be read from Table 38, and have also been drawn
in Fig. 84 on the left as dotted arrows. They correspond to the ultra
violet H.S. of parhelium that tends to the ground orbit: it must at the
same time be the absorption series of unexcited He. The wave-lengths
given in Table 38, in particular that corresponding to the transformation

potential, A = 610, have only been calculated. Only the wave-length

5853 has been observed optically by Lyman and Fricke 1
'; as it has the

formula 1S — 2S it is an exception to the principle of selection, and is

presumably to be expected only in intense electric fields. It is just for
this reason that, in the Lyman-Fricke arrangement, it escapes absorption
in the case of neutral helium, whereas, on the other hand, the lines

1S — 2P, 1S - 3P, which one would expect first, optically, are pre
sumably again extinguished by absorption.
That there is no level ls of orthohelium corresponding to the level ls

of parhelium is rendered certain by the facts above stated. This circum
stance also explains the distinctive position taken up in the series system
of He by 2s (i

t is indicated in Fig. 84 by the darkening of the level 2s).
For, once this state has been excited, it cannot again be destroyed by
monochromatic emission. It is therefore called the metastable state by
Franck and Reiche.I The term “transformation potential

"
applied to

the 2045 volts points to the transformation from the stable state 1S to

the metastable state 2s. In this connexion the remark of Franck is

interesting that the transformation 1S —>2s occurs only in impure He;
in perfectly pure samples of the gas the transformation potential 1S — 2s

vanishes entirely from the current-potential curve.
The level ZS has also a certain degree of stability inasmuch as the

transition 2S —>1S which, from the energy view, is alone possible here

‘Obtained by adding to 20'-15 volts the amounts of energy that follow from the
series scheme.

1Phi1. Mag-, 41, 814 (1921). ¢ Zeitschr. r
. Phys., 21, 635 (1920).
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is excluded by the principle of selection : at any rate 2S is not unstable
to the same degree as, say, 2P, 3P, . . . But nevertheless the stability
of 2S is much less than that of 2s, because in the case of 2s there becomes

added to the restrictions imposed by the principle of selection the evidently
much more effective “ partition

” restriction (imposed by the fact that the

levels of ortho- and parahelium may not be combined). Consequently,
the level 2S is not, as in the case of 2s, called metastable; corresponding
to this, the level 28 but not 2S in our Fig. 84 has been emphasised by

being darkened and thus made comparable to the ground level 1S.
At the same time the particular position of 2s explains the character

of the line A = 1083OA ;‘ 1,11 as a “resonance line." From the initial
state 21) the He-atom can pass over only to 2s, whilst the transition to

2S or 1S is excluded owing to our central partition in Fig. 84. Herein the

line 23 — 2p is distinct from the line 2S — 2P, A = 20582 fij 2p.. From
the initial state 2S there is possible the transition to 2S as well as to 1S.

Actually, according to an investigation by Paschen,* A = Zn exhibits

incomplete resonance, but A = la complete resonance. This means that
if helium gas receives radiation A = 1p., it remits all the absorbed light
as light of the same wave-length, whereas, if it receives radiation A = 2;;.,
it radiates out only a fraction of the absorbed light as light of the same

wave-length. The fact that in each case a certain excitation of the He

gas was necessary to provoke absorption, is in accordance with the

circumstance that neither 2s nor 2S is the ground orbit of the unexcited
He.
We have described here, of course, only those results of the method

of electronic impact that are particularly instructive and immediately
intelligible. Over and above this, the method bids fair to shed light on un
known series relationships (cf. also the conclusion of the next paragraph).
Finally, we shall add for the sake of contrast with the excitation by

means of electronic impact a method of purely optical excitation. It has
been developed by Fiichtbaner ’r for Hg-vapour. In exhibiting its results
we shall follow F iichtbauer in using a diagram that was first used by
Bohr’; and that is particularly appropriate for representing the compli
cated conditions here involved. In this diagram the various atomic states
are not represented by horizontal levels but by points which, according
to their series character are disposed along different horizontal lines. The
difference between the energy-values of two atomic states are accordingly
not denoted by a vertical arrow but by the horizontal projection of an
arrow, which connects the points of the initial state with those of the final
state. In this diagram lines to the left signify absorption, those to the right
signify emission, and owing to the principle of selection they will always
be in an oblique direction. The distances of the horizontals, denoted by

“Ami. <1.Phys., 4,5, 625 (1914). 1-Physik. Zeitschr., 21, 635 (1920).
iZeitschr. f. Phys., 2, 434 (1920). Cf. also W. Grotrian, Physik. Zeitschr., 21, 638

(1920).
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s, p,-, S, P, D, from one another are chosen arbitrarily, but the positions of
the points marked 1, 2, 3, . . . on these horizontals are drawn according
to scale, their distances from the bounding line on the left of the figure
give directly the values of the corresponding terms.

Concerning the experi

mental_ arrangements we say

only this: a quartz tube filled
with mercury vapour was il
luminated by radiation from a
quartz mercury vapour lamp.
The latter emits into the form
er tube practically only such
lines of its spectrum as have
wave-lengths greater than or

equal to A = 253713 (as all
light for which A < 2537
is held back by the thick
quartz walls of the lamp).
In the first (the outer) tube
only A = 2537 is absorbed

initially, since the Hg-vapour is in the state given by the ground orbit 1S;
but, owing to the absorption, a fraction of its atoms, cf. Fig. 88, pass
into the state 2122. Hence this fraction is enabled to emit not only the
line 1S — 2312but also to absorb the lines

2,), - 13, >. = 4359; 2;), - 31), 1. = 3132

FIG. BB.

(as, indeed, all lines of the type 2112 — X, for which 2p2 is the initial level
of the absorption). In this way new atomic states 3D and ls (the latter
is usually called 1'5s) come about. From these as starting points the
following emissions are possible according to the principle of selection:

2P - 31>, A = 5791; 2p, - 13, >. = 5461
2p, - 18, A = 4047.

These and further emission * lines have been photographed by Fiichtbauer
as secondary and tertiary consequences of the primary illumination by the
radiation 25373. Fiichtbauer showed that 2537 was actually the only
primary excitation active by causing the line 2537 to be absorbed by the
interposition of a thin film of glass ; this led to the cessation of the
emission of light of longer wave-length.
It is fascinating to observe how the light that was initially ultra-violet

in its zig-zag diagrammatic course, which may be considerably multiplied

" For example, the lines of the I N.S., ‘Sp; — Bdj, 2111'— 4dj, that are not drawn in
the figure were very intense on the photographs. Fuchtbauer kindly informed me in a
letter that he had identified thirty-one lines, some being very intense, others less
intense.
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in the figure, becomes more and more divided up into branches of visible

light. We have also indicated by a dotted line in the figure the possi
bility of getting ultra-violet light of still shorter wave-length than the

original 2537 light (the necessary energy in quanta is furnished by the

absorption of light of longer wave-lengths that has occurred in the mean

time). VVe need merely connect 2P-> 1S to close our polygon, thus
obtaining in v = 1S — 2P, A = 1849, an emission that is of shorter wave

length than the primary light A = 2537. This emission was certainly
present in Fiichtbaner's experiment although the constructional limits
of the apparatus did not allow it to be observed.
Fiichtbauer's experiments are also instructive in that they bring into

evidence the finite “time of stay" of at0ms* in their excited states.
Actually there is

,

for example in the state 21),, a finite probability that a

further energy quantum will link up with 2]), only if the atom persists in
the state 2p, for a finite time.
There is the following fundamental difference between excitation by

electronic collision and excitation by means of vibrational energy. The
kinetic energy of the impinging electron may be greater and need not be

exactly equal to the amount that the atom requires for the transition to
the excited state; any excess beyond this amount remains as energy of
motion of the electron. On the other hand, in the excitation by means
of light radiation of frequency v the quantum hv must be exactly equal
to the energy-step of the transition to be excited. Light of a greater v

is just as ineffective as light of a smaller v. It is only when the transi
tion leads to the dissociation of the atomic configuration, that is to
ionisation, that a greater v is also effective. Only in this case is the
amount by which its hv exceeds that necessary for ionisation imparted
to the detached electron as “ photo-electric

"
energy of motion.

§ 4
. Continuous Transition from the Rontgen Series to the Visible Spectra

Whereas in the early stages of electromagnetic optics chief interest
was centred in the problem of bridging over the region between Hertzian
waves and heat waves, that is, between wave-lengths of about 1 metre to

1 microm., the experimenter now finds himself confronted with the task
of filling the gap that exists between the optical region, and the Rontgen
(X-ray) region. If we count the optical region, including the extreme
Schumann rays, as stretching to, say, 12001l and the Rontgen region
that is accessible to crystal analysis as extending to 129:, then the gap,
expressed in terms of volts by means of eqn. (1) on page 8

,

extends

from about 10 volts to_lOOO volts. The limits of the region between

A = 1200A and A = 12A correspond to the fundamental proper radia
tion Kn. of H on the one hand and of Na on the other; accordingly

‘In Chapter VII, § 3, we shall draw a similar conclusion from certain observations
of band-spectra.

23
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there are accumulated in the middle of the region the lines and bands of
selective absorption of the atoms C, N, and O, which can hardly be
omitted entirely from the course of optical radiation. It is clear that
just this region must present very great difliculties to the optical method.
We therefore expect the most important disclosures about this inter
mediate region from the method of electronic impact which has, indeed,

already fixed the characteristic fundamental points of the region (see
below, 20 volts for He, 16 volts for Ne, and 12 volts for A). Furthermore,

Foote and Mohler have succeeded in tracing the L-series* for example
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as far down as Ne. The fact that the optical method of the grating (cf.
p. 161) is competing at the same time and is being elaborated gives us
ground to expect that the gap still present will soon be bridged.
By extrapolating boldly and using the numerical values at present

available, Kossel has continued to map out even at this early stage the
general lines of connexion between Réintgen spectra and visible spectra.
We proceed to describe his instructive diagram t given in Fig. 89. The
horizontal axis gives the atomic numbers of the lower elements, whereas I

' Journ. Opt. Soc. Ann., Vol. 5, July, 1921.
1-Zeitschr. f. Phys., 2, 470 (1920). Experiments in the extreme ultraviolet now

allow us also to check Kossel’s figure empirically. Cf. Millikan, National Academy,

7 289, 1921 where for exam le the La-line is given for the elements A1 to Li.
1fossel's predictionsihave heregylbeen confirmed in every detail.
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following Moseley’s example, Kossel plots along the vertical axis the

square root of the frequency number of the principal line of each Rontgen
series; the root is chosen in preference to the frequency itself because
of its rectilinear course and the greater ease of extrapolation.
The line K11 has been observed as far as Na, for which Z=11, and

its graph may be extended without uncertainty as far as to He. Here it

ends exactly at the ultra-violet absorption line of He, which corresponds
to the removal of one of the two He-electrons from the ground orbit 1S
to the quantum orbit 2P; we see from Table 38 on page 350 that its wave
length is )\=569A, which corresponds to an excitation potential of 21'9
volts. This He-line is followed at once by the first line of the Lyman
series, which has already been described on page 226 as the analogous
line to the Ka-line for hydrogen. Its position is made certain by Balmer’s
formula.

Only the upper part of the graph of L, as far as Zn=30, has been
constructed from direct measurements of La. But for smaller values of

Z its course may be found with suflicient accuracy for our present pur
pose from the values of the combination of KB and K0. b

y calculating
from the formula: Lo.=KB — K11 (to be read in terms of wave-numbers)
which is approximately but not accurately true. The small difference in
height between the initial upper and the later lower course of the L-line
denotes the so-called “ combination-defect

” A = KB - K0. — La. (cf. Chap.
VIII, § 6, where it is explained as the difference of level M,M3). The
L-graph so constructed then tends (with a slight curvature to which
Kossel draws particular attention) directly to a characteristic Ne-point.
The latter corresponds to the excitation value observed by Franck and
Hertz and mentioned on page 338 (16 volts) ; it is to be interpreted as the
fundamental absorption line of the neon spectrum. The point is no
longer far from the ground line of Li, the first line of its principal series,

A = 6708, and it is connected with the point representing this line by a
dotted arc of a curve, of which the curvature is partly determined from
theoretical considerations. The radical change of the course of the L-graph
before and after neon illustrates the contrast between the gradual building
up of the L-shell and its completion from Ne onwards. The fact that
the construction of the L-shell (or of the L-ring) begins with Li and that
therefore the ground line of the Li-spectrum is to be ascribed to the

L-series fits in very well with the general picture of the periodic system

(cf. Chap. II, § 7
,

p. 108).
The third and lowest line of our figure represents the graph of the

Ma—llD6. This has been measured directly, as we know, only in the case
of the heaviest elements (as far down as Z = 66); as far as Z = 40, it

can be found sufficiently accurately from the combination of La and
But in the case of the lower elements Kossel finds himself compelled to
have recourse to the much more uncertain combination of KB and K-y.
Since K-y denotes the transition from the N-shell, and KB that from the
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M-shell, into the K-shell (cf. Fig. 47, which has, indeed, been drawn only
for very general conditions but is quite appropriate for our present
purpose), we see that actually K-y — KB represents a transition from
the N- to the M-shell, and is therefore equal, or more accurately, approxi
mately equal to the principal line Ma of the M-series (Fig. 47 allows us
to read this ofi directly). The points thus obtained on the M-graph,
owing to their derivation from the difference of two nearly equal
quantities, certainly scatter considerably, but they allow us to recognise
without constraint its general course, which tends directly to the argon
point, 12 volts (according to Franck and Hertz, see p. 338). The argon
point is to be combined with the point representing the principal line of

the Na-spectrum, namely the D-line, A = 5890K. The principal line
of the magnesium spectrum (ground member of the principal series of

simple lines) A = 285311 (cf. Table 37) fits in here. The small crosses

above the two last-mentioned points denote the corresponding series
limits (ionisation potentials). In the M-graph, too, the contrast with
the M-rings that are successively being formed at the surface of the atom

(for the elements from Na to A) and the completed M-shell that contracts

more and more in the interior of the atom becomes more and more
marked; the latter shell explains the steady course of the M-graph for

higher atomic numbers.
Thus the figure is instructive in various respects.
In the first place, it exhibits the similarity of character in the

emission of X-rays and of light rays. Each Rontgen series, as the

atomic number decreases, ends unmistakably in certain (ultra-violet or

visible) lines of the optical spectra.
Secondly, the figure brings out clearly the periodicity of the arrange

ment or constitution of the atom. Each of the branches of the graphs
to be drawn represents a sphere or a shell in such a way that each alkali

marks the beginning of a new shell.

Thirdly, the figure allows us to follow the gradual building up of each

shell from each alkali to the next succeeding inert gas. The building up
finishes with the inert gas and from this point onwards our graph line
travels along a straight line towards higher atomic numbers; between
the alkali and the inert gas it follows a law which is clearly diflerent.
The inert gas forms, so to speak, the corner-stone in the development of
the atomic structure and the turning-point for our spectroscopic graph
lines, quite in harmony with our reflections on page 103 about the

importance of the configuration of the inert gases.
But in other respects the figure is surprising and paradoxical.
It shows that in the case of Li the first H.S.-line corresponds to the
L-series, whereas in the case of Na it corresponds to the M-series. Thus
lines that are of an exactly similar type in the theory of series and that
are represented by the same symbol ls - 2p, appear as different types
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in the Rontgen scheme :- the one line is allocated to the L-series, the

other to the M-series.
This indicates that the analogy between the outer region and the

inner region of the atom is not complete. We have already, earlier,

encountered differences between these regions and we explained them by
means of the different characters of the quantum orbits (the outer orbits
are virtual, the inner orbits are constitutive and have their full quota of
electrons; see p. 190). In the visible region the lines may occur both in
emission and in absorption, whereas in the Riintgen region they can

occur only in emission. In the visible each series line has its particular
excitation limit which is lower than the ionisation limit; in the Rbntgen
region all lines of the same series have the same excitation limit and
this coincides with the work of dissociation (“Abtrennungsarbeit") for

the shell in question.
Concerning the allocation of quantum numbers we were able in the

visible region (§ 2) to characterise each kind of term by a definite value
of the azimuthal quantum numbers, for example, the s-terms were

characterised by n -= 1. It was originally thought that in the Rontgen
region, too, it would be sufiicient to distinguish each shell by one quan
tum number, for example, the K-shell by n = 1, the L-shell by n = 2,
and so forth. The facts presented by the fine-structure in the Rontgen
region show that this is not so (cf. Chap. VIII, §§ 5 and 6). Kossel’s
figure also brings this out clearly, for the M-series and the L-series,

just like the K-series, degenerate as the atomic number decreases to the

principal series of the alkalies, that is, resolve into a transition that

undoubtedly has the final state characterised by n = 1.
Bohr hints at the solution of this apparent contradiction (cf. p. 109)

in his letter to “ Nature,” mentioned on page 59; according to him, there
exists a “ quantum number" (we purposely express ourselves in indefinite

terms) that increases in the successive shells to a maximum, and
then decreases, in the manner formerly asserted of the distribution
member of the shells. The extreme atomic shell, whether it be the
M-shell as in Na, or the L-shell as in Li, always belongs to the “ quan
tum number" 1, and the ground line of the Rontgen series in question
can then in the case of each shell pass over without discontinuity into
the principal series of the visible region.
The transition between the inner and the outer region of the atom

would be brought out more clearly by drawing Kossel’s figure for the
terms instead of as in Fig. 89 for the lines. As already frequently
emphasised, the former are of greater fundamental importance than the
latter. The continuous linking up of the lines would follow as a corollary
from that of the terms. But at present we cannot yet sketch such a

diagram of terms without too great vagueness; our table of Rontgen
terms in Chapter VIII, §6, merely furnishes us provisionally with as
yet incomplete connexions.
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§5. The Permanency of the Multiplicities. Inner Quantum Numbers

In general, spectral lines have not a simple structure, but occur as
doublets, triplets, etc. (cf. p. 318); or, it is better to say that the terms
from which the spectral lines are composed, are in general not simple
but two-fold, three-fold, and so forth,

We illustrated this in § 1 for the case of the p-term. The p-term of
the alkalies is two-fold. Instead of mp we therefore wrote in § 1 :

Y
mp,-, where i = 1 or 2.

The p-term in the arc spectrum of the alkaline earths is three-fold (or
simple, i.e. one-fold). \Vhen it was three-fold we designated it by

mp,-, i = 1, 2, or 3.

Earlier, we purposely avoided taking account of the multiplicity of the
d-term (cf. p. 319).
We now assert: together with the p-term, also the d-term and the

b-term are two-fold or three-fold. Only the s-term, as already emphasised
on page 318, is always simple (one-fold). This similarity of subdivision
which pervades the p-, d-, and b-term we shall call the permanency of the

multiplicities. In extending this law to the b-term we are carrying out
an extrapolation which has hitherto been proved only for isolated ex

amples, and which, as we shall see below, could only be proved in

particularly favourable cases.
We next consider the various combinations of the s-, p-, d-, b-terms.

Concerning the H.S. and the II N.S., which are combinations of the
s- and the p-term, we have nothing essential to add to what has already
been said on page 319. On account of the simple structure of the s-term
and according to the two-fold or three-fold structure of the p-term, the
lines of these series are themselves two-fold or three-fold respectively.
The same is true of combinations of the s- and the d-term, which are in
admissible according to the selection principle, and which can be realised

only by external electric fields (cf. p. 333). Since in the II N.S.
v = 2p; — ms the multiplicity is in the constant term, the doublet or the

triplet lines have in this case constant A1/s. Since, on the other hand,
in the H.S. v = 1s — mp the multiplicity is in the variable term, the
Av's here gradually decrease as we approach the series limit, as, indeed,
the mp term itself decreases to zero (cf. p. 327). At the same time, since
the sign of the constant term is the reverse of that of the variable term,
the order of the intensities of the doublet and triplet lines in the H.S. is
the reverse of that in the II N.S. (cf. Fig. 82).
New phenomena, however, occur in the I N.S. v = 2p; — md,-. In

the doublet systems, i = 1, 2 and j = 1, 2, we are led to expect four lines,
corresponding to all possible combinations of i and j, whereas in the case
of the triplet systems, i = 1, 2, 3 andj = 1, 2, 3, we should indeed ex
pect nim. We shall see presently that the numbers 4 and 9 in reality
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become reduced owing to the fact that some of the components of the
line-configuration which are algebraically possible are inadmissible physic
ally. \Ve call the whole line-configuration a composite do-ublet or com

posite triplet respectively; these names are due to Rydberg.* \Ve
consider it advisable to avoid the usual term complete doublet or complete
triplet for the reason that it is just the incompleteness of the line-configura
tion, that is, the actual dropping out of certain of its possible components,
which is characteristic of its structure. The first explanation of this
structure forms one of the finest achievements of Rydberg; it was given
at a time when the systematic structure of series terms and their

multiplicities were still wrapt in obscurity.
Passing on to the quantitative aspect, we adopt the convention in

conformity with the usual practice that the terms are numbered within
each multiplicity in the order of their flld/g7l'l:i'lt(lB ; thus we always ‘r have

mp, < TILP2< mpg, md, < rndg < mda . . . (1)

(In doublet systems the third term of this inequality of course drops out.)
Furthermore, if we represent the terms graphically as energy-levels

(Energ-ieniveaus), then, according to the inequalities (1), the level p,(d,)
lies above the level p2(d;.), and, in the case of triplet systems, the latter
lies above p3((I,,) ; for the terms are defined as negative amounts of energy

—

2
-/
V
,

and so, from mp, <mp2 i
t follows for the corresponding energies

that W1 > W2, and so forth. \Ve may therefore also say: we number
the energy-levels within each multiplicity according to their heights, begin

ning at the highest level with i = 1
.

We next illustrate the structure of a composite doublet by considering
the example of the heaviest alkali Cs (in accordance with a general rule
to be discussed later the separation of the components is greatest in
this case, and thus observation is easiest). The first member of the

I N.S. is v = 2p,- — 3d_; for Cs, and lies in the infra-red near the point
‘Ann. d. Phys., 50, 625 (1893), cf., in particular, subsection HI. See also long

paper on " Recherches sur la constitution des spectres démission des éléments
chimiques."

OSwed(i1shKAcad?(my,
Vol. 23. A German translation is about to appear in

the series, " stwal s lassi er.”

+ The fact that the convention (1) may be made uniformly and consistently for all
m's and that the terms which are ordered together by the same i whilst m varies, namely,
mp; or mdi actually belong together by their nature may be inferred from the ap
proximate validity of Rydberg's method of representation in terms (p. 816). For from
the ordering (1) of the terms there follows a corresponding numbering and ordering of
the constants pi, di of the atomic field in Rydberg’s formula; and, conversely, the
former follows from the latter.
We might also number the terms, instead of according to their magnitude, accord

ing to the intemtiy, with which they occur in the combination spi. For it appears
that the term mp, is almost always the most intense, mp, the next most intense, and
mp“, when it is

present,
gives rise to the weakest component of the corresponding line

configuration. n the case of the Bergmann series of Cs this enumeration in order of
intensity would, according to K. W. Meissner (cf. below), differ from that in order of
size, and is to be preferred to the latter on systematic grounds.
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3/1.. The doublet difference arising out of the multiplicity of the 11-term
amounts, in wave-numbers, to

Av? = 2]),
— 2]), = 5541 cms.' 1.

That corresponding to the multiplicity of the d-term is:

Avd = 3d:
— 3d, = 97'9 ems.‘ 1.

'Fig. 90 has been drawn in the scale of wave-lengths. We begin with
the line 2]), - 3d,, A = 34892. It is a “principal line" of the com

posite doublet. Starting from it we mark
/H“ ofl in the direction of longer waves the

flw doublet difference Ava and arrive at “ the

.L j L» satellite" 2]), - 3112, namely, A = 36127.
Fm 90_ If we proceed from the latter in the direc

tion of shorter waves a distance Avp, we

arrive at the second main line 2112 - 3d2, A = 30100. But if we proceed
forward in the same way from the first principle line a distance Ar/1,, the

line 21)., — 3d, that is to be expected accordirzg to the algebraic scheme is

found to be missing ; it is slwwn as a dotted lime in the figure. Thus, of

the four lines given by the formula 211,:— 361,-,only those three occur for
which

j . . (2)

that is, the component 2112
- 3d1,for uhich
j <1‘ . . . . . (3)

is forbidden.
The fact that the doublet interval Avp, known from the II N.S. or

from the first member of the H.S., does not occur between the two

principal lines but between the satellite and the short-wave principal
line was felt as a serious obstruction earlier, but is now explained by
the quantum view of the whole line-configuration, as shown in Fig. 92.
'We also refer the reader to the analogous phenomenon in the case of the

Rontgen spectra, namely, to the line-group L (a'a,B), cf. page 169.

J,"2§Jyd|| 4'33

) J dw" 4"? i
<_‘- : 1 2 ;

"

F10. 91.

We encounter the same circumstances in a more manifold form in
the composite triplet. Fig. 91 represents the first member of the I N.S.
of Cd. (We choose Cd instead of the still further separated Hg, because
in the latter the d-term does not behave quite normally, cf. bottorn of

page 371.) In the case of Cd the triplet differences that arise from the
three-fold nature of the p-term are, expressed in wave-numbers,

Av}?
=
2112
— 2]), = 1171 ems.‘ 1

A1/ff’
=
21:3
—
2112
= 542 ems." 1
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in which the upper indices 12, and 23 indicate the origin of the
difference from the terms 1,2,pl, and p3, p2 respectively. On the other
hand, the three-fold nature of the d-term gives rise to the wave-number
differences

Avff = 3d2
— 3d, = 18 cms."1

Av? = 311'; - 3112 = 12 cms.-1

On occount of the comparative smallness of Av,, compared with Av], the
scale could not be kept uniform in Fig. 91, but it was necessary in the
interests of clearness to exaggerate the Am differences relatively to the

An/I, differences.

The figure shows that in the composite triplet, too, there are principal
lines, satellites, and missing lines (indicated by being dotted in the

figure). The principal lines are 2]), - 3d,, 2]), — 3d,, 2p3 - 3d,, and are
thus given by 11= j. The forbidden lines as before satisfy the inequality
(3), namely, 11> The totality of the admissible lines, principal lines,
and satellites is again determined by (2). The true differences Avp are
measured, not as between principal lines, but as between principal lines
and satellites, and partly occur twice ; the same applies to the differences

Ava. The whole line-configuration is composed, in a very characteristic

way, of 3 + 2 + 1 = 6 lines, whereas 1 + 2 = 3 lines are forbidden.

Precisely the same line-configuration of the doublet or triplet scheme
occurs, further, in all lines of the I N.S. and, indeed, in all combinations
np; — md,-. In proportion as the numbers n and m become greater, the
p-differences or the (I-differences become less (cf. p. 319, eqn. (4)). It
may happen that even in the first member of the I N.S. the d-difference
is so small that it cannot be resolved. The I N.S. does not then appear
as a sequence of composite but of simple doublet (or triplets), just as in
the II N.S. This is so in the case of Li, for example. Hereby the
following difference between the doublets of the II N.S. and the I N.S.
was shown to exist by the measurements of Kent* (carried out in Till)
ingen) : whereas the doublets of the II N.S. fulfils accurately the law of
constant differences of frequency (p. 319) and gives the exact difference

Av,,, the doublets of the I N.S. remain slightly below this value and only
approach it in the case of the later members. Kent finds from the first
two members of the I N.S. ‘

Av = 0'306 and 0-326 cm.-1

and, on the other hand, from II N.S. he gets
i

Av = 0'34 cm.'1.

The reason of this is clear from Fig 90. In the I N.S. the doublet differ
ence is measured as the distance from the short-wave principal line to
the centre of gravity between the long-wave principal line and its satellite

'Astrophys. Journ., 40, (1914).
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(which is not distinct from it). This distance or interval is less than the
true doublet interval A1/P, but approaches it in the higher series members
in which the (unresolved) d-difi"erence becomes smaller and smaller.

Generally, we see from this example that the Law of Constancy of
Frequency Difierences (or VVave-number Differences) is only a limiting law

(Grenzgesetz) in the case of the I N.S., that is, one which is the more
nearly obeyed the higher the number of the member in the series; and
the exact structure of the I N.S. can be described only by the co-operation
of the two differences Av, and Av,,. This law is directly and strictly
valid only in the case of the II N.S. This circumstance has not, however,
prevented it from being of great practical utility, when applied to the
I N.S., for the classification of spectra in all those cases in which the
accuracy of observation allowed the p-difference but not the d-difference
to be resolved.

The “ Permanence of the Multiplicities
"
exhibits itself in the structure

of the composite doublets and triplets in the ‘circumstance that a doublet

(or triplet) p-term always combines with a doublet (or triplet) d-term,
but that a doublet p-term never combines with a triplet d-te-rm 0-r vice-versa.
In the case of the hydrogen fine-structures, with which We shall deal in
Chapter VIII, § 4, the position is, however, different; here, for example,
in the Balmer series there is superposed on the doublet structure of the
first term R/2* a triplet structure that arises from the second term B/32.
This in no wise contradicts the law of permanence of multiplicities at

present under consideration since, as we made clear from Fig. 86, the

hydrogen fine-structures do not correspond to the structures of the terms
not of the hydrogen type, but rather to their various series types.
Does the law of permanence apply only to the p-te-rm and the (1-t-erm and

not to the b-term ? When the author* first formulated this question, no
certain data were available which might have given an answer. In the
meantime this gap has been filled. Only, indeed, in the case of the
heaviest elements and when the resolution is very great, may we expect
to find definite signs for the two-foldness or three-foldness of the b-term.
In the case of the lighter elements and when the resolution is small the
multiplicity of the b-term must practically vanish.
And now Saunders 1' has recently succeeded in showing that the

Bergmann lines of the triplet arc spectrum of Ba, 1/= 3d,'- mb,-. are com

posite triplets consisting each of six lines. Furthermore, K.\V. Meissner I
has measured composite doublets in the B.S. of Cs, which according to
the position of their satellites do not quite agree with what is expected,§
but at least show the characteristic number of two principal lines and
one satellite and exhibit the relationship between their intervals and the

' Ann. d. Phys., 63, 228 (1920,) 1-Astrophys. Joum., 51, 23 (1920).
$Ann. d. Phys., 65, 378 (1920).
§The anomaly that has arisen here vanishes if we number the I)-terms not accord

ing to size but according to intensity (cf. foot-note 1 on p. 359).



§ 5. Permanency of Multiplicities. Inner Quantum Numbers 363

difference A1/d= 3d,
— 3d,. Popow* has revealed a composite Bergmann

doublet of unusually great resolution in the doublet spark spectrum of
Ba ; it has the wave-number difierences

An/,1= 311., — 3d, = 801 cms.",
Av, = 4b., — 4b, = 225 cms.'1.

We shall see in the next section that in this very case, in which the
two-foldness of the Bergmann term was first observed, the conditions
for observing them are as favourable as can be desired. For, in the
spark spectrum, the term difference (here Av,,) is, in round numbers, four
times as great as in the arc spectrum.
Thus the permanence of the multiplicities is, as far as the Bergmann

terms, a fact that dominates the whole structure of systems of the
doublet and triplet lines. \/Vhat physical meaning are we to attach to
this? What circumstances bring about the subdivision of the energy
levels of the atom and ensure that the number of subdivisions remains
constant in the various series? In § 2 we proposed the question : VVhat
circumstances produce the separation of the one hydrogen series into
the various series or types of series in the case of the elements not of the
hydrogen type? We there answered this question thus: These circum
stances are due to the aclrlitional electrical field which is superposed on
the simple resultant Coulomb field arising from the nuclear charge and
the electronic charges; by taking this into account we succeeded in con
firming, besides the number and sequence of the various series, also the

general (Ritz) character of the series formulae. In the present case, every
thing urges us to enlist the aid of an intra.-atomic magnetic field such as,
in particular, occurs in the intimate relationship in which the problem
of term multiplicities stands to the problem of the anomalous Zeeman
effect. This magnetic view of the origin of term multiplicities is com
pletely confirmed by observations of Paschen, which are connected with
the problem of forbidden lines in the composite doublet and triplet and
wherein these lines are called forth by a magnetic fieldn‘
Another circumstance seems to indicate that the intra-atomic magnetic

field that is responsible for term multiplicities is produced by the circu
lation of the outer electrons of atoms. For in the case of equal valency
the multiplicities are of the same type: they are doublets in the case of
uneven, and triplets in the case of odd valency (cf. next section). Now
since the valency is given by the number of outer electrons of the atom,
the origin of the inner magnetic field also seems to be founded on the
number and the motion of the outer atomic electrons. We shall sub
stantiate this further in the appendix to § 7; for the present we shall
confine ourselves to a rather qualitative theory discarding special ideas.

‘Ann d.Phys.,-15 112 (1914).
+F. Paschen and Back, " Lmirmgruppm magnetisch vervolZstandigt." Zeeman

Jubilee Issue of the Dutch journal “ Physica,” 1921, p. 261.
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The point from which we launch our attack is given by the forbidden

components of the composite line-configuration. These components
imply that the azimuthal quantum number n introduced in § 2 does not
suflice for all purposes, For all p-levels it is equal to 2, for all d-levels
it is equal to 3, and so forth, and it cannot therefore efiect a determinate
selection between the levels pi and (Z

,-
.

So that if we wish to exclude the

forbidden lines by a principle of selection, we must, indeed, introduce a

new quantum number; we call it the inner quantum number and desig
nate it by n.:.
In Fig. 92 we illustrate our procedure for the case of doublet systems.

The ground level s is lowest (greatest negative energy and highest posi
tive term*). To i

t there corresponds the azimuthal quantum number

n= 1
. For the ground orbit and indeed for all s-terms we also set n,== 1.

u
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F10. 92.

The p-levels lie above it (have smaller terms *) ; beginning from the top,

we number them pl and p2. Their azimuthal quantum number is n= 2.

We assign to them the inner quantum numbers

p1...n,-=2, p2...n,-=1
and this is to hold not only for the term 2p but for all terms mp, that is,

independently of the radial quantum number 'n'. We draw the ti-levels

above the 1)-levels; they are less separated than the latter, and the b-levels

still less so. Their inner quantum numbers are, as we know, n= 3 and

n=4, respectively. \Ve set down as azimuthal quantum numbers

£11.. d2...’)l,'=-=2

b
l . . b
2 . . . 11,-= 35

F
u
n

1
5
.0
0

and generally for the azimuthal quantum number n: _

...n;=n, ...n;=n—1.
* Cf. also what was said in foot-note 1

,

p. 341, about Al, In, Tl.
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We next formulate our Selection Principle of Inner Quantum Numbers.
Whereas the azimuthal quantum number can in general undergo only
the transitions

n -—>n 1 1

the following transitions, and only these, are possible for the inner

quantum number:
n,- -—>n,- T. 1, n, -—>n,- . . . . (4)

Thus, in this case, An, = O is not forbidden.
This rule of selection is to be supplemented by a rule of intensity: of

the three transitions (4) that one is to occur with greatest intensity which

takes place in the same direction as the transition to the azimuthal quantum
number n; and the intensity is to increase so much the more the more the
type of the transition of ni differs from that of n. Hereafter we shall

thus speak of a “ strong," a “less strong” and a “ weak transition."
Let us now consider from the point of view of this principle of

selection and of this rule of intensity the combinations (p,d_,-) in the
I N.S. of the doublet systems, such as are depicted in the middle part
of Fig. 92. The azimuthal quantum number hereby falls from the value

3 (ll-term) to 2 (p-term). Accordingly we have two
“ strong" transitions

of the inner quantum number 3 —>2 and 2 —>1, which actually corre

spond to the two principal lines (pldl) and (p2d.,), i = j. The transition
2 -> 2 of the inner quantum number, which belongs to the satellite (p1d2)
is “less strong”; the combination (pzdl), i> j, is forbidden because, in

it
,

the inner quantum number would make a jump of two units, from 3

to 1
. Exactly the same holds for the combinations (d,-bj) of the

Bergmann lines, cf. the upper right half of the figure. Here, too, the

two principal lines correspond to the transitions n.--> n,- — 1
, and the

satellite corresponds to the transition n,-->n,; the combination (d2b1),

is also forbidden because i
t would denote a transition from 4 -—> 2.

Finally, concerning the combination (sp,-), in the H.S. or the II N.S.,
the two transitions 2 -—> 1 and 1 —> 1 are allowable, but are to be expected,
according to our principle of selection, to be of varying intensity. In
the case of Na we have, for example, for D1, A = 5896, and D2, A = 5890

(cf. Fig. 82):
D2, v = 1s - 2p,, (n,- = 2

) -—> =

1
)} (5)

D1, v = 1s — 2p.,, (n; = 1)->(ni = 1
)

' '

Actually, according to many exact measurements D2 is more intense than

(indeed, exactly twice as intense as) D1. In the higher members
m = 3

, 4 . . . of the H.S. of the alkalies the difference of intensity of
both components, as Fi'1chtbauer* has shown, increase regularly in such

a way that here in place of the ratio 2 : 1
, we get, say, 3 : 1
,
4 : 1 . . .

It is clear that our above remarks fix only the di[ferene-es An; of the
inner quantum numbers and not their absolute ralues n,~. It is possible

" Ann. d. Phys., 43, 96 (1914), in conjunction with W. Hofmann.
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to alter all the n,--values of the figure by adding the same number through
out, without affecting our conclusions about the possible existence and

intensity of the lines. But we shall see that the selection here made
concerning the absolute values 'n,: is also maintained in the phenomena
of the Zeeman effect (§ 7).
We now come to the triplet systems. The scheme of inner quantum

numbers is now to be extended in the manner shown in Fig. 93. In the
highest level of each term the inner quantum number n,: again agrees
with the azimuthal quantum number n and thence onwards decreases in
two steps by 1 each time, that is in the p-levels from 2 to O, and in the
d-levels from 3 to 1, and so forth.
The scheme of the composite triplets (p,-d,-) in the I N.S. here also

follows naturally and satisfactorily. Principal lines arise from “ strong
"
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FIG. 93.

transitions, in which n,- decreases by 1, and thus moves in the same sense
as the azimuthal quantum number 11.,which simultaneously decreases
from 3 to 2. Primary satellites arise from the “ less strong

"
transitions

An; = 0; the secondary satellite (plda) arises from the “weak” tran
sition 1 -> 2 of the inner quantum number, which occurs in the reverse
direction to that of the transition 3 -> 2 of the azimuthal quantum num
ber. The forbidden lines, according to their indices given by i> j ,

belong to transitions in which 11,,jumps by two or, in the case of (padl) by
three units. It is characteristic that in the investigation of Paschen men
tioned on page 363, the line (psdl) was much more difiicult to call up
than the two other forbidden lines. The ground for this is evidently that
when pad, is produced by magnetic means our principle of selection is

infringed to a much greater degree (jump of three units) than in the case
of the other two lines (jump of two units).
Exactly as in the I N.S. so in the B.S. the type of the composite
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triplet may be analysed by inner quantum numbers, as indicated briefly
in Fig. 93.
In the combinations (sp,-) in the H.S. or the II N.S. no forbidden

transitions occur, but the intensities grade themselves in the sequence
(spl), (sp,), (spa), corresponding to the circumstance that in the first of
these combinations we have a “ strong," in the second we have a “ less
strong," and in the third a “ weak" transition ; actually in the last tran
sition m alters in the reverse direction to n, and indeed in the H.S. as
well as in the II N .S., whereas in the first transition it alters in the same
sense.

Very interesting new material for the question of selection is further
more given by the combinations Q

7
’

triplet and simple terms, such as are
usual in the whole group of divalent elements, the alkaline earths and re
lated elements. We here recall only the resonance line of Hg, A = 2537,

v = 1S — 2112, and the analogous lines given in Table 37 for Zn, Cd,

Mg, . . . Ba. As previously we denote the simple terms throughout by

S
,

P
,

D, and the triplet terms by s, pi, di. The following scheme gives
us the key to these combinations:

Allowed types: S112, Pd2, Pda, p,D, p2D.
Forbidden types: Spl, Spa, Pd,, p3D.

For example, the following have been observed (cf. Dunz) :
2P — met, and 2P — m(l3 for m = 3 in the case of Zn,
and for m -= 3, 4, 5, in the case of Cd and Hg.

2p, — mD and 2p, ~ mD for m = 3 in the case of Cd,
for m = 3

,

4
,

5
, 6 in that of Hg.

The next step is to assign to the simple terms such quantum num
bers as make the exclusion of these lines intelligible in the light of
selection. There can be no doubt about the azimuthal quantum num
bers: we have to set n = 1

, 2
,
3 for S, P, D. That, in addition, inner

quantum numbers are also effective in the simple terms is shown directly
by the forbidden combinations. In selecting these we follow Landé’s*
example. We set n,; = O

,

1
,
2 for S, P
,

D. We see at once then that
(Pd,) and (p3D) are forbidden. As illustrated in Fig. 94, (Pdl) would be
the transition 3 -> 1, (p3D) the transition 2 -> O

.

The combination (Spl)

is also forbidden, according to our principle of selection, since it likewise

corresponds to the transition 2 -> O. A certain difiiculty arises, however,
in the exclusion of (S111); to exclude this combination we must follow
Landé by asserting definitely that the transition O->0 is not “less
strong," as would be the case according to our general rule of intensity,
but must not occur at all. The fact that, on the other hand, the com
bination (Sp2), in the case of Hg the line A = 2537, occurs intensely and
dorninatingly is in complete accordance with our general rule of intensity,

* A. Landé, Physikal. Zeitschr., 22, 417 (1921).
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since we are here concerned with the “ strong" transition 1 ->0 which
occurs in the same sense as the azimuthal transition. But the conditions
of intensity (p1D) : (p2D) and (Pdg) : (Pda) are verified by observation to
be such as our rule of intensities leads us to expect and as are indicated
in Fig. 94. (p,D) belongs to the “ weak" transition 2 —>2, (p._,D) to the
“ strong" transition 2 -> 1; accordingly, is observed throughout to

occur more intensely than (p,D). On the other hand, (P112) belongs to
the “ strong" transition 2 -> 1, (Pris) to the

“ weak
"
transition 1 -> 1 ;

and actually, (P412) is throughout observed to occur more intensely_ than

Pd ).(

it perhaps still more striking confirmation of the fruitfulness of'our
inner quantum numbers is furnished by certain combinations and

(p,~p;») that occur between the tripletL L systems of the alkaline earths. The

‘l
l i___'i'"' terms p,-, d
; in these combinations are

a d
z

those that we already know from the

d
z

D
P
i

P
2

2 p
a

composite triplets of the I N.S. ; the
terms 1

9
;,

d
l, are new terms which

combine with the former in spite of
the fact the jump in the azimuthal

quantum number is not 1 1 but 0.
How this is to be viewed in the light

P 1 of Bohr's Correspondence Principle
will be discussed in Note 10

Types of this sort were first de

1 3 0 scribed by Rydberg* in the cases Ca
Fm. 94. and Sr, and by Popow 1

' in that of
Ba, under the heading “ skew-sym

metrical combination groups." At the present time they are being studied
by R. Géitzei in Tiibingen in connexion with their Zeeman types. They
are not composed, like the composite triplets, of 3 + 2 + 1

, but in the
case of of 2 + 3 + 2

, and in that of pip} of 2 + 3 + 1 components.
According to G6tze their structure may be understood as follows from the
scheme of inner quantum numbers.
In Fig. 95 we depict the group (d,d_;.). The levels d'1d zds, being initial

levels, lie higher than the levels d1d2d3 that are final levels. As was done
earlier, the azimuthal and the inner quantum numbers have been written
along the side of the scheme of levels. There are two transitions to (Z

,

(n; = 3), namely, the one starting from d'1, ni = 3
, and the other from d-'2,

n,- = 2
. The transition d'3 ->d1 is forbidden, because it would denote a

jump of two units in the inner quantum number. All three transitions to

(1
2 are allowed, but again only two to d3~ The jump cl
’, -> (Z
3 is forbidden

,-
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' Ann. <1.Phys., 52, 119 (1894). +Ibid., 4,5, 156 (1914).

3
, The author is indebted to Messrs. Paschen and Giitze for kindly communicating

to him the result of these investigations.
‘
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because the inner quantum number would have to jump by two units 2 all
these circumstances agree with observation. We see that the structure of
this line configuration differs in a characteristic way from the composite
triplets of the I N .S. The index rule i> j which was set up for the
latter and which sifted out the forbidden components, loses its validity,
whereas the -rule of selection of inner quantum numbers holds mui-iminished
sway.

But our rule of intensities is also shown to be fully trustworthy. As
the azimuthal quantum number n is equal to 3 in the initial and the final
state, and its jump An is therefore equal to O, those transitions of the
inner quantum number n,-, for which Am = O, are now to be regarded as
occurring in the same sense as n. Here actually, as denoted in Fig. 95,
the combinations (d,d’,), (d,d'2), (d,,d',,) are

the strongest. In the middle group ((1211)) L I l
the "satellites" lie on both sides of the di 3
ll principal line

”
(d2d'2) ; in the group (dad;-) 3

l
da 2

we have one satellite on the sho-rt-ware
d,

side, that is fundamentally different from
3 1

the type of composite triplets in the I N .S.,
but completely in agreement with our rule
‘of intensities for inner quantum numbers.
In the combination the same d‘ 3

“ skew-symmetrical type
"
occurs, but with

the following characteristic difference: 3
d

whereas in the case of (d,dj) the line (dad's)
2 2

belonged to the three principal lines, in the da i

case of (p,-pg-) the line (p,,p’,,) is nzissing. FM 95_
To account for this we must note that here
the inner quantum numbers are not 3, 2, 1 but 2, 1, 0 (cf. Fig. 93),
so that the combination (p3p',,) signifies the transition 0 -—>0. According
to our observations of the Hg-combination Spa this transition is to be ex
cluded by a special convention. Thus this special convention is also found

to be trustworthy under entirely new conditions. The absence of the line

pap’, brings it about that, as we said above, the group (p,-p_',) consists of
2 + 3 + 1 lines and not, like the group of 2 + 3 + 2 lines or, like
the composite triplet in the I N.S., of 3 + 2 + 1 lines.
If we now add that the inner quantum numbers of the triplet and

simple lines in the anomalous Zeeman effects 7) prove to be quite as

trustworthy as was just emphasised in the case of the doublet systems,
we can hardly doubt any longer that the quantum phenomena here in

volved are real. Nevertheless we must emphasise that all the preceding
regularities denote rather a representation of the empirical facts arranged
according to a theoretical view-point than a true theory.
The following data about the size of the term-multiplicities have a still

more empirical nature :—
24
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(a) The difference of level of the doublets of the p- and the (I-terms.

Extending the nomenclature of page a little we set

A1/2,, = 2])2
— 2121, Ava, = 3(l2

— 3611, A1/3,, = 31).:
— 3]),

and from Dunz's tables we have

Tsann 39.

‘ I

Av”, At...

1
M,

10‘-*-Z-751' 100"Z”;;'P

B Li 0'34 —— —~ 0'38 1'26
11 Na. 17'21 -— 5'47 1'42 1'29
19 K 57'90 1'65 20'-34 1'61 O 84
37 Rb 237'7l ? 77'57 1'74 0'47
55 Cs 554'1O i97'90 1Bl'O7 1'83 0'33

The first column shows that the p-diflerence, Av”, increases rapidly with
the atomic number: whereas this ditference can just be distinguished in
the case of Li, it is of macroscopic size in the case of Cs. The same is
true to a still greater degree of the d-difference, Av“, which is not yet
distinguishable in the case of Li and Na. For the rest, it is considerably
smaller than the p-difference, being not only smaller than Av”, but also
smaller than Av3,,.
Let us now consider the last columns of the table, in which we have

compared the p-difference with the atomic number Z. We see that it
increases a little more rapidly than Z“ but less rapidly than Z3. We can
not fail to recognise that it depends in a regular way on the atomic num
ber. This circumstance points directly to the co-operation of the inner

TABLE 40

‘

AV”) A,,3d 1055;-F» 100522?

1s Al . . 112-0'1 1-32 so 5-1
4s In . . l 2212-63 22-59 9-2 1-9
s1 T1 . ; 7792-45 s1-64 11-7 1-5

1

configuration of the atom in the resolution into terms. Whereas in other
cases the nuclear charge is screened by the electronic cloud in the case of
the visible spectra (this corresponds to their origin at the surface of the

atom), it shines through this cloud, as we remarked on page 101, in the
resolution into terms. A comparison showing the analogy with the
doublet dififerences in the Rontgen region which arise at the centre, but
which increase essentially with Z‘, immediately suggests itself (cf. p. 176).
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The same remarks may be applied, both as regards the relative

magnitudes of the p- and the d-differences, and the dependence on the
atomic number, to Table 40 dealing with the earths Al, In, Tl, which
are characterised by systems of doublet series.

Here, too, the p-difference increases approximately proportionally to
Z2 and at any rate less rapidly than Z“. For the same Z the p-difference
is essentially greater than in the case of the alkalies.

(b) The difierences of level of the triplets. In the triplet arc spectra
of the alkaline earths and of the related elements Zn, Cd, Hg we have
two differences of level for each term; we designate them as on

page 360. These, too, increase in each of the two columns regularly
with the atomic number, and indeed, as the following table shows, they
again increase more rapidly than Z2 :-

TABLE 41

Av}: Avis
105!'i'i
Z2 Al/:1: A05“

9&5’
Avis

Av}:

Ari’

12 Mg 40'92 19'S9 2'85 —- — 2'06 —
105'99 52'11 2'65 22'13 13'87 2'05 1'6
39444 187'05 2'74 100'68 59'99 2'10 1'8
B78"! 370'-3 2'83 381'l 181-5 2'38 2'1

30 Zn 388‘9l 189'78 4'31 4'55 3'40 2'05 1'34
48 Cd 1171'05 541'86 5'10 18'26 11'72 2'17 1'56

4630‘31 1767'19 7'25 34'90 59'94 2‘G2 0'59

20 Ca
38 Sr
56 Ba

80 Hg

The last two columns that have here been added to the tables of
doublets are of interest. They show that the ratio of the two p-differences

is
,

fairly regularly and with only slight fluctuations, nearly constant
within each of the two columns of elements, in such a way that

2P2
“
2171E 2i2])a _ 2P2l'

This behaviour differs characteristically from that of the hydrogen
triplet which we shall consider more closely in Chapter VIII, §3,
eqn. (8). In the hydrogen triplet the ratio of the successive triplet
intervals is exactly as 1 :3, whereas in the present triplets that are not
“ hydrogen-like

”
the ratio is approximately as 2 : 1. Actually the inner

cause of the former line configuration (namely, relativistic change of

mass) i
s quite dilierent from that of the latter configuration (inner mag

netic field).
The circumstances are similar in the case of the d-differences of the

triplets; here, too, the quotient 3d2 — 3d, :3d3
—
3612 i

s fairly constant

and greater than 1
. Only Hg exhibits an anomalous behaviour, in that

the first d-difference is smaller than the second. For this reason we have
chosen as our example in Fig. 91 not Hg but Cd.



372 Chapter VI. Series Spectra in General

In the appendix to § 7 we shall return to the question of the magni
tude of this ratio (2 : 1 in the case of the p-term, and about 3 :2 in that
of the d-term).
Pronounced systems of triplets occur not only in the second group but

also in the elements O, S, Se of the sixth group of the periodic system.
The p-difierences here exhibit a similar behaviour as in the second group,

namely, there is again an approximate proportionality to Z2 and the ratio

of the first to the second triplet difference is approximately constant. The

d-differences are not resolved.

TABLE 42

‘I5 I2

l

Al/;,"' Alli,“ 100Aé’€ $1

8 0 . 3-38 2'76 5'3 1'23
16 S . 17-90 11~26 7'0 1'59
33 Sc . 103-66 44'82 9-0 2'32

§6. Spectroscopic Law of Displacement and Law of Exchange

(a) Law of Displacement. In practical spectroscopy we distinguish
between spark spectra on the one hand and flame and arc spectra on the
other. Speaking generally we may say that spark spectra require strong
provocation such as is offered by condensed discharges, whereas flame
and arc spectra occur when the excitation is less, namely, thermal or
electric.

The line of demarcation between these two types of series has not
been sharply drawn by experiment. The spark lines often occur in
certain parts of the arc even when the excitation is only ordinary but

they then become “enhanced
" in the stream of sparks. On the other

hand some arc lines are as a rule present in the emission of the spark.
From the point of view of theory, however, we must differentiate by

a simple and unambiguous definition between arc and spark spectra. In
our treatment of the series scheme of § 2 we assumed that the atom under
consideration was, as a whole, neutral ; the jumping electron (cf. p. 325)
is then confronted by an atomic trunk of which the eflective charge is
+ e. Following Bohr, we associate this case with the flame and are spec
trums. On the other hand, according to Bohr, to produce a spark spec
trum we must have an ionised atom and (in the case of simple ionisation)
an atomic trunk with an effective charge + 2e. We shall here always
take spa/rk spectr-zmz as the system of emission of the 'i0n/ised atom in the
sense denoted by this theoretvical distirwtion. For the present, only cases
of simple ionisation come into question, since only such have been ob
served—in general we shall hold in reserve for the system of the simply
ionised atom the name “first spark spectrum,", for that of the doubly
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ionised atom the name “ second spark spectrum," and so forth——in case
these terms should prove necessary later.
The simplest examples of spark spectra in this sense are given by the

emission of He+ in the Fowler and Pickering Series (cf. (6a) and (7a) of
p. 207). The simplest examples of spark spectra of the second order
would be realised, if observable, by the emission of Li+ +. The general
form of representation of terms for a doubly charged atomic trunk is (cf.
Note 13, eqn. (18)):

4R
(m’k*'")=[m+lc*+K*(m,lc"...)+...]” ' '0)

The occurrence of 4R in place of R is an indication of the double
charge of the atomic trunk. The coeflicients k*, K* . . . differ, as a
rough calculation shows (cf. Note 13), from the coefficients k, K . . . of
eqn. (6) on page 328 in an easily expressible manner.
We next assert that the spark spectrum of each element is in structure

the same as the arc spectra of the element that precedes it in the peri
odic system, that is, that it consists of doublet, triplet, or so-called non
series lines, according as the arc spectrum of the preceding element is
composed of doublets (like the alkalies), or triplets (like the alkaline
earths), or of lines that apparently succeed one another without regularity

(like most elements at the right end of the periodic system, in particular
the inert gases). Here we have enunciated a Law of Disp1acement*
which, like the law of displacement of radioactivity, leads from one ele
ment of the periodic system to a neighbouring element.
The meaning of our displacement la_w as applied to our model of the

atom is obvious. Each column of the periodic system is
,

in general
language, characterised by a certain valency, or, in our model, by a
certain number of external electrons. On the other hand, we know that
the line-structure of the spectra is without exception the same in each
column of the series. If now the atom loses one electron by ionisation
then it becomes a member of the preceding column in its external be
haviour, and thus, as our law of displacement asserts, it will conform in
the structure of its lines with the members of the preceding column;
numerically it will be best comparable with the element that immediately
precedes it in the periodic system.
According to its origin in theory, our law thus uses as its starting

point only the most general feature of the atomic model, namely, the
gradually increasing number of external atoms in the periodic system. It

is completely independent of the particular interpretation of the series
terms and their allocation to the quantum numbers. To show on what

it is based empirically we shall run through the groups of the periodic
system.

' W. Kossel and A. Somrnerfeld, Auswahlprinzip und Verschiebungssatz bei den
Serienspektren. Verhandl. d. D. Phys. Ges., Jahrg., 21, 1919.
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1. Alkalies and Inert Gases.—'l‘he doublet system of the alkalies is a

typical flame spectrum (“sodium-bead ") or an arc spectrum; it is thus
derived from the neutral and not from the ionised atom. The disruption
of an electron subjects the atom of the alkali to the greatest conceivable

change. It causes the atom to move over into the column of inert
gases, that is

,

from the beginning of one period to the end of the preceding

period. Spectrally this must signify the transition from the simple and

transparent conditions of the beginning of the period to the complicated
conditions at the end of the period in which there is an abundance of
lines. VVe regard the fact that this transition actually occurs as an initial

(at present, indeed, only qualitative but impressive) proof of our law of

displacement.

Eder and Valenta.* found in 1894 that Na and particularly K when
subjected to violent sparking emit besides the series spectrum a new

spectrum very rich in lines, which lies predominantly in the ultra-violet,
and in which it has not yet been found possible to discern series relation

ships. Later, in 1907, Goldstein 1
'

succeeded in selecting the conditions so
that the non-series lines of the alkalies appear pure and without the ad
mixture of the arc lines whereas the spark spectra of the alkalies that
have been photographed in the usual way exhibit both types of lines

simultaneously, and he has very clearly asserted that these (non-series)
lines arise from an initial state unconnected with these series, and so
he suggested for them the name “ground spectra."
The special conditions which Goldstein chose in his experiments,

namely, in which he intentionally forced the greatest possible density of
current through matter that was as thinly divided as possible, indicate

quite clearly that we are here dealing with emission from atoms which
have already been once ionised, that is, that we have that for which we
above chose the name “ spark spectrum

"
in the narrower sense.

Goldstein's observations were restricted to the visible region. Eder's

pupil Schillingerf. confirmed the abundance of lines, already remarked by
Eder and Valenta, in the ultra-violet which is peculiar to the ground

spectra, and which is of importance for our point of view.
The more detailed conditions under which the ground spectra are ex

cited agree well with the ideas that we have formed about the arrange
ment of the electrons in the atom. The outer electrons of the inert

gases, if we judge from their chemical inactivity, are much more tightly
bound than the (chemically) particularly active outer electron of the _a

l

kalies. The same is to be conjectured of the electronic configuration
which the outside of the ionised alkaline atom forms after the outer
valency electron has been removed. Thus, in contradistinction to the

' Denkschr. Wien. Akad., 61, 347 (1894) ; cf. also Beitriige zur Photochemie, p. 109.
Wien, 1904.
1-Verhandl. d. D. Phys. Gcs., 9, 321 (1907).i Wiener Sitzungsbei-., 118 [Za], 605 (1909).
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series spectra of the alkalies, the ground spectra must be comparatively
diflicult to excite, and, in fact, the difference between the possibility of

exciting the arc and the spark spectrum is in the case of no other elements
so high as in that of the alkalies.
2. Alkaline Earths and Alka1ies.—In the case of the alkaline earths

three series systems are known : simple lines, doublet, and triplet

systems.

Of these, simple and triplet systems form plenty of combinations with
each other (cf., for example, the conclusion of the preceding paragraph),
but not a single one with the doublet system. Further, they are excited

by electronic impact with the neutral atom (cf. § 3, p. 347), and, finally,
they may be formulated in terms of the simple Rydberg number R. All
this proves that simple and triplet terms are associated with the same
atomic state, namely, the neutral state. The suggestion of putting our
law of displacement to a severer test arose out of a letter by Paschen, in
which he remarked that “ the doublet systems of the alkaline earths come
out relatively much more intensely when excited by sparking than in the
arc." This remark led us to regard the doublet system of the alkaline
earths as their spark spectrum, and to bring it into relationship with the
doublet system of the alkalies. To support this view it was necessary to

study the quantitative expressions for these doublet series, and to try to
discover whether, in accordance with equation (1), Rydberg’s number R
in it is to be replaced by 4R. It became manifest that this question had
already passed through an interesting stage of historical development.
Ritz * calculated the doublet series‘of Ca, Sr, and Ba according to his

series formula (that is
,

with R, and not with 4R), but at that time he had
at his disposal only an insufficient number of lines. More detailed
measurements and calculations were made by Lorenser.-f Following in
the footsteps of Saunders, I he showed that Ritz’ formula is inappropriate
for representing these series, and he calculated the doublet terms by
means of the primarily empirical formula

A

(mi I”
) =

(Tm
. . . . (2)

in which we see that R has been replaced by a constant A that may be
chosen arbitrarily. Lorenser then found that he obtained a satisfactory

expression, especially for the higher series lines, by assuming the follow

ing values for A :—

1“ I I NS. A = 4233766 C f
I NS. A = 4234160

Ag lI1 NS. = 4132026

8
'

ll]: NS. = 4215590

J’ I NS. A = 4108361) I NS. A = 390431
S!‘ . B3‘

{ rlI1 NS. = 415157 0 I1 N.S. =-1397790

These values are all more or less near 4R = 438948.

" Physikal. Zeitsclm, 9
, 521 (1908). 1
' Dissertation, Tiibingen, 1913.

IAstropliys. Journal, 35, 352 (1912).
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As this agreement is of a purely empirical nature and was found with
out its author being prejudiced in favour of a particular theory (Bohr’s
theory was not yet available for Lorenser), it is so much the more con
vincing.
In the case of Mg the question was again taken up by Fowler* in

1915, and then, indeed, under the direct influence of Bohr's theory.
Fowler calculated certain new Mg-lines (e.g. the Bergmann line A = 4481),
which he had found, as spark lines and compared them with the spark
line of.Het, A = 4686, corresponding to the Bergmann series.
It is of interest to mention a chance remark by Fowler to the effect

that there is no relationship between the constants of the spark doublet
lines and those of the arc lines of the same element. On the contrary,
it must be emphasised that the relationship is not to be sought between
the spark and the arc lines of the some element but between the spark
lines of one element and the arc lines of its predecessor.
Finally, E. Fues,’r adopting the view given by the law of displace

ment, has examined arithmetically the whole data of the doublet spectra
of the alkaline earths by inserting instead of the empirical number A as
the numerator in the expression of the terms in (2) the value 4R itself.
The extended expression (1) for the terms then established a perfect link
with the observations. At the same time it was shown that there is an
interesting relationship between the constants s*, p*, d*, b* of the atomic
fields in the case of these spark spectra and the corresponding constants
s, p, d, b of the arc spectra of the alkalies. Both have the same (plus or

minus) sign, and (with one exception) the former are always greater than
the latter. Details are given in Table 43, in which there are added on the
right, next to the atomic field constants under consideration, their ratios.

TABLE 43

s 1) rl b

118+ . . 0-as _ 0-311 _
- o-045 _ + 00006

Na . . 0-ssll 43 0-1512
1 - 0-01'/lg 65 _ }

“
011+ . . 1-20 0-5 - 0-ea , - 0-025 _
K . . 0-sa}1'46 0-29}1'7 - 0-28 l2 25 - 0-01 lg 5°
S1'+ . . 1-32 _ 0-61 _ _ 0-43 _ _ 0-034 _
Rb . . o~91_l1

64
o~s6}1

7 - 0-as }1 25 - 001s }1 S9
Ba+ . . 1-43 _ 0-75 _ _ o-as _ - 0-004 _
Cs . . 0-95}1

51
0-4s}1

7 _ 0-48 lo 73 - 0032 l2 0

In Note 13, eqn. (17), it is shown that if we adopt a certain conven
tion about the supplementary field due to the electronic configuration a
value for the atomic field constants k* (charge 2e of the “trunk” of the

' Phil. Trans., 214 (A), 1914; cf. also Proc. Roy. Soc., 1915; Bakerian Lecture and
Nature, 1915.
1-E. Fues, Dissertation, Munich ; Ann. d. Phys., 63, 1 (1920).



§ 6. Spectroscopic Law of Displacement and Law of Exchange 377

atom) follows which is twice as great as that of the constant k of the
associated arc spectrum (the charge e of the atomic trunk is the same,
the structure otherwise not differing). From this table we actually see
that the ratios in question are almost throughout > 1, and that in part
they approach the value 2.
‘Va have yet to make a remark about the constants s and s*.

Whereas Fues defines them, in the usual way, as the deviation of the
numerator of the term from the value m + 1/2, in the above table they
are taken as the deviation from m, in agreement with our notation, which
uses integral numbers (thus our s and 's* are greater by 0'5 than the s, s*
of Fues). From the fact that with his definition of s, s* the ratio 2 is
more closely approached than when the integral notation is adopted,
Fues concludes that he has found a physical justification for using the
notation involving halves. The present author is of the opinion that
this inference is no longer tenable in view of the fairly regular course
followed by the ratio numbers, for example, in the first two horizontal
rows of the table ; this regular course would be destroyed by the opposing
definition of the constants s, s*. We are‘ thus inclined to see in this
table rather a reason against the usual definition (involving halves) of the
s-term.

Even without a close knowledge of the representation in terms we
may say the following : If the term (mp,-) is of the spark type (1), then,
on account of the numerator 4R, the doublet-difference Avp = mpg — mp,
would be four times as great as the doublet-difference of a neighbouring
element of the arc type provided that the constants 11,-of the atomic field
are assumed to be the same for the two doublets under comparison. The
actual difference of the atomic fields will then, further, bring about a
deviation from the magnification number 4, be it in the positive or in the
negative direction. We have accordingly to expect that every doubtlet
or triplet difference during the transition from arc to spark conditions
becomes magnified to an extent that is essentially determined by the
ratio 4 of the numerator of the term although it may, of course, deviate
more or less from this value owing to the accompanying action of the
factors due to the atomic field in the numerators of the term.
Numerical details are given in Table 44; here we are dealing every

where with the doublet-difference 2p, - 212,. The Ra-doublet* is added
to the analogous spark doublets of the alkaline earths, although the pre
ceding alkali (eka-casium), which is necessary for the comparison, is still
unknown. In the last two rows of the table the elements Zn and Cd
which are, in an extended sense, analogous to the alkaline earths, have
been included, as also their predecessors Cu and Ag.

" The Ra-doublet is of special interest because Runge and Precht, in the Physikal.
Zeitschr., 4, 285 (1903), have endeavoured to extrapolate the atomic value of Ra from
it. For the dependence of the term-difierences on the atomic number, which we
studied in the preceding section used to be regarded as a dependence on the atomic weight.
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TABLE 44.
l

Mg 92 Na 17'21 Mg : Na = 5'3
Ca 223 K 57'90 Ca :K = 8'9
Sr BOO Rb 237"/1 Sr : Rb = 3'4
B8. 1691 Cs 54410 B8. : Cs = 3'1
Ra 4358 —- — -—- —
Zn S72 Cu 248'l Zn : Cu = 3'5
Cd 2484 Ag 920-6 Gd :Ag = 2-1

Thus the ratio of the doublet-diflerences compared lies in the case of
most elements between 3 and 4, and hence reflects directly the char
acteristic feature of the spark spectrum, namely, the increase of the
effective charge of the atomic residue from e to 2e and the increase of

Rydberg's number from R to 4R. Besides this, our table shows that the
deviation of our ratio-number from 4 is systematically related to the
atomic weight, or, as we may just as well say, to the number of electrons
in the atom. In surmising that this deviation is due to the influence of
the atomic fields, and that this influence must increase with the number
of electrons, the dependence here established becomes readily intelligible.
The fruits of our discussion may be summarised without involving

uncertainty as follows: The doublet systems of the alkaline earths are

spark spectra. Their character as doublet systems is accounted for by the
doublet character of the arc spectra of the alkalies. Simple numerical
relations hold between the spark spectrum of an alkaline earth and the arc

spectrum of the directly preceding alkali.
3. Earths and Alkaline IBarths.—Whereas the arc spectra of the

alkaline earths are triplet systems (or simple lines), the spectra of the
earths are usually doublet systems (cf. p. 370). But, according to our
law of displacement, the spark spectra of the earths are to have the same
character as the arc spectra of the alkaline earths, that is

,

are also to be

composed of triplet systems. We have thus to look for triplets in the
earths and to ask whether they are to be regarded as spark lines.

Actually, some instances may be found. Firstly, the ultra-violet

spark spectrum of aluminium was investigated by Lyman.* (It is

clear that, on account of the magnitude of 4R, the spark spectra will in

general have to be sought in the extreme ultra-violet.) Now, according
to Popow,+ it may be shown that among the lines measured by Lyman,
there are several triplets. Further examples are furnished by the spectra
of scandium and yttrium, in which, likewise, individual lines arrange
themselves into triplets.I Owing to the mode of excitation of these lines

it is not so immediately evident as in the case of the previously men~
tioned Al-lines, that they are to be regarded as spark lines (in the photo
graphs b

y Exner and Hascheck, or Kayser). But if we form the frequency
dififerences for these lines and compare them with the corresponding

*‘
Astrophys. Journ., 35, 341 (1912). ‘+ Ann. d. Phys., 4,5, 166

((1914).$Further details are given in the essay by Kossel and Sommerfel which we
quoted above.
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frequency-differences of the arc-lines of the elements calcium and stron
tium that just precede them in the periodic system, we again get ratios
that lie in the vicinity of the number 4 and thus substantiate our belief
in the spark character of these lines.
We may, at any rate, certainly expect to find in the series of earths

still further examples of triplets, and shall be able to show that they are
probably spark triplets. In seems justifiable even now to draw the
general conclusion: The spark spectra of the earths are triplet systems of
the same character as the arc spectra of the alkaline earths. There is a
regular connexion between each triplet of an earth and that of the preceding
alkaline earth.
4. We drew attention earlier to the possibility of ionising the atom

several times (multiple ionisation) and to the existence of spark spectra
of higher orders. In the case of two-fold ionisation the resulting spark
spectrum of the second order would be similar in structure to the arc

spectrum of the element that precedes it by two steps in the periodic
system (and, on account of the “law of exchange" (Wechselsatz) below,
at the same time to its own arc spectrum). Hereby Bydberg’s number R
would have to be replaced, not by 4R but by 9R (as conjectured in the
case of Li++, cf. p. 225). In the spark spectrum of the third order we
should expect 16R in place of R.
In literature no statement is yet to be found about such spark spectra

of higher orders. But they, too, cannot fail to come to light now that
the attention of spectroscopists has been directed to the question, par
ticularly as the structure of their lines is predicted by the law of displace
ment, and the sequence of the lines can be determined in general from
the magnification of the Rydberg constants; they must be found situated
in the ultra-violet and with extended intervals between the lines. In
the visible region we may expect of them only the series with higher
quantum numbers, namely, Bergmann series and “ ultra-Bergmann
series" (cf. p. 315).
A general method of distinguishing arc spectra from spark spectra,

the difference between which is connected with their Rydberg numbers,
is clearly given by determining the excitation potentials, whereby, gener
ally speaking, the spark spectrum demands a considerably higher exci
tation than the arc spectrum. In connexion with this, compare what
was said about Mg+ in §3, p. 349, and about Het, A = 4686, on p. 344.
The difference between arc and spark lines is brought out particularly

strikingly and elegantly in the method of the “ excitation function
”

developed by R. Seeliger.* Corresponding with the potential drop in the
Geissler tube from the cathode onwards, the spark lines come out

* Ann. d. Phys., 59, 613 (1919), and particularly Ann. d. Phys., 65, 423 (1921) (in
collaboration with D. Thaer). The method is not, like that of Franck,

qluantitativebut qualitative. It does not determine the minimum potential at whic a line is
excited but the optimum, at which it is made to occur with greatest intensity.
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considerably shorter in the spectrographic pictures than the arc lines.
The assertions of the law of displacement have been confirmed by this
method for several lines of Na, Mg, and Hg.
M. N. Saha* has drawn unusually convincing conclusions for solar

physics from the ditferentiation between spark and arc spectra. Of the
92 terrestrial elements only 36 are represented by lines in the solar

spectrum. For example, Rb and Cs are not represented at all; K is
weakly, but Na strongly represented. Are Rb and Cs, then, not actually
present in the sun ? Saha’s answer is that they are indeed present but only
in the ionised state. Consequently the characteristic arc lines of Rb and
Cs do not appear, as we should ordinarily expect, but their ground spectra
do appear, but, being situated in the main in the ultra-violet, they escape
the ordinary methods of observation. The fact that it is just the elements
Rb and Cs that are completely ionised in the sun is explained by their
low ionisation potential (cf. Table 36). In the case of K the ionisation
potential is somewhat, in that of Na considerably, greater; hence also
the arc lines of these elements appear in the sun. Furthermore, a
characteristic feature is that the doublet spark spectra of Ca, Sr, Ba
appear strongly marked in Fraunhofer’s spectrum, e.g. the two lines
ls — 2p of the H.S. doublet of Ca* appear as the Fraunhofer H and K
lines. This reasoning receives support from the conditions in the

chromosphere, in which on account of the decreasing pressure in the

upper layers the ionisation progresses regularly and even the D-lines of
Na, for example, vanish.
There is no doubt that in the future, too, the law of displacement will

prove to be a trustworthy guide and a regulative principle in the intricate

labyrinth of spectroscopic observations.

(b) The Cross Law or Law of Exchange. Hitherto we have spoken
only of the first three columns of the periodic system, because the
series relationships that are known are almost exclusively in these
alone. In the following columns only isolated series occur, namely,
in column VI in the case of O, S, and Se there is a triplet system
for each and, besides, in the case of O a very narrow unresolved
doublet system (Runge and Paschen) ; in column VII a triplet system is
known in the case of Mn (Kayser and Runge). All of these series
consist of arc lines, since, as is shown by their expression as series,

they are to be written with a single R, and thus belong to the neutral
and not to the ionised atom. From the column of inert gases there
is still to be added the well-known series of orthohelium and parhelium,
doublet lines and simple lines, and the complicated series system into
which Paschent succeeded in resolving the spectrum of neon.
If we now survey the distribution of doublet and triplet series over

" Zeitschr. f. Phys, 6, 40 (1921) ; in greater detail in Phil. Mag., 40, 472 (1920) and
41, 809 (1921); Proc. Roy. Soc., 99, 135 (1921).
1-Ann. d. Phys, 60, 405 (1919); Appendix, 'ibid., 63, 201 (1920).
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the whole periodic system, we cannot escape the impression that there is
a regular reciprocal 0-r cross connexion between them.

Quite early, Rydberg
* had set up the rule that the elements with odd

valency lead to doublet systems, and those with even valency to triplet
systems. This rule seemed to collapse after doublet systems had been

proved to exist in the whole column of the alkaline earths. In recognising
that these systems were spark spectra, the contradiction was eliminated
and the relationship of the line character to the number of external
electrons (valency number in the respective ionisation state) became

restored. There thus belong together : even (“ paired electronic

numbers and triplets, odd electronic numbers and doublets). Here and
in the sequel we tacitly take “ triplets

"
to include the systems of simple

lines that always occur conjointly with them.

Extrapolating the cross relationship which exists between doublet and

triplet systems in the first groups we get Table 45 given below.
As we see, our rule passes over the Groups IV and V which have not

yet been explored by theory as regards series on to firm ground in Group
VI, where the triplet series of O, S and Se arrange themselves in
accordance with our expectations.
In Group VII our table again points, in the row marked “sparks,”

presumably to triplet structure, not only on the basis of our law of dis

placement which links up the spark spectra of Group VII with the triplet
arc spectra of Group VI, but also on the basis of a remark by Paschen
which he kindly communicated to the author in a letter, and in which he
states that he has found triplet series in the spectrum of Cl and has

proved that they are spark spectra (since they have the numerator 4B).

TABLE 45

VIII or O I
‘
II III 1V

‘

V VI VII

Arc . No series Doublct Triplet Doublet — — - Triplet ?

Spark . ? No series Doublet Triplet — — - Triplet ?
We have next to dispose of the apparent contradictions to our cross

law. The first is the above-mentioned doublet spectrum of oxygen. As a

demonstrable arc spectrum it contradicts our cross law just as much as

the triplet spectrum of oxygen is in conformity with it. Now there is the

following difference between the triplet and the doublet spectrum of O.

Whereas under the influence of a strong magnetic field the triplet

spectrum exhibits the Paschen-Back effect (cf. the next section), this

is not so in the case of the doublet spectrum. The doublet spectrum

preserves its double-line character even in such magnetic fields as should

easily transform it and, at any rate, behaves quite otherwise than a

* Cf. Kayser, Handbuch der Spektroskopie, Bd. II, p. 590, Nr. 464.
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typical alkali doublet under corresponding circumstances (again according
to a letter received from Paschen). Thus we must discriminate between

proper or true doublets (alkalies, earths, alkaline earths in spark spectra)
and improper doublets, whereby the Zeeman effect is to be enlisted as the
criterion. The doublet series of O are to be designated as improper
doublets and are presumably to be regarded as two simple lines that lie
close together without being intrinsically related, and then they fit in
excellently with our cross law; indeed, they supplement the triplet series
of O in the same way as the simple lines of the alkaline earths supplement
their own triplet series.
The circumstances are similar in the case of the doublet series of ortho

helium. These, too, are improper doublets, since they exhibit no Paschen
Back effect but rather preserve their individual structure even in the

presence of very strong magnetic fields, as is evident from unpublished
photographs taken by Back. Since we have to ascribe even valency,
zero, to helium, our cross law would here enable us to predict triplet and

simple lines. The simple lines of parhelium obey it and the improper
doublets of orthohelium which we again wish to regard as pairs of simple
lines, do not contradict it.
In our table we have in general stated that the spectra of Group VIII

(inert gases and triads) have “no series" (are serienlos). In actual fact
they seem to be characterised by inextricable confusion (as testified, for

example, by the Fe-spectrum). In the case of the inert gases, for example
argon, only isolated “ sequences," that is

,

groups of lines with constant
difierences of frequency may be distinguished. It is scarcely to be
doubted that we have to regard these groups as the first signs of series

relationships which only for the present appear to lie in confusion. In
his treatment of the arc spectrum of neon (see above) Paschen has

taught us how, starting from such sequences, we may finally unravel all
the spectral regularities. A system of about 900 lines scattered more or
less densely over the whole visible region and accumulating in the red

is represented by Paschen as a combination of four s-, ten p-, and twelve
d-terms, which in part follow a new kind of series laws. This offers
abundant material for speculative work in the theory of series.
What is the position here with regard to the permanence of multipli

cities ? Are there actually more d-terms than p-terms or may, perhaps,
two of the d-terms be regarded as improper multiplicities in such a way
that the number of proper p- and (1-terms again becomes equal (for
example, both equal to 10) ? It is, of course, to be noted that the
classification of the terms as s, p, cl may itself be open to doubt. For
example, Paschen had originally claimed some of the d-terms as s-terms,
until K. VV. Meissner * recognised them as d-terms from their behaviour
in the Stark elfect.
* Mittcilungan d. Physik. Ges. Z ilrich, 1919, Nr. 19, p. 64; Meissner makes use of

the observations oi Nyquist, Phys. ltev., 10, 237 (1917).
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What selective conditions govern the combination of these various
terms ? What “composite

"
line-configurations occur here ‘.

