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Vector  tting  (VF)  is known  as  the  most  popular  method  for  frequency-dependent  modelling.  Using  VF,

frequency-domain  data  of  a  network  can  be  converted  into  an  equivalent  circuit  model.  Some  initial

poles  need  to  be  selected  before  VF  can  be  started.  The  starting  poles  affect  the  accuracy  and  convergence

speed  of  the  vector  tting  method.  In  this  paper,  a  new  procedure  is  proposed  to  select  starting  poles.

The  proposed  procedure  selects  starting  poles  by  partitioning  the  frequency  response,  and  then  ranks  the

starting  poles  so  that  the  most  dominant  poles  can  be  used  when  low  order  approximation  is  desired.  Case

study  results  show  that  the  proposed  procedure  improves  the  accuracy  and  the  speed  of  VF  signicantly.

© 2013 Elsevier B.V. All rights reserved.

1.  Introduction

The  study  of  power  quality  often  requires  the  detailed  mod-

elling  of  complex  networks.  However,  detailed  representations

may  lead  to  an  excessive  computation  burden.  A  common  practice

to  reduce  the  computational  burden  is  to  divide  a  system  into

a  study  zone  and  an  external  system  encompassing  the  rest  of

the  system  [1].  The  external  system is  commonly  represented  by

a  Frequency-Dependent  Network  Equivalent  (FDNE)  circuit  [2,3].

Using  equivalent  circuit  models  in  a  general  simulation  environ-

ment  is  straightforward,  enabling  fast  simulation  in  both  time

and  frequency  domain  [2,4].  The  equivalent  network  should  be

developed  based  on  the  frequency  domain  data  of  the  system.  The

frequency  domain  data  is  the  tabulated  data  including  impedances

and  voltage  harmonics  for  different  frequencies.  This  data  can  be

generated  by  using  measurements  or  power  quality  simulation

tools.

Vector  tting  (VF)  with  its  several  formulations  [3–10]  is  the

most  commonly  used  method  for  frequency-dependent  modelling.

Although  new  methods  based  on  evolutionary  computation  such  as

Refs.  [11–13]  have  been  recently  proposed,  VF  is  still  the  most  pop-

ular  method  due  to  its  simplicity  and  robustness.  VF  gets  the  given

frequency-response  data  and  nds  a rational  function  approxima-

tion  with  guaranteed  stability.  The  identied  rational  function  can
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then  be  converted  to  an  equivalent  electric  circuit  model  using the

algorithm  proposed  in  Ref.  [4].

To  start  the  vector  tting  method,  some  initial  poles  should  be

selected.  The  initial  poles  strongly  affect  the  accuracy  and  conver-

gence  speed  of  the  vector  tting  method.  The  most  commonly  used

procedure  for  the  selection  of  starting  poles  in  the  one  proposed  in

Ref.  [3].  This  procedure  suggests  that  the  starting  poles  should  be

complex  conjugate  with  the  imaginary  parts  linearly  or  logarith-

mically  distributed  over  the  frequency  range  of  interest.  By  using

this  method,  however,  the  starting  poles  might  be  very  far  from  the

actual  poles.  This  will  result  in  two  problems:

• A  high  order  approximation  with  a  large  number  of  iterations

may  be  required  to  achieve  an  acceptable  accuracy.
• In  practical  applications,  one  often  wants  to  use  a  low  order

approximation  for  a  high  order  function.  In  this  case,  the  method

might  not  be  able  to  nd  the  most  dominant  poles,  resulting  in  a

larger  approximation  error.

The  above  problems  can  be  signicantly  magnied  when  the  fre-

quency  response  contains  noise.  Experience  with  the  VF  algorithm

has  shown  that  the  existence  of  noise  can  signicantly  impair  con-

vergence, leading  to  possibly  inaccurate  models  due  to  the  presence

of  noise-induced  spurious  poles  [16].  As  discussed  in  Ref.  [17],  this

problem  is  also  related  to  the pole  relocation  of  VF  which  may  fail

to  reach  the  optimum  poles.  During  the  pole  relocation,  the  poles

may  be  relocated  in  small  steps  and  the  convergence  may  even

stall.  Noise-induced  spurious  poles  may  be  identied  by  VF  instead

of  actual  dominant  poles,  resulting  in  inaccurate  models.
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This  paper  aims  to  alleviate the  above  problems  by  proposing  a

new  procedure  for  starting  pole  selection.  The  proposed  procedure

selects  starting  poles  by  partitioning  the  frequency  response,  and

then  ranks  the  starting  poles  so  that  the  most  dominant  poles  can

be  used  when  low  order  approximation  is  desired.  The  detailed

concept  and  algorithms  of  the  proposed  procedure  are  presented

in  this  paper.  The  effectiveness  of  the  procedure  is  also  conrmed

using  different  case  studies.

