โ86โ хəquəəวəด
8LOLO Kəsxər Mən＇sTTTH 7xOYS
Кемулед Kрәuиəy ・ォ ниO

4 4 ．

pue

xof

SNIWW甘H •M वצ্木甘HOIY

PREFACE

The interview with Richard w. Hamming on which this transcript is based was one of two done cooperatively by the Bell Laboratories Archives and area of America in early for the project members of the Mathematical Association concerned with preserving sources for the history World War II. Not professional historians themselves these mathematicians were interested in learning the techniques of oral history at first hand, in finding the amount of time and offort involved, ind in encou out ome of the problems that typically

Another important purpose of the project was to begin obtaining interviews - particularly with older mathematicians while they are still available, able to remember and perhaps to help document events that are already from thirty-six to forty-one years in the past.

The interview was taped at Dr. Hamming's home on the morning and afternoon of 5 January 1981. It was structured around a series of questions that had been prepared by the interviewers and sent ahead to Dr. Hamming. The interviewers were: D. M. La Porte, archivist of Bell Labs; H. O. Pollak, director of Mathematics and Statistics Research at Bell Labs; and G. Baley Price, professor emeritus of mathematics in the University or kansas at Lawrence. The recording quipment, comprising a cassette recorder and special microphones, was supplied by Bell Labs and operated by DML.

Because Dr. Hamming speaks so rapidly and clips many words, transcription was particularly difficult. The tapes were audited first by Gerri Markey, his former secretary, and then by DML. Reviews by HOP and GBP were critical to ensure mathematical accuracy. The transcript was then read by the narrator and very promptly returned with only a few alterations, mostly grammatical
This transcript is available for research purposes. All literary rights, including the right to publish, are
reserved to Bell Laboratories. No part of this manuscript ay be reproduced or quoted for publication without the written permission of Bell Laboratories.

 L96T-ஏ96T

 6ع6T ‘eysexqən fo K7ṭsxəムт̣un '•*•W

$$
\begin{aligned}
& \text { " }{ }^{s} \cdot \mathrm{~g}
\end{aligned}
$$

st6t Kxenxqəa TT 'обeวṭบ :uxog
-snoṭiəs u.I •səuṭz fe paezseq e aq of

 чวnu noK op 7 -usəop $7!$ 'puey dәч70 әч7 uo \cdots....әq of

CONTENTS

EARLY CAREER PLANS 1
MANAGING THE MACHINES AT LOS ALAMOS
SCIENTISTS AT LOS ALAMOS
Hans Bethe 2
Stanislaw Ulam 3
Richard E. Bellman 3
Donald A. Flanders 3
Joseph Hirshfelder 4
Nicholas Metropolis 4
Milt Wing 4
MEMOIRS AND HISTORY OF LOS ALAMOS
David Hawkins 5
AEC Reports
6
COLLEGES AND GRADUATE SCHOOLS 7
RECRUITED FOR BELL LABS 8
LOS ALAMOS
Lessons:
What I Didn't know about Math and Physics
Nonmathematicians Might Know Something
Role of Computer Simulation in Experimentation 10
Sources for History of Mathematics at Los Alamos 11
Robert Oppenheimer 11
Coordinating Council 11
BELL LABORATORIES
Mathematics Department and the Dominance of Network Theory

Four Young Turks (Shannon, Ling, McMillan, and Hamming)
Nike
14
Mathematics Department - Setting the Tone
Role of Upper-Level Management
15
R. L. Dietzold

15

Theres an interesting story along that line. In the early days (I think it was probably 47; it must be 47 or 48), 1 was eating lunch at the cafeteria in West Street with a bunch of engineers. They were talking about salary raises during the war, "So many dbs, at various times...." Now you won't believe it, but I was nice and quiet the whole lunch, saying nothing - which is difficult to believe, but it was true. At the end, I said, "Pardon me, gentlemen. Will you tell me whether salary is amplitude or power, Whether it s 20 log or 10 log you were talking about? turne field the field as well as others.

In statistics, the words "best fit" only mean "least squares." It does not mean "it is the best as misleading everyone else. We should be very careful in our abbreviations and jargon, always.

Returning to understanding and Ed Gilbert, I once had a partial, nonlinear differential equation. I went to Ed and said, "I don't like to solve a problem when I don't know what the answer looks like to some extent. Would you mind looking at it and giving me an idea?" A couple of days later, he came back with the solution in closed form!

The other story about him is as follows. The phone ang one day, and the guy identified himself as a member of a certain university looking for a president. Now, he was careful to identify himself, and he said, "Mr. Hamming, you have a reputation for frankness. We are tired of getting lovely replies. Willyou please tell us what you think about Ed David." After a long pause, I said, "Okay." and told them what I thought. After it was over (we had a long conversation), and I hung up, I sat back and decided, "Well I guess I really had recommended him very highly." But I had tried to say what it was. They would never call up Gilbert, because Gilbert will not say anything bad. In some sense, a recommendation is hard to get from him: If he says, "I don't quite understand it," he's probably saying "baloney." He's got a dynamic range that is so small that you have great difficulty in reading it.

HOP:

$$
\varepsilon \varepsilon \quad \text { sṭךuotom •W• } \Lambda
$$

$\varepsilon \varepsilon$
ZT pue TT ғО quəuđоโəләの
乙દ бит̣моия ч7хом sI әбрәтмоия 7ечм

દદ MOXפ 70 N od ०पM әโdoəd

て६
ィəБхәquog pт̣ィед
乙ย KsdKפ puoDəs e бuṬu6т̣səa
t\＆soұеует Kxourg
0ع әsก ғ0 әseg xof ubțsəpəy

> 6乙 TOL WGI

> z OS9 puoəəs e buṭx̣̣nbo甘
> Lて 0૬9 WGI
sz पđexbosi s，Kxa •ว •山

ゅて Ј Ј WยI SaItoutzoavi TTag
દz buṬụfəy əuoz pue uuefd

てて ォо7eโnotej poururexboxd－pxed waI

əuod әg of spəən 7 ечM od

$$
6 T \quad \text { buṭT preuod }
$$

Kาт̣oṭqna

> LT uouueys əpneto
9τ buţnduros pueh pue yottroxa exeto
ST xṬセNOEW • \forall •M

 buote＇Ktโequopị̃ul－पonu 007 бutunsse

－əтqереәдun әле mou

 7sitj əч7＇MON

 ＇pəiedəдd ‘uә77tim
 7no uxnz pue дossə⿰oxd e əq pinc noK＇s，a•чd

Gypsy: Maintenance and Vision
Gwen Hansen 38
Doing the Right Problem the Wrong Way vs
Doing the Wrong Problem the Right Way Computers as Laboratory Tools
Computer Science as a Discipline Training vs Education

40
Computers, a Means of Doing Bell Labs Jobs Error-Detecting and Error-Correcting Codes
Is There a Place for Analog Computers?

43
Computer Appreciation Courses

What Everyone Should Know

IMPRESSIONS
R. B. Blackman 46
H. W. Bode 47
S. Darlington 47
R. L. Dietzold (also see p. 15) 47

Clara Froelich (also see p. 16) 47
Marian Gray 47
Emory Lakatos (also see p. 31) 47
D. C. Leagus 48
D. P. Ling (also see p. 19) 48
L. A. MacColl 48
B. McMillan (also see pp. 13, 20)
S. P. Morgan 48
R. C. Prim

48
R. C. Prim 48
S. A. Schelkunoff
W. A. Shewhart

49
D. Slepian

50
V. A. Vyssotsky 50
V. M. Wolontis (also see p. 33)
J. W. Tukey 51

Milton Terry 51
S. O. Rice

53

89
（ $L \tau \cdot d$ əəs oste）uouueys əpneto snyoeg •M पч०天 99 xet лә7әव Kиәшәч •פ पч०г ォəтโセ əт̣uxəg qnexu əoノ โTnH Kunuou S9 xәрточәsnoн •S uo7sty
 иәутн рхемон צоохqтон рхеихәg
uueumən पon • κ ：surə TqOXd

	て9	хәтฺuием Кхобәォэ
	T9	
		T9 qnew əqu
	09	suənṭ əอettem
	09	sțTxəd uety
	09	yセttod Kıuəh
（ع6－โ6	－đđ əəs	oste） 7 （xəqțפ pa
	65	SsțəM प7n¢
	85	хәбxeqtəбен pț＾ed
	8 S	ureч＞uȚ хәбоч
		LS əJoow pa
	LS	S KoxiIว •a
	9 s	
	ऽऽ	גəsțey səureᄃ
	¢s	UṬMpteg əбхоәэ
	もS	Кәтлхн－${ }^{\text {－}}$ н
	ஏ	G $\quad 7 s ¢ \uparrow n b K_{N} \cdot \mathrm{H}$
	$\varepsilon \varsigma$	иерхотฺч पчог

 －peəye səo6 pue əses teiəuəb әप7 6uṭop əiojaq＇səses

$\cdot \mathrm{st} 7 \boldsymbol{T}$＇səス ：đOH

－ит̣ョт ихеәт ：ォон

（•əшeu גəч7oue buṭssṭu əq Kew I）əュeəuṭod

 PInom I pue＇6uțч7əuos rof yse pinom əsio Kpoqəuros

INSTITUTE FOR ADVANCED STUDY 71
Need for Stimulation
71
PROBLEM: INCREASING KNOWLEDGE AND SPECIALIZATION
Answer: Methods, not Results 73
Don Knuth 75
Knowing What's Important 76
Changing Fields 78

$$
\begin{aligned}
& \text { Early Retirement to Get Rid of } \\
& \text { "Sound Absorbers" } \\
& \hline 9
\end{aligned}
$$

Promote the Highly Productive? 80 Infinite Knowledge and the Scientific Generalist 81
Start with the Problem and Find the Mathematics 83

Getting Down to Fundamentals 84 Quality, not Quantity 85
Only What Is Necessary84

COMPUTER SIMULATIONS FOR THE NIKE PROJECT DEMONSTRATING THE VALUE OF COMPUTING TO THE

WORK OF BELL LABS 87
THE "MATTHEW EFFECT" 88
Work with the Famous, Read the Masters
THE "BIG PICTURE" VS DETAILS 91
-
91
The "Backroom Scientist" 92
Avoid Abbreviations, Acronyms, and Jargon

Ed Gilbert 93

 P．I әш！̣ 7еч7 Kg ココ૫

 sem feym jo Kโuo eәpt әn6es e pey i sourty sot of ob pip I

рә7エe7s I əләчм sem

\cdot－sKep əsoч7 ut 008ts pasṭəつəコ saozonizsut

$\overline{\mathrm{T}} \cdot \overline{\mathrm{ON}} \overline{\text { uoṭisano }}$

（đОн）yセtโOd •O Kлuән

：sлəмәт̣ィләұuI

$\cdot 7$ ，uOp I ON

－7siṭ

 ＇xəquinu quәшұォedəр әч7 әлеч noK os puy •op prnoo I

$\cdot \mathrm{sKep}$
 7sourte woxf＇yoeq Kem uoxj syooq6ot asoyz puti ued noK

teacher, in the long run you must engage in research. But in the short run, that's detrimental to teaching. If you engage in good teaching along the way, you finally are great at teaching, but you don't know what to teach. And that's the great paradox of teaching.
HOP: You have to get tenure first, and then you can do what's right.

RWH: In any case, I come into teaching now, late, in a good position. Actually, I went to Bell Labs telling the Bell Labs management I would come for three years and to theaching Either I am stupid - it took thirty to teaching. Either I am stupid \bar{r} it took thirty years instead of three years - or there was more to
learn than I had thought, but somehow I stayed thirty years.

Question No. 2

Under what circumstances did you go to the Los Alamos Laboratory in 1945? What sort of work did you do there? Is there information available on the mathematical work done at Los Alamos?

RWH: Under what circumstances did I go to Los Alamos? Well, I had done some teaching, and there was a war going on, and I felt I had better do something. What did I do there?

HOP: Well, how did you get to Los Alamos particularly? Did someone come and recruit you?

RWH: No, no. Wellyes, a friend Nicholas Metropolis, by letter, asked me. He had gone to school with me at Wright Junior College, also at the University of Chicago, and we had done a little graduate work together. He had written me a letter once, and it
fell through because it turns out that Hans Bethe had a great objection to mathematicians.

HOP: Hans Bethe?

RWH: Yes. He had a great objection to mathematicians, and I was brought in to replace R. P. Feynman, Stanley Fraenkel, N. C. Metropolis, and Eldred Nelson - to run the computing machines. They swore to Bethe that I could ao back to physics so, was really strictly a stooge, and my job was to keep the IBM computing
pick it out then on telemeter data. I had exactly the same peak to peak as they had. I had the general structure right. Furthermore, the moment I showed pinpointed the error.

I always used that test when I finished a computation and handed the guy the answer. I would provide feed-back by going back three months later and say, "Okay, let's see what happened to those numbers that I gave you." I wanted to see whether my computations were right, to see whether they used them or not. And those guys who hadn't used the numbers didn't get more computing. Those guys who had, got more service. By regularly trying to check, "Did, I calculate the right thing or not? If not, why hadn't I delivered the goods, if you needed them?
[Tape 2, side 2.]
[While tape cartridge was being turned over, some words were missed.]
After a while, in order to protect myself, I started to keep a logbook. Whenever somebody came around for some computing, he would make some notes in the book indicating both what kind of physical work he was doing and what kind of mathematical computation he needed. For example, "solid-state physics such and such," and then, "differential equations or "function evaluation" or something. And this book lay around. When people would come around and say, "What are you using in computing?" You simply opened the book; you ould see. Even Bode could see! They saw every place in the Labs was there and how wide was the variety. So that's one source you could find out what was done.

The second thing I did was, I think, shrewder. When someone did some computing using one of my gals, I said to the guy, "When you write that paper, you are going to thank my girl. No if, ands, or buts, or else no more service, buddy." I waited a couple of years, and then I went through a year's run of the BSTJ (Bell system $\frac{\text { pechnical }}{\text { had used computing; and that was devastating to }}$ papers had used computing; and that was devastating to management. I said If the test of good science is the Labs."

HOP: What happened to this logbook of yours?
RWH: It must be with Bell Labs still, I could not take it It must be with Bell Labs still, I could not take it
with me. I think that you may still find them, with me. I think that you may still find them,
typical bound notebooks. There must be three or four

-sem әу очм moux I 'sax

¿әдәч7 sem पештtәg
-••әдәч7 oste sem uewtrəg pxeyoty

-7૫6Ṭ I TTV
$\cdot 7$ no pazṭp әq sKemie

-səK 'ssəuə7!̣tod 70N
-ssəuәztriod zou 'suoṭụ̦do quem noK aunsse I 'Kem

mou əs eques ut s, s_{H} •punoie tiṭs s,əH

- पวпแ Kıəィ

¿punoдe әләм 7еч7 səuо әч7 эо әшоs әләм очм

¿Tte 7 E somety sot punoty

uə૫7 pinos Kəч7 pue 'yeəd of yead əч7 7 no yoțd pinos

 Кәч7 7nq

 әлеб Кәчद әsnesaq子ечм KTTnjtzneəq pəmoчs 6

- buṭfetnoted puey of पotitooxa exeto find i •sumouyun uənəs uṬ suoṭzenbə uənəs әu әлеб pue umop fes uozion

GBP: Were there one or two more? Wasn't there somebody from Wisconsin, probably came along with Ulam?
RWH: Probably. Joe Hirshfelder.
HOP: Isn't he a chemist?
RWH: Yes.
GBP: I think the name I knew fairly well. It's in Ulam's book.

RWH: I will tell you a story about Ulam's book. I read it. Later I went to Los Alamos. I said to Metropolis, Later I went to Los Alamos. I said to Metropolis, "Nicky, I just read Ulam s book. That, isn t the way I way either."

GBP: I haven't met anybody that remembers it that way.
RWH: Except Ulam. As far as I can see, each person has his own memories, the way he saw it. It was a very intense affair, and I am not surprised we saw it differently. You see, to me computing was the center of the whole place.

HOP: Sure, of course. Were there any other mathematicians around?

RWH: Oh, there was Milton Wing.
HOP: Was Milt Wing there at that time?
RWH: Yes, I think he was still there. I can think of some more now....

HOP: Because Milt Wing commutes. He is sometimes at Sandia and sometimes at New Mexico. He is still around.
RWH: Yes, he could probably tell you more about the mathematicians because they were upstairs, and I was down on the ground floor.

* S. M. Ulam, Adventures of a Mathematician (New York: Charles Scribner's Sons, $1 \overline{9} 7 \overline{6}$).
and so on, and then solved for the angles to see whether they re correct. None of that was really involved. What was actually involved was front-back, left-right. And those were the simplest formulas to do. It amounts to affine geometry. But they didn't seem to know. And when I pointed it out, somebody said, "Whoever learns affine geometry?" I said, "I did." It's true I had learned that when I was a graduate student, to get a degree. It's not taught now; those things are simply not taught, those simple lo be done. But they don't seem to get every place to be done. But they don t seem to get applied. How can you teach students to get down to the fundamentals of things?

HOP: Well, one reason you don't is that you don't get a Ph.D. that way.

RWH: Well, I'm not in the Ph.D.-granting business as yet, although our department wants to go that way. I am although our department wants to go that way. I am
sick and tired of thick theses. I want quality not quantity.

HOP: We keep motivating everything we do all the way along in favor of those few people who are going to go and get a doctorate.

RWH: True, but you can hold out for the guy writing a small, elegant thesis rather than a big thick one. Just like if we can get out of you a really good history, that's small not that thick [gesturing to indicate thickness], not four volumes. Yes, we choke ourselves up with the business of trying to be scholarly. Rather, the real contribution when you write a book is more what you leave out than what you put in. What is not worth knowing is best labelled "This is not worth knowing, forget it! I will tell you the bare guts," like Love's book. I got it during the depths of the depression. The professor adopted it because it was remaindered. We got it for ninetyfive cents.

GBP: I studied it about....
RWH: You are a little older than I am.
GBP: No, I studied it about " 23 or " 24 along in there. You might be interested to know that Clarence A. Lovell was one was one of the good guys. He grew up in my hometown,
I knew all his family.
 sowety sot jo sKep Kixea әч7 woxj Kiołstu oţifurios

¿SUȚYMEH pṭAEd MOUY noK of
-007 '7еч7 peə天 I •səx

 7еч7 әуе7 st op of 706 әл, noK ITV •əגe sətbue
 7Jəт $7 \uparrow$ s

¿S6uṬч7 əโむuȚs əsə૫7 โโe

- әт!

-ut дəqunu xətduros

Your numbers, we wouldn't know what we saw." So, I quit complaining about the cost of computing right there.

HOP: Besides these people that we've been talking about what other names would you suggest, what ways woul york work at Los Alamos? How would one go about it?

RWH: I've thought about that a good deal, and the answer is: I don't think you can. There were some books written, just like the series for radiation. We wer required to write a series of books at Los Alamos.

HOP: Oh, you were?
RWH: Yes. The ones I wrote were all on "How do you make machines do certain things?" They tell you negligible about the mathematics.

HOP: Right. But where are those books now?
RWH: Presumably the AEC has them. I don't know. I've never seen them. I have a copy of a draft of what I wrote. It is highly technical, details of IBM machines and nothing else.

HOP: Whom would one ask? Metropolis?
RWH: Metropolis, or write to Los Alamos and say there are in existence a whole bunch of books we wrote. The computing one was, I think, volume 18 or 17. There was a series of books written by people who stayed on. before I came to Bell Labs, to try to get something down on what had happened. There was some attempt to do so.

Hans Bethe dictated long notes. I remember watching him. He would sit, dictate with small file cards, and tell the girl to leave two inches, leave three inches, and so on, refer back for her all the way down. Out would come perfectly typed stuff. He would fill in the equations, and he never had to go
back and do anything else after that.

Placzek was there after Hans Bethe.
HOP: How do you spell that?
algebra, although Im not very high on complex variables, which is the old classic stuff with endless sequences of epsilons and deltas. I m not very strong on that one.

I should tell you another story you may not know. I think that Bode was told to spend a year at princeton by his manage we (this is shortly really uint survey mathematics and see what else really think you have to start with the problem find the think you have to start with the problem and find the mathematics to try to find the problem. It appears to be the other way almost always - in the past.

Oh, I should tell you another lovely story. Classical network theory involves finding complex zeros of polynomials - very heavily. It's a major
problem. And the way I came upon it was as follows. In the history of computing, when I came to the Laboratories, there were four hand-computing groups that I am aware of: one in the Network Department, one in the Math Department, one in Quality Assurance and there would seem to have been one connected with Central Office simulations.

HOP: You mean the throw-down computer at West Street.
RWH: Well, that kind of thing, yes. It was highly specialized. There were these four hand groups. Well, the Network Department got a relay computer, Model VI. I used it occasionally. Well, I wanted to get more time on it. I could only get time when they weren't using it. I could easily see that if I went through and speeded up any individual program, it would only take them a couple of days to find another problem to occupy the time I had freed. I would have to get at the central problem of speeding up all the programs, then I would have a little gap before they
filled the time up. The central problem was evaluating real polynomials at complex points. So I looked at it.

Now a complex number is really the real field with a quadratic irrationality adjoined. Every element in the field is representable as $\frac{a}{}+\frac{b \theta}{f}$. Therefore, complex point, by staying in the reals down to the bitter end, not starting in the complex. So I want to
－pтp дəләu

 əиエоч7мен ஸ！

－ $6 u \underset{|c|}{ }$
iətduțs 7eप7 sṭ 71 ¿xụ̦u7

¿eyseiqən yoṭd noK pṭp moh
－әәл6әр s，дә7seur e 706 pue

－səx

70ex
 ＇sninotes əues әч7 sem 7 I ．soṭewə
 sem 7t puy waył uo pəyiom oum ərdoad प7TM pəyiom
 －pauəddey 7eप7 s6uṭy teəi ə⿰扌 ¥o tie fsoute fnq
 ио Kisnotixas yiom 7，upṭ I •sədossə

 e 7 e sqeit tiag of əure I •Knб Kyont Kiən e sem I

> - 7t sə7enteat do 'ttom

－spoyzau ano aбueyo

Is there anything more before I go on to who brought me to Bell Labs?

Question No. 3

Who or what brought you to Bell Labs?
RWH: It was Deller and Fry. They came out to Los Alamos on a visit. Now [R.A.] Deller was the head of Personnel.* And Fry was Fry.

I was told by somebody, "Why don't you stop by theater number 2 and talk to some guys in Bell Labs?" And I thought it was nonsense. I didn't have time. But we went to work every day and every night, and as it won't hurt me to stop by and talk to them." So, I chanced to talk to them. And they made me a job offer and...

HOP: Right then and there?
RWH: Well, no. A letter came back sometime later. But it was a very short interview.

HOP: You didn't come east to interview?
RWH: No, I was a shock to H. W. Bode. I was a big shock to Bode. BTL offered me a salary raise in December list,
before I came in July 1946 . Four people were hired from Los Alamos that I knew of.

HOP: Yes, who were they?
RWH: Frank Schnettler, Brockway McMillan, myself, and I can't think of the fourth name.
HOP: So Frank Schnettler came at that time?
RWH: Well, he had been at Bell Labs before.

* Technical Employment. - Ed.
** Thornton C. Fry, who had been head of Mathematical Research before the war. - Ed.

Shrink from the war size. Maybe you can run a small installation with these kinds of people, but maybe you cannot run a big one of 18,000 . Maybe you have to have a different kind of person in management. So I am not saying it's wrong now, but certainly there is a big change in who gets promoted now and for what reasons. Ian Ross - whom again I knew quite well at the beginning - there's a very good development man, not a great researcher. Before then, usually there have been great research people. It may be necessary, but it certainly is a change which I find bothersome.

I find this is likely to be an apocryphal story. The story is that the Personnel Department found out what makes good scientists - what would keep them well-balanced people. They found, after ten years, or thirty years, or something like this, that all reports were on time, everything is fine, but no great ideas were on time, everything is fine, but no great ideas who produce great results. Unfortunately it is true. Certainly I was a trouble-maker; certainly Terry was a Certainly I was a trouble-maker; certainly Terry was a Tukey! If you go into something unusual, you have to be unusual in more than just one direction.

There is another guy you haven't asked about. You wouldn't know Jack Kane, whom I still write to occasionally. Jack Kane was crazy as a fruitcake, occasionally. Jack Kane was crazy as a fruitcake,
absolutely crazy as hell. He really was crazy for a while, after he left Bell Labs. But he once said to me, he'd been calculating the size of Phys Reviews. He said, "You put it on a shelf each month; you push them across to make room for the next month's issue; it falls off the other end." He said he calculated that in some year, I think it was 2020, the volumes would be moving with the velocity of light! He said, "But it doesn't matter, there'll be no content."

Now it wasn't very far from that time when I once went to a talk down at Princeton by the IEEE in which the editor said, "If our plans for publication as we now have them come true, a conscientious member of the IEEE could start reading January 1 and read all year long and still not read everything the IEEE had put out." There would be no time to do anything but read! quite early. his Reviews which made me realize that we are eyeball to $\frac{\text { Reviews }}{}$ whinfill is willing to contemplate what infinite knowledge
-pa - •TS6T uṬ sqet tiəg fo quəpṭsəad

-səx : đOH

...‘дәттә山 ‘т̣шләя : нме

 әч7 Sem 7 I •mour 7 , upṭ I Tte pruieət I 'queziodut

¿sqeit trog 7e

-யب̣ч ०7 7sịt әч7 имор әшоว әм иәчм әлош

 : нму

-யт̣ч әuretq

 ụ̦ əsṭex Kaetes e pey I 7eyf buṭKes weabotoz e әu

- дәмsue

 วงuTs puy. .w!

-sдəмsue әч7 моих

¿peə7suT $ә \neq 0$ oxd noK pinous woчm

> -əлеч KTqṬssod I ‘TtəM

RWH: ...Bethe, Feynman. I was learning computing from Feynman from moment to moment. He was always around under foot. Watching him, I realized how little I
knew. Mind you, I had minored in physics. Secondly, I became much more receptive to nonmathematicians.
GBP: Von Neumann?
RWH: Yes, I saw him only at a distance. I saw him later at Bell Labs. But I rarely saw him up close, anymore than I saw Bohr up close.
HOP: First, you said,...?
RWH: I had learned nothing about math and physics, and secondly I was receptive to the fact that nonmathematicians might know something. Mind you, I found that the average doctoral training gives you the impression that only mathematicians are worth knowing, and they know the truth, and anything else is
inferior. And it is true of every field I have found since then. Every field inculcates in its practitioners, without saying so, history will indicate that BTL is the greatest thing out, won't it? See what I mean? Well, I've learned that.

HOP: Well, that was a leading question.
RWH: Well, another thing, I had learned is that the use of a computer can solve what could not be done in the laboratory. You cannot make a small-scale bomb and try it out. You either simulate or you don to do
anything. You can't really do small-scale atomic bomb experiments. You have got to have a critical mass. I saw the essential role of computing in experimentation, in that one lesson.

GBP: Did you know Kolsky in Los Alamos?
RWH: Kolsky? No.
GBP: Harwood George Kolsky. He probably came after your time. He was the man I spoke of that went to IBM. I heard him talk about computing. He was a physicist by
training, but they made a computer out of him. And he training, but they made a computer out of him. And he said he used to have trouble with his budget. However, when he reminded them that he had computed
some answers they needed and thereby saved them the $\$ 1$ some answers they needed and thereby saved them the $\$ 1$
million which an experiment (the detonation of a bomb) million which an experiment (the detonation of a bomb)
would have cost, he received the budget he needed for

RWH: No, I agree with you. A counter example - partly! Remember
Johnson his moon guidance! On the other hand, J. B. did. But I think I ve done pretty well. Ather things in fields which I have taken up recently other things in fields which I have taken up recently productive than I expected to be by following my own advice.

But, let's go back. I used to fuss at Schelkunoff and say to other people, "How can I avoid being, like almost everybody else in the laboratory? Why can t I be like Darlington, J. B. Johnson, and a few others?" And one day Schelkunoff says to me, "If you are Henry, you have a real problem in management there to Henry, you have a real problem in managent the is the normal pattern. Do the wish to follow it? If not what do they intend to do so they will not end up like so many people? For most of my years at Bell Labs, I arqued that you should retire everybody at 55 on full salary (research department only) and everybody would be resear we would lose some good people but we would also get rid of all the others

There are two concepts. You know the concept of critical mass, critical mass of scientists. But there is another concept, I call "sound absorbers." Any scientist who has a new idea has the urge to go tell ten people. Now if you bump into some smart guys, they"ll say, "Yeah, I thought about that," or "That reminds me of this," and so on, or "Hey, I'll look into that." You meet these damn sound absorbers, and they say "Yeah, very interesting, da..." And the idea dies away. If you have too many sound absorbers in the place, ideas just vanish. The trick at Bell Labs was for me to learn to avoid all those sound absorbers. Just simply walk by them and not speak to them. Just talk to the guy who has something to bounce back to you. I think that, on the average, you would do more good, by getting rid of all those big sound absorbers at 55 to 65 than the harm you do losing a few guys like Darlington and a few other productive people. The bulk of them are less productive. IBM, you know has a retirement rule, retirement for executives. I can only commend it to everybody at Bell Labs, that the top management retire early.

 enptatput ue ut otzstiəววexey

HOP: How big was this coordinating council?
RWH: I guess twenty-five or more people. Oh, with deputies and so on, maybe as large as fifty, but I don't know how many were there. I can sort of picture a room with twenty-five to fifty people at a meeting, but there may have been more people who couldn't always attend. You know meetings, everybody doesn't attend all the time. Nevertheless, we were expected to come, so we were aware of what else was going on to some
extent.

