Documentation for the Initialize View Window function for
BerenGUI:

| attached a function "initialize_view_window". Put this function
intothe main beren bin folder and call it in

Installation:

handles = initialize_view_window(handles) is to be placed in berengui.m in
function berengui_OpeningFcn(hObject, eventdata, handles, varargin).

Put this line of code towards the end of OpeningFcn() just before the line

guidata(hObject, handles); This will fix the problem on any screen of reasonable size
and resolution.

Usage:

MATLAB defines the Position property of an object to be [X, Y, width, height]
where [X, Y] are measured from the bottom left-hand corner of the object's
parent (the figure or panel which it exists inside) to the bottom left-hand
corner of the object. This means an increase in X shifts the object to the right
and an increase in Y shifts the object up. In this code, many times only a 2-
value vector describes an object's position. In this case, the code refers only
to the [X, Y] portion of the Position property.

It is also valuable to note that MATLAB always reads the Position property in
terms of the Units property. Units are default set to 'characters' which have
ambiguous functionality. In this code, all objects have their Units property
forced to 'pixels', so specify Position appropriately.

To change the size or position of any of the large panel
area positions:

Navigate to the code subsection labeled "Setting sizes and positions for
panels and figure". It should be very near to the top of the function. You
should in general not change the figure size and placement definitions. The
pixel position of the lower left hand corner of each big panel relative to its
parent object (either the figure or another panel if the panel in question is
nested) is defined by the first two (of four) vector values assigned to the
appropriately named __ PanPos variable. Changing these values changes the
position of the panel. In general, do not change the sizes of the panels.

Example 1: Swapping the Mod A and Mod B panel areas

1) Navigate to the "Setting sizes and positions for panels and figures" subsection
and find these lines of code:

% Mod B right panel
rightLowPanPos = [5, 5, rightPanPos(3)-10, (rightPanPos(4)-19)/2];

% Mod A right panel
rightHighPanPos = [5, rightLowPanPos(4)+14, rightPanPos(3)-10,
(rightPanPos (4)-19)/21;

2) Modify these so that every instance of rightLowPanPos is replaced with
rightHighPanPos and vice versa:

% Mod A right panel
rightHighPanPos = [5, 5, rightPanPos(3)-10, (rightPanPos(4)-19)/2];

5 Mod B right panel
rightLowPanPos = [5, rightHighPanPos(4)+14, rightPanPos(3)-10,
(rightPanPos (4)-19)/2];

3) Note that it might be confusing to switch these as rightHighPanPos now refers to
the lower right-hand panel. It may be better to perform a more thorough code
modification for such a fundamental change.

To change the size or any other non-position property of
any control object:

This can still be done in the .fig window. The only thing that the initialize view
window function overrides is the position of every element, and the sizes of
the main figure, parent panels, and axes displays.

Example 2: Changing the size of the Event Gram Play button
1) Type 'guide' into the MATLAB command prompt and open berengui.fig

2) Find the main Play button in the Event Gram section, click on it, and drag it to the
appropriate size. This new size will be preserved in initialize_view_window.m.

3) Note that if you accidentally change the position of the main Play button while
resizing it, this change in position in the .fig file will have no effect on the position
assigned to the button in initialize_view_window.m.

To change the positioning of any control object:

This is what the code really does. There are 4 typical cases to change an
object's position:

1. Change the properties of the object's group: Every object is
placed in a group of similarly positioned objects. If you want to change
the position or spacing of a control group, navigate to the code
subsection labeled "Setting positions for groups of buttons, controls,
and axes". Then, find the control group you are looking for--these are
labeled in the comments and by the variable name which defines their
lower left hand corner anchor position. Finally, make the change to
either the position variable to change the position of the group of
controls or to the Hspace or Vspace variables to change the horizontal
or vertical spacing of the group respectively.

2. Nudge an object within a group: If you want to slightly shift the
position of an object inside a group or place it in a different slot in the
group, nhavigate to the code subsection labeled " Placing every
individual control object". Every object's [X, Y] position vector is set
here. The objects are organized and labeled by their groups to be more
easily found. Every position defining line of code is formatted:

OBJECTLABEL = GROUPPOS + [M*Hspace, N*Vspace];

To change the object's slot in the group, adjust the M and N values
accordingly. To nudge the object, insert an additional "nudge vector" as
follows:

OBJECTLABEL = GROUPPOS + [M*Hspace, N*Vspace] + [Xnudge,
Ynudgel];

3. Completely reposition an object: If you want to do a hard override
of the position of a certain object, navigate to the code subsection
labeled " Assigning the positions to the existing control objects". Find
the Tag property associated with the object you want to modify by
clicking on it in the .fig file and opening the Property Inspector. Scroll to
the handles.Tag line in the code subsection (again, these are organized
by group). The line should look like this:

handles.TAG = set_new_position(handles.TAG, P, POSITIONLABEL);

Where POSITIONLABEL is the same label as OBJECTLABEL in step 2,

and P is the handle of the parent object. To override the position
described by POSITIONLABEL, replace POSITIONLABEL with an [X, Y]
vector of the pixel position you want the object to have.