2.  Vector  tting  method

The  aim  of  vector  tting  is  to  nd  a  rational  function  that  approx-

imates  the  frequency-domain  data  of  the  system.  VF  is  an  iterative

technique  based  on  pole-zero  relocation  technique.  This  method  is

reviewed  in  this  section.

The  frequency  response  G(s)  can  be  represented  using  rational

functions.  For  an  Nth  order  system,  the  rational  function  can  be

written  as:

G(s)  ≈

N


n=1

cn
s  −  pn

+  d  +  se (1)

where  the  residues  cn  and  poles  pn  are  either  real  quantities  or

come  in  complex  conjugate  pairs,  while  e  and  d  are  real,  and

the  problem  is  to  estimate  all  coefcients  in  Eq.  (1).  Clearly,  the

optimization  problem  is  non-linear  in  the  poles  pi.  To  solve  this

problem,  Gustavsen  and  Semlyen  [3]  propose  to  identify  the  param-

eters  indirectly.  For  this  purpose,  two  other  transfer  functions  (s)

and  H(s)  are  dened  as  follows:

(s)  =

N


n=1


cn

s  −

pn

+  1  (2)

H(s)  =  (s)G(s)  ≈

N


n=1

cn
s  −


pn

+  d  +  se  (3)

H(s)  has  the  same  structure  as  G(s)  and  (s)  has  a  unit  gain  in  high

frequencies.  As  seen  in  Eqs.  (2)  and  (3),  G(s)  and  (s)  have  identical

poles.  These  poles  are  supposed  to  be  known  at  the  beginning  of

each  iteration.

2.1.  Identication  of  parameters  in  (s)  and  H(s)

By  substituting  Eq.  (2)  in  Eq.  (3),  we  will  have:
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Eq.  (4)  can  be  re-written  as  follows:
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In  matrix  forms,  it  can  be  rewritten  as:
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where  k  is  the  number  of  data  points  in  the  frequency-domain  data.

As  explained  before,

pi,  the  starting  poles,  are  known.  Therefore,

Eq.  (6)  is  a  linear  equation  with  respect  to

cn,  cn,  d  and  e.  Thus,  the

least  square  method  can  be  employed  to  obtain  these  parameters.

By  identication  of  these  parameters,  (s)  and  H(s)  are  determined.

2.2.  Identication of  poles  in  G(s)

Transfer  functions  H(s)  and  (s)  can  be  written  as:

H(s)  =  (s)G(s)  =

N+1

n=1
(s  −  zn)

N
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(s  −


pn)

(7)
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Using  Eqs.  (7)  and  (8),  G(s)  can  be  written  as  follows:

G(s)  =
(s)G(s)

(s)
=

N+1

n=1
(s  −  zn)

N

n=1
(s  −


zn)

(9)

Eq.  (9)  indicates  that  poles  of  G(s)  are  identical  with  the  zeros

of the  estimated  (s).  It  should  be  noted  that  the  starting poles  are

cancelled  out  because  the  same  poles  are  used  to  estimate  H(s)  and

(s).  Since  (s)  has  been  identied  in  the  previous  step,  the  poles

of G(s)  which  are  equal  to  the  poles  of  G(s)  are  easily  found.

2.3.  Stability  of  the  model

If  during  the  calculation  of  poles  ofG(s),  some  unstable  poles  are

found,  they  should  be  made  stable  in  order  to  ensure  G(s)  stability.