DML: And these met monthly?
RWH: I think something like monthly or oftener, I don't remember. In a sense, I knew what was going on at remote locations, just as in a sense they knew what You say, "We've got another two bomb designs doun, " or something else like that They could not know the somethy details of the common picture.

GBP: Where did Brockway McMillan work at Los Alamos?
RWH: I don't know where he was. I think he wą大 out in one of the X Divisions but I don't know. I^{\prime} ve often wondered.

GBP: Los Alamos is one place in the United States I have never been to.

RWH: I was there just last December.
GBP: Never been there. I saw it from a distance in an airplane flying from Santa Fe or something like that, but I have never been there.

RWH: Well, I am, a consultant there now, and I don't have an idea what s going on still. But after all, Henry's been a boss at Bell Labs for all these years, and he doesn't know what's going on in much of the place.
HOP: Much less than I used to, in fact.

* Explosive Division, a different mesa from ours.
encourage that to happen?
RWH: Well, I'll give you an answer and really what you should have done. I told you, I went to lunch with the physics table. The Nobel Prize broke it up. Also McKay and some other guys got promoted - another one
of the guys was Molnar. They all disappeared, changing jobs, retiring, and I was left the dregs. No use eating lunch with them. In the far corner was the chemistry table. So I went over to the chemistry table. "What's new in chemistry? What's important in chemistry?" Pretty soon, "What are you working on that s mportant? a bitch - I say to the whole table, "If what you are working to working on it?n i wasn't welcome any more, But, six working on it? wasn the whe monr secretary), Dave McCall, stops me in the hall and says, "Hamming you really got underneath my skin with says, "Hamming, you really got underneath my skin with that remark. I haven't changed my research, but it was well worth while." So I said, "Thank you," and walked well worth while. Two weeks later, I found he was made boss. The only one in the bunch who was willing to think beyond his nose. The rest of them could not.

I'll say again, almost all scientists spend almost all their lives working on problems which they themselves know are not important and which they do not believe will lead to something important. With one life to lead, why the hell they do it? Unless that is the life they want!

HOP: Well, why do they do it?
RWH: Because I think they will not plan, they will not stop to think, they are unable. Or just like Miss Gray, like Kaiser, or various other cases, they are unable to go down that lonely path of trying to do something great and run the risk of failure and have nothing. They want the steady, immediate gratification of safety, and I can't say Bell Labs puts any pressure on you at all to be safe. No boss of mine ever told me I should do that. No, they choose the path themselves. You are not told this by management. Nor does the president of the university say that to his hired help. They make it clear they want you to do great work. But how few people do it.

 əM 7 nq syoeq ino puṭyəq syinl bunok anof əu7 pəties

-passṭur əл, noK шочм 'təqoz pəweu Kn6

$$
\bar{\varsigma} \cdot \overline{O N} \overline{\text { uoṭ7sen }}
$$

- Obe buot aur of umoux әxəm noK fnq 'sesuey fnoqe

I पeपf ә7e7s sesuey znoqe əxou moux of uaddey

-əzəy7 umouxun ur

-əsInoد まо
: HMC
... ‘queqォodut Ktiead sṭ qечм uo əKә
 anok uṭ pue uoṭssnosṭp anoK uṭ uṭebe dəno pue dəno
 әч7 fo məṭ eţnutu e Kโuo sey әч fnq 's sutul of umop

 u

 ¿əsooyo əuo səop MOY 'siəaqunu teəj uəaṭ6 fng íqu6ṭ

 ‘́sயu7 -шәтqoid aч7 s 7847 7ng •7no 7eчf payiom s Kpoqon s, ○M7 IT əртગəp noK op uәuM if usəop
 nok op mou '(xəznduos e ut siəqunu ueəu I) siəqunu

complex variables, the way Bode did. Anybody who resorted to numbers was beyond the pale. I was a troublemaker that way. Shannon obviously was a troublemaker producing information theory. Ling was very good in military work and at algebra. Both Ling and McMillan, you know, ended up vice-presidents. And
Shannon is world-famous. I'm just the failure of the four.

You are just as famous.
RWH: Oh no! Anyhow, I came there, and I found network theory dominated the department, but we were moving into missiles. (Oh, Tukey was there, too.) The first practical thing I, did of any size was I took some practical thing I did of any size was I took some
diagrams from Tukey, went up to MIT to use the MIT differential analyzer, the RDA No. 2, to study trajectories for the Nike guided missiles. It was a beautiful machine, and Tukey had supplied beautiful wiring diagrams plus a very good plan of computing.

HOP: This was the beginning of the Nike business?
RWH: Yes, back before the fall of - 46 , probably. Ling and Tukey had given me these things. I went up and started to run trajectories. Now, I had twenty minutes to look at a trajectory develop before I committed my next trajectory run, and the total trajectory took forty minutes, so I had lots of time to think and regret the choice I had just made. And I discovered that a vertical launch was better than slant launch. I found the proposed wings were much too large, and I began to realize that the formulas that ling had given me for swapping wing size for drag and so on must have been local linear approximations. So I came back and said, "Look, these formulas can't be right. I am going much too far. I am going down to one-third wing size." Ling said, "Yep, you're right." So they gave me some new numbers, and I went back and I got some new trajectories. And they were happy about the vertical launch, because they had planned for a slant range launcher. They were in the right direction. I had found that a vertical launch is much better. Well, that means I really
 computing. I had a very strong experience with analog stuff (which we'll come up to in a little while). contacts.
you are going down the path of 340 years, a millionfold growth of knowledge. You cannot stand it.

GBP: Nobody sits down to think about 500 years in the future, or even 100.
RWH: Why not? I do.
GBP: Why, I think they should.
RWH: You shouldn't say nobody. I think we're both exceptions. To quote a theorem.

GBP: There is one conspicuous computer scientist that neither one of you has named. And I don't think you should skip him, since you've sort of covered the field. Knuth.

RWH: All right, I'll take him on. In mathematics, students who do well up through calculus of ten do not do well "minutia people." In order to do a multiplication, you've got to be able to take care of a lot of little you ve got to be able to take care of a lot of little details. In order to do calculus, you have got to pay attention to a sea of minutia. But advanced mathematics is not a sea of minutia. Knuth is a genius, but he is a minutia man. Because programming,
which requires incredible attention to detail, is the which requires incredible attention to detail, is the entrance way, computer science tends to attract but a minutia man. is the greatest. He is a genius,

Now, the evidence is as follows. I was commissioned by several guys at Bell Labs to talk to Knuth about writing volume seven next, not in order. So I go in, I stick my feet up on the desk, and he s got his feet up on the other side - you know he's six feet six or something, a big man. I had written a rather nasty review of volume two, and he had the gall to bring it up. I said, "I m not taking back one word of it, but I am perfectly willing to discuss it." And we set out, hammer and tongs with no punches spared as it were. I beat him down to admitting that what is in those books is what has amused him, not what a computer scientist should know. They are filled with

* The Art of Computer Programming

 - әu buṭpṭnb uṭ se tiəm se fioddns popəəu әpog 7ey7

 pue op pinous pue pinoo әч feym mes әч $: 7$ גeus Kitead
 әचetsuedz pue seəpt s, әроя әуе7 sem әuop дәлә p, әч те ‘имо sṭч эо еәрт ие реч реч дәләи әч 7 еч7 pịes

- puey əәд尹 Kโqeyдешәд

 O7 MOY 'sכTfewəy7eur op of MOY puezsiəpun noK TTTM

-7! uṭn padtəн

....spịy әч7 эо squәдed әч山

[^0]close to the original one, although it deviated quite a lot along the way, it came back to it.
HOP: One of the things I remember being told once is that it was Clara Froelich together with a team of computresses who computed these.

RWH: Sure. Froelich was in charge of the hand group.
HOP: You know. John would sit there and look at them.
RWH: John is definitely difficult that way, too. Well, I will tell you what did happen. John used Milne's method. Well, years later, I found that Milne's method. was unstable in the middle range. I had just taken the method and assumed it always worked. It was an unstable method. It worked sometimes. Clara Froelich was in charge of the hand computing group. (When her mother was alive, and living with her, Clara was a bit of a bitch. The moment her mother died, clara became a very lovely person.) She adjusted for the instability of the method.

HOP: Clara had been hired by Thornton Fry way back.
RWH: Way back when, and I believe gossip has it that she thought she was going to marry him at one point, between various marriages of his; But we won't get into his sex life, I hope. It s spectacular. just leave it alone. There are some marvelous stories.

HOP: But I am curious now about the division of labor in computing trajectories. You took some to MIT. Clara Froelich did some with a team she organized, by hand,...

RWH: Some of the girls, yes.
HOP: You and John and others...
RWH: I did the analog ones. John had a very clever arrangement for the RDA \#2 from which we got calculations of variability off the true run, so it told me, more or less, how to perturb things. trajectories, but they hand calculations, crude resources. They couldn't do very much by hand. After all, you get around 2000 operations a day out of a girl, and if that doesn't get you down the trajectory, you can't put a team on it to do it faster. There is
go down that path on which we are now marching.
GBP: Well this is certainly what has been happening to the mathematical scientists since World War II. We used to have one subject and now we ve got the Conference Board of the Mathematical Sciences.

RWH: For my doctorate, I had to pass exams on applied mathematics, geometry, algebra, and analysis. I had to know all four subjects to get a degree at illinois in 1942. Come on, now you can get by with only topology. What do you propose to do, sir, in 340 years with a million-fold doubling? Alternatively, science is not going to continue at its present rate. One of the two. Actually, one of the three things: you re going to have a million times as many fields of expertise, the rate is not going to continue, or you're going to do something different to cope with
increased knowledge. It's a favorite topic of mine.

HOP: I'll give a Hamming solution: burn the library.
RWH: Well, that book I'm trying to write, Methods of Mathematics $\frac{\text { Applied }}{\text { Statistics, }}$ says clearly $\frac{\text { Calculus, }}{\text { n the pref }} \frac{\text { Probab } \overline{\text { ility }} \text {, }}{\text { and }}$ ind $\frac{a n}{\text { the }}$ text, there is so much mathematics now needed - both pure mathematics and needed applications - that we can no longer hope to tell you what you need, we must no longer hope to tell you what you need, we must to try to cover mathematics now. We must give up the to try to cover mathematics now. We must give up the results and teach the methods. Mathematics as now
taught is like taking you through an art gallery of faught is like taking you through an art gallery of picture or compose. Nobody tells you how to find the theorem or anything else. You are only shown finished theorems and finished proofs. But that is just plain wrong for teaching. It may or may not have been good in the past. We'll let that go. But it is hopeless for the future.

GBP: Look at the calculus book that I studied, I really studied Love's calculus.

RWH: The little red book?
GBP: Yes.
RWH: It was the same one I did!
GBP: A thin red book.

- дәуред

Fje7s әч7 ио ч7оq әләм peәһ
 ssṭ 7eप7 əins 7ou ue I .Kex ssịw pue पכب̣təoxa

 ०7 peu ueu \forall uəu fsutebe. skep əsoप7 ut sqe tiog น! คว
$\cdot d n 7 t$ prods pue qo!