4. Reposition an axes object: Axes objects are a bit different than
normal objects, because their sizes are also controlled by the initialize
view window function. To do this, in most cases, you should only
change the bottom left hand corner position of the axes object or
group. This can be done by navigating to the bottom of the "Setting
sizes and positions for panels and figure" subsection. Controlling the
anchor position of the 4 Event Gram axes is done with the first two
values of the line:

leftPanGraphicsPos = [50, 80, leftinsidePanPos(3)-100,
leftinsidePanPos(4)-160];

Controlling the position of the Mod A axes is done with the first two
values of the line:

rightPanGraphicsPos = [40, 60, rightHighPanPos(3)-80,
rightHighPanPos(4)-140];

Controlling the position of the Mod B axes is done with the values of
the line:

rightLowPanGraphicsPos(1:2) = [40, 90];

Example 3: Changing the vertical space between the Event Gram top menu and the
top of the panel

1) Navigate to the "Setting positions for groups of buttons, controls, and axes"
subsection and find the following lines of code:

% Exp, Talker, Cons, Vowels: Menu to specify the speech file

leftPanTopMenuPos = [100, leftInsidePanPos (4)-60];
leftPanTopMenuHspace = 100; %horizontal spacing between members
leftPanTopMenuVspace = 25; S%Svertical spacing between rows of members

2) The first assignment assigns [X, Y] to the lower left-hand corner of the group. To
lower this anchor point and increase the space by 10 pixels, we would change this
first assignment line to the following:

% Exp, Talker, Cons, Vowels: Menu to specify the speech file
leftPanTopMenuPos = [100, leftInsidePanPos (4)-70];

3) Note that this shift might encroach on the space of other groups, so additional
work may need to be done to even things out and make them look nice.

Example 4: Moving the Open button to the top row of the top menu and giving it a
bit more space

1) Navigate to the " Placing every individual control object" subsection and find the
following lines of code:

$left panel top menu, 'EVENT GRAM' sound selection:

Iptm 1bll = leftPanTopMenuPos + [leftPanTopMenuHspace*0,
leftPanTopMenuVspace*1];

lptm 1bl2 = leftPanTopMenuPos + [leftPanTopMenuHspace*l,
leftPanTopMenuVspace*1l];

lptm 1bl3 = leftPanTopMenuPos + [leftPanTopMenuHspace*2,
leftPanTopMenuVspace*1];

lptm 1bl4 = leftPanTopMenuPos + [leftPanTopMenuHspace*3,
leftPanTopMenuVspace*1l];

lptm popl = leftPanTopMenuPos
lptm pop2 = leftPanTopMenuPos
lptm pop3 = leftPanTopMenuPos
lptm pop4 = leftPanTopMenuPos
lptm btnl = leftPanTopMenuPos

[leftPanTopMenuHspace*0,
[leftPanTopMenuHspace*1l,
[leftPanTopMenuHspace*2,
[
[

~.

o N

leftPanTopMenuHspace*3,
leftPanTopMenuHspace*4,

+ + + 4+ +
O O OO O

~.

2) Because the order of labels always reads from top-left to bottom-right like
reading a book in English, and because we expect the Open button to be labeled
“btn", we can safely assume that Iptm_btn1 is the label for the Open button. To shift
it to the top row, we need to add a Vspace argument as so:

lptm btnl = leftPanTopMenuPos + [leftPanTopMenuHspace*4,
leftPanTopMenuVspace*1l];

3) To give the Open button a little more horizontal spacing than the other controls to
set it apart, we can nudge it to the right by 20 pixels like this:

lptm btnl = leftPanTopMenuPos + [leftPanTopMenuHspace*4,
leftPanTopMenuVspace*1l] + [20, 0];

4) Note that now it would be good practice to move the above line of code right
above the Iptm_popl label so that the top-left to bottom-right standard is
maintained.

Example 5: Completely overriding the position of the main Event Gram Play button

1) Navigate to the "Assigning the positions to the existing control objects"
subsection and find the following lines of code:

%sleft panel graphics area, 'EVENT GRAM':

handles.plotAIgram = set new full position(handles.plotAIgram, P, [lpga axesl,
leftPanGraphicsAxesSizel);

handles.plotEventGram = set new full position(handles.plotEventGram, P,

[lpga axes2, leftPanGraphicsAxesSize]);

handles.butPlay = set new position(handles.butPlay, P, lpga btnl);
handles.plotCC = set new full position(handles.plotCC, P, [lpga axes3,
leftPanGraphicsAxesSizel]) ;

handles.plotPI = set new full position(handles.plotPI, P, [lpga axes4,
leftPanGraphicsAxesSizel]);

2) These labels are ordered from top-left to bottom-right like reading an English
book, so we expect handles.butPlay to be the Play button. The tag also seems to fit,
and we can check this assumption by opening the .fig file, right clicking on the Play
button, checking the Property Inspector, and looking at the object's Tag property. We
again find that butPlay is correct.

3) To completely reposition this object, we can change the third argument to

set new_position to be a 2-value vector of form [X, Y] defining the lower-left hand
corner pixel values of the Play button relative to the specified parent panel P. P can
be replaced by a handle to any figure or panel if you want to override even the
parent. To arbitrarily set the Play button's position to Event Gram [100, 100],
change the relevant line of code to the following:

handles.butPlay = set new position(handles.butPlay, P, [100, 100]);

4) Note that a set_new_full_position call's 3rd argument would need a 4-value vector
of form [X, Y, wid, ht]. Also, it may be good coding practice to change the code
position of the Play button's position allocation line so that it does not appear to be
in a control group for which it is no longer a member.

Example 6: Carving out more space between the Event Gram axes for the Play
button

1) Navigate to the "Setting positions for groups of buttons, controls, and axes"
subsection and find the following lines of code:

% 'EVENT GRAM' graphics area with 4 axes and a play button
% This code sizes the graphics area so that every axes has the same size
with the appropriate aspect ratio and a constant pixel width between
% axes.
leftPanGraphicsPos = [50, 80, leftInsidePanPos(3)-100, leftInsidePanPos (4)-
1607 ;
if (leftPanGraphicsPos (3) < leftPanGraphicsPos (4)*1.3)
leftPanGraphicsPos (2) = leftPanGraphicsPos(2) + (leftPanGraphicsPos (4) -
(leftPanGraphicsPos (3)/1.3))/2;
leftPanGraphicsPos (4) = leftPanGraphicsPos(3)/1.3;
elseif (leftPanGraphicsPos (3) > leftPanGraphicsPos (4)*1.3)

o

leftPanGraphicsPos (1) = leftPanGraphicsPos(l) + (leftPanGraphicsPos(3) -
(leftPanGraphicsPos (4)*1.3))/2;

leftPanGraphicsPos (3) = leftPanGraphicsPos (4)*1.3;
end
leftPanGraphicsHspace 50;
leftPanGraphicsVspace = 50; leftPanGraphicsPlaySpace = 15;
leftPanGraphicsAxesSize = [(leftPanGraphicsPos (3)-leftPanGraphicsHspace) /2,

(leftPanGraphicsPos (4) -leftPanGraphicsVspace) /2] ;

2) This looks like a lot, but you should always be able to ignore the hefty if
statement. To carve out space in the middle, let's take some space from the outside
edges and some more from the margins between axes. To take from the outside
edges, we should shift the anchor point of the graphics area down by 10 pixels and
extend its total height up by 10 pixels. Modify the first line to do this:

leftPanGraphicsPos = [50, 70, leftInsidePanPos (3)-100, leftInsidePanPos(4)-
1501;

3) This gives us 20 additional pixels to work with in the middle. If we need another
10 pixels for the play button, we can increase the vertical space between the two
rows of axes by increasing leftPanGraphicsVspace:

leftPanGraphicsVspace = 60; leftPanGraphicsPlaySpace = 15;

4) This should do it. Note that leftPanGraphicsPlaySpace is unused in the current
revision. It was left in on accident. Also note that if the vertical and horizontal
spacing are not equal, the aspect ratio of the axes may change slightly across
screens and be different from the aspect ratio of Mod A and Mod B axes. Special
care was taken to ensure equal aspect ratios for all axes on all platforms when the
horizontal and vertical spacing are equivalent. This might cause you to want to
modify leftPanGraphicsHspace whenever you modify leftPanGraphicsVspace.