At  this  point,  unstable  poles,  poles  with  a  positive  real  part,  should

be  modied  to  be  stable  poles  with  negative  real  parts.  This  can

be  easily  done  by  changing  the  sign  of  the  real  part  of  the  unstable

poles  [14].  This  procedure  ensures  the  stability  of  the  approximated

function.
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2.4.  Identication  of  residues  of  G(s)

As  a  result  of  the  previous  steps,  the  poles  of  the  system  are

identied.  The  next  step  is  to  identify  the  residues  and  the  constant

terms.  These  parameters  can  be  calculated  from

G(s)  =

N


n=1

cn
s  −  pn

+  d  +  se (10)

In  this  equation,  the  poles  pn  have  already  been  found.  Only  cn,

d,  and  e  have  been  remained  unknown.  In  matrix  form,  Eq.  (10)  can

be  rewritten  as  [15]:
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Therefore,  by  using  the  above  equation,  all  the  unknown

residues  cn  and  constant  terms  d  and  e  are  obtained.

According  to  the  above  steps,  the  vector  tting  algorithm  can  be

represented  as  the  owchart  shown  in  Fig.  1.

3.  Problem  denition

As  explained  in  the  previous  section,  some  starting  poles  should

be  selected  in  order  to  start  the  vector  tting method.  The start-

ing  poles  strongly  affect  the  accuracy  and  convergence  speed  of

the  vector  tting  method.  In  Ref.  [3],  a  procedure  for  the  selection

of  starting poles  has  been  recommended.  The  proposed  procedure

suggests  that  the  starting  poles  should  be  complex  conjugate  with

the  imaginary  parts  covering  the  frequency  range.  Also  the  real

parts of  the  starting  poles  should  be  small  enough  in  order  to  avoid

the  ill-conditioned  least  square  problem  to  be  solved.  As  a  result,

each  pair  of  the  starting  poles  can  be  found  according  to  the  follow-

ing  equation.

pn =  −˛  +  jˇ,  pn+1 =  −˛  −  jˇ  (12)

where  ˛  =  (ˇ/100)  and  ˇ  is  determined  to  be  linearly  or  logarithmi-

cally  distributed  over  the  frequency  range  of  interest.

By  using  this  kind  of  starting  poles  selection,  the  starting  poles

might  be  very  far  from  the  actual  poles.  This  might  result  in  two

problems:

• A  high  order  approximation  with  a  large  number  of  iterations

may  be  required  to  achieve  an  acceptable  accuracy.
• In  practical  applications,  one  often  wants  to  use  a  low  order

approximation  for  a  high  order  function.  In  this  case,  the  method

might  not  be  able  to  nd  the  most  dominant  poles,  resulting  in  a

large  approximation  error.

As  an  example,  let  us  consider  a  simple  transfer  function  as

shown  in  Eq.  (13).

(s)  =
1

s  +  5
+

30  +  j40

s  −  (−50  +  j500)
+

30  −  j40

s  −  (−50  −  j500)

+
10  +  j20

s−  (−50  +  j800)
+

10  −  j20

s  −  (−50  −  j800)
+

1

2
(13)

This  transfer  function  has  one  real  pole  (−5)  and  two  complex

conjugate  poles  (−50  ±  j500,  −50  ±  j800).  The  frequency  response

of the transfer function is shown in Fig. 2. As seen in Fig. 2, the

complex  conjugate  poles  which  result  in  the  two  resonance  peaks

are  the  dominant  poles.

Fig.  1.  Flowchart  of  the  vector  tting  algorithm.

If  the  vector  tting  method  with  the  typical  procedure  of  start-

ing  poles  selection  is  used  to  approximate  the  function  with  a  4th

order  approximation,  Fig.  3  is  obtained.  Note  that  FRVF  in  this  gure

stands  for  fast  relaxed  vector  tting  which  is  an  improved  version
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Fig.  2.  The  frequency  response  of  the  transfer  function.
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Fig.  3.  Results  of  the  vector  tting  method  using  the  typical  method  of  starting  poles

selection.

of  VF  introduced  in  Ref.  [5].  As  seen  in  this  gure,  the  method

has  failed  to  capture  the  characteristics  of  the  transfer  function  at

one  of  the  resonance  peaks,  resulting  in  high  approximation  errors

around  that  peak.  This  has  occurred  because  the  method  has  failed

to  identify  one  pair  of  the  dominant  poles  (see  Table  1).

