3.1 Problems DE-1

3.1.1 Topics of this homework:
Complex numbers and functions (ordering and algebra), complex power series, fundamental theorem of calculus (real and complex); Cauchy-Riemann conditions, multivalued functions (branch cuts and Riemann sheets)

3.1.2 Complex Power Series

Problem # 1: In each case derive (e.g., using Taylor’s formula) the power series of \(w(s) \) about \(s = 0 \) and give the RoC of your series. If the power series doesn’t exist, state why! Hint: In some cases, you can derive the series by relating the function to another function for which you already know the power series at \(s = 0 \).

- 1.I: \(1/(1 - s) \)
 Ans:

- 1.2: \(1/(1 - s^2) \)
 Ans:

- 1.3: \(1/(1 + s^2) \).
 Ans:

- 1.4: $1/s$

Ans:

- 1.5: $1/(1 - |s|^2)$

Ans:

Problem #2: Consider the function $w(s) = 1/s$

- 2.1: Expand this function as a power series about $s = 1$. Hint: Let $1/s = 1/(1 - (1 + s)) = 1/(1 - (1 - s))$.

Ans:

- 2.2: What is the RoC?

Ans:

- 2.3: Expand $w(s) = 1/s$ as a power series in $s^{-1} = 1/s$ about $s^{-1} = 1$.

Ans:
\section*{3.1. PROBLEMS DE-1}

\begin{enumerate}
\item What is the RoC?
\textbf{Ans:}
\item What is the residue of the pole?
\textbf{Ans:}
\end{enumerate}

\textbf{Problem # 3: Consider the function }\(w(s) = \frac{1}{2 - s} \)

\begin{enumerate}
\item Expand \(w(s) \) as a power series in \(s^{-1} = 1/s \). State the RoC as a condition on \(|s^{-1}| \).
\textbf{Hint:} Multiply top and bottom by \(s^{-1} \).
\textbf{Ans:}
\item Find the inverse function \(s(w) \). Where are the poles and zeros of \(s(w) \), and where is it analytic?
\textbf{Ans:}
\end{enumerate}

\textbf{Problem # 4: Summing the series}

The Taylor series of functions have more than one region of convergence.

\begin{enumerate}
\item Given some function \(f(x) \), if \(a = 0.1 \), what is the value of
\[f(a) = 1 + a + a^2 + a^3 + \cdots ? \]
\textbf{Show your work.} \textbf{Ans:}
\end{enumerate}
4.2: Let \(a = 10 \). What is the value of
\[
f(a) = 1 + a + a^2 + a^3 + \cdots?
\]

Ans:

3.1.3 Cauchy-Riemann Equations

Problem # 5: For this problem \(j = \sqrt{-1} \), \(s = \sigma + \omega j \), and \(F(s) = u(\sigma, \omega) + jv(\sigma, \omega) \). According to the fundamental theorem of complex calculus (FTCC), the integration of a complex analytic function is independent of the path. It follows that the derivative of \(F(s) \) is defined as
\[
\frac{dF}{ds} = \frac{d}{ds} [u(\sigma, \omega) + jv(\sigma, \omega)].
\]
(DE-1.1)

If the integral is independent of the path, then the derivative must also be independent of the direction:
\[
\frac{dF}{ds} = \frac{\partial F}{\partial \sigma} = \frac{\partial F}{\partial \omega}.
\]
(DE-1.2)

The Cauchy-Riemann (CR) conditions
\[
\frac{\partial u(\sigma, \omega)}{\partial \sigma} = \frac{\partial v(\sigma, \omega)}{\partial \omega} \quad \text{and} \quad \frac{\partial u(\sigma, \omega)}{\partial \omega} = -\frac{\partial v(\sigma, \omega)}{\partial \sigma}
\]
may be used to show where Equation DE-1.2 holds.

5.1: Assuming Equation DE-1.2 is true, use it to derive the CR equations.