’ Is it possible
to distribute inner quantum numbers among the terms in such a way that
the observed combinations can be read off from a general scheme ? In
this connexion G1-otrian* and Landét have already made noteworthy
suggestions and have recognised regularities. Can the Ne-spectrum be

brought into quantitative relationship with the Na-ground spectrum as is

to be required according to our law of displacement? And, above all,

does the Ne-spectrum subject itself to the cross law? If we extend this
law literally, then in the case of Ne as in that of other elements of even

valency we should expect only simple and triplet terms. Now Paschen

pointed out early in his first work on neon that among the Zeeman
effects of the neon lines as observed by Lohmannj there are characteristic
types that are known from the Hg-triplets, and Landé summarises
Paschen's analysis as signifying that the whole neon spectrum consists
of combinations of series of two simple terms, two triplet terms, and a

simple term with a triplet term. According to this, then, the cross law
would also be brilliantly confirmed in the case of this most complicated
of all hitherto ordered spectra. For the rest, it must be emphasised that
the Ne-spectrum is far from having been sufficiently investigated magneto
optically, and that, therefore, final conclusions must for the present be

postponed.

Finally, we have yet to deal briefly with the triplet series of Mn. They
have been declared to be arc lines whereas our table provides for the trip
let series in Group VII only as spark lines. The contradiction is over
come by a conjecture of R. Ladenburg § based on chemical facts, according
to which the number of outer electrons in the case of Mn and its neigh
bouring elements would be 2. We here find ourselves at a point of the

periodic system, directly before the Fe triad, in the middle of the first

great period, where the number of outer electrons no longer increases

regularly as at the beginnings of the periods, but rather remain stationary
whilst at the same time the whole arrangement of the electrons becomes
remodelled (cf. p. 108). It thus becomes intelligible that in the case of
these elements the cross relationship between doublet- and triplet-systems
drops out and that particularly in the case of Mn the occurrence of the
electrons in pairs as suggested b

y chemical facts produces triplet series as
a consequence.

Thus even in the case of Mn there does not seem to be a real contra
diction to our cross law, so long as we follow the above procedure and do
not refer the exchange (crossing over) of the line-structure to the columns
of the periodic system (the maximum iuilencies) but rather to the number

* Physikal. Zeitschr., 21, 639 (1920). + Ibid., 22, 417 (1021).
1Disscrtation, Halls, 1907. Continued by Takamine and Yamada, Proc. Tokio

Math. Phys. Soc., 7, 277 (1913).
§Naturwissenschaften, 1920, Heft 1.
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of outer electrons actually effective in the emission of lines (the actual 0-r

efl'ectira valency).

The reader will inquire how the relationship between the number of
outer electrons and the line-structure, which doubtless exists, is to be ex
plained in terms of the models. In the appendix to the following section
we shall give an answer to this question albeit only a provisional one.

§7. The Anomalous Zeeman Effect.

In Chapter V, § 6, we developed the quantum theory of the nor-mal
Zeeman effect. Apart from the case of hydrogen, with the model of which
our description linked up, this normal effect occurs only in the case of
lines of very simple structure (cf. p. 384) that is

,

in the case of such lines
as are composed of two simple te'rms.* The normal Lorentz resolution
amounts to .

c H
A” “ a via " " (1)

In the transverse effect (observation perpendicular to the magnetic lines
of force) i

t gives the measure of the distance of the middle component
polarised in a parallel direction and each of the two outer components
polarised in a perpendicular direction.
In the case of multiple lines, on the other hand, amrmalous Zeeman

eflects occur. Even when this Zeeman phenomenon was first discovered

(in 1896) anomalous resolutions intruded themselves. What Zeeman
first observed was a broademag of the D-lines which showed itself in the

spectroscope, associated with a characteristic polowisation of the light at
the broadened edges. Now, the two D-lines by no means split up into

a normal triplet, but rather the one (D1) gives rise to a quartet of lines,
and the other (D2) to a sextet of lines polarised partly in a parallel direc
tion and partly in a perpendicular direction (cf. Fig. 96). The fact that
Zeeman actually succeeded at all in proving the polarisation of the outer

edges of the broadening in this complicated configuration of lines is only
due to the circumstance that here as in the normal triplet the perpendic
ularly polarised components are arranged on the outside and those

polarised in the parallel direction lie more towards the middle of the

picture of resolution. Whereas initially the departures from the theory
of the normal Zeeman effect appeared discouraging from the point of view
of quantitative research, now it is just the laws which underlie these de

partures that claim the greatest interest. As we shall see in the appendix
to this section we have to recognise that we have at our disposal in these

phenomena, which are just as much ordered as they are manifold, one of
the most effective means of laying bare the structure of the atom. For

' In a.certain sense this statement is tautologous. For we should only allow such
lines to stand as simple lines, and such terms as simple terms, as behave in a. normal
manner in the Zeeman effect.
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the present we shall, indeed, as in the preceding section, not proceed

along the lines of the model. Nevertheless we shall succeed in giving a
theoretical account of the empirical data, which will borrow its form from
the quantum theory of atomic models and of which the claim to physical
truth is based on the fact that nowhere does it use undetermined para
meters but only whole numbers.
There are two rules that govern the realm of the anomalous Zeeman

effects, namely Preston’s* rule and Runge’s t rule.
Preston's rule states that related lines, that is

,

lines which are com

posed of st’!/n'lar terms, give rise to the same Zeeman effects. Hereby
those terms are defined as similar which have the same multiplicity and

the same azimuthal quantum number (i.e. bear the same symbol s
, p, d
,

. . The Zeeman type is on the other hand independent of the radial

quantum number (number of the member in the series) and of the chemical

nature of the element.
On the other hand Runge's rule states that the line-resolutions that

occur in the anomalous Zeeman elfects are, when measured in wave

numbers (and not in wave-lengths) rational multiples of the normal

1
. = 5896

I. = 5890

mfiggmgl dpnormal

Initial Line

. Fro. 96.

Lorentz resolution Let us consider the following two resolution

pictures from the point of view of these two rules.

Fig. 96 represents the type of D-lines. Both D-lines have been drawn
in spite of their somewhat different wave-lengths, one above the other.
In the upper row we have the quartet, in the lower the sextet which we
have already mentioned on p. 384. Here p denotes “polarised in a

parallel direction," and s denotes “ polarised in a perpendicular direction "
;

the nomenclature refers to the transverse effect and to the direction of
vibration of the electric force at the point of observation relatively to the
lines of force of the magnetic field (cf. p. 294). The density of the lines
in this as well as in the succeeding figures indicates the approximate in

tensity of the components. The distances of the components of resolution
from the original line are all multiples of ,1

;

of the normal Lorentz resolu
tion: the “Runge denominator" is equal to 3. _

The same type of resolution now occurs, besides in the D-lines, also
in all members of the H.S. of Na, as well as in the II N.S. which, as we
' Cf. Kayser’s Handbuch, 2, 619.

1 Physikal. Zeitschn, 8, 282 (1907) ; the rule was set up on the basis of the particu
larly abundant Zeeman types of Neon. .

25
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know, is built up of the same terms, the s- and the p-term.* The same

type again occurs in the H.S. and the II N .S. of the remaining alkalies
and in the elements Cu, Ag as far as the latter have doublet terms. But
the same type also characterises the doublet terms of similar composition
in the case of the earths Al, In, Tl, and not only these but also the spark
spectra of the alkaline earths and of the elements Zn, Cd, Hg. Preston's
rule here links up with our cross law (p. 380). According to Preston's
rule the same line-multiplicity (when the combination of terms is the

same) entails the same Zeeman type. According to the cross law, on the
other hand, the circumstance whether the number of outer electrons is
even or odd conditions the equality of line-multiplicity (doublet systems
are conditioned by an odd, triplet systems by an even number). Conse

quently in the groups of the periodic system the Zeeman type must also
occur alternately in the arc spectra and must be the same as in the spark
spectra of the intervening group. (Cross Law of the Zeeman Types.)
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Fig. 97 represents as the second most important case the resolution
picture of the II N S. of triplet systems as first observed for Hg by Runge
and Paschen.’r The wave-lengths on the right are the Hg-lines 2p, - ls,
2p, - ls, 2713 — ls. In each case the distances of the components from
the original lines are half-multiples of the normal resolution Av, here
Rnnge's denominator is equal to 2.

But the same resolution picture does not only occur in the triplet lines
of Hg given in the figure but also in all similarly constructed combina
tions of Hg, Cd, Zn, and of the alkaline earths; also in the spark spectra
of the earths, as well as in certain lines of Neon, which, on account of the
even number of its outer electrons belongs to the alkaline earths, accord
ing to our cross law.
Conditions are much more complicated in the I N.S. in the case of the

composite doublets and triplets, that is, in the combinations (pd). Fig. 98
represents the resolution picture corresponding to the doublet systems.
Here, too, the inner components are polarised in a parallel direction, and
the outer ones in a perpendicular direction, as is indicated by the brackets
p, s at the lower edge of the figure. Only such p-components as intrude

‘The use of the symbols s and p for the polarisations as well as for the terms
liere is unfortunate but can be avoided only with difficulty.

1
- Berliner Akademie, Feb. 1902.
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into the region otherwise occupied by s-components have been indicated

by the letter p as such. In the case of all three lines, of which the com
posite doublet consists, the distances of the components (measured from

the position of the original line) are multiples of {K of the normal resolution.

R1mge‘s denominator amounts to 15. The “Runge numerator" (as we
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FIG. 98.—I. Subsidiary Series of the Doublots.

shall call the multiple number in question for each component) may be
read off from the scale under the figure. It has been designated by q and
assumes in the complete picture of the three lines the values 1 (1, 3, 4, 8,
11, 12, 13, 15, 16, 17, 19, 21, 24).
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FIG. 99.—I. Subsidiary Series of the Triplets.

The same resolution picture is found present in the case of all com

posite doublets (p, d) in all members of the I N.S. and in all elements
with doublet systems. It was first ascertained to this degree of complete
ness by E. Back?‘
Fig. 99 represents the resolution picture for the six lines of the com

posite triplets (p, (I). Concerning the arrangement of the picture the

" Short note in the “ Nsturwissenschaften," 1921, Heft 12.
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same is to be said as for the preceding figure. The letter p (“parallel ")
has been written beside only those components that overlap beyond the
middle part of the figure occupied by p-components. The Rurtge de

nominator is here 6. The Runge numerator denoted by q varies from 1
to 15.

A part of the resolution pictures represented in Fig. 99 has already
been ascertained by Miller, Moore, and Runge-Paschen. The complete
scheme, however, in this case, too, is due to Back.* It holds for the
triplet combinations (p, d) of all elements.
We might now inquire into the Zeeman types (d,-, by

)

of the Berg
mann series, which have hitherto remained unknown, or into the com
bination (p,-S), (p,-D), (Pd,-) between simple and triplet lines, which have
in many cases been observed, or into the combinations (d,d’,-), (p,-p’,-) (cf.
p. 368). We prefer, however, to add some remarks about this in relation
ship with the theory, which teaches us how to get a survey of all possible
resolutions. Here it only remains to emphasise that the preceding
figures are far from exhausting the abundance of anomalous Zeeman
effects.

The Zeeman effect has long been used as the most powerful means
of classification in getting a survey of the series relationships of spectral
lines. Only such lines can be regarded as properly arranged or ordered
which exhibit the Zeeman effects to which they are entitled by Preston’s
Rule, and which are the same for similar elements. We recall, for ex

ample, those multiplicities which (in the case of He and O
) we called

"improper." The contradiction to Preston's rule here indicates that the
doublet view is a necessary one. Even nowadays there are sufiicient

spectra that elude being ordered into series, but they, too, will finally
have to disclose their inner structure when subjected to the criterion of
the similarity of the Zeeman effects.

A large group of apparent contradictions to the Preston rule has been
cleared up by the important discovery of the Paschen-Back efi'ect.+ We

begin by distinguishing between “ weak
"
and “ strong

"
magnetic fields.

A field is to be regarded as weak when the displacements Av produced by

it are small compared with the original distances A:/0 between the lines
when no field is present ; it is to be regarded as strong when these dis

placements are large compared with Avo. The terms “strong” and
“weak " have thus a sense relative to the magnitude of the line-multi

plicity which happens to be under consideration at the moment.
In the case of weak fields the Zeeman type of each line of a line

configuration can develop itself undisturbed by the Zeeman type of the

neighbouring line. But as the field increases, the resolution pictures of
the neighbouring lines tend finally to overlap and interpenetrate. But
before this stage arrives the Zeeman types exert a mutual influence on

" Dissertation, Tiibingen, 1921.

+ Ann. d. Pl1ys., 39, 897 (1912), and -10,960 (1913).
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each other. The resolution pictures shown in our figures experience dis

turbances and distortions. In the case of strong fields an asymptotic
condition finally sets in, as if the original multiplicities were not present
at all. Under the influence of a field that is strong in the above sense

every line-configuration behaves like a simple line, as we may easily
understand, and 8.I'lI/lblls the rwrmal Zeeman eject. That is what Paschen
and Back proved in the case of a number of narrow doublets and triplets.
Our definition of strong fields entails that for a simple line even the

weakest magnetic field is to be regarded as
“ strong." For the D-lines of

Na (initial separation is 6 a field of 180,000 gauss, which cannot be

produced in reality, would just produce the complete Paschen-Back
effect. The first stages, however, of the transformation and mutual in

fluence between D, and D, may be shown by a field of 30,000 gauss.*
In the magneto-optic investigation of the corresponding lithium line
A =
Q708 whose components on the other hand, are originally only

0'13 A apart, we very soon arrive at the conditions of the Paschen-Back
effect; its transformation may thus be observed as far as the final stage
of the normal triplet.+ Compared with the remaining alkalies, lithium
used to appear an exception to Preston's rule; through the discovery of
Paschen and Back this and many other exceptions have been cleared up.
Besides the “ total " Paschen-Back effect we have also to consider a

“partial” one. By this we mean, for example, the case that in the com
bination the magnetic field is strong enough relative to the small
cl-difference but weak relative to the greater Av of the p-difference. In
this case we should no longer write the line-configuration as (p,-d,-) but
as (p,-d), and should then be able to treat the d-term as a simple term.

(Further details are given at the end of this section.) The Zeeman
type is then neither the normal one as in the case of two simple terms,
nor the one, as in the case of two multiple terms represented in Figs. 98
and 99; but it may be predicted from the general theory that is to be

developed, and is
,

indeed, found to be in agreement with experiment.
Of course, the Paschen-Back effect links together only such lines as

belong together in a series as multiplicities. Two lines of two different
series, however near together they may be, in no wise affect each other
magneto-optically in this case, the two resolution pictures interpenetrate
without influencing each other. This, too, is the reason why we have
not to expect a Paschen-Back effect in the fine structures of hydrogen;
for the mutually neighbouring components of the Balmer lines are
members of different series (they are

“
serienfremd ") (cf. Chap. VIII, § 4).

We next turn our attention to the theory. The most general point of
view in the theory of spectra is that given b

y the Principle of Combine.
tion. There is no doubt that this principle must also hold for the

" Cf. E. Back, loc. cit., Diss., p. 23.

+ Cf. E. Kent in the work quoted on p. 361.
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anomalous Zeeman efi"ects.* It will work as follows: The magneto
optically resolved line denotes the transition of the atom from an initial
to a final configuration. The magnetic field influences the energy of the
initial and the final configuration separately; thus, it also influences
separately the two terms of which the series representation of the line is
composed. If this representation is v = 1/, - v2, then we get for the
magnetic resolution

Av = A1/1
—
A1/2 . . (2)

In accordance with Runge’s rule we set

at =
gAv,,,,,»,,,_

. . . . (3)

where 'r is the Runge denominator and denotes a fixed and characteristic
number for the term combination under consideration. q is the Runge
numerator; this varies within each resolution picture, as indicated in the

preceding figures, and by its different values distinguishes the various

components of the resolution.

The basis of formula (3) is, however, according to the principle of
combination, to be sought in the corresponding behaviour of the terms.
We therefore set

AV1
= 21 Avnorm, AV; = QZAI/norm - (4)
rl T2

and we deduce from (3) and (4) that

Q = Q; _ Q; = 9172
_
9271 _ _ (5)r 1

',

1'2 TIT2

thus '1
'

= 'r,'r2 . . . . . (,6)

This deduction has been called by the author the Law of Magneto-optic
Reso1ution.+ It states :—
The observable Rim-ge deawminator r of the term contbination. resolves

into the denomivmtors 1
', and r2 o
f the terms and is composed o
f their

product. _

The practical use of this law of resolution at once suggests itself:
wherever in the empirical sciences we speak of rational numbers, we
mean numbers with small numerators and denominators. Otherwise we
should not be able to distinguish them from irrational numbers in ex

perience. Our law, in resolving the observable Runge denominators into
smaller factors endows Runge's rule in complicated cases with a meaning
that is accessible to observation. Rational numbers with the denominator
1.5 (cf. Fig. 98) may be regarded as signifying the limit to which most
careful spectroscopy can penetrate. (Note the difference between L and1-1

1-‘K i
s less than 1} per cent.) In the case of the neon spectrum 1 the law

“ Cf. also T. van Lohuizen, Amsterd. Academy, May, 1919.

1
‘ Ann. d. Phys., 63, 121 (1920).

3
,"

A. Lohmann, Dissertation, Halle, 1907.
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of resolution has already demonstrated its practical use and validity by
allowing the rather uncertain denominators determined by Runge* on
the one hand and by Takamine and Yamadat on the other to be cor
rected and reduced to smaller denominators.
It is advisable to make at this early stage a reservation about the

exact formulation of the law. If 1', and 1
'2 have common factors, then it

does not follow from (5) that 1
' =

T172 but that 1
' is equal to the smallest

common multiple of 1'
,

and 1'2. If 1'1 and 1'2were known originally, then 1

would also be known unambiguously as the smallest common multiple.

Actually, not 1'
,

and 'r2 but 'r i
s originally given by observation; the re

duction towards r, and 1
', is not then unambiguous. Let us consider an

example that is important for the sequel. Suppose 1
' = 6 = 2 . 3. Then,

by the law of resolution we could have (a) 1', = 2
,

1'2
= 3 ; but we could

just as well have (b) 1
', = 1 . 2, 7'
2 = 2 .3. We shall see below how, by

enlisting the aid of further observations, we may arrive at a means of

deciding between (a) and (b).
Let us first consider simple lines. The Zeeman elfect is normal for

these, thus

1
' = 1
.

From this it necessarily follows for each term that participates in the

building up of simple lines that

1
', =

1
'2 = 1
.

We apply this statement to the s-term of any series systems what
soever, which is, even in the case of doublet and triplet systems, always

a simple term. We shall thus take as our starting-point that the Ruuge
denominator o

f the s-term, is always equal to 1.

VVe next consider doublet systems. VVe found for the combination

(sp) of these in the H.S. and the II N.S. (cf. Fig. 96) that 1' = 3
. Since

we set 1'
1 equal to 1 for the s-term, we get unambiguously that r2 = 3 for

the Runge denominator of the p-term. Let us now consider the com
bination (pd). For these we had in Fig. 98 1' = 15. This gives us a first
test of our law of resolution : 15 is divisible by 3

. From 1
' = 15 and 1
, = 3

it follows that 1
'2 = 5
. This conclusion is
,

however, no longer unam

biguous. Thus 1'
2 == 3 . 5 would also be compatible with 1
' = 15, 1'1 = 3
.

We shall, at any rate, try to do with the simpler assumption 1'2 = 5
. By

extrapolating we get the following scheme for the Runge den0m1'11.at01' o
f

the doublet terms.

cl b

i 1
;

5 (7) (i
i) (i/1)’

‘('0

The bracketed numbers have been extrapolated.

' Cf. the quotation on p. 385 and the essay by the author quoted in Note 1.

1
- Proc. Tokio Math. Phys. Soc., 7
,

277 (1913-1914).
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We now turn to the triplet systems. For the combination (sp) we
here have from Fig. 97 that r = 2. Since for the s-term we have again
to set r, = l it follows unambiguously for the p-term that r2 = 2. In
the combination (pd), Fig. 99, r was equal to 6. Here again we have a
test of our law of resolution: 6 is dirvisible by 2. It would at fiist sight
appear right to conclude that the Runge denominator r2 is equal to 3 for

the (1-term. When the author originally assumed this, he arrived at the

following (as we shall see erroneous) scheme for the Runge denominators
of the triplet-systems.

s p d b a: y

1 2 3 (4) <5) (6)

But the conclusion r2 = 3 for the (1-term is not the only possible one.
As already remarked on page 391, we may also conclude from r = 6 and

1
', = 2 = 1 . 2 (p-term) that 1'
2 = 2 . 3 ((1-term). \Ve may deciie between

these two possibilities by arguing from the combination (Pd) between the

simple terms and the triplet terms of the alkaline earths. Since here

rl = 1 (P-term), the Runge denominator r of the combination necessarily
becomes identical with the denominator r2 of the d-term. For r we get
from observation not the value 6 but the value 3

. Thus we must make

up our minds to drop the simplest assumption (a) of page 391 for
the d-term, and must set for it r2 =- 6 = 2. 3

. The combination (d¢d',-)
also compels us to do so, cf. page 368; the Runge denominators of its
Zeeman pictures are likewise 6

,

and not 3.

We thus arrive at the following scheme for the triplet terms :

s p d b cc y

‘ _ (8)

1 1.2 2.3 , (3.4) (4.5) (5.6)

The bracketing here also denotes extrapolation.
All this of course only holds for weak magnetic fields. For strong

fields the Runge denominator must assume the value 1 throughout, both
in the doublet as well as in the triplet systems.

A knowledge of the Runge denominators is
,

however, only the first

step to the complete theory of the Zeeman effects. The explanation of
the normal Zeeman effect by the theory of quanta must serve as a perfect
example of the full theory. In this way we arrive at the following result
(eqn. (12) on p. 239) : through the magnetic field the original energy W0
of the Kepler orbits became changed to

W = w, +
vrzllg;

= w,, + mhAv,,,,,,,, . . . (9)

The “ magnetic quantum number” m is here equivalent to the
“
equatorial quantum number

"
nl which occurred earlier. Since nl was

a part of the azimuthal quantum number rt (-11.=nl + 11,2),rt, or m, re

spectively, is smaller than or at most equal to n. Furthermore, since the

energy can undergo a decrease as well as an increase, depending on
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the sense in which the Kepler orbit is traversed, we must allow the
negative as well as the positive sign before m in (9). If we exclude
the value m = O we have then* 2n possible values for the magnetic
quantum number, namely :

i(1,2,...n). . . . . (10)

and just as many possible positions of the corresponding “magnetic
levels.” To this there next comes into account the principle of selection

(formulated on p. 300 for the equatorial quantum number) :

Change of the magnetic quantum number by 1 1 leads to circular, in
the transverse effect, to linear polarisation perpendicular to the
field.

Change of the magnetic quantum number by O leads to linear polari
sation parallel to the field.

How is this to be extended on to the case of doublet systems? At

first there will occur in place of Av,._.,,.,,,in (9) ;Av,,,,,,,,,
where T is by (7)

in general equal to 2n — 1. Then the inner quantum number 12.;will
have to enter into (9) as the distinguishing characteristic of both doublet
levels in (9). Starting from this, Landé 1“ has succeeded in evolving the
correct generalisation of (9) namely :

W = W0(n.-) + millgnvm. y . (11)

Here the argument ’!Li of W0 indicates that the original energy is different
according as we consider the upper doublet level (n; = n) or the lower

_one
= n - 1). The magnetic quantum number m is to assume in

(11) the following values in place of (10) :

i(1,3,...2n.--1) . . . _ (12)

The number of magnetic levels is thus not as before 2n but 2n,-. Finally
the rule of selection for m is to preserve its earlier form with the
difference that now the quantum jump of 2 units is to take the place of
the quantum jump of 1 unit, as is evident from a comparison of (10)
with (12).
The content of eqn. (11) is illustrated in Fig. 100. The outer parts

of the figure apply to weak fields which alone come into consideration at
present, the left side referring to the terms pldl, the right to the terms
md,. The representation of the s-term has been placed in the middle;
it holds for strong as well as for weak fields.

* Following Bohr we proved on pages 246 and 310 that for hydrogen the zero level
is forbidden. This exclusion does not in general extend to other models. Actually we
shall have to allow the zero level for weak fields in the case of the triplet terms and
altogether for

strong‘
fields.

+Zeitschr. f. P ys., 5, 231 (1021).
'
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In the case of each term the
magnetic levels are equidistant.
Their distances from each other
are, by (11), calculated in parts
of.A|’-norm:

2 f-
’*

? § it § §

3 3 5 5 7 7

for the terms

S
1

P1! P2: d1) d2! b
l;

b
i:

respectively.
To verify this hypothesis let

us first deduce from it the type
of resolution of the D-lines. Cor
responding to the combinations
spl and spz (D2 and D1), we follow

La_ndé by writing in the upper
rows of the following schemes for
each value of m the correspond
ing magnetic level of the s-term,
and in the lower rows the cor
responding levels of the pr or
pi-term, respectively. If we form
the difference of the numbeis
which stand one vertically below
the other, we get the p-com
ponents (on account of Am = 0).

If we form the diflerence in an
oblique direction in the schemes,
downwards towards the right or
left, we get the s-components (on
account of Am = i 2). These
dilferences are given in the
lowest line of the schemes and
are denoted according to their
mode of origin by p (parallel) or

s (perpendicular).
The result agrees, as we may

convince ourselves, completely
with the results of the observa
tions expressed in Fig. 96.
In the same way we may ob

tain the resolution pictures in the

I N.S., the combinations (p,d,-).
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n= -3 -1 +1 m=l—I +1), , ,7 ..__ _._._ " _

s -1 41 5 l-—l‘+I6 2 2 e I 1 1
Pi ‘g ‘>3 +3 +§ 11=

~
5 "3

5 1 1-57117” 4i 2 2 4

+1l*sl‘31"s W; -1 *3" ifs 9
I . ‘ ‘ . ’ I "‘-"" *v—’ ivi’ \’»—‘
s 1; s s p s

To prevent the corresponding schemes from being overloaded, we shall
write them down only for positive values of m and add only those for

negative values that give rise to new components and not such as differ

merely in sign. Accordingly we must suppose those with the reversed

sign, added everywhere to the numbers of the lowest row as being those
which would result from the same process if we were to complete the
scheme in the direction of negative values of m.

m= -1|+1 +8 +5

2 6
pl +§ +9‘

3 3 9 15

a
ll -5 +5 +5 +3‘

1
9

2
1 1 s 1
1 s

+fi +15 15 15 ‘15 -15

8
'

1
?

I

5

1n= -1 +1 +3 m= -1 +1 +3I

2 0 5 1

pl +5 +3 1)-_. -3 +§

12 2 6

d

2 Q

d
z -5 +5 +5 ., +5

+5‘
16 2

4 5 1
2 e 1 1
_1

13
15 15 +3 +1.-afit "15 ‘15l'15%__,__J Ed ‘,1 '—,-a &»-——/
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These results, too, agree perfectly with observation (Fig. 98). And

now we may, without trouble, write down the Zeeman types (that have

not been observed) of the Bergmann lines. For example, we find for the
combination (dlbl), by extending the foregoing schemes appropriately :

1 3 5

p-components: %, %, 35,

35 37 39 41 43
s-components: 5, %, 55, 35, %,

—

0
:» e
rg
cn
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Here a limiting law already expresses itself, which holds for very high

quantum numbers n and n,-, thus, for example (cf. p. 331), for the com

bination (ax, y), (yz) . . . : in the limit n —>co , as the terms become more

and more like those of hydrogen, the Zeeman effect also becomes in

creasingly like that of hydrogen; the p-components accumulate 9} the

point O, the s-components at the point 1 of the normal resolution.

To prove this we shall first change the form of eqn. (11). For the

upper or lower level, respectively, of a doublet system we have

l_|_
n,:
__
n _1 1 + 1

>n‘_n'1'_Qn—1_2< 2n—1’

_ . V m n — 1 __ 1 1
or, iespectively, n,- =- n -1,

-7
7 =

2% : 1 - 2- <1 - 2” _ 1
).

Furthermore, we write for the upper or lower level

W +

1

w0(n) = Q

hAv°,

@
b
—
l

or, respectively, Wo(n — 1
) = W - 7"Av0,

so that W denotes the level which bisects the two original ones, and Avo
denotes the original doublet-difference. We then get from (11)

n 2_ 1 1

’

1

VV 1

2hA1/0
+
Qmh <

1 i 2” _ 1) Ay"m,m_ - (13)

It is to be noted that the inner quantum number has dropped out, and has
been replaced b

y a plus or minus sign. \Ve shall later return to consider
the importance of this circumstance.
Let us next consider the transition n + 1 -+ n in the case of a very

great n. We get the p-component if we give m the same value in both

terms. Calculated in units of Av,..,r,,L, its resolution will be, by (13) :

1 1 1 _i

2""<QnT1
"
21$ 1)

= +” =
1 (ma)

This is equal to zero when m = 1
,

2
,

. . . n and n = cz>. The s-com
ponents come about if we make m jump b

y
2 units, for example, from

m + 2 to m. From (13) there then results:

‘f M
3
._
||

1 1 1 1

2(r1t+2)<1i2nTi)--§nz<1iQn :1)

1

1 _ m
-(l3b)

=1i2n+l+4nz_1=1for'm=l,2, . ..n,andn=ooJ
In the limit n = co , therefore, the normal Zeeman efleot, as stated, arises,
both as regards the position o
f the p-components as that o
f the s-components.
It is true that this result holds only if in deriving (13a, b) we take

for the two terms (13) that are to be subtracted from each other either
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the upper or the lower sign, as we tacitly did, but not if we take the upper
sign in the one case, and the lower in the other. That is to say: the
normal Zeeman effect presents itself asymptotically when two upper or
two lower doublet levels are combined, and this combination gives rise to
a prirwipat line of the line configuration in questioh (cf. p. 360). But in
the combination of an upper doublet level with a lower one, which leads
to the satellite of the line-configuration under consideration (cf. p. 365)
the Zeeman effect does not contract asymptotically to the normal posi
tion of the p- and the s-component, but becomes diffuse. Nevertheless,
the law formulated above may be maintained because we may assume, on
the ground that the similarity with the hydrogen type increases, that the
intensity of the satellite and its resolution picture decreases more and
more to zero as n increases.

We next turn to the triplet systems by imagining, as above, a “ weak"

magnetic field to be acting. The magnetic levels of the terms have in
this case, too, been determined by Landé (loc. cit.) by means of a fortunate
generalised résumé of the empirical resolutions.
The Runge denominator of the triplet systems (cf. p. 392) was

1' = n(n — 1). But it actually has this value only in the case of the most
central triplet component ; in the case of the two outer triplet components
it becomes reduced to n or n — 1, respectively, and this is

,
of course, no

contradiction to the assertion that the common denominator of the trip
let is n(n — 1). To write down the general formula for the energy, we
do best by starting from (13), but we write it separately for each of the
three triplet levels :

|—
*

W1 + 'm,h,<l
+

7
2

)AVwwrm

__ 1 1

w = w._. + mh(1
—
5+

. . (14)

_ 1

\7V3 + m,h<1
—

m)Av:lurIn

The triplet here appears “in a certain sense as a configuration of two

doublets that have been combined. On account of the change of sign i

it is seen from analogy with (13) that (WIVV2) actually form a first doub

let, a,nd (W.,W3) a second doublet. The differences of frequencies when

the field is free (that is, when no magnetic field i
s acting), which we

denoted on page 371 by Av" and A1/23, are determined from the quantities
W; in (14) as follows :—

_
Ayn = W1

Z

1

__ __ . . (15)

N2:

Ayes “I-. w_a

It
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The inner quantum num
ber, just as in (13), does not
occur in the expression (14)
for the energy. But it is

contained implicitly in the
magnetic quantum number m.
For the latter is to assume
all the integral values

¢(0,1,2, . . . 11,») (16)

Accordingly, its highest value

is n, n — 1
, n— 2
, in W1,

\V._,, W3, respectively (cf. our
earlier data about the inner
quantum number of the trip
lets on page 366). The value

O is not excluded.

We set down as our mag
netic principle of selection:
m is to change only by leaps
of O or 1; in the transverse
elfect the jump O leads to
parallel polarisation, and the
jump 1 to perpendicular po
larisation.
In Fig. 101 the magnetic

levels for each s-, p-, and d

term have been drawn. Their
number is in general equal to
2n,- + 1

, that is, 3 for the
s-term, 5

,

3
,
1 for the pl-, p,-,

pa-terms, and 7
,

5
,

3 for the
dl-, d2”, dz,-terms. All the
levels lie equi-distantly and
symmetrically about the zero
level. For the present only
the outer and the central
columns of the figure, which
refer to “ weak fields," come
into consideration.
We test the data of the

figure in the case of the com
binations (sp,-) in the following
tables; they are arranged just
as the tables on page 395.
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The result contained in the lowest rows again agrees fully with the
earlier data of Fig. 97, with one exception : in the combination (spg) the

p-component (O) that is bracketed in our table is not real; it is not actu
ally observed. This component corresponds to the transition O -—>O of m ;

the simultaneous transition of n,- is 1 -—>1. Just as earlier (p. 367) we
forbade the inner quantum number to undergo the transition 0 -> O so we
must now also forbid the magnetic quantum number to undergo the tran
sit-ion O -—>O, but only when the inner quantum number simultaneously re
mains unchanged.* It is to be noted that according to this the transition
O -—>O in the case of the combinations (spl) and (spa), m is not forbidden
to undergo the transition 0 -—>0, and this has actually been observed.
We shall not write down the resolution pictures for the combinations

(pid,-) ; they, too, agree fully with observation (Fig. 99). We merely
mention that in the combinations (pldg) and (pzdz) our supplementary
rule is also shown to hold good, inasmuch as here the transitions 0 —>O of
m become unreal (or virtual) in accordance with observation. Likewise,

we shall refrain from extrapolating our scheme for the case of the Berg
mann lines. The law that was enunciated for doublets on page 396, and

according to which the anomalous efl'ect asymptotically approaches the
normal effect in the principal lines of the higher term-combinations, may
be extended unchanged to triplet systems.
On the other hand, we must briefly enter into the question of the im

portant comb-inations between simple and triplet terms. Of course, the

simple terms S, P, D . . . are subject to normal resolution. But, accord
ing to page 368,_they have an inner quantum number that differs from

" Landé, loe. cit.
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0

the azimuthal one, namely, O, 1, 2, . . . or generally ni = n — 1. Since
in their case, too, we suppose the magnetic quantum number to be
restricted by the rule (15), the number of their magnetic levels will be
reduced as compared with the normal case. As an example, we regard
the combination (A = 2537 in the case of Hg). On account of
n,-, = O the term S has only the one magnetic level O; the magnetic levels
of 1),, are given in Fig. 101. We get as the combination of these two the
so-called “Q-Type," which is well kown experimentally, and is dis
tinguished by its simplicity, according to the following scheme*:

wz/=l‘ —1l 0
l +1)

y l

11., y
l _§ 0 , +§‘,_

I In
,,
q, .__. _

l
+3 l

1

°
l l -2

iv-“l §P" ‘*1?’
s p s

A comparison with the combination (SP2) on page 399 is instructive:
since the magnetic level m = 1 is missing in the term S, the p-components

1
/2 and the s-components 2 drop out from the resolution picture. Since,

on the other hand, the inner quantum number in (S112) performs the tran
sition O -—> 1, that is, does not remain unaltered as in the case of (spz), the
middle component 0 actually occurs as a real component.
In the same way the schemes of the combinations (Pdz), (P113), (]),D),

(p.,D), that, according to page 367, are not forbidden, may be wrttten
down. According to a communication by Paschen to the author, they,
too, agree with observation.
All in all, we may assert that, in virtue of inner quantum numbers, of

the magneto-optical law of resolution, and of Landé's energy-levels, we
have a practical mastery over the extensive realm of the anomalous
Zeeman effects for weak fields.
VVe next come to the strong fields, that is

,

to the Paschen-Back eflect.
Here we have for the special case of the D-line type a phenomenological
theory by Voigt ‘l which seems to meet the facts correctly at least

qualitatively. Voigt’s theory signifies for the anomalous effect, in par
ticular that of the D-lines, what Lorentz’s theory denotes for the normal
effect.

Like Lorentz’s theory, Voigt's assumes quasi-elastically bound electrons

capable of vibrating, and, corresponding to the ratio of the intensities
* Landé, Physikal. Zeitschr., 22, 417 (1921).

'

fW. Voigt, Ann. d. Phys., 41, 403 (1913), and 42, 210 (1913). Cf. also the simplified
form of Voigt’s theory due to Sommerield, Gottinger Nachn, March, 1914, as also
Hilbert-Festschrift, 1922 (of which a reprint is about to appear in the Zeitschr. f
.

Phys., 1922). Voigt deals with the process of absorption, Sommerfeld with that oi
emission.
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D, : D2, it assumes one electron with the original frequency D1, and two
with the frequency D2. Their motions are linked together by the mag
netic field in a peculiar way. The equations of vibration are set down

independently and differently from each other for the components that
are parallel and perpendicular to the magnetic field. From them we
calculate the vibration numbers as functions of the ratio

_ AV0U
AVncrn¢

l l

Where Avo denotes the original difference between the frequencies of D1
and D2. Since Av,,,,,,,, is proportional to the magnetic field, v gives us an
inverse measure of the magnetic intensity of field. Great values of '0
denote “ weak

”
fields, small values denote “ strong

"
fields, in the sense

of page 388. The A1/'s calculated according to Voigt give for great values
of '0 the resolution picture shown in Fig. 96 ; for small values of '0 they
give the normal Paschen-Back effect, and also represent within the limits
of errors of observation the process of transformation from the one type
to the other when the fields are intermediate between “ weak

"
and

“
strong.” *

To translate Voigt-‘s formulas into the language of quanta we have to
deduce, according to the series scheme of the D-lines, v = ls — 212,, the
resolutions of the terms ls and 211,-from the resolutions Av of the lines.
The resolution of ls is the normal one ; hence, in subtracting the resolu
tion Av,,,,,,,, of the s-term from Voigt's Av of the lines, we get the resolution
of the two p-terms, and, indeed, we get it for the various magnetic
quantum-numbers m = 1- 1, 1 3, which, according to page 395, come
into consideration for the D-lines. Since we can determine each indi

vidual p-level from one parallel and one perpendicular component of the
resolution picture, we get for the position of each level two determinations
that are identical with and check each other. The result may be com

pressed into the simple formula :

it +W =

g
'<
'!
n

1

¢
1 + +

v2>Av,,,,,,,.

Here the upper sign applies to the energy-levels pl, the lower to p2; in
the first case, m runs through the values m = i 1, i 3, in the second, the
values 1 1.

It signifies only a slight generalisation if we make use of the corre
sponding formula for all terms and replace the Runge denominator under
the square root by 1

' = 2n - 1, thus :

é +\V =
if

gt-<1n

1

‘/
1 + 23701 + ’U2)Av,,m,,

. . (18)

“ CL, for example, the work by Kent, mentioned on page 361.

26
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We next test this formula for weak fields, '0> 1. We then have :

Qmo 2_ 1
m 1

\/1+2n_'1+v -'v< +2n_l;v+
I

2mv . m
1 ___ I A , = A ___ _J +m-1+” “M “+2n-1

and hence, by (18),

W = hA1/0 + g <1
i
2” 1_ l>Av,m,-,,,.

2| |+

|_
<
>
|
1
-4

This has brought us back to eqn. 13 on page 396; hence all the

resolution-pictures there deduced also obey our general eqn. (18).
On the other hand, for strong fields, that is 'v-< 1

,

eqn. (18) gives

directly _ _ 1w = w + ;,?i‘..;sAt,w,_,, . . . . (19)

Since m was an odd number in the case of the doublet-systems,
m i 1

2

tion becomes normal for strong fields. At the same time it tells us how
the anomalous energy-levels of the weak fields are related to the normal
levels of the strong fields and pass over into them. This is represented
for the p- and rl-terms by the middle columns in Fig. 100. The arrows
that have been inserted indicate in which sense the anomalous levels
must be displaced if they are finally to become normal levels. A glance
at the figure tells us that the whole Paschen-Back effect consists only in a

mostly trifling smoothing out and adjustment of the energy-levels. Those
levels that are from the outset normal remain normal ; these are the two
levels of the s-term and the two outermost levels of the pr and dl-terms.
For all of these, [ml = 2n - 1 holds. Hence from eqn. (18) it follows
that

will be an even number. Thus eqn. (19) asserts that the resolu

€| +

LO
’ =
3
“

W = (1 lm]+(r i 1))Av,,.,,,,,,
= W + %hA1/0 i h*l'?'n"l2_l;1A1'1|1n':/l

This again denotes the normal Zeeman effect, and indeed for all values
of 12.

We now come to the triplet systems. A vibration theory has not
beeh worked out for these. We can, therefore, describe the transition
from weak to strong fields only qualitatively and not quantitatively.
This is done by means of the arrows in the second and fourth columns
of Fig. 101, which have been drawn from analogy with Voigt's formulae,

for the doublet systems. Levels that were naturally normal remain so
here again and are unaflected by the transformation (the zero-levels are
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an exception to this). The Paschen-Back etfect again consists purely in
a systematic smoothing out of the originally anomalous energy-levels.
A noteworthy feature in this process is that levels which have been

normalised in this way do not always bear the magnetic quantum-number
that corresponds to their resolution. From a comparison of the first and
second columns for the d-terms in Fig. 101 it follows, for example, that
the normal level + 1 (second column) arises from the level O (first
column) and hence also bears the same quantum-number m = 0 as the
latter. As a matter of fact we may imagine the transition from weak to

strong fields to be carried out adiabatically so that the quantum-numbers
remain preserved in principle. In the same way the normal level O

(second column) arises from the level —- f, (first column), and accordingly
also receives its quantum-number rn = - 1. The levels of the multiple
terms that hare been normalised by the Paschen-Back ejfeot are thus in

general displaced, as regards their quantum-numbers, relatively to the
originally normal levels such as would belong to the simple terms.
For example, we recognise a confirmation of this curious displace

ment in the “ partial Paschen-Back effect
"
(cf. p. 389), which has been

observed by Back,* in the I N .S. of Mg. The cl-ditferences are so small
in the case of Mg that any perceptible magnetic field must be considered
“
strong

" in comparison with them. Accordingly we write the formula
of the Mg lines in question, A = 3838, 3832, 3830, not as v = 2p,- - 3:1,,
but as v = 2p,- — 3d (cf. p. 389), but notice, in doing so, that the

magnetic quantum-numbers of the normalised d-term that has artificially
become simple differ from those of an originally simple term in the sense
of the displacement mentioned just above. In the following table there
are written under the m-values of the upper row the resolutions of the
terms pi when the field is weak, and in the next three rows the resolu
tions of the three d-terms when the fields are strong. The brackets
above the table indicate that the term pl consists of five, the term p2 of
three levels, and the term pa of only one zero-level. The magnetic levels
of the cl-terms are indeed all integral (normal), but are in general dis

placed with respect to the scale of the m’s (the levels of an originally

simple term). We next prove the effect of this in the resolution-pictures
of the individual combinations (p,-d).
Let us first consider (pad). Out of the zero-level of pa together with

the d-levels 1, O, — 1 vertically beneath it there arise the

p-components O, 1 1.

If, on the other hand, we proceed from the same zero-level to the d-levels
at the right or left of the middle, there arise the

s-components O, 1 1, i 2.
Exactly this resolution-picture has actually been observed by Back.

* Naturwissenschaften, 1921, 12 Heft, Tab. 4.
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In the case of the combination ( 112(1)we correspondingly get from the
three middle rows of the scheme the

p-components (0), 1 1
}
,

1 1 (1 3),

and, b
y combining with the neighbouring rows on the right and left, the

s-components 0
,

1 1
, 1 1, 1 L}
,

12 (1%).

This type, too, in particular, as regards the drawing together of the

]J- and s-components, agrees with the observations of Back; only the
bracketed components are missing in the observations, and this is

obviously due to their too feeble intensity, and is formally explained by
the principle of correspondence.
Finally, the combination (pld) gives the p-components:

0
.

1
%
.

1 1, (1 2).

and the s-components:

0
. 11. 11, 1?, 12. (1?) (13).2 2 2

This, too, agrees with observation, with the exception of the additional
bracketed components.

The combination (pad) is particularly instructive. Although in this
case we connect the normal zero-level of pa with the normalised levels of
the d-term, the normal triplet 0(1)), 1 1(s) does not arise, but the quintet
O(p, s)

,

1 1(p, s)
,

1 2(s) appears. This is purely a consequence of the

displacement of the normalised level relative to its natural position. If,
on the other hand, we had combined the zero-level of pa with entirely
normal d-levels, we should clearly have obtained only the normal triplet,
namely O — O as a p-component, and O $ 1 as s-components.
The circumstances are quite similar in the case of the partial Paschen

Back effect of the doublet systems, for example, in the caseof Na,

v = 2p; — 4d, a result which Mr. Back has kindly communicated to the
author.

Looking back we may say that for strong fields, too, our account,
which is a mixture of the quantum theory and of a phenomenological



§7, The Anomalous Zeeman Effect 405

theory of vibration, has fared remarkably well. The extrapolation of
V0igt's equations has been shown to be fully trustworthy, in particular
in the case of the doublet systems. There is no doubt that this fruitful
ness of Voigt's theory as extended in this way is ultimately due again to
the general correspondence between the quantum theory and the classical

theory of radiation, which has been so happily formulated by Bohr.*

‘ The thanks of the author are due to Mr. W. Heisenberg for kindly collaborating
in the above treatment. It is due to him, too, that the author has found it possible in
the following addendum, to solve the problem of the anomalous Zeeman efiects and of
the term-multiplicities, on which they are founded, on the basis of Bohr's model.
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ADDENDUM

‘ A f E use the following picture to represent diagrammatically a doubletatom, that is
,

an atom out of the first or third group of the

periodic system or an ionised atom out of the second group,
and so forth: an outer valency electron, comparatively far removed from
the remainder of the atom, and an atomic trunk, which comprises the rest
of the atom and that is treated as forming a whole, are coupled together

b
y the internal atomic magnetic field H,-,* which arises through the revolu

tion of the valency electron about the atomic trunk. If p. is the magnetic
moment of the atomic trunk, due to the circulations of its inner electrons,
and if 0 is the angle between H; and the axis of p., then the efifective
part of the magnetic energy corresponding to this coupling is:

p.H,- cos 0 . . . . . (20)

We make the following fundamental assumption, which is justified by
its success: when the valency electron is in the ground orbit 1s the atom
has the total impulset 1

, and, averaged for t/ime, this is shared equally
between the valency electron and the atomic trunk, so that each has the

mean moment of momentum If the valency electron is removed to a

p- or a d-orbit, its moment increases by 1 or 2 . . . units, that is, now

amounts to Q
, or in general to n — 1
1
;,

where n is taken as the azimuthal

quantum number we used earlier. The moment of the atomic trunk

hereby retains its value -.
1
3

as regards magnitude; how it behaves with

regard to direction will be decided by systematic calculations below.
From this starting-point we next get a revision of the nomenclature and

view of quantum numbers that we have hitherto adopted. The total

quantum of the motion of the valency electron (current number of the
series term, sum of the azimuthal and radial quantum) is an integral
number, as is shown by the series representation. On the other hand,
the phase integrals that belong individually to the azimuthal and radial

motion are half-numbers. If we call the numbers in question n* and n'*,
then by our above remark n* = n ~ ; on the other hand, we have to

demand that 11/* = 1
1
/

+ 1
,, in order that the sum 11* + 11/*may remain

* In a note of Nov., 1916 (Bayer, Akad.) the author has considered the magnetic
action of an electron that circulates in the interior of the trunk upon the outer electron
and has shown that this is to be neglected in the series representation. What we are
dealing with in the text is the opposite action.

+ Here and in the sequel we express the moment of momentum in terms of the
unit h/21r.
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equal to the whole number n + n’. The total moment of momentum
of the atom is determined by the geometrical sum of the moment of

momentum of the outer electron and of that of the atomic trunk. When
no external magnetic field acts, then, as we shall show, the axes of
both moments of momentum are in the same sense or parallel to one
another in the opposite sense, and the total impulse of the atom becomes

n— {n’j1)=n.-. . . .(21)

L\
'Jr
—
I

l+
N
J»
--
\

ll

Thus, as Landé first stated, our inner quantum number n,~has the signifi
cance o

f the total moment, and its two difierent values correspond, in the
case o

f the doublet atom, to the two rlifierent possible ways of circulating o
f

the atomic trunk. The principle o
f selection for the inner quantum number

n,¢ is
,

in view o
f this, according to Rubinounlcz directly intelligible, indeed

more so than the principle o
f selection for the azimuthal quantum number n.

From the mechanical moment of momentum we get the corresponding
magnetic moment of the circulation of the electron (cf. p. 249) by multi

plying the former by e/2mc. Consequently, the magnetic moment of the
atomic trunk or of the valency electron, if we now insert the hitherto

suppressed factor h/21r becomes, respectively:

1 e h 7., e h

§'2mc'21r
or n
'2T0.21r (22)

According to this, then, the magnetic moment of the atomic trunk becomes

equal to half that of a Bohr magneton.
We now impose an external magnetic field H. Let this form an angle

0
, or 02, respectively, with the axes of the mean moment of momentum of

the valency electron or the atomic trunk. If 0, as in (20), is the angle
between the latter two axes, then, by the cosine law,

cos 0 = cos 01 cos 02 + sin 0
, sin 0
, cos (7, - y.,) . (23)

where the angles 7, and 7.3 determine the position of the
“ Knotenl-ime

in the plane perpendicular to H for the mean orbital plane of the valency
electron or of the atomic trunk respectively. We imagine the angle 0

, to

be fixed by
“
spatial quantising." Thus, besides the moment n* of the

valency electron, also its component in the direction of H can assume
only discrete values. We designate these values* by rn* (“magnetic

quantum number") and assume them to be like n*, half integers. Then
we have in complete analogy with the spatial quantising of the hydrogen
orbits (eqn. (6) on p. 244):

m.* = n* cos 0 . . . . . (24)

" Our earlier magnetic quantum numberm of the doublet systems was twice the
present nu“. Whereas the earlier one assumed the values 1 (1, B

,
5
,
. . , 2n - 1), our

present m‘ assumes the values]: (.§,, 4
}
,
. . . n‘).
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On the other hand, we shall determine the angle 02 by the postulate that
the axis of the atomic trunk is to assume the direction of the resultant of
the external field H and of the inner atomic field H,-.
The magnetic energy of the whole doublet atom is composed of the

following three parts :—-
l

1. The magnetic energy of the valency electron in the field H [see
eqns. (20), (22), (24), and (1)]:

e c h.H
[L1H cos 01 = n* -
;
-H cos 0, = m* - _ -_ = m*l1-Av,,,,,-,,,

2mc m 41rC

2. The magnetic energy of the atomic trunk in the field H [see eqns.
(20), (22), and (1)] :

si I 1
;i._,H cos 02 =

2%
. H cos 0, =

Q
cos 02hAv,,,,,-,,,.

3. The mutual magnetic energy between the valency electron and the
atomic trunk [see eqns. (20) and (1)] :

1 , h 1 H,
M11, cos 0 =

2
-

2
;‘
-; -

Q;
- H; cos 0 =

2 .H-
cos 0hAv,,,,,,,,.

If we add, further, an amount W as energy that is not of magnetic
origin, we get as the total energy, if we substitute for cos 0 from (23) and

set = d

W = W + h(m* + X)Av,,,,,,,, . (25)

in which we have used the abbreviation

X = cos 0.
,

+ 'v[cos 0
, cos 0,
,

+ sin 6
, sin 02 cos (7, — -y,)] . (26)

The postulate that the atomic trunk is to adjust itself in the magnetic field
requires that :

- DW DW.__=___=-.0,
372 392

From this it follows, on the one hand, that

sin (7, — 7,) = O . . . . . (27)

that is
,

“the magnetic axis of the atomic trunk and the orbit of the
valency electron lie in a plane which contains the field direction H ; ” and,
on the other hand, a condition for 62 follows from which we get after a
simple calculation

1| 1 + 2-u cos 0, + '0'-' . . . . (28)

If we now use eqn. (24) and insert (28) in (25), we get

IV = W +
h(m*

1 1 +
272:1,

+

1
'-
2
)

. Av,,,,,-,,,. . (29)
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which agrees exactly with eqn. (18). As we saw above that the facts of
the whole magneto-optics of doublet systems arise out of this equation,
these facts are now also explained in terms of the atomic model.

Pictorially our deduction of eqn. (29) teaches us the following: The
orbit of the valency electron is fixed with respect to the external magnetic
field by spatial quantising. The atomic trunk adjusts itself into the
direction of the resultant of the external and the inner atomic magnetic
field, that is

,
it lies in general obliquely to the external magnetic field.

Only when the latter field is strong compared with the inner atomic field,
does the atomic trunk take the exact direction of the external field. Then
the final result of the Paschen-Back effect is attained and we get appreci
ably normal resolution.
As a bye-product of these considerations we, of course, get the ex

planatum o
f the doublets in a free field (no external magnetic field) on the

basis o
f the atomic model. These doublets correspond to the difference in

the mutual energy of the valency electron and the atomic trunk in the
two opposite motions of the latter. The distance between the doublets
becomes (as also follows from eqn. (29) for v = 0:»:

e H,
“”" “ ti '71}?

By calculating the magnetic action H, of a definite p- or rl-orbit of the
valency electron at the focus of the orbit, whereby we have now to take
account of the present mechanical significance of the quantum numbers

(n*, n’* in place of rt and n’), we get for Li

Avp = 0'32 Cm.'1, Avd = 0035 0II1.‘l.

This agrees excellently with our data on page 361. In the case of the
heavier elements the extension of the atomic trunk is to be taken into
consideration, and hence the calculation of H; at the focus of the orbit
no longer suflices. This circumstance brings with it the increase of the
doublet diflerence with increase of atomic number, with which we are

acquainted from page 371.

In spite of the striking agreement between the theoretical and the
observed doublet interval for Li we should scarcely need to regard our
model of the doublet atoms as inevitable, if it were not linked up with
the whole realm of the Zeeman effect for doublets. But inasmuch as
formula (18), which has been obtained empirically or half empirically,

may be deduced accurately from our model of doublet atoms, our explana
tion of the doublets in a free field seems quite assured.
\Ve shall only briefly sketch the corresponding theory of triplet atoms.

According to the cross law we have here an even number of outer
electrons of which tu'0 are favoured as valency electrons, one being the

inner and the other the outer valency electron. For the unexcited state
we distribute an impulse 1 in each case in the mean equally between the
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atomic trunk and each of the two valency electrons. Here two cases are

possible : the two impulses 1 are of opposite or of the same sign.
1. In the first case the atomic trunk receives the impulse

+ +
(—

= 0.

The inner valency electron receives, say, — -1
-,

and the outer + 1
}
,

or, in

the excited state, n — 1
}
.

This is the case of the simple terms. The
sum of the moments becomes n — 1

, that is, again n,-, cf. page 367; the

Zeeman efi'ect becomes normal because the atomic trunk does not respond

magnetically since its magnetic moment is zero. In particular, it is

highly satisfactory that the ground-orbit S of the triplet atoms is dis

tinguished by the value n, = O of the total moment of momentum.

2
. In the second case which we must ascribe to the true triplet terms

the atomic trunk has the moment of momentum

+

b
a
l
i—
‘

-l"

@
l
1
-‘

ll 1|
and each of the two valency electrons is associated in the unexcited state

(s-term) with the momentum + =
1
»

In the excited state the momentum
of the external valency electron becomes increased to n — -Q

»
,

whereas

those of the inner valency electron and the atomic trunk retain the values

5 and 1 respectively. The mutual adjustment and the possible eventuality
of a change of sign must be obtained from the exact investigation of their

adjustment in an external magnetic field H.
Let us make the approximate assumption, which is without doubt justi

fied, that the inner valency electron is perfectly rigidly coupled to the atomic
trunk; thus let us characterise its position by the common angle 0

2 and

treat the sum of its moments of momentum, 1 + it = as one quantity.

Let us, on the other hand, determine the position of the valency electrons

b
y means of spatial quantising, in such a way that the sum of the com

ponents of its moments of momentum in the direction of the field H is

capable of assuming only the discrete values m (m = “magnetic quantum
number

" = integer). Then the following relation holds :——

'

1
} cos 0.
,

+ n* cos 0
, = m . . . . (30)

By summing up the individual amounts of energy, as enumerated on page
408 and using (30), we now get :—

WV = W + h(m + X)Av,,,,,~,,, . . . (31)

in which X has the same meaning as in (26) except that in place of v

we now have 31>/2. If we next postulate that the complex consisting
of the atomic trunk and the inner valency electron is again to adjust

itself into the direction of the resultant of the fields H and H,-, there
follows from this and from eqn. (30) a cubic equation in

X, TWO of its
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roots are given by the two outer levels of the triplet ; the middle level may
be brought into relation with them rationally. For weak external fields
(H I-I,~, '0 1) they are given by

__ 3 1 1

[W
+1t[ 2

'5 + m(1-+ 1
-,

)]av.,,,,,,_
— 3 'v 1 1

W = W + h)- IE, + m
(1 -

;L + n )]Av,,,,.,.,,,_
. (32)

W + h — E
;

<
1 —

1

5

A

A

2

'U + 7"’ n __ 1 Vrwrm.

These equations agree exactly with eqn. (14) as far as the coefficients
of m are concerned. Hence, like the latter equations, they represent the
anomalous Zeeman eflects o

f the triplet systems for weak fields completely
and correctly. We merely mention in passing that the cubic equation
may also be manipulated approximately for strong fields, and that it then
gives energy-levels that represent the Paschen-Back effect correctly.
We next compare those parts of eqns. (32) and (14) that do not in

volve m. We get in this way

C
JO

W1 = W + 5 'Uh/Al/1wrnn

__ _: 3

‘V2 = W " Z 7%-hAV11orm|
_ — 3

W3 = W ~ §ohAv,,,,,,,,.

From these it follows by eqn. (16) that for triplet-differences when no

field is present

., _ . _ 3 1 _ 3 1

Al/1 - AI/Z3 -—— + - —

1
’

I

=2'n*+ 1:2n*- 1=n:n — 1
)

This is highly significant, and states that: In the case of the p-term the
ratio o

f the triplet-dt'fl'erences is to be 2 : 1, for the d-term it is to be 3 : 2
,

and for the b-term 4 :3. Table 41 on page 371 shows in its last two
columns how exactly this deduction of the theory is confirmed by observa
tion for low atomic numbers.‘ Saunders’ measurements (mentioned on

p. 362) of the triplets of the Bergmann lines of Ba also agree well with

our deduction within the limits of error. The fact that in the case of

higher atomic numbers departures from the ideal values come about is

explained, as above for doublet atoms, by the extension of the inner
atomic complex of which we took no account in our calculation.
The pictorial meaning of our three triplet-levels is as follows: the

middle path of the outer valency electron is in general inclined to the

momental plane of the inner complex, atomic trunk + inner valency
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electron. The angle of inclination of both components of the triplet atom
has the three values (when no external field is present) :-—

0*cos6=+1, cos0=7?, cos0=—1.

Here 0* denotes the number O - 1} just as 'n.* denoted n — 1
}
.

The
middle triplet-level that corresponds to this value of cos 0 thus in a certain
sense tends towards the crossed position cos 6 = O of both components,
but cannot, by the quantum conditions, quite reach it. The two outer

triplet-levels cos 6 = 1
- 1 denote parallel 0-r-ientation in a sim'ila'r or 0])

pos-ite sense. When an external magnetic field is imposed the orbit of the
outer valency electron adjusts itself in exact accordance with it

,

as pre

scribed by the quantum theory, whereas the inner complex displays the
same behaviour only as the field gradually becomes stronger. If we add
to this what was said above about the pictorial significance of the simple
terms, we may assert that also in the case of the atoms, which generate
triplet lines, the objects of the theory of atomic models are fully realised.
With regard to the more precise foundation of our argument and

concerning certain difficulties that still subsist in the case of triplet atoms,
for example, with respect to the meaning of the inner atomic number, we
refer the reader to the more detailed account by W. Heisenberg in the
Zeitscltflft fiir Physik, 1922.

v



CHAPTER VII

BAND SPECTRA‘

§ 1. Historical and Empirical Preliminaries. Uniform View of Deslandres
and Balmer Terms.

HE first step towards ordering band spectra and describing them

N
by formula: was taken by Deslandres. The formula: which he ob
tained from consideration of a great number of empirical data be

came the model of all later developments in a way similar to that in which
Balmer's formula became the archetype of all series representations.
Schwarzschild created the foundation for the theoretical interpretation of
Deslandres formulae in the light of the quantum theory and Bohr’s models
in the same work (cf. p. 276) in which he alsot reated the Stark effect.
He there started from the idea proposed by N. Bjerrum t for the infra-red
absorption spectra, according to which the various lines of the band corre

spond to various rotational states of the absorbing gas molecules. We are
indebted to Heurlingeri for testing and deepening Schwarzschild's theory
by considering the empirical data. But his results received general notice

only when Lenz § set down the same results, in part independently of

Heurlinger and in part going beyond him, from comprehensive theoretical

points of view.

Owing to the complexity and confusion of the data of observation it is
not easy to get a provisional survey of the empirical facts. We must,
therefore, restrict ourselves to a few remarks concerning the nomenclature

chiefly and we shall reserve the outstanding results of experiment till later,
when we deal with their theoretical interpretation.

Expressed generally, band spectra are characterised by the close se

quence of their lines and by the accumulation of the latter at the so-called

edges or heads of the bands. The name “band spectra." is due to the fact
that when the dispersion of the resolving apparatus is small they give the

impression of continuously tinted bands. The bands are shaded off some
at the red end and some at the violet end, that is some have edges on the

" Mr. Kratzer very kindly co-operated in the account given in this chapter.
+Nernst-Festschrilt, 1912, p. 90.
IT. Heurlinger, Untersuchungm ilber die Struklur der Bandenspektren. Dis

sertatiou Lund, 1918, and also Arkiv. for Matematik. Astron. och Fysik, 12 (1916) ;
Physikal Zeitschr., 20, 188 (1919); Zeitschr. f. wissenschaitl; Photographic, 18, 241
1919).(
§ W. Lenz, Verh. d. D. Phys. Ges., 31, 632 (1919).
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red side and others on the violet side (cf. in this connexion the beginning
of §2 in Chap. IV.).
Band lines that seem to start out from the same edge are regarded as

belonging together to one or more partial bands (single bands). The fact
that such partial bands mutually overlap increases the difiiculty of order

ing and interpreting the band-spectra. The edges of the bands recur in
more or less regular sequence. Among the totality of edges of the bands
there may be distinguished, at least in the clearer cases, several groups of
bands. Thus each group unites a series of heads of bands to a higher

single form. Fig. 106 on page 429 exhibits such a group with five heads
of bands and partial bands that start out from them towards the violet
and overlap mutually. The various groups of bands, too, follow in regular

sequence and form a system of bands. The complete band emission of a

carrying agent consists not of one but in general of several band systems.
It was already emphasised on page 202 that the carrier of band spectra
is not the atom but the molecule.

But the appearance of the bands is by no means always such as here
described. There are types of band spectra that have hitherto resisted
all attempts tofind order in their structure and that do not allow them
selves to be arranged into groups and systems. To these there belong,
among others, the so-called many-lines spectra (cf. § 5). The bands that
lie in the infra-red are distinguished by their particular simplicity; in their
case a single band is observed alone and the overlapping of groups of bands
does not occur. We shall, therefore,deal principally (§ 2)with these spectra.
Our first concern is to arrive theoretically at the ground-element of

band-emission, Deslandres' term, and to bring it into relationship with the

ground-element of series-emission, Balmer’s term.
We start from the Bjerrum-Schwarzschild idea of the rotator, but in

doing so we do not think, as on page 198, of each individual point-mass
rotating at a fixed distance from a centre, but more generally, of a rigid
body rotating about a principal axis which we may regard as representing
a molecule schematically. Let its moment of inertia about the principal
axis be J, its angular velocity 0) or Then the moment of momentum
and kinetic energy are, respectively, as we know,

J...-1 (J...)*M = J E _- =1__ = Vmy km
2 2'1

.

Since the angle of rotation ¢ is a cyclical co-ordinate of the motion,
the quantum condition for this rotator is, analogously to eqn. (18) on page
199,

21rM = mh (rn is an integer).

From this it follows that

mh h“ IJ... = F E... = 8.21".‘ (1)
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We now distinguish between two cases:
I. The moment of inertia has a principal component Jo independent

of the rotation and is only unappreciably affected by the rotation (Ex
ample: the earth and its flattening).
II. The moment of inertia is produced by the rotation itself and

vanishes when the rotation vanishes (Example: a centrifugal governor,
or Bohr's model of the hydrogen atom).
In Case I we have for the mth quantum state

J = J0 + AJ,,, (A-Tm much less than J0) . (2)

In Case II we get in particular for the hydrogen model
Jm = pa?" = m‘ . . . . (3)

where )1 is the electronic mass, am and al the radius of the mth and the
1st Bohr circle.
If we insert the values (2) and (3) in (1), we get in Case I a value for

the energy that is approximately (i.e. neglecting A-Tm) proportional to mg;

haE . = 2.
km

87rzJm
1

whereas in Case II the mg of the numerator cancels with the denominator
and we get a result that is proportional to 1/mg: -

h” 1E - — -.km
81:1,u.a'-fmz

By dividing by h we get from the energy to the “term,” that is
,
to the

contribution which the energy-step in question makes to a possible spectral
emission of our rotator. In this way we get in Case I the Desla/ndres' term

. I

Bm*B, = . . . . (4)

and in Case II the Balmer term

R h 211-2e’~M R = é v = F . . . .my
81r“;.¢a'f h“

(5)

The equality of the two values given in (5) for the Rydberg frequency
actually follows from the following value for a1 (cf. p. 212) :

11,2
al = Gig‘.

Concerning the Balmer term we have yet to add that in the above we

have taken account only of the kivtetic energy of the rotator; if we now

add the potential energy, only the sign" of the term becomes changed (cf.
Note 5).
Accordingly we may regard the Deslandres’ term as just as funda

mental as Balmer’s, the former for systems with an initial moment of
inertia (molecules) the latter for systems without a moment of inertia

originally (atoms).
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J

§2. The Infra-Red Absorption Bands. Rotation and
Rotation-Vibration Spectra

Suppose the rigid system considered in the preceding section to be a
diatomic molecule, for example, H2, HCI, N2, and so forth. Let it consist
of two nuclear points surrounded by electronic systems that are negligible
as regards distribution of mass. The line which connects the nuclei is a

principal axis of the system (“axis of figure"), and so is
,

indeed, every

axis perpendicular to the latter (“equatorial axis "). It was an axis of
the latter type that we meant when we spoke in the previous section about
rotations about a principal axis of the rigid system. The moment of
inertia J refers to it. On the other hand the axis of figure has a moment
of inertia that is practically zero; rotations about this axis do not come
into consideration as regards quanta (cf. § 6).
\Vhen we called the system rigid this was only implied in an ap

proximate sense. The nuclei have, indeed, a position of equilibrium,
under the influence of their mutual repulsions and the electronic attrac
tions, but can move out of it if disturbances of equilibrium, collisions or

energy-absorption or -emission occur. They then execute vibrations about
the position of equilibrium. We assume that these “ nuclear vibrations

"

occur in the direction o
f the axis o
f

fig/u-re. In this sense every mole
cule represents not only a rotator but also an oscillator. If the vibrations
are infinitely small, we have a ha-rmonic oscillator; let its frequency be

V0. If the vibrations are regarded as finite, that is
,
if the nuclei move

away from the immediate vicinity of their position of equilibrium to
neigbouring parts of the field, then their mutual bond varies with the

magnitude of the amplitude. The oscillator is then non-harmonic and,
indeed, perceptibly so, because the true quantum state already entails
rather considerable amplitudes and thus in no wise allows itself to be
described as a harmonic vibration.
From the behaviour of the specific heats of gases we know that the

rotational degrees of freedom (just as the translational degrees of freedom)
are in full action at normal temperatures but that the vibrational degrees
of freedom do not make themselves observed in the specific heat in the
case of the simpler gases such as N2, O2, H01, and so forth. From this
we conclude that the rotational component of the motion is always
present and, indeed, to a considerable degree, whereas the component of
oscillation is often not excited and, when it is, only occurs in the process
of rotation.

For the present we assume our oscillator to be harmonic. Further
more, we here make the general observation that the important point for

spectral questions is not the presence of an oscillation but rather the

change in the state of oscillation, and not the presence of a rotation, but
rather the change in the state of rotation. In the theoretical treatment
we take the standpoint of the process o
f emission. The application of
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this to the process of absorption which chiefly comes under observation is
directly evident.
Let m’ be any arbitrary rotational quantum-number, and m one that

is fixed. Let m’ characterise the initial state and m the final state of the
rotation in the process of emission. If for the present we take into
account only the energy of rotation, that is, if we assume that any oscilla
tion that may be present at the same time does not alter its state then we
should get from Bohr's hypothesis (hv = energy difference) and from the
calculation of the Deslandres' term, eqn. (4) of the preceding section :

v=B(m'2-mil). . . . .(1)
We call the wave-numbers thus represented a pure rotation spectrum.
We shall assume with Schwarzschild more generally that the change

of the rotational energy is connected with a change of configuration of the
molecule, whether this consists in a re-shuffling of the electrons, as
Schwarzschild assumes in describing visible spectra, or whether it con
sists in a sudden change in the nuclear vibration, as we shall now assume
for the purposes of the infra-red spectrum, or whether finally it is due to
both phenomena simultaneously, as we shall have to assume later.

The nuclear vibrations, just like the rotations, are divided up into
quanta. As we are calculating for the present with a harmonic oscillator,
the nuclear vibrations are quantised according to energy elements hv“.
After what has just been said about the thermodynamic behaviour of

gases, only the smallest values O or 1 come into consideration for the
oscillation quantum n at normal temperatures, but any arbitrary values
for the rotation quantum number m. Let n’ be the quantum number of
the initial oscillation, n that of the final oscillation. The change of

energy then amounts toi

h('n'
—
'n)1/0

and the contribution of this energy-leap to the wave-number is

(n'
—
n)vo.

Through the superposition of this contribution on the contribution (1) of
the rotation we get

v = (n'
-
n)v0 + B(m'2

—
m2) . . . (2)

We call the sum total of the possible waves given in this expression a

rotation rihration spectrum.
But the transition 'm'-> m assumed by Schwarzschild (quantum leap of

several units) contradicts the selection principle, not yet known in

Schwarzschild's lifetime, according to which the jump in the rotational

quantum number must be equal to i 1; we shall later take into con
sideration the fact that under certain circumstances the quantum jump O

must also be allowed. In the same way the transition n’->11. in which
the oscillation quantum number jumps by several units is contrary to

the principle of correspondence, which in the case of the harm0m'c

27
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oscillator likewise (cf. Note 10, d) only allows quantum jumps of one unit.
Thus we set

'm.'=mi land 11/='n.i 1 . (3)

and get from (1), when m’ = m + 1,

v = B(2m + 1) . . (4)

and from (2) when m’ = m 1 1, n’ — n = + 1

v =1/O + B(¢ 2m + 1) . . . . (5)

Concerning this we have to remark that in the rotation spectrum (4)
the assumption m’ = m — 1 would lead to negative wave-numbers; such

belong to absorption processes and thus drop out here, where we have

taken the point of view of emission. Consequently in (4) we had only
to take into consideration the possibility m’ = m + 1 for the jump in the
rotational quantum-number. Likewise in the rotation-vibration spectrum

(5) the assumption n’
— 11.= — 1 would lead to negative wave-numbers.

For we have to notice that in general the value of v0 predominates con

siderably over that of B. That is why the formula

v=—a/0-I-B(2m+1). . . .(6)
which would result if we assumed n’ — n = — 1, m’ = m + 1, can never
lead to a positive v; but the formula

1/=v0-l—B(—2'm+1),

contained in (5), which corresponds to the assumption n’ — n = + 1,
m’ = m — 1, represents positive wave-numbers.

It is remarkable that as early as 1916 Bohr postulated in an essay*
(which, however, appeared in print only in 1921) the restriction (3) for

rotation quanta in just the case of infra-red band spectra supporting his

argument on the general correspondence between classical and quantum
radiation, this being a first suggestion of the correspondence principle
which he later formulated.
What is common in the content of eqns. (4) and (5) is that they re

present equidistant sequences of lines with the constant difference in wave
number

h
Av — 2B - . . . . . (I)

In the rotation spectra (4) we have one such system, in the rotation
vibration spectra (5) two systems, according to the choice of the sign, a

positive branch and a negative branch which, however, continue in one
another beyond the “zero point

"
m = O. As we shall see presently in

Fig. 102, this zero point is not itself represented in the sequence of lines.
We have examples of both kinds of bands in the infra-red absorption

spectra (which have also been observed by Paschen i as emission spectra).
‘ Appears in his Gesammelte Abhandlunge-n. (Vieweg, Braunschweig, 1921), p. 138.
1 Ann. d. Phys., 53, 336 (1894).
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Pure rotation spectra have been observed in the case of water vapour by
Bubens* and Eva von Bahr.+ Rotation-vibration spectra, resolved into
lines, were first observed in the case of HCI and H20 by the same experi
menters, and were recently measured with great precision by Sleatori in
the case of water-vapour and by Imes§ in that of HF, HG], HBr. The
heteropolar nature of the molecules, that is, the circumstance that they are

composed of one positive and one negative ion is essential ll for the occur
rence of infra-red absorption. The rotation spectra lie in the more distant
infra-red at 100/L in round numbers (the latest measurements of Rubens
extend as far as 132;»), the rotation-vibration spectra lie in the nearer
infra-red involving wave-lengths of several ;1.'s.
An interesting relationship, already anticipated by Bjerrum and proved

by Eucken, exists between the rotation-spectra and the rotation-vibration

spectra: the frequency-differences Av of successive lines are essentially
equal in both spectra. By eqn. (7) this denotes theoretically that the
moments of inertia of the molecules in both states do not essentially differ
from one another.
The original interpretation of infra-red bands by Bjerrurn, which was

antecedent to Bohr’s theory, was of course, difierent. Bjerrum did not

quantise the moment of momentum, but the energy of the rotating mole
cule ; moreover, he assumed the absorption frequencies to be equal to the

mechanical frequencies, that is, he did not determine them from Bohr's

frequency condition. He thus obtained from the frequency difference of
neighbouring rotational states

h
Z: I I 8Av
21rZJ

( )

that is, twice our value (7). We have already met with this difference

denoted by the factor 2 before, on page 199, where we compared the

quantising of the rotator with that of the oscillator.
It would be possible to decide experimentally between formulae (7) and

(8) only if the moment of inertia J of the molecules were accurately known
from another quarter, and this is not the case. Nevertheless, there can
be no doubt nowadays that Bjerrum's view is to be given up in favour of
Bohr's.
To pass on to the finer questions, such as, firstly, the position of the

null or zero-line within the rotation-vibration bands we consider Fig. 102,

due to Imes (lac. cit.) as well as the sketch, Fig. 103, that belongs to it.
The gap in the sequence of the saw-edge immediately strikes us in Fig. 102.
Not only is a tooth-edge missing here, but the intensity of the continuous

“ Berliner Ber., 1913, p. 513.
+Verh. d. Deutsch. Phys. Ges., 15, 731 and 1150 (1913).I Sleator, Astrophys. Journ., 48, 124 (1918).
§ Imes. ibid., 50, 251 (1919).
||Of. W. Burmeister, \erh. d. Deutsch. Phys. Ges., 15, 589 (1913) ; Rubens and v.

Wartenberg, ibid., 13, 796 (1911).
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background and the size of the tooth-edges clearly group themselves about
this gap. We take this to mean the following: under all circumstances
the frequency with which the various states of rotation occur depends on
the quantum number m according to some law of distribution, and like
wise under all circumstances the intensity of the absorption lines is pro
portional to the frequency of occurrence of the initial state in question.
Equal intervals in the spectrum to the right and left of the null-line cor

respond say to equal values of m and accordingly exhibit absorption lines
of approximately equal intensity. The course of the intensity here agrees
well with the Maxwell-Boltzmann law of distribution, which, as in the
classical theory of gases, we should expect first of all. The dependence
of the intensity on the temperature (displacement of the two maxima of

intensity outwards in proportion to the root of the absorbed temperature,
a relation that emerges directly out of the work of Paschen (loo. cit.) agrees,
so it seems, fully with this law.