In  order  to  overcome  these  problems,  a  new  method  is  proposed

for  selection  of  starting  poles.

4.  Proposed  starting  poles  selection  method

The  starting  poles  should  be  close  to  the  actual  complex  con-

jugate  poles  as  much  as  possible.  Consider  the  rational  function

approximation  as  follows:
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c
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k
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
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)
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
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i
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+
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i
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i
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i
)
)  +  d  +  sh

(14)

where  N  is  the  total  number  of  poles,  M  is  the  number  of  real  poles,

and  (N  −  M)/2  is  the  number  of  pairs  of  complex  conjugate  poles.

In  the  above  equation,  the  kth  pair  of  complex  poles  has  been

extracted  from  the  summation.  Assume  that  the  frequency  is  not

too  low  and  the  imaginary  parts  of  complex  poles  are  not  too  close

to  each  other.  In  this  situation,  the  kth  pair  of  complex  poles  more

likely  results  in  a  resonance  peak  in  the  frequency  response  when

the  frequency  is  close  to  a"
k
(ω  ≈  a"

k
)  because  the  denominator  of

(c


k
+  jc"

k
)/(jω  −  (−a



k
+  ja"

k
))  will  be  much  smaller  than  the  other

denominators  in  Eq.  (14).  This  gives  us  the  idea  to  select  the  starting

poles  as  follows:

• Find  the  frequencies  (freqmax)  at  which  the  frequency  response

has  local  maximums.

Table  1

Actual  and  estimated  poles  of  the  transfer  function.

Actual  poles Identied  poles  by  vector  tting  method

−50  +  j500  −52.49  +  j496.9

−50  −  j500  −52.49  −  j496.9

−50  +  j800  −16.375

−50  −  j800  −720.25

−5

Fig.  4.  The  procedure  for  selection  of  starting  poles.

• Set  the  imaginary  part  of  the  starting  pole  as  ˇ  =  2  ×  freqmax.
• Set  the  starting  poles  as  pi =  −  ˛i ±  jˇi,  where  ˛i =  (ˇi/100).

Assume  that  using  the  above  procedure,  Ns  starting  poles  are

determined. Then  we  might  have  one  of  the  three  following  cases:

Case  1:  The  desired  approximation  order  is  equal  to  Ns.  In  this  case,

the  obtained  starting  poles  are  used  and  VF  is  performed.

Case  2:  The  desired  approximation  order  is  larger  than  Ns.  In  this

case,  some  more  starting  poles  are  required  to  perform  VF.  For  this

purpose,  it  is  suggested  that  the  remaining  required  starting  poles

are  selected  using  the  typical  method  as  explained  before.

Case  3:  The  desired  approximation  order  is  smaller  than  Ns.  In

this  case,  the  obtained  starting  poles  need  to  be  ranked  so  that

according  to  the  desired  approximation  order,  the  most  dominant

poles  can  be  selected  and  used.  For  this  purpose,  a  procedure  for

ranking  the  starting  poles  is  proposed  in  the  following.

One  approach  is  to  rank  the  starting  poles  according  to  the  mag-

nitude  of  the  frequency  response  at  the  associated  local  maximum.

However,  according  to  Eq.  (14),  the  magnitude  of  each  local  max-

imum  is  affected  not  only  by  the  associated  pole  but  also  by  the

other poles. In order to decrease the effect of the other poles, the

variation  of  the  phase  angle  of  the  frequency  response  can  be  used

for  ranking.
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Fig.  5.  Partitioning  of  the  frequency  response.

According  to  Eq.  (14),  when  the  frequency  (ω)  is  reaching  a"
k

and  passing  it,  a  large  drop  happens  in  the  phase  angle  of  the  term

associated  with  the  kth  pole  i.e.  (c


k
+  jc"

k
)/(jω  −  (−a



k
+  ja"

k
))  while

the  phase  angle  of  the  terms  associated  with  the  other  poles  do

not  change  a  lot.  This  drop  makes  the  phase  angle  of  the  frequency

response  decrease  signicantly  if  the  associated  pole  is  a  dominant

pole.  In  other  words,  the  more  dominant  the  pole  is,  the  larger  the

drop  that  the  phase  angle  of  the  frequency  response  experiences

is.  Therefore,  the  amount  of  the  phase  angle  drop  around  each  pole

can  be  used  to  rank  the  poles.

According  to  what  was  explained  above,  a  procedure  as  shown

in  Fig.  4  is  proposed  for  the  selection  of  starting  poles.

Step  1:  local  maximum  and  minimum  points  of  the  given  data  are

found,  and  the  frequencies  at  which  these  local  extremes  occur  are

stored.

Step  2:  The  frequency  response  is  portioned  so  that  each  partition

has  one  local  maximum  and  two  local  minimums.  Only  the  rst

and  the  last  partitions  may  have  only  one  local  maximum  and  one

local  minimum.

Step  3:  A  pair  of  complex  conjugate  poles  is  determined  for  each

partition  based  on  the  frequency  (freqmax)  at  which  the  local  max-

imum  occurs;  p  =  −  ˛  ±  jˇ  where  ˛  =  (ˇ/100)  and  ˇ  =  2  ×  freqmax.

Step  4:  The  phase  angle  drop  in  each  partition  is  obtained,  and  the

partitions  are  ranked.  For  each  partition,  the  larger  the  drop  is,  the

better  the  rank  is.

Step  5:  According  to  the  desired  order  of  approximation  and  the

ranking  obtained  at  Step  4,  the  required  numbers  of  starting  poles

are  selected  from  the  poles  obtained  in  Step  3.

Step  6:  The  remaining  required  starting  poles  are  selected  using

the  typical  method  (pi =  −  ˛i ±  jˇi where  ˛  =  (ˇ/100)  and  ˇ  is  deter-

mined  to  be  logarithmically  distributed  over  the  frequency  range

of  interest.).

5.  Case  study  results

The  effect  of  the  explained  procedure  on  the  vector  tting

method  is  analyzed  for  two  case  studies.

5.1.  Case  1  –  the transfer  function  in  Eq.  (13)

The  frequency  response  is  partitioned  as  shown  in  Fig.  5.  Also,

the  phase  angle  which  is  used  for  partition  ranking  is  shown  in

this  gure.  The  ranking  of  the  partitions  and  the  calculated  starting

poles  associated  for  each  partition  is  shown  in  Table  2.

If a 4th order approximation is desired, 4 poles are needed.

Therefore,  according  to  Table  2,  the  poles  associated  with  parti-

tions  2  and  3  should  be  used  as  the  starting  poles.  If  vector  tting

Fig.  6.  Results  with  frequency  partitioning.

with  this  starting  poles  selection  is  used,  Fig.  6  is  obtained.  Com-

parison  of  Fig.  6  and  Fig.  3  reveals  that  the  proposed  procedure

improves  the  result  of  the  vector  tting  signicantly.  Also,  accord-

ing  to  Table  3,  the  explained  procedure  has  a  signicant  effect  of

on  the  accuracy  and  convergence  of  the  vector  tting.  Note  that,

relative  RMS  error  (rRMSE)  shown  in  Eq.  (15)  has  been  used  for  the

accuracy  comparison.

rRMSE  =









1

N

N


k=1



fk − f̂k
fk



2

(15)

where  N  is  the  number  of  the  data  points,  fk is  the  magnitude  of  the

kth  data  point,  and f̂k is  the  estimated  magnitude  of  the  kth  data

point.

Table  2

Partition  ranking  and  estimated  starting  poles  of  each  partition.

Rank  Partition  no.  Frequency  of

max  point  (Hz)

Estimated  starting  poles

1  2  81.85  −5.1428  ±  j514.28

2  3  129.90  −8.1619  ±  j816.19

3  1  1  −6.283  ×  10−2 ±  j6.283

Table  3

Effect  of  the  proposed  procedure  on  the  accuracy  and  convergence  of  the  vector

tting.

Without  the  proposed

procedure

With  the  proposed

procedure

rRMSE  5.683e−2  4.415e−2

No.  of  iterations  11  5
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Fig.  7.  Partitioning  of  the  frequency  response.