Ans:

5.2: Merge the CR equations to show that \(u \) and \(v \) obey Laplace’s equations
\[
\nabla^2 u(\sigma, \omega) = 0 \quad \text{and} \quad \nabla^2 v(\sigma, \omega) = 0.
\]

Ans:

What can you conclude?

Ans:
Problem # 6: Apply the CR equations to the following functions. State for which values of \(s = \sigma + i\omega \) the CR conditions do or do not hold (e.g., where the function \(F(s) \) is or is not analytic). Hint: Review where CR-1 and CR-2 hold.

- 6.1: \(F(s) = e^s \)

 Ans:

- 6.2: \(F(s) = 1/s \)

 Ans:

3.1.4 Branch cuts and Riemann sheets

Problem # 7: Consider the function \(w^2(z) = z \). This function can also be written as \(w^\pm(z) = \sqrt{z} \). Assume \(z = re^{\phi j} \) and \(w(z) = \rho e^{\theta j} = \sqrt{r} e^{\phi j/2} \).

- 7.1: How many Riemann sheets do you need in the domain (z) and the range (w) to fully represent this function as single-valued?

 Ans:

- 7.2: Indicate (e.g., using a sketch) how the sheet(s) in the domain map to the sheet(s) in the range.

 Ans:
7.3: Use \texttt{zviz.m} to plot the positive and negative square roots $+\sqrt{z}$ and $-\sqrt{z}$. Describe what you see.
\textbf{Ans:}

7.4: Where does \texttt{zviz.m} place the branch cut for this function?
\textbf{Ans:}

7.5: Must the branch cut necessarily be in this location?
\textbf{Ans:}

\textbf{Problem # 8:} Consider the function $w(z) = \log(z)$. As in Problem 7, let $z = re^{\phi}$ and $w(z) = \rho e^{\theta}$.

8.1: Describe with a sketch and then discuss the branch cut for $f(z)$.
\textbf{Ans:}

8.2: What is the inverse of the function $z(f)$? Does this function have a branch cut? If so, where is it?
\textbf{Ans:}
3.1. PROBLEMS DE-1

– 8.3: Using zviz.m, show that
\[
\tan^{-1}(z) = -\frac{j}{2} \log \frac{j - z}{j + z}.
\]
(DE-1.3)

In Fig. 4.1 (p. 132) these two functions are shown to be identical.

Ans:

– 8.4: Algebraically justify Eq. DE-1.3. Hint: Let \(w(z) = \tan^{-1}(z) \) and \(z(w) = \tan w = \sin w / \cos w \); then solve for \(e^{\omega j} \).

Ans:

3.1.5 A Cauer synthesis of any Brune impedance

Problem # 9: One may synthesize a transmission line (ladder network) from a positive real impedance \(Z(s) \) by using the continued fraction method. To obtain the series and shunt impedance values, we can use a residue expansion. Here we shall explore this method.

– 9.1: Starting from the Brune impedance \(Z(s) = \frac{1}{s + 1} \), find the impedance network as a ladder network.

Ans:

– 9.2: Use a residue expansion in place of the CFA floor function (Sec. 2.4.4, p. 31) for polynomial expansions. Find the residue expansion of \(H(s) = s^2 / (s + 1) \) and express it as a ladder network.

Ans:
9.3: Discuss how the series impedance \(Z(s, x) \) and shunt admittance \(Y(s, x) \) determine the wave velocity \(\kappa(s, x) \) and the characteristic impedance \(z_0(s, x) \) when (1) \(Z(s) \) and \(Y(s) \) are both independent of \(x \); (2) \(Y(s) \) is independent of \(x \), \(Z(s, x) \) depends on \(x \); (3) \(Z(s) \) is independent of \(x \), \(Y(s, x) \) depends on \(x \); and (4) both \(Y(s, x), Z(s, x) \) depend on \(x \).

Ans: