TaABLE 11-2. CONVERSION CHART
(Matrices in the same row in the table are equivalent)
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h parameters, and we frequently find it necessary to convert from one set
of parameters to another. It is a simple matter to find the relationships of
the sets of parameters. For example, comparing Eqs. 11-14 and 11-15 with
Eqgs. 11-18 and 11-19, we see that

[Zn lu] - __1_[ Yo '—,Vu]

Zn Zn Ay L=yn Ju
All similar relationships between sets of parameters are summarized in

Table 11-2. In this table, the matrices appearing in each of the rows are

(11-72)

uivalent. Note that the equivalences involve a factor A, = XX — Xjax
where x is either z, y, I, T', h or g. ' ’
~ The conditions under which a two-port network is reciprocal are give
in Table 11-3 for the six sets of parameters. Also tabulated are the conditior

TABLE 11-3. SoME PARAMETER SIMPLIFICATIONS
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, er which a passive reciprocal two-port network is symemetrical in Ul
 sense that the ports may be exchanged without affecting the port volta
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' ‘Network Functions for Ladders

~ In this section we show that simple procedures may be followed in cor
~ puting the immittance functions for one special class of network structure
the ladder. The ladder network is shown in Fig. 11-12. If cach immittan
epresents one element, the network is known as a simple ladder, Otherwis
he ladder network may contain arms that are arbitrarily complicated,

hown by the sample of Fig. 11-13. We follow the practice of characterizi
arms by their impedances and shunt arms by their admittances f

der network. If we are finding an open-circuit or short-circuit paramett
e assume that the appropriate port is prepared by being either open

Fig. 11-12. A general ladder network which is de-
scribed as a simple ladder if each Z or Y describes
only one element,
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where (1’ is the waucunssion matrix of the over-all network. It is

given by-

(11.7) lTJ=lTHT1==[gf g:] [2‘1: g:]
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‘ClAg + ])109 CIB2 + DlDi

It is thus seen that, in the cascade connection of several four-terminal
networks, the over-all transmission matrix of the network is the matrix
product of the transmission matrices of the individual networks tuken in
the order of connection. If a four-terminal network is symmeirical so
that its input and output terminals may be interchanged without alter-
ing the current and potential distribution of the network, it may be
shown ‘that its transmission mairix has the property that A = D.

If the transmission matrices of several fundamental types of electrical
circuits are known, then by matrix multiplication it iy easy to obtain
many useful properties of more complex structures formed by a cascade
connection of fundamental circuits. The transmission matrices [1') of
several basic electrical circuits are listed in Table 1.

Wave Propagation along a Cascade of Symmelrical Structures. Many
important problems of electrical-circuit theory such as those involving
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Fic. 11.3. Cascade of four-terminal structures.

electric filters, delay lines, and transducers involve the determination of
the nature of the current and potential distribution along a chain of
identical symmetric four-terminal networks. Consider the cascade of n
identical four-terminal networks as shown in Fig. 11.3. Let each of the
four-terminal networks be a symmetrical one with the following trans-

mission matrix: :
_ |4 B
(7] = l() A]

(11.8)

Since each of the structures of the chain has the same matrix, the
output potential and current E, and I, of the nth structure are related to
the input potential and current E, and I, of the first structure by the

following equation:
E. ' A B|*| I,
In] |C. A} |1

(11.9)
In order to obtain a form for the transmission matrix (7] that is con-
venient for computing powers of [T, introduce the new variables ¢ and

Sgec. 11] LUMPED ELECTRICAL CIRCUITS
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With this notation the transmission matrix 7] takes the following form :

Tanue 1. TranaMmissioN MATRICES oF FUNDAMENTAL A
Fovr-rermiNaL Strucrunres (Continued) \ : 1) A B cosha Z,sinha
RS 1.12 = = | sinh a
Transmission matrix y IRS {11.12) (7] C 4 7 cosh a
No. Network [.4 B] -7 Ji
| N | If the matrix [7] is multiplied by itself, the following result is obtained:
o y : Th
. [sinh? a + cosh®a  Zy(2 sinh a cosh q)
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T Similarly, by direet multiplication and by the use of the identities of
hyperbolic trigonometry, it can be shown that
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Gy : The result (11.14) is very useful in the study of the behavior of four-
cash 68 Z¢ ainli'dS terminal networks and associated structures. By means of (11.14) Eq.
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Zs by the cquations
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and

(11.11)
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If the chain of four-terminal networks is terminated by an impedance
equal to Z,, then

(11.18)