5.2.  Case  2  –  a  distribution  system

The  calculated  equivalent  admittance  of  a  distribution  system

provided  in  Ref.  [9]  is  used  for  this  case  study.  The  frequency

response  is  partitioned  as  shown  in  Fig.  7.  The  ranking  of  the  parti-

tions  is  shown  in  Table  4.

The  results  of  the  vector  tting  method  with  and  without  using

the  proposed  procedure  for  the  18th  approximation  order  are

Fig.  8.  Results  for  the  18th  order  with  and  without  the  proposed  procedure.
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Table  4

Partition  ranking.

Rank  Partition  no.  Frequency  of  max  point  (Hz)

1  8  1.0000e1

2  3  5.6950e3

3  4  9.0390e3

4  1  2.9770e4

5  6  3.3790e4

6  10  5.0510e4

7  2  5.7860e4

8  7  7.0910e4

9  9  8.5620e4

10  5  8.7960e4

Table  5

The  effect  of  the  proposed  procedure  on  the  accuracy  and  convergence  of  VF  (18th

order).

Without  the  proposed

procedure

With  the  proposed

procedure

rRMSE  7.49e−2  4.77e−2

No.  of  iterations  11  4

Table  6

The  effect  of  the  proposed  procedure  on  the  accuracy  and  convergence  of  VF  (16th

order).

Without  the  proposed

procedure

With  the  proposed

procedure

rRMSE  7.55e−2  5.12e−2

No.  of  iterations  7  6

Table  7

The  effect  of  the  proposed  procedure  on  the  accuracy  and  convergence  of  VF  (the

20th  order).

Without  the  proposed

procedure

With  the  proposed

procedure

rRMSE  4.23e−2  4.23e−2

No.  of  iterations  12  4

shown  in  Fig.  8.  As  seen  in  this  gure,  without  using  the  pro-

posed  procedure,  the  local  maximums  and  minimums  of  partitions

2  and  5  are  not  captured.  However,  when  the  proposed  proce-

dure  is  used,  as  expected  according  to  Table  4,  only  the  local

maximum  and  minimum  of  partition  5  are  missed.  As  a  result,  by

using  the  proposed  procedure,  the  accuracy  of  the  vector  tting

is  improved  signicantly.  Table  5  shows  the  effect  of  the  proce-

dure  on  the  rRMSE  and  convergence speed.  As  seen  in  this  table,

the  proposed  procedure  decreases  the  error  of  the  vector  tting

method  considerably.  Also,  it  makes  the  method  converge  much

faster.

Similarly,  Table  6  presents  the  comparisons  results  for  the  16th

order  approximation.  It  can  be  seen  that  the  proposed  procedure

improves  the  accuracy  of  VF.

If  the  order  of  approximation  is  high  enough  i.e.  if  the  order  of

approximation  is  at  least  equal  to  20  in  this  system,  similar  results

are  obtained  with  and  without  the  proposed  procedure.  However,

results  are  achieved  much  faster  if  the  proposed  procedure  is  used.

For  example,  Table  7  shows  the  results  for  the  20th  approximation

order.  As  seen  in  this  table,  by  using  the  proposed  procedure,

the  number  of  iterations  is  one  third  of  when  the  procedure  is

not  used.

6.  Conclusion

A  new  procedure  to  select  starting  poles  for  vector  tting  (VF)

was  proposed  in  this  paper.  The  proposed  procedure  selects  starting

poles  by  partitioning  the  frequency  response  and  ranks  the  starting

poles  so  that  the  most  dominant  poles  can  be  used  when  low  order

approximation  is  desired.  The  procedure  makes  two  improvements

in  VF.

If  the  order  of  approximation  is  high  enough  to  capture  all

resonance  peaks  of  the  given  frequency-response,  the  proposed

procedure  makes  the  vector  tting  converge  much  faster.

If  the  order  of  approximation  is  not  high  enough  to  capture  all

resonance  peaks  of  the  given  data,  the  proposed  procedure  makes

the  vector  tting  identify  the  most  dominant  poles  of  the  system,

resulting  in  a  high  accuracy.  This  is  a  signicant  improvement  espe-

cially  in  practical  applications  when  we  work  on  measured  data  and

an  equivalent  model  with  an  enough  high  order  is  not  practical.  In

this  situation,  the  proposed  method  would  lead  to  more  accurate

equivalents.
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