5,8 8,1 3,0 5,5 3,4 s,s;4

Per

°§;;* l|l|
,, 1lllllllllllllllllllllllll|l.|l—
,, Dilllllllllllllllllllllllllltl||lI1li—
...

lI‘)l!|!lll||
I 1' "lI'

u
m
}
,

l ..- ll
Flo. 102.—Rotation vibration spectrum of H01, photographed by Imes by means

of a reflexion grating of great dispersive power. The absorption per cent is plotted as
the ordinate, and an angle of defiexion is plotted as the abscissa ; the scale added above
gives the corresponding wave-lengths in terms of ,u. The middle of the band (see the
gap in the row of teeth) corresponds to A = 3-46p.

On account of their minimum of intensity in the middle the rotation
vibration spectra, before they had been successfully resolved, used to be
called “double bands" in contradistinction to the simple bands of the

rotation-spectra, which exhibit no such gap.
According to (5) the position of the zero-point is given by

v=%+B . . . . . @
It does not thus coincide with the position of the nuclear vibration vo, but
differs from it by B, that is

,

by half the distance between two teeth, Av in

eqn. (7). Consequently two dotted lines have been inserted in Fig. 103;
the one corresponds to the zero position m = 0

,

the other to the nuclear
vibration wo. In accordance with eqn. (9) the latter bisects the distance
between the lines 1 -—> O and O -> 1

.

Now, what does the omission of the zero-line signify theoretically?
It is a little easier to give the answer from the point of view of absorption
than from that of emission. Thus we now take m (the final state in emis

sion) as standing for the vimltial state in absorption. The dropping out of
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the zero-linel in absorption means that the transition 0 —>1 does not occur.
From this we conclude that the unexciled molecule is in the rotationless
state m = O either not at all, 0-r rarely, or only for a very short time. This
deduction is surprising at first sight and is excellently confirmed by the
behaviour of the specific heat of rotation in the case of water according to
calculations of Reiche * and Bohr.+ We remark on the other hand that
the reversed process of absorption 1 —>0, which corresponds in Fig. 102,
to the first tooth-edge, marked 1, of the positive branch, is by no means

forbidden, that is
,

that the rotationless state is certainly possible as the

final state of absorption. This seems quite compatible with the assumed
instability of the state m = O

.
According to Kirchhofifs’ law we must assume for the process of emis

sion, if it is excited as temperature radiation, that in its case likewise, the
zero line drops out. But now, this signifies that the transition 1 -—> 0 does
not occur, that is

,

that the rotationless state m = O is not the final state
--
.-
__
-_
°Q

is
3—>4 2->3 1->2 O->1 1->0 2->1 3->9 4_,3

FIG.103.

aimed at b
y emission. This is difiicult to picture physically, the more so

as in the case of absorption the state m = O is certainly possible, as one
remarked, as the final state. It is equally difficult to understand that the
emissive process 0 -—> 1 is certainly not, according to Kirchhofi"s law and

according to observation in the case of absorption spectra, forbidden, that

is that the rotationless state, in spite of its assumed instability must be

possible as the imtial slate of the emission. A direct observation of infra
red emission spectra, in particular in the neighbourhood of the zero-line
would accordingly, in view of the confidence that we must repose in
K.irchhoff's law, be highly desirable.
Earlier, in considering the atom, in particular in interpreting the Zee

man and the Stark effects (cf. p. 282), we excluded the orbits of vanish

ingly small azimuthal quantum-number, that correspond in a certain
sense to the rotationless state 1n = O of the molecule, as being unreal, by

means of a supplementary condition of selection. But in that case the

position was much simpler than at present. The statem = O occurred
neither as an initial nor as a final state, and could thus be regarded
straightway as forbidden, whereas now the decree forbidding this state is

only conditional and apparently different for emission and absorption.

' Ann. d. Phys., 58, 682 (1919).

+ On page 148 of the essay quoted on page 418.
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We revert to the selective conditions (3), including both those for the
rotation quantum as well as those for the oscillation quantum in Note
10, and consider them from the point of view of the principle of corre
spondence. This principle in itself asserts nothing about the rotationless
state m = O. But if we adduce the observed fact that the nuclear fre

quency v = v0, dotted in Fig. 103, does not belong to the system of band
lines, it likewise allows us to infer that the rotationless state is improbable.
The equality of the distances between successive lines of the band,

asserted in eqn. (7) is very imperfect, as may be seen directly in Fig. 102 ;
actually, a definite rctrogression, namely, a decrease of the distance Av
between the teeth towards the side of short waves, is clearly shown.
According to K1atzer,* the explanation is as follows: whereas hitherto
we have simply superposed rotation and oscillation on each other, a
mutual action, between both actually occurs. There are two causes for
this: on account of the oscillation the moment of inertia J of the molecule
is no longer constant but variable. Its mean value is diflerent from its

original value J when there was no oscillation. In consequence of the
rotation, on the other hand, the position of equilibrium of the nuclei, and
hence also—in the case cf an non-harmonic oscillator—the strength of
the bond is changed.
In the formula (11) that follows the member due to the mutual action

is represented by — 'm2a,,,h. To a first approximation the coefficient a-,, is

proportional to the oscillation quantum n, and contains, for the rest, the
molecular constants (moment of inertia, the law of force between the

nuclei). Thus to a first approximation the member due to the mutual
action is proportional to the square of the rotation quantum and to the
first power of the oscillation quantum. In the harmonic case, too, the
coefficient an does not vanish (on account of the first of the two above
mentioned causes of the mutual action); here it carries a negative sign.
Increasingly non-harmonic connection between the nuclei gradually
makes the sign of an positive. .

Let WK, denote the energy of the molecule that is associated with

the rotation quantum m and the oscillation quantum n, and W5‘ corre

spondingly the energy of the rotationless molecule for the oscillation

quantum n, for which we set ah;/0 in the harmonic case. In the non
harmonic case there stands in place of this a development of the form

W3‘
=
11.hv0(1

— am + . . . . . (10)

which advances in powers of am; the little constant :1: depends on the

law governing the non-harmonic connexion.
On the other hand, the formula for W’; is:

1. n ha 1
W;,, = W0

— mianh + (ml
— . . . . (11)

" A. Kratzer, Zeitschrift f. Phys.. 3, 289 (1920).
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The last term is the rotational energy, and corresponds to the Deslandres'
term. The brackets denote that when we take into consideration the centri

fugal effects a supplementary member involving m‘ becomes added to

ma, and apparently changes the moment of inertia J [cf. 1, eqn. (2),
where the corresponding change was denoted by AJ,,,]. The formula;

(10) and (11) are derived in Note 17.

Arguing from eqn. (11) we now find it easy to account for the gradual
change in the distance between the tooth-edges of the absorption bands.
It is to be noted that according to page 416 the initial value of 12,must
be assumed equal to zero in the process of absorption, If, as before, we
represent this same process as a process of emission, we have to insert in

the former the final value O for n, and set the initial value equal to
1, 2, . . . But for the initial value 11,= O the first two terms in (11)
drop out, not, however, for the initial value n = 1, 2, . . . In the ex
pression for the difference the first two terms due to the initial state re
main standing, and furnish a member quad-ratio in m to the formula for
the band. This explains the gradual change in question of the interval

between the lines. From (11) we easily get for the distance between suc

cessive peaks: .

Av(1 + . . .)
—
(2m
— 1)a,| . . . (12)

Thus the constant interval Av calculated in (7), on the one hand, becomes

slightly altered by the centrifugal effects of the rotation, as was first shown

experimentally by F. Eucken, and as is indicated by the brackets (1 + . . .)
,

and, on the other hand, and more markedly, it becomes systematically
reduced as m increases owing to the mutual action between the oscillation
and the rotation when a,, is positive (non-harmonic oscillator). It is just
the latter that is shown in Fig. 102.
Whereas only jumps of the oscillation quantum by 1 were possible for

the harmonic oscillator, eqn. (4), any arbitrary jumps >1 are now ad
missible for the non-ha-rnwmlc oscillator now under consideration, cor

responding to its overtones. From this it follows that the first member
on the right in eqn. (5) is generally to be replaced by

v0(1
— 2:), 2v0(l

— 241:), 3v0(1
-
3x) . . . . . (13)

We infer this directly from eqn. (10) by assuming n = O for the final
state of the process of emission (initial state of the absorption), and
n = 1

,

2
,
3 . . . for its final state. Two conclusions of a different kind

may be drawn from (13). 1
. In addition to the “ ground band " hitherto

considered, which also occurs in the harmonic oscillator, there are
“overtone bands " of approximately two, three times the wave-number

of the middle of the band. 2
. These wave-numbers are not in the exact

ratio 1 : 2 : 3: . . ., but are out of tune with one another according to
the measure of the quantity a:.
Mandersloot (Diss., Amsterdam, 1914) appears to have been the first
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to meet with success in looking for such overtone-bands (in the case of

CO). Then we have to mention Brinsmade and Kemble,* who estab
lished the presence of an overtone-band in measurements which they had

carried out themselves. Hettner'|' gives a comprehensive résumé of their
own and other measurements of infra-red bands that have partly been

resolved into lines. The following numbers signify the observed wave

lengths of the “centres of the bands
"
(that i

s, essentially, of the zero

lines) in terms of p
. :—

TABLE 46.

vo - 2110

1

‘

l_-___._ __ __,. ! ._

H01 . . . l s-46 I 1-76
HBI . ' 3'91

'

1'93co. . . . . 4-67 2-as

F

In the case of H20 Hettner derived from the frequencies vl, v2 of two
ground-bands no less than 12 over-tone bands and combination-bands
approximately of the form :

S11/1+ 82:/2.

According to Kratzer, loc. cit, the second and third overtone-bands may
be recognised besides the first in observations of HON noted b

y Bur
meister.

The band at A = 3-46,. in the case of HCI quoted in Table 46 was
shown in Fig. 102. The corresponding overtone-band A = 1'76p., like
wise measured by Imes, is added in Fig. 104. It exhibits not only the

PerCent 1.825 1-800 1-775 1-750 n
-1
-1 B
U g
,-
\

K

30

mrnvsv I ul
F16. 104.

same Av, but also, as Kratzer remarks, a double an (twice as rapid a

change in the Av), and by both of these circumstances proves itself to be
attributable to the ground-band 3'46 as an overtone-band. But particular
interest attaches to the subsidiary maxima that occur in this band. Accord
ing to Loomisi and Kratzer, § they are to be explained by the existence
of the isotopes, C13,, and C137. For since the nuclear vibration yo depends

" J. B. Brinsmade and E. C. Kemble, Proc. Nat. Ac., 3, 420 (1917).

f Hettner, Zeitschr. f. Phys., 1, 351
(51920).IF. W. Loomis, Astrophys. Journ., 2

, 248 (1920).
§A. Kratzer, Zeitschr. f. Phys., 3

,

460 (1920).
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on the mutual connexion and the masses of the vibrating nuclei, and

since, in the case of two isotopes, the connexious are the same, and the

masses are different, so we get two somewhat different 1/0's for C135 and

C137, and hence two rotation-vibration bands that are a little displaced

relatively. The subsidiary maxima denote the band of C13,, and are

small compared with the principal maxima of the band C135, correspond

ing to the relative amounts 1 : 3 of C137 and C135 (cf. p. 86).
The difference between the two nuclear vibrations is derived theoreti

cally as ‘follows :
If /1 denotes, as on page 220, the “ resulting

"
mass, that is

1 1 1 1
= 1 _ _ = 1 ,,_

-“as
+
35,

P-:47
+
37’

then, by Note 17, this enters into the ordinary formula for calculating the

characteristic frequencies _

2 to

If we designate the relative distance between the vibration-frequencies of

HCI35 and HCI3, by Q and the relative difference of wave-lengths by
V

rl/\
T, we get

§
=},;<1)= }(L

_
l)=

1 i _ E =. 1.1__
V 2 )1, 2 #35 p.37 §<35 3

7
>

1295

8v 1'76 _ __ __ _
°

SA - ~

7
’-
A - — lfim 4 cms. - 13 54A . . (14)

that is
,

The negative sign denotes that the lines of C135 have the shorter wave

lengths, that is that superposed on their long-wave side they have the

small tooth-edges corresponding to C13,; cf. Fig. 104. The value of 8)»
in (14) likewise agrees with experiment; according to Imes, its experi
mental value is 14 1 lit. We referred earlier, on page 86, to this

beautiful confirmation of Aston's observations on isotopes.

§3. Visible Bands. Meaning of the Head of the Band

To carry our considerations over into the visible region, we have to

add to the two partial phenomena of rotation and oscillation as a third

phenomenon a change in the structure of the atoms or ions constituting
the molecules. The simultaneous occurrence of these three partial

phenomena is postulated, at least for a homoaopolar molecule like N._. by
the principle of correspondence (cf. Note 10 d).
We are thus now dealing in a certain sense in the initial and the

final state with two different molecules, that differ by just the required
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change of configuration of their constituents. The result of this is that
all constants that depend on the details of the molecular structure, in
particular the moment of inertia J and the ground frequency yo of the
nuclear vibration, become different in the initial and final state. We
designate them (in analogy with m’, m, and n’, n on p. 417) by J’, J, 1/0, v,
and so forth.
We first consider the rotational constituent, so as to be able to under

stand afterwards the structure of a partial band in the visible region. We
thus form the difference.of the Deslandres’ term, eqn. (4) in §1 for the
initial state (m' = m 1 1, J ') and for the final state (m, J) :

hm’? hm? hm? 1 1 hm h

steal’
"
so.-If s?(.r

‘
3)

" WT ‘ " (1)l
IFF. ‘Iv "1

and, owing to the frequency jump and the changes of configuration in the
electronic structure, we also add the member vk + ve; the indices k and

e refer to the nuclei and the electrons; wk takes the place of the nuclear
vibration that we designated by v0 under the simpler conditions of the

preceding paragraph. In this way we get the general band formula

< ll 3> 1 2Bm + Cm’ . . . . (2)

The constants A
,

B, C
,

have the following meaning (cf. also eqn. (4)
in § 1) :

h h h 1 1A _ VI; + Ve + 8r_,J,., B _ M1,, c =
87_,(I,'- 3
) . (3)

In Fig. 105 we have drawn the parabola v = A + 2Bm + Cm‘! con
tained in eqn. (2); m is plotted as the ordinate, and v as the abscissa.

This type of graphical representation is probably to be credited to Fortrat.*
The parabola has been drawn as a continuous curve as far as the axis of
the abscissze, m = 0

, and thence onwards it is dotted. That arc of the

parabola v = A — 2Bm + Cm” (that is
,

the bottom sign in eqn. (2)), which

corresponds to positive ordinates in has also been drawn continuously, the
other part being dotted. Both parabolas are cut by the system of hori
zontal straight lines of which the ordinates m are integers, and the points
of intersection have been projected perpendicularly on to the axis of the
abscissze. This gives rise in the lower strip of the figure to the observable

arrangement of the band-lines v and their characteristic accumulation at
the head o

f the band. The one part of the lines corresponds to the arc of
the parabola with a positive sign for B, and is to be called the positive
branch, the other owes its origin to the parabolic arc with the negative
sign and is called the negative branch.

From this figure we may get a splendid survey of the position o
f the

head o
f the band in the system of the band-lines. The analytical con

“ R. Fortrat, These (Paris, 1914), p. 109.
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dition for the position of the head of the band is, according to (2) (i
f we

treat m for the time being as a continuous variable) :

;dl- +Cm . . (4)S“
I O ll 1+ II!

or, respectively, the nearest integer.
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The head of the band is not, like the edge of a line series, a natural point
of accumulation, but in a certain sense an accidental one. The lines do
not crowd together infinitely densely, but only to a. finite maximum of

density. The circumstance that the lines of the band partly tend towards
the head of the band and partly tend away from it

,

apparently disturbs
the regularity of the course of the lines. But the regularity becomes
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perfect if
,

as in Fig. 105, we imagine the two-dimensional parabolic law of

(m, v) to be taken in conjunction with the one-dimensional scale of the
v’s. We are indebted to J. N. Thiele* for having given the explanation
of this view of the band-head as being a somewhat accidental accumulation

o
f lines condvltioned by the scale o
f the v’s.

To be able to draw inferences concerning the properties of the emitting
molecule from the representation of bands given in (2), it is essential that

the number m giving the position of the band-lines be correctly counted.
If we displace the zero-point of the enumeration, we thereby alter the
significance of the constants A and B in The. position number n may
not, as in the case of Deslandres, be counted from the head of the band ;

rather, in approaching the head and then moving away from it
, it advances

continuously, corresponding to the circumstance that the head of the band

denotes no real singularity of the band law.
To arrive’ at a natural method of counting m and at a correct choice of

the zero-line (m = O
) when a partial band is empirically given, we revert

to Fig. 102 for the infra-red bands. Here the immediately evident saddle

shaped hollow in the course of the intensity curve formed the boundary
between the positive and the negative branch and served as the zero-line

of the enumeration. In the case of the visible bands, too, an analogous
cut in the distribution of intensity may be proved to occur; it

, likewise,

has to serve to define the zero-line. The ivztensily zero is then to be as

cribed to this line itself. On both sides of it the intensity of the band

lines first increases, then decreases, likewise in agreement with Fig. 102

and with the explanation there given according to the Maxwell-Boltzmann
law. In the scale of the m’s the intensity is symmetrical on each side of
the zero-line and is equal for corresponding points on the positive and

negative branches. But in the scale of the v’s the symmetry of the course

of the intensity becomes unrecognisible on account of the folding back and

the distortion of scale caused by projection. In Fig. 105 the thickness of
the strokes in the strip at the bottom denotes the increase and decrease
of the intensity of the lines both in the positive branch (to the right of the

zero-line) as well as in the negative branch (from the zero-line to the head
of the band and beyond it). The fact that in our diagrammatic representa
tion as well as in many real cases one of the two maxima of intensity

happens to lie near the head of the band produces the result that the
latter often appears to be brought out as a strong fluting in the spectrum
as a whole. This circumstance is, however, essentially accidental and

depends, moreover, on the temperature. To this it is to be further re
marked that in the case of infra-red band spectra the symmetry seems

only to be slightly disturbed in the scale of the v's, too (Fig. 102).
The criterion o
f intensity for the position of the zero line which is here

developed is due to Heurlinger (loc. cit.). Another criterion was set up

"
Astrophys. Journ., 6

, 65, 1897 ; Kopenhagener Akad., 1899, p. 143.
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by Fortrat (loc. cit.) a little earlier. In the regular progress of the band
lines disturbances sometimes occur, abnormalities of frequency, and indeed,
they occur in pairs. Fortrat suggests that the zero-point of the enumera
tion be placed in the middle of the abnormal pair, that is, so that opposite
order-numbers i m (more exactly + m, and — m - 1) become allocated
to the disturbed lines. Heurlinger then succeeded in showing that this
criterion suggested by Fortrat is practically identical with his own
criterion of intensity. The theoretical significance of the disturbances
hereby indeed remains unexplained (just like the corresponding occur
rences in the series spectra) but is of no account for the practical
application of the criterion.
The classical instance of the theory of bands is furnished by the so

called cyanogen bands. We follow Runge and Grotrian* in ascribing
them, contrary to their name, to the N2-molecule. Their lines consist of
very narrow doublets, separated only for higher values of m. Their

K~ (‘Iv
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FIG. 106.

The cyanogen band A = 3884 out of the carbon arc. At the edges the lines that
are no longer resolved, appear as continuous black strips. Taken in the
second order of a large concave grating.
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centres o
f gravity follow the band law (2) considerably closely. Heur

linger has subjected them to a new exact treatment and partial re
measurement. In several of these bands there are several hundred lines.
For example, in a partial band of the group A = 4216 the lines- from
m = —- 77 to m = - 15 and m = — 30 are all present with the ex
ception of m = O

,

even if they are of course not separable in the vicinity
of the head of the band (between m =

— 15 and m = — 30 for the

partial band just quoted); the whole complex of lines is arranged in

regular sequence.
Our Fig. 106 represents the group of five band heads already mentioned

on page 414. The one which has the longest wave-length among them
has the wave-length A = 3884. The second head lies at A = 3872, the
third at A = 3862, and so forth. The partial band belonging to each head

is subdivided into a positive and a negative branch. Heurlinger has
determined the zero-lines for each of the three heads mentioned and has

" Physikal Zeitschrift, 15, 545 (1914).
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worked out the constants of formula (2). For example, he finds for the
first of them, A = 3884 :

2B = 3'84 cm."1, C = 6'8.10'* cm.-1

that is
,

he gets an essentially smaller value for C than for B. According
to our eqn. (3) this was to be expected. For B is proportional to

2
%
” whereas C is proportional to

1 1

J’
_
3'

that is
,
a quantity small compared with B since it is the difference be

tween two quantities that presumably difler only slightly. Exactly
similar conditions concerning the values of B and C also follow from
the remaining partial bands of Fig. 106. We shall revert to the numerical

relationships between the constants of the various partial bands in § 4
.

A further test is furnished by the absolute value of B. To be able to

compare it with our theoretical formula (3) we have to bear in mind that

Heurlinger calculates in wave-numbers (cmfil) whereas the theory uses

frequencies (sec.-1). To reduce the former. to the latter we have to

multiply by 0 = 3 . 101°, and so have also to replace B by cB. On this
basis we then calculate by (3) :

h 6'54 . 10-27J’
WOB

=~0 = 1-44.10-=9 grm.cm”. . (5)
If we set this equal to 214 .mH . Z2

,

where l denotes half the distance
between the two nitrogen molecules, and 14m“ denotes the mass of the
individual nitrogen atom, we get

. _ 144.104” _ _ _,G __ _ _ll-~:fl -032.10 ,2l- 113.10 Scms.
\Ve thus arrive quite unmistakably at the well-kno\vn order of molecular
size.

NV. Lenz* has recognised a brilliant confirmation of the theory of
bands in photographs of the fluorescence of iodine taken by R. W. Wood +

Wood illuminates iodine vapour at a low pressure bv means of the
Hg-line 5461 (ground-member of the sharp subsidiary series). The iodine
molecules, in absorbing the corresponding energy quantum hv, is brought
into an excited (“a'nge'regt ") state. This state is assrciated with a
perfectly definite value of the rotation quantum m. The iodine molecule
re-emits the energy that is taken up, passing from the excited state to
one of less energy. But the principle of selection allows only the transi
tions m, ->m — 1 and m ->m + 1 (when the oscillation quantum and

" Physikal. Zeit-schr., 21, 691 (1920). +Phil. Mag., 35, 236 (1918).

_ 1
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the electronic configuration change simultaneously). Hence the re
emission occurs as a doublet or, with due consideration to the circum
stance that in the case of the non-harmonic oscillator, the oscillation

quantum is capable of arbitrary jumps, it occurs in a system of doublets
scattered over the spectrum. Wood has observed about twenty such
doublets. Each of them proclaims, as Lenz points out, in a very attractive
way the sovereignty of the principle of selection over the rotation

quantum; each shows us the process of birth of a partial band by two
of its members. If, however, during the moment of absorption and that
of re-emission* we make the iodine molecules collide more frequently
with each other (at higher pressure) or with foreign atoms (by adding
inert gases), then other values of the rotation quantum are thereby
produced. Each doublet then becomes multiplied to form a complete
partial band: under these circumstances \Vood’s fluorescence photographs
approach the ordinary band type.
Hitherto in describing the partial bands we have spoken only of a

positive and a negative branch. In complicated cases a third branch
becomes added, which we call the ze-ro branch; Heurlinger calls it

Q-series and the positive and negative branches IL and S-series.
VVe shall not here consider the circumstances that there are even cases

in which more than three branches emerge from the same head.
The mutual relationship between the positive, the negative, and the

zero branch may be described in general outline if in the principle of
selection of the rotation quantum, eqn. (3) on p. 418, we allow the
transition m -> m besides the transitions m 1 1 -> m. In eqn. (1) at the
beginning of this section we have then to set m’ = m and we get in place
of (2) and (3):

v=A+O!7L2. . (2a)

11 1A=v,,+v,, o=8_;,(J_,-I). . .(3a)

Eqn. (2a) now again represents a parabola; in the diagram of Fig. 105 it
would lie symmetrically to the axis of abscissze; its own axis falls along
the latter axis and is at the same time the zero line from which m is
counted.

Fig. 107 is founded on the measurements by Grebe and Holtzt of
water-vapourin the vicinity of the edge A = 30643; it was sketched by
Heurlinger and kindly placed at the disposal of the author. Between the

positive and the negative branches we see the zero branch in an approxi
mately symmetrical position relatively to the axis of abscissre. Each of the
branches has been placed in the middle of the doublets, which are here

* In this view of the phenomenon Lenz sees a possibility of estimating the “time
of stay" of the L,-molecule in its excited state. (Cf. also p. 353, footnote 2.)
-I-Ann. d. Phys., 39, 1243 (1912); arranged in the manner here depicted n

Heurlinger, Dissertation, Tab. III, p. xxx.
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t widel separated and of which the interpretation in terms of thein par y

model is as yet wrapt in obscurity. As we see, the general course of the
' '

~ i'tat' Z with theory.curves and their images at any rate agrees quali we y
. . . . . IfB t titativel the following difficulty of combination exists. ,u quan y

quite apart from the special formula; (2) and (2a) ywe represent the
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initial and the final state of the rotation by the general functions f(m)
and g(m), we first get for our three branches :—

Zero branch . . . m -—>m, v =f(m) — g(m),
Positive branch . . m + 1 ->'m,, v =f(m + 1

) — g(m),

Negative branch . . m - 1 ->m, v =f(m — 1
) - g(m).

If we now write down the zero branch twice, for m and for m + 1
, and

exchange in + 1 for m in the negative branch, we get the following three

equations :——

Zero branch . v =f(m + 1
) - g(m + 1)j

,, ,, . . v = f(m.)
— g('m.) f

Positive branch . v = f(m + 1
) - g(m) ]

Negative branch . v = _f(m) —- g(m ~
l_
-

1
) I



§ 4. Law of the Edge of the Band. Band Systems 433

Accordingly the bracketed sums of v-values should be equal to one
another. In reality they exhibit small systematic differences, “ combina
tion defects.” Just as in the case of the Rontgen spectra (Chap. VIII,
§ 7) we must conclude from this that it is not the theory in general, nor
the combination principle that is faulty, but rather that the allocation of
the combined lines is not yet exactly correct.

§4. Law of the Edge of the Band. Band Systems.

Hitherto we have spoken only of the coeflicients B and C of the hand
formula, which contain the influence of the rotations. To explain,
further, the general arrangement of band systems we must deal with the
coefiicient A which contains the influence of the nuclear and electronic
vibrations.

Firstly, our interest is directed at the “ nuclear vibration" vk, which
must be analysed according to eqn. (10), §2 ; let the “ electronic vibra
tion " be summarised as before in the symbol v, and remain unanalysed.
Thus we assume that the oscillation quantum of the nuclear vibration
jumps from n’ to n. In this jump the coefiicients 11,,and a: of eqn. (10)
also change, say from v0’, a

t’ to v0, ax. The application of Bohr’s frequency
condition (10) then gives us:

V], = n'v,,'(1 - .2:'n') — 71.1/0(1~ am)
_(n, n), , 2). .(1)_ - —

1/0 +n(vo~v,,)—nvoa:+nv,,:v

We have to insert this value of wk in the coefficient A, eqn. (3) of the

previous section. According to the values of n and n’ we thus get a

double manifold of A-values which define the zero lines (v

= A
) of a

doubly infinite system o
f partial bands, of the so-called “ band system."

We now consider the second row of eqn. (1) in greater detail. Its in

dividual members are arranged in order of magnitude. The first member

is the principal one. It depends only on the quantum jump n’ ~ n. The
second member is small compared with the first as the change v

0
’ —

vo i
s a

small quantity and depends on the absolute value of the quantum-number
n. The third member is in general still smaller as the coefiicients .1:and

at’ are each small (cf. p. 422).
The principal member has diflerent values for the quantum-jump 0

and the quantum-jump 1 (ground-vibration) or 2 (“ first overtone "), and

so forth. By keeping fixed the principal member, that is the quantum
jump, and varying the value of n, we get a singly infinite series of partial
bands, or zero-lines, respectively, that are more closely related together
and are neighbours within the same band system; we call them a band

group. The separate individuals of the band group differ in the second
and third member of eqn. (1) and are numbered according to the value
of n (or, what is the same of

Fig. 108 deals with the system of cyanogen bands. It exhibits four
groups that correspond, from left to right, to the quantum jumps An

28 ~
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= - 2, 1, O, + 1. The group An = O at A = 3884 is already quite
familiar to us from Fig. 106. It comprises five band heads for which n
is, respectively, from left to right, equal to O, 1, 2, 3, 4. Thus these five

band heads successively correspond (on account of An= O) to the quantum
jumps _

OT>0, 1:: 1, 2 >2, 37:3, 4':4.

If we add to the right and left side of eqn. (1) the quantity v, + B,
then on the left we get, according to eqn. (3) of page 426, the quantity A,

that is
,

the wave-number of one of the null-lines of our band system,
namely:

A = V5 + B + n'v0' (1 -— x'n') — nvo (1

—
am) . (2)

In this equation we have already essentially deduced Deslandres’ “ Law
of the Edges of Bands." Concerning its name we must remark that the

4600
44.00
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4000

3800 3600

I I I

1.. i ~
‘

~
’

460815634515 4216 41814153 388438023850 3590 3584
45784532 H97 H68 3371 3355 3580L???) \_?'i/ \iv__._4 \Zy__4
dB=—3 dn=—l Jn=0 dn=+l

Fro. 108.

law:does not exactly represent the position of the band heads, but that of
the corresponding zero-lines, whose importance for F systematising band
spcctra had escaped Deslandres himself. The law is only approximately
true for the band edges v = 1/K that are more or less close to the zero

lines v = A. Deslandres writes his law of band edges in the form

vK
= a/n’ + b'n'2 — (an + bng) + K . . (2a)

It clearly coincides with (2) if we set

tl=v0, b= - I/0:12, a/=1/0’, b'= —v0’a:', K=v,+B_
Table 47 * shows how exactly eqn. (2) gives the position of the zero-lines
in the “cyanogen bands." In it the horizontal rows denote equal initial
quanta, the vertical columns equal final quanta. Thus the diagonal row
corresponds to the quantum jump n -—>n and represents the group
An = O on Fig. 108; the parallels to the diagonal correspond, in the

upward direction towards the right, to the groups An = — 1
, An = — 2,

and to the left downwards, to An = + 1
. ‘The five constants ct, b, a’, b’,

“ This table has been calculated by A. Kratzer: a provisional communication ap
pears in Physikal. Zeitschr., 22, 552 (1921) ; it is given in greater detail in Ann. d. Phys,
1922.
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K of law (2) have been chosen so that the connexion with the measured
zero-lines is perfect in particular in the first horizontal row of the table

TABLE 47

n=0 1 2 3 4 5 6

(sss4) (4216) (4606) v
25,797-ss 23,755-44 21,739-54 _ - - -
25,797-ea 23,756-44 21,739-55

(3590) (ss72) (4197) (4578)
27,921-3 25,872-0 2a,seso 21,s7a-4 _ - -
27,921-as 25,378-99 23,863-10 21,873-71

(3686) (3862) (41s1) (4563)- 27,962-1 25,945-5 23,956-5 -_ - -
21,9620; 25,946'15 23,956-76 21,993-sv

(3584) (sass) (4168) (4532)

27,989'70 26,000'3l 24,037'42 22,101'03

(3850) (4153) (4515)

26,040-47 24,104-os 22,194-19

Q v
‘\ ll

I5
C
U
IQ

F‘
®

ri
d
?
1
'”
?
¢
-*
4
/*
1
.
»
*“
*\

1st line Wave-length of the edge.
2nd ,, Wave-length of the empirical zero-line.
3rd ,, Wave-length of the calculated zero-line.

where the empirical data are most exact. The deviation then remains

very small in the other rows, too. At the lower end of the table the

empirical determination of the zero-lines is wanting (instead of it only
the edges are at our disposal) ; so that here comparison with theory cannot
be carried out directly.
Whereas in Table 47 we considered the values A of the system of

cyanogen bands, in Table 48 we set out the values of B and C of the same
system, so far as they have been determined by Heurlinger (cf. p. 430).
The arrangement is the same as in the preceding table. Thus, numbers

TABLE 48

11.= 0 1 2 3

2B 100C 2B 100C 2B 100C 213 i100C
_ . . 1 , _ I

n’ = 0 3'84 6'8 3'88 8'5 8'85 10-1 — —

1 3'88 4'5 3'81 6'4 3'80 8'2 3'82 9'7

2 - — 3'80 4'1 3'88 5'6 3'78 7'6

that belong to the same group lie in an oblique column which goes from

the top left corner to the bottom right corner. For example, the numbers
that correspond to the group An = 0 of Fig. 108 are :

2 B = 3'84, 3'81, 3'88,
100 C = 6'8, 6'4, 5'6.
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What was said on page 430 about the relative size of B : C applies to
all members of this and the remaining groups. But still more : the size
fo B is appreciably the same in the whole system, that of C varies much
more. This, too, is intelligible from eqn. (3) on page 426, B is propor
tional to 1/J’, so that it sensibly retains its value so long as the shape of
the molecule does not alter appreciably. On the other hand C depends
on the diflerence of the reciprocal moments of inertia, J’ and J and is thus
much more sensitive to changes of shape than B.
But the expressions (3) for B and C on page 426 are not exact enough.

For, according to § 2, there has to be added to the rotation that was alone
taken into account in (3), also the mutual action between rotation and os
cillation. As may be gathered from the factor of mi in eqn. (11) on page
422, the latter is taken into consideration quite simply by replacing

‘

l2 by _h — an.
81|-“J 811-"J

We therefore now get instead of the value of B in eqn. (3) on page 426
the value expressed as a function of n’ :

I hl h I I

B(n)=8?j,—an'=BflzJ,-an . . . (3)

Here the proportionality of an with n emphasised on page 422 receives

expression and the new constant 0
.’ = 11,,’/n’ is correspondingly introduced.

If we correspondingly write

ism) 3%, - a, = z¥f_gJ—a11. . . . (3a)

with the further constant a, we get instead of C in eqn. (3) on page 426
more exactly

C(n, n’) = B(n') — B(n). . . . (4)

Thus in B as well as in C we have to expect linear progress with n or n’
respectively. This shows itself most clearly in Table 48 in the case of C

(i
t is obscured by the inexactness of the last decimal in the case of the

quantity B, which varies but slightly). For example, in the middle verti
cal column we have the numbers, depending on n’: 8'5, 6'4, 4'1; in the
middle horizontal row, that is

,

depending on n we have : 4:5, 6'4, 8'2, 9'7.
The fact that the one column decreases and the other (row) increases is

in agreement with eqns. (4) and (3).
In eqn. (2) we wrote down the law for the zero-lines of a baud system.

We have only to combine this law with the law for the individual partial
band, eqn. (2) of the preceding section, to get from it to the complete law

o
f lines for the whole band system:

v = A(n, n’) 1 2B(n')m + C(n, n’)'m‘1 + . . . . . (5)

Let us again set out the significance of the coefi‘icients according to eqns.
(2) and (4) :
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A(n, n’) = ve + B(n') + n'v0'(1 — n'a:') — 7Lv0(1 — mt) + . . .

B(n') = — a.'n',
B(n)=B%J—an j

(6)

C(n, 11,’)= B(n') —

Thus our law (5) contains three quantum numbers and nine disposable
constants:

ve, 1/0, V0’, Z‘, 03', J, J’, 0., 0.’.
With their help we may in principle represent, for example, over 1000
lines in the system of cyanogen bands; in the case of greater values of m
we must indeed, to obtain numerical agreement, also take into consider
ation the higher powers of m, indicated in (5) by . . . (concerning, in the
main, the change of the moment of inertia with the rotation ; cf. p. 423).
But we have still not finally achieved our object of setting up the

general law of band systems (5). For one and the same molecule may
possess several band systems, in that it is capable of several values of the
electronic frequency v,,; these band systems, like the violet and red cya
nogen bands may lie in quite distinct and separate regions of the spectrum.
It will be surmised that the various values of v., will arrange themselves
similarly to the various electronic jumps in line-series of the atoms,

although we are here dealing not with atoms but with the complicated
electronic systems of the molecules. We may well call band systems
arranged together in series in this way “ system-series." \Ve have still
to solve the problem, then, of extending the system law (5) to the

" law

of system-series." We shall get to know examples of this at the end of
the next section.

If it is true that two electronic jumps v,, that is
,

two transitions that

give rise to two different band systems, have either the initial or the final
state in common, then the representation of the common term obtained
for the one band system may be applied to the other. Conversely, we

may conclude from the fact that the violet and the red cyanogen bands
have the same terms in the final state, as Heurlinger has shown, that here
the molecular constitution and the chemical nature of the carrier must be
the same. Furthermore, from the fact that the initial term of the red

cyanogen bands also occurs in the first positive group of nitrogen as the
final term, it is to be concluded that both the cyanogen bands and also the

positive nitrogen group must have the same carrier, that is that they all

belong to the nitrogen molecule or, according to circumstances, to one and

the same nitrogen-compound, differing from N2.
From this example we see that the exact analysis of band systems
will lead to illuminating disclosures about the molecular nature of their
carriers.

§5- Many Lines Spectra.

The general character of the many lines spectrum of hydrogen has

already been described on page 209, and has been illustrated by a figure
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on page 210. Only the quantity but not the arrangement of the lines
reminds us of the character of band-spectra. Band-heads are entirely
wanting. The few partial bands that have hitherto been arranged to
gether (cf. p. 209) are poor in lines; the two discovered by Fulcher com
prise only five or six lines, the four discovered by Croze each about 12
lines. The sequence of lines in the partial bands is hereby so widely
scattered that it is no longer evident that they belong together.
We shall show that this general character follows naturally from the

smallness of the moment of inertia of the hydrogen molecule, and ar
ranges itself as a limiting case into the general theory of band-spectra.
In eqn. (7), § 2, we obtained as the distance between neighbouring

band-lines
h

Av = 2B =
4fl_2J

. . . . (1)

The same value also follows for lines near the zero-line from the general
eqn. (2), § 3, if we neglect the quadratic member.
In the case of the cyanogen bands we_ had (cf. Table 48) 2B = Av =

3'8 cm.-1, corresponding to a value O'6A for AA. In l*:ulcher's partial
hands of the manyolines spectrum, however, Av ‘=1100A, which corre

sponds at A = 6000A to the value Av 9'-280 cm."1. Thus in the many
lines spectrum the line-interval Av is about 74 times as great as in the

cyanogen bands. From this it follows by eqn. (1) that the moment of
inertia of hydrogen is 74 times as small as that of the carrier of the

cyanogen bands. Whereas we found in the former case

J = 1-44. 10~39 grm. cm.2, 21 = 1-13 . 10-8 cms. . (2)

we now get

J = 1'9 . 10'“ grm. cm.'*, 21 .= 0'5 . 10's cms. . (3)

The moment of inertia of the hydrogen molecule found in this way
need not be that of the normal state. In the normal unexcited state it
is not the visible many lines spectrum, but (cf. p. 344) a band spectrum
situated in the extreme ultra-violet that is emitted. This already follows
from the fact that hydrogen gas is quite transparent in the visible region.
Indeed, we must accept the idea that the H,-molecule is capable of very
different states with perhaps other values for the moment of inertia, which

give rise to other sequences of lines of the spectrum. The lines hitherto
associated together form only a very small fraction of the sum-total of

lines.

The value of J is .of importance for the question of the model of
the H2-molecule. From Bohr's model on page 76 it follows that

.f=2-9.10-41gm1.cm.* . . . (4)

It is obvious that the moment of inertia cannot be greater in the unexcited
state than in a possible excited state on which the value (3) is based.
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Contrary to this, (4) is perceptibly greater than Thus Bohr’s model
does not, at any rate, represent the normal state of the H2-molecule.
We have here touched on one of the objections that were already raised
against this model on page 78. On the other hand, the value
J E 2'10"“ deduced by Reiohe * from the behaviour of the specific heat
agrees almost exactly with our value
The small value of J explains immediately in the sense of eqn. (1)

why the successive lines belonging to a partial band are so far apart in
the many lines spectrum. But it also explains why there are only so few
lines of observable intensity in each partial band.
Let us first call to mind the fact discovered by Nernst and Eucken

that at very low temperatures (below 200° abs.) the rotation of the H2
molecule dies away more and more, and that hydrogen approaches more

and more to the monatomic gases in its thermal behaviour. In general
language the reason is to be found in Boltzmann's probability factor

Eltin.

e— kl.

(l
s = Boltzmann's constant = the gas constant divided by Loschmidt's or

Avogradrds number). If we here insert for the kinetic energy of the ro
tator its value out of eqn. (1), § 1

, we get

he ma

fsfi-.Tr . . . . (5)

The decisive quantity is the product JT. The smaller it is, the less is the
probability of a definite rotation quantum m. At very low temperatures
all values ’r m> 1 become statistically suppressed; that is what Nernst
and Eucken have shown. But even at moderate and higher tempera
tures the product J T is much smaller in the case of hydrogen, owing to
its small J, than for other gases. For this reason greater values of m
are statistically suppressed in the case of hydrogen at higher temperatures
also.

Concerning the distribution of intensity in the band-spectra it follows
from this that within a partial band of the many lines spectrum the in

tensity decreases much more quickly as m increases than, for example, in
an N2-band. The ratio of the moment of inertia of N2 to that of H2 is

,

by eqns. (2) and (3), about equal to 100 : 1
. Accordingly, by eqn. (5),

the same temperature being assumed, the number of lines of observable

intensity in an N2-band will be about ten times as great as in an H2
band. Whereas the cyanogen bands possessed partial bands of about 100
lines, the partial bands in the many lines spectrum of H2 will consist of

only 10 lines.

" Ann. d. Phys., 58, 682 (1919).
+11»= 0 also drops out here. Cf. Reiche, loc. cit., and Bohr, Gesammeltc Ab

liandl., p. 146.
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This accounts for the particular character of hydrogen bands, namely,
that they are sequences of small numbers of lines widely separated; in a
certain sense they are torsi of normally developed bands. There can be no

question under these circumstances of accumulations of these lines to form
band-heads. If many such short sequences of lines are thrust within
each other, we get the appearance of the many lines spectrum, a confusion
of lines without fiutings (“Kannelierungen") or regularities obvious to
the eye.

The many lines spectrum of helium forms an instructive intermediary
between the many lines spectrum of hydrogen and the ordinary band

spectra. It was discovered by Goldstein* (1913) ; Fowler has measured
it out, but has only partly communicated his results.’r VVhereas in the
case of the many lines spectrum of hydrogen the band character had en
tirely vanished, it is still recognisable in the spectrum just mentioned, but
is far from being as pronounced as, for example, in the case of the cyano
gen bands. The sequences of lines are partly head-less, and partly fur
nished with a band-head. The number of lines of the negative branch
amount to 11 in the partial band measured by Fowler; the interval be
tween the lines is of the order of magnitude Av = 30 in the vicinity of
the zero-line. From this, by eqn. (1). the moment of inertia

J ==1'7 . 10"“)
would follow, that is a value ten times greater than for H2’ and ten times
smaller than for N2. These numbers give expression tothe intermediate
position of our present spectrum as compared with the many lines spec
trum of hydrogen on the one hand, and the true band spectra on the other.
But what are we to think of the “moment of inertia" of helium?

The moment of inertia of the helium ato-m is practically equal to nothing:
so that we can only be dealing with the moment of inertia of an “He
molecule" of transitory existence. We may picture its mode of origin
more clearly as follows. Suppose two He-atoms are in an excited state
such that one of each of the two He-electrons of each atom are slightly
more distant from the nucleus than usual. Two such He-atoms resemble
two hydrogen atoms, for they each consist of an outer electron and an
atomic residue bearing a single positive charge. Thus they are able to
enter into a bond similar to that of two hydrogen atoms, and may, there
fore, combine to form an Heg-molecule.

Hereby the excitation conditions for H and He are opposite. In the
case of H the many lines spectrum arises more readily (at lower poten
tials) than the Balmer spectrum; in that of He, however, the many lines
spectrum requires greater excitation than the ordinary series spectra.
This seems quite compatible with the preceding view, according to which

" Verh. d. D. Phys. Ges., 15, 402 (1913). Independently and a little later, Curtis,
Proc. Roy. Soc., 89, 146 (1914).
+ IbixI., 91, 210 (1915).
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a preliminary condition for the genesis of the “ He-molecule
"
is a con

siderable loosening of the He-atoms.
The rule on page 202, according to which band-spectra are to be

attributed to molecules, line-spectra to atoms, is here strikingly illustrated;
the spectral character of the band-spectrum compels us, as it were, to
assume the transitory existence of an He._,-molecule. As this is assumed
only for the case of electric excitation, it by no means contradicts other
chemical observations that have to do with unexcited molecules.
The many lines spectrum of He consists of numerous partial bands

and exhibits many heads. To the eye they seem to arrange themselves
into greater units, groups, and systems. But Fowler has gone a step
further. He has succeeded in extracting from within these greater units
such sequences as satisfy a quantitative series formula of the nature of
Rydberg’s, a formula in which Rydberg’s number R actually occurs.
Although nothing more exact with regard to measurement can be gathered
from the matter at present published, yet we feel disposed to see in this an
indication of the “system series," of which we spoke at the end of the
preceding section. Thus we should be dealing with the energy-levels
of the electronicconfiguration in the Hez-molecule and their quantum
jumps; in our general formula of systems, (5) and (6) of the preceding
section, they would receive expression in the member ye.
On the other hand our Fig. 66 on page 210 discloses a peculiar rela

tionship between the many lines spectrum of. hydrogen and the Balmer
series. We are inclined to interpret this relationship in the same sense.
Even if it is not necessarily apparent that the changes of configuration in
the H2-molecule follow the same laws quantitatively as in the case of the
H-atom, yet a certain qualitative relationship between the molecular
and the atomic configurations and hence also between the many lines
spectrum and the Balmer spectrum is comprehensible. We can, of
course, pass sound judgment on this point only when the analysis of the
many lines spectrum of hydrogen has been carried much further than at
present.

5'6- Gyroscopic Motion of Molecules. Zeeman Effect of Band-Spectra.

The assumption hitherto made that the molecule rotates about a fixed
axis is very special and admissible only when the axis of rotation coin
cides with a principal axis of the mass-distribution. The general motion
of the molecule is not rotation but gyroscopic mot-ion. \Ve distinguish, as
is known, between the symmetrical and the unsymmetrical top, according
as the moment of inertia of the mass-distribution is an ellipsoid of re
volution or a tri-axial ellipsoid. Diatomic molecules (H2, HCI, etc.)
represent symmetrical tops, tri- and poly-atomic molecules as a rule (cf.
under H20 below) unsymmetrical tops. Whereas the general motion of
a symmetrical top under no forces is regular precession, the general
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motion of an unsymmetrical top is designated Poinsot motion; the latter
cannot, like regular precession, be represented by elementary formulas,

but only by elliptic integrals, and may be made clear by the rolling of

the momental ellipsoid of inertia on the fixed invariable plane. Only in

the case of the “ spherical top," which, however, is scarcely likely to come

into consideration as a picture of molecular motions, does the general
motion under no forces pass over into simple rotation.

Even the diatomic molecule already represents a symmetrical top of

special mass-distribution. The moment of inertia K about the line con
necting the nuclei (the

“ axis of figure," cf. the beginning of § 2) is very
small compared with the moment of inertia J about the axes (“ azquatorial
axes") perpendicular to i

t, the ratio of the former to the latter being

K:J§m:M,

where m denotes the electronic mass, M the sum of the nuclear masses.
The treatment of di-atomic molecules as symmetrical tops is justified

only to the extent to which we neglect m in comparison with M. In
view of the varying position of the electrons in the molecular structure,

in respect to both space and time, differences in the equatorial moment

of inertia J would otherwise arise, which we neglect when we speak of a

uniform J, that is, of a symmetrical top. The same holds generally; only

if we are permitted to neglect the motions of the electrons, may we treat
the molecule approximately as a top, that is, as a rigid body.
So far our description of the motion of di-atomic molecules as pure

rotation is helped by the very smallness of the ratio K/J. If we denote
the moment of momentum about the axis of figure by N, the total moment

of momentum by M, then the moment of momentum about the equatorial

axis becomes -,/M” - N 2, and the corresponding amounts of kinetic
energy are

N2 M2 _ N2
2K

. . . . (1) _-Qj

for the axis of figure and the equatorial axis, respectively.
Now, by the theory of quanta we have under all circumstances

. . (2)

_ molt 3 _ mil 4N -
2”
. . . ( ) M _

2”
. . . ( )

where mo and m are integers. Hence to excite rotation about the axis of

figure or the equatorial axis, respectively, the following amounts of energy
are necessary :- ‘

m’I,h2 (ml - -m§)h* 1

ass ' " " (5) ear " " (6)

On account of the ratio K/J the former is far greater than the latter, if

we assume mo and m to be of ‘the same order of magnitude. Simul

taneously with the energy the angular velocity about the axis of figure, if
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present at all, also becomes very great. Only when the excitation is very
intense, that is at a very high temperature, is it possible for a rotation to
take place about the axis of figure and then, too, only with relatively
small values of mo; at modern temperatures no rotation about the axis of
figure takes place. The molecule does not then fmwtion as a top, but as a

simple -rotator about an equatorial axis, such as we have hitherto assumed
it to be.
The conclusion is just the same as for the hydrogen molecule in the

preceding section. There it was the small value of J in the expression
(4) for the probability, which caused the rotations of the hydrogen
molecule to die away; here it is the small value of K which particularly
suppresses the rotations about the axis of figure or restricts it to small
values of mo. In both cases the essential feature is the discrete nature of
the quantum number and the finite height of the first quantum step; in
the case of a continuous distribution of the possibilities of state or phase,
the axis of figure of di-atomic molecules would also, as is well known,
receive its share of‘ the rotational energy.
In refusing to admit that a moment of momentum about the axis of

figure can be excited at modern temperatures, we do not wish to imply
that such a moment of momentum cannot in principle exist. It might—
in the case of paramagnetic molecules-—belong to the inner molecular
constitution. \Ve must, indeed, go as far as demanding that even at the
absolute zero of temperature paramagnetic molecules are endowed by their

very nature with a resultant moment of momentum of their inner elec
tronic motions, and we cannot outright exclude the possibility that this
moment of momentum may also have a component along the axis of

figure.

By (5) and (6) the total kinetic energy of the molecule becomes
2 2 1 2

EM» =
21.1%
+ (t - t) - ~ - <'*'>

For mo = 0 it naturally passes over into the expression for pure rotation,
eqn. (1) of § 1. If, on the other hand, we represent the kinetic energy, as
in general mechanics, by using the Eulerian angles ¢, i//

,
0 (g
t = angle

about the axis of figure, 1/
1 f angle about the axis of precession, that is,

about the direction of the total moment of momentum, 0 = the angle

between both axes) and the corresponding velocities ti
),

1
/}
,

l9
,

then we see

that 41 and w are cyclic co-ordinates of the rotational problem. This con
tains the subsequent justification of our quantum hypothesis (3) and (4)
in the sense of the method of separation (cf. Note 7a) as well-as the

possibility of integrating the problem by elementary methods in the

symmetrical case. Obviously, in virtue of the meaning of the Eulerian

angle 0
, there exists between the total moment of momentum M and the

partial moment of momentum N the relation

N=Mcos0 . . . (8)
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From this the corresponding relation for the quantum numbers ‘filo and m
follows by (3) and (4) :—

m0=mcos0. . . . . (9)

From this we draw two conclusions: (1) the precessional angle 0 is re
stricted to certain rational values determined by (9) (directional or spatial
quantising). (2) For a given mo the quantum number m can only assume
values

m Z 111.0 . . . . . (10)

We now come to the unsymmetrical top. In its case, too, the
quantising may be carried out exactly,* but, corresponding to the com

plicated nature of the Poinsot motion, the formulae are cumbersome and
have so far not been made use of for band-spectra. We must, therefore,
endeavour to link up its treatment with that of the symmetrical top. In
the case of water-vapour H20, which is of chief interest to us, this seems
fully justified. We follow Kossel in imagining that the structure of the

hydrogen molecule is
,

if not completely, at least approximately sym
metrical, that is

,

the O-nucleus approximately lies on the same axis as
the two H-nuclei. The moment of inertia K about this unique axis of
the molecular structure is then considerably smaller than about the other
principal axis. If a rotation about the unique axis occurs, its angular
velocity (see above) i

s very great. This suggests to us to use in our
calculations, instead of the momentary configuration, the mean configura
tion of the H20-molecule that arises through rotation about the unique
principal axis. This averaged H20-molecule is of course a symmetrical
top, so that in its case we may speak of a uniform value J of the equa
torial moment of inertia, and may use the expression (7) for the kinetic

energy in our calculations.
To pass on to band formulae we follow Bohr by forming the difference

between the initial and the final state. In doing this we must, of course,
take into account the change of oscillation and of the electronic con
figuration besides the change in rotation. The state of oscillation is now

considerably more manifold than in the case of di-atomic molecules be
cause now not one but two or more free vibrations of the nucleus are

possible (cf. what was said about H20 on p. 424). In addition to the
change in the rotational quantum number m we must now take into
account the change of the proper rotation mo which (on account of
K < J) causes considerably greater differences of energy than the former
dififerences which are of the same order of magnitude as for the change
in the quantum number of oscillation. Whereas the change in m pro
duces the individual partial band, the change in mo takes us on a con
siderable distance in the spectrum, into another region of the band

’ P. Epstein discusses the various ways of doing this in Physika]. Zeitschr., 20, 289
(1919), where detailed references are given.
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spectrum. Through this newly added degree of freedom corresponding
to the quantum number mo as well as through the greater manifold of
possibilities of oscillation the structure of the whole band-system is, as is
easy to understand, considerably more complicated than before. This
shows itself in the case of H20 even in the infra-red spectrum, which
distinguished itself among the di-atomic molecules by its particular sim
plicity of design, but which in the case of H20 consists of a whole array
of partial bands that partly overlap.
We here restrict ourselves to the law of the individual partial band,

and thus consider only changes of m, whereas we sum up the action of
the simultaneous change of mo with that of the oscillation state and elec
tronic state in a constant term that we shall not analyse further. If,
for the moment, we here also take into consideration the transition
m i 1 —>m, we get as the component of rotation v,,,¢ of the band formula,
and, at the same time (disregarding the constant term), as the law of the
partial band, from (7) :——

I :1’ 2 , , ,

exactly as in eqn. (2), § 3, and with the rotation of eqn. (6), § 4. But,

compared with the earlier expression, there is the following characteristic
difference: Whereas m was formerly able to assume all values except
zero, we may now, by (10), use only the values m Z mo. (The correspond
ing condition as for the final state m, 111.0would also have to be imposed
for the initial condition m i 1, mo’, and would here require that
m i 1 Zorro’; but this only leads to a further definite restriction for m
if we make definite assumptions about the quantum jump mo’ -> mo.)
The restriction m20 denotes that in the band spectrum of poly

atomic molecules still more neighbouring lines must drop out on both sides

of the zero (null) line. Lenz
* first enunciated this conclusion. From the

essay quoted on page 418, but which was only published in 1921, we see
that Bohr conceived the same idea, particularly as applied to infra-red

spectra, some years earlier. This conclusion is confirmed in a convincing
fashion in our Fig. 107. Here there is missing in the band spectrum of

H20 not only the zero_ line m = O, but also the lines m = 1 in the posi
tive and negative branch. Thus Fig. 107 proclaims that the molecule
of water vapour when emitting the band spectrum in question with the

quantum number mo = 1 rotates about its unique axis, which is ap
proximately the line connecting the nuclei. \Ve here briefly mention in

passing that peculiarities also occur in the infra-red of water vapour in
the vicinity of the band 6'24 p.. Over and above this, Heurlinger has
established in his dissertation that in the case of several band-spectra
produced by complicated carriers (MgH2, etc.) various band lines that

" In the essay quoted in § 1.
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are neighbouring to the zero line are dropped out. Runge * appears
to have ascertained the same in the case of O2 bands.
But there is a still more striking consequence of molecular gyroscopic

motion, mamely the occurrence of the zero branch in addition to the posi
tive and negative branches (which are alone present in the cyanogen
bands), for example, in the case of HZO (Fig. 107) and of the above
mentioned complicated carriers, for which Heurlinger established the
absence of certain lines. To be able to decide when a zero branch will
appear and when it will be absent, we must refer to the principle of
correspondence (cf. Note 10g). This states that if the molecule executes
a regular precession, the transition m -—>m which was forbidden in the
case of pure rotation, becomes admissible; here m denotes the quantum
number of the total moment of momentum. Now, as we have to expect
pure rotation only in the case of diatomic molecules of an axially sym
metrical structure, but more or less regular precession in the case of

polyatomic molecules, which are partly or wholly unsymmetrical, the
transition m -—>m, and hence eqn. (2a) on page 431 is in fact, shown to
be valid for molecules of this type.
Thus we bring the existence of the zero branch into relationship with

the fact that the molecule can, on account of a. certain tack of symmetry in
-its structure, perform a. precessional motion.
The fact that there was no zero branch in the case of the cyanogen

bands is a further confirmation of this view of the zero branch, in so far
as we deny that the carrier of the cyanogen bands in the excited state,
too, has no paramagnetic properties (electronic motion with a resultant
moment about the axis of figure). v

The surest criterion for the existence or non-existence of a moment
of momentum resulting from electronic motions is, however, furnished—
in the case of molecules as well as of atoms-—by the Zeeman cjfeet. Un
fortunately we are still far from having a systematic survey of the Zee
man phenomena that are possible for band-spectra. It has already been
mentioned in the previous section that in the case of the lines of H2-bands
that have been grouped together into partial bands, of the many-lines
spectrum, no Zeeman effect occurs. In the case of the cyanogen bands
only a decidedly small magnetic effect, that varies with the square of
the field, has been shown to take place.t In the case of other band
spectra there are cases of anomalous resolution and of negative polarisa
tion, that is polarisation in a reverse sense to that in the normal effect.
In view of the many possibilities of the arrangement of the electronic
revolutions in the molecule there is no reason for surprise in this. Lenz
finds (loo. cit.) that, even in the simple case of a di-atomic molecule which
is furnished with a moment about the axis of figure due to electronic
revolution involving the quantum number mo, it is possible for a Zeeman

" Zeeman-Jubiliiumsheft, Physica, 1, 254 (1921).
-l A. Bachem, Zeitschr. f. Phys., 3, 372 (1920).
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effect with reversed sign to occur. But this assumption, which is
founded on schematic grounds, does not seem to suffice for the quanti
tative explanation of the observations in question, and, indeed, the data
of observation are far from being sufiicient to allow a final judgment.

§7- Continuous Spectra.

Besides band-spectra which appear discontinuous if the dispersion
is insufiicient, there are beyond doubt also really continuous spectra both
in emission and in absorption.
The continuous character seems to have been established most

securely in the case of those absorption bands that link up with the limit
of the HS. of the alkalies. After having first been observed by Wood in
the case of Na they were investigated in detail by Holtzmark.* Our
Fig. 64 exhibits the sequence of Na-vapour absorption lines continually
increasing in density as far as the series limit, where the figure is cut off.

Actually, the absorption region extends further, and, indeed, becomes

gradually and continuously darker. Corresponding emission and absorp
tion bands that must be due to hydrogen, and, indeed, to dissociated

hydrogen, have been observed in star spectra at the limit of the Bal
mer series; they have been worked out and plotted by Hartmann.*

H
The continuous emission spectrum of hydrogen, mentioned on page 293/

7'

that was produced by Stark by means of excitation by canal rays is ob

viously of the same origin as these star-spectra; it begins at /\ = 360 ,u./.¢

(limit of the Balmer series) and extends to at least A = 200 H1. with a
maximum of darkening at A = 250 p.p..
The occurrence of continuous spectra in the Rontgen region is well

known. The absorption spectra shown in Figs. 58, 59, 61 are analogous
to the visible spectra just discussed. They link up with the K- or the
L-limits on the side of short waves, that is, they are sharply limited on
the side of long waves. In addition to this there is the continuous emis
sion spectrum of Rontgen rays, which we called impulse spectrum on

page 25, and which is sharply cut off on the side of short waves.
The theory of the continuous bands that link up with the series

limits has been sketched by B0hI'.‘i The exact validity of the frequency
hypothesis

hv=Wa-W,. . . . . (1)

is retained in it. If a continuous spectrum is to come about, then either
the initial or the final states (or both) must form a continuous manifold.
The states in question must not then be quantized or, expressed in
other words, the electron involved may not, in the initial or the final
state, belong to the atomic configuration but must be a free electron. A
continuous emission spectrum arises if an originally free electron is taken

‘ Physikal. Zeitschr., 18, 429 (1917).
1-Kopenhagener Akademie, Part 11., § 6.
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up into the configuration of an originally ionised atom and thus neutra.lises
the latter. A continuous absorption spectrum arises if

,

say, an originally
neutral atom becomes ionised and thereby sets an electron free.
Let us consider the process of emission more closely. The originally

free electron is
,

so to speak, at an infinite distance from the atom. Its
energy ~

Wu ==Em . . . . . (2)

is therefore able to assume all positive values. If the electron becomes
attached to the atom, it passes over into a definite quantum orbit. The

energy that it possesses in this orbit is negative, being

w,=_tc. . . . . (3)

where G is the limit of the series for which the quantum orbit in question

is the final orbit. From (1), (2), and (3) i
t follows that

V = G + Egg“/h . . . .

The continuous spectrum represented by (4) thus links up continuously
with the series limit G on the side of short waves. v = G occurs when
an electron with vanishingly small kinetic energy enters into the atomic

configuration ; v> G occurs if the electron had an initial velocity. The
released electron leaves with the energy Eh-,,. We also see immediately
why we said in connexion with Holtzmark's photographs that the inten

sity of the continuous spectrum must link up continuously with the inten

sity of the line spectrum that accumulates at the limit G. As a matter
of fact the transition to a quantum orbit of very high order is

,
physically,

no longer different from the transition to infinity; consequently the pro
bability of these transitions will also mergeiinto each other, that is, the

intensity of the continuous spectrum will follow on that of the absorption
series continuously.
Instead of absorption process we may also say, process of ionisation

or photo-electric effect. As we know [cf. eqn. (3a) on p. 342], hG denotes
at the same time the work of ionisation, that is

,

the least amount of work

necessary to release an electron from the quantum orbit in question. If
this minimum amount is exceeded, the photo-electric energy Em asserts
itself. Only when the origin of the photo-electric electron is at the peri
phery (“ surface ”) of the atom, does G have the ordinary significance of
work of ionisation. In general a greater or less amount hG has to be
deducted from the exciting energy hv according to the depth from which

the electron is released. In addition to this “ work of escape out of the
atom
"
there comes into consideration in the visible region the “ work of

escape out of the surface of the metal" (surface work, cf. p. 38), which

is of the order of the contact differences of potential. On the other hand,

in the Rontgen region the latter amount may be neglected. The K-limit
of the excited atom or one of the L-limits, and so forth, here plays the
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part of the G-limit above. De Broglie,* by photographing the magnetic
spectrum (or

“
velocity

"
spectrum) of the electrons released photo-electric

ally by a characteristic Rfintgen radiation was able to show that the
kinetic energy of the released electrons comes out to be less than the hv
of the exciting Bontgen radiation by exactly the amount of energy corre

sponding to the nearest Rontgen limit. Ellis ‘I’ showed the same for -y-rays,
where it appeared that for the limit G that is to be subtracted only the
K'-limit of the element receiving the radiation appears to come into account.
The otherwise unknown hv of the exciting y-rays may here be calculated
from the known K-limit, and the observed energy of the released elec
trons. In this case it is noteworthy that the primary y-rays have shown
themselves to be strictly discontinuous, that is they form a line-spectrum ;

thus a continuous background (cf. p. 34), did not show itself. The con

jecture, already expressed on page 172, that the hardness of true 7-lines

is probably considerably greater than the lines claimed as 7-radiation by
Rutherford and Andrade is thus confirmed here.
After this digression we must revert to continuous spectra. In the

case of iodine an emission spectrum has been photographed b
y Steubingi

which appears as a continuous band even at dispersions that completely
resolve the (very narrow) band spectrum of iodine. Franck§ connects
this in a very interesting manner, with the electronegative behaviour of
the iodine atom, with its tendency to perfect itself into an 8-shell by
taking up a foreign electron (cf. p. 103). The difference between this
and the continuous emission spectra considered above consists in the
circumstance that the iodine atom need not be ionised to attract an elec

tron to itself, but that rather even in the case of the neutral iodine atom, too,
the electron affinity sufiices to efl'ect the assimilation of the foreign elec
tron. Here, too, the continuous character of the spectrum corresponds
to the continuous distribution of the initial kinetic energy of the adopted
electron ; eqn. (4) continues to stand, with the difference that the quantity
G, that is the long wave limit of the continuous spectrum now directly
measures the electron ajfinity o

f the iodine atom. From his measurements
of the ionisation potential of HCI, HBr, HI, Knippingll calculates the
electron aflinity of the halogens, in particular that of I, and finds that
they agree excellently with the values obtained by Franck and Steubing.
In the case of Br, too, the agreement is perfect; the corresponding con
tinuous band has here been recognised by Steubing in older photographs
by Eder and Valenta. In the case of Cl the continuous spectrum is as

yet unknown.
According to the principle of correspondence (Note 10), the contrast

between line-spectra and continuous spectra is
,

as Bohr mentions (loc. cit),
the same as that between Fouriefs series and F0u1'ie-r’svIntegral. The

“ Address at the Third Solvay Congress, Brussels, 1921.

1
- Proc. Roy. Soc., 99A 261 (1921). I Zeitschrift f. Phys., 5, 428 (1921).

§ Ann. <
1
.

Pl1ys.,64, sés (1921). [1 Zeitschr. r. Phys., 7, 32s (1921).
29
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electronic motions belonging to the atomic configurations allow them
selves, as long as they are conditionally periodic, to be developed in a
Fourier series with respect to time ; in general several “ libration periods

"

(1'),= 1/vk in the nomenclature of Note 10) serve as the intervals of the

development. The motions of a free electron that comes from infinity or
is ejected to infinity possess no finite libration periods. They do not
allow themselves to be represented by a Fourier series but only by a
Fourier integral. According to the principle of correspondence there arise
out of the discontinuous frequencies of the members of the Fourier series
the discontinuous frequencies of a line-spectrum. But in the same way
there arise out of the continuous frequencies of the Fourier integral the

infinitely close frequencies of a continuous spectrum.
VVe must not fail to remark that this indirect mode of inference is

totally difierent from the direct mode at the beginning of this paragraph.
Now we are concerned with the course in time of the motion and with its

representation according to the classical theory of vibration; before, we
were concerned only with the energetu: aspect of the possibilities of
motion and its interpretation on the quantum theory.
Finally we turn to the continuous spectra of the Rontgen region. We

have already remarked above that the absorption bands that link up on
the hard side with the K- or L-limits correspond exactly to the absorption
bands that link up with the series limits in the visible region. The fact
that emission bands have not also been observed at the same points in
the Rontgen region is obviously due to the circumstance that gaps in the
atomic structure that have come about in the interior through ionisation
are filled in much more easily by electrons from the outer shells than by
free electrons.

But we have yet to deal briefly with the emissiimz. spectrum forced into
existence by the impact of the cathode-ray particles (impulse spectrum).

This is emitted by electrons that do not belong to the atomic configuration
in either the initial or the final state. W's have to picture to ourselves
that the cathode-ray particle that is originally free penetrates only mo

mentarily into the atomic configuration, shoots past the neucleus, is
deflected out of its orbit, and then again leaves the atomic configuration
along‘ a hyperbolic orbit. In this process, it is immaterial whether the
atom as a whole is neutral or ionised. The defiexion of the electron is
caused by the whole nuclear charge, not only by an excess charge due to
the ionisation. The fact that the electron was also able to exist as a free
electron after having passed through the atom is shown at the short-wave
limit of the spectrum (p. 178). This corresponds exactly, as we know,
to the exciting potential of the cathode-ray. But if the electron were to

remain poised in an inner orbit of the atom, the energy of this shell [the
quantity hG in the nomenclature of eqn. (4)] would become added to the

original energy of the cathode-rays and would produce a harder limit

than is observed. It is, however, too arbitrary to assume that the elec
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tron should remain poised exclusively at the periphery (“surface ") of the
atom.

After this there can scarcely be a doubt about the general view of
this most important example of continuous spectra, especially about
the quantum interpretation of its short wave limit: it is produced by
such electrons as possess the full initial energy of the cathode gradient
of potential and lose this energy completely in their passage through the
atom. Thus, in this case, the process of retardation leads to complete
rest, the remaining spectrum corresponds to processes in which the
retarded electron retains a part of its initial energy and escapes out of
the atom with it.
Nevertheless everything still remains to be done for the proper theory

of this impulse (or
“ retardation ") spectrum. We are not there dealing

with questions of frequency (these are already decided in the case of a
continuous spectrum when the limiting frequency is given), but with

questions of intensity. How is this frequency distributed over the
various parts of the spectrum? How does it increase after leaving the
short wave limit? Where is the maximum? How does it decrease in
the direction of long wave-lengths? How does the maximum in
tensity depend on the potential and, in particular, how does it depend
on the atomic number of the retarding atom ? These questions have for
the most part already been exactly answered experimentally (cf. p. 179),
but are still quite unexplained theoretically. As in all questions of in

tensity, at present only the principle of correspondence seems available
for formulating an answer; but a satisfactory treatment has not yet been

given along these lines.

0



CHAPTER VIII

'I‘HE0ltY or FINE-STRUCTURE

§1. Preliminaries Concerning the Theory of Relativity. Variability of
Mass and Inertia of Energy "

HAT mechanics is concerned only with relative motion is a fact

‘
that has been known from earliest times. The statement that a

body is in motion has a meaning only if a body of reference is

given with respect to which the motion is measured. Whether this body
of reference is itself at rest or in uniform motion is indifferent and can
never be decided by mechanical observations. Irregular motions of the

body of reference or motions in which the direction alters may, on the
other hand, be established by observation. Accordingly the principle of

relativity states: it is impossible to prove by mechanical means that the
world of mater-ial bodies accessible to our senses has a common uniform
rectilinear motion. If we were unable to see the starry firmament, there
would be no sense in talking of a progressive motion of the solar system
in space. \Ve may also briefly express this as follows: Mechanics denies
absolute space, as it has no means of detecting signs of its eariste-rice.
As our body of reference is only something to which and by means of

which we refer our measurements of the changes of position of points
under observation, we may appropriately replace it by a mere co
ordinate system of reference. Thus in the sequel we shall use the
expresssion co-ordinate system instead of body of reference, for example,
we shall speak of a rectangular system rs, _1/,z. But not every co-ordinate
system is of use to mechanics. For example, in the case of two systems
that are rotating with respect to each other, only one can be a correct

system. The criterion for the correctness of a co-ordinate system may be
stated only in rather indirect terms: in it the principles of mechanics
must be fulfilled; in particular, a point-mass which is shown to be
subject to no external forces must, in accordance with the law of inertia

(Newton's First Law of Motion) be at rest with respect to the system or
must move uniformly in a straight line. If a system :z:, y, z has been
found correct on this criterion, then so is every other “accented

"
system

av’, y/', z’ which moves uniformly and rectilinearly with respect to the

" Cf. the popular account by Einstein, “ The Theory of Relativity" (Messrs.
Methuen & Co.,- Ltd.). A list of translations published by the some firm will be found
at the

e
u
g
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coverTof thehpresenti
volume: it includes Einstein's original

papers an ey ‘s “ 'pace—— ime— atter.

452



§ 1. Preliminaries Concerning the Theory of Relativity 4-53

former. If we take the direction of relative motion of the two systems
as the .r- or ac’-axis respectively, then (Fig. 109 a. or b) the following
relations hold for the momentary position of each point P and its co
ordinates in space and time :

m’ = .1?- rt, y’ = y, 2' = 2, t’ = t . . (1)

The special feature in the above way of writing the transformation
formulae is the addition of time as a fourth co-ordinate of the moving
mass-point. The time does not become transformed when we pass from
one correct or “allowable

"
system to another such system. Mechanics

deals indeed with space that is relative but with time that is absolute.

Fm. 109 a. F10. 109 b.

What is the position with respect to the rest of physics, electro
dynamics and its sub-section optics which is distinguished by the
accuracy of its observations? Does the relativity of space hold here
too‘? \Ve shall first recall two experiments which appear to give
evidence against the relativity of space, that is which make absolute space
appear as the carrier of physical phenomena. One experiment taken

from the realm of optics (Fizeau's experiment), the other from electro
dynamics proper (Rowland’s experiment). Light propagates itself
through space with the characteristic velocity c; it is carried along
either not at all or not to the full extent by the body of reference in
which it is propagated, if the latter is in motion. We are familiar with
the fundamental experiment of Fizeau, in which he directed light
through flowing water and determined by interference measurements
the difference of path that occurred when the light traversed the water

partly in the direction of its motion and partly in the opposite direction.
The velocity of light in water was found in this way to be equal, not to
c 1 '0, but to

6 i
we
—

lo
»

n n

where n is the refractive index of water. c/n is the velocity of light in
water which is at rest, and 12(1 - 1/11,2) is the “convection” effect of
the moving water. Both quantities may be completely accounted for b

y
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the action of the electrons present in the water on the light; this action
is expressed in the magitude of the refraction index n. Apart from this
action, that is, for n = 1, the velocity of light would, by the above
formula, also be equal to 0 in flowing water. It is concluded from the
non-convection of the light for n = 1 and the only partial convection for
n > 1, which, as it is, may be explained on the ground of the electronic
fields, that light is propagated, not like sound through matter, but

(apparently) through absolute space. The space that is postulated for
the purposes of the motion of light is conceived as being something
material and is called the other (Lichtcither).
Something similar is shown in the region of true electrodynamics by

the proof, carried out in Helmholtz’s laboratory by Rowland, that moving
electric charges exert a magnetic action. This action is similar to that of
an electric current that transports the same quantity through the cross
section of the conductor as is conducted as a result of the motion. Thus
the magnitude of this magnetic eflect appeared to depend on the absolute
velocity of the electric charge. Absolute velocity was affirmed to be

velocity with respect to the universal ether. q

\Vhen scientists made an earnest endeavour to draw final consequences
from the idea of the absolute system of reference, the ether contradictions
manifested themselves. In this connexion we shall also quote two ex
periments, as above, one that is optical and one that is purely electro

dynamic.
The final decision rested with the experiment, conceived by Maxwell

and carried out by Michelson and Morley with great refinement of

technique, directed at proving the progressive motion of the earth in

its orbit about the sun. \Vhat was impossible mechanically was to
succeed optically. If light really propagates itself in the absolute ether
it should travel relatively to the earth more slowly in the earth's

direction than in the reverse direction. The difference of path would
have been manifested by the interference experiments with suflicient

accuracy. But they disclosed no difference of path; the Michelson

Morley experiment gave a negative result.
The same occurred in the case of an electrodynamical experiment

which, elaborated from an older arrangment by Rontgen, was carried

out by Trouton and Noble. A delicately suspended electric condenser
represents, on account of the earth's motion, a convection current in the
sense implied in Rowland's experiment, and should exhibit magnetic
forces that tend to turn the condenser. Or, expressed in other words,

the ether wind that blows through the condenser should be made

apparent by defiexions of the galvanometer. Here, too, no vestige of

the existence of an absolute ether showed itself.

It was inevitable to conclude that the absolute body of reference
“ether " was only a fabrication of man and that, in reality, optical
and electro-dynamical events take place on the moving earth just as if
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the earth were at rest. Generalising this, we had to assume the same
result for every body of reference (that is not accelerated). Thus the

principle of relativity also holds for optics and electro-dynamics: it is

impossible to prove a uniform motion of the system of reference by means

of optical or eleetrodynamic measurements carried out within the system

of reference itself.
In this negative form the principle of relativity of optics and electro

dynamics is the same as that of mechanics. From the following intro

ductory reflexion we recognise that, in spite of this, it leads to quite
different results and that it makes a much deeper incision into our

customary ideas.
Let us again consider Figs. 109 a. and b together and let us assume,

as an example, that there is a source of light at rest in this system at O’.
Let it emit at the time t’ = O a spherical wave; this is indicated in

Fig. 109 b. We may imagine the accented system as the earth and the

system at rest as the sun, with respect to which the earth moves per
ceptibly uniformly. The fact that we have a spherical wave in the ac
cented system, that is a uniform transmission in all directions is a direct

result of
i
the Michelson-Morley experiment. But in the unaccented

system, too, we have according to our form of enunciation of the principle
of relativity the same transmission in spherical waves. That is, the same
event that appears to the “ accented

"
observer as a spherical wave about

O’ is to be regarded by the
“ unaccented

"
observer as a spherical wave

about O. Those points of the accented system that are affected by the
light disturbance at a definite accented time and which here lie on a

sphere about O’ are to appear to an unaccented observer at a definite un

accented time to fill a sphere described about O. Our ordinary ideas
rebel against this way of thinking; we have accordingly to reform our
views of space and time to bring them into agreement with the principle
of relativity of optics and electrodynamics.
Firstly, we wish to meet an objection that has perhaps already thrust

itself on the reader. The source of light was, for example, to be at rest in
the accented system; it then advances uniformly_ in the unaccented

system during the emission of light. Is it not possible for this circum
stance to stand in the way of the equivalence of these two systems of
reference? Might not the light-wave in the unaccented system, which
starts from the moving source of light move ditferently from the source of
light which rests in this system, in such a way that we should have a
spherical wave in the unaccented system but not in the accented one, or that
both spherical waves might correspond to different values of 0 ‘I We over
come this objection by setting up alongside the principle of relativity the
Principle of the Gonstancy of the Velocity of Light, which has been
amply confirmed by observation.* This principle states that when once
" Since there is, in acoustics, no similar principle of the constancy of the velocity

of sound, the following arguments cannot be applied to acoustic or other effects, but
only to optical ones.
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the light has left its source, it propagates itself, without any recollection
of its origin, in accordance with the laws of the optical field, that is in all
directions with the same velocity c. The event is at every instant deter
mined by the field distribution at this instant, not by the previous history
of the optical excitation, and thus not by the accidental state of motion of
the source of light at the moment of emission. The propagation of light
is a process due to the action of the field and not an action at a distance
over an interval of time. This state of affairs is expressed most directly
by the idea of the ether: the transmission is determined by the mechanism of
the ether; the source of light, once it has excited the ether, has no influence
on the further process. Even if

,

after the observations of Michelson and
Morley and others quoted above, we may no longer recognise the ether,

yet we must take over the advantageous features of ether into the realm
of etherless optics. \Ve do this by setting up the principle of

'
the con

stancy of the velocity of light in the above sense, which is thus to be
regarded as a condensate and an indispensable remainder of ether physics.
After having sketched in general outline the consequences of the

principle of relativity of optics and electrodynamics by the above remarks
we must now proceed to a quantitative discussion. We shall set up the
transformation formulae which effect the transition from one optical
system of reference to another. These transformation formulae will be
difierent from the corresponding transformation formulae of mechanics,

eqns. As before, we imagine a light signal to start out from the point

O of Fig. 109 a at th'e time t = O
. It propagates itself according to the

principle of the constancy of the velocity of light with the velocity c in all
directions, and thus at the time t it fills a sphere of light of radius ct whose

equation is

w*+y"+z'*—c*t7-'=O . . . .(2)
We assume that at the time t = O the point O’ of the accented

system coincides with the point O of the unaccented system. The light
signal is perceived in the unaccented system, too. For an observer in
this system it starts out from O’ (cf. Fig. 109 b) and,- as we know, also

propagates itself in this system in all directions with the velocity c,

independently of whether the light-signal is considered at rest or in
motion, as O or O’. At the time t’ it fills the surface of the sphere of
light

1:” + y'2 + 2'” — c2t'2 = 0 . . . . (3)

Equations (2) and (3) describe the same event. The desired trans
formation formulse are contained implicitly in this identity.
We assume—without proof, for the sake of brevity—that the follow

ing relations as in (1) hold for the co-ordinates that are perpendicular
to the direction of the relative motion

y
’ =y, z’=z. . (4)
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and, also, the transformation formulze are linear. It then follows from the
identity of (2) and (3) that

.1!“ — c*t'* = at’ — c*t* . (5)

Finally we must have '

a
v
’

=
k(a:
— ot), ac = k'(:r' + vt’) . . . (6)

where It and k’ are constants yet to be determined that can depend only
on c and the relative velocity 'v of both systems. The first eqn. (6)
expresses that the point O’ (x' = O

) in the unaccented system has the

position :1:= ot and is the general statement of the first of eqns. (1). The

second eqn. (6) states that, corresponding to the complete equivalence of
both systems in Figs. 109 a and b the point O in the accented system has
the position a

:' = - ct’ at the time t’. This equation follows from the
first by exchanging the accented and the unaccented co-ordinates and

simultaneously + '0 with — '0. We now calculate from the second

eqn. of (6), taking into account the first, that

t’=k[t-€(1-k%):l
. '. . .(7)

and set the values (6) and (7) for 2
;’

and t’ in (5). By comparing the
corresponding coeflicients of av“, t2 and mt, we get the following values
that agree

1

J1 - e=

where ,8 is an abbreviation for 12/c. Hence our transformation formulas
assume the final form, in accordance with (4), (6), and (7)

k=k'=
’U

t - -.2:
:z:'— w_-ll '——1 z'—z t'———-L (8)
_.~/l_‘B21

I1/—./1 _ ! —

~/1__’8z
.

By resolving these equations we get

. . t’ + ‘LI’
ac

Q + M — '

2 — z' t

cl
(Sa)U. -_. B2!

y y J Y 1
1

that is, the same system of equations as (8) i
f + ’U and - v are ex

changed.

These equations were first set up by H. A. Lorentz and are called the
“Lorentz transformation." It is the memorable service of Einstein to
have derived them from the principle of relativity, to have applied them
in many directions, and later to have elaborated them still further. Ac
cording to eqns. (8) the change in the space co-ordinates also entails a

change in the time co-ordinate; space- and time-transformation are in
dissolubly connected with each other. Electrodynamics, in giving up
absolute space (ether), is simultaneously compelled to give up the idea o

f

absolute time. We follow Minkowski in calling the four-fold synthesis of
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space- and time-co-ordinates the four-dimensional world. If we allow c to
assume an infinite value in (8), we get back to the transformation formulae

(1) of ordinary mechanics for t = O.
In reality, however, we may not take c = co even in the case of

mechanics. There can only be one principle of relativity, which per
meates mechanics in the same way as electrodynamics. The older
mechanical principle of relativity must and can subject itself to that of

optics and electrodynamics. Thus we shall claim eqns. (8) for mechanics,

too, and shall regard eqns. (1) only as a first approximation to the exact
transformation, one that just suffices for mechanics. Actually, the

velocities of ponderable bodies are always so small compared with c that
terms of the order ,3

’

[eqns. (8) and (1) differ only by such terms] do not
become noticeable here. This, strictly speaking, also banishes the con

ception of absolute time out of mechanics. In reality the world of
physical events is an indivisible four-dimensional manifold. It is only the
large value of the velocity of light which brings it about that, for the

purposes of mechanics, this four-dimensional world resolves practically
into three-dimensional space and one-dimensional, apparently absolute,

time (t
' = t)
.

We shall now call attention to several immediate consequences arising
out of the rich content of eqns. (8). In the interests of brevity we shall
refrain from giving the ingenious fictitious experiments by means of which

Einstein made these consequences more intelligible physically, and like

wise from giving a full description of the four-dimensional picture which

expresses most fully the fundamental remodelling of our space- and time

ideas as demanded by the theory of relativity. The popularity which this

theory gained in wide circles after having been elaborated to the “ general
theory of relativity

"
(see below) rests largely on its philosophic content, and

this content receives full expression only when clothed in four-dimensional

language. On the other hand, here we aim at giving an account of the

physical content of the “ special theory of relativity
"
such as is sufficient

to enable us to understand the questions of fine structure.

1
. Lorentz Contraction. Let us consider a rod of length l at rest in

the accented system and lying along the a:’-axis. Let the co-ordinates
of its end points be :2

’

= 0 and 12
:’

= l. We inquire what is its length in
the unaccented system with respect to which the accented system moves

along the positive w-axis with the velocity '0. For the purpose of measur
ing the length the observer in the unaccented system has to seek the

a:-co-ordinates of the end points of the rod, and, indeed, such :r-co
ordinates as correspond to simultaneous positions of the end points in his
time scale. Simultaneous positions in the unaccented time scale are not,
however, simultaneous positions in the accented time scale. For example,

it follows from the last of eqns. (8) that

'vt'=—g' . 9

C.»
<>
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and so with at’ = O and a:' = l we get the two different values

t' = O and t’ = -

g
it
.

If we substitute (9) in the first of eqns. (8a) we get

_ 1 ~ 12*/0'2 , ,x"' = N/1—,82.1J.

Thus, for 2:
’

= 0 and a
t’ = l, it follows that

.r=Oanda:=~/1—B“l. . . . (10)

The length of the rod in the unaccented system is equal to the differ

ence of these two values, that is, equal to N/1 - Wt. The rod appears
shortened in comparison with its “static length" l. The contraction is

measured by ~/1
— F. It is greater in proportion as ,8 approaches 1

.

For 'u = c the length becomes zero. From this we already conjecture
that c represents an upper limit for all velocities of matter.
The method of derivation shows that the ground of the Lorentz

contraction is contained in the relative character of the conception
“simultaneous.” Whether two events are simultaneous, whether the
one is perceived earlier or later than the other, depends (to a certain

extent) on the relative state of motion of the observer.

2
. Addition Theorem of Velocities. Let a point be moving in the

accented system with the velocity

, dz’
.1: - F . . . . (11)

parallel to the re’-axis. What is its velocity in the unaccented system?
Eqns. (8a) state that

, , , if dz’
dw=d.r +'vdi_' dt=dt

+6-=4

J1 — B’ ,/1 _ ea
From this it follows, by (11)—after division—that

da: '0 + '0'.~ = , . . . (12)dt

1 + Q

6
2

This is Einstein's Addition Theorem of Velocities. It asserts that
two velocities that are measured in di_fl'erent systems (o

' refers to the

accented, '0 to the unaccented, system) are not compounded additiiiely but
bi-linearly.
From (12) we see immediately that we can never exceed the velocity c

by superposing two velocities rv and o’, both of which are smaller than c,

o
’

being measured in the system of reference that is moving with the
velocity '0. To prove this, let

,e= %‘<1tn<1,s'=%<1.



460 Chapter VIII. Theory of Fine~Structure

Then we have, under all circumstances,

0<(1 r /3) (1 r 3'),

that is, ,6 + /3'< 1 + pp" or
1B++B";3,

< 1

and, after multiplying by 0,

:Ui%, < c.

1 _+

C
,

which was to be proved. The same result holds, of course, in the case

of repeated addition of velocities. If one of the velocities to be com
pounded were already to equal c then it would not be increased by the

addition of a second velocity, for

v + c

1 +
vc
=0.

T»
C.

Conversely, it follows from (12) that i
f we now write and in for

'v
'

and ‘E
,

respectively, then
at

_

‘.fL£t,=1‘”";_’v.
.(12a)

‘E

3
. Einstein's Time Dilatation. Let us suppose that at a fixed point

of the accented system time-signals are sent out at regular intervals At’.

They will also be perceived in the unaccented system as a regular succes
sion, but the intervals At will appear longer. For, from the last of eqns.

(Ba), it follows, if 2
:’ is constant, that

At =L (13)
~/1
— B
’

We may take as our time-signals the second beats of a clock at rest
in the accented system. Observed from a system that is moving with

respect to the accented system, the clock does not beat seconds. It
appears to lose time as compared with an exactly similar clock that is at
rest in the unaccented system. It is common to both the accented and
the unaccented system that the time-signals are perceived at different
times according to the position of the place of observation, and this cir
cumstance concerns a much simpler fact than the Einstein-dlatation
which is included in the time-definition from the very outset.
Or we may take as our time-signals the vibrations of an atom which

is at rest in the accented system. Viewed from the unaccented system
the vibrations are slower. The spectral line observed in the spectroscope

is displaced towards the red compared with the line emitted by the same
atom when it is at rest in the unaccented system. (This is the so-called
transverse Doppler effect, or Doppler effect of the second order, which is
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not to be confused with the ordinary Doppler effect which is of the first

order in B and depends on the sense of the direction of motion.)
This Einstein time-dilation is" the reciprocal of the Lorentz space

contraction. Both together lead to the equality of two corresponding
events in the accented and the unaccented “ world." The contraction in

the ac-direction (the direction of the relative motion of the two systems)
is exactly counter-balanced by the dilatation in the t-direction. The

relation
(tr ily dz (lt = rim’ (ly' dz’ dt' . . . (14)

holds.
This also follows analytically from the fact that the transformation

eqns. (8) have the determinant 1.

L Variability of Mass. Let us consider the motion of a point-mass
P in the plane my. At the time t = O let it have the velocity "Uand let
its direction be along the £U'H:XlS- At the same moment we attach to it a

co-ordinate system :c’y't' uniformly with the velocity 'v. VVhen t = t’ = O,
P is at rest in this system and has the “ static mass

"
mo in it. Let the

force that acts on P be X’Y' in the accented system, and XY in.the un
accented system. Since the point-mass also gains speed relatively to the

accented system in the course of its motion, its mass in this system
need no longer be the statical mass mo; let its mass be denoted by m’;

then m’ = mo only at the beginning. The equations of motion (change of

impulse = force, cf. p. 194) are for the accented system :

rl L
’ l d1

’
If-E 1 ( 1 _/ I- _ = X -_ _ = Y . . .-

at’ <
"‘

(i
v
)

'

dz'(’" a
t’
)

(15)

If we carry out the differentiation in (15) and restrict our attention to
the beginning of the motion

(r

= t =-. 0, m’ =

0
),ll 5

5%}

§ ll

5
=
.l
€
j

then we get for this initial instant :

J‘ ' , (F1

’

.

m,,H7“j
= x,
mofi

= Y . (16)

. d2,q;' d-=y' . .

VVe translate the accelerations
W2
and
dfi
into terms referring to

the unaccented system.

According to the elementary formula of the law cf falling bodies

Lo
im ?3::

we write down the following expressions for the accented and unaccented

systems, and for a sufficiently short time At’ and At, respectively, during
which the motion may be regarded as a uniform acceleration 2

. 1d”:c’ .

..
- =

§W,(.>i)1, . . (17)

1.12 .

?f(Ai)1 . . (mt)

LC
)
R e
w
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According to eqn. (10) (Lorentz contraction) and (13) (Einstein
dilatation), we have

At’s= 1_g:s', At=---_, ). . (17b)J 0-r
By substituting these values in (17a) we get

, _ 1 dim (At’)2s_§.W.(~l .(l7c)

Comparison with (17) shows that

d’-’a:' = (Fa: 1

dt'* dt*
'
(1
-
er?/"1

' '

If we do the same for the y'- and the y-direction, then the eqns. (17)
and (17a) hold unchanged if .2: be replaced by y. But in place of the
first eqn. (17b) we get s = s’

,
since no Lorentz-contraction takes place

in the y-direction which is perpendicular to the direction of motion.

Hence we now have in place of (170)

. . (18)

. _ 1 d”_1/ (At')*s -

2
. . dti

.
igjpg . . (17d)

If we compare this with the equation

. _ 1 d’y' , 2s - g . at“; .(At),
which is analogous to (17), it follows that

ally’ _ d*y 1

C5,;-Efi.1_fl2 . . .(19)

On account of (18) and (19) eqns. (16) pass over into

mo dz-77_ ' mo dzy _ '

(fifif/=,.dt2-X,1_Bz.»&F-Y. . . (20)

But we must further ask how the accented forces X'Y’ transform, that
is, what quantities XY the unaccented observer perceives as forces. For
this purpose we must borrow from electrodynamics (our question would
remain unanswered in mechanics). If X’Y’ denote electric forces that
act on a charge e at rest in the accented system, then for the same forces
in the unaccented system we should have (the charge e

’ in the accented
system is the same as the charge e

) :

Y= ./11 ,8-Ir’. . . . (21)

We can now at any rate regard the forces X’Y' that occur in eqns.
(16) as forces of electrical origin if we endow our point-mass with a
charge (which may, for the rest, be arbitrary) and we may therefore

apply eqns. (21) to them. Then eqns. (20) may be written, without
reference to the accented system in the form :

mo __ (far = X mo d'~'

0-mm W

' 0-mac §§’=Y . .(22)
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In place of the static mass in eqn. (16) we here have a “moving
mass," and indeed we have a different one for the :1:-direction than for
the y-direction. The :1:-direction is the direction of the instantaneous
motion, the longitudinal direction; the y-direction is “transversal" or
perpendicular to the motion. The coeflicients of longitudinal and trans
versal acceleration in eqns. (22), namely,

7"» "Z
’"zll!Il_1]

= 0
, 7”/trans = {D 4 - -

<1
- W <1

-
/3")*

is (or was) therefore called the longitudinal and the transverse mass.
But in Chapter IV., § 1 (cf. p. ) we have already emphasised that the
fundamental law of mechanics is wrongly called a law of acceleration,
and that its correct name is the law of momentum or impulse. Not the
kinematic acceleration but the dynamic momentum in the sense of
Newton and in that of a natural system of mechanical conceptions
defines mass. Accordingly, we re-write eqns. (22) in the form of the law

of momentum for the muwcented system in the manner of eqns. (15) which
expressed the law of momentum for the accented system. They then

simply become

0

21>-Y -e
Here /3 now denotes the velocity of our point-mass, which varies during
the motion, divided by 0; so that in carrying out the differentiation with

respect to t in (24) we must now also take into account the variability of

B. As a matter of fact we may easily convince ourselves that the eqns.

(24) and (25) become identical for t = O. For

S
e
la
/‘
\SI I

3
‘c
s

E
(

mo = mo dim
+ mofl dB dz

(1: ~/f‘_j§‘2 'dt ~/1 _ 3
2 dt” (1

_
31)-1 ‘dz ‘J6

i<

m0_ 1

I1
1
1
)

= _ mt d"2L + mtfi J/9 fl
y

at ,/T5,?» ‘at ,\/1 _ 5
» 'dt‘* (1

- p-i)! ‘at 'dZ'

If we now notice that, on the one hand, for t = 0, = 0,8 and

cl J1 d .

$
7
? =

d
z, and that, on the other hand,

d
z; = O
,

it follows, firstly, that

l< "‘s>_.‘l?’>=m(.

1

+ B
2

)‘l2”=
"*0 ‘mv

d» A17? dz

°

./1 - ,8” <
1 - /at dc <
1 - at ‘dc

and, secondly, that

d
<

mo dy =_ mo ‘__ dzfll

ti
t

./1 __3i Hit) ~/1 _ 3
2

'
dt2'

But, by this, our eqn. (24) becomes identical with (22) and this was
what was to be proved. Equations (24) show that if the mechanical
principles are interpreted correctly the m0'v'ing mass is, under all



4-6% Chapter VIII. Theory of Fine-Structure

circumstances, g-iiven by the formula which was set up by Lorentz as
early as 1904, namely:

_ ma -
m
\/1 _ H:

(20)

It increases according to a uniform and very simple law as the velocity
approaches that of light. There is no longer any question of a longi
tudinal and a transverse mass. This distinction is purely a. difliculty
created by ourselves and due to an inappropriate view of the fundamental
mechanical law. The experimental proof of eqn. (25) is regarded as the
arperinwntum cruois of the theory of relativity. The direct proof for the
realm of electricity (by means of cathode rays or /5'-rays) was attempted
long ago by Kaufmann (cf. Chap. I, § 4), but was only accomplished by
his successors at a much later date by means of refined methods.* It
is comparatively easy to prove it indirectly by spectroscopic means, as
we shall see at the cnd of this chapter. In both methods the subject of
the experiment is the electron. But our mode of derivation shows that
the variability of mass is by no means restricted to the micro-mass of
the electron. The theory of relativity asserts that this law holds for

every ponderable mass. It is true that the prospects of confirming the
law experimentally on this large scale are very meagre.
5. Inertia of Energy. We pass on from the laws of motion of the

point-mass to the equation of energy. For this purpose we follow the
ordinary procedure of classical mechanics and multiply eqns. (24) by

£3
and respectively, and add them. No essential limitation results

from our keeping to plane motion, that is to the two co-ordinates 2:, y.
We shall, however, drop the special assumption that the :2-axis is to be
in the direction of motion, so that in future we are to take B2 as standing
for the following :

-

We then get for the right-hand side:

da: (lg dA dE ,,
___ Y _ = __m = - 1"’

Xe»
+
dt (H at

as the rate of work (activity) of our force; or, if the latter has a potential,

it is the negative rate of change of the potential energy with respect to

time. From this it already follows that the left-hand side must be equal
to the time change of the part of the energy contained in the motion,

namely of the kinetic energy. Thus we have

dEl"": _ Q”

l<
-

__7"':>_

Q
”) + Q _il;(-_fl"".__idt —dt 'dt ~/1_;;-"dz dt dt (/1131 dt

‘ Cl. Sehiifer and (l. Neumann, Ann. d. Pl1ys., 45, 529 (1914); Oh. E. Guye and
Ch. Lavanchy, Arch. de Genéve, 41, 286 (1916).
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or, if we group the right-hand side appropriately and take into account

eqn. (26), we get

dE;,,-,, d mo _
[dz

2 dy

2]

mo

_<d.z:

dim dy d”y
at (h

i
lie) (at) + (at) + ~/fig.» at ' ea + at ' ea

)

mo dB

1|

kl
d 0=

023131.:/{.";El
+

0*/at/if)
. E

_ .3
3

.3 4,3“ (flier * <1"-“e>*»>;1i~

If we write the expression in the brackets over a common denominator,
then

dlil'i"1'_= mo‘: _/3 , ‘igzi _.,’Z’0‘?2 _
at

"

(1-3-)@'at dt'\/1_'32'
VVe thus have

m,,c‘1Em =
71 _ B

2

+ const.

The integration constant here added is determined by setting the kinetic

energy equal to zero when the velocity vanishes. Thus const. = — moo”
and

1

Em -
moc2<_:/i _7fl

-

1
) . . . (27)

Perhaps it is not superfluous to point out that the usual expression

77L0’l12/2for the kinetic energy emerges out of this when c is made to pass
to the limit co . \Ve need only develop our expression in series:

(1-31;-;=1+%-gs*+
and, after multiplying by 0*, to cancel those terms that have c in the
denominator. Here, too, classical mechanics appears as a degenerate
or mutilated form of relativistic mechanics.
In conjunction with eqn. (25), eqn. (27) allows an interesting inter

pretation. We write it in the simple form

Elm. = c“(m
—
mo) or m — mo = E

;"
'?

. . (28)

Thus the change o
f mass produced b
y the motion is equal to the kinetic

energy divided by 0".

This result is to serve as the simplest example of the general law of
inertia o

f energy which Einstein derived from relativistic considerations

(conservation of the centre of gravity during radiation) and which he

regards as the most important result of the special theory of relativity.
In general, the law states: every quantity of energy of any form whatso
ever represents a mass which is equal to this same energy divided b

y
c‘
~
'
;

every quantity o
f energy in motion represents momentum. We have

already used this law in Chapter II, § 6, p. 95 as an explanation of the
30
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stability of the He-nucleus. Furthermore, in Chapter V, § 1, p. 259, we

have reduced the pressure of radiation to the same law, namely, to the
momentum of the rays of light.
Our survey of the theory of relativity is, of course, very incomplete

and adapted in a one-sided way to meet the requirements of the applica
tions intended in the sequel. Moreover, it was impeded by the necessity
of giving an elementary account. The full beauty and clearness of the

relationships of relativity come into evidence only when we venture to
take up our view-point in Minkowski's four-dimensional world. The
somewhat laborious and lengthy calculations which we had to carry out
here in Nos. 4 and 5 to derive the relativistic mass and energy, then be
come superfluous, and allow themselves to be replaced by more appropri
ate considerations. An account of the higher Hamiltonian mechanics of
the theory of relativity will be found in Note 15. Here we merely wish
to cast a glance at the powerful extension which we nowadays call the

gene-ml theory of relativity, and shall contrast it with the spec-ial theory of
relativity.
After Einstein had set up the special theory of relativity in 1905, he

straightway proceeded to sketch the structure of the general theory of re

lativity, in which he had to overcome extremely great difiiculties. He
could not rest satisfied with systems of reference in uniform motion that
occur in the special theory of relativity. 1/Vhat justification was there
that they should play a distinctive part in the special theory? It would
be possible to understand why they should be favoured only after the
course of phenomena had also been investigated in arbitrary “ accelerated

"

or “ rotating" systems of reference. It was only by doing this that he
succeeded in disclosing the philosophical scope of the idea of relativity.
And yet another question did not cease to exercise Einstein's mind ;

although in the special theory of relativity mechanics and electrodynamics
were represented very completely, yet the most fundamental force of nature,
that of g-rwvitation found no place in it. As early as in 1907 (in the
Jahrbuch der Radioaktiv-itrit), Einstein endeavoured to link it up with an
extended theory of relativity by pointing out the equivalence of a homo

geneous gravitational field with a field in acceleration. But it was only
in 1915 that he succeeded in fitting gravitation into the general theory of

relativity in its final form. It was on the 29th May, 1919, the memorable
day of the general theory of relativity, that the defiexion of the light-rays
passing near the sun during an eclipse was confirmed in a striking manner
in the case of seven stars, in conformity with the prediction of Einstein

(cf. also p. 468 of the following section). From the point of view of this
extended theory of relativity the discovery of Copernicus has also to suffer

a correction. The decision of the general theory is: it is, indeed, con
venient and reasonable to say with Copernicus that the earth is revolving

around the sun, but it is not wrong to say with Ptolemy that the sun is

revolving round the earth l
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§2. Relativistic Kepler Motion.

Following closely § 6, Chapter IV, we now treat the problem of two
bodies in the light of relativity. Let the nuclear charge be E, and the
electronic charge — e. _We disregard the counter-motion of the nucleus.
We choose the nucleus as the origin of a system of polar co-ordinates

‘r, q
t. We shall not write down the differential equations of the motion,

but shall concern ourselves with giving a graphical description rather

than a complete treatment. We may do this, as we shall again take up
the problem in Note 16, and shall there use the methods of higher me
chanics which are remarkably appropriate to the nature of our problem,
and lead to a complete solution by the shortest route.

Relativistic Kepler motion takes place in an ellipse whose perihelion is

advancing. This means that if we represent the orbit in our polar co
ordinates r, <

f>
,

then its equation is :

1 1 1

;_

= (1
,

+ (,
._
.

cos yqt . . . . (1)

This equation differs from the non-relativistic eqn. (8) of the Kepler

ellipse on page 234 in having the factor ~
y in the argument of the cosine.

This factor has the meaning

. = __ gltf

7
‘ 1

P,
- . . . . (2)

As before, p is the areal constant of the motion, that is the moment of
momentum of the electron about the nucleus; po denotes the abbreviation

elil

a=7 . . . (3)

and has the same dimensions as p. For c = co (this denotes the
passage from relativistic me
chanics to the limiting case
of classical mechanics), po = O

,

-y = 1
, and hence eqn. (1)

simply transforms into the

ordinary Kepler ellipse. As
a matter of fact, on account

of the magnitude of 0
,

1),, is

small compared with p, and -y

is a little less than 1
, in all

the cases that come under
consideration.
The form of the relativistic

Kepler orbit has been drawn
in Fig. 110. O is the fixed

focus, in which the nucleus is

situated, and P is the initial Fm, 110_

A
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position of the perihelion. Let ¢ = 0 be the straight line OP; then the
orbit does not attain its next perihelion when ¢ = 21r, but when 71¢ = 27:‘,

that is, when

21r
=~—- 2_¢ Y>"

The motion of the perihelion occurs in the same sense as that of the orbit,

and has the angular magnitude

2
A¢= ”-21.. . . . . (4)

Y

If we refer the motion to a polar system of co-ordinates which partici
pates in the motion of the perihelion, namely, to the system

.1
,

=
-Y¢ . . . . (5)

then we have again an ordinary closed ellipse. In Fig. 110 we have also
inserted, as dotted circles, the geometric locus of the successive perihelia
and aphelia, the outer and inner envelopes of the orbit.
The motion of the perihelion of the relativistic Kepler ellipse invites us

to make a digression into the field of astronomy. As we know, Mercury, in

disobedience to Newton's law, exhibits an advance of the perihelion,
which, according to Newcomb,* amounts to 43" per century. Can this

anomaly be explained in the light of the preceding formula (4) ? In the
first place, it is clear that our relativistic motion of the perihelion would
make itself manifest most readily in the case of Mercury, the planet
nearest the sun. For this motion of the perihelion (4), increases as -y de
creases, and y decreases as p decreases. But among all planets the one
nearest the sun has the smallest areal constant p. Calculation, however,
shows that our relativistic motion of the perihelion is much too small.
It would amount merely to 7" per century in the case of Mercury (cf.
Note 16). But it was only the wide generalisation of the relativistic

standpoint, mentioned just at the end of the preceding section that made

it possible for Einstein to explain the observed motion of Mercury's peri
helion theoretically. In this way he found that, for Mercury, the theo
retical value of the motion of the perihelion was 43" per century!
Reverting to eqn. (1), we now determine the constants C

1 and C
2 of

eqn. (1) by means of the major axis a and the numerical eccentricity e of
our ellipse measured in the moving system (5), and use exactly the same
method as in eqns. (9) and (10) on page 234. For, when u

p = O (peri

helion), 1
' = a(l — e
), that is

1

a(l - .)

~
i

ll’ J‘

=C,+C,;

* A later calculation by Newcomb gave 41". Both numbers are discussed and
criticised by E. Grossmann, Zeitschr. f. Phys., 5, 280 (1921).
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and when mp= 11-(aphelion), 1' = a(1 + e
), that is

1

ail:
=- C

l -‘
C2.

Accordingly,

, _ 1 1 1 e

(’1‘&' 1??’ O"*=‘¢i' 1 - <2‘
thus

1 1 1 + c cos 71¢
,}
_ = - _ . _' . - .

1 e
l

We also take note of the following formula for later reference

gill‘ qslnyxp
11¢ ~' - - -<6“)

The impulses or momenta corresponding to the co-ordinates 1-, 4> are :

p4, = p = mr?<f>, p, = mi‘ . . . (7)

They differ from the corresponding impulses obtained earlier in the
non-relativistic treatment [eqn. (4) on page 233] only in that the mass m

is now variable according to the law :

m=J1’"_;°_B_;

. . . (8)

p4, is also now, as indicated in (7), identical with the areal constant p.
We now formulate the quantum-conditions for our two co-ordinates

¢ and 1'. They are :
'1
'

= 2" \l
/ = 2"‘

{p¢d¢
= nh,

jp,d1'
= n'h . . (9)

¢¥0 ¢=0

In the second integral 50 denotes the angle up of eqn. These quantum
conditions differ from the corresponding ones (6) on page 234 only in the

integration limits that occur in the radial quantum condition. We recall
the general rule on p. 199: the integration is to be taken over the whole
domain of values of the co-ordinate in question. In the case of the azi
muth ¢

,

this domain of values is an angular rotation; hence we have the
limits ¢ = 0 and ¢ = 21|- in the first integral. In the case of the radius
*r, however, the total range of values stretches from r,,,i,, (perihelion) to
rm, (aphelion), and back again to rm,-,, (perihelion). On account of the
advance of the perihelion, this range does not correspond to an altera
tion of ¢ by the amount 21r, but to a change of 21r in ‘/¢§ hence we have
the limits it = O and u

p = 2-Ir in the second integral.

On account of the constancy of p4, the azi-nmthat quantum condition
at once gives

21:11
= nh . . . (10)
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This is the quantum condition of the rotator with which we are quite
familiar. In the radial quantum condition we take into account eqn. (7)
and write, just as in (12) on page 235 :

.__ dr-_y) dr 1d1"*
Pr - m1- m(T¢qt -_ 1'3 . (I4), (I1 _ d¢d¢>, p,.dr -p<;\d¢> d¢,

and hence, in view of eqn. (6a) :

sin? ¢ ., sinirpW" = P” ofixttwi ‘*1’ = 1""/ <1 + . semi “*
Hence our radial condition passes over into

u
p = 21r v
ll = Zn

— 1 Shit d '1 1giflr-p¢y~¢=1it . (1)

it = 0 .1
,

= 0

If we insert the value (10) for p, then we get

d
o = Zn’

e
a

sinzit _ n
’

2
.; lip + .1;5;¢)=="¢

"

1
2
', - - <12)

Except for the way in which the integration variables are designated, the
integral on the left is identical with the integral on the left-hand side of
eqn. (13) on page 235. We may therefore use the result there obtained
in evaluating it and have

, 2 .

J1 1=ZLi7,
thatis, 1_e=5%, . (13)

But whereas, earlier, certain fundamental objections had to be raised

against the use of the radial quantum condition, the present radial

quantising is free from objection. The relativistic problem is not degen
erate, and the co-ordinates r, 41 are uniquely defined by the nature of the
problem. By regarding our earlier problem as the limiting case of the
relativistic problem we also justified our procedure for the former.
The size and theform o

f the orbit are fixed according to quanta by our
azimuthal and radial quantum condition. In this wary a discrete family

o
f quantised orbits a/re selected out o
f the continuous manifold o
f all the

possible orbits.

By using eqns. (2), (3), and (10) we shall express the quantity ny that
occurs in (13) as follows :—

it -
<";.r“>*
- it —as -if~ <-it -

We have already encountered earlier the abbreviation

. 2“
..=-Ill; . . .(1-it)

I M 1;

here used, namely, in eqn. (8) on page 213. It signified the speed of
rotation of_the hydrogen electron in the first Bohr circle divided b
y c.
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Its numerical value (:12 ==5'3 . 10"“) was also determined on the page
2 2

quoted; it shows that unless E >1; the supplementary term a. in

(14) signifies only a small correction compared with 11,2. As a result of

(14), (13) becomes

1—e3==
8
———-—i

-11‘?
. . (15)

~

[r + rt ~me]e
Concerning the graphical representation of this family of quantised

elliptic orbits we may refer to Figs. 71 and 72 on pages 239, 240. Within
the limits of accuracy of the drawing, these ellipses represent the ratio
of the major to the minor axis, or, what is the same, the eccentricity,
with suflicient truth for the relativistic case, too ; as a matter of fact, the
difference, as we just saw, is small, being of the order a“. \Ve have only
to imagine the earlier figures modified with respect to the motion of the
perihelion. Concerning the number of different orbits that belong to the
same quantum sum n + n’ we may also refer to Chapter IV (p. 239).
We now come to the calculation of the energy, in which, however, for

the sake of brevity, we shall restrict ourselves to circular orbits. The
calculation of the energy for elliptic orbits is rather laborious if carried
out by the method here adopted ; we get at the result much more simply
by the method of Note 16, in which less elementary means are adopted.
Let a be the radius of the circular orbit, (D the angular volocity of the

electron in this orbit. According to eqns. (7) and (10), we then have

p = n1,a"w =

g
ig
’

. . . . (16)

This is the only quantum condition that comes into consideration in
circular orbits. Further, we have the classical condition: the centri

fugal force is equal to the Coulomb attraction of the nucleus. It gives us
nmiiwz = eE . . . . . (17)

It follows by division from (17) and (16) that
21:-eE

[Inn =W . . . . . (18)

This is the velocity of the electron in its orbit. If we divide it by c, then,
taking into account eqn. (Ma), we get

to EB=“___0- '239

1"urther, it follows from the mass, which varies with the velocity, that

-m = We .”.‘" - _ = _J3‘~ . . (19)
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According to the law of the inertia of energy [eqn. (28) on p. 465], the

kinetic energy is
1

Fnkin = c2(m
—-
mo)
=

c%
°( _~— I. . .

(1

~ en’ e

On the other hand, the potential energy of the Coulomb field is

eE -
Epot -'= '" Z

To have the value of 1/a in a convenient form we write eqn. (16)
thus :—

Q
»
-l _ 2
1

.,,,,,_ _
nh

w

and substitute for ‘lit and aw out of (19) and (18). This gives

1 = (21r)28E mo

a n‘*h” -

x
/1

at E "1-

(r
t)

and hence .

2 eE 2

E""‘ = ‘ (tiles)
Q
; |—
* I

I3
3
“;

Pg‘
5
"

m
l

\_
/H
i

Or, taking into account (l4a) we get

2 E 2 -*

1+1,,.,,= -
22(5)

.

"c~m
~— ~- A . 21

J E , < >

1 ~

<
~
>

n e

From (20) and (21) there now follows for the total energy

1

as E 2
(2
)

n” <
e
>

n" e

which we may write more conveniently thus:

1 + _‘l_T=

‘/
1

moc

We get, instead of this, for elliptic motion with its two quantum
numbers n and n’:

...(22)I

3
l§ lé
v
li

/f o
sl
fi
lj

\_
/l
_

_ 1'->
W

1 W 1"1 + wigs»? = 1 + _ -._e A

"'

_”___’ (23)

n'+ 1173— a
il}

- d

ll[J<@>
Concerning this general energy formula we merely remark that for n'= O

it can easily be reduced to the simpler formula (22); for the_ proof of

It
;
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-

eqn. (23) we must refer to Note 16. For hydrogen (E = e) the eqns. (23)
and (22) assume the simpler forms :

Ev“: 1 7 _ _,,lz’ \-1/2

'

1 +
"W l + ("' + ~/n” — <1“)"l

(24)
and 1+ w,=,\/1-25 Jmoo In,‘-l

respectively.

We can now at once write down the general relativistic formula of
the Balmer hydrogen series if we enlist the aid of Bohr's fundamental

equation
hv = W, - W, . . . . (25)

(Wu = the energy of the initial orbit of the hydrogen electron for the

quantum numbers k, la’; We = the energy of the final orbit for the

quantum numbers n, n'.) \Ve then get

Y : % a2
*1
—12

it

,,
,-
,{
H
1 +

(/5

+a_:/kt

_
,,~¢)-gm

I

u (26)

W1
"
<a+ - .5

2
}

l

This compact formula includes all the spectral phenomena that the
hydrogen atom is capable o

f e.rhibit~iny.

It only remains to make a remark about the constants that multiply
the expression in the square bracket in our way of writing eqn. (26).
From eqns. (25) and (24) we get

V =

%
‘i
2
[ ]. . (27)

for which we wrote in (26) :

2R

1
' = [ ] . (27a)

(1

But from the meaning of R and 11as defined b
y

2-Hm e
‘

21re'*

R — Rm = W” '

“ =
71.?

(cf. p. 216 eqn. (16)) we see at once that the two factors in (27) and (27a)
agree, and so our mode of writing (26) is justified. The fact that we here
used Rm in our calculation i

s due to our having disregarded the counter
motion of the nucleus in this section. To take this into account subse

quently (cf. also footnote 1 on p. 476) we shall in the sequel take R as
standing for the value RH (in the case of He it is the value R59) (cf. Chap.
IV, § 6, p. 240).
As an analogy to (26) this significance of R gives us the following

comprehensive formula for the wave-numbers of the spectra of the hydro

gen-type (He+ etc.) :
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= 1 + _ fl
ll ['

6
'

r-<-%>‘

2
]

. (28)

td
ls

‘=
..
|l
~
'>

+

/p

%
%
-—
r-
‘—
’
m
i!

.L

L.

\
E

e

e

The greater part of the present chapter will be devoted to exhausting
the content of these formulae. In this section we shall merely outline its
general character and illustrate it by the characteristics of elliptic motion.

Firstly we are arrested by the fact that our present spectral formula
no longer merely depend on the quantum sums n + n

’

and k + k’ ; rather,
the quantum numbers n, n’ and la

,

k’ enter into our formula: unsymmetric
ally. From this it follows that, corresponding to the same quantum sums,
the lines that previously coincided are now separated owing to the interven
tion o

f relativity. This separation is due to the correction term which is

associated with the small factor 1
1
2

= 5'3 . 10-5. For this reason the
separation is only slight and can be detected only by the most refined
means of spectroscopy. The lines that were previously described as co
incident are split up into a configuration o

f close lines. The individual
lines of this configuration, its components, determine by their intervals of

separation and intensities the fine-structure of the line-configuration.
When we have become acquainted spectroscopically with the fine-struc
ture, for example, of the hydrogen lines, we shall have ocular evidence
not only of the actual occurrence o

f the elliptic orbits but also of the
variability o

f the electronic mass. Consider, for example, the represent
ation of the various types of orbits in Fig. 72 on page 240.
VVhereas the velocity and hence also the electronic mass remains con

stant in the circular orbits, it alters greatly in the elliptic orbits, particu
larly in those of great eccentricity. The velocity is small at the aphelion
and increases as the perihelion is approached. When the electron is on
such an orbit and rushes past in the immediate vicinity of the nucleus,

it is subject to the strong field of force in the neighbourhood of the nucleus,
and so its mass also increases with its speed, Thus we understand that
its energy can be different from that in the circular-orbit, the more different
the more eccentric the ellipse, and that a somewhat different position in
the spectrum must result for the line-components corresponding to the
various orbits.
The motion of the perihelion of the ellipse is also connected with the

variability of mass. In particular, the correction term in the expression
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owes its origin, according to eqn. (14), to the circumstance that y < 1,
that is

,

to the advance of the perihelion. Thus the observal-ion o
f the

firie-structures discloses the whole mechanism o
f the intra-atomic motions as

far as the motion of the perihelion o
f the elliptic orbits. The complex o
f

facts contained in the fine-structures has just the same importance for the
special theory o

f relativity, and for the atomic structure as the motion of

Mercury's perihelion for the general theory of relativity.

§ 3
. General Inferences. Fine-Structure and the Relativity Correction.

To make the final formulas (28) of the last section convenient for cal
culation we shall develop them in powers of the small quantity 112. When

E/e is not a great number (H, He+), it is sufficient to retain the first two
powers of a‘-‘. This is so in the case of the visible and ultra-violet spectra.
For great values of E/e, however, we have also to take into account the
third or even the fourth power of ii‘. This occurs in the case of the

Rontgen spectra. For extremely great values of E/e (U, Th, etc.) it may
even be convenient not to develop 0.2 at all but to use the complete
formula (28).
After this the calculation becomes simple for the visible spectra. If

we denote by S the quantum sum that occurs in the denominator of eqn.

(28) of the previous section and that has been modified in conformity
with the demands of relativity, then

S='l1/+‘/1t2—<a§>2='7L'+'IL—l<a.E>2+
.. (1)

e 2n e

and we at once get

2~ i/2E ' E 1 E *

~l1,<“‘2ll =1_1-(“ti §-<“zl____(2)

l s"1 J 2 si s*

Further, we have, to the requisite degree of approximation in each case,

gs-=|l7L'+n—%’<a{5>2+
. . .

1
-:

- (3)

+

co

=
(n_.._:.n,)2[1

+
n(n§_n,)(,,,%>”

+ ..

+1fi,)4.[1
+ . . .1

<21

- ll

s.

Substituted in (2) this gives

i <u]ZJ:>2l
-112

(ugly 1 <
u E
ll
1 ii.
’

1

= ——_ —- __";._ ._

[

J" l (n+n')" 2(-n+1i')*(4
+
n>+'

' ' (4)

We insert this development in eqns. (28) of the previous section,

in which in part the quantum-numbers n, n’ of the final orbit, and in part

§—
‘

N
H
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the quantum-numbers k, k’ of the initial orbit, occur. In taking the
difference of the two terms in the square brackets the first term 1 cancels
out and the factor 2/112,which stands before the brackets, may be divided
out. The wave-number v then occurs as the difference of a first positive
member that depends on the quantum-numbers n, n’ of the final orbit
and a second negative member that depends on the quantum-numbers
k, k’ of the initial orbit. To indicate this, we write

1/ = (n, n’)
— (k, k’

)

. . (5)

and get, for example, for the first term :

E 2 1 <12 E 2 1 n
’,'=s _ _(-_)(~ 6(n n)

<
e
)

(n+n)~+(n+n')* e 4 +n + ()

In this expression the first member on the right is identical with the
representation in terms set up for the hydrogen-like lines in Chapter IV,
§6; this member depends only on the quantum sum n + n’. The
second member on the right exhibits the influence of relativity. This
influence is two-fold. Its first part again depends only on the quantum
sum n + n

’

and amounts toi

__ JER
<§>4(n + n')4
'

e

It eflects a general raising of the term* which is equal for circular and
elliptic orbits. VVe call this part the general relativity correction or the
relativity correction for circular orbits. In the first term of the Balmer
series (E = e

, n
’

+ n = 2
) its ratio to the whole term is

“>
7
-4

a2_ _6E-3.10.
On the other hand, relativity brings about a separate increase o

f the term

for the various elliptic orb-its; this increase depends on n and n’ indi
vidually and increases with the eccentricity o

f the orbit. Its "val/ue is : *

n
r a'~R I

<
E
>
*

n

'

(n + n')*' e

i

We call this part the resolution o
f the term ; it is the ground of the fine

strncture o
f the lines. For the first term of the Balmer series (E = e
)

and the only elliptic orbit that here comes into account (n' = n = 1) the

ratio of this resolution to the whole term is :

4

— = . IOI5.

$
9

“ C. G. Darwin has carried out the calculation as strictly as possible for the case
when the accompanying motion of the nucleus is taken into account (Phil. Mag., 39,
537 (1920). He finds that the nuclear motion expresses itself not only in the Rydberg
constant but also in a small additive correction member of the order of magnitude
aim/M (m = mass of electron, M = mass of atom), which is of no account practically.
The fine-structure remains quite unafiected by it.
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These two influences have a common cause, namely, the relativistic

variability of mass. As was described at the conclusion of the last
section, the increase of mass for the ellipses of great eccentricity, at the

perihelion of which the electron rushes past the nucleus with great speed,
is greater than for the ellipses with small eccentricity or than for the
circle. But there still remains an influence of the relativistic increase of
mass for the latter, too, and it is this that expresses itself in our general
relativity correction. Of course, this general influence may easily be
determined [from eqn. (22) of the preceding section] and has in fact been

calculated by Bohr* even before the general theory of quantised elliptic
orbits was in existence.

For the purposes of the Riintgen spectra we must next carry the
accuracy of our calculations still further and retain the still higher powers
of <1”that follow. In place of (1), (2) and (3), we have then to write

. , 1 E ‘1 1 E 4 1 E "S=n +n —
%<o.Z) -8-7‘-J(a.;>

-
i6n5<a;>

— . . . (la)

E
2)~1l2

E 2 E 4 E 9E?) 1(“Q 3 Q2) 5 E?)l+_____ =1_._. +_. ___.
S” 2 S” 8 S4 16 S“

W35
.+ 1EE;._3;T_.

+ . .. . . (2a)

and to the degree of approximation requisite in each case :

1 1 l E ‘~
’

4n+n' E 4
§~’_ (n + n’)=* [1

+
¢Z(T+ n’)<aTa>

+
4n“(n + n')‘~' <

a

0
)

8n’ + 5nn' + n'2 E
‘l

J+~(“ 6
) ’" """

1 1 2 E 5
*

6n + n
’ E 4

]

3_= 1 _ I~ _ (9-)
S‘ (n+11/)*li

+
'n('n+n')<a e

)

+2n“(n+n')”<a 0
) +

1 1 3 E ‘I

it <"*1”'>**i1
+
wit» +

'

»'><“?l
J" ' '

s_S= <7‘?-7?)-8

[1 + . . .]

If we substitute (3a) in (2a) we get (i
f we cancel the 1 and multiply b
y

—
2R/ail) as the more complete representation of the term :

‘I ‘Z E ‘1 1 n’

-

+

Iw
e
n
"?

‘—
-’
:l
:‘
:l
:‘
+
lp

+

r<
.>
—
ll-
w
:;
l

g
ig
/\
/\

4 E 1 n
’ 2 1 n"

+

(n + 11/)“ <
2
)

[E

+ F) + IQ?)
a“ E ° 5 2 23 n’

+(n+n7<;> [6
2

>
+

8&1?)

+
<1>*
+
*<1>"l+11 8 n

* N. Bohr, Phil. Mag., 29, 332 (1915).

\.
; o
n

("' “l = R

l(T+'1?fi=*'
” E

l

(Z

+ F)

0. 4

4
:‘

(63 a
l)
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We shall make use of this detailed representation in §5. The ex
pression (6) suflices for the next questions, which concern the visible

region of the spectrum. We are here dealing with the resolutiorz. of the

(1.01

I

n +n'=1

(2,0) (1.11

I
JV

I

n+n'- 2

(3,0) 12,1) 11,2)

I
1
I

3
I

I]-0I]'=3

(4,0)f3,1) (2.2) (1,3)

I 1I
3
I

6
I

11+n'=4

(6.0)(4,1)(3,5 (2,3) (1.4)

I3
I5
I

10

I

30

I

I1+I1'=-.51

Fro. 111.

on account of the increasing term

decrease rapidly.

n+n’=|.

series term (n, n’) for the various
values of n and n

’

that come into
account. Fig. 111 gives a survey
of the various types. The symbol
for each term is written at the top
of each line. The distances be
tween the lines give the differences

of the term values and hence also

the frequency differences of the

spectral lines that are formed from
these terms. The numbers written
over the arrow lines (the distances
between the lines) denote ratios and
are explained by eqns. (8a), (9a),
and (10). The types that lie verti
cally below each other cannot be

compared directly in magnitude.
For the sake of clearness they have
been plotted so that the extreme

components are at an equal dis

tance apart, whereas, in reality,
denominators 24, 34, 44, . . . they

As we have excluded ‘IL = O (cf. Chap. IV, § 6
,

p. 238), the only
possible values that lead to n + n’ = 1 are n = 1

, n’ = O
. In this case

the series term is simple. It corresponds to one and only one c-iroular
orb-it.

n + n’ = 2.

Corresponding to the two possible 'resolut~ions o
f 2, namely,

2=2+O and 2=1+1,
the series term that belongs to n + 12,’= 2 ls double. The term (2, O), the
circular orbit, is different from the term 1

,

1
, the elliptic orbit. Their

difference amounts, by eqn. (6), to

(1, 1)

- (2,0) = tg
f

This difference of the two terms corresponds spectroscopically to a line
doublet o

f which the frequency difierenoe is

R*E4 ,
a=§‘j_(;) . . (1)
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n + n’ = 3.

A series term for irhich. n + n’ = 3 is triple, corresponding to the three
possible resolutions

3=3+O=2+1=1+2.
The respective term values (3, 0) circular orbit, (2

,

1
) elliptic orbit o
f

smaller eccentricity, (1, 2
) elliptic orbit o
f greater eccentricity, increase

consecutively. The consecutive term-differences are, by eqn. (6),
~

R112 2 1 E 4 Ra? 3 E 4

(1*2l"2*1)- "?T'(1"‘ 2><z> "*34'"2'

To these there correspond the frequency differences

R 2 E 4 E 4“ At,=

(E
)

. . (8)

in a triplet of lines. Thus the ratio of the line-intervals in such a triplet
of the hydrogen type becomes:

Av15Av2=-1123. . (Sa)
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n + n’ = 4.

A series term with n + n’ = 4 is fourfold, corresponding to the follow
ing four possible urays of resolution:

4=4+0=3+1=2+2=1+3.
The term-value (4, O

) belongs to a circular orbit, the term values (3, 1
),

(2, 2), (1, 3) correspond to elliptic paths o
f increasing eccentricity. The

consecutive term differences, as calculated by means of eqn. (6), come

out as 1

(3,1)-(4,0)=%f.§
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The fourfold value of the term gives rise to a quartet o
f lines with the

following consecutive frequency differences : \

R 2 E 4 2 R 2 E 4 R 2 E 4

T
:

A"*=3'T:'(Z>' ‘”==2"T'l<t>' (9)

Thus the ratio of the line-intervals in such a quartet becomes:

Av12Av2ZAv3=l22Z6. . . . (9a)
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I
n + n = 5.

A series term with n + n’ = 5 is fivefold and gives rise to a quintet of
lines. The consecutive frequency-diflerences in this quintet are in the
proportion :

AVIIAI/2ZAv32Av_,=»}. ):(§-§):({-g)
= 3 10 2 30 l " (10)

and so forth for other series terms.
This enumeration of the various possibilities gives rise to a series of

general laws.

(a) If the multiplicity lies in the first, that is the constant and positive
term of a series [represented in eqn. (5) by (n, n’)], then it repeats itself
without change in all members of the series. We have doublets, triplets,
and so forth, with constant frequerwy diflererwes, with which we are

already familiar in the subsidiary series. The component with the
smallest wave-number corresponds to the circular orbit; those with

increasing wave-numbers correspond to ellipses of increasing eccentricity.
The components of the fine-structure follow one another in the sense of
Fig. 111, if we allow the wave-numbers as usual to grow from left to
right. If we assume that the circular orbit occurs more frequently than
the elliptic orbits and that the elliptic orbits become less probable as the
eccentricity increases (these two assumptions are not true under all

circumstances), then we may expect that the most intense component of
the fine-structure in question will lie on the side of long waves and that the
intensity decreases step by step as we go from the red to the violet end.

(b) If the multiplicity lies in the second term, that is in the variable
negative term [represented in eqn. (5) by (k

,

k')], and if the constant
term of the series is simple (n = 1

, circular orbit), then the multiplicity of
the variable term expresses itself without debasement in the fine-structure
under observation. Corresponding to the denominators k + k’ = 2, 3, 4 . . .,
the first line o

f the series becomes a doublet, the second a triplet, the third

a fourfold line, and so forth. The range of the configuration, as measured
in wave-numbers, decreases as the number increases, on account of the
factor (lc + lc')4 in the denominator of the term. The gradual drawing
together of the fine structure as the series advances, to which we have
just called attention, forms an analogy to the decreasing frequency differ
ences which were observed in the principal series of the elements. The
analogy is certainly not complete, since the elements that exhibit the
ordinary series are not of the hydrogen type. In the case of hydrogen
itself the “principal series" here denoted is the ultra-violet series of
Lyman (cf. the next section).
On account of the negative sign of the variable term the component

corresponding to the circular orbit now lies on the short wave side of the
fine structure. The components follow one another in the reverse sense
to that in (a) and to that in Fig. 111. The succession of lines in Fig. 111,

H
-u
~
. l

fi
l-
d
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as there remarked, gives no picture of the progressive drawing together
of the configuration. If we make the same assumptions about the
intensity of the components as was made in (a), then the intensity
decreases step by step as we go from the violet to the red end.

'
(c
) If both the constant positive term and the variable negative term

are multiple, then in the first place (as energy considerations alone show)
the quantum sum of the negative term must he the greater. If, for
example, the constant term gives us a doublet, then there corresponds to

the variable term, taken alone, a triplet in the first series line, a quartet
in the second, and so forth. We have first to suppose the two multi
plicities to be superposed in such a way that the two lines of the doublet
consist of three components each in the first series number, of four
components each in the second series number, and so forth. In general
the line-configuration (n, n’) — (k, k’

) is composed of (n + n’) (la + k’
)

components, corresponding to the number that was given earlier for the
possible modes of generation of a Balmer line (cf. p. 241). The mutual
distances between the various components bear, according to the above
enumeration, simple rational numerical ratios to one another ; the order o

f

sequence o
f the k + It
’

components o
f the variable term is the reverse (violet

to red) o
f that o
f the components o
f the constant te-rm (red to violet). A

diagrammatic view of this superposition and of the complicated con
figurations that are hereby involved is given in the figures of the next
section.

(d) Whereas we have to compare the hydrogen spectrum with the
ordinary fla/m.e- or arc-spectra, we have in the case of ionised helium the

simplest case of a mark-spectrum of the hydrogen type. The preceding
conclusions are fully applicable in this case, with the scale condition that
the distance between the components, measured in wave-numbers, are

magnified as compared with the hydrogen spectrum b
y

the factor (E/e)‘ = 16.

(e) Bohr has already conceived the possibility of the existence of

spectra of higher orders (in the case of Li+ +
,

cf. p. 224). The factor of

magnification of the fine-structures would amount in this case, and

altogether in that of double ionisation to 34 = 81 in wave-numbers. The
extreme limiting case of these spectra occurs with the Rontgen lines, in

particular with those of the heavy metals. Here fine-structures of macro

scopic size would manifest themselves: §5 of the present chapter is

devoted to such “ coarse structures."

§4. Comparison with Experiment.

The constant term 1/22 of the Balmer series of hydrogen gives rise to

a doublet of constant difference of wave-numbers. The magnitude Av, of
this ditference will serve us as unit measure in what follows. According
to eqn. (7) of the previous section, and since E = e

, it amounts to

R 2 _ _
Av,, =

2
‘: = 0365 cm 1 . (1)

31
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Here we have set 0.2= 5'32 . 10-5 and R = 1'O97 . 105. In calculating
0.2we used the numbers:

8 = 4-77 . 10-1", = . 10-21.‘P
-‘

® C
2

C

Among the results of direct observation we quote those in footnote ’r
.

The difference between the results of observation and the theoretical

value (1) is partly explained by the influence of the variable term (see
below). Concerning the intensity of the two doublet components obser

vation discloses almost without exception that the more intense component
has the longer wave-length, which agrees with our expectations stated
under (0,) in the preceding section. -

Direct observation is rendered difficult owing to the blurred appear
ance of the H-lines (cf. p. 208). This blurred appearance is due to the

heat motion of the emitting H-atoms. As is known from astrophysics,
the spectrum of a star is displaced a little towards the violet or the red,

according as the star is moving towards or from the observer, whereby
the amount of the displacement depends on the ratio of the velocity in
the line of sight to that of light (Doppler effect). What is true of stars
and their spectra also holds of luminescent gases and their spectral lines.
In the latter case, however, we are dealing not with a one-sided displace
ment towards the violet or the red, but with a broadening of the lines in
both directions since velocities in all directions, both towards as well as

away from the observer, occur in a luminescent gas. The magnitude of
these velocities clearly depends on the temperature and the atomic weight
of the gas; the higher the temperature the lower the velocities due to
heat motion, and the greater the atomic weight, the smaller these velo
cities. Thus in the case of the hydrogen atom the heat motion is particu
larly marked, so that, for it

,

we must descend to very low temperatures
(liquid air) to get tolerably sharp lines. The Stark eifect (Chap. V, 4

)
becomes added to this as a further reason for the blurring of the lines.
In the case of hydrogen this causes much stronger resolutions than in
that of other atoms. It is not only produced in artificially imposed fields
but also under the electric influence of neighbouring atoms which distort
the electronic orbits of the emitting atom.
But there is an imlirect method o

f observation that has been pursued

b
y Paschen (see below). In it the value of Av, is deduced from the fine

*These measurements and others quoted are from Gehrcke and Lau, Physikal.
Zeitechn, 21, 634 (1920). Concerning the results of measurement, cf. also Ann. d.
Phys., 65, 564 (1921).

AA Av

+ Michelson . . . Ha 0-14 A 0'32 cm. ~ 1

1! ' ' ' ‘ 0'08 n n
Fabry and Buisson . . H; 0-132 ,, 0'306 .,
Meissner and Paschen . . Ha 0-124 ,, 0-288 ,,
Gehrcke and Lau . . . H, 0-117 ,, 0-272 n
.. .. .. - - - H5 0067,. (T233 .

n n as - HY 005101 n
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structure of the lines of a more favourable atom (He+). Paschen gets,
as already quoted on p. 209,

Av" = O'3645 i (T0045 cm.".
This value agrees fully with the theoretical value (1). This clears up
qualitatively and quantitatively what previously appeared mysterious in the

hydrogen doublet.

In the Balmer series the multiplicity of the second variable term be
comes superposed, according to theory, cf. (c), on the doublet due to the
constant term. Consequently the two doublet components on their part
consist of a triplet at H,,, of a quartet at H5, of a quintet at H7, and so
forth. The intensity of this finer and narrower configuration, expressed
crudely (cf. below), decreases towards the red, that is in the reverse
direction to that of the doublet components, on account of the negative
sign of the second term [cf. the previous section under (b)]. We may
call the weaker lines of these triplets, quartets, and so forth, “ satellites

”

of the doublet lines, provided that we bear in mind that the difference

between satellites and true lines is merely arbitrary. It is just our fine
structures that show that the "satellites" that result from the second

term form an organic whole with the “lines” of the first term.
1 1.-i/»_-‘ ,:_/\__\

}*<——- "1' Li

l

2.1‘
1] I H

at
F“ wt".

'
‘Ha Eti -»._. ~| 1 I ?._4

n b n c h 1 c b 1 e I n

Fro. 112 a. F10. 112 b.

We now proceed to analyse Figs. 112 a and 113 a which are illustrative
of H, and H5. The wave-numbers are plotted as increasing towards the
right. The length of the lines is at the same time to denote their in
tensity. VVe remark at the outset that almost all data that spectro
scopists give about intensity are more or less rough estimates. Our
theoretical rule, too, on page 247, which we derived from the repeated
occurrence of the same orbit in spatial quantising and which we shall
apply in what follows, does not claim to be much more. We shall make
the relative intensities in a doublet decrease in the ratio 2 : I, in a triplet
3 :2 : 1, in a quartet 4 :3 :2 : 1, in the order of the circular orbit to the
increasingly eccentric elliptic orbits. We shall see presently that this
rule of intensity will have to be modified very considerably on account of
the Principle of Selection and the Principle of Correspondence, and that
it claims a certain validity only in the limiting case of electric currents
of great density.

The following convention is found to be useful to denote briefly the

origin of theiindividual lines. Let us call the multiplicities of the first
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term I, II (or I, II, III, . . . , if the first term is not a doublet as in the
Balmer series, but gives rise to a higher multiplicity), and the multipli
cities of the second term a, b, c . . . ,—both sequences being numbered
in the order of decreasing intensities. Thus the I, II, . . . follow one
another in the direction red to violet, and the a, b, c, . . . follow one
another, on account of the reverse sign of the second term, in the direction
violet to red.

Concerning details, the following is to be remarked. For Hm Fig. 112 a,
where

v = (n, n’
) - (l
s, k’

'

\_
»
/—
’§
\

P
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+
+
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‘:
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ll

the principal line in the line-group I corresponds to the transition from
the circle (3, 0) to the circle (2, O); its intensity has been set equal to 1.

The “satellites” that immediately link up on the left then correspond to

the transition from an initial ellipse to the circle 2
,

O and form together

with the principal line the characteristic triplet with the interval ratio

Av, IA;/2 = 1 :3 [cf. eqn. (8a) of the preceding section]. In accordance
with our above rule the intensities of these satellities have been plotted as

2/3 and 1/3. In the line group II the principal line of Fig, 112 a corre
sponds to the transition from the circle (3, O

) to the ellipse (1, 1). In
accordance with our rule of intensity it has been drawn with the length

1/2. Two lines associate themselves with it on the left; they corre

spond to the transition from one ellipse to another, and their intensities

decrease from 2/6 to 1/6.
The hydrogen doublet Av, occurs in the figure three times, each

between components bearing the same symbol, namely, aa, bb, cc. The
line-intervals Av, and Av._, of the hydrogen triplet are expressed by eqns.

(8) of the previous section in terms of Av,, as follows [cf. also (1) of this

section]:

1 R2 1 2* 8

Av, =

Q

=

Q .3_,Av,,= 81.»/,,
. . (3)

_3 Ra‘*_3 24 _ 8

Av2
34 -Q .3-4Av,,- 27A|,,

I l V_n_ ,_m
1.-— E —-1'.._.y

n

4%
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e t tr a t bu 4 ¢ ha ° = *1

F10. 113 a. F10. 118 b
.

Analogous results hold for Fig. 113a which corresponds to the
line H3
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The principal line of the line-group I, the transition from the circle
(4, O

) to the circle (2, O), has been drawn with the length 1
. There is

linked up with it on the left the characteristic quartet with the interval
ratios Av, : Av._. : A1/3 = 1 : 2 : 6 [cf. eqn. (9a) of the preceding section] the
hypothetical intensity ratios being 4 : 3 : 2 : 1. The same group gives the
line-group II, displaced by an amount Av, to the right as a whole. The
principal line of the latter corresponds to the transition from the circle

(4, 0
) to the ellipse (1, 1) and has the intensity 1/2 in our figure. The

frequency differences of the quartet are, by eqn. (9) of the preceding
section, expressed as follows in terms of Av“!

1 Rn.” 1 2‘ 1 1

Avl=§.-4T==-3.;1Av,,=;1-8.Ai/H:
,_2Rt*_22+, _1,l

4

AV2—§.T—§.4*AV“—2—‘£-.AI"\>

.

R” 2* 1

A1/3=2.T‘:=2.44Avn=§.Av"J|

We now apply the p'r1'nciple o
f selection (cf. Chap. V, § 2) and pass on

from Figs. 112 a
,

and 113 a to Figs. 112 b and 113 b. In the case in which
no external field is present the principle of selection limits the transitions

of the azimuthal quantum number to 1 1
, but imposes no restriction on

the transitions of the radial quantum number. Let us test its action in

detail for Ha and H5.
In the following table the quantum numbers n, n

’

of the final orbit,

which are compatible with the quantum sum n + n’ = 2
,

stand on the

left, and the quantum numbers k, k’ of the initial orbit, into which the

quantum sum k + k’ = 3 may be resolved stand on the right.

TABLE 49.

7 l

—

11/ 11.

l

I: k’

I O 2

<‘—<-

3 O a

-II 1 1 <-~< 2 1 b

1 2 c

The arrows mark the transitions for which k increases or decreases b
y

1
, that is those which are alone allowed by the principle of selection.

These are the transitions I a, I 0, and II b. The transitions II a, I b, and
II c, in which k would jump by two units or would remain unaltered are
forbidden. Thus, of the six lines of Fig. 112 a only three are left; the

omitted lines are dotted in Fig. 112 b.

For Hp (k + la
’

= 4
, n + n’ = 2
) the corresponding scheme is as

follows :
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TABLE 50.

n It

lit?-J
I

I
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e
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Here the transitions I b, I d, as well as II c, are possible. On the other
hand the transition I a (circular orbit to circular orbit, that is, according
to our provisional rule of intensity, the strongest line that is to be ex

pected) is forbidden by our principle of selection; likewise the lines

I c, II a, II b, and II d, because they would entail a change of the azimuthal
quantum number by two, three, or no units. In Fig. 113 b the corre
sponding lines have been dotted. Thus H; does not consist of 2 . 4 = 8

components but, just like Hm, only of 3
. The same number of real com

ponents is also left, as may easily be counted, in the case of the lines

H7, H5, . . . as the number of unreal components, that is those forbidden
by the principle of selection, increases.
Hence in advancing along the Balmer series there is no increase in

the number of components of fine structure, but all members have the
same number of components, namely 3

. On the other hand we know
that in the Stark effect, that is

,

under the influence of an electric field, the
number of components increases rapidly with the order-number of the
member. It is in agreement with this that our principle of selection, as
we saw in Chapter V, § 3

,

page 273, is invalidated. For the first effect of
an electric field consists in this, that the components that would have the
intensity zero according to the principle of selection for “free fields,"
occur with weak intensity; it is only when the field grows still further
that perceptible resolution and superposition of the components occur.
Our Figs. 112 a and 113 a for H, and Hp are thus not without physical
meaning: they represent that appearance o

f the pictures o
f the fine

structure which appears in a tube o
f intense electrical excitation (con

densed current density), as the first indication o
f an incipient Stark effect.

We shall presently discuss to what extent the intensities marked in the
figures are trustworthy in the case of the He+-lines, which are more
readily observed, and how the electric fields that are acting are determined
in a given case.
From Figs. 112 b and 113 b we also read the reason why the observed

hydrogen doublet of the Balmer series must lag a little behind the ideal
hydrogen doublet. The ideal hydrogen doublet denotes the distance
between lines bearing the same names, as aa, bb, and so forth. In the
actual measurenent, however, the adjustment would be made for the
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ma.rimum* point of intensity of the line-group I and then we should
measure from this point to the individual line to which the line-group II
reduces itself. The arrow that has been determined in this way (stretch
ing from I a to II b in Fig. 112 b, and from I b to II c in Fig. 113 b)
hereby comes out smaller than Av".
The ideal hydrogen doublet would be measured correctly only in the

limit when we get to high members of the Balmer series (H5, H,, . . .)
,

where the fine-structure due to the second term becomes continually
narrower and the line-groups I and II contract more and more into the
pure doublet of the first term.
In the case of hydrogen we have also become acquainted with the

ultra-violet Lyman series and the infra-red Paschen series (cf. p. 207),
namely:

1 1 1 1 .

v =
R<1é

—

kg
), and v =

RG32
~

W
), respectively.

In the former, the ultra-violet series, the first term is simple, the

second is la-fold. The scheme of the possible fine-structures of its lines is

represented by the rows of Fig. 111 from the second onwards, but with
the right and left sides exchanged, on account of the negative sign of the
second term, which conditions the fine-structure. But according to the

principle of selection in the case of free fields, these possible fine-structures
cannot occur. Rather, only one component of the fine-structure remains

preserved in each series member, namely that component in_which the
azimuthal quantum number jumps from 2 to 1. As a consequence o

f the

principle o
f selection the Lyman series consists o
f strictly simple lines.

The possible multiplicity of its lines, as represented b
y Fig. 111, can

become visible only in Strong electric fields. In the ground-line of the
Lyman series, A = 12163 (cf. p. 207) the only component that is possible
in a free field corresponds, according to the principle of selection, to the
transition from the second Bohr circle (2,0) to the first Bohr circle (1, O).
In all the other members of the Lyman series, it corresponds to the
transition from the elliptic orbit with the quantum number 2 to the first
Bohr circle.
In the infra-red series, on the other hand, the kl“ member would

consist of 3k components if no account were taken of the principle of
selection. The principle of selection reduces this number to 5, as we shall

presently see in the case of the analogous He+-series.
Of the two influences of relativistic mechanics on the hydrogen lines,

the “ relativity correction for circular orbits" and the “ resolution
"
(cf.

" This does not difier perceptibly from the centre of gravity of intensity. For in
the case of the long wave group of hydrogen, which consists of two components, the
satellite (or minor line) is extremely weak compared with the principal line, according
to calculations by Kramers (p. 491), if the fields are sufiiciently weak; the result is

that the centre of gravity of both becomes identical with the principal line. The
conditions have been tested again very carefully in detail by R. T. Birge, Phys. Rev.,
17, 589 (1921).
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p. 476), the former is much less accessible experimentally than the
latter which we have just discussed, because it entails very exact absolute
measurements. It may therefore suffice to state that in the Balmer series :
1. Very slight deviations from the formula

1 1
" =
R<2*-’

I

have already been occasionally observed earlier, and

2. That these deviations, according to a paper by Paschen, which we
shall presently quote, are of the order of magnitude of our relativity
correction R412/64 required by theory and bear the correct sign (cf. 476),
withE=e,n+n'=2.
We now arrive at the true test of our theory, the spectra of ionised

helium. They have been photographed by Paschen* and interpreted
in close connexion with the theory of the present author, which was
conceived about the same time and found its certain support in Paschen's
discoveries.

\Vhy are the spectra of He+ more favourable for our purpose than
those of H ‘Z Both are to the same extent simple and theoretically clear;
both are produced by one electron and one nucleus. But the He
lines are sharper than the H-lines. The He-atom is four times as heavy
as the H-atom ; hence its lines are much less broadened by the Doppler
effect of the heat motion. Besides this, the He-nucleus is twice as heavily
charged as the H-nucleus, and therefore its lines will be less influenced
by the Stark efi'ect. Nevertheless the separation of the components is
only partly successful even in the case of He, and demands spectroscopic
resolution that is very difiicult to obtain.
Our first concern is with the so-called “ principle series of hydrogen

"

(cf. Chap. IV, § 2, p. 208), whose formula is (i
f we discard all relativistic

refinements) 1

‘

1 1 _ _
|»_4R(32-kl),

1._4,5,s,... . . (5)

To them there belong the lines (more exactly the line-groups) :

It = 5 6 7 8

A = I 3203 2733 2511 2385

They constitute series that arise by translating the infra-red series into
the violet by multiplying by the factor 4.
The line-group A = 4686 (initial orbit fourfold), final orbit three

fold) consists virtually of 4.3 = 12 components. The first term of its
series representation (5) gives rise to a triplet, I, II, III with the charac
teristic intervals A1/12Av._, = 1:3; the second produces a quadruplet

¢
_z
.,

b
,

0
, cl with the sequence of lines reversed and with the intervals

AI/11A!/ZIAI/3 = 12226.
' Bohfs Heliuml-inien, Ann. d. Phys., 50, 901 (1916).
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Fig. 114 ct shows in its upper row the mutual theoretical position of the
12 components. The component II d of the quartet II overlaps quartet
I. All component intervals are expressed rationally in terms of the
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FIG. 114 a.—-Spark discharge, Ir : 4.

constant of fine-structure <12and are therefore also rational multiples of

the hydrogen doublet Av“. For example, by eqn. (8) on p. 479 and eqn.

(1) on p. 481 we get in wave-numbers:

(IIa-Ia.)=(IIb-Ib) = .. . = 8(§')4Av",
(III a — II a) = (III b - II b) = . . . = 24(§)4Av".

Further, by eqn. (9) on p. 479 and eqn. (1) on p. 481 :

(Ic - Id) = (IIc — II d) = .. . = 32(-';')*Av",
and so forth.
For the sake of comparison we give in the lowest row of Fig. 114 a

the experimental picture which is oflered when there is a strong spark
discharge (great density of current). Starting from the right we see that
in the group III the neighbouring components ab have fused together
and the lines c and d appear separate. In this representation the width
and height of the rectangles indicate the width and intensity of the
observed lines. The lines a and b are also fused together in the groups
II and I, but the line I ab comes out more strongly than the line II ab
just as in our theoretical picture. The weak line II c appears coincident
with I ab in the picture. The line I c is not separated from II d.
Thus we have a striking confirmation of the theory. We almost

have a visual picture of the manifold orbits of the electron circulating
around the He-nucleus, and we find their twelve combinations represented
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exactly in the intervals of the observed partial lines. It is, indeed, just
this picture that, on account of its wonderful completeness, served
Paschen as a means of calculating the ideal hydrogen doublet.
To give an idea of the experimental difliculty of taking and measuring

these photographs we call attention to the scale of wave-lengths attached
to the figures, according to which the interval between the extreme lines
III a and I d does not even amount to 0'8
The picture assumed a different appearance when an ordinary direct

current was used to excite the He-tube instead of the strong spark dis

charge; it is different as regards intensities, but not as regards the posi
tion of the lines. The position of the lines is unambiguously determined

by the theory, which, however, made ‘only conditional statements about
the intensities and possible omission of lines.
If only a weak discharge passes through the tube then the principle

of selection holds. This principle allows only those transitions for which

Ik — n} = 1. They are denoted by arrows in the following scheme :—

TABLE 51

n’ n k lo’

I 0 3 é’ 4 0 a

II 1 2 3 1
'
b

III 2 1 2 2 c

1 3 d

Three lines of the quartet III drop out. They are those corresponding
to the transition from k = 4, 3, and 1, to n = 1. In each of the quartets
II and I, two of the lines are suppressed by the principle of selection,
namely, those that correspond to the transitions from lc = 4 and k = 2
to n = 2, and from h = 3, k = 1 to n = 3, respectively. The lines in

question have been drawn as dotted lines in Fig. 114 b. Thus, of the
3.4 = 12 components of the line-group, only 5 real ones remain.
The lower part of Fig. 114 b, which is by Paschen, now shows that

in actual fact the lines III ab which we have dotted are wanting in the
picture due to a direct current, but that, on the other hand, the lines
III d and I d which we were also compelled to dot are actually present,
even if only as weak lines. According to the above we have actually to

recognise in this an incipient Stark effect and a transgression of the

principle of selection. Thus our picture for the direct current shows
convincing agreement with theory as far as the posit-ion of the lines is
concerned.

Concerning the intensities the theory must be considerably deepened
before we can talk. of comparing it with the results of observation. In
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any case our crude rule of intensity is contradicted by experience.
\Vhereas, according to this rule, the component II b should be weaker
than I a, II b is in reality the strongest component. The necessary
deepening of the theory, here too, is effected by the Principle of Cor
respondence (Note 10). Kramers* finds perfectly satisfactory agree
ment between Paschen’s direct current photographs and the intensities
calculated according to the principle of correspondence, and explains
why the components III d and I ri do not vanish. He concludes that in
the case of Paschen's direct current photographs an (unintended) field of
about 100 volt/cm. was probably acting, and in that of Paschen's spark
photographs one of about 300 volt/cm.
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Flo. 114 b.—Continuous current, Ir = 4.

In view of the far-reaching importance of the fine structure of

A = 4686, we are happy to be allowed to reproduce for the first time the
photometric measurements in Fig. 115, which Mr. Paschen has kindly
placed at our disposal. They are from two original plates taken in the
third order. We took them into account in Figs. 114 a and b in repre
senting the visual impression. Here they are represented objectively by
the galvanometric deflexions of a thermo-electric photometer. The in
dividual photometric observations are ma.rked by C) and x in the case
of the direct current and the spark, respectively. In place of the rec
tangles drawn above we now see continuous curves expressing the

blackening of the plate with well-defined maxima. The fact that the

components III a, b are wanting in the direct current curve, in accord
ance with the principle of selection, and that the components II are pro
In the dissertation quoted on page 27.5, and in particular page 374 and the foot

note to page 372.
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nounced in comparison with the components I comes out particularly
clearly in this curve representation. In general we see that the difi"er
ences between the two diagrams and in what theory leads us to expect
are only differences in intensity.

In series (5) we pass on
fl to the line group

A = 3203,

.. . _ 1 1

U

V — '-

5
1
).

It consists theoretically of

a combination of a triplet

>

with a quintet, in the first

place, and has thus 15 com

ponents in all. The quintet
‘N

. (on account of the denomi

.

' nator 54) is contracted more

1
,’

U
than the previous quartet.

m

That is why the quintets

. I and II hardly overlap
"

any more. If, however, weU

" apply our principle of selec

I ~ tion and draw up a table

H analogous to Table 51, we

.

/\
A see that here, just as in the

H

if case of A = 4686 (and in

‘ that of the remaining mem
bers of the series), only five

H

real components remain.

A g
o

ha 0 b A A C b Q

In the experimental picture

__‘I__7J if] (direct current diagram) of

A :_,,',S5.2 510 5:8 5:6 534 5;2 _,)_-0 Fig. 116, III d and IIc are
Fm_115_

measured separately, and
II c is measured as the

strongest component; the other three components II e, I b, I (I are
fused together. Besides this, the components III e and I c occur as
very weak lines; they should be wanting, according to the principle of
selection, and have been produced by the action of an unintended electric
field. Here, too, our rule of intensity is in conflict with the results of

observation and has to be deepened by means of the principle of

correspondence.

The experimental picture for direct currents becomes particularly
simple in the case of the next group of lines

A = 2733, V = -
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Here the sextet of the second term. is already so contracted that in

observation it appears unresolved everywhere. Accordingly, Fig. 117
exhibits the pure triplet of the first term with the characteristic interval
ratio 1 : 3.
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FIG. 116.—Continuous current k — 5., ._.

Paschen has also investigated the second of the He+-series mentioned
on page 207, the “Pickering series,” erroneously called the “II sub
sidiary series of hydrogen," namely,

1 1

'

t=¢R(;,-/5,) t=5,e,7...

On account of the first term the fine structure is a quartet with the
interval-ratios 1:216. The much narrower multiplicity (due to the
second term could not be re

solved. The first three lines

of the quartet also coincided,

forming a blurred component.
In addition to the latter,
however, the fourth line of
the quartet, which is not so
close, could in most cases be

measured as a weak com

ponent on the violet side of
the spectrum. The measure

i 0

A4?

L

IE

E I

I‘ adcln
--.u

"NJ IMJ
ments yielded Values cone" Fm. 117.-Continuous current, I: = 6.

sponding fully with the pre
diction of theory. The wave-lengths of the principal lines of this
series have already been noted, as given by Paschen's measurements, in
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Table 25 on page 223, and have been placed alongside the neighbouring
Balmer lines.
As Bohr remarks, it was a piece of good fortune for the development

of spectral theory that the principle of selection did not come out ac

curately valid in Paschen's direct current photographs and that it was put
quite out of action in Paschen's spark photographs. It is just the weak
components forbidden by the principle of selection that enabled Paschen
to use his photographs to confirm the postulates of the theory which the

present author originally set up without being aware of the principle of
selection. The development of spectral theory would probably have
been delayed for years if Paschen’s photographs had corresponded to the
ideal conditions of a free field.

Merely in passing we call attention to the comparison of hydrogen
spectra with spectra that are not of the hydrogen type in Chapter VI, § 2.
In the accompanying Fig. 86 we have depicted the various energy levels
of sodium and have compared them with those of hydrogen by attaching
the letters Hm H5, \Vhereas we formerly said that in the transition
to hydrogen the difierences of the energy-levels become straightened out
within each step, we may now say that indications of these differences
remain preserved even in the case of hydrogen in the fine structure of its
lines in such a way that the energy-levels become distinctly diminished
but that their number remains exactly the same.

Corresponding to this, the number of times that the Balmer lines

Hm Hp, H, occurred in the Scheme II on page 336 agrees exactly with
the number 3 of the components of the fine structure, which we have
now derived for the Balmer_lines under the conditions of free fields.

Linking up H, with the three-term expressions 2
1
) — 3d, 2])

— 3s, 2s — 3p,

as we did earlier, signifies just the same as now drawing the three
arrows for the transitions of the azimuthal quantum number 3 -> 2

,

1 -> 2, 2 -> 1 in Table 49. The same applies to the infra-red hydrogen
lines labelled “ Paschen-Ritz

" in the earlier scheme or to the He+
lines labelled “Fowler,” of which the most important representative is

A = 4686. In accordance with the earlier scheme we have allocated
them to the five-term expressions 3d — 4b, 3d — 4p, 3p - 4d, 3p — 4s,
3s — 4p ; the five arrows in our present Table 51 correspond to them in
turn. The ground of this complete parallelism is clearly to be found in
the principle of selection for the azimuthal quantum number that holds
for the spectra which are not of the hydrogen type in just the same way
as for the fine structures.

But we infer, further, that the fine structures o
f the hydrogen spectra

do not correspond to the doublet or triplet structures o
f the spectra which

are mt o
f the hydrogen type, but to their various series. Hydrogen ex

hibits no analogy to the doublet structure of the lines of the alkalies or
the triplet structure of the lines of the alkaline earths. Conversely, the

existence of the hydrogen doublet in Balmer’s series denotes that in th8
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language of spectra which are not of the hydrogen type we may interpret
the term R2/2 equally well as the term 27) or the term 2s.
This fundamental comparison entails important consequences affect

ing the view of the Zeeman eflect. The doublet-triplet structures, as we
know, are caused to contract by a strong magnetic field ; their anomalous
Zeeman eifect becomes changed through the Paschen-Back transforma
tion into the normal effect. Is the same result to be expected in the case
of the fine structures of hydrogen? No; indeed, just as two acci
dentally neighbouring lines, for example, an H.S. line and a N.S. line,
in a spectrum that is not of the hydrogen type do not alfect each other

magnetically, no more do we expect two fine-structure components of

hydrogen to disturb each other magnetically. Just as the Zeeman
effects of the former lines simply become superposed and in given cases

interpenetrate each other, so must the normal triplets of the hydrogen
components simply become added without interfering with each other.
When the author investigated the Zeeman effect of hydrogen from

the point of view of relativity in 1916,* he compressed the result into the

sentence: “ The Zeeman elfect is not influenced by the fine structure,"

and he imagined that he had to regard this as a contradiction to observa

tion. For Paschen and Back had found certain polarisation anomalies
to occur in hydrogen,1“ which they claimed to be a direct consequence of

the strong magnetic fields that were applied. But nowadays we are

convinced that these anomalies are to be ascribed to the influence of the

electric field in the tube. As a matter of fact, Hansen and Jacobsen 1
have conducted very careful measurements of the Zeeman effect for the

He+-line A = 4686, reducing the subsidiary electrical influences as far as

possible, and they succeeded in establishing that the Zeeman effect then

essentially looks normal and, at any rate, manifests no similarity with the

Paschen-Back effect. This important result gives the final touch to our

knowledge of the Zeeman efiect of hydrogen and allows us to assert the

following:
When the Balmer lines are resolved magnetically each of the three com

ponents of the fine structure passes orer into a normal triplet ; the resultant

nine comporwnts become superposed and tnterpenetrate without disturbing

one another. We have already dealt with the position of the correspond

ing orbital planes on page 302. Of the four transitions that are not

bracketed in Table 35 the last two are equal as regards energy and thus

coincide§ in observation.
The circumstances are somewhat diflerent in the Stark eflect for

" Physikal. Zeitschr., 17, 502 (1916). The whole influence of relativity consists in
a very minute increase of the normal resolution of the order of the fine structure
constant 41.“,which we may pass by as being unobservable here.
1 Ann. d. Phys., 40, 9bO (1913). Cf. also F. Croze, Compt. rend., 15-1, 1410 (I912);

155, 1001 (1912); 157, 1061 (1913)
: Kopenhagener Akademie, 1921 ; Mathem.-phys. Mitteilungen, III, p. 11.
§ Namely the transitions 012 -—>002 and 021 ._>011.
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hydrogen. We may compare the ordinary Stark effect with the Paschen
Back effect since it represents a simplified type which comes about only
under the influence of strong fields (see p. 388 concerning the definition
of “ stro'ng

"
and “ weak"). On the other hand, the Stark effect for weak

fields, the theory of which has been evolved by Kramers (cf. the quota
tion on p. 285), links up with the fine structure of the hydrogen lines,
and represents, as it were, an anomalous Stark effect, the ground of
which lies in the original complicated line structure. Hence when the
electric field increases no pure superposition occurs in this case, but
the resolved components of fine-structure influence one another mutually
and become simplified to the normal type of the Stark effect. The
reason for this contrary behaviour is clearly the entirely different action
of magnetic fields and electric fields. In the case of the magnetic field
there is a mere precession of the original Kepler orbit; in that of the
electric field these orbits are deformed.

§5- Regular and Irregular Doublets of the X-ray Spectra

From the minute hydrogen doublet a direct road leads, passing
through the fine-structure lines of ionised helium, to the doublets of the
X-ray spectra (cf. the conclusion of § 3 of this chapter). The hydrogen
doublet is produced in the field of a singly charged nucleus: the line
structure of He+ is produced in the neighbourhood of a doubly charged
nucleus. The Rontgen spectra emerge from the interior of the atom, and
hence originate in the field of a highly charged atomic nucleus. The
magnification factor of the fine structure in the case of He+ as compared
with the hydrogen doublet amounts, in wave-numbers, to 2*. But in the
case of X-ray spectra of an element whose atomic number is Z it in
creases to Z4 (we assert this with due reservations for later when we

give more accurate data). For Z = 92 (Uranium), this gives

92" = 7'2. 107,

that is, a. -magnificat'i0n* of seventy millions in comparison with the
doublet of H !
We become familiar with the detailed data of observation in Chapter
III, § 6. Above all, we shall deal with the L-series. The “ L-doublet ”
occurs between the lines (a',B), (7/3). Iu the case of the heavier elements
the line-pairs (eq), Q6), (u<) become added. The interpretation of this
constant doublet difference was contained in Table 12, page 159; all

* This statement refers to the frequency difierence Av. On the other hand, the wave
length di_fi'erence A). is essentially independent of Z (cf. p. 161). Since the spectrometer
measures the ratio of the wave-length A to the constant cl of the crystal lattice (cf.
eqn. (3) on p. 129), the accuracy of the fine-structure measurements is practically the
same for all the atomic numbers Z. The fact that the fine structures in the Rontgen
region may be measured with much greater ease and certainty than those in the visible
region is not due to the greater value of Av, but to the much smaller value of d, that is
to the much finer lattice which may now be used, thanks to the smallness of the wave
lengths.
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lines of the L-series start from various initial states and are directed to the
L-shell. But the energy level of the latter is double; it consists of an

upper L,-level and a lower L3-level situated beneath it. (We shall treat
of the L3-level later.) The difference of level between L1 and L2
determines the L-doublet.
We are now able to expose the reason for the difference of the
L,- and the L2-level. The K-shell belongs to the quantum number 1 and
is therefore single. The L-shell has the quantum sum 2 and is therefore
double. For the present we shall argue as if the L-shell were not
multiply occupied, and shall therefore talk only of one electron, which
describes the “ L-orbit." Now the L-orbit is either a circle (2, O) (azi
muthal quantum number 2, radial quantum number (0) or an ellipse
(1, 1) (azimuthal and radial quantum number 1). The energy of the
elliptic orbit is greater (i

f we discard the sign), but less if we take the sign
into account, than the energy of the circular orbit, by an amount that is

due to the relativistic increase of mass. Accordingly the lower level L2

belongs to the elliptic orbit, and the higher level L1 to the circular orbit.
If we regard the circular orbit as the more frequent (more probable) one,
then we have to expect that the lines that end in the higher level L1, that

is those of longer wave-length, are more intense; and this agrees with
observation.

We pass on from the energy W of the L-orbit to the “term
" — W/It.

The “ L-term ” is common to all lines of the L-series, and, corresponding
to the levels L1 and L2, occurs in two forms, as the

“ L,-term
”
and as the

“
L2-term." It is the positive and first term of the L-series. Hence our
statements about the constancy of the L-doublet and about the relative
intensities of its components are therefore particular applications of the

general assertions in § 3a.
The quantitative representation of the L,- and the L2-term is given

by eqn. (6a) on page 477 with all necessary accuracy. We have there
to set n = 2

, n’ = O
, for the Ll-term, n = n’ = 1 for the L2-term and

we get:
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Our representation of the L-doublet is fully determined and expressed
rationally by the fine-structure constant <1”= 5'3 . 10"" by the Rydberg
32
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frequency R = Rm (i
t is clear that we may discard the accompanying

motion of the nucleus in the case of the heavier elements), and by the
nuclear charge E. We must now first become clear about the latter.
It would suggest itself to us first to set E/e equal to the “true

nuclear number,” that is, to the atomic number Z of the atom. ‘Vs
know, however, that there is a K-shell within the L-orbit, and that the
electrons of this K-shell screen ofl' the nuclear charge. In addition, the
L-shell is also multiply occupied and its electrons will also act so as to
tend to screen ofl' the true nuclear charge. Hence, 111place of the “true
nuclear charge," We get an “ effective nuclear charge

" which is smaller
than Z. \Ve set

F

-e=Z s . . . . . (3)

As we are not able to calculate the “ screen number" s * from theory, we

get its value from observations, thus we include it as a parameter which

is at our disposal. To give us a first general idea we moreover cancel
the higher relativistic terms in (2) and hence write

B2
Avl_=Tl:(Z—s)4 . . . (4)

This is the theoretical formula that has been transposed from hydrogen

(or semi-theoretical, since we introduce the parameter s) to a first rough
approximation. We compare it with the empirical formula that we
evolved at the end of § 6; namely, the eqn. (4) of Chapter III,

A 5-3.10-5 -
£=T(Z—3'0)4. . . .(5)

These two formulae agree not only in their general form but also -in their
numerical ralue. We recognise in this a first confirmation of the
quantum and the relativistic view of the L-doublet by the results of
observation, and, further, we read from it the empirical value 3'5 for our
screen number s.

Eqn. (5) once again refers us to the law of the approximate constancy
of A/\, which served, as in Chapter III, page 161 to recognise doublet
lines that belong together. From our present point of view this law is

clearly proved by the fact that Av is proportional to the fourth power of
the atomic number, that v varies with the square of the atomic number,
in the manner indicated by Moseley, and that

AA = Al’2.V

The constancy of AA which is not exactly true but only approximate
then follows among other things from the fact that the screen constants
in Av and v need not be equal (cf. p. 509).

’ We have chosen the letter s in view of Chap. II, p. 74.
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Eqn. (4) assumes a still more interesting form, if we introduce into it
the value of the hydrogen doublet from eqn. (1) on page 481:

Ra2
AV“ ="

Eqn. (4) then becomes
Av,_= Av,,(Z — s)‘ . . . . (6)

We illustrate its content by means of Table 52 and Fig. 118. In the
first column of Table 52 we have a selection of the values of Av,_/ R for steps
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of three units on the average; they link up with Table 15. In the second
column we have the values of A1/L itself, in the third those of Av", as they
come out by eqn. (6), that is by dividing by (Z — s)*. VVhereas the

TABLE 52

Z AYL/R: AIIL Av“

41 Nb 6-89 7-56 . 105 0-382
44 Ru 9-49 1-041 . 10“ 0-387
47 Ag 12-69 1-393 . 10“ 0-389
50 Sn 16-73 1-836 . 10“ 0-393
53 J 21-71 2-382 . 10" 0-397
56 Ba 27-70 3-040 - 10” 0-400
59 Pr 35-03 3-844 . 10" 0-405
62 Sm 43-95 4-823 . 10" 0-412
65 Tb 54-38 5-968 . 10° 0-417
68 Er 66-85 7-336 . 10“ 0-424
71 Cp 82-5 9-05 . 10° 0-436
74 W 98-54 1-0813 . 107 0-438
77 Ir 118-G4 1-3019 . 107 0-446
79 Au 133-80 1-4683 . 107 0-452
81 Tl 150-49 1-6514 . 107 0-458
83 Bi 169-73 1-8626 . 107 0-406
90 Th 250-86 2-7529 . 107 0-492
92 U 278-71 3-0585 . 107 0-499
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Av,_'s change by two powers of IO in the course of the table, the values of

Av“ remain appreciably constant. The slight increase that is still
manifest in the last column may be interpreted quite naturally and is
directly postulated by the higher members due to relativity which were
provided for in eqn. (2) but cancelled in eqn. (6). This advance becomes
more apparent in Fig. 118. Here the values of Av“, calculated accord

ing to eqn. (6), have been plotted as ordinates against the abscissa Z.
\Ve see how the interpolated curve drawn through these points ap
proaches a constant limit for small values of Z ; this agrees excellently
with our ideal hydrogen doublet

Av" = 0'36-5 cm-1.

Thus the fact of the existence of the fine-structure may be followed
through the whole system of elements, from hydrogen to uranium. The
L-doublet appears as a gigantic magnification of the hydrogen doublet.
But we wish to pursue the quantitative statement of the L-doublet to

its final issue, that is, we shall not stop at the first approximation, but
shall also take into account the higher corrections due to relativity.
This will at the same time give us a criterion for the accuracy of our
value 3'5 for s, the screen constant, and we can convince ourselves that
for the whole series of elements the L-doublet is accurately represented,
within the limits of errors of observation, by our relativistic formula.
We may proceed by calculating the value of E/e = Z - s separately

for each element from formula (2). Thus we start from

2 '2 ‘ -I

%'=;,(z - s)+(1 +
-

S
)” + 5:342
- S)-*+. . . (7)

and after multiplying by 24/(1.2 we get the square root by using the
binomial expansion. In this way we get

2*
_

5a'~' 81 a"l

M/~il‘%Y=

(z -
s)”(1

+ ;@(z - s)
” + 322,(z - 5-)* + . . (s)

We eliminate the member (Z — s)‘ out of (7) and (8) b
y forming

22 K 5A 19 4

11-‘/T€'_T%l'.=(Z—s)2(1—3§;,(Z—s)‘+...) . . (9)

We may, without having scruples, use the first approximation obtained
in (4) for the corrective member on the right. We then get

(Z-8)‘-*=(f(/21;"-5%")(1 +%g.e%-Y) . . (10)

The formula thus obtained denotes the inverse of eqn. (2) as given by a

logical approximation.
It is treated numerically in Table 53. The first column repeats the

values of Av/R = LB - La’ contained in Table 15. The second column
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gives the values of Z - s, as calculated from eqn. (10), whereby the value
5"315.1O-5 (cf. § 7) was set for 71*. In the third column we have the
resulting values of the screen number 3 itself. The mean of all the

values of s is
,

in round numbers,

s = 3'50.

As we see, the individual values of s fluctuate without regularity about
the mean value. We cannot avoid concluding from this that the structure

o
f the atom within the whole sequence from Z = 41 to Z = 92 has a untfo-rm

design -in its innermost parts and follows the same gene-ml plan. In view
of the addition of new shells in the outer part of the atom, and, in certain
cases, their rearrangement at certain points of the periodic system (rare
earths and so forth, cf. p. 108) this uniformity is by no means an obvious

necessity.

Mean: s = 3-492.

Tasmsx 58.

Z Av/R Z-s s Z Av/R Z-s s

41 Nb 6-39 37-50 3-50 63 Eu . 47-19 59-43 3-52
42 Mo 7-70 33-53 3-47 64 ea . 50-66 60-43 3-52
44 Ru 9-49 40-54 3-46 65 Tb ., 54-33 61-49 3-51
45 Rh 10-43 41-53 3-47 66 D4 . 53-30 62-49 3-51
46 Pd 11-56 42-52 3-43 67 H0 -l 62-46 63-50 3-50

,47 a
g 12-69

43-49
3-51 63 Er . 66-35 64-60

3-50
43 ca 13-37 44-52 3-43 70 Ad . 76-1 66-5 3-5
49 In 15-29 45-50 3-50 71 Cp . 32-5 67-7 3-3 -

2
2

2
3

13133 2&8 3158 Z
2 ti
‘ "

3513.2 3325 332?‘
52 T5 19-94 43-50 3-50 76 04 . l 111-03 72-51 3-49 1

53 J 21-71 49-49 3-51 77 Ir . 113-64 73-50 3-50.
55 Cs 25-60 51-43 3-52 73 Pt . 125-92 74-49 3-51
56 Ba 27-70 52-46 3-54 73 Au . 133-30 75-51 3-491
57 La 30-01 53-46 3-54 31 'r1 . 150-43 77-50 3-50
53 Ce 32-33 54-44 3-56 32 Pb . 160-02 73-56 3-44‘
59 Pr 35-03 55-46 3-54 33 Bi . 169-73 79-53 3-42
60 Nd 37-36 55-49 3-51 90 Th . 250-36 36-57 3-43
62 Sm 43-95 53-50 3-50 92 U . , 273-71 33-51 3-49

What is more important for us than the constancy of s is the accuracy
with which the quantum number 2 is confirmed by our calculation and

the unmistakable appearance of the relativistic law in the progressive
magnification of the doublet interval. The latter circumstance also
illuminates a point which remained in obscurity in the remarks of Chapter

HI, namely, the increasing curvature of the graph lines of in

Figs. 51 and 53 of the K- and L-series. If the Bbntgen spectra were
given with rigorous accuracy by a formula of the Balmer-Moseley type,

then ~/v/R, when plotted as a function of the atomic number, would be

represented by a straight line. But the addition of the relativity correc
tions of the first and higher order (cf. eqn. (1) at the beginning of this
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chapter) causes this line to become increasingly curved upwards as Z
increases as was actually to be seen in Figs. 51 and 53.
Hitherto we have followed in the footsteps of the hydrogen model,

and have purposely calculated as if the L-orbits, those that are elliptic
as well as those that are circular, are each described by a single

electron. The accompanying action of the other electrons of the L-shell
that are undoubtedly present was taken into account only by introducing
the available screen number s. Now, there is no difficulty in imagining
a circular orbit occupied by several electrons. If q electrons are dis
tributed regularly around a circle they exert a mutual radial repulsion
which is tantamount to a screening of the nucleus to the extent of

sq unit charges. If there are besides these, p electrons within the circle

Fro. 119.

and near the nucleus, then the whole screening of the nuclear charge
amounts to s = p + sq for the singular orbit (cf. Chap. II, p. 74).
The case is different with elliptic orbits. It is clearly not possible to

arrange several electrons on one elliptic orbit without thereby destroying
the Coulomb character of the field of force. But it is certainly possible
to distribute the electrons among so many ellipses as there are electrons

(namely, q). These ellipses are inclined to one another successively at
the angle 211-/q,and are situated symmetrically about the nucleus. We have
drawn a “ group of ellipses

" * for q = 5 in Fig. 119. These ellipses are

" That such an arrangement is a possible form of motion of several electrons was
communicated to the author personally by Mr. F. Pauer. ‘But it had already been
described earlier by J. W. Nicholson, Phil. M8-5., 27, 657 (1914),
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traversed by the q electrons in such a way, the same for each, that all the

q electrons pass through the corresponding aphelia and perihelia at the
same moment, respectively. If the electrons are joined up by a sequence
of straight lines, then the latter will at every moment constitute a regular
polygon (of q sides) which alternately contracts and expands. It is clear
that in this pulsating polygon the repulsions exerted on one electron by
all the remaining electrons must by symmetry give a resultant which

passes through the nucleus and which, as in the case of the circle, is re

presented by the nuclear defect sq. The circular orbit that is multiply
occupied is distinguished from the ellipses of a group only by the fact
that the q circular orbits appear coincident to the eye. The single ellipse
that is multiply occupied would be a false generalisation of the multiply
occupied circular orbit; the true generalisation is given by the group of
ellipses.
The conception of grouped ellipses shows that the actual similarity

of the L-doublet to the hydrogen type may be brought into accord with
the multiple occupation of the L-shell so long as we regard the L-shell
to be a multiply occupied circle in one part of the atoms and as a group
of ellipses in the other part. Yet, a number of weighty objections speak
against the truth of this picture. We need not, it seems to us, take ex

ception to the ingenious interlocking of the q elliptic orbits as being
something unnatural; indeed, We may recognise this as an indication of
the high degree of harmony of motion that holds sway in the interior of
the atom. But how is this harmony of motion to be preserved in face of
the many disturbances due to the electrons of the other shells, particularly
when we consider, as J. M. Burgers* first pointed out, that the grouped
ellipses intersect the K-shell? In Fig. 119 we have dotted in the
K-shell as a “ K-ring " in its correct relative size. The figure shows that
the ellipses penetrate into the interior of this ring when the whole is
drawn in one plane. This co-planar arrangement of all the L-electrons
in the grouped ellipses is a further weighty objection. How are the
electrons to be made to confer distinction on one plane? By a natural
elaboration of the idea of a group of ellipses Landé has indeed extended
the polygonal symmetry to the polyhedral symmetry of a cubic arrange
ment (cf. p. 104). But in the region of Rontgen spectra the difliculty
at once arises that when the L-series is excited an electron is removed
from the cubical 8-shell. What picture are we to form of a cube which
has lost one of its eight corners? But the most serious objection to

polygonal as well as to polyhedral symmetry is the following: As we
have already said above, in order not to destroy the symmetry we should
have to assume that the elliptic and circular modes of motion occur in

diflereiit atoms, and that, accordingly, one part of the atom exemplifies
the L,-level, another part the L2-level. Now in addition to the L1- and

In his dissertation for Leyden University : Het Atoommodel van R-utlmford-Bolir,
p. 161. Haarlem, 1918,
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the L2-level there is also an L3-level. Moreover, as we saw in Chapter
III and as we shall show in greater detail in the next section, there are
5 M-levels and not less than 7 N-levels, quite apart from the O- and
P-levels that have to be added in the case of elements with higher atomic
numbers. But if we distribute L, and L2 among different atoms, we
must also do the same with L3, and with the M- and N-levels. Hence
we should have to postulate not two, but at least 1 . 3 . 5 . 7 = 105 dif
ferent species of one and the same atom, corresponding to the possible
combinations of the various levels with one another. That is already
absurd in itself.
Moreover, this standpoint also leads to direct contradictions with

experiment. Let us, for example, imagine two atoms that only dilfer in
that the L-shell is developed as an L,-level in the first and as an L2-level
in the second. \Vhen an electron is removed from the K-shell and
raised to the surface of the atom, the effective nuclear charge of the
L-shell increases by 1 ; accordingly the shell contracts, and since energy
is liberated by this process of contraction the L-shell performs some of
the work of elevation necessary for the K-excitation. Thus the work of
excitation becomes reduced through the presence of the L-shell—and,

naturally, also through that of the other shells. But the amount of

energy contributed by the L-shell is ditferent according as it appears in
the form of the L1- or the L2-level. For if we apply the nomenclature
of Chapter IV, § 5, then the energy of the L-shell before the K-excitation,
that is, in the undisturbed atom, is, according to eqn. (6) on page 476,

W 1 _ 1 n’ '1

fi=-qn:@{Z—p—s,,}‘+<4+;>;4{Z—p—s,,}‘*:| . (11)

On the other hand, its energy after the K-excitation (whereby the dis
tribution number of the K-shell, that is, the electrons occupying it

,
has

decreased from p to p - 1) is :

,,‘_”,,
Z e-
~1[2t<Z
-

(P

-

1
) - rm + (1+§{)‘j~i {
Z -<1)

- 1>-
a*]<12>

The contribution of the L-shell to the work used in effecting the K-ex
citation is the difference of (11) and (12). As n and n', the quantum
numbers of the respective levels occur separately in this difference, this
contribution is, as we said, different for L, and L2. Since n’/n becomes
equal to O for the L,-level and equal to 1 for the L,-level, the difference
in the contributions of the L2- and L1-levels becomes

AW*= El[{Z-p+1—s‘4—~‘Z-)—s,“

h R (124, ‘If I I '11 L
_|

_~

=4q;—i(Z—])—s,,)3+... ik

- (13)

_ 11" _4q A1/L I. J
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where =
gi Z,} by eqn. (4) denotes the L-doublet L2

—
L1. Hence

the K-limits of the two atoms would have to differ by the amount * (13).
And, indeed, since the contribution of the L,-shell is less than that of the

L2-shell, the K-limit would be harder in the presence of an L,-shell than
in that of an L2-shell. Further, it follows from this that the L-doublet

K(a’a) of the K-series must be greater than the L-doublet of the L-series

by the same amount (13). But, when calculated, this diiference comes
out, if q be set equal to 8, to 6'4 v/R units for Mo atomic number (42),
8 for Rh (45), 45 for W (74). Contrast with this Table 16 in Chapter
III, § 6, according to which K(a.a') agrees with L(a',8) to the extent of,
at most, 0'2 v/R units.
From all this we must infer that the orbits that give rise to the

different levels must actually all occur in the same atom.t But then there
can be no such pronounced symmetry as we assumed in the grouped
ellipses or in the cubic arrangement. The problem of the arrangement of
the electrons within the atom, regarded from an elementary point
of view, becomes hopeless. It seems equally hopeless to explain the
defect in the nuclear charge namely, s = 3'50 in an elementary
and pictorial manner; nor did we succeed in doing this satisfactorily
even when using the picture of the group of ellipses. Our formula
for the L-doublet does not hereby lose any of its practical value. It
cannot, indeed, be regarded as an equation that has been derived from

theory, like the formula for the hydrogen doublet, but it stands as an em
pirical equation that has been brilliantly confirmed.
At any rate the general behaviour of the L-doublet speaks unmis

takably in favour of the correctness of a relativistic and quantum stand
point. The fact that the L-doublet depends on the atomic number Z,
and that it corresponds to the quantum-nmnber 2, leaves little room for
doubt that we must regard the L-doublet itself as a macroscopic copy

of the microscopic hydrogen doublet.
But our relativistic formula of the fine-structure preserves its validity

and value, not only in the case of the L-doublet, but also in that of the
M- and N-doublets, and thus furnishes us with a principle of sub-division
for the multiplicity of M- and N-lines. We give the name regular doublet
to each pair of energy-levels that are connected with each other by such
a fine structure formula. Later we shall show that besides these regular

" Just as there would have to be two K-limits, so also there would have to be two
K B-lines, separated by the interval (13). The theory of this "intermediate doublet

"

[cf. Zeitschr. f. Phys., 5, 1 (1921)], of course, falls to the ground with the assumption
that the levels L, and L2 are formed in difierent atoms, that is

,

not in the same atom.
+This conclusion is entirely contradictory to the view that the author held

formerly, and that was maintained in earlier German editions of this book. But it

coincides with the views of Bohr expressed in his letter to " Nature," cf. page 59.
According to Bohr, it is an indispensable condition for the stability of the atom that
the orbits of the various shells be interlocked, in a manner similar to that depicted for
the K- and L-orbits in Fig. 119.
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doublets there are irregular doublets, which likewise follow a uniform
characteristic law (and hence scarcely deserve their rather derogatory

name).
We know the doublets (a.a.') and (qS'¢), which we called M-doublets

(cf. Table 12, p. 159, and p. 160) from the observations of the L-series;
we gave them this name because they owe their origin to the differences
of the M-levels. (dc) denotes the difference (M1M2)| (¢’4>) denotes the
difference (M3M4), corresponding to the scheme, which we take from
Table 12 :

;a’...M,->L ;¢’...M_,->L,
la....l\11—>L lq

s

...M3->L3.
The M-shell corresponds to the quantum number (quantum sum) 3.
From the general term-representation (6a) on page 477, we get for the
three resolutions 3 + 0

,
2 + 1
,
1 + 2
, the three term-representations:

M,...(s,o)=R( )[3-._.+4~3,(;) + 3,,(;
+ fi5~,;(

<

77a 4 8349a

M--M»---("2>=R< )[§-+11;-v(‘.;)+"sa( )+ are
From these the two term-differences follow :

A111
= (2, 1)

— (3, 0
) and A1/2 = (1, 2
) — (2, 1),

Av E4112 1 25112 E” 31711‘ E4

"R
1 =

3
1 [W .»;'2a-1(2) -“ as - (“I

Av. E 4o.‘~' 3 279 0.2 E 2 13059114 E 4

if = ts [2

+ 3734;) "fifisitvll " <12)

The ratio of these two—if we neglect the higher powers of <1’,and if the
values of E/e are equal in both formulaa—~is equal to 1 : 3

, in agreement
with eqn. (8a) on page 479. In this case we should have the hydrogen
triplet with which we are already well acquainted. But the assumption
that E/e is equal in each case no longer holds. The hydrogen triplet re
solves into two doublets o

f the hydrogen type. As already hinted in the
above representation of the terms M2, M3, we must imagine the terms

(2, 1) to be double. The one value represents the level M2, and has the
same E/e as the term (3, 0), or the level M1, respectively; the other
value belongs to the level M3. and has the same E/e as the term (1, 2

)

or the level M4, respectively. Accordingly, Av, serves to represent

(a'a) = (M1Mz), and A1/2 to represent (<f>'¢)= (MRM4). For the rest, as
we likewise indicated in the expression for the terms, the term (1, 2) is

also to be regarded as double, namely, as the level M‘ and the level M5.
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The calculation of (a’u) has been carried out by E. Hjalmar* on the
basis of his own precision measurements. The question involved is to

show that eqn. (11) gives us the same results as observation of (ad) for

all values of Z, provided that a new “ screen constant" s be chosen,

where as in the case of the L-doublet, we have set

si
te ll N | 5'

and have found the value of s empirically. The calculation is made after

the model of eqns. (7) to (10) on page 500, the last of which i
s here

. 3
’

‘/23;
225 at 599 at

(z_.-.)»=(E _§_T6§)(1+mZ..lR) . (13)

For all elements between Z = 41 and Z = 74 we get the remarkably
constant value

s=13'O. . . . .(13a)

and there is no indication of a systematic increase in the deviations.

Thus we are justified in declaring the diflerence of level (M,M2) to be a
.

regular doublet, and to apply the formula (11) by extrapolation in given

cases to elements for which the doublet has not been observed. The

same doublet-interval occurs, as we know (cf. p. 172) in the M-series be

tween the lines Ma and MB, or, more accurately, between Ma’ and M/3.
In exactly the same way the eqn. (12) becomes assigned to the M

doublet (¢’</>)in the L-series. The fact that this doublet i
s essentially

more widely separated than the doublet (dd) in the L-series, corresponds

at least qualitatively with the ratio 3 : 1 of the intervals of the components

in the hydrogen triplet. On the basis of (12) i
t is also possible to calcu

late a screen number s from the observations of (¢'¢). The formula

analogous to (13) is now

, ,, 3 HA" 279 A 191.,A’ .

(e_..»)-=((i\/6.-R”-T6,.1{)(1+§§a-g) - (-4)

andgives us
s=-3'3)‘ . . . . . (14a)

Just as the M-shell belongs to the quantum-number 3
, so does the

N-shell to the quantum-number 4. Here there are four terms, after the

model of hydrogen. How they are allocated to the four resolutions

of the number 4, and to the various levels of the N-shell, i
s given by the

following survey 1

" Zcitschr. f. Pl1ys., 3
, 262 (1920). _ _

-(Concerning the numerical data for the calculation of this screen number
and

of that of the N-doublet, cf. A. Sommerield 8-ml G. Wentzel, Zeitchr.

t. Phys-, 7,

86 (1921),
'
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Three term-differences may be calculated from these levels. In the case
of hydrogen they form the characteristic quartet, but here they occur as
three distinct doublets, whether of N-levels or of lines in the L- or M
series. The ground for this is again the circumstance that the eflective
nuclear numbers E/e are, indeed, the same for the levels NIN2, NQN4,
NENG, but different for the levels N2N3, N4N5, and NGNT. We designate
the three doublet intervals by AI/1, A1-2, Al/3, and give their meaning, as
well as the theoretical and the empirical means of calculating them i

following scheme :

(N113) = M<-'-> = (3,1) - <4. 9)
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E " w 3
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(15)

(16)

(17)

Of these three doublets only the “ N-doublet (XX') of the L-series"

(cf. p. 160) may be obtained to a sulficient extent from direct measure
ments of the line-intervals. The relativistic doublet-formula hereby
again proves its truth. From a formula that is analogous to (13), (l-1),
we get for the defect of the nuclear charge

s = 17 . . . . . (15a)

of course with less accuracy than previously, inasmuch as the weak and

closely neighbouring lines 11, a’ can be measured with precision only in

the case of few elements.

\rVe are obliged by the circumstances to derive the remaining two

N-doublets M (mi) and L(-y'y) indirectly from combinations of several
line-intervals. According to formulae (I5) and (16) there correspond to
the values of the doublet intervals so obtained the screen-constants*

s = 34 . '. . . . (163,;

and s = 25 . . . (17a) respectively.

* The screen-constant of N,N, exhibits a systematic decrease below Z = 74.

' §____~-~~—*
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The growth of the screen constant s from 3'5 in the case of the L
doublet to 25 and 34 in that of the N-doublet is quite satisfactory from
the point of view of the model since it seems to point to an increase in
the number of the electrons interposed. But this must not tempt us to
believe that we may approach the process of screening, of the formation
of doublets, and, indeed, of the constitution of the shells by means of

elementary notions of models. At the very outset, the great dilference
in the screen-quantities within the same shell (17, 25, 34 with the N

shell) remains unintelligible on the model. The following remark which
is directed against a too literal acceptation of our calculations on levels
constitutes a still more serious objection. If we wished to apply our
screen-constants s, determined from the doublets, to calculate the terms
themselves, we should arrive at a totally inadequate agreement with ex

periment. The terms do, indeed, in a general way follow Moseley’s
relation, that is, apart from relativity corrections, they depend quadrati
cally on the atomic number, but the screen-constant that is hereby in
volved is in each case to be chosen afresh, and differently then in the

corresponding doublets. We take this into account by introducing in the

principal member of the expansion (6a) on page 477 a screen constant

(o-) different from that contained in the members giving the relativity
corrections, and hence we write :

_ 1 n’ 2 Z
— s 4"i l1++il“ (tit) l

Sb

+ F
§
<"1>*
- we“ 1

-1

>
“ + I

‘ l

8 2 n 4 n n + n’
' ' '

In order that we may in each case get the above Av/R-values for the
regular doublets by subtracting two formulae of the type (6b), we have
simply to give the constants 0' as well as the constants s the same value
for two levels of a regular doublet.

Finally, we get to the irregular doublets. The law governing them
was only discovered as late as 1920 by G. Hertz in the dissertation quoted on

page 186. Just as the difference of limits (L,L2) on the L-doublet which

is equal to it represents the type of the regular doublet, so the difference
of limits (LEL3) measured by Hertz represents the type of the irregular
doublet., The measurements of Hertz relate to the elements between
Cs 55 and Nd 60, inclusively. They are represented in Fig. 120, in
which also the differences of limits L2L, of the elements from W (74) to

U (92) measured by others have been included. This figure gives ex

pression to the following law. If, following Moseley, we plot »,/17against
Z, then the graphs for L, and L3 run perceptibly pa/rallel to each other,
in direct contrast to the graphs for L

,

and L1, which diverge further and
further from each other as Z increases, in accordance with the law of
regular doublets.

w
e

3
N

+

+
|

i-
P
IC
A
?
3
_q

3
‘|
3
_;
Q

+

+



510 Chapter VIII. Theory of Fine-Structure

Thus the law of irregular doublets asserts that the difference of the

\/I/-values of both doublet components is approximately constant. Table
54 illustrates this for (L2L3). Here the first column gives the v/R-values ob

tained from Table 22. The second column, with the heading ~/T; - -\/I;
contains the differences of the ~/1'/-1?’-values for both levels. Within the
region of observation of Hertz these differences are exactly constant and

equal to 0'66; from then onwards they increase slowly and continuously
to the value 0‘76.

Vt
La

4
0
l

L2
L1

35'

30‘

25
‘

20 -

| | | | I I I 1| | | I l Z

55 60 74 7H H3 90 92

Fro. 120.

As Wentzel * shows, the same law, however, governs all those differ

ences of level of the M- and N-shell, which we have not already recognised
as regular doublets. Among the M-limits these are the doublets M2M3
and M4M5; among the N-limits, N2N3, N4N5, NGNT. We shall show in

a
. table in the next section how the v/R-values have been obtained (they

arise out of direct measurements only in the case of the M-limits, and;

even then, only for a few elements. In spite of the fact that we are
dealing with differences of quantities that are small, and that have been
determined indirectly, the approximate constancy of the sequences of

numbers is unmistakable.

" Dissertation, Munich, 1921. Of. Zeitschr. f. Phys., 6, 84 (1921).
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Hertz has already indicated, too, at least in broad outline, how we

have to interpret the law of the irregular doublets from the view of the

model. By expressing the wave-number v of the individual limit ap
proximately by a formula of Moseley’s type,.we get

"V 1, , ?_z-0
R=7?,(A-<1), x/R_-n . . .(1s)

where n signifies the quantum sum for the shell in question, and 0- the

screen number now under consideration.

42
-15

55
56
57
58
59
60

74
79
79
B0
81
82
83
90
92

TABLE 54

I I
_ _ P _& Q 1* ,1 ___1 1 __ i_

L,--L, \/L,-1/L_. 0/14.,-1/111, 1/L1,,-\/M,l~/N,-1/N, ,x/N,-\/N, 1/N,-4/N
_ in ____ , _ ____1_,_1__ ___il,£Z_ i1
Mo _ _ 1-2 _ _ _ l -
Rh — __ 1-4 _ _. _ __

Cs 20-1 0-00 1-is - - _ _
Ba 20-4 0-03 1-12 - _ _ -
La 27-9 0-01 1-10 _- - - -
Ge 2s-9 0-00 1-17 - - - -
Pr 29-9 0-00 1-10 - - - -
Nd so-2 0-00 1-10 - - - A

-
w. 40-3 0-09 1-20 0-00 2-7 [ 1-2s

i
0-04

Pt 40-0 0-72 1-22 0-0s 2-0 1-as 0-so
Au 45-7 0-72 1-25 0-0s 2-5 1-39 0-04
Hg 40-9 0-70 __ _ - - -
T1 4s-1 0-73 1-24 0-01 2-32 1-10 0-00
Pb 47-4 0-72 1-23 0-03 2-as 1-00 0-09
Bi 52-3 0-72 1-21 0-00 2-10 1-22 - 0-70
Th 00-0 0-70 1-24 0-00 200 - -
U

I

as-1 0-70 , 1-20 0-09 2-oe 1-23 0--1s
, .

Now it became manifest when we explained the regular doublets that

the screen-number s which occurs in the members giving the relativity
correction in formula (6b) always assumes different values for two levels
like (M2M3), (N2N3) or (N4N_.,), which form irregular doublets with each

other [cf. (13a), (Ma), (15a), (16a), 17a)]. We shall now also let the

same be true for the screen-constant 0- that occurs in the principal mem
ber of the formula (611), or, respectively, in formula (18\, which expresses
this principal member; the constant 0 is also to have different values in

the two levels of an irregular doublet. If we call the two values 0, and
<12,and take into account that 17,likewise has the same value n for two

levels of the same shell, then we get Hertz's law from the second eqn.

(18) in the form :
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At the same time the following value for Av itself follows from the first

eqn. (18) :

A 2-r — . , '+ .,

1,‘:= (1n,"*)<4-"1 2-"~). . . (20)

Eqn. (20) allows us to set up the following comparison between
regular and irregular doublets. In the irregular doublets the dijference
Av of the wave-numbers increases linearly with the atom-ic number ; in the
regular doublets it increases with the fourth power. In the irregular doub
lets the d-iflerence of wave-length AA decreases as the atom-ic number in
creases, amt, indeed, it increases with the third power of the latter; -in
the regular doublets it is, as we know, perceptibly constant.

Strictly speaking, the A \/JR-values in Table 54 were not constant.
At least in the case of the irregular doublets (L,L2) and (M2M3) they
exhibited a small but systematic change. Here, as in the curvature of
the graph lines in Figs. 51 and 53, we encounter an influence of the rela

tivity members which we neglected in (18) and (19). For, on the basis
of formula (6b), the law of irregular doublets may be defined more sharply
by asserting that in the irregular doublets the values A0" = 0'1 — 0'2 are

exactly constant, but the values A J; are constant only to a first approxi
motion.

This more sharply defined form of Hertz's law is justified by numerical
data in the dissertation quoted on page 507. It proves of particular
value for the doublet (M2M3), in which all signs of a systematic change
vanish when the relativity corrections provided for in eqn. (6b) have been
introduced into the values of Ac-.

§6. General System of Riintgen Spectra.

Whereas in Chapter III. we presented only the general classification
and the principal results of Rontgen spectroscopy, We here wish to dis
cuss the finer questions of the theory. We arrange them under separate
headings.

1. The complete scheme of lines and levels. Fig. 121, which antici

pates the results of the systematic classification that follows, is to be

regarded purely as a scheme. For example, within each shell the levels
are drawn at equal distances, whereas in reality the differences of level
are very great. The decrease in the differences of level in passing to the
higher shells is in reality much greater than it is drawn in the figure.
In the case of the heavier elements a (three-fold) P-shell would have to
lie above the O-shell. Besides the K-, L-, and M-series drawn in the
figure, we should also have to expect an N-series, but on account of its

great softness, it has not yet been observed. Wherever, as happens par
ticularly in the case of the M-series, arrows occur without letters, the
lines in question are to be expected theoretically, but have not yet been
discovered, on account of their too feeble intensity.
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The scheme of Fig. 121 is built up as follows. The principal lines
of the K-, L- and M-series are

Ia. = L, _> K, La = M, -> L,, Ma = N, _> M,.

Since we know the K-limit from direct absorption measurements, by sub
tracting the measured wave-numbers from Ka, La, Ma, we get the highest
or principal levels of the L-, M-, N-shell, namely, L, M, N (which have
also in part been measured as absorption limits.

0

Laaai mags liflmi/1199” Z’ ll/U

L, ____
L, ______

.1
-s i

K
a
m
z/
3
'/
3

‘/'7

K

FIG. 121.

We get to the levels L2, M2, N2, by such lines as, for example,

K11’ = L2 -> K, La.’ = M2 --> L1, Ma’ = N2 -> M1,

or, more practically, by means of the doublet differences

K(_a, G
’) = L, _ Ll, L(a, ,1’
)

= M, - M1, M(.., .1’) = N, - N1.

A test of the levels L2M.,, N2 that are to be determined in this way is

then furnished, for example, by the lines

L/3 = M, _> L2, Mp = N, _> M,
33
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If we then take the third L-limit L3 from the absorption measure
ments, we get two further M-levels, namely, M3 and M4, from the lines

L¢ = M3 -> L3, L¢’ = M4 -> L3,

which, according to excitation measurements by Hoyt (cf. p. 180),
actually have L3 as their final level. A test is furnished by the line KB,
which has been the centre of much controversy (cf. what is said below
about combination defects), and its weak satellite KB’, measured by de
Broglie.* For we have

KB=M3->K, KB'=M4—>K.

This interpretation of KB, KB’ holds true in the relations arising from
combining the following terms, which may be read off from Fig. 121, and
which were first set up by Smekal : ’r

KB = Kt + L¢ _ (L, _ L,), KB _ 1~:,e'= L4> - 1.4;.
We next get to the levels N3N, by means of the lines Ly and L8.
For we have

Ly=N3——>L1, L8=N,—>L2.

Ly’, the softi satellite of Ly, which has been measured only in the case
of uranium, and which forms the exact L-doublet dilierence with L8, cor
responds to the transition N4 -> L1, and gives us a first test of the difl'er
ence of level NQN4. A check on the position of N3 is furnished by My
= N3 -> BL, as a result of the relation §

MY: LY — L4>+ (La - L1)
A check on the position of N, is furnished by Me = N, -> M, as a result
of the relation

Me = My + (L¢ - L4!) - (Ly - Ly’).
If we here leave out of account the small N-difference

Ly — Ly’ = N, — N3,

then, bearing in mind the origin of KB and KB', we get that

M<-My=L¢- L¢'=KB- KB’,
that is, a doublet of each of the M-, L-, and K-series is equal to each of
the others. Both of the following N-levels, M5 and N6, are to be defined
as initial levels of LX and Lx'. Their common final level is L3, accord
ing to the measurements of the excitation as measured by Hoyt, and
hence they are represented by

Lx = N5 -—>L3, Lx' = N6 ->113.
* Compt. rend., 1'70, 1053, 1245 (1920). 1'Zeitschr. f. Phys., 5, 91 (1921).I Cf. Chapter III, § 6, page 164. § Zeitschr. f. Phys. 5, 121 (1921).



§6. General System of Riintgen Spectra 515

N5 is at the same time the initial level of Ky. Hence the combination
equation that is to be regarded as the test of the position of N5 becomes

KY = K“ + LX _ (Ls _ L1)
There still remain the lowest M- and N-levels, M5 and N7, and the

initial levels of Le, L17, and Lt, Kx. As our line-diagram shows, we in
terpret the latter thus :

Le = M5 -—>L1,
Lt = N7 -> L1,

Of the L-lines that were drawn up in the table in Chapter III, only
LE, 0, mpnow remain to be interpreted. These have their origin in a
shell which is still further out than the N-shell, and which we called the
O-shell. The same is true of two further L-lines LA, Ln, that are neces
sary according to theory, and of which the softer line LA of Dauvillier "*

has been established beyond dispute. It becomes possible to allocate
the lines mentioned to definite O-levels only on the basis of the principles
of selection that are to be discussed under No. 4.1" It has to be assumed
that the lines Z and mpare in reality doublets ({'§) and (¢’\//), of which the
components are inseparably close. The transitions from the O-shell into
the L-shell then appear to be fully analogous to the transitions from the
M- and the N -shell to the L-shell, as is immediately clear from the follow
ing survey :

F§ ||
ll

“Z

5 tl

La.=l\T1->Ll,La.' =M2-—>Ll, L‘B=M:2—>L2;
{L¢=M3—>L3,L¢'=M4—>L3;Lc=l\d5->L1,In]=l\I5-—>L2.

L-y=N3—>L1,L~/'= N4—>L1,L8=N4—>L2;
{Lx=N5—>L3,Lx'=N6->L3;L:.=N7—>Ll,LK=N7-—>L2.

[Lz =01-->L1,L§'=Q2-—>L1, L0=O2-—>L2;
\L¢=O3->L3,L\[/=O4—>L3;L)\=O5—>L1,Lp.=O5-—>L2.

Finally, of the M-lines all those that were noted in Chapter III have
been arranged into our scheme except M8. The interpretation of this line

given in Table 17, page 173, is made more precise by our Fig. 121 in the

following way :
M8 = O1 -+ M3

corresponding to the combination 1

M8— M-y=L{— Ly.

M8, too, has presumably a very close soft neighbouring satellite:

M8’ = 02 _> M,

This concludes our account of the line-scheme. It was first set up by
Smekal (loc. cit.) and Coster,§ the latter of whom has firmly established

* Compt. rend., 173, 647 (1921). _

-'
r Cf. G. Wentzel, Zeitschr. f. Phys., 8, 85 (1921). The P-levels are also discussed

in it.

“Z
?isentzel, 'ibui., 6, 84 (1921).5
, 139 (1921).
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the empirical foundations of the scheme by his precision measurements
of the L-series of the heavier elements. In our account we have in
cluded several combination bonds, which are in a certain sense inner

supports of the scheme.

2. Table of Term Values. The object of optical spectroscopy is not
the lines, but the atomic states, the terms. They are all that need to be
tabulated ; the lines may be obtained as combinations of them (cf. p. 322),
The same holds for the Réintgen spectra. Here we have the advan

tage that individual terms may be directly measured as absorption limits ;
this can never be done sufiiciently accurately in the case of the series
limits in the visible. Further, we have the advantage that the number
of terms is small, and that the complete table of terms of all the elements
can be written down on two pages. For there are only (i

f we disregard
the P-levels) 1 + 3 + 5 + 7 + 5 = 21 limits, that i

s only 21.92 term
values for the whole 92 elements. These term values are fixed character
istic numbers of the atom, and denote the energy that is required to lift
an electron out of the shell in question into the outer region of the atom.
The terms are hereby defined uniquely. They would become am

biguous only if the various quantum-states of the outer shells were de

veloped in different atoms, and this is what we had to reject in the

preceding paragraph (p. 504).
In drawing up Table 55 we are naturally most concerned about the

question of accuracy. In general, the accuracy with which the position
of the emission lines can be determined is greater than that of the ab

sorption edges. Further, the absolute accuracy of the softer lines and

edges is greater than that of the harder lines for the same relative error.
The absolute errors become added in the term values. It is, therefore,
expedient to start from the softest possible absorption limits in calculat

ing their values. This is illustrated by Table 56. We there give the
name “normal levels" (cf. the lowest row) to those lowest measured
limits from which the harder limits may be obtained with the smallest
absolute error by adducing line measurements. It is for this reason that,
in the case of the heaviest elements, the L-limits are not taken from the
direct measurements, but are referred to the M-limits, as is indicated in
Table 56. Our knowledge of the K-limits would also be deepened in the
same way if the K emission-lines were accurately known similarly by re
ferring them to the L- or the M-limits. Unfortunately, so far this is only
the case for molybdenum, rhodium, and tungsten, so that as far as the K
terms are concerned, we are compelled to fall back directly on the absorp
tion measurements. The numbers given in the table denote wave
numbers expressed in units of the Rydberg number (v/R-values). The

accuracy of the calculated terms is determined, on account of the greater
accuracy of the emission lines, essentially by the accuracy of the absorp
tion limit that has been used as a basis in the calculation. That is why
the terms themselves are less exact than the term combinations from



6_§ General System of Riintgen Spectra 715

M
W
O
__
__
_g

O
¢
:_
®

fl
®
_Q
@
H

@
@
@
@
H

®
§_
@
>
H

N
H
_$
©
H

@
m
_@
fl
_

m
rfi
m
fl

N
_@
b

®
_@
@

P
Q
Q
m
_N
©

O
_@
@

Q
IQ
B

m
_@
@

N
_®
§

g
m
,

E
H

W

E
Q
?“

:9
E
:

in
_N
_3
n
_§
_w
N
§_
g

g
m
o
fl

2
%

m
g
;

Q
3
5

Ig

I
_g

g
m

_

I
I

a
n

E
__
$
;_
w
_§

O
g
u

fi
g

:3
$
5
“

$
2
“

I
3

I

H

m
g

g
m

m
o
w
,

m
a
m

n
a
g

%
_N
H
_g
_:

g
g
m

fi
g

Q
5

w
a
s

II
n

O

g
o

_2
_n
_N
_w
*_
w
H
_g

_$
%

m
g

g
m

m
zw
m
é
g

m
u
g

E
g
g

I

_

my

H

g
m

N
_%
_n
_a
I

fi
g

fl
a
g
s

O
:

m
g

2
5

g
n
u

$
3

Q
2
2

I_
I_
II
II
I_
II
_I
II
I

I

Q
_

PJ
O

:0
_w
_E
n
_$
_

g
n
u

$
7
5

E__

2
g
_§
_\
I_
§

E
O
N

w
a
s

nf
n

O

a
n

_w
_$
;m
T

g
m
“

$
_$

Z
E

g
g
g
g

3
2

m
p
g

I_

N
H

O

fi
g

o
_n
m
_o
_o
m
”

a
s

_m
H
_:

2f
E

o
w
_§
_:
m
_

g
s

$
5

H

g

i

Im
I

I
I

I

I

Ifl
2

E
I_

I
I

IZ
O
H

m
g

m
i

I*
I_
I

I
I_
Ig
g
IW
g
II
II

IE
“

3
°

Z
;

IW
I_
I

I
IT
I_
g
/g
_I

I
I_
m
__
__
m

E
m

Q
5

I_
I

I
I

I
I_

3
3

I_
I

I
9
%

g
m

3
0

II
I_
I

I
|*
|l
_x
-I
W
Q
Q

I
I

Ia
m

m
i

m
g

I_
I_
I

I_
I_
I_
S
_H
_F
Iw
I

Ig
m
g

o
_n
_I

a
n

I_
I

I
I

H

I
_m
_m

__
m
_o
I:

I_
I

W

I
I

H

I
g
m

g
m

I_
I

I
Im
Iv
o
_i
:fl
I_
IW
I

I_
I

g
m

2
:

IM
II
II
II
II
II
IW
I

I”
I°
_2
I

I"
Ir
II
I_
Im
IM
IW
I”
I

IJ
I

3
I

II
II
II
W
IT
IW
I

II
_I

I
Ig

I
I_
I~
II
I_
II
I_
IM
II
II
II
g

I

l
I

_

II
ll7

‘I
.

_
ii

‘
_l

ll

_

I
I

p
l‘

m
.‘

I
I_
IH
II
Io
_o
IM
I

I_
II
_I

g
m

I
II
II
I_
I?
_o
_I
II
_I
_I

I_
I

2
I

II
N
I

II
II
_I
IW
Iu
II

I
I2

I
II
I_
II
_I
I_
I_
Iv
II
II
I§

I
II
_I
II
;_
°I

I_
I_
I

I_
I

2
I

II
_I
IH
II
W
II
I_
I”
II
fl
I

2
I

II
M
II
_I
II
I_
I_
II

I
I2

I
|I
_|
V
||
I_
II
I“
II
_

II
I

Iv
;

|_
|

m
_°

I
I_
I_
II
_I
II
I_
II
_I
II
g

I
I_
I_
II
I_
II
I_
II
_I

II
*I
:_
o
Iv
I
Ig
II
_I
II
M
IH
I_
II
II
I_
Ig

I

n
o

_T
o
_”
o
T
y
__
O
II

“Z
‘ZY

n
zm

__
z

“Z
fl
zI
__
II
_z

fi
g

_

in
"2

“Z
_2

n
n

N
H
Q
Q
E

£
8
1

:3
2

Q
3
2

:6
2
"

fi
g

g
o
fi

€
IO
fi
_%
_%
:

2
3
%
“
g
$
_:
$
_2
:

$
9
3

2
2

g
g
g

2
&
2
“

a
s

$
2

0
2
%

g
g
fl

£
_:
o
_

g
g
w

@
g
2
_2
_E
_W

_g
_§

2
%

$
3

$
0
3

3
%

_

K
g

£
2

3
8

_

3
:

g
o
:

~
3
3

_

N
__
*©
§

fi
g

£
3

_

E
a

2
2

Z
:

fi
g

3
%

3
?

2
%

3
5

I
E
a

3
%

I

H

2
2

:2

I
H
g
g

8
%

I
_8
_%

M
p
g

I
g
g
g

$
5

I
5
%

3
%

I
g
fi

3
2

I
g
_£
_

m
a
g

I
H
g

2
%

I

_

2
“

g
m
"

I
"m
a
g

3
%

I
E
a

B
a

I
I8
:

5
:

I
W
@
@
_§
%

$
3

I
I

$
2

I
I

m
g

I
I

a
b

I
I

2
;

_I
II
I

P
H

I

N
IH

_
__H

E
b
fi
m

E
n
o
w

fl
*©
©

m
@
fi
@

®
@
@
©

S
H
H
Q

H
w
®
©

$
®
b
©

®
fl
H
fl

fl
H
@
m

m
®
o
m

0
5
3
$

®
W
@
$

®
@
b
N

@
N
©
m

?®
o
E
_

B
IW
P
V
H

*®
_@
©
§

@
o
_H
@
w

O
o
_®
H
©

o
¢
@
©
@

g
h
g
€
H
_H
¢
$

b
N
_@
o
#

m
?@
@
m

E
H
_H
m
m

®
¢
_b
®
N

m
m
_m
©
W

$
@
_§
°Nfi
g

H
2
©
W
_®
n
H

N
b
_$
_:

fi
@
_@
®

u
p

m
m
9
“

@
®
W
m
~
®
Q
@
®
§
®
b
fi
fi

O
Q
®
@
@
fl
E
Q
©
fl
fl
fi

fl
fi
@
V

H
M
Q
N
m
fi
§@Q
Q
#
@
m
®
N
QG510

°§.._..-.'.‘3.S28<.'I=‘N



T
A
B
LE
5
6

,

Z
=
9
0
a
n
d
9
2

Q

Z
=
7
-H
0
8
3

J

z=
0
0
0
>
0
o

Z
=
4
2
a
n
d
4
5
lZ
=
1
2
to
3
1

1

l

i

7

i

7
”

T

I

K
T
a
b
.
2
1

1

T
a
b
.
2
1

1

T
a
b
.
2
1

T
a
b
.
2
1

,
T
a
b
,
2
1

K
I

L,

M
,
+
La

,

T
a
b
.
2
2

,

T
a
b
.
2
2

K

-
K
c
K
-
K
0

L,

L,
M
,

+

Le

,

L,

+
(L
e
-
L0
’)

~

L,
+
(L
B
-
Lu
’)

K

-
1
<
..
'
K
-
K
c’

L,
L,

M
,
+
L¢

1,

L,

+
L4
>

+

M
-,
-
L-
,'

T
a
b
le
2
2

-

~

_
L,

M
,

'

L,

-
L0

L,

-
L0

K
-
K
0
-
L0

_
M
,

M
,

}

T
a
b
.
2
2

L,

-
La
.’

L,
-
La
’

K
-
K
¢
-
La
‘

-
M
,

M
,

L,
+
l\
1
'y
—
I/
y

L,
-L
o

K
-K
B

K
-K
5

M
,

M
.

M
1

+

(I
-1
1
>-
L0
’)

(L
1

+

M
7
—
I-
1
)

+

(L
2
—
I-
2
')
’

L3
—
I-
¢
’

—
—

M
l

M
5

M
,

+

(L
a
—
Le
)

L,

—
Le
1
'

—
—
-

-_
M
5

N
,

M
,
-
M
a

L,

-
Lt
-
M
a

_
-

._
N
,

N
,

M
,
-
M
B

L,

-
La
’
-
M
B

1

-
_

_
N
,

N
a

M
a
"
M
7
’

L1
—
L7

L1
“
L7

_
_

N
a

N
,

M
,
+
(L
a
-
L¢
’)
-
l\
I¢
‘

L,
+

(L
B
-
L0
’)
-
L8

,L
,

+
(L
B
-
La
)
-
La

K

-
K
0
’
-
L6

_
N
,

N
,

M
,+
L¢
-L
x

(L
,+
L¢
+
l\
I-
y
-L
-y
)-
Lx
’

_
K
_K
-,

,

K
-K
-7

N
,

N
7

M
1

+

I-
4
>
—
I-
x
’

(I
-1

+

L0

+

M
7
—
I-
7
)
—
I-
x
’
"

—
—

I

—
N
0

N
7

M
,

+

La
—
LL

L,

—
Ll

_
"'

l

—
N
7

i

0
,,
0
._
.

-M
,
-
M
6

L,

-
Lg
‘

-
-

_
o
,,
o
,

0
,,

0,

M
,

+

L¢
_
Lt

1

(L
,

+

Lq
>
+
M
-,
-
L-
,)
_
Lt
-'

-
_

_
0
,,

0,

O
,

M
,
+
La
-
LA

L,

-
LA

—
-

1

_
0
,,

N
o
rm
a
l
le
v
e
ls

M
,,
M
2
,
M
,

L,
L,
,
L,

K
K

N
o
rm
a
l
le
v
e
ls

,

l

‘L
4
:
h
a
s
n
o
t
b
e
e
n
m
e
a
su
re
d
fo
r

Z

=
7
9
(A
u
).
H
e
re
th
e
e
x
p
re
ss
io
n

L,

+
L¢
+
M
y
-
L7
w
a
s
re
p
la
ce
d
b
y
th
e
lim
it
in
g
fr
e
q
u
e
n
cy
L1
,.
In

th
e
sa
m
e
w
a
y
in
th
e
ca
se
o
f

Z

=
8
0
(H
g
),
L,
a
n
d
L3
,
h
a
v
e
b
e
e
n
ta
ke
n
fr
o
m
a
b
so
rp
ti
o
n
m
e
a
su
re
m
e
n
ts
.

+
In
th
e
ca
se
o
f
T
l,
8
1

0

h
a
s
n
o
t
b
e
e
n
m
e
a
su
re
d
.
Le
w
a
s
re
p
la
ce
d
b
y

L

-
(L
B
-
La
’)
.

G
il
1
-I
W aanqonlqs-aurg30Kaoaql,'11]A.1a:}d'eqQ



§6. General System of Riintgen Spectra 519

which the absorption limit cancels out in given cases. For this reason
also it is important to use a fixed no-r-mal level for each element. The
accuracy of the term-combinations with which we are in practice con
cerned then becomes independent of the exact value of this normal level,
and equal to the accuracy of the emission lines involved.
At the same time, the table of term values illustrates how we arrived

at Table 54 of the irregular doublets in the preceding paragraph. It is
only necessary to take the square roots of the term-values in question, for
example, M2, M3. The difference between the roots of these two has
been noted in Table 54.
The gaps in our Table 55 of terms is due to the fact that in certain

regions, for example, between the atomic numbers 45 and 55, precision
measurements of the K-lines and the L-limits are still wanting. Future
measurements will have to be inserted at just the edges of these gaps, or
at points where more accuracy is desirable in the table of terms. Since
the frequency-ditlerence between an absorption edge (for example, Ll),
and a corresponding emission line (for example, L; = O, -> L1) just re
presents the frequency of the initial level (O1) of the line in question, a
systematic investigation of the relative position of absorption edges and
emission lines* (on one and the same plate) seems highly desirable. And
it would denote a very important step forward if we should succeed in
fixing the N -limits directly by more optical methods than those hitherto
used. For then we should be able to place our normal levels higher, and
to give greater precision to all the lower M-, L-, and K-levels.
3. Regularities in the Scheme of Levels. The calculations of the

preceding section have furnished us with a sure foundation on which we
can build up further conclusions on the character of the various levels.
We saw there that in each shell regular and irregular doublets alternate
according to the following scheme :

r-"\ »-‘—. vi‘. /-"\ r-'% r-‘*~ r-“H ¢-‘Q
K | n,L_,L, | M,M.,M,M,M, | N,N.,N,,N4N,,N,,N, | 0,o,o,o,o,.V “vi *-’ ‘%r-* ‘_v" 5v-’ “Y-“ ‘P’

The upper bracketings denote regular doublets, the lower ones irregular
doublets; both are characterised as functions of the atomic number by a
definite analytical law which contains only one empirical parameter,
namely, the screen number in the case of regular doublets and the
difference of two screen numbers in Hertz's law for the irregular
doubletsfr

If, besides this, we bear in mind the wonderful regularity that exists
in the sequence of the numbers giving the sub-divisions of the levels,

namely, 1 K-level, 3 L-levels, 5 M-levels, 7 N -levels, and in the sequence

* Cf. Dauvillier, Compt. rend., 172, 1350 (1921).
1-It is hardly to be doubted that the conditions in the O-doublets correspond

exactly to those in the L-, M-, N-doublets. At any rate we see from Table 55 that
(0.1, On) and (0,, 0,) have the character of irregular doublets. Cf. Zeitschr. fiir Phys.,
8, U5 (1921).
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of the quantum numbers (or, more correctly, in the quantum sums
11.+ 11.’),namely, 1 in the K-shell, 2 in the L-shell, 3 in the M-shell, we
must admit that in spite of the manifold conditions reigning there is
beautiful order and design in the interior of the atom. Even if we
cannot calculate the levels themselves accurately by theory, but must
for the present derive them from observation, yet we are fully clear
about the significance of the levels and their mutual arrangement. The
state of affairs is not a jot less favourable than in the case of the visible
spectra, in which we are also very far from predicting the terms by
theory but have succeeded in classifying them perfectly.
Concerning the magnitude of the terms, in particular, the universal

law holds that they decrease in the transition from the one shell to
another when the quantum-number 11,+ n’ increases, and they also
decrease within each shell when the azimuthal quantum-number n
decreases.

The allocation of the azimuthal quantum-number n and of the “ radial
"

quantum-number 1
1
.’

that occurs in our doublet calculations to the
individual levels are given in the two highest rows of the following
table in accordance with the data of the preceding section :

TABLE57
__
..___-__.__._._\..

_. -__ -1 .___

‘N

K}
L,L,L,)1\-1,1-1,M,1\»1,M,

N,N,N,N_,N,N,N, o,o,0,o,0,‘
)~ 7~v~T~- —. i

)1
» 1 211le22114:-33221132211

11’ 0 011)o1122 01122332:-13441k 1 222\a33s3=444-144455555

|'
m 1 221-35221144332212.3221

The third column states that the quantum sum k = n + n
’
is constant

in each shell (this implies nothing new for the inner shells), and that it
increases continuously in the series K, L, M, N, O. In the case of the
O-levels the latter postulate gives a first definition of the radial quantum
number 11,’.

But a new and fundamental step for what follows is contained in the
fourth row. For each level we here define a third quantum-number m,
which, linking up with the visible spectra, we should best like to call
“ inner quantum-number,” but which, owing to the fact that it is not

actually quite analogous to the inner quantum-number defined earlier,

we prefer to indicate by the more non-committal name “ground

quantum-number." The ground quantum-number has been introduced
in such a way that it has the same value for each two levels that have
been combined into an irregular doublet. m - n is accordingly always
equal to zero or 1

. It is only now after we have introduced the third
quantum-number m that we are enabled to bring the levels finally into

order and to predict the transitions between the levels.
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Something new is likewise contained in the last columns of Table 57.
They state that the azimuthal quantum-number n and the ground
quantum-number m do not in the O-shell exceed the number 3. This
statement is very closely related to general views of Bohr (p. 109).
Starting from our point of view we are led on to them by considerations
about the following class.
4. Principle of Selection. We evolve the rules relating to this

principle in two stages.

(a) We imagine the irregular doublets contracted to zero width by
making, say, the difference of the screen numbers a- that occur in Hertz's
law vanish. The number of the L-, M-, and N-levels then becomes
reduced to 2, 3, 4 respectively, and then we get the same conditions

among them as we should expect for Rontgen spectra that are fully of

the hydrogen type. Here Fig. 121 degenerates* into Fig. 121 a. The
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ground quantum-number m vanishes out of the scheme of levels and the

azimuthal quantum-number n alone becomes the decisive factor for possi
bilities of combination. For all lines that actually occur it fulfils the
rule o

f selection:

n -> n — 1 (strong), n -> n, and n -> n + 1 (weak) . (1)

The symbols written alongside the arrows in Fig. 121 a indicate that

the lines allowed by this rule have all actually been observed, but also

that several of the observed lines would belong to the same transitions.

(b) We then suppose the regular doublets contracted to zero but

imagine the relativity members to be eliminated by the assumption
a. = O

.

Here again the numbers of the L-, M-, and N-levels amount to

2
,

3
,
4 respectively. They are numbered by the ground quantum-number

" Fig. 121 a is identical with the scheme of levels which the authorused in his first
attempt to apply the idea of fine-structure to the M- and the N-shell. Cf. Zeitschr. f.

Phys., 1, 135 (1920).
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m in the same order as previously by the azimuthal quantum-number n.
It is now the ground quantum that becomes all-important, and the
azimuthal quantum becomes of no consequence at all. The complete
line-scheme of Fig. 121 now degenerates into Fig. 121 b. The transitions
then remaining are governed by the second rule of selection: *

m ->m — 1 (strong), m -—>m + 1 (weak) . . (2)

By combining both rules we get the complete principle qt selection
enunciated by G. Wentzel (loc. c-it.), which corresponds to the complete
line system of Fig. 121: All those lines and only those lines occur fo-r
which conditions (1) and (2) are simultaneoizsly fulfilled.

2 U1,3
9 s,4 1
U

U
1

1.2 4IN 3,4 3
5"

~
1
0

1,2

M 3,4

5

L

1,2

3

|-
¢
I~
3

3
2
1

i
1

K 1

Fm. 121 b.

Particularly in the case of the K- and L-series our principle repre
sents the whole material of observation so naturally and so fanltlessly
that there can be no doubt about its intrinsic necessity. Here all strong
lines appear as transitions

‘

n->n— 1 and m->m— 1
.

Further, several of the weakest lines of the L-series, namely 17,K, and p.,
come out as transitions

' n->n and m->m+1,

and hence were to be expected weak according to the two sub-statements

(1) and (2) of our principle. On the other hand, i
t is quite natural that

in the M-series not all the lines that are predicted to be weak (and that
are unnamed in Fig. 121) have as yet been observed; the strong lines
here, too, are all in conformity with our principle. The circumstance
that our principle of selection is essentially empirical in origin does not
detract from its regulative power.

‘Coster gives a substitute for this rule in Compt. rend., 173, 77 (1921), and in
Zeitschr. I. Phys., 6, 185 (1921).
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We have exceptions to it only in the case of several particularly weak

lines which can be made visible photographically only by extremely long
exposure; they were not noted in Fig. 121. To them there belongs the

interesting line K113 = L3->K, which, in the case of W, has been
separated by Duane and Stenstrom in the third and fourth order from
the closely neighbouring line K0.’ = L, —>K by means of the ionisation
method. We know from p. 274 that the rules of selection are broken
in strong external fields. It suggests itself to us to trace the lines
mentioned back to the action of strong inner atomic fields. Indeed,

we may surmise that it will in general be possible by means of long
exposures to obtain indications of lines that are otherwise forbidden.
5. Combination Defects. As early as 1913 Kossel* called attention

to the “addition relations" that may be read off from the oldest and

simplest line-scheme (cf. Figs. 47 and 48) :

K,8=Ka.+La, Ly=La+Ma . . .

and Bohr remarkedt in 1914 that these addition relations are nothing
other than applications of Ritz's Principle of Combination. The authori’,

endeavoured in 1916 to ascertain whether they were exactly correct in
this form and found that the answer was in the negative. Accordingly,
in the first German edition of this book the “ combination defects

"

A,=Ka+La-K,B, A.,=La+Ma-Ly. .(2)
were examined with regard to their dependence on the atomic number,
and were represented graphically. The name chosen indicates that the

presence of these differences was originally regarded as a transgression
against the principle of combination. In contrast to this, Kossel§ and,
independently of him, Duane and Stenstrémll expressed the conviction
that the combination defects are caused by sub-divisions of the M- and
N-shell and are compatible with the combination principle. It was
concluded from a comparison of the line- and absorpti0n-measure
ments that KB arises through the transition M3 —>K. On the other
hand the author,'.l starting from the fact that the Rontgen spectra have a

hydrogen character and following the lines of argument of Fig. 121 a,
considered himself compelled to ascribe to K,B the origin M2—>K,
corresponding to the transition 2 -> 1 of the azimuthal quantum-number,
and likewise to Ly the origin N2 -> L,, corresponding to 3 -> 2. In
place of (1) we should then require

KB = K0.’ + LB, Ly = La} + MB . . (3)

and still the differences (2) are only slightly diminished and are by no
means zero. In particular, in the case of the Ly's of the metals U and

‘Verb. d. D. Phys. Ges., 16, 953 (191-1). -I-Phil. Mag., 30, 394 (1915).
$Ann. d. Phys., 51, 125 (1916). Concluding remark.
§Zeitschr. f. Phys., 1, 119 (1920).
)1Proc. Nat. Acad., 6, 477 (1920). 1

|’

Zeitschr. f. Phys., 1, 135 (1920).
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Th they amount to about 25, measured in v/R-units, and lie far above the
limits of error of present-day precision measurements. In Kossel's view
the dilferences A, and A2 defined by (4) represent the differences of level

M3
-
M2 and N3 — N2. The author previously regarded their linear

advance with the atomic number, as represented in earlier editions of
this book, as a difficulty for Kossel's explanation of the combination
defects, because at that time only the law of regular doublets, which

depend not linearly but bi-quadratically on the atomic number, was
known. We now recognise this linear relation as Hertz’s law of irregular
doublets and, conversely, confirm this by the behaviour of the quantities

A1 and A2. These quantities no longer denote “combination defects,"
but each signifies a difference of level of an irregular doubtlet.
It is at once clear that combination equations of the type (1) or (3) are

impossible between three lines that obey the principle of selection but rather
that a remainder A must be left over, which has the significance of a
difference of levels. For if a line (for example, Kc.) corresponds to a
transition from one level II to another, I, and a second line (for example,
La) to the transition from III to II, then, according to our principle of
selection II and I, as also III and II, must differ by i 1 in the ground
quanturn m, and hence III and I must differ by O or 1 2. The transition
III to I is therefore forbidden by the principle of selection and cannot
be represented by a line (KB in our example). If, on the other hand,
IV be a level immediately neighbouring to III, which may therefore form a
combination with I, then, it necessarily differs from III by 1 in the ground
quantum. We may call (III, IV) a combination defect, corresponding to
the equation

(IV - 111) = (I - II) + (II - III) - (I _ IV).
The difference of 1 in the ground-quantum of III and IV is in agreement
with the criterion for the irregular doublets in Table 57.
In the same way we may reason out that an irregular doublet can

never be calculated by combining 2 (or in general an even number of)
line-frequencies, and this leads us to understand why the irregular
doublets, in contradistinction to the regular doublet, cannot appear
directly as line-intervals in the spectrum. A line such as

Ka3=L3->K(m—>m—2),'

which contradicts the principle of selection is of course to be excluded in

applying this law. Just because it contradicts the principle of selection
it may form the irregular doublet (L2L3) with Kc.’ = L,->K. In
general, the following law holds (i

f we exclude such lines as contradict
the principle of selection in this way): the diflbrenees o

f the regular
doublets arise through combinations o

f an even number o
f lines, those o
f

irregular doublets through combinations o
f an odd number o
f lines.
In our systematic scheme of Riintgen spectra we have left out of
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consideration such lines as do not allow themselves to be brought into
our scheme of levels at all. In the case of the heavy elements these
lines are all very weak; the strongest is a hard satellite of Ly that was
discovered by Dauvillier. In the case of the light elements they are
certain lines, measured by Siegbahn, Hjalmar, and Stensson, which are
denoted by K113, 11,, 07,, <16,KB’, B3, L0,. According to Wentzel these
lines are to some extent to be interpreted as spark lines in the Rontgen
spectrum, namely as emissions of an atom that is multiply ionised in the
K-, L- . . . shell.
Recapitulating, we may say that the systematisation of the Rtintgen

spectra here effected is extremely satisfactory and surprising; so much
the more surprising as it is not evolved from special quantitative ideas
and such as are based on models but on general postulates of qualitative
relationships and inner symmetry.

§7. Universal Spectroscopic Units. Spectroscopic Confirmation of
the Theory of Relativity

In our theory of the fine structure there is a confluence of the three
main currents of modern research in theoretical physics, namely, the
theory of electrons, the theory of quanta, and the theory of relativity.
This is exhibited in a particularly vivid way in the way our fine-structure
constant 0. is built up:

2 e2

a.=% . . . . . (1)

Here e is the representative of the theory of electrons, h is the worthy

representative of the quantum theory and 0 comes from the theory of
relativity and, indeed, characterises it in comparison with the classical

theory. If we also wish to interpret the numerical factor 211' in our
formula, then it may serve to remind us of a fourth source from which
we have continually drawn in our development, namely, mathematical

analysis, which we have used copiously and which was indispensable for
the unravelling of the fine structures.
We take the value of a. spectroscopically out of the measurement of

the hydrogen doublet (or better, out of the indirect measurement of the
He+-lines, since the direct measurement is inexact, cf. p. 483). The

relationship between 0. and Av“ is, by eqn. (1), § 4:

Av“ = Ra?/24 . . . . . (2)

and this, in conjunction with Paschen’s value Av“ = O'3645 cm'1, cf.

eqn. (2) in § 4, gives

0’ = 5'315.10'5, 0. = 7'290. 10-3 . . (3)

VVe are now in a position to bring to a conclusion the idea of

spectroscopic units which was taken up as early as page 217 and was
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carried a step further on page 222. The three equations (mo = static

mass of the electron):

RH =T _ (4)

h3<1+1l)mu

Rm = iii _ _ (5)

ha<1+m° >mfle

211152
U. 1 V - - . - - -

provide us with three determining equations for the three unknowns e, mo,
and h, that is, for the three most important universal constants of

physical nature. Here it is to be observed that the masses m" and

771,59that also occur in the above equations can be traced back to the

elementary charge of the electron by means of the very accurately known
electrochemical equivalent and the ratios of the atomic weights of He to
H, by eqn. (1) on page 5, and note 1 on page 221. Our determination of
the three unknowns e, mo, and h requires purely spectroscopic measure
ments, and thus is founded on observations in which we undoubtedly
have the greatest trust. On the other hand the original determination
of h from measurements of radiant heat requires the measurement of

high temperatures, and that of e/mo the measurement of high voltages,
both of which are not so free from error as spectroscopic measurements.
The determination of h from the short wave limit of Rontgen spectra
also entails the measurement of high voltages.
The solution of eqns. (4), (5), and (6) may be grouped in such a

\vay that the quantity e/-mo is derived from (4) and (5), as has already
been done on page 224, leading to the value

_ e
--=1-769.1016 . . . . (7)
mo

With its help we also inferred on the same page from R, and Rm, that

Rw= 10973711 i 0'06 om“ . . . (8)

The meaning of Rm is
21r2m e‘ 21r2(82/h)3

R» = ht”
=m ~ - - - <9)

The factor 0 in the denominator takes into due account that the value

(8) of Rm is measured in cm“ (and not in seer‘). Our method of writing
the last member of eqn. (9) also includes the factor e‘*/h which also occurs
in (6). We may eliminate this factor from (6) and (9) and get

0,302 0.36:
R~=

We/m05~ ‘=4_—»Rw<@/filo»
- - - <1°>

fa... --- — _ij}i—+-=——mZ % V‘
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Inserting the values given in (3), (7), and (8) we get

5-315 . 7290. 3 . 10”
6 =
4... 1-oenfirm = "66-1°“° - ~ <11)

We now need only once again refer back to eqn. (6) to get the value of
h, too, namely

t_2"“2=6-526.1041 . . . . (12)ac

But we must also add the limits of accuracy of these determinations.
These are given merely by the inaccuracy in the determination of Av“
and of the consequent inaccuracy in a, since the value of Rm in eqn. (8)
may be regarded as absolutely exact for our purpose, and the value of

e/mo in eqn. (7) may also be looked on as being sufficiently well known.
The percentage accuracy of Paschen's value of Av", by eqn. (2) in §3,
amounts to

I
@,_:

i-
\

+
;i?_ i + _—
3645
-

The percentage accuracy of <12 is just as great; hence that of as and e

[see eqn. (10)] is:
'

M
O
O

O
3 ,_
,|
-I I

O
I
P
-I
--
1: 6 -— = + —

Hence we get as the limits of accuracy of e:

e = 4'766

<
1 i . 10*" = (4'766 i 0-088) . 10'1".

From this it follows from (12) that

h = 6-526

(1
i g.Q5.,)10-2* = (6-526 i 0-200).10-W.

These limits of accuracy are, particularly in the case of h
,

unsatisfactorily
wide. If, then, Paschen has not under-estimated the accuracy of his
measurement of Ava, the idea of purely spectroscopic units must for the

present remain an intention that can be put into effect only when the
measurements of fine-structure have been made with greater certainty.
On the other hand we may follow L. Flamm* and calculate semi

spectroscopic units of very great trustworthiness \Ve do best by en

listing the aid of Millikan's measurement of e (cf. Chap. I, p. 15):

¢=(4-77410-004)10—w . . . . (13)

and, retaining the spectroscopic value (7) for e/mo, then determine h

spectroscopically by eqns. (8) and (9) with the greatest accuracy, namely :_
__5___.

h

1
/

we
6-545 0-00910-2*=

H.;E<m =< i > -<14)

" Physikal Zeitschr., 18, 515 (1917).
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We venture to suggest that this is at present the truest value of the

quantum of action. From (13) and (14) we now get for the best values

of our fine-structure constants and of the hydrogen doublet:

.1 = (7-295 i 0-005)10--1, (5-322 ¢ 0-007) .10-6 1,
Avg = 0-365 0005

’ - l °)O

9“

'+

1|

¢
.>

The value of Av" so found agrees almost exactly with that given by
Paschen, namely (T3645, but has a much smaller possible error. R. T.
Birge (cf. p. 487) uses the value 5'308. 10"“ for <12. We based our

calculations in §5 on the arithmetic mean of this value and that of
eqn. (15); the value obtained was a

il = 5'315 . 10*‘. The value (14) for

h coincides with the value h = 6'55 . 10-27 originally obtained by Planck

from questions of heat radiation. Together with e and e/mu the values

(which we have often used and quoted earlier) of mo, wt“ and L = 1/mu
become known at the same time :

mo = s-998 i 0-01, m,, = (1-649 1 0-002) .10-sq (ma)L = (6-004 110-006) . 1018 j '

Finally, we revert once again to the beginning of this chapter, in

particular to the law by which the mass of the electron (and, indeed,
mass of any kind, depends on the velocity. According to the theory of
relativity this law is expressed by:

mo

m=:/T_72=m0(1+=},[>'3+...)

. .

On the other hand the older “absolute” theory, which assumed an
absolute space or ether and postulated a spherical electron, asserts that
the law of variability * of mass is :

m =
gn1,o[%<l

log $3; _ 1) = 'm,0<1 + + _ _ (153,)

The decision as to which of these two formulae is true is
,

as we em

phasised on page 464, the easperimentum crucwls for the truth of the theory
of relativityn‘
Connected with the law of variability of mass is the law by which the

kinetic energy depends on the velocity. We have, as we know, from the

theory of relativity:

Em = (m — m0)c2 =
'r11,0c'3<~/%A__?

-

1
))

3

. . (17)

=~1+Z.B2+...> J

‘First derived by M. Abraham, cf. his Theorie der Elaktrizildl, II, 3rd ed., pp,
162 and 175.

-{The idea of this criterion was first communicated to the author by \V. Lenz.
K. Glitscher has carried it into efiect in his Dissertation at Munich, 1917; cf. also
Ann. d. Phys., 52, 608 (1917).
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On the other hand, the absolute theory asserts* that

3 , 1 1 2 I 3
Ea. =

;m0c'</§
log% - 2) = ’"“;'g (1 + 551 + . . (178,)

We have now to treat Kepler’s problem of elliptic motion for an atom
of the hydrogen type on the view of the absolute theory, and from it to
calculate the fine-structure of spectral lines. Firstly the law of areas
which is independent of the law of variability of mass also holds here.
It is Kepler’s second law which states that the moment of momentum

P = P4» =

is constant (T and ¢» are polar co-ordinates which we measured from the
nucleus that is assumed motionless). The momentum in the </>-direction
(projection of the moment of momentum on the tangent to the circle

1' = const.) is then mrqlv = p/'r, and the total momentum is mo = mflc.
From these we get, by Pythagoras’ theorem, the momentum in the
direction 1' as : g

Pr = mi" = .\/('mv)2
—
—1

For the azimuth <,
{
>

the quantum condition is:

~
1
8 ._
,,

211'

I

_[p4,d¢
= 21rp = nh, p = g . . (18)

0

For the radius vector 'r it is:

’l]Ml7'
=

(P x/('nw)“
—
girl?‘ = n’lt . . . (19)

v

the integration stretching over the full series of values of 1', that is
,

from
'r,,,,-,, to r,,,,,, and back to r,,,,-.,, which, as in Note 6, may be indicated by
adding the sign Q to the integral sign.
To be able to evaluate the integral (19) we must know mv as a

function of 'r. At present, however, -m and hence mv = m,Bc is known to

us by (16a) only as a function of B
. We may now use the energy theorem

and the formula (17a) for the kinetic energy to get B out of it as a function

of r. If we set the nuclear charge equal to E and hence the potential
eE

energy equal to — 7, then the law of energy states that :

Ekin=W_ Epot=W+€g
If we now apply eqn. (17a) we get

- 5
’
1 3 E

m°gfl <
1 +

5/32)
= W +

" Cf. Abraham, loc cit.

34
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From this we may calculate B and hence also *m.cB = mv by taking
account of the significance of m in eqn. (16a). The calculation is, of
course, performed by successive approximation, the first approximation
being made with respect to the corrective term of the second order. We
write the result in a form that embraces both the absolute theory and
the theory of relativity, namely

(mu)? = 2% (W
+
[1
+ m:c,(w . . (20)

where y has the meaning

y = § for the absolute theory,
y = ‘%

‘

for the theory of relativity.

\Ve next apply eqn. (20) in the quantum condition (19), of which the
integrand now appears as a simple function of 0'. Theintegration may be
effected by the scheme given under (0

) in Note 6, and finally gives us:

E 2 ——1I’l

1 as 11 + 2 iv’ = ii-"3
1 +[n'+\/n?-27<“E>"]"

‘ ’

8

When 7 = 1
}
,

this equation passes over into the earlier relativistic eqn.

(23) on page 472. This must not be regarded as self-evident, for the present
calculation was an approximate calculation which made use only of the
first powers of B

‘ and worked with series that had been cut off, so that it

may be regarded as trustworthy only to the first powers of <1”. The fact

that it proves to be accurate beyond this in the relativistic case (-
y = Q),

must be regarded as an accident that comes about through the compen
sation of the various terms neglected. In the case of the absolute theory

(7 = '§), eqn. (21) i
s actually not the exact expression for the energy

but only an approximation. It may be remarked that in the relativistic
case the course here followed may also be pursued without neglecting
quantities if we insert in (19) the exact value of 122that follows from the
law of energy.
Our present eqn. (21) differs from the eqn. (23) on page 472 in that dz on

the right side is replaced by 2711“, and VV on the left is replaced by 2-y\V.
Consequently the development in powers used at the beginning- of § 2 of
the present chapter may be applied directly to our present eqn. (21).
For example in the term expression (6) on page 476 we have only to write
2-ya” in place of <12. From this it follows, however, that all our theorems
concerning fine-structure remain preserved, so long as we substitute 2'ya.'3
for 0.2. The relat-ice quantities o

f the fine strrzwtu-res, for example the
interval 1 :3 between the components in the triplet of the hydrogen

type, the interval 1 :2 :6 between the components in the quartet of the

hydrogen type, and so forth, also remain prese1"ved in the absolute theory.
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Only the absolute quantities of the fine-structures become diminished by
the factor

91 = t
in comparison with those of the theory of relativity.
In particular, this holds of the hydrogen doublet

2
A,“ =

2 .% = 2-0-36 = 0-29 c|n'1.

This value for the size of the hyd/rogen doublet is in no wise compatible with
Paschen/s measurements of the He+-lines. The same may be said of the

hydrogen doublet in the Riintgen region, of the L-doublets, and so forth.

According to the absolute theory these, too, should come out one-fifth
smaller than the values observed for them. The latter, too, are then
incompatible with the absolute theory. Condensing these statements we
may conclude that the absolute theory comes to grief owing to spectroscopic

facts and has to give up to the theory of relativity the position of sovereignty
which it formerly occupied.

'

In this chapter we have seen how the theory of relativity, just as it
has remodelled all our physical thought and ideas, has also been able to
help forward spectroscopy in a decisive manner. Conversely, we note
that, in return, spectroscopy is in a position to lend support to one of the
main pillars of the theory of relativity and to decide in its favour the
question of the variability of mass of the electron.

I



MATHEMAT1CAL NOTES AND ADDENDA

1. Radiation of Energy according to Classical Electrodynamics

(Pp. 25 and 33)
1

F

I
\HE formulae (1) of the text represent the field of a. spherical wave
on the basis of the Maxwell-Lorentz equations. They have been
derived, for example, by Abraham, Thear/ie der Elektr-izitiit, I, 6th

ed,, § 79, eqn, (246). The energy-flux S is in general given by

c

if E is measured electrostatically and H electromagnetically, both in
C.G.S. units; here [EH] denotes the vector product of E and H. The
magnitude of the vector, as we know, is equal to the area of the parallelo
gram formed by the two vectors E and H, that is

,
equal to

1131- lH|'Bi11 (3,3)

If E and H are mutually perpendicular, then the formula (2) of the text
results. We regard the normal to the plane of the parallelogram as the
direction of the vector product, the direction of the normal being that
which forms a right-handed screw when we turn in the direction from

E to H. The integration over the sphere (surface-element do" = 1'2sin 6

d0d¢) leads to

@2132 . .

IS
d
s =

,§d,jd¢Is1n20
S1110110

‘ e262 2 2 2 '2

(1

—
0OS30)d(00S 6

) = — =

E -2:-2-’

as given in eqn. (3) of the text.
Eqn. (14) of the text (field of a spherical wave, whose origin advances

with the speed ,8c) is derived in Abraham, Theorie der Elektriz-itdt, II,
3rd ed., §§ 13 and 14, eqns. (73), (75), and (78). Nowadays it is more
in conformity with our present knowledge to derive it directly from eqns.
(1) of the text b

y means of a Lorentz-transformation.
The transition in the text from eqn. (15) to eqn. (16) comes about thus:

we have
1 at ,

s = Is
a
;

=
Is(a?)di.
532
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Here t denotes the time at which the radiation reaches the point of
observation, t’ the time at which it is omitted by the electron. On account
of t — t’ = r/c we get [ct Abraham loo. cit, eqn. (75)] :

0
dt _ e2 sin? 0 our
= 1 — BCOS 0, lil'l11SS =

B

,8 is a measure of the initial velocity, fl' of the decreasing velocity during
the retardation. For a constant retardation B’ we get

o

, 13 , - as sin’ 0 dB’
‘*5 = 2*“,

“hug S =
4,0271

(1-r+z'__<'E9Yfi
B

If we carry out the integration, eqn. (16) of the text results, and if we
develop the expression in powers of ,8 and neglect the higher powers, we
get eqn. (17).

:_
__
,

2
. Scattering produced by Bound Electrons. (P. 30)

If the electrons of the radiator are not assumed free, but bound by the
restoring force - far to the position of rest an = O

,

then, in place of eqn.

(5) of the text, we get, i
f we take the direction of motion as the :1:-axis:

mi? + fa: =
— eE,,. ((1.)

To perform the integration we must now divide up Hp and as spectrally.
Let

Ep =
jEe"*"¢dw,

:0 =
I$e"‘"‘dw

(continuous spectrum). Further, let J 1% = ‘"0 be the natural frequency °f
the binding connexion. We assume that it lies, say, somewhere in the
Schumann region of the ultra-violet. Then it follows from (a) that

1 .

f((u02
-—
(1)2)
= —
ELE, (B = —-7%J_~E6w‘dw,

e 2 .

;klwo.,“’_ w.,Ee'~'dw (b)Q
. ll H: ll

In the Rontgen region co> mo we therefore have

iv = -
;JEe"*"‘dw

= — ifip

as given in eqn. (5) of the text.
In the visible region w<w0 we must on the other hand make the

approximation inversely by means of

. - 6 .t = -, .t2E@w¢a..,.
mwo
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To arrive from this at a formula of scattering that allows comparison
with experiment we do best to proceed as follows. Let us restrict our

selves to monochromatic light of the frequency
‘$5 ‘(P or = 21rc/A. The following is then true, indepen

dently of the pitch of the frequency:

13= - (02:13= — w‘1$e"<"' (0)

1:“-X1 Let the incident plane wave, having the direc
2 tion OP in Fig. 122, be assumed unpolarised. We

consider a definite direction PQ of the scattered
radiation, starting from P (P is the scattering
particle, Q the point of observation, the length
PQ = 'r

) and divide the incident wave into two
components Pl and P2, the one being perpen

Fm 121 dicular to the plane OPQ, the other lying in this
plane and perpendicular to OP. The former, P1,

forms the angle 0 = 1r/2 with 'r; the latter, P2, forms the angle 0 = 1r/2 - ¢

with r, where ¢ denotes the angle OPQ between the incident and the
scattered ray.
If we insert (c) in eqn. (2) on page 25 of the text and take the mean

value over the time, then
» w‘ sin” 0

s _ . . eyes?411'G8Tl

0 = -rr/2 and sin 0 = 1 for the component P1; 0 = 1r/2 + ¢ and sin 0 =- cos ¢ for the component P2. Hence for the sum of the two com
ponents, and for the action of a single scattering particle, we get

__ ,,, 2

M1,,-.»
-
1—+%i“<ee>*

- - - (<1)

Under the conditions prevalent in optics the electrons that belong
to the same molecule vibrate coherently; hence it is not their energy
radiations S but their amplitudes 5 that become superposed. Hence in (d)
we have to write (Se£)2, instead of (e.f)2, if we proceed to deal with the
whole molecule and take S to mean the summation over all the electrons
of the individual molecule. On the other hand, the electrons that belong
to different molecules oscillate incoherently, so that, in summing over
various molecules, not the amplitudes but the energies have to be super
posed. We thus get for the radiation scattered by unit volume, if we set
1»= 2'n'G//\I

M II

sh

__ 4 3
c

1 + cos2¢
S1= ,1
;

- —T~§<sesr . . . <
8
)

The sign 2 denotes summation over all molecules of the unit

volume.
ESQ

is thus the electrical moment of the unit of volume,

and, by the definition of the index of refraction of a sufficiently rarefied
gas which is traversed by a light wave of electrical amplitude E, this is

1
‘ - 1 3 5
'

— 1

equal to
n
4”
E. (In a dense gas or a fluid 4

;
2
)

takes the place
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of 11,2- 1). From 2SeE= it follows that (L denoting

Avogadro's number per unit volume) :

2
1)2

_ 1 2 _
S85 = nan E’ ‘$865)?

=
(niwn E2

Accordingly, from (e
) we get

- c _,
1

+ cos” ¢ 1»? — 1)‘:
s1=
"
20*

‘~

By eqn. (2) of the text the incident energy is
,

when averaged over the
time and calculated as the sum for both directions of polarisation,

m
i
@

u

$
1
“ Q -la

Accordingly

_3_1_= 1|-2 1+cos2¢» (n2-1)?

so

x+;§-*T*-T - - - (fl

Eqn. (f) is identical with Rayleigh’s formula for the intensity of the
scattered light in the atmosphere. The factor 1/A4 accounts for the
predominance of the short wave-lengths, that is

,

the blue colour of the
sky. The formula- may be used to determine Loschmidt's (Avogadro's)
number. The best and most recent observations, made on Teneriffe
Peak* led to

L = 2'89 . 10"‘,

whereas Planck's value, derived from the theory of radiation, is

L = 2-76 . 10"‘.

The above considerations, taken from the optical region, are appropriate
for bringing into clear relief the limits of validity to which the equations
(4) to (10) of the text (p. 30) are restricted. For optical purposes we
were allowed to superpose the fields (amplitudes) and not their radiations

(intensities) in the case, of the electrons of a single molecule. The
interesting fact about our earlier calculation in the Riintgen region was
that it was furnished by the total number Z of the electrons of an atom,
when we superposed the intensity of these Z electrons. In the optical
case the wave-length is great compared with the distances between the
electrons within the same molecule, and that is why the latter vibrate
coherently. In the Rontgen region the wave-length must be small if

we wish to be able to deal with the complete incoherence of the waves
in our calculations, that is with the superposition of the intensities.
Thus, our mode of calculation is valid only for s/ztflicievztly hard Rdntgen
ra -'s.
)Yet, for hard Riintgen rays too, there is a region, namely a cone
described about the continuation of the direction of incidence of the
primary rays, in which the coherence of the scattered radiation must
also be taken i-nto consideration, and for which, consequently, interference

" Cf. Dember, Ann. d. Phys., 49, 609 (1916).
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may occur. As the rays become softer this cone becomes enlarged and
hence eqn. (4) of the text involves an appreciable error. In the optical
case the aperture of the cone becomes equal to 11-and the whole space
belongs to the interior of the cone. The interferences hereby indicated
for the Réintgen region in the neighbourhood of the extension of the
incident direction were first observed by W. Friedrich* for wax, and
were then investigated systematically by P. Debye.’r It was also Debye I
who worked out fully the theory which we have here merely hinted at
for these interference phenomena.
Connected with this, there is an apparent contradiction between our

calculation of the scattered Rontgen energy and the facts of crystal
analysis as disclosed by Rontgen rays: in the case of the former we
superpose the intensity radiated out by the Z electrons, in the latter
their amplitude. For it is confirmed by Riintgen photographs of crystals
that each atom of the crystal makes a contribution to the scattering field,
that is to the amplitude of the scattered radiation, and that this con
tribution is proportional to the atomic number of the crystal. But this
contradiction is cleared up by the fact that within the Debye cone the
interferences of the fields emitted by the individual electrons of the atom
must be taken into account. The rays that are diffracted or scattered in
crystal analysis form no very great angle with the primary ray and hence
in general lie within the above critical cone, especially when the primary
radiation is not very hard. The occurrence of Friedrich-Debye inter
ferences within this cone shows at once that in this case the fields, that
is the amplitudes, must be superposed. For the whole radiation of the
atom, however, which is for the greater part sent out into the exterior
of the cone, the superposition of intensities may essentially take the
place of that of the amplitudes.
It remains unintelligible why, in the case of -y-rays, for which the

assumptions made in the text should be best fulfilled, we should get the
value 0'0-I for 8/p [eqn. (10) of the text] instead of the value 0'2 [eqn.
(12) of the text].§ In agreement with the latter value W. Kohlrausch |]
gets for the total coeflicient of extinction of the y-rays (true coefficient of
absorption + coeflicient of scattering) a value less than 0'2 for a radium
salt. And in measurements made by C. W. Hewlettfl we may trace how
the total coefiicient of extinction of very hard Rontgen rays in the vicinity
of the wave-length A = 10*‘ continually decreases and passes below the
value 0'2. In this case we are clearly dealing with a fundamental de
parture from the optics of waves, a departure which is probably due to
the size of the energy quantum of very hard rays.

* Physikal. Zeitschrift, 14, 317 (1913).
-I-Giittinger Nachrichten, 18th Dec., 1915.
$Ann. d. Phys., 43, 49 (1914).

(19l;i)Cf.
Rutherford and Richardson, Phil. Mag., 26, 324 (1912); Ishino, ibirl., 33, 129,

llWiener Berichte, 126, Part II cl, sections 4 and 6.

‘L
T

Phys. Rev-, 17, 2s4 (1921).
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3. Tables of the Crystal Structures Hitherto Investigated.

(Chapter III, § 2.)
(a) Simple cubic face-centred lattice (cf. Fig. 34, p. 123 from which

the darkened circles are to be imagined absent). These lattices occur,
of course, only in the case of elements. The lattice is completely de
termined by the length of edge (1 of the elementary cube (Fig. 34). Each
elementary region contains 4 atoms. The order of sequence in Table 58
corresponds to the groups of the periodic system.

TABLE 58

Crystal a . 10‘ cm

‘i

Observer Remarks

Copper, Cu . . . 8-61 W. H. Bragg Phil. Ma.g., 28, 355 (1914).

gilygr,
Ag . . . 4‘06 Vegard ,, ,, 31, 83 (1916).

o Au . . . 4'07 ,, . 32, 65 (1916).
Galcihm, Ca . . 5-as Hull Phys. Rl§v., 17, 42 (1921).
Aluminium, Al . 4'07 Scherrer Phys. Zeitschr., 19, 28 (1918).
Cerium, Ce . . . 5'12 Hull Phys. Rev., 18, 88 (1921); see

also under e .
Thorium. Th . . 5-11

V

H. Bohlin Ann. d. Phys.(. 2
5
1
,

421 (1919).
,,
Pb
,, . .

5-0% ‘Hui; gfiys.
Rev., 8d

(1921).Lead . . . 4'9 'ega il. Ma ., 65 1916 .
Nickel alloy . . 3'58 Westgren Engineering, %

1
1

7
2
7

(1921).
Manganese alloy . 3-61 l ,, Pure iron (Fey) has the same

0 .

1

Zi§Z°t‘L’§e3i§l°
1°°° ’ “°°

Cobalt q. 00 . . 3-554 l Hull See also under (e).
Nickel, Ni . . . 3'540 ,,
Rh di Rh . . 3'82O
P,,,‘§,'d‘,‘,‘,“n;,Pd _ 8950 1 Z

: Phys. Reva, 17, 571 (1921).
Iridium, Ir . . . 3'805 ,,
Platinum, Pt . . 3-030

\

,,

(b) Simple cubic space-centred lattice. The elementary region is a

cube of which besides the corners the mid-point is also occupied. The
number of atoms in the elementary region is 2. The lattice is fully
described by the length a of the edge of the cube.

TABLE 59

Crystal a . 10" cm. Observer Remarks

L'th' m L' . 3'50 H ll

S,§d,,‘,‘:,,’ 'N,,‘_ _ M0 }Phys.
Rev., 10, 661 (1917).

Tantalum Ta . 8'272 ,,

pliimrfigulri,
Cr . 2-995 ,,

}

Phys. Rev., 17, 571 (1921).
oly enum Mo 3143 ,,
Tungsten, W’ . 3-18

R
Debye Phys. Zeitschr. 18, 438 1917).

, . _ . G . ... .

N_
N. J8.lll‘l). 1. Min. 42, 72s (1919).

Iron a, Fe . . 2'83 Westgren

1 (Qrdinary
temperatures.)

- Engineering, 111, 727 (1921)

1 ,, )9, Fe . '2 ,, J (Temperature >768“).
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(c
) “Diamond lattice." The description of this lattice is contained

in Figs. 36 and 37 on page 125. A knowledge of the edge a of the cube
sufiices to fix it. There are 8 atoms in each elementary region.

Trans 60

Crystal

(

a . 105cm. Observer. Remarks

Diamond, C . 3-55 Bragg

i

Proc. Roy. Soc., 89, 277 (1913) ; i

l see also X-Rays and Crystal

. Structure, London, 1916.
Silicon, Si. .' 5-40 Debye and Phys. Zeitmhrx, 17, 277 (1916).

Scherrer
,, ,, . . 5'400 Gerlach-Made1ung- Phys. Zeitschr., 22, 557 (1921).

Pauli
Tin (gray), Sn . 6-46 Bijl-Kolkmeijer Proc. Amsterdam. 21, 501 (1919).

According to Bijl-Kolkmeijer, loc. cit., page 494, white tin has a tetra
gonal lateral-surface-centred lattice. The edge of the square base is

a = 5'84 . 104 cms.;

the height of the centred lateral surface is c = 2'37 . 10 8 cms.; these
give for the ratio of the axes: c: a = 0406. According to Hull, Indium
has the same lattice, Phys. Bev., 17, 571 (1921).

(c
l)
, Rhombohedral lattice. There are 8 atoms in the elementary

rhom ohedra of the rhombohedral lattices described on page 126 (cf.
Fig. 38). The rhombohedron is determined by the length of edge a
and the angle 0. between the edges. To this there must be added the
relative value u of the displacement of the two surface-centred lattices
with respect to each other along the diagonal, expressed in terms of the
length of the diagonals of the rhombohedron.

TABLE 61

Crystal 11. 10" cm. a

)

It

‘

Observer

)

Remarks

77 _~ _. l__ ~(~ _m L__7___ __

. I

Graphite, C . ) 4'-18 68° 26' 0'33 Debye-Scherrer Phys. Zeitschr., 18, 291

‘

(1917).
'

Arsenic, As . 4-14 l 54° 8
'
, Bragg X-Rays.

Antimony, Sb 4‘50 563° 6’i 0463 James-Tunstall Phil. Mag., 40, 283'

1 (1920).
Bismuth, Bi . 4'72 ;57° 16' ? Bragg X-Rays. ‘

(e
) Hexagonal lattices, approximating to closely packed spheres.

The arrangement of the atoms in this case has been accurately described
on page 127. The lattice is determined by the length a of the sides of
the triangular base and by the ratio c : a of the axes. The closest possible
packing of exact spheres would lead to the ratio of axes c :a = 1'6-33.
There are two atoms in the elementary region of the hexagonal lattice.
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TABLE 62
'

Crystal a. 105cm. c . 10‘ cm. c ; a Observer Remarks

Beryllium Be . 2-29 3-62 1'58 M. \Ieier . .. .
Magnesimih Mg 319 5&0 L628 ‘n }D1ss.

Gottingen, 1921.

Z "Z
.. s-22 5-23 1-626 Hull Phys. Rev.,10,661 (1917).

inc, I1 . . 2-670 4'966 1'86O ,, V
Cadmium, ca . 2-960 5-so 1-99 ,, }Ph>s-Rev-.17,571(1921).
Tita.
'
T" . 2-97 4-72 1-59 ,,

zim:iii?i1, ‘Z
r

. 3-23 5-14 1-59 .. i'Phys' Rev"18’
88 mm)‘

Cerium, Ce . 3-65 5-96 1'62 ,, Phys. Rev , 18, 88 (1921)
(cf. also under a).

‘

Cobalt 9
,

Co . 2-514 4-11 1-639 ,, Phys. Rev., 17, 511 (1921)
cf. also under a).

Ruthenium, Ru 2-686 4'272 1'59 ,, Phyis. Rev., 17, 571 (1921).
Osmium, Os . 2-714 4'32 1'59 ,, Phys. Rev., 18, 88 (1921).

)

\

(f) Lattices of the rock-salt type. The lattice represented in Fig. 34

is fully described if we know the edge a of the cube. The elementary
cube contains 4 + 4 atoms. The position of the H-atoms in the case of
NH4Cl and NH4Br is not known with certainty; it must at any rate be
symmetrical with respect to the N-atom, which for its part takes the
position of Na in the NaCl type. Concerning the transition to the type
(g) for decreasing temperature, cf. page 123.

TABLE 63

Crystal a. . 10”cm. Observer Remarks

Li F . . 4'03 i Debye-Scherrer

i

Phys. Zeitschr., 17, 277 (1916).
Rocksalt, NaCl 5-629 ‘ Bragg

(Sylvine, KCI 6'26 ,, I

KBr 6-57 ,,
IX‘B"'y"KJ . 7'05 ,,

NH‘Cl _ 6-577 Vegard Zeitschr. f. Phys., 5, 17 (1921).
,, 6-532

)I Bartlem ) Journ. Amer. Chem. Soc., 43,
NH_,Br 6-90 , La m .r

"

94 (1912). 1911,01 u. N1-1,131

NHJ 7-20 1 I “B “‘ 1112509,NH,J at 20°.
Magnesium, 4-22 I Hull Journ. Amer. Chem. Soc., 41,
MgO(Peric1as) 1

r

1169 (1919). .

Magnesium, 4-204 I Gerlach-Madelung- Phys. Zeitschr., 22, 557 (1921).
MgO (Pericles) \ Pauli
Lime, cto . ) 4.-74

' Davey-Hofimann Phys. Rev., 15, 999 (1920).
,, ,, . ‘ 4'762 Gerlach-Madelung- Phys. Zeitschr., 22, 557 (1921).

Pauli
S130 . 5'1OO u 11 on n n
B8-O . J 5'47

D
n n 1: an n

$8 I ‘“"°Y'Eff’fi“‘“” }Phy-s.
Rev.,15, 999 (1920).

Pbs . 5-94

(

Bragg X-Rays.

(g) Lattices o
f the ‘type o
f CsCl. The lattice described on page 123

is determined by the edge (of the cube, a. The elementary cube contains



540 Mathematical Notes and Addenda

1 + 1 atoms. Concerning the position of the H-atoms in the case of
NH,Cl, and so forth, and the transition to the type (f) for increasing
temperatures, cf. what was said under (f).

TABLE 64

Crystal a . 105em. Observer
'
Remarks

C Cl . . 4-12 Dan -W' k
Tfcl _ _ 885 “*1

'°
}Phys. Rev.,17, 403 (1921).

NH‘Gl . . 3-859 Bartlett-Langmuir Journ. Amer. Chem. Soc., 43,
84 (1921), at 20° C.

,, . . . 3-889 Vegard Zeitschr. f. Phys., 5, 17 (1921).
NH4Br. . . 3-988 Bartlett-Langmuir Journ. Amer. Chem. Soc., 43,

84 (1921), at 20° C.
,, . . 4-070 Vegard Zeitschr. f. Phys., 5, 17 (1921).

(h) Lattices of the type of zincblende. The lattice of ZnS repre
sented in Fig. 36, page 125, is determined by the edge of the cube, a.
The elementary cube contains 4 + 4 atoms. The lattice of CSi is
identical with that of ZnS. According to page 125 the lattice of CaF2 is
related to that of ZnS.

TABLE 65

Crystal a.. 109cm. Observer Remarks

Zincblende, ZnS . 5-41 Bragg X-Rays.
Carborundum, CSi — Hull Phys. Rev., 13, 292 (1919).
Fluox-spar, OaF, . — Bragg X-Rays.

(1
1
)

Lattices o
f the type o
f calcite (substances of the form MNO3).

The lattice represented in Fig. 35, page 125, is determined by the
rhombohedral edge a, the angle c. between the edges at the pole and the
distance :1; of the 6 atoms from the centre of the acid radical. The
elementary region contains 4 + 4 + 3 . 4 atoms.

TABLE 66

Crystal a . 108cm. a 1: . 105cm. Observer Remarks

CaCO, . . . 6-08 101° 55' 1-21 Wyckofi Structure accord
Rhodochrosite, MnCO, 5-66 103° 6’ 1-225 ,, , ing to Bragg.
Siderite, FeCO,, . . 5'66 103° 4Q’ 1-225 ,, Amer. J. of Sci.,
NaNO3 . . . e-0s 102° 47' 1-21 ,, 50, B17 (1920).
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4. Proof of the Invariance of Ha.milton’s Equations for Arbitrary
Changes of Co-ordinates

Contact Transformations

(To Chapter IV, § 1)
In the text, by using rectilinear co-ordinates qr, = 1:, y, z for a single

mass-point, and assuming that there was a potential energy that depended
only on the q;,’s, we directly deduced from Newton's foundation of
mechanics the existence of the Hamiltonian equations :

is _ EH 41% _ _ DH _ wt» 1
dt apt’ dz Sgt’

P"
'aZ1'Z"

' ' U
But what holds for one point-mass also holds, as was remarked on page
195, for a system of point-masses between which conservative forces act.
Eqns. (1) hold for each of these if we take qr, as representing in succession
the rectilinear co-ordinates of each individual point of the system. \Ve
shall now show that the form of eqns. (1) also remain preserved if

,

by
means of an arbitrary “point-transformation

"
(not containing the time),

we introduce new co-ordinates of position

Q =fl=(q1v Q2» - - - - - - (2)

in place of the rectangular co-ordinates.

'

For this purpose we imagine the q;,'s to be calculated from (2) as
functions of the Qfs. The §;,'s deduced from them by differentiation
with respect to t will be linear functions of the Q;,'s and will have co
efliicients that depend on the Qk's. The kinetic energy, expressed in
terms of the rectangular co-ordinates of velocity, is a homogeneous
quadratic function of the Qijs. As in (1)_we designate it by Eh-,,. If we
here insert the values of the Qfs in the Q;,'s, Q;,'s, we get a homogeneous
quadratic function of the Qfs with coefficients that depend on the Q;,'s.
\Ve call this function Efi1l (Qt, Qt) and have by definition

A E1=m(Q1=,Qt) = Em(l§k) - - - (3)

From homogeneity it follows that

1 1 DEE» — 1
. E ' 'h _i‘ = _2 ___i. _ = _? km __k "

2
k

Qqk
qk; Ekm 2

k aQk
Q1"

Just as in eqns. (1) pk was defined by differentation of E;,,~,,, we now define
Pk by setting _

DEM»

P = . . 4I:

-,5-Dk

< >

We then have

1 _ _, 1 -

Ekin = §§]J/tqa hm =
§ZPkQk

- - (5)

k

and from (3) we conclude that

§P~<-It
= Eta - <6)

~i
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This equation may serve to define Pk in place of (4). For, calculating
the Q;,’s as linear functions of the Q;,'s by differentiating (2) with respect
to t, then inserting these in (6) and comparing the coefiicients of Qk on
both sides, we get the P1¢'s as linear functions of the pr-’s with coeflicients
that depend on the Qlls. If we reverse these relations and insert the
expressions for the pk's so obtained and the q;,’s obtained from (2) in the
Hamiltonian function H (p, q), we get Hamilton’s function expressed in
terms of the co-ordinates P, Q; we call it H (P, Q), and, by definition,
we have

H(P|;Q;4) = H(_])kqk) . . . .

What our_asserti0n amounts to now is that in the quantities Pk, Q1,’
H(P, Q), b‘;,,-,,(P, Q) so defined, the Hamiltonian equations

Q15 @LIi@_ fi 8dn*aP,,' dz"*aQ,, ' ll
again hold.
To make the proof capable of being generalised as far as possible we

apply the method of the calculus of variations. Although we have
nothing new to say about it

,

we shall summarise the essential points
here for the convenience of the_ reader. \Ve first suppose the diflerential
eqns. (1) of the mechanics of a point (kinematics) to be compressed into
the form of d'Alembert's principle. This gives us the advantage of being
able to pass from the hitherto assumed system of isolated point-masses to

a mechanical system with arbitrary inner relationships.
As we are aware, d’Alembert’s principle asserts that the external forces

are in equilibrium with the inertial resistances in virtue of the relationships
of the system. To test whether this equilibrium persists after the system
has undergone infinitely small virtual displacements (“virtual" means
compatible with the inner relationships of the system), we postulate that
the work done by the external forces and the inertial resistances (i.e. the
“ virtual work ") must vanish.
Let the rectangular components of the external forces be denoted by

Kk in succession. The inertial resistances, which for the present we also
assume resolved into rectangular components, are also given by —
The principle is then expressed by:

2(K,,-p,,)8q,,= 0 . . . . (9)

The connexions that may happen to exist between the point-masses need
not be taken into consideration since they do no work during the virtual
displacement Sgt.
We assume that the external forces have a potential. Then

EKL-Sqk
= - saw, . (10)

must hold.
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Furthermore,

Em = §%i('Zk2, 8EIctn =
Z11/=8Qt.

'
. fl . ll ‘
pttqt =

mZPk3ql=
—
§Pt3qk

=
flzznfiqt

— 8Ekin - (11)

Hence it follows from (9), (10), and (11) that

d

EEP»-sat
=
8<Et-»
-
E...) = 8L y

(L is the
“ Lagrange function "), and if we integrate from O to t (let the

integration variable be denoted by -r to distinguish it from t) then

I

Eptsqt I ;= I81.4111‘ . (12)

0

We revert to this equation in Note 7. At present we use special cases
of it by stipulating that: (1) At the limits O and t, 811;,must equal O;

(2) the time is not to be subjected to variation ; that is
,

8
t = O
.

From

( 12) we then get Hamilton's principle

sine-=0
. . (13)

~ 0

We usually take it as a starting-point for deriving the general Lagrange
equations, in which L is then regarded as a function of the q’s and
VVe shall use it here as a bridge to the Hamiltonian equations, that is

,

to our initial equations (1). From the definition of L and H,

L(q, = Ekin ”‘ Epflty H(q. = Elcin 'l' Epot;

we get, if we take into account (5),

L = 21511..-1.- H = Zpkq, _ H . . (lat)

In place of (13) we may write

l

8l[He.

q
> -
§prt.]d1

= 0 - ~ <14)

o

(modified Hamiltonian principle) and we may further choose the q;,'s and
p;,’s for the quantities to which we apply variation. We then get from (14):

l\
/I
‘—
-fi
e
.

/7 l\
/I
'—
—
-a
n

s‘E1 l\
/I
1

H . .
—
qt)3]J;;d/1'

+ —$q;,d-r —
Jpkdqkdc

== O
.

L- 0 1
;
0 I: 0
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Partial integration applied to the last integral, where we have to take
into consideration that Sq), must equal O at the limits, changes the pre
ceding equation into

21<:s» <;~.>»p~T
+
212-5%
-
1»~>@e

-

k Ic

since Spk, Sq), are arbitrary, this equation is identical with the eqns. (1).
Hitherto we have taken pk and qk as standing for rectilinear co

ordinates. By means of the point-transformation (2) we now pass on to
arbitrary co-ordinates P), Qt. As a result of (3), (5), and (7) equation
(14) is expressed in terms of these new variables by:

8)-[H‘(P,,,
Q,,) _

21>),
Q,.]d¢= 0 . . . (16)

The process of variation takes place exactly as in the case of the variables
pi,-, qk, and leads to

Z((§,%
_
Q;,)8P,,d-1-

+ +
Pk>8QkdT

= 0 . (17)
,, .

From this we directly deduce eqns. (8), which were to be proved. Thus,
the invariance of Hamilton's equations with respect to arbitrary point
tra-nsformations is a direct consequence of their deduction from the modified
Hamiltonian principle.
If we survey the preceding proof we realise that we assumed much

more than was necessary for deriving the desired result of eqns. (8). In

(6) and (7) we had assumed EPEQ), = Epkqk and E = H. But to pass
from (14) to (17), it is only necessary to require, insead of this, that

H —
21-llcqk

= H—
§PkQl:
- F - ' - (13)

Here F denotes_an arbitrary function of, for example, the arguments
q, Q and t, and F denotes its complete differential quotient with respect
to t. Actually the additional term due to F in (16) drops out when we
integrate with respect to -r, since it reduces to the values of SF at the
limits, which in their turn, just like 8q, SQ, 8t, vanish. Our special point
transformation (2) with the complementary conditions (3), (4), and (7), of
course, fulfils eqns. (18), in effecting that

21>,,Q,,
= 2
), F = 0.

But much more general transformations of the following form are com
patible with eqns. (18) :

Qt =f1.(q.-, Pa, 3
), Pk = gi(q.~, P1. 3
), F = F(q1-, Q1‘, '3) - (19)

The manner of expressing F here chosen brings out clearly that for the
sake of convenience, as already remarked, we wish to regard q, Q, and t

as variables of F; [if instead, we had chosen q
, p, t for the arguments, as

ié
.

E
ll 11 F1



4. Proof of the Invariance of Hamilton's Equations 545

we did in the first eqns. (19). then we should have been able to calculate
pi out of the first eqns. (19) and to insert it in F]. The choice of q, Q, t,
as independent variables corresponds exactly to the analytical form of
eqns. (18) and makes it easier to give the conditions which are imposed
on the transformations (19) by the existence of (18). This choice, it is
true, is possible only if q, Q, and t do not depend analytically on one
another; it would be impossible if

,

as at the beginning of this section,
equations of the form (2) were to hold.
We arrange eqns. (18) according to the differentials of the indepen

dent variables, we call dt the differential of t and use 8 to indicate those
dilferentiations with respect to q and Q, in which t is not subjected to
variation. Accordingly we set

Fdt = g
d
t

+ SF

and write (18) thus:

(H

- 11 -
%};)(u

+ Zpksqk
_
2P,,.so,,.
- SF = 0 . (20)

We next postulate that this condition be fulfilled for all virtual changes
8g, SQ, clt and this is at any rate suflicient for the existence of Hamilton's
eqns. (8) [we do not hereby assert that this condition is at the same time
necessary]. On account of the independence of the variables t, q, Q (20)
may be resolved into two groups of postulates which must be fulfilled by
the transformation (19). They are

BF
+

5
7
, . . (20a)m
l

1| ‘:1

Ztsq, = §P1.8Qt + sr . . . '(20b)

Eqn. (20b) shows directly, i
f we make only one of the quantities qk, Q),

vary, that

BF BF
pk =
35‘,

P1,; _
bQk

. . . (200)

holds. In the particular case in which the additional function F is chosen
independently of t, eqn. (20a) reduces to the earlier eqn. But in this
case, too, eqn. (20b) i

s more general than eqn. (6), inasmuch as here the
term SF becomes added, which (as F was assumed independent of t),may
be designated a complete differential of the arbitrary function F (q, Q).
Eqns. (19) obviously no longer represent

“ point transformations,"
inasmuch as, unlike (2) they no longer connect the point- or position
co-ordinates q, Q with one another, but with the impulse (or momentum)
co-ordinates p, P. Moreover, since in the case of such a general trans
formation the mechanical significance of the momentum co-ordinates
becomes lost to view, it is better to call the pairs of variables q, p on
the one hand and Q, P on the other; canonical variables. P is

canonically conjugate to Q, and likewise p to q. The general transforma
tion of canonical variables that are thus only restricted by the conditions

(20) i
s called canonical transformation. At the end of this note we shall

raise the point as to how far the term contact transformation may be used
35 .
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as an equivalent to it. In the most general case, when, namely, the
function F depends on t, the canonical transformation not only connects
the quantities q, p with Q, P but still more the quantities q, p, H with
Q» P, H- . . . . . .
Under certain circumstances it is convenient to start from the quanti

ties q, P, t as independent variables instead of q, Q, t, for example, in the
case, which was above excluded, of an analytical relation between q, Q, t.
It is easy to re-write eqns. (18) in such_a way that they fit in with this
view. It is only necessary to add 2Q;,P;, on the right with a positive and
negative sign and to consider instead of F the “ modified " function

F* = F + §P,.Q,. . (21)

Eqns. (18) then merge into the form

11 _
Zpkqk

= H + Eon»,
_ F* . . . (22)

By now treating t, q, and P as independent variables it follows from
these, analogous to eqns. (20a, b), that

H=H+b5*. . (2211)

Epkdqi, + 2Q;,8P,,
= 8F*. . . . (221))

From this point of vantage we get the “ canonical conjugates
"
p, Q to

the independent variables by means of the formulae

, bF* aF*
-

])/¢ = ‘DE,
Q], = —

31$‘:
. . . (226)

which are analogous to (200). The term
“ modified function" F* is to

remind us, just like the term “ modified Hamiltonian principle
"
(cf. p. 543)

of the usual process in dynamics and thermodynamics in which we change
the independent variable, a. process which is to be traced back in an
abstract form to Legendre and which is called Legendre tramifo-rmation.
It only remains for us to give grounds for the term “contact trans

formation.”
Let us consider a “surface” s = s(q1, g2, . . ., q_;) in f + 1-dimen

sional space, interpreting ql . . . q_,-as rectangular point-co-ordinates in a
“
plane

"
and erecting s perpendicular to it. Then the quantities

_ E
Pk “' bqk

determine the position of the tangential plane at the surface s, and may
therefore be called “plane-co-ordinates." The following “condition of
combined position,"

(Is =
Epkdq),

. . (23)
1

holds between the point- and the plane-co-ordinates.
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Let us introduce new co-ordinates Qt, P), by means of eqns. (19),
whereby, however, we assume f and g to be independent of t in order to
allow us to use a geometrical interpretation. Expressing the q),'s in
terms of Q; and P,- by means of eqns. (19), we next form s(q) = S(PQ)
and postulate that the new configuration S also represents a surface, that
is, that it is touched by the planes given by the P's at the points de
termined by the Q’s. Then it must be held as a consequence of (23) that

(is = §P,,dQ,, . . . . . (233))

that is, if p denotes an arbitrary function of the q, p, s or Q, P, S, then :

dS -
irkdok

=

,,
(d
t -

iyikdqk)
. . (24)

This is the condition that is to allow us to apply the term contact trans

formation in the geometrical sense to our transformation (19).
In a certain respect our condition (20) is more special, in another it

is more general, than the geometrical condition (24). The factor p was
wanting in our condition (20); in its place, however, even if we leave
out of account the member with dt, there occurred the additive term
SF which was wanting in (24) for the case p = 1 and S = s. But it is

just this generalisation that is important for mechanics. The theory of
transformations of the differential equations of mechanics, founded by
Lagrange and Poisson and developed by Jacobi, operates throughout with
such generalised contact transformations.
Thus the geometric and mechanical conception of contact trans

formations is only partially identical.

5
.

Concerning the Ratio of the Kinetic to the Potential Energy
in the Coulomb Field

(To Chapter IV, §3, p. 214; §4, p. 220; §5, p
.

228)

At the close of his first paper in Phil. Mag.,* Bohr makes the following
statement:
“ In every system of nuclei at rest and electrons that move in circles

with velocities which are small compared with c the kinetic energy is
,

except in the sign, equal to half the potential energy."
We shall show that this theorem applies much more widely: it holds

not only for circular orbits but also for arbitrary forms of motion, in which

(for varying kinetic and potential energy) the time-mean values of both
energies have to take the places of the energy values themselves in the
enunciation of the theorem. It also remains valid except for a small
change if we allow any arbitrary central force to act in place of Coulomb's
law of force.1' It is not necessary nor even convenient in the sequel to
assume the nuclei at rest.

“ Vol. 26, p. 24 (1913).
+In what follows we continue from Burgers, Diss. Haarlern, 1918, p. 168, whose

simple proof we extend to the case in which any central force, not merely Coulomb's,
acts. This extension already occurs in Jacobi, Vorlesungen itber Dynamik, p. 22.
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We take as our basis rectilinear co-ordinates a:, y, z which we
distinguish by afiixing numbers for the electrons and nuclei and denote
by q, . . . q_;. Let pl . . . pf be the corresponding momenta. Then
the kinetic energy of our system of nuclei and electrons can, by eqn. (5)
of the preceding note, be put into the form :

EH" =
Q-Elkljlkqi;

. . . .

Let the potential energy be a homogeneous function of degree n + 1, of
the co-ordinates qk. This is the case, for example, if central forces
proportional to 'r" act between the point-masses of the system, that is,
between the ith and jth point-mass (no matter whether it be nuc!eus or
electron) a force acts in the line connecting both, its amount being Ci,-rs.
(n is the same throughout but C may under certain circumstances change
from point-pair to point-pair). Then we get [cf. eqn. (3) on p. 194] :

1 DE,“ 1 _
Epot = Fri Z(k)'-bqlkiqk = — n + lgpkqk .

1!

—j—t,§_7);,-qk=Zp;,(jk
+ Ejikqk

. . . (3')

and take the mean value in time, which we denote by a horizontal bar.
If the motion is periodic or at all stable in the sense that the position of
the point-masses does not systematically deviate from its initial con
figuration to an extent that increases indefinitely with the time, the
time mean on the left-hand side of (3) becomes equal to zero. Thus

Elwik
= —
Zfikqk

- - (4)

must hold. By (1) and (2) this means that

We next form

1___
Ek,~,,="; E,,,,, ,. . . . (5)

If we finally set n = — 2 (Coulomb force), then Bohr's assertion is valid
in its extended form, namely,

-__ ]___
E,,,,,= _ §E,,,,, . . . . (6)

Our theorem does not hold in relativistic mechanics, because here eqn. (1)
falls out of action.

6. Some Examples of Integration by Complex Yariables

(To Chapter IV, §6, p. 235; Chapter V, §7, p. 312, and to the following
notes)

It is well known that the method of complex variables has the ad
vantage of allowing integrals over a closed path of integration to be
evaluated without the necessity of special devices and almost without
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calculation. As we shall see in the next note it is intimately related to
the problems of the quantum theory.

(a) Let us first suppose that we are dealing with a. real integral
which allows itself to be regarded directly as a closed complex integral :

2-rr
1 d¢J = 2;l1Tca7 - ~ <1)

0

F10. 123.

We introduce as a new variable the complex quantity z = 051' which
traverses the unit circle in the positive sense, while ¢>goes from O to 211-,
cf. Fig. 123. In these variables we write

1 dz 1 dzJ =
zfitlll . 1

=
n-i<i@z” + 21¢ +‘1‘

' (2)

_ Z 1 + §(
z +

E
)

where

1

1
2 = ;

Since, on account of the meaning of c (numerical eccentricity) and also
on account of the convergence of the integral (1) we must assume c < 1

,

1
] becomes > 1
. The roots of the denominator in (2) are

z,=-v;+~/1;”-1...—z,<11 ,,
,,

J

- K3)
Z2= —1]— »\/1)'—l.. .—Z2>1

In place of (2) we get by resolving into partial fractions

.1: u
p .1am

1r'Ls (z

— 2,) (z

—
2.2)

1

- »

<4)

=1@?<z1“T?.»(‘lz‘§3."llz”fzz.ll

I i

The second of the last two integrals vanishes since its singular point lies
outside the unit circle. The first allows itself to be contracted into a

path encircling the point z = zl in the interior of the unit circle and it

has the value 2n-i. Accordingly, -

21r-iJ =
'n"lie(Z1

—
Z2)

' (5)

~-7
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But by (3) we have _i 2 _;__,
Z1—Z2=2\/112- 1=;./1-.1

and thus (5) passes over into

K I-4 |l
"‘

.3J= . (6)

(b) The following integral allows itself to be reduced to integral (0);
we encountered it in the elliptic motion in eqn. (13) on p. 235:

. <
2 2"

sin? ¢

J1 =

Z
r!
-(
1

+ gcos ¢)'?’d¢'

For, by partial integration, this becomes
‘Zn

< _§l‘19§____
; 00* ¢

J1 = Q?‘ I + cCOS¢ 0

_

2
1
rl
l

+ eCOS<;bd¢'

0

The first term on the right vanishes, the second allows itself to be re
written thus:

21r

1 1

J1 =
27-_l-<1 + ecos¢>

_ 1)“, = J _ 1'

o

So we get

1

J,=~/1_€,,—1 . . . . (7)

The integral that essentially gives the time of revolution of the elliptic
orbit (cf. eqns. (28) and (29) on p. 312), namely,

211'

1 d

0

also allows itself to be reduced to the integral (a).
In (1) and (6) we replace e by e/ll and get the following two ex

pressions for J2/a :

ii" d¢ _
211-a-+ ecos¢

_

0

Qlgr:
'

F-
'

l “N.
By differentiating with respect to a we get :

1

T

d¢ a

QWOHGI
+ ecos

=

(a2
_
£2)”/J/-

\

If we next set a = 1
, then J2 comes out on the left. We thus have

1

J,=u—_;2),,/2.
. . . .(7t)
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.
_B
._

J3 = §\/A + 2_—_+ grlr. . . . (8)2 1

constitutes the natural and general basis for the treatment of the radial
quantum condition. The constants A, B, and C have a somewhat
different meaning in the relativistic and non-relativistic cases. For the
diagram we take them so that the branch points of the integrand—we call
them r.,,,,»,, and r,,,,,_,,, “perihelion- and aphelion-distance"—have real
positive values. The path of integration is initially from rm,-,, to rm",
and back again to rm,-,,; as shown in Fig. 124 it is drawn out into a
closed course in the complex r-plane. The r-plane is to be supposed slit
up between r,,,,-,, and rm, and represents the upper sheet of a two-sheeted
Riemann surface. On account
of the positive character of the
phase-integrals the sign of the . :i_-_i_~!_i ti _-__
square root is to be taken p0si- @ G}
live for a positive dr (section

To rm rm“ raw

below the slit) and negative for r- Plane
a negative dr (section above FIG_ 124_
the slit), as is indicated in the
figure. From this it immediately follows that the square root on the
real axis of the r-plane outside the slit is imaginary, and, indeed, positive
and imaginary for -r> r,,m,, negative and imaginary for < r < r,,,;,,, as
is likewise indicated in the figure. We recognise this if

,
starting from

the positive or negative edge of the branch section, we make half a re
volution around the branch-point r ==rm, or r = rm,-,,.
We continue further along the path of integration and close it at the

poles of the integrand. These are the points

(0) The integral

r = 0 and r = oo.

At the point r = 0, J 3 behaves like
_ B

,/o)"i_T(1
+
CT
+ . .

As the figure shows, the integration is to to be made in the sense of the
hands of a clock and hence the first member of the series furnishes the
value — 211-i; the remaining members, however, vanish in the integration.
Hence the total contribution of the point r = 0 is

-2-1ri~/C . . . . . (9)

The point at infinity is indicated in the figure in the finite region. We set

1 ds

i

S =

;.
1 dr = _

F1Hal _ B d

J3= -jg/A+2Bs+Cs" £= - ~/A)(1+‘¢\es+. .

The residue of this integral for the point s = O is solely determined by the
member containing s'1 ; this member has for its coefiicient

_B
<1 >

1
.



552 Mathematical Notes and Addenda

The contribution of the point at infinity therefore becomes (cf. the sense
of revolution in the figure)

+
2wi%

. . . (9a)

From the sum of (9) and (9a) we get the following value for J3, which will
be of fundamental importance in the sequel :

J,=-21ri<~/(T-TEX). . . .(10)

We add a supplementary remark about the sign of J6 was
defined in (8) as the residue of the expression

\/A+2Tl_3+%

for -r = O. This expression is
,

as has already been indicated in the figure,
negative and imaginary in the vicinity of the zero-point where 1' is real
and positive. Hence ~/Ciis also to be reckoned negative and imagi-riary
in (10). Correspondingly we conclude that JX is positive and imaginary.
(d) In J 3 we add a correction member having the small coeflicient

D1 and consider

_
V

B Cnfi

.1
4 =

(§)\/A
+

2
r +

T
2 +_T31d¢

. . . (11)

The position of the branch point is not essentially altered by the correction
member. Hence we may take over the preceding figure with its de
terminations about signs and path of integration.
To be able to carry out the integration we shall expand the root in

power series of the correction member. For this it is necessary to deform
the path of integration in given cases in such a way that the expansion is

possible along its whole course. For a sufficiently small D‘ this will
always be the case. The deformed path of integration must avoid any
branch points that may happen to arise from the added correction member.
If we now carry out the integration term by term, then we may proceed
with each member as in Fig. 124, since in the individual member only the
branch incision r,,,,:,, -> r,,,,,, and the poles 1

' = 0 and r = co occur.
If we retain only the first power of D1, the expansion runs thus :

\/
A + 21? + + ll;__i 1' 'r r

. (12)

=‘/A+zi3+—C;z+<A+?13+(-i,>_§.1?1r r 'r r~ 21"“

For the integration aimed at in (11) it leads to

D

J4 = J3 + §‘J5
. . . (13)

2B 0 -(1

J5=<§)<A+ 7 +3) *7
} . (14)
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J5 behaves regularly at the point r = co. For if
,

as above, we set
s = !, then

i

'r

J. = _
(__

s‘1L __
' J

\/A + 2Bs + Cs“

At the point 'r = 0 there results

__d'r .'i_ 1 (Ir _BJ, _
(#0

+ 2131 + A11) _ at + . . I (15)

/

. B

J= +
21rLC—~/6

Hence, taking into account (10), we get from (13) that

./ A B BD .J, = ~
2m(~/Q

_
~/A

-
2G.~/10.)

.

‘

. (lb)

(e
) In J 4 we add a second correction member with the small factor

D2, which is
,

say, of the same order of magnitude as D12, and let us
consider

J,,=(\/A+2§+g+21+1?Zd(r. . ..(17)r r’ 1'3 1*

Here again Fig. 124 serves to inform us in the matter of path of integra
tion and sign. Concerning the fundamental treatment of the path of
integration the same is to be said as under
Excluding all powers that are higher than D1, D1”, and D2, we next

expand

x/A+2B+(_i+D_‘+pl‘r 1
"‘

1'“ 'r*

=

\/
A + 213+Cf,+

1(A
+
2§+‘§)'*(P1

+

9
")- .- 2 ,

7.: 7.3 7.47 1 r

1 B c -10*-
§(A
+ 2

; + .),},

and then get

J,,= J, + %.1,+ 1.22.1, - 13812.1, . . (18)

B and
J,=(()(A+2_;+7-_-,)’7I. .(19)

B 0-14
J,,= + 2
;

+T_,) 1.7;.
. (20)

In calculating J 7 and J 8 we are again concerned only with the point

'r = O
,

since the position r = co also behaves regularly here. For the
neighbourhood of r = O

,

the following holds:
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d 41_J, = [;3f(c + 2Br + Ar-) 1*

_1 dr _B A2 31-3 A.=%_
<6r+§C'r)+a<Cr+2Crl>

_1a¢ _B_1A_ BF. _1riA_B‘1"EH1 6’ a
le

3c@)"*""l‘7c'(c 362)"

Further,
d

J8=-{;T(C+2Br+Ar2)-1
_1d1-_B A2 15B A 2_

3<Cir+ gar )+ §<6'r
+
E’:-1)
+. .

_ 1 at '_B 3A B2

_%/6_[7T[1 36¢
-

§(
6 _

56)¢~2+

. .

=

31ri(é_5%>or/(10 01'

With these values of J, and J8, as well as with the values of J 3 and J 5

out of (10) and (15), (18) becomes

J“ =
~M{<¢@— —3%>

€_{3D1"

A - 5 33
’?

+
16C’~/(3 0

'

By collecting those terms that contain A as a factor, we finally get

. _ B 1 B 3D.B 15D‘1BJ": ‘ 2"‘{~"*"fi‘§c—¢a*(D1‘§‘é**@ <
5
2

ll , 2]‘

_'¥,é__<D_,_§E)l
( ’

40‘/Q
~

4 0 J

(f) We now return to the integral designated by J3 in (8) and insert
in it a correction member Dr. We shall call the integral resulting from
this

_ ’i.B€C— QK
—t§\/A

+ 2_;+;Z+
Dray,-.. . . (22;

By expanding again in powers of D, we get as the first member the
former integral J3. We call the integral of the second member K1 :

K = J3 + %)K,, .
_
. . . (23)

setting, in general,

7ndr 7-n+](],

K11=@~=§ ——
_

x/A+_%b'{j+‘g
~/C+;Br+A (24;i N:
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Here it is the point 7' = so that plays the deciding part, whereas now the
integrand is regular at -r = O. \Ve introduce the new variable of integra
tion s = 1/~r and have

ds B_ ' C u _2
K1 " "

‘PF,/Z<1
+
226
+ is")

Expanding as far as powers of s2 within the square brackets, we get

ds B 3 B2 C _,
K1 =
“
@s*‘~/§[1

‘
F.‘
+ (2P"2.-\)s'+ - -

and by contracting the path of integration about s = 0

Ii, = ii/Lg; 2:-2%) . . (25)

Accordingly, in view of (10), (23) gives

K = _
21ri{~/C— %_ 4;.-,~2(%

-

0
)} . . (26)

In general
ds B C _§

K,,=_(j)s,,,.,~/K(1+2Ks+Ks‘*)

N
2m. <1+2]§s+gs“)—i

' - (27)

= _ Res

The following similarly constructed integral is calculated in exactly
the same way:

u(-IT rn+3dT

K".=,§,, Q
B

C,,=(P__._fi. A2,. . (28)

We get for it

2fl_i (1+2}gs+§s2)_%
Kn = _

A ‘I/K
BBS~‘*—" . .

The sign Res in (27) and (29) denotes the coefiicients of s'1 in the power
series of the expression that follows it.

7
. Hamilton's Partial Differential Equation and the Separation

of Yariables. The Moduli of Periodicity of the Function of
Action as a whole Multiple of Planck's Quantum of Action

(To Chapter IV, §6, p. 235 and Chapter V, § 4
,

etc.)

Up to a few years ago it was possible to consider that the methods of
mechanics of Hamilton and Jacobi could be dispensed with for physics
and to regard it as serving only the requirements of the calculus of
astronomic perturbations and the interests of mathematics. Accord
ingly it is not even touched on in the most famous of German textbooks on
mechanics, namely the lectures of Kirchhoff.
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Since the appearance of the papers by Schwarzschild and Epstein in
the year 1916, which, following immediately on the papers _by the author
on the fine structure of the Balmer series, link up the quantum conditions
with the partial differential equations of mechanics, it seems almost as if
Hamilton's method were expressly created for treating the most important
problems of physical mechanics.
We start from eqn. (12) on page 543 which was derived from

d'Alembert's principle :
k=_r r

Zpkaqk )8Ld1
. . (1)

L=l 0

\rVe take the q;,'s as having the meaning, more general than on page
541, of arbitrary positional co-ordinates independent of one another, and
the p;,’s as the corresponding momentum co-ordinates. Further, we shall
free ourselves from the restriction, introduced for Hamilton's principle
on page 545, that the time may not be subjected to variation. Accordingly
we set

I l

Jana
=
8)Ld1-

- La
0 0

and get, instead of (1),
k_f I

Ep,,sq,,'
=
sjmf

_ Ls» . . (2)

lc-1 o

If we assume that the potential energy does not contain the time and
also that the equations of condition that may happen to exist between the
parts of the system are independent of t, then the energy law holds in the
form

H = Ek,-,, + Elm, = W . . . .

((
3
)

By using eqn. (13a) on page 543 we may write

l l

ILd1-
=
2JEk;,,(lT
- Wt = s - Wt . . (4)

o o

The quantity

a

s =
2)E,,,~,,d¢

. . (5)

0

here introduced is called the furwtion o
f act-ion.

If we insert (4) in (2), it follows that

Epkdq Z

= as - z8W _ (W +
ms»)
_

. . (6)
= as _ asw _§p,,q,,.s¢ )

In the latter method of rewriting the right-hand side we have used

W + L = QEH1,
=21);-12;;

[cf. eqn. (5) on p. 541].
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The integral (5) is to be taken over any mechanically possible path, as
is shown by its derivation from d'Alembert's principle. Through fixing
such a path by means of its initial conditions (initial position and initial
momentum) S becomes a definite functiorl of the time. By making the
initial conditions variable, S appears as‘a function of 2f + 1 variables
(of the time, of f co-ordinates q;,° of the initial position and of f co
ordinates pkl‘ of the initial momentum). But instead of these 2f + 1
variables we shall introduce other variables, namely (proceeding as for
a ballistic problem), besides the co-ordinates qt“ of the initial point, the
co-ordinates qt of the end-point (“target point “; “ Tre_fl’pnnkt") and,
simultaneously, instead of the time t between the initial point and
the target point, the energy W (in ballistic terms, the

“
charge ”). As a

matter of fact, starting from a given initial point, we can reach a given
target point by different paths and in various orbital times, according to
the amount of energy available. The equation that accordingly exists be
tween t, W, qt and q;,° allows us to calculate t as a function of W, qk and
qt” and to eliminate it by inserting this value in the upper limit of S.
In the sequel we accordingly regard S, the function of action, as a furwtion
of the co-ordinates qt of the final position and of the co-ordinates q;,° of the
initial position, and as a. function of the energy W. We take SS as stand
ing for the expression

, bS BS BS
SS
=2bE8(]1¢

+ Efiptqkl’ + WSW . .

We suppose this value of SS inserted in the right-hand side of eqn. (6).
Designating the displacements Sq], for t = O and t = ton the lelt-hand
side of (6) by Sqk" and Sqk‘, we write in place of (6)

I;=f k:!'

Zp;,(Sg‘ + g;,St) _2p,,<'sq,." +
tSW = as . . (st)

k: 1 1:: 1

Let the quantity Sqkl be called the “variation at the final point of
the orbit." It signifies the virtual displacement to which we have
subjected the orbital element at the time -r = t. We must distinguish
between this and the “ variation of the end-point of the orbit," which, as
in eqn. (5a), will be called Sgt. The latter is now composed of two parts ;

(1) of the virtual displacement Sgt‘ that we have effected at the end of
the orbit, and (2) of the lengthening of the orbit which corresponds to the
alteration of the orbital time by the amount St. VVe have to imagine the
co-ordinate gt to continue its course during the time St with the velocity g

k.

The second part therefore becomes g;,St and we have

Sqk = Sq); + Q;,St.

If we insert this in the left-hand side of (6a) the following relation results,
on which all that follows is founded,

lF=_I'

2])‘-Sr[;;
--
Zpftqz + 1-SW

== l . . (7)
k=1 k=1

cw U
2

(where Sgk i
s the variation o
f the end-point of the orbit).
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We next specialise eqn. (7) by varying only the end-point of the
system. We shall keep the initial position and the energy W fixed.
Eqn. (7) then states:

Zpkdqk
=

and hence
BS

pk = E . . . . . . (S)

If, now, S were known in any way as a function of the q;,'s, then by (8)
we should be able to derive the p;,'s from S. But this does not really
help us on. For, to determine S as a function of the q;;'s, we should
require previously to have integrated the equations of motion. Then,
besides the successive positions of the system, also the corresponding
momentum co-ordinates would be known and eqn. (8) would become
superfluous.
We can, however, use eqn. (8) indirectly to find S. For if we insert

(8) in the energy law (2)

EL-,-,, + Em, = H(p;,; qk) = W . . . (9)

where H denotes Hamilton's function, that is, the total energy, expressed
as a function of the p),'s and q;,’s, then we get Hamilto-n's partial
(lifierential equation

H(g%;q,.)=w . . . .(10)

It is of the first order and of the second degree (at least in the case of
classical mechanics, since here EH, is a quadratic function of the p;,'s).
We shall assume that we can integrate eqn. (10), that is, that we can
specify a solution

S=S(q,...qf§a.,...u._,-) -

containing f arbitrary constants of integration. One of these constants,
say (1,, is merely added to S and is therefore of no account; it does not
enter into the expressions for the p,,'s. But S also contains W as an
essential constant arising from the differential equation. We shall call
special attention to this by writing

S = S(q, . . . (]_,~;Wagaa . . . a_,-)+ 0., . . (ll)
We shall see presently how, under certain circumstances (by separa

tion of the variables), we can actually arrive at a solution of the differential
eqn. (10) of the form (11). We first exhibit the inner relationship between
the quantum theory and Hamilton's method of the function of action, of
which we spoke at the beginning of this note. It rests on the fact that
our phase-integrals

[Pledge _

allow themselves to be expressed directly by the function of action S.
On account of (8) we have

. BS

J-pkdq),
=
‘[a—qIcdq;,

= Jk . . (12)
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By the rule on page 201, about the integration ‘limits of the phase
integral, J; denotes the increase that S undergoes when the variable qk
traverses the region that comprises the complete description of all the
phases of motion of the system. Fixing our attention on periodic
motions (or

“ conditionally periodic
” motions, see below), we represent

to ourselves that in the integration qk returns to its value at the outset
and we call Jk the lath modulus of periodicity of the function of action.
Our quantum conditions

ipzflqt
= nth

then require that the moduli o
f periodicity o
f the action function be whole

multiples o
f Planck's quantum o
f action.

To see how the moduli of periodicity of S are determined we must
consider a little more closely the integration of the differential eqn. (10).
The only method that is successful is that of the separation o

f variables.
We shall illustrate it by a simple example.
Suppose we are dealing with an oscillator bound anisotropically in

space. The restoring forces - klzcl, — kzxfl, — 703.13act on the point
mass m in the directions of three mutually perpendicular axes a:1a:,a:3. If
pl, pg, P3, are the components of momentum (pk = mick), then

2 + _‘
l

+ 2 1 0 A
) l

Ekin =
pl P3

1 E1106
=

2 (kl-771'
+ kzx-.4“+ kawsz)

and the partial differential eqn. (10) then becomes :

as 2 as 2 as 2 . _

(ta)
*
(rt)

““
(st)

+ "W1" + + W) = “W <13)

This equation allows itself to be “ separated" with respect to the variables
zclxgavm that is, it allows itself to be resolved into the following three
equations, that each depend on only one of the three variables:

as 2 DC? 2 U

(D $
1
) + mklxlfi = Q1, + 'rnk2a;2~= 11.2,

. (14)
BS 2

_

+ m/63%} = 0.3

J

where al, 11,, 11;,are integration constants between which the following
relation holds:

0.1 + 0.2+ as = 2mW . . . . (15)

We thus have only two arbitrary constants; the third constant is

determined by these two and W.
Eqns. (14) give us

BS p _ _

‘E
= N/a.,' — mk,'.r,1 = N/mki ~/ay‘

— :r,1 . (16)

Here we have set
11.;= mk,~a;" . . . . .

Eqn. (16) shows in conjunction with the mechanical meaning of

BS _

in =11;
= mac; . . (18)
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that the variable :r,- is limited to the region between 1 a,- and that it can
reverse its sense of motion only at the end-points ia; of this region.
For if xi were to overstep the region 1 a,-, then p,¢ would become
imaginary, which is impossible. If :r,- were to stop before getting to the
boundaries of the region and reverse its direction at a point inside,
then :5

;

would = O here; but by (18) this would entail the vanishing of
BS/bx,-, which is excluded by (16), since BS/bx; can vanish only at the
limiting points i a,-. Thus the variable av; traverses the entire region i a,
alternately in the increasing and the decreasing sense, reversing its sense o

f

motion and the sign o
f

p,- at the end-points o
f the region. That is, the full

region of variability of :c,- stretches from - a,- to + a,- and back again to- a,-. We indicate this integration by) adding a circle O to the integral
sign. Our quantum conditions are then to be written in the form

s _ _J, =
(()§;¢1e,=

,/as - .r,2d1r,- = 11,11. . (19)

Here the integral obviously denotes the circular surface whose radius is

a,-. Thus we conclude from (19) that

n-h

From (17) and (15) it then follows that

4_ ,1 -—- ,~
h

= ./me J. §~/mi.-’-L = MW - - <21)
11" 1|‘

We finally introduce the vibration numbers vi, which correspond to
the free oscillations of our point-mass in the three co-ordinate directions.
These are given by

2111/,"= = 21T""tV,'.
m

If we insert this in the second equation (21), we get

2mW =
22%-)1,-h,

W =
211,1/,-It

. . . (22)

The energy of our oscillator thus appears, as was to be foreseen, as
an integral sum of energy-quanta hv,- that correspond to the three partial
vibrations; our spatial oscillator, just like the linear oscillator in Chapter
IV, § 1, is quantised according to energy-elements.

A series of general remarks follow from this simple example.
(a) If Hamilton's differential equation of a system of f degrees of

freedom allows itself to be fully separated as regards the co-ordinates
q, . . . qy, that is, divided into parts that depend in turn on only one of
the co-ordinates q,-, then, as in (14), f constants 11,-appear, of which,
however, only f — 1 are arbitrary. In this way we obtain by the method
of separation of variables the complete solution of Hamilton's differential
equation with the number of integration constants required in our former
remarks. Together with the energy-constant W we have f parameters
(we shall call them briefly the

“ constants 0."), which according to classical
mechanics, may be chosen freely within a continuous manifold, but,
according to the quantum theory, are capable only of discrete values.
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(b) Just like the Hamiltonian equations so the partial equations
derived from them by the process of separation in the co-ordinates q

are of the first order and of the second degree. Thus if we calculate out
BS/bq,-, we get an expression which, like (16), carries a square root; for
example, when the q,~,'sare orthogonal co-ordinates we have :

= ~/f,'(q,-) . . . . . (23)

Let as; and bi be two consecutive simple real roots of the function f,
- in

a region of values which is accessible to the co-ordinate q,- according to its
mechanical significance; we then see from the same considerations as
those applied in our special example, that if once q,- lies between the
values ai and b,-, then it swings permanently between these limits
(“libration limits"). For each libration and for each co-ordinate q,-, S

increases by a fixed modulus of periodicity. Just as in our example the
periods corresponding to the various co-ordinates do not in general super
pose exactly and hence the orbit will not return into itself. We call this
behaviour conditionally periodic. For
further details, in particular concerning
the conditions under which an asymp
totic “ limitation motion ” occurs, in
place of the “libration motion

”
we

refer the reader to Charlier,* Celestial _,
Mechanics (“ Mechanik des Himmels ").

(0
) In all conditionally periodic sys

tems the form of the orbital curve has
the character of Lissajous figures. In
Fig. 125 we draw the two-dimensional
Lissajous curve which is described by F,G_ 125_
the co-ordinates a:,:r2 of our example.
The curve touches its envelopes ml = -3 a, and :02 = i a2_ alternately.
Exactly the same occurs in the general case, for which we denoted the
corresponding limits for the co-ordinates q; by a,~, bi. The somewhat
different appearance of, for example, Fig. 78 illustrating the Stark effect,

is merely due to the fact that the co-ordinates q; are not here Cartesian
but have been drawn as curvilinear co-ordinates in agreement with their
physical significance. The Lissajous curve in this case does not nestle
in a rectangle but in a curvilinear quadrangle.
(d) An essential difference, however, manifests itself if there happens

to be a cyclic azimuth among the co-ordinates q
i of the system, that is an

angular co-ordinate ¢, which does not occur in the expression for the
energy. In this case in place of eqn. (23), the following holds:

7

g
g = const. = p . . . . (24)

In ¢ we have no libration limits but the mass-point continually tra
verses the orbit around the origin of the co-ordinate system, according
to the law of areas. The representation of the relativistic Kepler ellipse

‘Leipzig, 1902, vol. I, p. S5, el seq. The name “conditionally periodic " arises
from the fact that when further conditions become added [cf. the form of eqn. (42)]
the motion becomes periodic in the true sense.

36
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in Fig. 110 gives us a picture of this behaviour. It is included between
two enveloping circles instead of being hedged in by a curved quadrangle.
The full region of variability for a cyclic co-ordinate stretches from qb = O
to ¢ = 21r. Consequently the corresponding modulus of periodicity
of S is

‘hr

J¢ = Jpdqt
= 211'];

o

and the quantum condition becomes, as in the case of the simple
rotator

21r]r
= nh . . . . . (25)

It is not necessary for the sequel to emphasise this frequently
occurring exceptional case. Rather, use is to be made of it in defining
the conditions of the conditionally periodic system.

(e
) The general quantum conditions for a conditionally periodic

system are, following on (23), for orthogonal co-ordinates q,-:

J, =
()1./f,(q,-,

W, (1, . . .».._,-yzq. = at . . (26)

They furnish us with f equations for determining the f constants W,
a, . . . 11;. These constants, in particular also the energy VV, are thus
fixed by the quantum numbers n,:. A discrete manifold is separated out

o
f the continuous ntan~ijbtd o
f its ‘values. In particular, the quantising of

the energy pays due regard to the sharpness o
f spectral lines.

(f) Complex integration offers the natural method appropriate for
evaluating the integrals of the form (26). As we have already indicated
by the sign O, the path of integration is a closed one. It runs round
the two branch points a,-, 12

,-

of the square root, which we suppose
connected by a branch incision; and, moreover, since the square root
changes its sign_in passing around the one or the other branch-point,
and since the integrand of the phase-integral is necessarily positive
(cf. p. 201) the path forwards must be traced on the positive, that back
wards on the negative, edge of the slit. We re-model it (cf. p. -551,
Fig. 124) into any arbitrary course about the slit and may, in given cases
simplify it further by contraction into the singular points of the integrand.
Thus the most po-werful inst-rmnent o

f the theory o
f functions, the met-lwd

o
f complex integration, places itself besizie the methods o
f higher mechanics

in the service of the quantum theory.
(g) An important remark of Epstein* concerning the choice of the

co-ordinates to be used in expressing the quantum conditions links up
with the form of the orbit of conditionally periodic systems such as, for
example, were depicted in Fig. 78. The difficulty involved in choosing
the co-ordinates, and their influence on the quantum conditions has been
emphasised earlier on page 201 of the text. From the point of view of
conditionally periodic systems we are inclined to say that those co
ordinates are the correct ones in which Hamilton's equation allows itself
to be separated. This rule actually leads, in all cases to which it is

applied, to results that are confirmed by experiment. But the rule seems

‘P. Epstein, Ann. d. Phys., 51, §2, p. 168.
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to be purely formal. In reality, there is, according to Epstein, a sound
geometrical meaning.
In the conditionally periodic motions, the envelopes of the orbit are

the co-ordinate surfaces q; = a,- or, respectively, q,: = b,-, corresponding to
the straight lines as, = i al, and a/:2= i az in Fig. 125; these surfaces
occur in the f-dimensional space. Now if we change the integration
constants a; the surface configuration contracts or expands and in this
way defines the whole system of co-ordinate surfaces qi = const. Thus in
the conditionally periodic system the correct co-ordinates to be used in
the quantum conditions are not only distinguished formally by admitting
the possibility of separation, but also mechanically and geometrically as
the envelopes of the orbit. The conditionally periodic systems furnish
their correct co-ordinate system of themselves. Conversely, if the orbit has a
system of enveloping surfaces, and if the parameters of these surfaces are
chosen as co-ordinates, it is to be presumed that the Hamilton equation
will allow itself to be separated with respect to them. We here merely
remark in passing that under some circumstances the separation of the
differential equation must be elfected not by a mere change of the
co-ordinates q; but by a simultaneous change of the co-ordinates 11,-and
gi (contact transformation).
(h) But what of the case when the Hamiltonian differential equation

allows itself to be separated with respect to two different systems of
co-ordinates? Which of these systems is then the correct one? In one
sense the answer is “ neither," in another, “ both."
To get a general survey of the conditions here involved, it is worth

returning to the example of the harmonic oscillator and to assume that
two of its bonds become equal. For example, let kl = la

, = k, then also

v, = 1/2= v. Eqn. (13) then takes the following form i
f we introduce in

place of the rectilinear co-ordinates £0112the polar co-ordinates 'r, q
t :

+ + + m(h¢2 _|_ k3;z;32) = 2mW.

It also allows itself to be separated with respect to these co-ordinates
according to the scheme :

as aS 2 p
f

, as 2 ,

5?)
= 17, + + mkrl = a, + mk3av31 = as,

in which the relation
0. + 11,,= 2mW . . . . (27)

which is analogous to (15), must hold between 0. and <13.
This ambiquity of the co-ordinate system is in very good agreement

with the remarks contained in (g). When the vibration numbers are
equal for the directions 1 and 2

, the projection of the orbital curve on
the plane 11:12:, is not a general Lissajous curve, but a closed ellipse whose
centre is the origin of co-ordinates. Hence, according to the standpoint
adopted in (g ) we can recognise neither o

f these two co-ordinate systems, wl,
at, or 1', 4: as the natural and correct system. In the third co-ordinate wa,
however, the Lissajous character of the orbit remains preserved, so long
as 1/3 differs from v (and so long as 1/3 is not a rational multiple of v,
cf. below). For example, the projection of the orbit on to the plane
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$1113again otlers the picture of Fig. 125. In terms of space the orbit in
this case everywhere closely covers the mantle of an elliptic cylinder.
(In the general case, on the other hand, it fills the whole interior of a
spatial parallelepiped. If finally v, = v2 = 1/3, the orbit degenerates into
a single spatial ellipse that is unceasingl y traversed.) For the co-ordinates
'r, ¢, 2:3 the quantum conditions would be

21rp = nh, J,
-

=

(l
a \/
a — mkri —

]i_—i;d<r
=

'r
:/
I1
.)

ml
. (28)

J1
, = = nah I

The first of these is identical with eqn. (25), the last with eqns. (19)
and (17). The middle one allows itself to be reduced by a simple sub
stitution to the form of eqn. (8) in Note 6 and, when worked out, gives us:

I'll
= (2n' + n)h . . . (29)

It now follows from (27), (28) and (29) that the energy is

, '_k / I5
.

2m\V = 50” (2n' + 'n.)h +
~ m
"n3h ,7|" 1|’

or also, according to the ning of the vibration numbers v and v3 (sinceA_ mea

21” = ~/k/m,21rv3 = ~/ha/m):

VV = (2n' + 'n)hv + nahl/3.

_

Thus for the energy the result is the same as it would be by eqn. (22)

if we were to base our calculation on the rectilinear co-ordinates r,1.~.,¢,¢

W = (nl + 7L2)hv + n3hv3.

In both cases the energy, as it should do, comes out as an integral
multiple of the energy-elements hv,-. Since, for spectral applications, we
are primarily interested in the energy and since this is not affected b

y
the ambiguity, we may, on the other hand, say: both co-ovrd-inate systems

xlxi and 'r¢ a/re equally admissible for the quantising o
f the energy.

The unique determination of the co-ordinates must also be regarded
with doubt even in those cases in which v1 is not indeed equal to V2, but
in which s11/1= $.21/2,where|s1, s2 denote integers. For then the Lissajous
curve becomes closed after s1 vibrations in the direction 1 and s2 vibrations
in the direction 2. Thus true envelopes do not come into consideration
in this case either, since, owing to the finite number of the points of
the orbit at which reversion of motion takes place, the straight lines

ml
= const., x2 = const. are not yet defined geometrically as in Fig. 125.

(2
1
)

We follow Schwarzschild * and call the exceptional case considered
degenerate. A degenerate case thus occurs when the Hamiltonian equation
allows itself to be separated in various ways and hence when the quantum
conditions are not uniquely determined. The geometrical criterion for

' Berlin Academy, Sitzunsber, 1916, p. 548.
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this is that in the space of the co-ordinates ql . . . qf, the orbit fills a

region of less than f-fold power and hence does not as in the general case
define f enveloping surface-pairs. But first we shall introduce the concep
tion of degenerate cases analytically according to Schwarzschild by starting
from the angular co-ordinates that are generally used in astronomy.
To arrive at a general definition of angle co-ordinates we ask ourselves

whether it is not possible to describe the motion of a conditionally periodic
system by means of

“ cyclic co-ordinates
"
alone. A cyclic co-ordinate is

(cf. (d) of this note) one such that i
t does not occur in the expression

for the energy and that consequently its corresponding momentum co
ordinate remains constant during the motion. According to this, “ cyclic
co-ordinates" are “ (force-)free co-ordinates

"
and this characterises their

appropriateness for describing the progress of the motion. The simplest
example of such a co-ordinate is given by the angle traversed about an
axis for which the moment of the forces is zero. On account of this
analogy we shall hereafter say instead of cyclic or free co-ordinates
“angular co-ordinates," although it is not really the angle (which is in
creasing irregularly in time) but the surface swept out by the radius
vector, that we have to fix our attention on as the analogon to the
general definition of angular co-ordinates. Actually it is the linear pro
gress in time, besides the cyclic or free character, that constitutes the de
finition of the angular co-ordinates.
We next show that we arrive at the desired angular co-ordinates in

the sense of this postulate if we introduce our phase-integrals J;,- as
momentum co-ordinates and seek out the position-co-01'd»inates that are con

jugate to them. To give the proof we have to base our argument on the
scheme of contact transformations.
In a conditionally periodic system the J;;'s are pure functions of the

constants 11;,and W (they are independent of the remaining constants
that enter into the equation of the orbit and that we shall denote by Bk).
Thus, we may express the o.'S by the J's and insert them in eqn. (11).
This equation then becomes

S = S(q1 . . . _q_,-, J1 . . . J1
)

. . (30)

and gives us
BS BS

8S = Esfidqg +
. . (31)

. BS . .If we here substitute pk for
DE
according to eqn. (8) and introduce the

symbol
BS

wk = m . . . . . (32)

which for the present is to be regarded only as an abbreviation, for

5
1
%

(31) becomes

as =
Epksqg

+
2u>;,8Ji-

. . (as)

\Ve read from (33) that the criterion of a contact transformation, and
indeed of one of the form (22b) on page 546, i

s fulfilled for the transition
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p, q —> J, w so long as we define w by (32). The new variables J, w were
denoted earlier by P, Q; our function of action S is there represented by
the function F*, and the case we are dealing with is the special one in
which F* is independent of t, that is

,

eqn. (22a) on page 546 assumes the

form H = H. Over and above this, our present eqn. (32) shows itself to
be identical with the earlier eqn. (220). According to the theory of contact
transformations the Hamiltonian equations hold for the new variables
w, J. Now, Hamilton's function H = W (just like the remaining in
tegration constants at) i

s a prime function of the J's, that is, it is in
dependent of the w’s and is constant during the course of the motion.
Accordingly we have

dl-I '

Tk=
—

—£)ltl“=DT’c=const.
. . (34)

5
1
% 1| 9

The first equation states nothing new. It only confirms the constancy
of the J;,'s and this is identical with the fact that they can be calculated
from the a;,'s. But the second equation states that the wk's are actually
the angular co-ordinates that we are seeking, since they increase uniformly
with the time, as we postulated in our definition of angular co-ordinates.
If we denote the constant on the right-hand side by vk, then we have

wk = vkt + 8
‘;

. . . . .

The symbol 11;, is to indicate that 11;,plays the part of a constant vibration
number for the cyclic co-ordinate 101,.
We next show that every angular co-ordinate wt increases by 1 when

ever the co-ordinate qt swings once to and fro between its libration limits.

If we allow the co-ordinate qk to make a full but otherwise arbitrary
revolution within its region of values whilst the remaining q,-'s are kept
fixed, then the function of action S changes b

y the amount of its modulus
of periodicity J1, [cf. eqns. (12) or (26)]. Hence, if we denote the initial
and the end points of the closed revolution by a and e

, that is, two
points given by equal values of all the q's, the relation :

s.-s,.=.1,.. . . . .(ss)
holds. If we imagine S

,

as in eqn. (30), to be a function of the q's and the
J's, we can differentiate (36) partially with respect to Jk, keeping the
remaining J i's and all the q’s fixed, and we get, in consequence of (32),

wkc_wIm=1a wa—-wm=0, 'i=i=k - - (37)

Thus if the co-ordinate qk returns to its point of departure after a full
revolution, all the remaining q,-'s retaining their values, the corresponding
angular co-ordinate 10;, increases by 1, whilst the values of the remaining
angular co-ordinates remain preserved. And conversely: if one of the
angular co-ordinates increases by 1 whilst all the remaining angular
co-ordinates keep the same values, the co-ordinates q return to their point
of departure. The q's are periodic functions o

f the angular co-ordinates
and have the period 1

.

The “modified function of action" S‘ has the same property of
periodicity as that possessed b
y

q
. We define S* from the function of

action S as follows:

8* = S -
Zwut

- <38)
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For if we allow wk to increase by 1 in the sense of eqn. (37) but make all
the other w;'s return to their point of departure, Ewk-L, alters by -T1,. Then
it follows from eqn. (38) that in this change of the w’s the simultaneous
change of S* is equal to that of S, diminished by Jk. Since, by eqn. (36),
the change of S was equal to Jk, the change of S* becomes equal to O.
IV/zereas the function of action S has, as a function of the w’s, the additive
moduli of periodicity J ;,, the modified function of action S* becomes a pure
periodic function of the w's with the period 1.
From the periodicity of the q’s it follows immediately that the latter

allow themselves to be developed as functions of the 10's in an f-fold
infinite Fourier series of the following form :

f . .

qt=(§)o;.......,”2mWMm2+""W"/’- . <39)

'lhe C"s are constant co-eficients, that is
,

they depend only on the
integration constants Jk, or, in the language of quanta, only on the
integral quantum numbers nk. The time appears only in the wfs, and
indeed linearly. The summations in the s1, s.

l . . . s; stretch from- co to + co . After what we have said, the corresponding representation
of course also holds for S*. If we insert the expression (35) for the w's in
(39), it follows that

qi =
<2)./-D271“:

I ' I 8jeZ1|'i(l|l',
+n._.v2+. . . + If‘!-)¢ ' -

in which the co-eificients have the following meaning:

1>:_,,. .. ._
, = <>:_., . . .

- ~-
+~/*1’ . _ <41)

The dependence of q on the time is
,

in contrast with that of the
angular co-ordinates, not periodic ; rather, it is of the conditionally periodic
type. In general the current point of the orbit never returns strictly to
its starting-point; and in general also the individual co-ordinate qk does
not assume its initial value in periodically equal intervals of time. The
single factor

eihriikl/kl

does indeed seem to exhibit the period 1;; = l/vk, but the juxtaposition of f

different factors of this sort and the irrationality of wk on the whole
disturbs this periodicity from coming about. Our example of the Lissajous
motion was distinguished by the fact that each co-ordinate in it

,

regarded
separately, was completely periodic in time (thanks to the circumstance
that in this case the infinite Fourier series became reduced for each
co-ordinate to a single member). But here, too, the character of the
motion as a whole is completely aperiodic, as Fig. 125 shows, except
uihe-n, several o

f the Lissajous vibration numbers v become severally equal or
cnmmensurable with. one another.

'

\Ve are now in a position to formulate in exact terms Schwarzschild's
definition of degenerate systems. The general case of non-degeneration
occurs when all the vibration numbers vi, that are present in the equations
of definition (35) of the angular co-ordinates are incommensurable with
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one another. The exceptional case of degeneration occurs when one or more
relations of the form

S11/1+8._,v._,+...=0. . . . (42)

are fulfilled, s denoting integral coejficicnts. The case in which, in
particular, two of the v’s become equal to each other is clearly included
in eqn. (42). If n such relations hold, then the orbit does not, as in the
f-dimensional space of the q, . . . qv,, fulfil an f-fold continuum in
general, but only an (f - n)-fold continuum. In this case, we may speak
of n-fold degeneration. Compare with this what was said in (h) about
the Lissajous curves for which some of the r's are equal. Complete
degeneration occurs in the case of a completely periodic orbit; then

f — 1 relations of the form (42) must hold or, in particular, all the rugs
must be equal to one another.

Hitherto we have disregarded the real problem of integration of
the differential equations of mechanics, that is

,

the representation of the
motion in its dependence on time, and have shown only that in angu
lar co-ordinates and for conditionally periodic systems, it is reducible
to the general Fourier scheme (39). We must now supplement our
remarks by a few statements about the method of calculating the orbits
that constitutes the true achievementof Jacobi in this field. This is done
most briefly by again founding our remarks on the theory of contact
transformations. We start out from the integral (11) of the Hamilton
Jacobi equation with the integration constants VV, 0.2, 0.3 . . . af (we shall
in future continue to omit the unessential constant 0.‘) and perform the
process of variation on it

,

obtaining

f J

_ \s as as
as _

25768111,
+ mew + Egksak.

l 2

Using eqn. (8), we write this

,r

as =
Zpkbqk

+ ,e,sw +ZB;;8a1,; . . (43)

2

The quantities B here introduced are, to be defined thus, as a comparison
with the preceding equation shows :

_ BS _ BS _
fi1—aw, [3x—M;~_, k-2...f . . (-14)

Eqn. (43) states that between the qt, pk as original variables, and the fig,
at (with 0.1 = W) as

“ new variables," the characteristic relation of
contact transformation again holds, and indeed in the form of eqn. (22b)
on page 546. The function F* that occurred there is here again repre
sented by S. As it does not contain t explicitly, eqn. (22a) on page 546
assumes the form H(p, q) = H(P, Q), that is, in our case

11(1), q
) = H(w, (1., . . . “fie, . . . 3,) = w
'

From this it follows that

°H=1 §=0 k=2 “=0 1.-~i
aw ,M , ...f,b/3k , _ (45)
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Now the Hamiltonian equations hold in the new co-ordinates, W, 11, /3
,

just as much as in the old co-ordinates p, q. Thus, in view of (45), we
have l
?iW=_§E=0 d§1=§E_=1 §1.‘5=_§1jI_=()
at a/3,

’

dt aw

’

at ta,

'

_ fl/3I=_5H_ ._ -k_2...f, _(H_fi_0, k_2...,r.

These equations assert nothing new as far as W and 11;,are concerned.
They only confirm their constancy during the course of the motion. But
concerning Bk they state that the quantities ,8

,

. . . ,6
f,
-

are also constant

during the motion and that ,8
,

becomes equal to t (except for an additive
constant, which we can include in the reckoning of the time). If we
now compare this result with the equation of definition (44) of the ,B’s or,
what comes to the same thing, if we use eqn. (220) on page 546, we have

BSt_ fi . . . . . . . . (46)

p,.=§§=cona., k=2,3,...f . .(47>
at

Eqns. (47) give f — 1 relations between the co-ordinates q, . . . qr of
the orbit which do not contain the time. They sufiice to describe the

form o
f the orbit. We call them the orbital equations. The constants

B2 . . . ,B_;, together with the a;,‘s and W, give the still wanting integra
tion constants of the problem. The course of the motion in time is

represented by eqn. (46). We call this equation the time equation. It

may also be read olf directly from our initial eqn. (7), if we set 8q;, =

Sqk” = O in it.
VVe have thus deduced—by the shortest way—-the remarkable

theorem of Jacobi: the integrals of the equations of motion may, if a com
plete solution S o

f the partial differential equations is known, be obtained
by mere di_[ferentiation.

8
.

Quantiaing of Elliptic Motion by the Method of Separation of
Yariables

(To Chapter IV, § 6
,

p. 236)

The method of the preceding note leads astonishingly quickly to the
main result in the treatment of elliptic orbits, namely to eqn. (20) on
page 236.

2n-’~me”E2 1\V=—-mrwifi. . . 1

h- (n + n)‘

( )

Whereas in the discussion of the text in Chapter IV, diverse subsidiary
calculations were made and special ideas were developed concerning the
orbital curve, the present method proceeds directly towards its goal,
eqn. (1), and reaches it with a minimum of calculation and reasoning.
We take over from eqns. (15) and (16) on page 236 the expressions for
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the kinetic and potential energy during the Kepler motion and get for
their sum

1 1 _, eE
W = EH" + E"'"" = 2nt<pr2 + tipffli

_
17

On account of

BS BS

I Pr
=
D71 Pt

=
Q

the Hamilton-Jacobi differential equation becomes

BS 2 1 BS 2 2 IE .

fa) * ale)
= 2”‘W +

mi ‘Q’

Since ¢>does not occur ex licitl c 'c1ic co-ordinate , we ma next setP Y § Y

BS
D
?’

= const. = p. . . . . (3)

The quantum condition

“as

J¢ = = nh . . (4)

U

therefore gives us for the value of p

BS nh
21|’]J = nh, Q

=
2Tr
. .

By substitution in (2) there follows

_ BS '
1

2meE nflh?

<37)
= gmw +

'r

_
4121'”

or

‘;§=\/A+2§+g . . (6)

where we have used the abbreviations :

A = 2m\V, B = meE, 0 =

We need not waste time with the general integration of S
,

but form

J, =
éb-Srlr

= n'h. . .

I

Br

/\ K
1
\_
,

directly. Our method of writing the integral denotes that we wish to
apply complex integration and that the path of integration is to be
looped around the points r,,,,:,, and 'r,,,,,, (cf. Fig. 124). We take the
result of the integration from eqn. (10 , Note 6:

"
as 0 . -~ B

-l"
=(?\/A

+

,1
‘ + ,:1,rl1-

= -

2
1
|"
l<

~/U
_ - (3)
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If we insert this in (7), then, on account of the meaning of A, B, and C,
we get

. .nh meE ,_

2
1
rt
(

—
1%
—

~/2mW>
= nh . . . (9)

In determining the sign of ,/(T the concluding remark of Note 6c is to be
taken into account. Eqn. (9) now resolves into

21»-1'meE

J2m W = (n + n')h

or

21r”me*E2 1

W = -WW . . . (10)

which was to be proved. It cannot be denied that this process is

perfectly adapted to the problem.
Only one doubt may yet trouble us, that of the uniqueness of the co

ordinates: are the polar co-ordinates r, ¢ the only variables into which
eqn. (2) allows itself to be separated ? Do other co-ordinates, if there are
any such, lead to the same result, to eqn. (1) ?

The first question is to be answered in the negative. We see in the
treatment of the Stark eflect in Chapter V that by the introduction of so
called parabolic co-ordinates the partial differential equation of the Kepler
problem for the case in which an external field is present (and hence also
for the case in which it is absent) allows itself to be separated. The
quantum conditions that we get in these co-ordinates and the quantised
orbits that result from them, are different from those obtained in polar
co-ordinates. The main result of our treatment, however, remains valid,
namely the expression for the energy when quantised in parabolic co
ordinates has the same form as in polar co-ordinates. (Cf. with these
remarks pp. 284, 285 and 287.)
The ambiguity vanishes if we treat the problem more fully, that is

,
if

we take into consideration the relativistic variability of electronic mass

(cf. Note 16). For this problem polar co-ordinates are prescribed by its
very nature. Now, as we have to regard ordinary mechanics as the
limiting case of relativistic mechanics, we may also claim our treatment
of the Kepler problem in polar co-ordinates as a legitimate limiting case
of the complete and unambiguous relativistic solution of the problem.
Even the form of the orbital curve in the classical and relativistic case

points to the fact that in the one case we are dealing with a degenerate, in
the other with a non-degenerate, problem [cf. the previous note under the
headings (g), (h) and (1l)]. The ordinary Kepler-ellipse being a closed orbit
has no envelope. Through its enveloping circles the relativistic Kepler
ellipse (cf. Fig. 110) defines the co-ordinate 1

' as the correct and uniquely
determinate quantum co-ordinate; the azimuth q

t, being a cyclic co
ordinate of the problem, is in any case mechanically ‘distinguished.
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9. The Spherical Wave and its Moment of Momentum

(To Chapter V, § 1, p. 256)

The solution of Maxwell’s equations for a vacuum :

a
n
-A m
e ll lI. curl E
, II. ](;~fi=CLll'lH

may be reduced, by extending them by means of a supplementary term
due to Hertz, to determine a “ Hertz vector" H. W'e set

E = curl curl H, H = icurl . . (1)

which satisfy II. Eqn. (1) then transforms into

curl ii + curl curl

1
1
) = 0 . . (2)

If we use rectilinear co-ordinates we know that

curl curl [I = grad div I1 — AH . . (3)

Since curl grad = O
,

we may also write (2) in the form :

curl(l
—

All)
= O

.
G.

This equation is satisfied if we subject H to the condition expressed in
the vibration equation

9
.1
H

:1
: ll .m.....(4)

We write that solution of this equation, which corresponds to a mono
chromatic spherical wave 1' = O (a simple dipole) in the form:

at = aei"

_ 3'-kr P = pgflilvf, p = p
_, = be"5 . .

H - PT, p
z’ = cg,-Y

Here It =

“L
: = is the wave number for 211- units of length, and

Q) = 2
.7
is the vibration number for 21r units of time. The solution has

T

six constants of integration a, 11, b, ,8
.

c, -y; but since one of the three

phase-constants 0., B
,
-y may be altered by choosing the point of time

t = 0
,

only five of them have a real physical meaning. If we add to this
the time of vibration 1- and the whole time T of the process of emission,
as measures of the frequency and the coherence of the wave, we have, in
all, seven determining elements for a spherical wave, as given in the text.
The constant vector p is accounted for by three amplitudes and two

phase constants, but for later purposes it is convenient to reduce it to
two amplitude-constants, two direction-constants, and one phase-con
stant. In connexion with this we remark that we can determine three
real relative magnitudes A : B : C so that

Aaei" + Bbeifi + Ceeir = 0
.
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Actually, if we form the real and the imaginary part of the preceding
equation, we obtain two homogeneous linear equations by which the
three ratio numbers A ' B : C are determined. Since, simultaneously,

AP, + BPy + GP, = 0

holds for every t, the vector P, which varies with respect to the time, lies
continuously in the plane, whose normal is given by the ratios A : B : C.
We may also speak of it as a “vibration plane"; in it P describes a
“vibration ellipse." By placing the 0:-axis and the y-axis in this plane,
and the z-axis perpendicular to it

,

the supplementary conditions in eqn.
(5) become

p, = 0
, p, = a, p,, = bei‘! . . . . (5a)

where we now denote the phase differences between the y- and the
av-axis b

y
7 = B - a (the earlier phase y for the 2-axis now becomes

meaningless). Our integration constants are now separated into the
following five quantities: two amplitudes a, b, one phase y, and the
ratios A : B : C, which define the position of the plane of vibration.
In the following calculation of the field we have to make frequent

use of well-known formulae of vector analysis. We shall note these here
without working them out in detail. The calculation of the moment of
momentum is due to Abraham.* But our point of view, based on the
quantum theory, requires a different method of representation.
From equation (5) it first follows that

_ b eikr
d1vlI =

$_<~7 >
,

curl II = - =

,.

. 1 A e“"'' d d Y = P. ~ _ _gm. 1\lI
Tar<7_)+

E

|'
—
“'
l
\’

IV
~
t|
|-
d

"3 E
9
Q
1

Ai’
.

\.
|H

|—
|

'£
1
i'=
/

E

|-
1
]>

~
:
>
-¢
m
y iv
.

%
’l
~
3
\

/}
_i
|%
*|
i*
\_
/_

"

m
i:

The first equation (1) then gives us, if we take into account
and (4) :

. lbea" rblbeik’Bi Z —@-is _-%_-,1?
P<k+rbr>r+(Pr)1'Drrbrr

. lb Dlbefl"E= I ___ ____(I ) (IF)

<
1
‘ +

5 %r+T1D1'v' b
T
>
z¢
'

k

. . (6)

. D D
‘

e"" .

"("’>("‘+n7“ 7a7+—-"')_
2,.

=
(r1>)(t¢
- 102

\€~il

5
:3
) l Q

\_
_m

or, as a first approximation for great values of r,

(rB)= _2»i/¢(rr)‘?; . . . . (7)

" Der Drchimpuls des Lichtea. Physik. Zeitschr., 15, 914 (1914).
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From eqn. (6) it also follows to a first approximation that

‘h

1
2
:

= k”

{
P -

(Pr)}‘?_T_
. . (6a)

The second eqn. of (1) gives

1 - 1 a "W . 1 a *1?

H="?[P‘1n7eT="‘[1"1;-‘$67 (8)

_ 1 ikr

(:11)
= ik(r[Pr]) 7 "T

= 0
.

. . . (9)

Since (r[Pr]) = (P[rr]) = 0
. Finally from (8) it‘ follows as a first

approximation for great values of r that

H = - k2[Pr] . . . . (8a)

The moment of momentum for the unit of volume at adistance r from
the middle point is, by eqns. (2) and (3) on page 259 of the text [con
cerning the factor 41r in the denominator, cf. what is said in the case of
eqn. (2) on page 259] :

M =

[$
1 = is [sum] = é
lm (nun; = n(rn))

'

Or, taking into account eqn. (9), we have

1

M = — ;r~cH(rE) . . . . (10)

If we multiply M by the element of volume in polar co-ordinates,
namely, r?drdQ, where dfl is the solid angle as seen from the mid
point, and set (Ir = cdt; and integrate over all dQ's, we get the moment
of momentum contained in the spherical shell of radius r and thickness
dr, or, expressed in other words, the moment of momentum transferred
through the sphere of radius r in the time dt = dr/c. The moment of
momentum transferred through this sphere during the whole time T of
emission was called N on page 260. Let N1 be the moment of momen
tum transferred in unit time. N and N1 are determined by the following
equations:

.,
.

N =
Inga»

0

N1dt=
IdQMr*dr

=
adtjdcmw

' ' (11)

N, =
cIdQMr’

= _ nun)-r=
Tr 1

From eqns. (7) and (8a) we see that (IE) and H each vanish in the
order r“ 1, since the ratio r/-r denotes a unit vector that is independent
of the magnitude of r. Consequently, M vanishes in the order r ' 2, as
remarked on page 260, and N and N1 become independent of r and are
finite.
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Before proceeding to the integration in (11) we must pass from our
complex representation to its real part. VVe set, say,

o = Re{Pe"'"'}, 0' = Re{— -z1>¢"~~}. _ . . (12)

According to the general hypothesis (5) 0,, 0,), O, we have the meaning

[we return later to the more special assumption (5a)] :

O, = a cos (kr - wt + a), 0,,’ = a sin (lcr - wt +

a
)1

0,, = b cos (kr - wt + B), 0,,’ = b sin (kr — wt + /3
) . (12-a)

O, = c cos (kr — wt + 7), O,’ = c sin (kr - mt + y
)l

By (11), (7), and (8a), we then have

N, =
2k=*j‘19 (F

,

0
') (0
,

5
],

41r r r
110 , , Z , 1 2

/

Now, the following values hold :

Id
!) ail 1
1
/”

‘((1022
_ ___ = _ __J = .__ 3 __411-r‘ 41r r 412' r 3

_ ‘ (13)d!la:y_ dQyz_ (@;i:_O
41r r2
_
In r‘-'
_
411-r'~'
_ '

Consequently, if we carry out the integration in NF, we get

N11
=
%k3(o.llo=I

_
010:1’)

= iikaloollav - ~ (14)

But by eqns. (121)

I I>—
*

H
9
1
1

[OOi],,
= bc

S
in (7

- ,8)

[O0]_,, = ca sin (0
. —

7
) . (15)

[00’],, = ab sin (B ~ 0
.)

Hence the moment of momentum radiated out through the spherical
surface of radius r has by (11), (14), and (15) the components :

N, = -_L~}k3Tbcsin (7 - ,8)

Ny = ~§k“Tca sin (0
. —

7
) . (16)

N, - -}~}k‘*Tabsin (B - a.)

For the sake of comparisonwe also calculate the total energy radi
ated out. In the unit of time the following amount of energy is radiated
out through the angular element d,Q:

S,.r'1(lQ

where S
,

denotes the radial component of the radiation vector S; hence
the amount radiated through the whole spherical surface in the unit of
time is

W, =
Jis,/r-an _ (17)
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and during the time T it is

'1
'

_
W =
IW,dt . . . (18)

Now if we also pass over to the real vector Q, then by (6a) and Ba

[Em = s
’ii{[<>[<>£1l

e
<<>z>i 10:11}

= —

€.3»£{<<>f-)’-<>*}»

therefore
S =

.:
. =

{<<»:>*
e

_ r _ hie 1"’ ,1- *4m{(°;) ~ 0,
or also on account of k = -

~
l
/£30) 1

‘ 2

U~ ~
{<~.>
- ot

From eqn. (17) it follows directly

W1 =
J.s'_,r2dn

= _ kgw
{<;.o>2_ 0

2
}

1r

If we carry out the integration with respect to (til, then, on account of
(13), we get

W1 ;§ka.(o3+o:+o'5). . . (19)

e
s

1| 5
2

S2 n
Bllli, Owing to (l2a), the integration with respect to t denoted in (18)
leads to

T

Joidt
= _ at,

Jog,”
= _ b2, I0 0 U

Accordingly» bl’ (18) and (19), the total energy radiated out is

W = »,}k”wT(a* + b2 + 0"). . . . (20)

By eliminating T it follows from (16) and (20) that

(N = bcsin(y-B) l

J

’
a"+b"+c"

(N: NI’:

lN.=

L

w
is

H

to
H

.9
”’

& n

l.
O
|p
-Q

G
IG

E
lfi
e
lfi
to

\_
W
'_
"Y
'

$
5 C

aw Si" ('1 - 7)

stein (B — 1
1
)

a‘ + FY07)‘E
li
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This is the complete representation of the moment of momentum in
arbitrary rectangular co-ordinates a:, y, z. If, as in eqn. (5a), we choose
the a:- and y-axis specially to lie in the plane of vibration, and thus the
z-axis perpendicular to it

,

then we get c = O; and if we write ,8 — a. for
-y, then:

2ab sin

, . . (22)“Z 1| Z 1| _<
=
>

Z n F u
E
I3

This is eqn. (5) on page 261 of the text, from which our further con
clusions concerning the principle of selection and polarisation were
deduced. We had to resort to the more general representation (21), how
ever, in the case of an external field of force. If in (21) we set 0) = 2-n-v
and W = hv, we get, from the third of eqns. (21), again writing B — 11
for -y:

_ h 2absin-y
N1_§.§z+b~.¢'+62' - (23)

This is eqn. (1) on page 271 of the text.

10. Bohr’s Principle of Correspondence

(To Chapter V, § 3.)

Bohr replaces the investigations which we carried out in Chapter V

by his Principle of Correspondence to connect the classical and the quan
tum view of the phenomena of radiation. By this means he arrives not
only at a determination of the polarisations, but also at a determination
of the intensities. In view of this achievement, the question as to
whether Bohr's procedure is just as satisfactory logically as our less
complete method, becomes only of secondary importance: and this
question would, moreover, receive a different answer according to the
subjective standpoint or perspective adopted. We first show that the
correspondence between classical and quantum radiation has its analytical
counterpart in the relation between differential quotient (coefiicient) and
the quotient of differences.

(a) We consider the orbit of a conditionally periodic system with its

f vibration numbers 11;,[~v/irleeqn. (35) on page 566 ], or the corresponding
periods of vibration rk = 1/v;,. Here n, denotes the mean value of the
time in which the co-ordinate q), vibrates to and fro between its libration
limits. By eqn. (35)

_ (ill/‘k
Vk -—-

‘d7

and by
(I'll/'1;_ DH _ BW
at
"
aJ,,
_
3J1,’

thus
BW
= r . . . . . 1VI:
Mk
. < >

Here W denotes the energy of the conditionally periodic system re
presented as a function of the phase-integrals J1, J.1, . . . J/.
37
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According to the classical view, the system composed of moving
charges radiates in the periods of the motion. Thus the mechanical vi
bration frequencies v;, are at the same time optical vibration frequencies.
Besides the v;,’s themselves, their multiples (“ overtones ") and the linear
compounds of the multiples (combination “tones ”) occur as mechanical
and optical vibration frequencies:

v = Skv]; and V = 8),;v|;,

~
l\
/I

where s stands for quite arbitrary numbers, the “order numbers
"
(Ord

nungszahlen) of the process of vibration in question. On account of (1)
we get for the overtones and combination tones:

DW

V =
BTKC
3,, . . (2a)

and

Sk . . . -

The result is different, however, on the quantum view. The system
does not radiate in the stationary orbits; radiation occurs in the transi
tion from one orbit to another. If AW is the difierence of energy be
tween the initial orbit and the final orbit, then Bohr’s hypothesis

v=A%7 . . . . . (3)

holds. We shall first assume that in the transition only one of the
quantum numbersmk alters by the amount Ant. Since J1, = nth, that is,
AJk = An). . h

,

we may write, in place of (3),

.,=%;¥An,, . . . . (4)

For Am, = 1 we have the analogon to eqn. (1); for Any, = st the analo
gon to eqn. (2a). The quantum leap 1 is the parallel to the fzmdamental
vibration, the higher quantum leaps correspond to the overtone vibrations

o
f classical radiation. But the combination-vibrations (2b) have also a

quantum analogon as soon as we take into consideration quantum tran
sitions in which several quantum numbers leap simultaneously. We
dissociate the total change of energy AW in the form of a cascade into
the partial changes of energy AW,, AW2, . . . AVV_,-, which are to corre
spond to the successive quantum leaps An,, An, . . . An_,= In the
partial change of energy AW, all the n2 . . . n,~have their initial values,
and only n, changes from its initial value by the amount An,. In the
case of AW2, n, has its final value, whilst n3, . . . nf their initial values,
and only n2 alters by Anz, and so forth. Thus i

f we write in place of (3)

v=Q_AW,+AW2+ +AlVf

h

_

h h

' ' '

h

or after the model of (4)
AW

v =
233-'k“A7L;;

. . (5)



10. Bohr’s Principle of Correspondence 579

. . AW . . . .
then the quantities AJ: are proper “partial differential coefficients,"
each one defined by the change of the one phase-integral J1

,

and the in
variability of the others, of which some preserve their initial value, and the
others their final value. Thus, with Am, = sh, eqn.(5) is the exact analogon
to (2b). The general quantum transition corresponds to the general combina
tion vibration o

f classical radiation. The characteristic feature is here
that the differential coeflicient is replaced by the quotient of the difl'er
ences. The same phenomenon appears quite generally in the transition
from atomic theories to theories of continua. The quantum theory of
radiation denotes a kind of atomism of happening (of “efl'ect"); the
classical theory of vibration gives a scheme of this atomism in the sense
of the ideas of continua.

(b) There are, however, conditions under which the two sets of ideas
and formulae not only correspond but coincide. These conditions are :

An), < nk . . . . . (6)

that is, the leap o
f any quantum number is to be small compared with the

quantum number itself. Then

AW 3WEgfi . . . . . (6a)

holds asymptotically. That is, the difference between the quotient of
the differences and the differential coefiicient becomes small compared
with the absolute values of these quantities. Comparing

(4
)) and (5) with

(1) and (2) we see that at the same time the vibration num er calculated
according to the quantum theory merges asymptotically into that
calculated from the classical theory.
To illustrate this we remind ourselves of, say, the example of the

rotator. If p denotes the moment of momentum, ® the inertial moment
of a system rotating about a fixed axis, then

J2
81¢-“('9

holds. J = 21:-p denotes the phase-integral for the rotator and is set
equal to nh. Now in the leap of n by the amount An, and of J by AJ,
we have _

A(J)2 = 2JA-T + (AJ')2,

AW___'E_<]_+lég _i1_|_lAln'>U_41so 2J>“41#e( 2n
But this quotient of differences differs by as little as we please from the
differential coefiicient

2 ll

b
e
!

i

®
l"
@
..

ll

thus

ell _ J

DJ
“
F16

when, and only when, eqn. (6) is satisfied.
Another example is furnished by the Balmer series. It was in this

that Bohr for the first time convinced himself that the vibration number
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that the hydrogen electron would radiate according to the classical theory
in traversing its orbit coincides with the vibration number that Balmer's
formula gives for the cases when the quantum numbers of the initial and
final orbit are great, in particular when these quantum numbers difler
by unity: when they differ by two or more, Balmer's vibration number
becomes an overtone of the circular vibration calculated on the classical
theo .
Tl-he coincidence of the vibration numbers calculated on the quantum

and on the classical theory, respectively, for high quantum numbers and
relatively small quantum leaps is perfect from the formal aspect. Never
theless their remains a considerable difference of view in the matter itself.
From the classical point of view all vibrations, overtones and combination
tones, are emitted simultaneously when the orbit is being traversed. The
Whole vibration spectrum owes its origin to one uniform event. From
quantum point of view, however, each line of the spectrum corresponds
to a different single event and a different kind of quantum leap. The
individual events do not necessarily occur simultaneously, but rather
independently of each other. And experiments on the excitation of spectral
lines confirm throughout the view-point of the quantum theory, and
thus contradict the classical theory.

(c
) The correspondence or the coincidence, respectively, of the

vibration numbers in the two theories is certainly not merely fortuitous
but rather is deeply rooted in the part played by the classical theory of
vibration as a “ continuum-approximation

" for discontinuous reality. Is

it to be valid only for vibration numbers and not to extend to the vibra
tion forms and the vibration quantities, that is, to the polarisations and
the amplitudes? For the circumstances defined in (b) for great quantum
numbers this will scarcely be denied. But, beyond this, Bohr requires
that amplitudes, etc., calculated on the classical theory should be useful
approximations for moderate and small quantum numbers, too. Just
this further extension constitutes the fruitfulness of his principle of
correspondence. We formulate this principle in the following words.
To every quantum transition there corresponds a vibration deduced from
the classical theory, namely that o

f which the order numbers sk are equal
to the quantum leaps Ant. Now calculate the amplitude and the polarisa
tion o

f the partial vibration in question by classical methods and apply
them to the spectral line corresponding to the related quantum. leap. The

principle o
f correspondence asserts that in this way we get the intensity and

the polarisation o
f the spectral lines exactly right for infinitely great, and

approximately right for moderate, quantum numbers.
Now how do we find, on the classical theory, the radiation of a single

partial vibration that takes place in the time in which the atomic orbit is

traversed? For this we have to take our support on eqn. (1) on page 25,
in which the product of the charge and acceleration ev of the electron
there considered occurs. By summing this product, in the use of a

composite atom, over all electrons (including the nucleus that may
happen to be moving with them), we get a vector

o=-Etta’,
which is the decisive feature of the emitted radiation and which we may
resolve intoits three rectangular components 0,, Oy, 0,. In its stead we
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may somewhat more conveniently consider the vector P of the variable
electric moment of the atom, from which 0 is derived by differentiating
twice with respect to t:

P = 2 i er . (7)

with its three components

P,,=2iea:, Py=2iey, P,=E-1-ez . (7a)

We must now resolve the whole vibration complex that is contained in
the atomic orbit and hence also represented in P, into the individual
partial vibrations, since by the principle of correspondence these acquire
a special physical meaning, namely, that of the individual spectral lines.
The spectral resolution of the emitted light thus requires as its analytical
counterpart the resolution of P (or O) into its periodic components. But
we have already undertaken such a resolution earlier; it is just the angular
co-ordinates for which it is successfully carried out. In eqn. (40) of Note
7 we found for each variable q,- of separation a Fourier representation
and we can now pass from it to a corresponding representation for each
rectangular co-ordinate of the charges participating in the atomic
structure, in which each such co-ordinate is, of course, in its turn a
definite function of ql . . . qr. If we insert these Fourier expressions
in (7a), We may in general write

./ ,, .pr
Dim I l '8 6.m(@,»,+i,t,+

. . . +~,t,)i _ _ (3)-' 1

The summation is f-fold and extends from - oo to + co. T0 each
spectral line given in turn by the quantum leap Anl, An.” . . . An; there
corresponds that member of this series for which st = The corre
sponding coeflicient D [cf. eqn. (41) on p. 567], which is in general
complex, is what interests us here. If we pass from the vector P, by
differentiating twice with respect to t, to the emission vector O, the
coeflicient D of our member becomes multiplied by the real factor

-
41r2($1v1+ $2!/2+ . . . + s,-v,~)2.

The complex coefficient D, multiplied by this factor, thus gives us a
measure of the amplitude and phase of our partial vibration, calculated
on the classical theory, and also, according to the principle of corre
spondence, a measure of the true quantum amplitude and phase in the
corresponding spectral line. By determining the amplitude and phase
separately for the er-, y-, z-direction, we get at the same time a measure
of the polarisation of the emitted radiation. _ _ _

(d) This determination of the intensity and polarisation is not,
however, fully unambiguous, and this fact in itself characterises it as a
process of approximation. In calculating the expression (8) are we to
use as our basis the conditions of the initial orbit or those of the final
orbit, or, perhaps, an intermediate orbit that is to _be defined by taking
a mean of both? No answer is vouchsafed to this by the principle_ot
correspondence. It is easy to see in a general way, indeed, that with
the ‘asymptotic condition (6), An;,\'\’nL-, the coefiicients D that are
obtained from the initial or the final orbit, or from an intermediate Ol‘l)1li
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must come out appreciably equal. In the case of values of Am, that are
comparable with nk, however, the D's in general become different for the
initial and the final orbit and hence a certain arbitrariness remains in
applying the principle of correspondence.
This arbitrariness vanishes in particular when it also happens for

finite values of m, that the D's of the initial and the final orbit and, as
Bohr emphasises, also ‘of the intermediate orbits have the same value, for
example, the value zero. In this case we shall also have no scruples in
inferring the value zero of the radiation. The principle of correspondence
then becomes specialised and condensed into a principle of selection; it
forbids the occurrence of such spectral lines the corresponding partial
vibrations of which do not occur in the series expansion (8).
We return below, at (f) to the example that is essential to us for

manipulating this principle of selection (when a cyclic co-ordinate is
present). Let it suffice for the present to illustrate the process by the
ordinary Lissajous case. In it

,

thanks to the special simplicity of the
quasi-elastic binding, the infinite Fourier-expansion for each component
of P reduces itself (cf. p. 567, Note 7) to a single frequency

Pm = Dlefinivlfi, P
y = D2e§lwiv:l, Pl =_.Dae2I'iv:l _ _

where we have in each case to suppose the conjugate imaginary
member of equal frequency to be added. Comparing this with the
general representation (8) we see that for P, in each case s.

, =

a
s = 0
,

whereas of all the values s1 between
— co and + co only the one value

|s,| = 1 presents itself actually; corresponding results hold for Pg, P,
From this we conclude in accordance with the principle of correspondence
that none of the three quantum leaps An,, Anz, Ang can combine with
either of the others. If n1 jumps, n2 and n3 remain unchanged, and rice
vcrsa. ; moreover n, (and likewise n.,, n3) can jump only by 1

. The light
emitted when n1 jumps is linearly polarised in the direction of :12,that
when 11.2jumps is polarised in the y-direction, and so forth. (We hereby
of course assume that we are not dealing with degenerate cases, that is, we
suppose 1/1,1/2, vs to be all different.) Accordingly, the whole spectrum
of the quasi-elastically and anisotropically bound oscillator consists
only of three separate lines with linear x-, y-, 2-polarisation. In this
case we have moreover the peculiarity that the quantum-determined v’s
come out identical with those givenby the classical theory, namely V1, v2, v3
(on account of the quantising of the energy of the oscillator W = En; . h-v.-) ;

that is
,

in this case the correspondence resolves into coincidence not only
for great vibration numbers but also for small frequencies. In this case,
moreover, there is nothing arbitrary in the application of the principle of
correspondence, since in all these co-ordinates we have the same form o

f

representation for the initial, final, and intermediate orbits.
As the extreme special case Planck's linear harmonic oscillator, of

course, also belongs to the category of Lissajous motions. If there were a

vibrating system of this simple type in nature, its spectrum would have
to consist of a single line having the vibration frequency of classical
emission and would have to be produced merely by quantum leaps of 1 1

.

In the case of a linear but non-harmonic oscillator (for example, with a

supplementary quadratic term in the expression for the restoring force)
the overtones will also occur, and, indeed, with definite amplitudes
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which bear ratios to the fundamental vibration that have to be calculated
in accordance with the principle of correspondence. If the fundamental
vibration of the oscillation is v,, and the direction of vibration is along the
cc-axis, the formula is:

+00

P,
=Zn,t'1~~~¢.

. (9a)

Hence, according to the principle of correspondence, in the case of the
non-harmonic oscillator we have, besides the quantum leap i 1, also
any arbitrary leaps An = 1 s. \Ve made use of this in Chapter VII,
2 and 4, in dealing with band-spectra.
With regard to atomic models it is to be noted that in the case of the

principle of correspondence we are dealing with the emission of electric
charges and that P was intentionally defined in (7) as the moment, varying
in time, of such charges. In the application to band-spectra we thus have
in mind an oscillator with a variable electric moment. A heteropolar
dipole like H+Cl—, or complicated configurations like H+H*O-", corre
spond to such an oscillator; but homoeopolar molecules like O2, N2, H2,
C12, do not correspond to it. The latter when their constituents, bearing
equal charges, vibrate with respect to one another, lead to no electric
moment and hence, on the classical view, to no emission of radiation;
thus, on the quantum theory, too, they may not radiate. It is in agree
ment with this that it has not been possible in their case to prove the
occurrence of infra-red absorption (cf. p. 418).
The case of a homoeopolar molecule is different if one of its constituents

is electrically excited by disturbing the electronic orbits. By this means
the molecule may acquire an electric moment as a whole and may become

capable of emitting radiation as an oscillator. We infer, for example, in
the typical case of the N2-bands (cf. Chap. VII, §3), that in them the
oscillations (and likewise the rotations) of the homoeopolar N,-molecule
can become active spectrally, but only in conjunction with electronic
motions, that lead to an electric moment, or, in quantum language, in con
junction with electronie leaps.
Further applications of the principle of correspondence to the calcula

tion of amplitudes in the case of systems of the hydrogen-type are given
by H. A. Kramers in his dissertation, quoted on page 275. Here we are
already confronted with the case that we must use a certain dexterity in
balancing between the values of the D's in the initial and the final orbit.
The excellent agreement with experiment, which Kramers reaches parti
cularly in the case of Paschen's He+-observations, as well as in that of
the Stark-effect, shows that a balance is possible, and thus contributes con
vincing evidence of the fruitfulness of Bohr’s principle of correspondence.

(e
) We stated on page 275 that Bohr had discovered in his principle

of correspondence
“ a magic wand that allowed the results of the classical

wave theory to be of use for the quantum theory." To bring into pro
minence the astonishing effectiveness of this magic wand we have to
remember that the question of intensity is in reality a statistical problem.
The quantum theory considers individual events in the atom, all involving
the same quantity of energy hv, so far as we are dealing with a definite
spectral line, and it has no measure which tells us how frequently this
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event occurs. But it is just this frequency of happening that is of im
portance to us when we are dealing with the determination of the in
tensity from the quantum point of view. The classical theory of radiation,
too, makes no hypotheses of probability, it just derives mechanically from
a given orbital curve the vibration complex contained in it together with
its amplitudes. But the principle of correspondence asserts that the un
known statistics of the 'indivz'dual quantum events are actually furnished by
the classical calculation. By calculating the Four-ie-r coefiicients of the
spectrum we get the correct conrlitikms of intensity, that is, the numbers
gt-using the relative frequerwy of happening of the corresponding quantum
events. Although we are convinced that the quantum theory is right in
regarding the events that lead to the emission of different spectral lines
as independent phenomena, and although we know that the classical
calculation is incorrect in treating these events as conditioned mechani
cally by the motion in the orbit, we yet repose trust in the classical
theory to the extent that we derive from it the conditions of intensity of
the spectral lines. The classical theory is in error in regarding these
conditions of intensity as determined by mechanics ; in reality, it furnishes
the quantum theory with the missing statistics of the individual processes,
as it were, without wanting to do so and without giving grounds for it in
its foundation. This interlocking of the quantum theory and the classical
theory becomes intelligible to some extent of course only from the side of
great quantum numbers. The classical theory here hits on the correct
vibration numbers. We believe therefore that for great quantum numbers,
too, it will yield the correct conditions of intensity, actually then, the
true statistics of the individual phenomenon. Consequently we can
understand that we may enlist the aid of the classical theory to get at
least approximate results for the statistics in the case of finite or small
quantum numbers, too.

(f) We now get to the most important application of the principle of
correspondence, namely to the case in which one of the variables of
separation is cyclic. \Ve call this cyclic co-ordinate ¢, and the remaining
variables g2, qs, . . . q_,-. From the definition of cyclic variables (the
expression for the energy is independent of ¢ ; the corresponding

S . . .
momentum, p = 3

-,

is constant) i
t follows that S IS represented by:

34>

1

S=2—1rJ¢.¢+s(q2,...qf,J) . . . (10)

where J¢(= 21-p) and s are independent of ¢, and hence depend only on
qg . . . q_/and the phase-integrals J (in general including 11¢). In accord
ance with the definition of angular co-ordinates in Note 7, eqn. (32), we
get k = 2

,

3
,

. . . f, by diflerentiating (10) with respect to Jr,

wk =fk(q2, . . . q_;,.T),

where we have set _f
;, =

D
i}
,

or, resolving these equations, we get inversely

k

qk = F;,(w2, . . . wf, J) . . . . (11)

In particular, we get for Ic = 1
, now differentiating (10) with respect to

J¢ I
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wt = 5 + ~l/(qt - - - qt -T)

where we have set 4: = Taking into account (11) we may also write

¢ = 21rw4, + w(~w,, . . . wf, J) . _ _ (119,)

The case of a cyclic variable ¢ certainly occurs in an atom which is

under no forces. Here we find i
t expedient to refer the co-ordinates of its

point-masses to the invariable plane drawn through its centre of gravity
8-Dd d4-1110118them by ’l'k, 21;, 4» (Zk = the distance of the hm point-mass
from the invariable plane, <1»= its azimuth in this plane, and so forth).
Then we may pick on one of the ¢-is (for example, q

b
,

=

¢
>
)

as a cyclic
co-ordinate and express the relative azimuths 4);, ~ ¢

,

which are alone
of account as far as inner forces are concerned, as well as the r;,'s and zk's,
by means of the remaining variables of separation q

. If we consider the
combination an, + iyk for each of the point-masses, we find that

wk + 1'2/1:= ell’ -1'r=8“l"‘
_ ll = @l¢f(q¢. - - - q

r)

and hence that

P’ + W” = 2 i “(””'* + “'1/k) = @"“’f1(qi, - - - qr)
P1= 2+ “Z =f2(921- -' (1!)

If
_we
now insert

(11)_
and (lla), set w¢ = V; + 3

,

wk = ykt + 3;,’ and
\V!‘lli8f1,f2 by eqn. (8) in Fourier series, we get

P; + 'LPy =
e21riv!(§)f-1D8='-‘I 8fe21r|'(.!2i/2+

. . . +t’y_/)¢ _ _ (12)

Pl =
<2)!-_lE8:'

_ I i Vez,,i(»,»,+
.. .
+117): _ _ (13)

Here it is, above all, to be noted that the summation letter s corre~
sponding to the cyclic azimuth occurs in (12) only with the value s = 1

[as well as with s = - 1, if we form the real part of (12) and hence add
the conjugate imaginary part], whereas in (13) i

t occurs only with the
value s = O

.

From this it follows by the principle of correspondence
that the azimuthal quantum leap An is only capable o

f assuming the "values

1
- 1 and O
.

To the quantum leap 1 1 there correspond circularly polarised
vibrations parallel to the invariable plane ; to the quantum leap O there corre
sponds a linearly polarised vibration perpendicular to the invariable plane.
These are our results of Chapter V, § 2

,

page 266, Where now the
direction of the linear polarisation, which earlier made an auxiliary
argument necessary, also comes out without difficulty.
If we are dealing with only one electron (Kepler orbit, hydrogen atom)

the invariable plane becomes the orbital plane; z = O
, P, = O then hold,

and thus all the coefficients E in (13) vanish. This signifies, according
to the principle of correspondence, that all the lines come out with
An = O (that is, they are polarised perpendicularly to z). We thus
arrive at the special Bohr principle of selection which we made in
telligible in Chapter V, page 269, by means of an auxiliary argument.
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(g) We here give only a few test examples of the rich field of applica
tion of the principle of correspondence and refer for other examples to
the recent works of Bohr and Kramers (loc. cit.). In particular the
investigation to be made by Bohr, mentioned on page 59, promises
undreamed-of fruits from the principle of correspondence.
We next speak of series spectra. produced in the absence of fields.

Have we here to expect the transition An = O or not ? In the case of the
hydrogen atom the answer is clear. Its orbits are plane, hence (on account
of P, = 0) An = 0 is to be rejected. In the case of spectra. that are not of
the hydrogen type the answer becomes less free from ambiguity. If the
supplementary field of the atom may be treated, as we actually did treat

it
,

as a central force (cf. p. 326), the orbit becomes plane here, too, and
hence An = 0 is forbidden. General experimental results about the
combination of series terms (cf. Chap. V, §2) are in good agreement
with this. Thus the assumption of plane orbits seems in general to
agree with reality. But we must not be surprised if

,

for example, in the
alkaline earths, we encounter term combinations of the form (d,-d,-') or
(p,;o,-') (cf. p. 368). In the language of the principle of correspondence
they may be explained simply on the ground that we are not here dealing
with a central field nor with plane orbits. As a matter of fact eqn. (13)
allows the quantum leap An = O in the case of non-planar orbits.
The position is quite definite and unambiguous again in the homo

geneous electric field, according to the principle of correspondence
as well as to our arguments in Chapter V, § 3

. The equatorial azimuth

¢ counted round the direction of the lines of force is here the cyclic
co-ordinate. With this altered meaning of ¢, eqns. (12) and (13) stand
as before. The principle of selection now concerns only the “ equatorial
quantum number," whose leaps are restricted to i 1 and 0. In the
case of the individual hydrogen electron, too, z is no longer equal to O

,

and hence the linearly polarised vibrations in the z-direction occur with
finite intensity.
We pass on to the band-spectra and for this purpose we apply the

formulae of the preceding section (f) to the case of a dipole, which we
suppose vibrating along its axis and at the same time being turned
uniformly about its z-axis which is perpendicular to the former. Let the
angular velocity be w, the fundamental vibration of the dipole being vo

a_st1n
eqn. (9a). In place of (12) and (13) we get, by multiplying (9a) by

e“" :

+00

P, + tr, =
e"'"‘2D,e2""*"-»',

P, = 0 . . (14)

If we assign to the oscillations the quantum numbers n, and to the
rotations the quantum numbers m, then we read from eqn. (14) that
the quantum leaps An = i s are arbitrary and are always connected with
the quantum leaps Am = i 1. [The negative sign contained in eqn. (14)
in so far as the summation extends from - co to + co and + i may be
exchanged with — 1

]. T/t‘lS contains the principle o
f selection, eqn. (3) on

page 418, for rotation and oscillation quanta o
f band-spectra.

We here assumed a pure rotation of the molecule about the z-axis.
If, instead of this, we consider as in Chapter VII, 5'6, a precessiona-l
motion, whereby we place the 2-axis along the axis of the total moment
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of momentum of this precessional motion, the projection of the electric
moment P on to the 2-axis or, respectively, the any-plane becomes equal
to IP I cos 0 or |P[ sin 6, respectively [6 denotes (cf. p. 443) the Eulerian
angle between the axis of the precession and the

“ axis of figure
"
of the

“
gyroscope

" which we have assumed symmetrical or approximately
symmetrical]. If w now denotes the precessional velocity of the gyroscope
then we get in place of (14)

P,,+iP,,=ei""|P|sin0, P,=|P|cos0. . (15)

where we suppose the 2 of (14) inserted in place of [P |.
The quantum number m of the total momentum is now allocated to

the precessional velocity (1) just as formerly the quantum number m of
the rotation corresponded to the rotational velocity cu. From eqn. (15) for
P, + iPy we now deduce, as previously from (14), the quantum leap
m i l -> m and infer that it is connected with the quantum leaps of the
oscillation quantum n. From eqn. (15) for P, it

,

however, now follows
that the oscillation quantum may also jump alone, that is that an emission

is possible during which m does not change. This is what we required on
page 446 to explain the zero branch of the band-spectra. It cannot, of
course, be established by actual observation that this emitted radiation

is polarised along the 2-axis as demanded by the principle of correspon
dence, since the z-axis is not defined in space. .

All of the preceding remarks apply to molecules whose ions form an
electric dipole (HCI, etc.). For homoeopolar molecules (N2, etc.) We
must, as on page 583, go back to the electronic motions that occur in
them, or, in the language of quanta, to the corresponding quantum leaps.
Finally, we also wish to consider the case of a rotationless molecule.

The factor e"*-J‘ in eqn. (14) or eqn. (15) then drops out, and, by the
principle of correspondence, any arbitrary jumps of the oscillation quan
tum that are not accompanied by jumps of the rotation quantum would
be possible. For band-spectra this would signify that the frequency of
vibration v0 of the nucleus and its overtone vibrations could occur as
singular lines of the band, for example, the dotted line v0 in the sketch
of Fig. 103 on page 421. In reality, such singular lines are never
observed. From this we must conclude that the rotationless state never
occurs so as to be of account in practice. As already emphasised on
page 422, this conclusion is not to be derived from the principle of
correspondence alone but only in conjunction with observation.
Recapitulating, we establish that the principle of correspondence

furnishes with great certainty and ease not only the same results as we
found earlier by considerations of the moment of momentum, but refines
these results considerably, particularly as regards the calculation of
amplitudes.

11. The Stark Effect treated according to the Hamilton-Jacobi
Method

(To Chapter V
,

§§ 4 and 5)

In the case of the Stark effect, too, we reach our goal most quickly
and with most certainty by using the method of the separation of
variables. In particular, this method shows why we have to express the
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quantum conditions in parabolic co-ordinates (5
,

1;, \,l/). Following on
from Fig. 77, page 279 we next define parabolic co-ordinates 5

,
1
7 in the

plane. Let ac and y be rectangular co-ordinates, the 11:-axis being in
direction of the field, O being the nucleus. The relationship between
them and the parabolic co-ordinates 5

,
1
7 allows itself to be written most

conveniently in the imaginary form

. w+@'y=%(£+iv)* - - (1)

By identifying the real and the imaginary parts we get

4'7=i‘($2*"l2)» ’J=$'1- - - -(2)
If we eliminate f or 17 from these two equations we get in agreement
with eqn. (1) on page .:

2
/’

1
/2

.. .

7;i—-2:r=-1;2or§+2a:=£~ .(3)
respectively.
The first (or second) of eqns. (3) shows that i

f we set 17 (or 5) equal to

a constant, we get a parabola which has for its axis the positive (or
negative) direction of the cc-axis. Its focus lies at O, its vertex has the
co-ordinates :1:= - 112/2(or -'1;= + $2/2). If we give 1; (or 5) all possible
fixed values, we get the one (or the other) system of parabolas of
Fig. 77.
From (1) we form the line-element in the plane, that is the distance

between two neighbouring points PP’, and, again, this is most simply
done by using imaginary quantities. By difierentiating (1) we get

dx + my = (5 + 431;)(dé + idq)

and b
y

passing on to the absolute value we have

dsl = dz’ + dyg = (E2 + 1;’) (d£” + 1117*). . . (4)

If, on the other hand, we proceed to take the absolute value in eqn. (1)
we get the finite distance 'r of any point P of the plane from the origin O:

1'“ = 1:2 + 1
!/
2

=
{(52 + 1)’)? . . . . (5)

We next imagine the diagrammatic plane of Fig. 77 turned about the
:1:-axis and call the angle through which it is turned \/

/. The above
y-co-ordinate then denotes the distance p from the axis of rotation. The
three-dimensional rectangular co-ordinates :0, y, z now to be introduced
are then expressed as follows in terms of our above plane co-ordinates
a: and y (where, however, we write p for y in the sequel) and the
angle up:

:v=.r,y=pcos1//, Z=pSlI1l//.

The line-element in space becomes

dsi’ = dz” + dyg + dz” = der? + dp’ + p“d¢/‘ . . (6)

and the finite distance in space of any point from O becomes

r2=w‘Z+y‘-'+z“=.r‘1+p'1. . . . (7)
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Since p is identical with y as used above, the value of (7) arises directly
out of (2) :

c = as - 112)’ + as = as + W. T = as + 112) - <8)

It is to be regarded as an essential advantage of the parabolic co
ordinates over the rectangular co-ordinates that r allows itself to be
expressed rationally without a root sign in this way by means of E and 17.
In the same way the value of dz? + dp2 in (6) arises out of (4). If,

further, we replace p in (6) by the value of y in (2), (6) becomes I

as = ($1 + 17*)we + (1172)+ é-"‘11’d1//1 . . . (9)

From (9) we now extract the expression for the kinetic energy in para
bolic co-ordinates (m = mass of the electron) :

=
’;‘(f,5§)”

=
’;{<c + t*><é=+1}*>+ ear} - <10)

The potential energy is

Elm =
—
Q?
+ eF.2;

(where E = nuclear charge, F = field strength, — eF = strength of field
action on electron). On account of (8) and (2) this becomes in parabolic
co-ordinates :

2eE eFE.=-~., . ~<s1-2)‘”‘

€1+v‘+
2

7'
. . (11)

= 43E + 8F(£4
'—

From (10) the momenta p5, p,,, 11¢ follow by differentiation with respect
to the parabolic co-ordinates of the velocity, E, 1}

,

in conformity with
eqn. (5) on page :

Pa
= m($“ + 11*)?» P» = "'»(£’ + v’)'i» Pt = m?"1’\i/ - (12)

Hence, expressed as a function of the momenta, (10) allows itself to be
written as follows :

Efin =~{p;“ + 11,,“ + +
_%,)p¢”}

. . (13)

The sum of (11) and (13) is the expression of the total energy in para
bolic position- and momentum-co-ordinates, or, according to page 194, it

is the Hamiltonian function H. It is invariable during the motion and
equal to the energy constant W. Hence we have

1 1

‘

2m(£2 + '12)“, = P52 + Pug + +
?)P\l'2l _ _ (14)

— 4meE + meF(E‘ - 1;*)l
in agreement with eqn. (2) on page 280. If we here set

-05 _°_S _§P5“
a_$'Y

PW
_
D1,’

P1’
_
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we get the partial differential equation for the function of action S in the
following form :

<§>2+ <g%>2+ +%*) . . (15)
= 2m($2 + 1;‘-‘)W + 4meE

— meF(£‘ — -/
;4
)l

where m
p is the cyclic co-ordinate. Hence

BS

D
T
P =

11¢
= const.

holds. And for the equatorial quantum condition we get

J4
,

= 21%;, = nah . . _ (16)

Hereupon eqn. (15) passes into

<§_§)2+
= 2m(§2 + new + 4meE

‘ —
11‘)
— + Q 2' MFG

<
5

1
1
>

(2a)
We write the terms dependent on E on the left and those dependent

on 1; on the right and have thereby eflected the separation o
f the variables.

The separated parts must be equal to the same constant, which we shall
conveniently call 2m,8:

. .(17)

DS 2 _ 1 n h 2

<55)
— 2m$1W — 2meE + meF§4 + 24%)

= _ + 2m’72W + 2meE + meF'I4 ‘
= 2m/1?.

From this we get by calculation

§§
= em

%
§;
=mt

in whichfl and f2 have the meaning given in eqn. (7) on page 281. Hence
the quantum conditions for the parabolic co-ordinates E

,

17, written as
periodic moduli of the function of action are:

J5 =

{
fr ~/Eds = ah, J" = (in//2<T)d1, = ta. _ (18)

Both integrals have the same form. By using £
2 in the first integral,

and 1
;2 in the second as new integration variables [called 'r in each case

in (19)], we have ~C
(j-)\/A 7

3 + Drdr = 2nh . . , (19)

On the right-hand side of this equation, n stands for nl, the first time,
and for n2 the second time. The factor 2 before n has been transposed

+ w
l

‘I
d +
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from the left-hand side and is due to the circumstance that fdf or rjd-q,
respectively, is equal to dr/2. The coefficients A, B, C, D first denote

h 2
A, = 2mW, B, = m(eE + e), 0, = _

j
' (2%)

D, = —meF

and, on the second occasion -
; 2

A, = 2mW, B, = m(eE - B), 0
., = _

_ (2%)
D2 = + meF

We have already anticipated the calculation of the left side of (19) in
Note 6 under ( By eqn. (26) of (f) it leads to

. e B D 3B2

_21r'L{\/C—fi—4A§(A--0)}
. . (21)

Consequently, if we arrange (19) in terms of B, we get the equation :

- nhf D 3B2

B=~/A(~/0-7')+n(o-T) . . (22)

We regard the coefiicient of D as a correction member (the external
field is assumed small compared with the nuclear field) and in it we
therefore replace B”/A b

y the following value from (22), which is a first
approximation :

2 _ 1-

- 2 ~ _
§=(~/c
- 0 -

2
% = _ 20 + 6’%'~/o + s(’%")’.

Accordingly (22) becomes

_ _ nhi D 3n2h'* Gnhl _

B =
~/A(./0
-

-1
;)

+ Q
(

W, + -7./o_2c) . (23)

This single equation really represents two equations. We suppose them
written once for

B=B,=rn(eE+,8), D=D,=—meF, n=n,,

and a second time for

B=B.,=m(eE—/5'), D=D2=+meF, n=n2,

where A and C have in each case the values

A = 2mW, C = — (nalt/21r)2.

We then form half the sum of the equations resulting in this way. This
causes the integration constant ,8

, which is of no interest to us at present,
to cancel out, and so we get

meE =
~/}i(~/6

149)

F 3 2 1 is - - ' (24)

+ <1»=1_.—/u>.,_ 3% — nah
4A 2 7I'2

+
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We insert in it
l

M‘/(T=_
21r

(concerning the sign, cf. p. 552) and next calculate A to a first approxi
mation, that is, for F = O:

. _ 41r2(meE)2A = —~) . . . . 25
("'1 'l‘ "'2 + nalzh"

( )

We insert this value in the correction member multiplied by F in eqn.
(24) and now evaluate A to a second approximation :

41:-2(meE)2 3Fh2
A = -all+ nz + n3)2h._, — 4n_2E (n2 - nl) (ii, + n2 + n3).

Dividing this by 2m we arrive at the value given in eqn. (1) on
page 286 :

2 2me2 3 3h2F
= — (TZ~ - 8TflmE(n2 — 71/1)(71/1+ H2 + 713)H

As has been discussed more fully in the text, the second term on the
right of eqn. (25) contains the entire manifold of phenomena that Stark
has observed in the various Balmer lines. “ We may perhaps say
without exaggeration that the formal explanation of these phenomena
cannot be given more simply than has been done in the above
sentences."* V
Various conclusions may also be read 05' from the above concerning

the shape of the orbital curve. Here the integration constant B that
was eliminated above becomes of account. In working it out we restrict
ourselves to the case of an arbitrarily weak field (the Kepler motion
F = 0 considered on p. 311). Thus we set D = O in the two equations
comprised in (23) and form half their difference:

mB=~/An2£;rn1hi . . . .(27)

If we insert in this the first approximation (25) of A, it simply follows
that

n2
— vi,

B =8E~ . . . .

Thus, for F = O, the eqns. (7), f,(§) = O and fz(1;) = O, for the libration
limits, on page 281, become:

2-n-meE/h
2 2n, + n3

‘
__

<
'"
'1

+ "2 +1) £
4 + 2meE

"'1 + n2 + nag
—

( l (29)
21:-meE/h

‘Z

4 2n, + n3 _]_
'

_<n,+n.+n3>v+2meEn+n+n21'_( lz 1 3

‘This remark concludes the author-’s representation of the Stark effect which
links up directly with the works of Schwareschild and Epstein and which appeared in
the Physikal. Zeitschn, 17, 506 (1916).

3

3

g
a
l?
‘
§l
“:

“fl
e
\/
.=
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If we multiply these equations by (21r/h)2, introduce the standard length
he

41r”meE
(1=

which is analogous to the first Bohr circle of the hydrogen atom, eqn. (7)
on page 213, and then use the abbreviations

av =
'52

1/ =
is 2

(so)
"("1 + "2 + “all “("1 + "2 + nsl

i I

we get in place of (29)

1:2 — 2(2n, + n3)a: =
- nf,

92
“
2(2”'2 + "all! = " ":12

Solving these we get

m=2n,+n3 ~/~='(~/1?, ,/1Z;C;1.,)21
31

y = 2n, + n3 1 ~/4n} + 4n2n3 =1 \/n., + n;)2l l ( )
|+ l+

If we then return to the meaning of 1: and y in (30) we get as the
libration limits in the 5- and 1)-co-ordinates

s _

~/5~/n1:a+m=

“/”1i J
. . (32)

Ja./n‘,f1;T»;= Jizi ~/
For the sake of illustration we apply this result, say, to the final

orbit of the Balmer series n1 + n2 + n3 = 2. According to the Tables 27
to 34 on pages 289 to 293 the quantum triplets (O02), (101), (O11) occur in
this case. For the first of these we have by (32)

§;=%=¢2 . .(32a)

and for the second

%
-L = ~/an 1 ~/Q), T
)’
; = 1 ~/9 . . (32b)

The third quantum triplet has the same libration limits as the second,
except that § and qare interchanged. Since by eqn. (1) on page 279, the
co-ordinate parabolas depend only on fl or 1;”, respectively, the values

1 2 denote one and the same parabola or, in three-dimensional space,
one and the same paraboloid. Thus the libration limits denoted by 1 2

coincide and the orbital curve (Kepler ellipse) lies on one and the same
paraboloid. In the case (32a) it comes out as the intersection of two
such paraboloids situated symmetrically with respect to the nucleus, and

is thus merely a circle of the radius 4a. In the case (32b) the libration
limits coincide only for the 1;-co-ordinate and are different in the £

co-ordinate. The corresponding orbital curve lies as a Kepler ellipse on
the paraboloid determined by the 17-co-ordinate, and, indeed, within that
segment which is cut out by the libration limits of the f-co-ordinate.
38
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In conclusion, we remark that the development (Q5) has been ex
tended by Epstein* to the next member, which is quadratic in F, and
that the “ Stark effect of the second order

"
corresponding to the quadratic

term has also been proved to be present in observations by Takamine
and Kokubu when particularly strong fields were used.+

12. The Adiabatic Invariance of Phase-lntegralsi

(To Chapter V, §7)

In dealing with adiabatic changes of state we consider a parameter a
that enters in some way into the equations of motion of the system (as
the length of a pendulum, the position of a point-mass, of an external
field of force, and so forth). This parameter is changed in the course of
time, but, by condition (1) on page 305, infinitely slowly (-re've1's'ibly). For
every value of a the equations of motion are to remain valid in the form :

4a__»_I% dares 1at‘ age dt D1);
' ' " U

where H is the same function of p, q, and a, as when a is kept fixed.
\Ve mean this when we demand in condition (2) on page 305 that the
adiabatic action is not to act on the co-ordinates of the system directly.
We shall return below to the condition (3) on page 305 (unsystema-tic
alteration of a).
In integrating eqn. (1) in conditionally periodic cases by means of a

function of action S whilst a remains constant, S becomes a function of
a; so that if we insert the time change of a, S also becomes a function of
t. We derive the phase integrals J and the angular variables w from S,
just as in the case of a fixed a:

Jk =
‘llmdql

=

((
1 ggdqk,

wk =

2
% - - (2)

1
:

k

The quest-ion is -whether J also becomes a function of t through the
intermediate agency o

f a. If the adiabatic hypothesis is to be right in
its assertion that the quantum conditions J ;, = nth are to be adiabatically
invariant, then J must be independent of t.

~We find the answer to this question by doing as on page 566, and de
riving-lthe canonical equations for J and w. Hereby we are no longer
dealing with the special case that (cf. page 566) F* = S is independent of t.

Thus

';
I:
|

n E
no longer holds for the transformed Hamiltonian function H, but

—
. (3)£11u trt +

b
y

eqn. (20a) on page 545.

* P. Epstein, Ann. d. Phys., 51, 184 (1916).

+ A. Sommerfeld, Ann. d. Phys., 65, 36 (1921).
$'I‘he first proof is due to J. M. Burgers. cf. Ann. d. Phys., 52, 195 (1917), or Anist.

Aka41., 1917, p. 1055. Herc we follow a. simpler line of proof, likewise indicated by
Burgers, cl. his Dissertation for Leyden, 1919, p. 242.
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The relationship between F and F* is by eqn. (21) on page 546, when
Pk = Jr, Q1: = wk.

F= F* _
2J,,w,.,

thus on account of F* = S

F=S—§J,,w,,=S* . . . (4)

[cf eqn. (38) on p. 566].
In place of eqn. (34) on page 566 we thus get, on account of (3) and (4)

an _ as _ E ms‘ 5dt__D'lU*~_Dwk._dl0kbt ' '_' ()
H

The term gm here vanishes because
H, regarded as a function of the

variables J, . . . J;-, w, . . . wk, is independent of w. If, further, we
take into account that S*, as well as S, is dependent on t only through
the medium of a, we may set

DS* DS*_ _

*8?
= $0, = Qt], . .

with the notation
DS*

Q = 3; . .

From (5) and (6) it follows that
r 'r

dJ,, . b<I> - D<I>

Ft_=-—tlfi);, -I);=—‘\Ia'fidt . . .

oU

In addition we now take into consideration that by our condition (3)
on page 305 a is to be changed unsystematically, that is, not in phase
with the course of motion of the system. We act in agreement with this

if
, for example, we make d constant and write in place of (8) :

T '1
‘

(P. D

J]
; = —

(tjazgkdb
. .

o 0

11>,just like S* (cf. p 567), is a periodic function of the 'w's, and may
thus be represented as a Fourier series in terms of the w's. Hence
b<I>/bw is a Fourier series without a constant term. Since the wk= v;,t+ 8

;,

[eqn. (35) on p. 566] are linear functions of the t’s, the integration with
respect to t on the right-hand side of (9) may be carried out in the
Fourier series, and furnishes a value, which even if T increases to any
arbitrary extent, remains below a certain limit.
The circumstance that the vibration numbers v;, themselves still depend

on a, and thus also on t, causes no essential alteration in this conclusion,
but entails only that the value of the integral becomes changed by terms
of the value (ZT. But d-T denotes the total change of the parameter a in
the interval of time T and, as such, is finite. Hence on the right-hand
side of (9) d i

s multiplied by a quantity that is finite even when T = co.
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In the limit d = 0 and T = on the right-hand side of (9) becomes equal to
zero, that-is J becomes constant.
On the other hand, however, the above inference falls to the ground

if in the course of the adiabatic change the system passes through a.
degenerate state. Then on account of the relation 281;!/;¢= O [eqn. (42)
on p. 568] constant terms would occur in the Fourier series, and in the
process of integration with respect to t they would yield terms of the
order T. Thus the adiabatic invariance for all quantities J holds only in
the case of general, not degenerate, systems.

13. Concerning the Spectra of Atoms not of the Hydrogen Type.
Eflect of the Supplementary Atomic Field

(To Chapter IV, § 6, p. 232)
We schematise the supplementary field of the electronic configuration

belonging to the body of the atom by regarding it as a pure central field
varying with the time. Thus we assume that its action on the outer
“ leaping electron

"
(Aufelektron) is:

E e2 a2 as
E,.,,,=_‘3;+V, V=-7r[c1<;_) +c,<;) + .(1)

We have assumed V to be expressed so that the “constants of the
atomic field," cl and c2 are pure numbers; a denotes a standard of length
for the purpose of comparison, and we shall choose it appropriately as
the radius of the first Bohr circle [cf. eqn. (7) on page 213]

2
__
/I

a _
41r2’I7l82

' ' ‘ - (2)

In assuming that the field is central, we make the orbit of the
“leaping electron" plane. We determine its position in this plane
by polar co-ordinates r, ¢. Its kinetic energy expressed in terms of the
momenta p,, p¢,, is:

1 1 .
Elcin = + if

The partial differential equation of the motion is then:

DSQIDS2 eE elcl e~a8
(5%) *¥i<»$l

=
’"‘tW + T*°1¥<+) “*1; <

7
‘) + <3)

We integrate it with regard to ¢ by assuming

§ = p = const.
395

From the quantum condition, _
Zrr

S

J¢=j-§—(—1)d4>=nlz,

we then get
BS /1

P=a=t- w
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As a result of this (3) becomes

as
'

B C D D *

iT=‘/A+2T+;.,+7‘+-T§+...'
A=2mw B=»m1 c=FTm ' @

41¢

D1 =
— 2mo1e5‘a“-’, D2 =

-
2rnc2e2a“

If we had added a term in 1/r2 to the expression assured for V in eqn. (1),
this would have changed only the meaning of the coefficients C, but not
the form of eqn. (5). That is why we began the expansion of V with
the power 1/rs. The radial quantum condition

'

L=§@a=mDr

now gives us

B C D D ,
J=(§’x/A+27—_+77z+;;;1+fidr=nh - (6)

if we strike out the higher coefiicients of the expansion. The integration
is to be taken along a complex path in the r-plane around the branch
points rm,:,, and rm, of the integrand.
The integral (6) is to be carried out in three different stages of ap

proximation, cf. (0), (ct), and (e
) of Note 6. '

Fora first approximation (D1 = D2 = O
) we obtained in eqn. (10) of

Note (6c)
_ B

L=_2( __§rt N/C
~/A

From this we deduce, as in eqns. (8), (9), and (10) of Note 8:

m
W=-m;m%. . . .(n

where R = Rydberg's number. According to our earlier remarks, the
quantity — W/h denotes the “ term." In conformity with this, our first
approximation gives us the Balmer term, namely, in the notation of eqn.
(2a) on page 316, if we set m = n + n’:

mm=§. . . .(m
For our second approximation (D1 + 0

,

D2 = O
) we obtained in eqn,

(16), Note (6d) :

J,=-_%d<JQ_.§% )I

B
3
)
b
-1

Q
w
Q or

P
_ '

h

By (6) we set this equal to n'h, and remember the value of ~/G = — %

(wide the concluding remark of Note 6c). We then get

(n + n')h
- 1 = 211-i
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In view of the values of B and D1 in (5), and of a in (2), it follows that

, 2
‘ E 2 "L 2e3Ea.2 E c

n+n+k=7}7f/lfx, k=~c,=;$ . (8)

and hence, with A = 2mW
‘ — Rh

' =»-D - . . . 9W
(n + n’ + It)”

( )

k is dependent on n and on the nature of the supplementary field, but
independent of n’, thus for a fixed n it denotes a constant of the series.
Accordingly, our second approximation leads to the form of the Rydberg
term [cf. eqn. (2) on p. 316], namely, if m = n + n’, to:

@n=MfW . . . m)

For our third approarimation (D, :,‘
=

O
,

D2 =
{
=

0
) we obtained in eqn

(21) of Note (6e):

_ _‘. B 1 B 3 B 15

J,-=—21r'l{~/(J-~/A-§fi}(D1—2D2C-+—§—D12Gz>

1 A 3D?
_

‘
UT/6 <

D
= "

-1

. __ y

If we insert in this the value ~
/ C = — ig
lj

as well as the values of B,

D1, D2 from (5), and, as in (8), simplify the resulting expressions by
using the meaning of a, we get

J,= _ nh+%i,m_@E _ &E(,, +3011} -1261?)N/A n3 e 1 2 n1‘ e 4 n“ e

A 302
' um

_ mm _ __1
4mR(02 2n*) j

We write »<2mas an abbreviation of A in the last term. Then

1 32 '

RK=_Q(%_Q%).

. . . on

For the penultimate term of (10) we write the abbreviation - kh; k now
has the significance :

1E 30E 15c”E
k=~——(("1-l-§;?.2z_Z#E>. . .

(12), as should be, passes over into the k of the approximation (8), if 0,

and cl are neglected.

k and K are again independent of n’, but dependent on n and on the
nature of the supplementary field.
With these abbreviations (10) is written

Q s e
-:
ca

2 E A

Jr= —nh+ Ty;-~ —kh+;~;L-
- (13)
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If, by (6), we set this equal to n’h, we get

_ 21rimeEn+n'+k—
“A - ~';_-.
2mh h,/A

In view of the meaning of A, cf. eqn. (5), the energy comes out as:

Rh E/e 2W = — . . (14)

<
7
1
,

-1- 11' -1- It — K

If, finally, we pass on to the term — W/h, and call it (m, k
,

K
) in accord

ance with page 316, where we again set n + n’ = m, we find from (14)
that

(m, h
‘,

x
) = . . .

Hence in the third ‘approximation we are led straight to Ritz's form of
the series term. To get back to the ordinary nomenclature it is only
necessary to identify k, K

with s, 0- for n = 1 . . II. N.S.,
,, p, 1r ,, n = 2 . . H.S.,
,, d

,
8 ,, n = 3 . . I. N.S.,

., b
,

,3 ,, n = 4 . '. . Bergmann series,

for which detailed reasons are given in the text.
The development of our argument clearly shows that Ritz's form of

the series term is also only an approximation. and indicates the way in
which we are to look for an improvement of Ritz's representation in a

fourth, fifth, . . . approximation. These all come under the general
form :

_ , R(E/e)”
(m’k’K’K ' ‘ ' =

[m + 10+ i<'(m,k, . . .)+:<'(m,lc, . . .)"+x”(m,k, . . .)3+ . . .]
* (16)

in which K
’,

K”, . . . are new constants.
If we set E = e in this expression and also in (11) and (12), we have

the case of an atom that is neutral as a whole, one in which the outer
electron is acted on by an atomic trunk which has a single charge. If,
however, we are dealing with a charged atom which has lost one electron
and if this is excited optically by removing one of its remaining electrons
to a greater or lesser extent, the outer electron is confronted b

y an atomic
trunk bearing a double charge. Consequently E is now equal to 2e.
On account of the factor (E/e)‘* in the numerator of the term, 4R now
occurs in place of R as the Rydberg number. The meaning of the
constants h, K, . . . alters correspondingly, and we write 10*, x* instead
of them for the ionised atom. For instance, we should get

k* = 2k . . . . . (17)

as a first approximation by (8) so long as we assume that the constant

c, in the expansion of the potential V has appreciably the same value
for the ionised atom as for the neutral atom.
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We thus get as the term representation for the ionised atom :

,, _ 4R
“"1""')"[m+k*+.<*(m,k*,...)+ ...]¢

' (18)

§ 6 in Chapter VI is founded on this form of representation of the term.
A closer investigation (cf. J. Weinacht, Dissertation, Munich, un
published) of the relative magnitudes that presumably occur in the atom
has disclosed the surprising result that the decrease, or under certain
circumstances the increase of the constant c of the atomic field is so
gradual that the expansions used above are not always convergent
(namely, never in the case of the s-term, only quite exceptionally in that
of the p-term, often in that of the d-term, and always in that of the
b-term; in the spark spectrum, the convergence would be still worse).
Whereas in our above development we had assumed the members with
D1, D2, . . . to be arbitrarily small quantities, the atomic radii are in
reality fixed in accordance with quanta, and are of such magnitude that
the path of integration chosen on page 552 for the convergence in many
cases becomes impossible. How does it happen then that Ritz's formula,
that is

,
a
. power series which is cut off as early as at the second member,

represents the results of observation so well on the whole? Obviously,
the form of our development must remain, even if the special numerical
values seem to make them illusory. One way of accounting for this
(cf. Weinacht, loo. cit.) is to expand, not in powers of the supplementary
field but in powers of a supplementary field that is modified to meet the
requirements of couvergency. For this purpose we reduce the supple
mentary field by means of the quadratic expression

a+2§—l-Z2.'r 1
'

which we take in conjunction with the quadratic expression

A+2E-1-90r r

and in the interval of integration we in this way minimise as far as
possible by our choice of the disposable parameters 0., ,8

,

7, the quantity
in which we make our expansion, whilst at the same time increasing the
principal quadratic terms. By this method the form of the expansion
clearly remains preserved, that is

,

the dependence on the member-num
ber of the series, but the significance of the number coefiicients and the
consequent inference concerning the convergence becomes changed.
Nor must we overlook that the assumption of a central supplementary

field that is invariable in time in reality denotes a process of averaging
that may be inadmissible. To_ this there becomes added the difficult
question of the reaction of the outer electron on the atomic trunk.
These circumstances are quite sufiicient to explain why (cf. p. 328) the
observed values of the spectral constants k, x and their dependence on
the azimuthal quantum number cannot be given with satisfactory
numerical agreement by our theory. It is so much the more gratifying that,
in spite of this, there is a general agreement with the form of the
spectral formula,
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14. The Original Bohr Models of He, H2, and Hf and their
Ionisation Potentials

The following calculations concern models that are indeed interesting
from the historical aspect but that cannot be maintained empirically and
theoretically. They have already been criticised on pages 69 and 79
of Chapter II. It is scarcely necessary to state that Bohr * furnished not
only the original construction of these models but also the essential ideas
for their criticism later.

(a) The Neutral He-atom. Fig. 19 on page 69 represents Bohr's
original idea of the He-atom. We proceed to calculate the radius a. of
the orbit and the angular velocity w of the electrons in their “one
quantum

"
motion. >

From the Coulomb attractive force 2e?/a2 of the nucleus we must
subtract the Coulomb repulsion e2/40,2 of the “ second

"
electron acting on

the “first " electron. Accordingly the classical condition is:

., 2e* e” 7 e
'*

nutw F 4.“:
-_

4 “F
. . . . (1)

Further, we have the quantum condition for the rotat01' applied
separately to the

“ first
"
or the “ second

"
electron

mrfiw =

5
,1
;

. . (2)

From (1) and (2) we get by division

Qe ll

1
%
]Q N
J

a~)

=1 ‘Y
e

. . (3)

The sum of the kinetic energies of both electrons is:

492 ante‘ 49 .
m(aw)2

=
3- "h

, =
YR/1.

The total energy o
f the Bohr He-atom is just as great but negative

(cf. Note 5), thus
W = — . (4)1,1: '3

7
§"

The energy of the simply ionised atom He+ comes out very simply.
He+ is of the hydrogen type and has a double nuclear charge. Hence its
energy is four times that of the hydrogen atom (cf. p. 214) that is

,
it is

equal to - 4Rh . . . . . . (5)

Hence the transformation of the neutral into the simply ionised He-atom
requires, b

y

(4) and (5), the work

A = _ 4121» . (6)

This would be the ionisation potential o
f the neutral He-atom ac

cording to Bohr's He-model. Since the ionisation potential of the hydro
gen atom as well as its energy is given by Rh and amounts to 13-53 volts

* Cf. for example his lecture in Berlin, Zeitschr. f. Phys., 2, 468 (1920).

+ xi; P
U
FF
‘

|| '3
3
§‘
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[cf. eqn. (3) on p. 342] the ionisation potential of He would be, likewise
expressed in volts :

ll ‘n
-I

l»: I-
lJ ,_. 3-53=2s-75 volts . . . (7)

Experiment has not confirmed this value, but has yielded the smaller
value (cf. pp. 344 and 350, Table 38):

J = 25‘3
which has been found by different methods and is certified in various ways.
Thus Bohr’s He-model cannot be correct.
In the same way the following value of the ionisation potential of the

second order (work necessary to detach both electrons) for the helium
nucleus

!F°- . 1353 = 82'9 volts

is too great and is in contradiction with the results of experiment [cf. eqn.
(5) on p. 344]. _ _
The fact that the true value of the ionisation voltage comes out less

than that calculated from the model is particularly noteworthy. If it

were greater we would say: Bohr’s model is, indeed, a possible arrange
ment of the structural elements of the He-atom but it is not the most
stable one. We should have to think out another arrangement that
would be more permanent as regards retaining its energy, and that would
thus require more work to bring about its disintegration. But, as it is

,

we must say that, in spite of its greater stability as regards energy Bohr's
He-model is not a durable arrangement of the structural elements of He.
Besides energetic stability dynamic stability is of importance. The latter

is best investigated by the method of small oscillations.
This has already been done for general ring systems by Nicholson.*

The following is found for He-models in particular. Of the six degrees
of freedom that belong to the model if we assume the nucleus to be im
movable, one is unstable. For if we strike both electrons in their orbital
plane in the same sense at right angles to the line connecting them, a
“fundamental vibration ” of the system occurs, whereby the electrons do
not tend back to their position of rest, but move away from them expon
entially.
\Ve thus see that the dynamic instability of Bohr's He-atom outweighs

the energetic stability, and we understand Why the real He-atom which
must, of course, be stable can appear energetically less stable than Bohr's
model.

(b) The H2-molecule. Bohr’s model of the H2-molecule is represented
in Fig. 22, page 76. From the conditions of equilibrium we obtained
the following relation between the radius a and the angular velocity w of
its two electrons [eqn. (21) on p. 78] :

mast,“ =$e" . . . . (8)

If we combine with this the quantum condition (2), applied separately to
each of the two electrons, we get from (2) and (8) by eliminating I0

h* 4 _= W , _ =0-9 . . 9a
mate 3 J3 - 1 M‘ ( l

‘ Monthly Notices, 72, 1912.
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Thus the diameter of the hydrogen molecule would be somewhat less than
the diameter 2a, (p. 72) of the first Bohr circle in the hydrogen atom.
We next calculate the energy W of the hydrogen molecule. Its po

tential energy is made up of three parts: the potential energy of the two
nuclei Vg, that of the two electrons V1; and that of the mutual energy of
the nuclei and the electrons VKE.
By eqn. (17) on page 77 we have

v,<=i2=i’./s, VE= ff
21> at 20.

V_ _ 4@?___ 2 ./as
' (10)

M:-—~/a“+b"__ a

EM = _ £(3~/1?
-
1) . . . (11)

By substituting (9) in (11) it follows that

81:-“me* 3 ~/§ — 1 2

it ( 4 )
The kinetic energy of the revolving electrons in the hydrogen molecule is
also half as great as the potential energy (of. Note 5). Hence the total
energy that remains is:

411-‘1me* 3 3-1 2W
hz< 4 )_ 220Rh. . (12)

We next determine the work of dissociation and the dissociation po
tential of the hydrogen molecule. After the dissociation both hydrogen
atoms are separated from each other. We assume both initially to be in
their most stable state, that is

,

in the state of the first Bohr circle. Their
energy is then

Epog
_‘

K

2W1 =
— 2Rh.

Hence the work of dissociation is

A = 2W, - W = 0~2ORh. . . (13)

Thus for a grammol of hydrogen gas it would be:

AL RhL___=O'20l=6'1.104 l. . . . 14

Q Q

°“ S ( )

where Q = 4'19 . 107 ergs./cal. denotes the mechanical equivalent of heat,
and L = 6'07. 10” denotes Loschmidt's number per grammol, or Avo
gadro's number. This value is appreciably smaller than a value obtained
by Langmuir* from observation (certainly somewhat indirect) amounting
to 8'4 . 10‘ cals.

Passing on to the work of dissociation, let us express (13) in volts,
and we get, corresponding to (7)

D = 0'20. 13‘53 = 2'71 volts . . . (15)

This value, too, is appreciably smaller than the value obtained from ob
servations [eqn. (4) on p. 343] D = 3'5 volts.

* Langmuir, Journ. Amer. Chem. Soc., 34, 860 (1912).
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In the foregoing we have established one of the contradictions, which
we mentioned on page 78, between the H,-model and observation. A
second contradiction concerns the ionisation potential. We first assume
that the process of ionisation takes place according to the following scheme :

H2->H+H++El. . . . (16)

that is, that the molecule becomes split up by an electronic impact into a
neutral H-atom, an H-nucleus and an electron. The energy of the H-atom
is VV] =

— Rh, that of the isolated nucleus and electron in our enumer
ation (16) is nil. Hence the electronic impact must furnish the work:

A = W, - W = 1-20Rh. . . . (17)

Translated into volts this gives the ionisation potential

J = 1-20.13-53 = 16-24 volts . . . (18)

Unfortunately the results so far obtained from observation for the
ionisation potential of H2 are contradictory among themselves. They,
however, agree in that they give no ionisation step at 16'2 volts. But
here, too, there is a contradiction between observation and the H2-model.
It was pointed out on page 344 that the energy step that is so pronounced
at 11 volts is probably to be ascribed to an emission of light.
Only when dealing with case (c

) can we make detailed statements
about the other possibility of the process of ionisation, namely,

H,->H2++El . . . . (19)

Concerning the other contradictions mentioned on page 78 we merely
add that the instability of the Bohr H2-model there emphasised comes
about in just the same way as the Bohr He-model. If we strike both
electrons of the H2-molecule in the same sense in the plane of their revolu
tion and perpendicularly to the line connecting them at the moment of
impact, they move systematically out of and away from their orbits. The
model is dynamically unstable.

(0
) The H.,+-ion. For this, too, Bohr has suggested the simplest

possible model: the two H-nuclei are at a distance 2b from each other,
and in the median plane between them a single electron revolves at a dis
tance a from the connecting line of the nuclei. Here the quantities a
and b are different from those values that they were to have in the neutral

H2-molecule according to Bohr, and they have to be determined anew
from the conditions of dynamic equilibrium.
Each of the nuclei is acted on by (cf. p. 77): 1

. the repulsion ea/4b’
of the other nucleus; 2. the attraction of the electron which has the oom
ponent e2b/(a2 + I12)? in the direction of the line connecting the nuclei.
By setting these two equal to each other we get :

as = (ail + b=)%

b 2 1

.9

.

w =m .40

(<
1
)

3/16 _ 1

( l

The corresponding value in the case of the neutral H2-molecule was ,1
.

Thus Bohr’s model of the H2-ion is considerably more attenuated than
that of the H,-molecule.

ll
an Q

1
F-
4

$
4
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The electron, on the other hand, is acted on by: 1. the centrifugal
force ma<»“’;\2. the attraction due to both nuclei, which furnishes the

component 2e2a/(a2 + b2)t in the direction of 1. Thus we have the
dynamic equation :

. . 26* 6* .mat; =1+ = _.(,\/I§_. 1)?

[1
+ er 2

a

In addition, there is the quantum equation :

mah» = A
2-rr

and as the quotient of these two we get

at =

3
,‘
:-
i(

2/'1€- 1)% . . (21)

From this we get for the kinetic energy of the electron

Ekin = 7£;%fi(‘-i/E
-
1)“
= (Z/15-

1)3%i'
= 0'88R.h . (22)

According to Note 5 the total energy W is of the same value but negative.
This total energy W= — 0'8BRh is greater than the energy W,= —Rh

of the dissociated state, in which the ion is resolved into a neutral H-atom
and an H-nucleus.
The Hf-ion is unstable energetically; it can dissociate into H + H+,

giving up energy. At the same time it follows from this for the ionisation
of the H2-molecule that if this happens in the sense of the scheme (19),

it requires a greater ionisation potential than if it proceeds according to
the scheme (16). This conclusion is independent of any assumptions
about the model of the neutral H2 and also remains preserved i

f we pass
from the H+2-molecule considered so far to a more general molecule.
The great advantage that the H2-ion has above the neutral H2-molecule

in analytical respects is that in the former we have mathematical control
of the most general configurations. They all fall under the category of
Jacobi’s problem of two fixed centres (cf. p

.

279) and are of a conditionally
periodic character. As a matter of fact, on account of the predominant
mass of the two nuclei we may assume them fixed during the motion of
the electron; their distance apart is to be chosen so that the resulting
force at the nuclei in the time-mean vanishes.
On page 79 we stated that as regards these more general motions

Bohr's circular orbit in the median plane of the nuclei is more stable*
energetically. But we must add a correction at this stage. The circular
orbit is indeed stable energetically, but unstable dynamically. Bohr
emphasised this as early as 1913.’r And, indeed, in this case it is an
impact, on the electron, perpendicular to the median plane that causes
the spontaneous decay of the model. Consequently Bohr's model o

f the

H2+-ion i
s untenable. Here, too, just as in the case of the model of the

‘Cf. Pauli, Ann. d. Phys., 1922.

1
* Cf. Gesammelte Abhandl., p. 61.
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He-atom and of the H2-molecule, it is shown that the dynamic stability
plays the deciding part as compared with energetic stability.
That there is a stable configuration of the Hf-ion among the more

general types of motion is proved beyond objection by experiments with
canal rays. This dynamically stable configuration is energetically unstable
both in comparison with the circular orbit model of Hf, and to a still
greater degree in comparison (cf. above) with the dissociated state H + Ht.
But this does not prevent the configuration in question from being lasting
if the impacts are sufiiciently small; only under the effect of greater
impacts would it be transformed into the state of minimum energy, that

is
,

finally, into the dissociated state.

15. Ha.milton’s Theory in the Mechanics of Relativity

(To Chapter VI, § 1)

In the theory of relativity the components of momentum are [ride
eqn. (24) on p. 463]

me=—’—”~"~—z mg=i-g me=-la . (1)J1-sol’ ~/1-sl’ J1-is
In ordinary mechanics they are represented as derivatives of the kinetic
energy with respect to the corresponding components of the velocity.
This does not hold in the theory of relativity. We can confirm at once,
however, that they are derivatives of the following quantity with respect
to 5:

,

y
, é :

F=—m0c”~/1-3‘ . . . .(2)
We may designate F as the “kinetic potential," an expression due to
Helmholtz. If we number the momentum components successively as
pl, p2, . . . pk, . . ., more than one point-mass being present if so re
quired, and if we call the corresponding position co-ordinates q,, g2, . . .
qt, . . ., the corresponding velocity co-ordinates 11,, Q

2
,

. . . Q
1
:

. . ., then
the relation in question between F and the momentum components may
be summarised thus 1

sF=Zp,,sq,. . . . . .(3)

[When several point-masses are present we must clearly take F as standing
for the sum of expressions of the form (1) for all the point-masses]
In contrast with F the relativistic expression of the kinetic energy

[cf. p. 465, eqn. (27)] is, in particular, for one point-mass

E,=-. 2(_;1____1). . . 4kn moo
~/1 __ H

: ( l

Since, expressed in terms of p and q
,

(1) is

P =
mo

QJ1 - is ’

it follows that

02B”gs = . <5>
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From the latter we can immediately confirm the relation

F =EpQ
— Eh,-,, + c0nst., const. = 721.002 . . (6)

Since in classical mechanics Ezjp is equal to twice E1,-,-,,[eqn. (5) on p. 541],
but not in the mechanics of the theory of relativity, we recognised that in
the classical case F must be identical with Eh-,, (except for a constant),
but must differ from it in the relativistic case.
We now go through the developments of Notes 4 and 7, which led to

Hamilton's theory. Written in the form (9) on page 542, d’Alembert’s
principle remains valid, likewise the eqn. (11) that follows on it

, if we
replace Eh-,, in it by F. Consequently eqn. (12) also remains in force,
except that now the “Lagrange function

” is to mean :

L=F-E,,,,,. . . . .(7)
This is the only change which has to be made in our earlier developments
for the sequel. The function of action S is defined by this L by means
of eqn. (4) on page 556:

I

Pad-r=S—Wt
. . (8)

and the relation
BS= _ . . . . . 9Pk
Dqk

( )

holds not only for rectangular, but also for arbitrary co-ordinates pk, qt.
With the altered meaning of Eh-,,, the energy law, as compared with that
of classical mechanics, has the form

Ekin + Epot = W . . . .

That is
,

not our F, but the relativistic value of Eh-,, (or, as circumstances
demand, the sum of such values if several point-masses are present)
occurs here. If we set the left-hand side of (10), expressed as a function
of pk and qk, equal to H (“ Hamilton’s function ”), the partial differential
equation of relativistic mechanics becomes, in formal agreement with
eqn. (10) on page 558:

as _
H<b—%,qk)-W

. . . .(11)

All further inferences, in particular those concerning the separation of
variables, thus hold unchanged also in the relativistic case. They will
be used in the next note.
It is to be observed that our translation of results from classical to

relativistic mechanics was effected so smoothly only because we wrote
d’Alembert's principle from the very outset in the rational form (9) on
page 542, in which the changes of momentum pk, and not the products of
the mass by the acceleration mtg, occurred. When written in the latter
form the inertial resistances do not allow themselves to be generalised
relativistically. Further, we must note that the quantity L here defined
by (7) may, on account of (6), also be written :

L =‘ " Ekin " Epo: =' -~ H . .
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This relation, which we have already encountered in eqn. (13a) on page 543
on the basis of classical mechanics, is thus not bound to the condition that
H is a quadratic function of the p's. As a matter of fact it holds quite
generally and can serve to define the Hamiltonian function H, and,
further, to set up the canonical equations, if the problem was originally
present in the form involving variation, that is, if L was originally known.
Conversely, if the problem was originally given in canonical equations, it
can serve to calculate L and to transform the problem into the form
involving variation. -

16. Quantising of Relativistic Elliptic Motion by the Method
of Separation of Yariables

(To Chapter VIII, § 2)

As in Note 8, so also in the relativistic Kepler problem, we require a
minimum of calculation and thought if we start out from the partial
differential equation of mechanics and calculate the moduli of periodicity
of the function of action as complex integrals.
By eqn. (27) on page 465 the energy equation is :

e
lm u €1

a.~.+ E...
=m<»@’(¢T_—,,.

‘
1
)

' 6
(where E denotes the nuclear charge) or

eE

_1_=1+W.__;-7 . (1)
~/1 — B

”

moo”

Now, on account of the meaning of H
3 and in view of eqn. (7) on

page 469 :

B
’ =

,,1.,<»+».t>
= +

or, on account of m = mo/ s/1 ,8
"
:

/3
” _ 1 -1 1 2

1 _ B
-2

_
czmo2 (P
T + q--:1”)

1 1 1 .

1 _ )3
-2 = 1 +

czmoz (P
1
2

+ ,FP¢2)'

Inserted in (1) this gives

E 2

1

1 2 1

J 2 _ 1

W +
+
c2nLo2<17r

+ p]¢

>

— +
-T002

»

,, I 2 E 1 E 2

1"’ + T-W-2
=
2’"<>W + "TL + <

W

+87)
' ' (2)

1
/
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Hence we get the partial differential equation [cf. the preceding note,
eqn. (11)]:

asz 1 as: 2meE 1 E1
<b7)+;,(b?))=2v11.,,W+ Q +;,(w+"7) . (3)

The last term on the right is the relativistic supplementary term, which
distinguishes this equation from eqn. (2) in Note 8. -
The equation allows itself to be separated in the co-ordinates 'r and ¢

(and only in these). Since ¢ is cyclic, the law of areas

BS

E = const. = p

holds, and gives us the azimuthal quantum condition

BS I

J4
, = 2-rrp = nh,

E’
=

Eqn. (3) changes into

DS B C

B-;_=\(A+2;+T—,,. . . . (4)

W2 . .|' W 2

A = 2ni,,W +
-67
=
-rn.,,lc‘\<l

+ — l—
*

~
_'
_1

_i
J

eEW _ W |

B = We + 0,,
= m0eE (1

+

It

. (it)
11,211,? was we 0." E 2 I

= — i i = — —i — — — lC

411-"
+

0
2 41* [1 n‘*<e) 1 J

The last of these results from the meaning of 0., cf. eqn. (8) on page 213.
The radial quantum condition which is to be calculated from (4) diflers
neither in form nor in content from those contained in eqns. (6) and (7)
of Note 8, and hence gives us

2

' _

3
/3
A ‘I (5)_ — 1r'L (j _ ——-_' = n 1. - .

As a consequence of the present meaning of A
,

B, C in (4a) we, however,
have

- 21r'i~/C = — nh\/1
—
‘Li(E)2,n e

B eE

{

W '2 '1/2
_ = M 1 -

(1 _) }

. ~

~/A c

+
moo?

Eqn. (5) then becomes

2"**E{1_ (1

. l.)"}"’” = . ,/
t

_
a“(E>2]h.0 moo e

39
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After division by h the expression before the bracket on the left-hand side

18 ta.
-E
; if we square both sides of the last expression we get

_)
1'(l+1T“:;2) =- o ii at

. e

°

l"
' ~

“*(@)l

E 2 -1 /2

W 0%1 +
121.002

_

:1

+"~ (6)

e .["
'

+ Jr A @*<—)]
Here we have found the final representation of the energy for the

relativistic Kepler ellipse, in agreement with eqn. (23) on page 472,
which we communicated there as a generalisation of the formula for the
circular orbit. The method by which it was reached was not the slightest
degree longer than that in Note 8 for the corresponding non-relativistic
problem. It is truly a royal road for quantum problems.
If we wish to inform ourselves about the form of the orbital curve in

addition to its energy, then by Note 7
,

eqn. (44) we should have to cal
culate the function of action S

,

and differentiate with respect to its
integration constants. ‘Ne, however, attain our object more simply
thus.

By eqn. (7) on page 469

+
.

§/
\ax’

n

H

7’;'_l";’_}d’f__@
(7)

11¢

_
'rnr'~'¢

~

'1
'"

d¢
_
d¢'

'

where we have set

1

s = ;. . . . . . (8)

By placing pf = p
2 outside the brackets on the left-hand side of

eqn. (2) we get, in consequence of (7) :

‘

_, ds ‘
Z

1 __

p~[82
+

:|

= 2m0W + 2m,,eEs + + eEs)-.

It is convenient to differentiate this equation with respect to qt:

_, d2 (Is 1 d

p-(s +
= moeE {
1 + 7;F(W + eEs)

0

By cancelling ds/11¢ on both sides and taking the terms involving s over
to the left, we get the following linear differential equation for s :

dis 1E2 E W

. (a@“(1‘;2@=)=m}§(1+»T1>-~ - <9)

Its general integral is

s=Acosy¢+Bsin~/¢+C . . . (10)

Here A and B are constants of integration; y has the significance:

, was

'y1=1—p2c2. . . . .(11)
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in agreement with eqns. i(2) and (3) on page 467. The significance of C,
with which we are not specially concerned, is

C = +
-~W,).rm mov

Eqn. (10) agrees with eqn. (1) on page 467, except that the latter is written
somewhat more specially.
The occurrence of -y in (10) brings about, as we saw on page 467, the

motion of the perihelion of the Kepler ellipse. We proceed to calculate
the advance A¢ of the perihelion as defined in eqn. (4) on the page
mentioned. Since 72 differs very little from (1), we get from (11) to a
suflicient degree of approximation

1_1+i¢j_1+1_j A _2 1_l _1re“E2“ “
21,262»

¢'-‘ "<
;

)_ P262Y

From this we wish to pass on to the motion of Mercury's perihelion
which we touched on earlier, on page 468. For this purpose we write
mM in place of eE, thereby supposing Newton's law to act instead of
Coulomb's, and we take m as the mass of the planet, and M as that of the
sun. Further, we express the momentum constant p of the planet in
terms of the geometrical areal constant f thus:

1:-ab rraz »\/1 — <
2

p = 2m_f,
T T

(r is the time of revolution of the planet, -n-ab the surface swept out in the
time -r

). Thus

2 2M M272
Ad) =

"Z1262

= . . . (12)

Finally we express the mass of the sun according to Kepler's third law,
which is

,

as we know:
a3 __ M

F _ as
From (12) we then get, in conjunction with the latter:

41ri’a2

If we insert in this the data of Mercury for a, 1-, and s, then we get
the value A4> = 7” per century, quoted on page 468. The general theory
of relativity gives almost the same formula as (13) but with the numerical
factor 24 instead of 4

. Hence, according to general relativity, we get
six times greater value A¢ = 43", also mentioned on page 468, which is

in full agreement with the observed value as modified by Newcomb.

17. Quantising of the Non-harmonic Oscillator during
Simultaneous Rotation *

Let us consider, for example, HCI; let the ions have the charges
+ e

, — e
, and the masses ml, m2. Their centre of gravity remains at rest

" A. Kratzer, Zeitschr. f. Phys., 3, 289 (1920).
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and serves as the origin of a polar co-ordinate system 2 'r1¢1 and r2¢2 are
the co-ordinates of ml and m2. Using the theorem of centres of gravity
we introduce in their place the new co-ordinates 1'4>of the point-mass by
means of the equations :

mlrl = m.

951
=
‘#2

Here, as on page 220, p. denotes the “reduced mass
"
of both ions and 1'

the distance between them :

1

P‘

The kinetic energy is easily expressed in the co-ordinates r, 4;:

+ =4ll
ll

$
1
. _
‘!

I ||

__
§]
>
—
*

+

.§
l'-
‘

r='r1+'r2.

H

5
9
*‘
:

E1:-'n= ”;w + T1-=¢,2>+ + mix) <+"1+1-*¢'>2>- <1)

The potential energy is expressed electrostatically and depends only on

*r = rl + 'r
._
,
:

e~ 0 0., 0
;

E,,,,,=_7_1+¢,{+;;+7;_j+...) . . (2)/3

The coeflicients cl express the action of the electronic systems surrounding
the ions and are to be regarded as arbitrary quantities, between which the
following condition of equilibrium exists :

(I

E_EI,,,,
= O

, for T = T
o . . . . (3)

Here 1'
0 denotes the normal distance between the two ions for a molecule

at rest in space, at which the electrostatic attractions and repulsions
between nuclei and electrons remain in equilibrium. Let us set

.,
.

L

P=F0‘ ¢=P"1 - (4)

Instead of (2) let us write

1 1 .

E,,0,=_a<<1+;-2?+b$~‘+c5*+...) _ (5)

This assumption already satisfies condition (3) and is just as general
as (2). It has the advantage over (2) that the correction members with
the coefficients b

,

c, . . . are small in the neighbourhood of the position
of equilibrium and that the “ principal members" preceding them can be
taken accurately into account in the quantising later. The fact that the
expansion in $’s in eqn. (5) begins with £

3 and not with $2 nor with E is
shown if we pass on to the mutual force acting on the ions. It is

d 14
K=*J;EP"‘="?J»E'*°'

a 1 1 ,, _

=_E(p_o2_ F-31»; -4651+

or, on account of (4)
a 5 .

x=_;o<I;,-sbs»+4¢§~*+...). . (6)
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where we may, further, replace p
i‘ in the denominator by (1 + if)“. Since

all powers of 5 are represented here and are furnished with arbitrary
coefficients, we have, indeed, by using our assumption (5), arrived at the
law of force of the most general non-harmonic oscillator.
From the first member of the expansion (6) we deduce the vibration

number 1/0for an infinitely small amplitude, namely,

__d_
21m, =

\/710-2;

. (7)

J = ('""i"'12 + ""2"22)o = P-"'02 - - - (8)

If we define

as the moment of inertia of the molecules in the state of equilibrium, we
may also write eqn. (7) thus:

211110
= \/ d = 4,ra,,2J . (9)

On account of (4) and (8), (1) becomes

(T '
Eu» = g(P’ + 19¢”) - (10)

From this it follows that

=°ll3'~'"=J = =M§=L~=J2'it 3;; P» P4» P N P <
P

p is constant and is equal to mh/21r on account of the azimuthal quantum
condition. The energy equation is :

pf, + + E,,,,, = W . (11)

It follows from this that

1,, =
(/2.IW
- 2JE,,., -

and the radial quantum condition is :

(P
p

d,,=(_()(/2J(w+dd)+%‘_:_2(dJ
+p”)+ . . . dp =nh . (12)

The terms as far as they are written down under the root sign have the
following form, familiar to us from eqns. (8) and (10) in Note 6 1

P P

dud, indeed, if we divide (12) tllrougllout by ~/4.1; as coefficients A, B, 0
,

have the significance

., ,

A=2 E = '=_
lf>=_((d+a), B 1

, O

(1+aJ 1+4Tr_laJ (13)
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Consequently (12) becomes

nil.

\/
'n1,"h" 11

)
*7 . = s 2 1 - _ it Z . 14
~/aJ ”<

+
41:21:-I ~/A

+ ( l

Here, by (12), (5), and (4), the supplementary term Z denotes

_ £11? +_'?€‘)_(_5 + 1)
/
1 (958 +

- - -W +_1YZ *
‘i’,/cit‘-2'B,.~.%».,§1“"5

‘
2‘i’<@1 + QB; + Alerdé (15)

in which we have set

A,=A,B,=B+A, C,=C+2B+A. . (16)

The integrals that occur in (15) have the form of Kn and K; on pages 554
and 555. We may therefore write (15) :

Z=bK2+(b+c)K3+...-_ib”K§+... . . (17)

If as in eqn. (7) on page 418 we take Av to stand for the distance
between neighbouring band-lines Av = h/41r‘*J, and v,,, as in eqn. (9) on
page 613, to stand for the mutual vibration number 1/0 = ~/ 1;/21r~/‘T, then

e_v_ h. S
’ll/=V0—-27r~/‘(KI

. . . .

must under any circumstances be a small quantity, of which we may in
general neglect all powers beyond the second. Later we shall show that
the ratios B,/A1, C1/A, are of the first order in u. We shall use this
result at once here in calculating the K,;’s and K,;'s. From eqns. (27) and

(29) on pages 563 and 564 it then follows that

311-i B C 311-1; C 2

“*=-Jami’ Ka= ‘K/T1(i>’ K~1=K5=- =
°l

(,9,
15m‘ C 2

K’ = - — ~ —‘ = '-= . .. =8 4A,,/A,<A,)

' K* K" O

i

Thus the terms we omitted to write out in (17) may all be neglected in
our approximation.
We next wish to resolve the quantum condition (14). If we divide

both sides by — 211-,then we get on the left — nu, and the first term on
the right becomes ~/1 + nzilu”. -For the second term 1'/~/A which, by
(13), contains the energy and hence may be selected as the term that is of
interest to us, we write y :

,I 5*!

> ll I ‘§ ll Q!

.
>
1

1

.

‘~
’

= 4-~— —— . 2F1

2(¢ + W/a)’

( 0
)

(14) then becomes

~nu=~/1+m2_1T2—y—2Z;_- - (21)
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By (17) and (19) the quantities B1/A1 and C1/A1 occur in Z. By (16),
(13), and (20) these become :

__
>
\_
O
__
>

ll |-l + ;>[
gj

>
‘
U
5

+

{
>
lO ll |-1

B.

(22)
— 2y? + (1 + m”uF);:/'1 = 1

- y? + mzugyi

If as a first approximation we set u = O
,

eqn. (21) i
s satisfied by y = 1
,

since B1/Al, C1/A1, and also Z vanish for y = 1
. Thus as our first ap

proximation we have y = g/1 = 1
. By setting as a second approximation

_1
/ = g/2 = 1
'

+ pu, we conclude from (22) that B1/A1 and C1/A1 vanish in
the first order with u; this fact We have already used above in calculating
the values (19). By (19) Z then vanishes in u to the second order.
From (21) we then get _

p=n, y2=1+nu
and from (22)

B1/A1 = C1/A1 =
- 2nu.

By proceeding step by step we get the following successive approximate
values from (21) :

1/1

Y/2
_, m‘-’ A 15 3 15 2

ya = 1 + nu +
'u~{§-

—
n3<§b

+

Q
0 —

Z12

ll
ll

>
->
-A

+ €
l
s: K

I‘/4
= 1 + nu + n2 -

n"<1—;b
+ g

r: -
11551)}
- 3u“nm2b.

The last approximation does not seem quite logical in that here a
term with ui‘ has been taken into consideration whereas we have usually
stopped at the terms with 102. The reason is as follows: u is, indeed, a

small quantity, but in the case of fully developed bands m may in given
cases assume great values, so that uam” is not to be neglected. We
obtain the last term of (1/4, by setting 3/ = g3 in (22), that is

,

by setting

B
1 .. .. C.- = — 2nu — m-'u.~ + . . ., J = — 2nu + . . .

A
1

A
1

so that in the expression (19) of K, we get

B
l
C
l

-1 ~
I

~
:

K
l

K
1 = 4n~u- + 2nm~u“. I

It is not diflicult to show that even when higher powers are taken into
account the added member is the only one in 103with the factor nm2.
To arrive at the energy expression W, we form, in accordance with

(20):

1 _2 W 1

'9?“ =“+7I="§+"“ l(23)2 3 15 3 1’ 3 , ‘

+
u2{% —n'3<§

+

—2—b
+

Q
0 -

-4-qb“)}— in-‘nm‘(1
+ 2b) + . .
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By (18) and (9) we have

an =
g
= hvo, an? = hV0'lt = h.-Av = 421;.

Thus we get from (23), except for a constant quantity, that is
,

one that is

independent of n and m :

I2 15
W = nit:/0 + 5;-§Jm”

—
hv0’tl/It2<g

+
—§b
+ g

o —
$5‘)

3

. (24)-
§Itv,,a'~'n'nt"(1 + 2b) +

. . .

If we set ’I7t= O in this, we get the pure energy of oscillation, which was
called W3 in eqn. (10) on page 422, namely

WI,‘ = nhv,,(l ~ am + . . . . . (25)

From (24) we now get the following significance for the abbreviation a
introduced earlier :

3 15 3 15
at =

<
2
" + §b + 2
0 — ?b”)n.

The pure energy o
f rotation is represented by the second member on the

right-hand side of (24). It has the form of the Deslandres term. Finally
the last term in (24) represents the term expressing the nmtrzal act-ion
between rotation and oscillation. If, as in eqn. (11) on page 422, we write

it as — m2anh,.a,, acquires the meaning

3

an = groan‘-’(l + 2b + . . .);

as emphasised on page 422, an is proportional to the oscillation quantum n.
' In this note we have furnished all the necessary addenda for the
detailed explanation of band-spectra.
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Brinsmade and Kemble, overtone bands, Crosslaw(=law of exchange, Wechsclsafz),
424. 372, 386.

'

Brock, van den,atomic number and nuclear Croze, many lines spectrum of H, 209, 440.
charge, 66, S9. 1 Crystal analysis, 121, 537.

Broglie,dc, velocity spec-trun1,131,449,514. — atoms, 121.
Bromine band, 136. ‘H constant, 138.
Buisson, 70. — powder method, 136.
Burgers, adiabatic hypothesis, 304. — structures tabulated, 537 ct seq.
— energy, 594. Curie, 59.
— group of ellipses, 547. . — constant, 249.
Burgess, -503. Curl, 572.
Burmeister, infra-red absorption, 419. Cyanogen band, 429.

Cyclic co-ordinates, 443.

C

D

Cabrera, 247.
Canal rays, 8

,

13, 86. Darwin, 64, 476.
Canonical conjugates, 546. Dauvillier, 164, 515.
— variables, 545. Davies and Goucher, direct and photo
Cathode ray electrons, 8. electric ionisation, 339.
— -——tubes, 2. — — —- excitation oi Hg-lines, 346, 847.
— rays, B

,

13. Debye, 44, 78, 304.
— — secondary, 23. — interference phenomena, 586.
Chadwick, deflection of a-rays, 63. — Ka-emission, 226.
Chancourtois, 61. — and Scherrer, crystal powder method,
Charge, electric, 23. 122, 136, 137.
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Defective combinations, 187.
Degenerate problems, 200, 241, 246, 284,
564, 567, 571.

Degrees of freedom, 200.
Dember, Losch1nidt’s number, 535.
Dempster, isotopes of magnesium, 87.
Deslandres, law of band lines, 209, 418,
417, 434.

Determining factors of spherical wave, 255,
572 et sag.

Diatomic molecules, 416.
Difiraction, 110, 111, 253.
-— centres of, 115.
— of Riintgen rays, 118, 119.
Dissociation potential, 243, 603.
— work of, 603.
Displacement laws of radioactivity, 81.
— spectroscopic law of, 372.
Distribution numbers (Besetzungszahlen),
109, 230. See also Strengths of shells.

Doppler's principle, 34, 460.
Dorn, secondary cathode rays, 23.
Dot notation, Newton‘s, 24.
Double bands, 420.
Doublet atoms, 406.

'

Doublets, 151, 370, 375, 381.
associated, 173.
composite, 166.
equal intervals oi, 161, 507.
improper, 382.
intermediate, 505.
irregular, 506-512, 519, 521.
M-doublets, 506.
proper and improper, 382.
of radium, 377.
regular and irregular, of Riintgen
spectra, 496 at seq.

— regular, 505, 519, 521.
-— relationships, 159.
— systems, 365, 878, 391.
Duane, Rfintgen spectra, 133, 187.
— and Hunt, 178.
— Kang-Fuh-Hu, 152, 185.-- Patterson, 184, 186.
——Stenstrém, 152, 184, 185, 523.
Stenstriim, and Fricke, 185.
Dulong and Petit's law, 101.
Dunz, series terms, 205.
Dynamide, 13.
—- theory, 62.

E

e, 525. See Spectroscopic units.
Eder and Valenta, 374, 449.
Effective nuclear charge, 68, 73.
Ehzenfest’s adiabatic hypothesis, 246, 304.
E igenstrahlung, 25.
Eight shell (8-shell), 103, 302, 449, 503.
Einstein, 21, 95.- addition theorem of velocities, 459.
— inertia of energy, 95.-- light quanta, 38, 254.
— photo-electric equation, 38, 42, 253.

Einstein, relativity, 452, 466, 468.
— time-dilatation of, 460.
Electricity, 22.
Electrochemical equivalent, 4, 221, 526.
Electrodynamics, 1-3.
Electrolysis, law of, 3.
Electromagnetic waves, 24.
Electromagnetism, 1-3.
Electron, 5, 6, 7.
— afiinity (hunger), 103, 449.
impact of, 3'37at seq.
mass of, 5, 20, 22, 528.
negative and positive, 22.
shells, 72.
quasi-elastically bound, 196.
transitions of, 144, 145.

Eleetronegative, 103.
Eleetropositive, 103.
Elements, table of, 57. .
-— undiscovered, 59.
Ellipsenvsrein = group of ellipses, 230.
Elliptic orbits, hydrogen, 233.
——energy of, 236.
— quantised, 236.
Ellis, photo-electric effect and energy
levels, 449.

Elster and Geitel, photo-electric effect, 35.
Emission, 144, 270, 416.
— spectrum, 447, 450.
Energetics, 3.
Energy, changes in atom, 214.
field, 547.
flux, 532.
inertia of, 452, 464.
potential and kinetic, in Coulomb field,
75.
quanta, 37, 200.
of rotation, 616.
steps (mveauz), 146.
Epstein, 444, 594.
— choice of co-ordinates, 562.
Equatorial axes, 442.
-— quantum number, 243, 271, 800.
Ether, 215, 257, 258, 263, 454.
— absolute theory of, 529.- momentum of, 259.
Eucken, distances between infra-red band
lines, 423.

Eulerian angles, 443.
Excitation limits, 140, 1'77, 180.
Exner and Haschek, 378.

I‘
Fabry, 70.
— and Buisson, 209, 482.
Fajans, 45, 38, 106.
—- displacement laws of radioactivity, 31.
Faraday, 1, 3.
Fedorow, 117.
Field, theory, 1.
— weak, 400.
Fine structure, 213, 237, 474 ct snq.
»—— constant, 525, 531.
First subsidiary series of H, 207.
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Fizeau, 453.
Flamm, 215, 224.
—- semi-spectroscopic units, 527.
Flutings (Kamwlierungen), 202
Footc. Meggers, and Mohler, 333, 348.
— and Mohler, 341, 348, 354.
— Mohler, and Simson, 348, 349.
—- Roguley, and Uohler, 345.
Fortrat, baud formula, 426.- null line of band spectra, 429.
Fourier’s integral, 29, 449, 568,
Fowler, 207, 373, 376, 440.
— series, 207, 317.
Franck, 218.
and Einsporn, 348.
——Hertz, 337, 347.
— Knipping, 344.
— Reiche, 350.
— Steubing, 449.
Fraunhofer lines, 203, 380.
Frequency difierences, 496.
—- condition of Bohr, 215, 228,

304.
— proper and improper, 217.
Fresnel, 253.
Fricke, 184, 185.
— K-limits, 189.
Friedrich, 118, 134.
— coherence of scattered radiati
Frimau, L-series, 159, 161.
Fiichtbauer, optical excitation, 3
— and Hofmann, 365.
Fuss, 318, 376.
Fundamental series, 315.

G

Gehrcke and Lau, 209, 482.
— - Seeliger, 338.
Geiger, deflection of a-rays, 62.
Gerlach, 337.
Gibbs, phase space, 195.
Glocker, formula for absorption coefiici
188, 190.

Goethe, 3.
Goldstein, canal rays, 14, 374, 4
Giitze, 368.
Grammol, 4.
Grating crossed, 113.
7-rays, 23.
— connection with B-rays, 43.
Grebe and Holtz, bands of wa
431.

Grimm, curve of ionic volumes,
Grossmann, motion of Memury’s
468.

Grotrian, Bohr diagram, 351.
— neon spectrum, 383.
Ground band, 423.
— orbit, 284, 324.- spectra, 374.

to

107, 1
perihe

595.

254,

on, 53

51.

40.

Grundbahn. See Ground or natural 0
Guye and Lavanchy, proof of re
change of mass, 464.

lation

266,

6.

ents,

r-vapour,

08.
lion,

rbit.
istic

i
i

v

Gypsum, lattice constant, 158.
Gyroscopic motion, 441, 587.

H

h, 3'7, 146, 193, 198, 202, 217, 252, 307,
525, 555.

Haas, Rydberg’s number, 216.
Half-value time, 46.
Hahn, 48, S4.
Hallwachs, photo-electric efiect, 35.
Hamilton’s canonical equations, 194, 280,

466.
— — invariability of, 541.
function H, 194, 589, 607.
— — modified, 546.
partial difierential equations, 555, 558.
theory in relativity, 606 at seq.

Hardness gauge, 192.
— relative, 147.
— Rontgen light, 28.
Hard rays, 536.
Harkins, 61, 96.
Harkins and Aronberg, spectra of lead
isotopes, 102.

Hartmann, continuous emission spectrum
of H, 447.

Hauy, 117.
Heat oi combination, 95.
Heisenberg, 405, 412.
Helium atom (ionised), 69.
— ion (neutral), 68.
— lines compared with Balmer series, 223.
-— model of nucleus, 96, 231.
Helmholtz, 3, 454.
— kinetic potential, 606.
Hertz, G., 172, 186.
— law of irregular doublets, 509, 511, 512,

524.
-—- L-limits, 189.
Hertz, Heinrich, 1, 2, 35, 243, 276.
Herzfeld, 108.
Heterapolar dipole, 583.
Hettner, overtone bands, 424.
Heurlinger, band spectra, 413, 430, 431,

435, 446.
— criterion of intensity, 428.
Hewlett, 188.
— total coelficient of extinction, 536.
Hexadecade of elements, 58.
H-ion, 7, 68.
Hjalmar, precision measurements of L

series, 152, 160. 161.
—- screen number, 507.
— weak K-lines, 525.
H-mys, 92.
H-transformations, 88.
Hittorf, 8.
t'Hofi, van, 125.
Holtzmark, 447, 448.
— absorption spectrum of Na, 203.
llomceopolar molecule, 425.
Hiinigschmid, 80.
Horton, ionisation steps oi He, 344.
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Hoyt, excitation limits of the L-series, 154
180, 181.

Hull, crystal powder method, 136.
Hydrogen, atom, 68, 473.
— ion, 7, 68.
—- mass, true and imagined, 139, 221.
— spectra of the type of (wasserstofldlm

lich), 209.
—- spectrum, 202 ct seq.

I
Imes, absorption spectra of halogen acids,
419, 420.

Impulse (seeMomentum), 195.
— spectrum (Bremsstrahlung), 25, 450.
Inert gases, 103.
Inexact combinations (Fowler), 332.
Infra-red absorption spectra, 416.
Initial or migratory electron (Aufelektron)
325, 329, 596.

Integration by complex variables, 548.
Intensities, 273, 487, 491, 583, 586.
— rule of, 369, 490.
——statistical, 583.
Interference, 253.
—- of Rontgen rays, 115, 116.
— photographs, 118, 119.
Intra-atomic magnetic field, 363.
Invariable plane, 251, 264, 269.
Ion, 3, 68.
Ionic sizes, curve of, 107.- volume, 106.
Iouisation and photo-electric efiect, 339.- method of X-ray spectroscopy, 135.
— potentials, 69, 341.
— — of Bohr’s original models, 601 at seq
Ionised atoms, 372.
Ishiwara, quantising of several degrees oi
freedom, 200.

Isotopes, 84.

J
Jacobi, 547, 568, 605.
-— elliptic co-ordinates, 279.

K

Kannelierungen = flutings, 440.
Kaufmann, deflection of B-rays, 19, 34.
——proof of variability of mass, 464.
Kayser, 378.
— and Runge, 380.
K-doublets, 151, 161.
— and L-doublets, difference in, 170.
K-excitation, 504.
Kent, doublet of Li, 361.- Paschen-Back effect, 401.
Kepler laws, 212, 233, 529.
— motions, 212, 303.
— -— relativistic, 466 et seq.
Kinetic potential, 606.
Kirchhoff, 421.

1Knipping, electron affinity of halogens,
119, 449.

Knotenlinie, 243.
Koch, P. P., photometry, 111.
Kohlbrausch, extinction coeflicient, 536.
Konen, 334.
Kossel, 104, 143, 354.
— addition relations, 523.
— explanation of successive maxima of

K-limits, 190.
— and Sommerfeld, 373, 378.
K-radiation, 142.
Kr-amers, intensity of spectral lines, 275,
487, 491, 583, 586.

Kratzer, 285, 291.
— band spectra, 413, 422, 424, 434, 611.
K-ring, 143, 227.
Kroc, Besetzungazahlen, 229.
K-series, 137, 140.
— absorption limits, 185.
— Ag-leaf, 182.
— v/R-values, 156, 157.
— wave-lengths, 153.
K-shell, 143.

L

Ladenburg, 109, 383.
— useful formula, 340.
Lagrange, 547.
— function, 543, 607.
Landé, crystal calculations, 104, 367, 383,
393, 399, 400, 407, 503.

Langevin, paramagnetism, 247, 250.
Langmuir, work of dissociation of hydrogen,
603.

Larmor, precession of orbits, 296, 301, 309,
310.

'

Latitude, 243.
Lattice, 113, 537.
— constants, 117, 120, 140, 152.
-— points, 115.
— pseudo-graphite, 127.
— space-centred, 123. Sea also Crystal
structure.

Laue, 3.
— diffraction of Rontgen rays, 110, 118.
Law of rational indices, 128.
L-doublets, 160, 161, 496.
— table of, 162, 163, 500.
L-levels, 502 ct seq.
Le Bel, 125.
Legendre transformations, 546.
Lenard, 2, 8, 12, 13, 35, 62, 338. See
Dynamide theory.

Lenard window, 12,
Lenz, 413, 430, 431, 445, 446, 528.
— model of He-nucleus, 96, 231.
Levels, scheme of, 322, 519. See L-, M-,
N-, O-, P-levels.

Libration limits, 282, 561.
—
periods,

450.
Lie ert, combination series in the electric
field, 332.
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Light quanta, 44, 254.
Line-element, 588.
Linear oscillator, 195. ‘

— polarisation, 261.
Line intervals, 287.
— Mercury lines, 852.
— spectra, 202.
Lippmann, colour photography,
Lissajous curves, 561, 581.
Lithium atom, 71.
—- fluoride, 137.
L6be, intensity differences of Rontgen rays,
34.

Lohmann, Zeeman efiect of neon-lines,
383, 390.

Lohuizen, van, anomalous Zeeman effect
and principle of combination, 390.

Longitudinal vibrations, 23.
Loornis, baud-spectra and isotopes oi (
chlorine, 424. 1

Lorenser, term representation of are spectra,
375.

Lorentz, 2, 21, 95, 259, 400.
——contraction, 458, 461.
— displacement, 296.
— theory of Zeeman efiect, 295, 304.
— transformation, 457, 532.
Loschmidt’s (or Avogadro's) number, 4,
139, 535, 603.

Lo Surdo, Stark effect, 277.
L-radiation, 142, 144. ‘

L-ring, 143, 227.
L-series, 140, 354.
absorption limits, 186.
Ag-leaf, 183.

,\/v/B. values, 166, 167.
excitation limits, 181.
L-shell, 143.
L-terms, 497. ,
Lunelund, Stark efiect of H-canal rays, 313. l
Lyman, 378, 480, 487. *
— ultra-violet series oi H, 207, 218. l
-~ — — — He, 224, 226. ,
— and Fricke, ultra-violet lines of helium,

‘'
350.

M l

Mach, 3. l
McLennan and Henderson, .

Magnetic axis, 408. l
— quantum number, 392, 407. i
— spectrum = velocity spectrum, 43, 449. I
Magneton, 247 et seq.
— Bohr, 249, 407.
— Weiss, 251.

(Magneto-optic law of resolution (Sommer
feld’s), 390.

|Malmer, 152.
Mandersloot, overtone bands, 423.

\
Many-lines spectrum (Viellmienspcclrum), ,
209, 344, 414, 440.

‘
Marsden, 62. i

Mass, variability of, 452, 461, 52s. I

Mass, reduced or resultant, 220, 240, 425,
612.

Maxwell, 1, 2.
— equations, 254.
Maxwell-Boltzmann law, 420.
M-doublets, 160, 506.
Mehrlinieuspectrum (more-lines spectrum),
345.

Meissner, composite doublets in the Berg
mann series of Cs, 359, 362.

— neon spectrum, 382.-- and Paschen, hydrogen doublet, 482.
Meitner, structure of nuclei, 84, 90.
Mendeleef, periodic classification, 56, 98.
Mercury lines, 352.
Mercury s perihelion, 468, 611.
Merton, difierences in the spectra of isotopes
of Pb, 102.

Meta-neon, 86.
Meta-stable states, 79, 350.
Meyer, Edgar, directional character of 7
emission, 34.

-— Lothar, atomic volumes, 56, 61, 106.
— Stefan, atomic volumes, 46, 99.
Michelson, 482.
— and Morley's experiment, 454.
Miller, anomalous Zeeman efiect, 388.
Millikan, electron, 15, 39, 527.
— extension of ultra-violet region, 161.
— reversing potential, 41.
— spectra, 207.
Minkowski, four-dimensional world, 457.
Modified function, 546.
Moduli of periodicity, 555, 559.
Mol, 4.
Molecule, hydrogen, 438.
—- diatomic, 441, 443.
Molecular size, 430.
Moment of inertia cf molecule, 415.
— — — —~models, 72.
Momentum, 194, 257, 469.
— co-ordinates, 233.
~—moment of, 199, 257, 258, 572.
Monochromatic vibrations, 216, 269.
Moore, anomalous Zeeman efiect, 388.
More-lines spectrum, 345.
Moseley, 135, 140, 149, 161, 509.
-— high lrequency spectra, 147, 149.
—~law of, 176.
— nomenclature, 159, 177.
Moving systems, 455.
M-radiation, 142.
M-ring, 143.
M~series, 140.
— \ve,ve-lengths, 172.
— v/R-values, 174.
M-shell, 143, 507.

N

Natural orbits (Gru1uibaIu/wn), 284, 324.
N-doublets, 160.
Nernst and Eucken, specific heat of rota
tion, 439.
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Net planes, 130, 138.
Newcomb, 468, 611.
Newlands, 56.
Newton, 1.
— gravitational law, 65.
-— laws of motion, 198, 257, 452.
Nicholson, group of ellipses, 502.
~—quantum condition for rotator, 212.
—- ring systems, 602.
Niggli, 127.
Nilson, 51).
Nivsauz. See Levels.
Normal levels, 516.
N-shell, 507.
Nuclear charge, 13, 64, 226.
— — “ effective,” 69, 73, 498.
— defect, 503.
— physics, 89 at seq.
— theory of matter, 62.
— vibrations, 416, 433.
Nucleus, 13, 55, 63.
~—relative motion of, 218, 240.

Phase, integral, 198, 201.
— orbits, 198.
— points, 195.-- space, 195.
1Photo-electric effect, 35, 448.

]—
_ indirect, 339.

,— — laws of, 36.
— — normal, 35.I— — selective, 35.

, Pickering, spectra of nebular clusters, 207,
1 208.
—- series, 203, 222, 223, 317, 373, 493,
Planck, 36, 200.
——oscillator, 193, 195, 196.
,
F rotator,

195, 199.
leiads, 87.
P-levels, 515.
r'ohl, 111.
gPoincaré, 259.

i Poinsot motion, 442, 444.‘Point transformation, 541.
I Poisson, 547.

Null line (= zero line) of rotation bands, Polarisation, 23, 289, 581,
419, 445.

0

One-line spectrum, 345.
Orbit, natural or ground, 284, 324.
Orbital azimuth, 243.
— equation, 569.- plane, 303.

— in Zeeman efiect, 294.
-— left circular and right circular, 265,‘

272.
— linear, 273.
— of wave, 255, 261, 262.
— rule of, 264 et seq., 273.
Popow, 363, 378.

1Positive ion, 13.
— rays, 14, 86.

Order numbers (Ordnungszahlen),
578, ,Potential. See Dissociation.

— of interference, 116. i— See Ionisation.
Ordnungszahlen. Sec Order numbers. —- See Resonance.
Oscillator, linear, 195.
— spatial, 195, 199, 560.
O-shell, 512.
Ostwald, 3.
Overtone bands, 423,

P

Parabolic co-ordinates, 571, 588.
-— quantum numbers, 283.
Paramagnetic substances, 249, 443.
Partial series, 319.
Paschen, 318, 333, 346, 380, 383, 418, 420,

483, 488, 490, 491, 527, 583.
-—~He-lines, 531,

Poynting’s vector of energy-flux, 260.
Precession, Larmor, 296, 297, 301, 309,
441, 536.

Preston's rule, 385, 888.
.Principal series, 207, 315.
‘
Probability, statistical, 263.
— of orbits, 247.
Prout’s hypothesis, 56, 59, 87.
P-shell, 512.
Ptolemy, 466.

Q

— infra-red series, 206, 207, 218, 223, 487. Quantised orbits, 198, 212, 236.
Paschen-Back effect, 285, 381, 338, 401,1Quantising of spatial position of orbits,

409, 495.
~—— partial, 389, 409.
Paschen and Back, 300, 363.
Pauli, 79, 313, 605.
— theory of magneton, 249.
Periodicity and non-periodicity, 567.

‘

Q-series, 481.

, 243._ of elliptic motion, 569.
i—
— — — by separation of variables,

608.
iQuantum of action, 37.

‘

— ground, 520.
— conditional, 201, 307, 559, 561, 567,577. — numbers, 67, 243, 283, 357, 520.
— of atomic structure, 102.
Periodic table, 57, 99.
Permanency of multiplicities, 358.
Phase, 195.
— area, 195.

,— -— inner, 358, 364, 520.
l— — magnetic, 392, 409.
,
— orbits, 67, 236, 326.
— sum, 334.
1- theory, 36 at seq.
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B.

R = Rydberg-Ritz constant.
Radial quantum condition, 234.
-~ —- number, 326.
Radiation, 25, 142, 148.
—- characteristic, 25, 28, 110, 137.
— homogeneous, 28, 142.
— impulse, 25, 29, 110, 137, 179.
— momentum of, 257.
Radioactive constant, 49.
— equilibrium, 41.
— families, 46.
—- substances, 17.
Radioactivity, 45.
— decay, theory of, 58.
— disintegration (table), 47.
— displacement, laws of, 81.
Radium, doublet, 377.
— emanation, 53.
Raleigh and Ramsay, 56.
Ramsauer, linear law, 39.
Rational units, 259.
Ran, 339.
Rawlinson, 42.
Rayleigh, intensity of scattered light, 535.
Reduced or resultant mass (reduzierte
masse), 220, 240, 425, 612.

Reflection of Riintgen rays, 130.
Reiche, specific heat of rotation of H,,
421, 439.

Relative motion of nucleus, 218, 219.
Relativistic Kepler motion, 466 et seq.
Relativity, 452 et seq.
—- correction, 158, 164, 203, 487.
— Hamilton’s theory in, 606.
Resolution of series terms, 477 vi seq., 487.

i

Resolving power of lattice, 113. ‘

Resonance line, 341.
— potential, 341.
Reversible processes, 305.
Revolving crystals, method of, 131.
Riemann surface, 551.
Ritchmeyer, non-existence of J-radiation,

Rowland, 453.- grating, 117.
It-series, 431.
Rubens, 418.
Rubens and Wartenberg, 419.
Rubinowicz, 313, 407.
— principle of correspondence, 275.
Runge, 391.
— and Grotrian, 429.
— — Paschen, 380.
— — Precht (Ra-doublet), 377.
— denominator, 385.- numerator, 387.
— rule of, 385.
Russell, 81.
Rutherford, Sir Ernest, 13, 62, 79, 149,

232.
——disintegration of nitrogen, 88, 91.
— and Andrade, -y-ray spectrum of Ra,

135, 172, 449.
— and Chadwick, 64.
— Geiger, and Marsden, deflections of a

ray. 62, 65.
—- and Richardson, coeflicient of scatter

ing of -y-rays, 536.
— Robinson, and Rawlinson, secondary

11-and B-rays, 42.
— and Soddy, decay theory of radioactive

substances, 53.
Rydberg, 59, 71, 329, 359, 379, 381.
—- constant, 204, 329, 375.
— frequency, 155, 173.
Rydberg-Ritz constant, 154, 204, 220, 316.
Rydberg-Schuster law, 318.

S

Sadler, 31.
Saunders, 362, 375, 409.
Scandium, 149.
Scattering power, 121, 533. See Electrons.
Schiifer and Neumann, 464.
Schillinger, 374.

144. Schmid, 71.
Ritz, 315, 329, 375, 600. l Schénflies, arc spectra of alkalies, 117,
— principle of combination, 205. l 125.
Robinson, 42. 1Schrtidinger, s-term and ground spectra of
Rock salt, Riintgen spectrum of, 137.

‘
alkalies, 329.

Rojdestvensky, 329, 330, 332. , Schumann, 353.
Réntgen rays, 15, 23, 110, 111, 139, 353. Schuster. See Rydberg-Schuster.- — photographs (medical), 191. Schwarzschild, 413, 417.
— — primary, secondary, tertiary, 23. — degenerate cases, 564, 567, 568.
— spectra, 512. — and Epstein, choice of co-ordinates,
— spectrum (white), 29. 276, 556, 592.
Rotating systems, 466. ———- —- conditionally periodic motions,
Rotation and oscillation, 436, 616. 201.
— number (Umlaufszahl), 275. Schweidler, 46.
— spectra, 416 ct seq. Screen constant or number (.4bsch.ir-m.ungs
— vibration spectra, 416 at seq. zahl), 498, 502, 507, 508, 509.
Rotationless molecule, 587. Second subsidiary series of H, 207.
Rotator, 195, 199, 211, 443. Seeliger and Thaer. 379
— (magneton), 248. Seeman, 134.
— of Bjerrum and Schwarzschild, 414. Selection of inner quantum numbers, 365.
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Selection, principle of, 217, 240, 2
273, 351, 483, 485, 521, 522,

Semi-spectroscopic units, 527.
Serimfremd, 389.
Series, 202, 207, 314 ct seq,
doublet, 231.
law of system, 437.
partial, 319.
principal, 207, 315.
Riintgen, 354.
scheme of, 336.
— — and electronic impact,
subsidiary, 207, 315, 333.
terms, 187.
theorems, 321.

Shadow pictures, 191.
Shells, electrons in, 108, 109, 143.
Siegbahn, 102, 127, 140, 151, 152,

525.
— and Friman, 152.
— — Jénsson, 135, 185.
-——— Stenstrém, 152.
Siegbahn’s nomenclature, 159.
Silver band, 184.
Simultaneity, 459.
Sleator, infra-red absorption spectra, 419.
Smekal, non-existence of A-doublet, 172.
— scheme of levels of Riintgen rays, 514
515.

Soddy, displacement laws of radioactivity
81.

Sohnke, 117.
Sommerfeld, 76, 230, 304, 313, 362, 373

400, 406, 594.
— fine structure, 213, 237, 474, 521.
— generation of Balmer lines, 237.
— law of magneto-optic resolution, 390.
— quantum integral, 200.
—- Stark effect, 592.
Sommerfeld and Debye, 44.
— — Wentzel, 507.
Space-lattice, 11.5.
Space-reflection, 128.
Spark current, 333.
— spectrum, 372.
Spatial quantising, 242.
Specific charge, 5, 14, 16.
Spectra not of the H type (wasserstoflum
dhnlich), 596.

Spectral lines, sharpness of, 562.
Spectroscopic units, 217._ — semi-, 527.
Spectrum, flame, arc, spark, 372, 481.
Spherical top, 442.
-— wave, 255, 572.
S-series, 431.
Stark, 14, 313, 332, 333, 447.
— effect, 237, 270, 276 at seg., 310, 485.
— — according to method of Hamilton

and Jacobi, 587.
— -— components of, 291-295.
Static length (Ruhldnge), 459.
— mass (Ruhmasse) 6, 21, 461.
— system of reference, 297, 301.

64 et seq.,
581.

: 339.

173, 177,

9

Stationary orbits, 202.
Statistics of intensity, 583.
Stay, length of (lrerweilzeit), 262, 353.
Stensson, weak K-lines, 152, 525.
Stenstr-6m, 102, 133, 173.
-— M-limits, 189.
-— rule, 141.
Stokes’ fluorescence rule, 141. 159, 179,184.- lag, 179.
Stoney, 5.
Strengths of shells ( = distribution numbers
or Besel‘zu1zgsza7z.Ie11),108, 143.

Subsidiary series, 207, 315.
Surface, in (f+ 1)-dimensions, 546.- Riemann, 551.
— of atom, 448, 451.
Swinne, relation between I.- and M-series
1'74.

T
Tal-zamine and Kokubu, Stark eflect of

second order, 594.
— - Yamada, Zeeman effect of neon

lines, 383, 391.
Target point (T1'efl'pzmkt), 557.
Tate and Foote, 345. ,
Terms, 187, 314, 516.- constant and variable, 205, 314.
Thiele, meaning of head of band, 428.
Thomson, Sir J. J., researches on canal
rays, 68.

Thorium series, 45.
Time-dilatation, Einstein's, 460.
Time equation, 569.
Time of stay (Verwcilzeit), 262, 353, 431.
Time, half-value, 46.
Transformation potential, 349,
Trefipunkt = target point, 557.
Triad of elements, 58.
Triplets, 381.
— Hydrogen, 506. ‘

Triplet systems, 866, 375, 401.
— —- differences of level, 371.
Trouton and Noble, experiment, 454.
Tungsten anti-cathode, 183.

U'

Ubrey's intensity law, 179.
Ultra-Bergmann series, 379.
Umlaufzahl = rotation number, 275.
Unzwandlungsspannung = transformation
potential, 349.

Units, electromagnetic, 15, 25.
— electrostatic, 15, 213.-- rational, 255.
— semi-spectroscopic, 527.
— spectroscopic, 217, 525.
Uranium series, 45, 50.

V'

Vacuum spectrograph, 135, 152.
Valency electrons, 103.
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Variations, calculus of, 542, 557
Vegard, distribution numbers, 230
Velocity spectrum (= magnetic s
43, 449.

Variables, separation of, 555, 569,

pec

Verweilzeit (= length of stay), 2
431.

Vibration circle, 261.
— ellipse, 261, 572, 602.
— fundamental plane of, 261, 264
— numbers (frequencies), 154.

590, 608.

trum),

62, 353,

, 572.

Viallinienspektrum. (Many lines spectrum),
209. 344.

Violet shift of helium lines, 223.
Virtual work, 542.
Voigt, theory of anomalous Zeem
of: alkalies, 400, 401; quan
interpretation, 405.

Voltaic current, 21.

VV

Wagner, L-series, 140.
— Stokes’ lag, 178.
— wave-length of Riintgen rays, 1
Wagner and Brentano, bromine a
edge, 183.

Walter and Pohl, diffraction of
rays, 110.

Warburg, 305.
Wdrmetiimmg, 349.

an ellect
tum in

27.
nd silver

Riintgen

Wasserst0_fi'r'L'Imlich = of the hydrogen
type, 201),222.

Wave, coherence of, 255, 262.
intensity of, 255.
length, measurement of, 129.

numbers, 154, 175, 217, 294.
polarisation, 255.
theory, 253 See also Spheri

Weber, magnetic moment, 247.
Webster, 178, 179, 180.

lengths, equal differences of, 16

. ca
Weak fields, 388, 496.

1, 169.

l wave.

Webster and Clarke, determination of h
from excitation lim

— — — excitation limits, 180.
Webster and Duane, ionisation
135.

Wehnelt tube, 9, 35.
—~hardness gauge, 192.

its, 178.

method,

Weinacht, spectra of atoms not of the
hydrogen type, 600.

Weiss, magnetic moment, 247.
Weiss and Piccard, number of magnetons
in paramagnetic gases, 251.

Wentzel, irregular doublets, 510.
—- scheme of levels of Rontgen spectra,

515.
— selection principle of Rdntgen spectra,

522.
— spark lines of Riintgen spectra, 525.
Werner, 104.
Width of impulse, 28, 111.
Wien, researches on canal rays, 14.
\Viener, 130.
\Viess (abklingen), 262.
Wilson, C. T. R., paths of a and B rays in

gases, 17, 62.
— paths of Riintgen rays, 28.
Wilson, W., quantising several degrees of
freedom, 96, 200, 235.

Wind, 111.
Winkler, 59.
Wolf-Rayet nebulae, 225.
Wood, 430, 447.
Work of escape, 39, 448.
World, 461.

X

X-rays (=R6ntgen rays) 15, 23.
— hard, 32.
X-units, 151.

Y
Young, 253.

Z

Zeeman effect, 237, 270, 310, 495.
-- anomalous, 294 at seq., 363, 384.
of band spectra, 441, 446.
longitudinal, 294.
Lorentz‘s theory of, 295.
transverse, 294.
triplet, 294.
types, anomalous, 296.

Zenker, 130.
Zero-line = null line of rotation bands
419, 445.
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