- ұием әм ұечм $70 u$ sṭ ұеч7 pue

Kрeare ¿uo payiom

 7xəu Knб әч7 ч7т̣M чวunt of o6 07 puә7 nox u•s6uty7

 Kโəytit əдou əae noK unx buot əч7 ut pue buṭetnuṭis
found him having a shop order to build a very good third model. That's probably the one you saw. I said time; there is absolutely nothing new on a beautifully engineered job." Well, I let it go, I just wondered. I saw it put down in the concourse. I saw the effect. and I saw that he knew it was not sufficient to have ideas; you've got to advertise.

The same way, everyone wanted to call it communication theory, but he insisted on information theory. He knew it would be more accurate the other way, but it got much more publicity with information theory as a title. He knew the art of advertising much better than most people did. And I learned from him that it s not sufficient to have ideas; you ve got be be able to market them, or you might as well not have them. So I learned a lot from him, but not directly.

He was an extremely private person. He did his work, and he told nobody about it for long periods of that, and the other theory, but he was a lone wolf all the way down.

Who was with him at that time?

RWH: Nobody. Nobody ever worked with him.
HOP: Well, Hagelbarger hadn't come yet.
RWH: Hagelbarger was a friend of his like...
HOP: Ed Moore?
RWH: I worked with him closely in the sense when he got a Mechano set for Christmas from his wife I used to go over to his house some evenings and play with the set Shannon living room floor. I shared an office with office up in the attic in Building l, before Building was completed. I probably knew him then as much as anybody did.

He was essentially a lone wolf. His closest riends were Barney Oliver and Pierce, and it was an association of minds rather than subject matter. But hannon was very able in lots of ways. But I don't hink he had as much influence as he could have had, because he was a lone wolf.
way any of us remember it either. He says he's got file cabinets full of evidence. I have only memories which say exactly the opposite. He says Von Neumann invented internal programming. We have evidence he didn't. Von Neumann never claimed it. He was only a consultant to Mauchly-Eckert. All kinds of things, he's gotten totally wrong

GBP: That's what I've always heard about the book, that That's what I've always heard about the book, that
it's full of errors, in spite of the fact that he claims his documentation in the preface.

RWH: That's why I cannot write a history. I do not have three file cabinets full of data. But I have a memory which is quite different from his. But in justice to not pulled any of this Von Neumann business with me. He transcended it, but it took him a very, very long He transcended it, but it took him a very, very long not to. It took me quite a long while not to quote Tukey. Tukey was always in my conversation for many, many years. "Tukey said this, or Tukey did that."

GBP: Goldstine has been writing on history. He wrote the one on computing machines. He has just ${ }_{\star}$ published a book on The History of Numerical Analysis.

RWH: He has? He probably thinks numerical analysis is simultaneous linear equations.

GBP: And I ve heard comments from the top people at the Institute that they don't think it works.
RWH: Incidentally, in my opinion, the Institute for Advanced Study has ruined more great scientists than any other place has created - judged by what they did before, what they did after. That's the criterion. Look at what they did before and what they did after. The Institute for Advanced Study is not good working conditions. The trouble is, what all of us think from moment to moment are good working conditions, are not. I've said, a closed door with no interruptions sounds good. you get on with your work; that is bad. Constant interruptions from other things are much more

* $\frac{\text { From }}{\text { York }} /$ Heid $\frac{16 \text { th }}{\text { Helberg: Springer }} \frac{\text { the }}{\text { Verla }} \frac{19 \text { th }}{} \frac{\text { Century }}{1977 \text {). (New }}$

-uȚY əas of 7 no ob pue qes e

ctte fe oueṭd aчf Ketd of atqe ay si

-ODṬXəW MəN UI
-poo6 Kuv nok op TT, 7 y yutu7

 I pue ruct БUOT Kんuчofu ut buṭ buot e Jos •uueunan uon ч7tM uotietioosse sṭ məabino

иешлән 7noqe quәumos buṭssed e Kโuo әреш no

 7ou u I mon ut ury pip fini
 sem əч 'Kโsnoṭяqo •s6uṭ

 e uopueqe of uxeət 7 , पes noK fit 'osty - 6uṭy uoumos

HOP: You say he had an influence?
RWH: He had an influence because from him I learned you do what needs to be done, never mind anything else. Whatever needs to be done, you go do it. As an example, he reduced data at White Sands by eye when the machine busted; he could reduce it by hand! He did whatever needed to be done. When Nike got going and will along, he spent a lot of time, perhaps a year military that it Washington trying to persuade the it woul a just evaluation of what it would do He saw that was necessary. I learned a fair amount from him.

I learned negligible from McMillan.
HOP: Well, what did McMillan start to do?
RWH: McMillan. Well, we'll come up with some other things first. You understand, having retired makes you think about your career. And having picked up several honors including this latest one, this National Academy of Engineering, makes you wonder, "Why me?" I don't know that McMillan ever had a great idea. He proved some variations and put some mathematical rigor into Shannon's work.

HOP: Yes, and there is a basic lemma that he's credited with in this theory.

RWH: That is, Shannon already has got all the results. McMillan merely put some rigor into the thing. $-\frac{I}{t}$
don't know anything that he did. But that doesn mean he didn't do something. I only said I don't know anything that he did that really mattered. It seemed to me he talked a lot, said a lot of things, but he was frequently flat wrong, and he'd insist upon some things when he was wrong. But perhaps that makes a good vice-president. He may very well be good, but I just don't know. But in mathematics, I don't think he had much influence at all. He certainly was not one of the strong people in the bunch.

But I don't think that Shannon and Tukey completely shaped the character of the mathematical group. I think it was really shaped to a great extent by time, we weren't manag by managing us. At the same would have computing. They tried to get me to do classical
takes so long to realize that you have got to be able to sell an idea. You have to be able to write the theorem up well. If you can't....For example, my doctoral thesis. I gave one talk, and I realized that it was a subject nobody could care about again. If I wanted to do research anybody would listen to, I'd better change subjects. So I did.

Well, apparently Shannon told management that he didn't want to be fussed over. Every visiting guy that came to Bell Labs wanted to see Shannon, and so the Labs gave him protection. But the truth was that he wanted to be fussed over. He thought if he went to MIT, he would be fussed over - an endowed professorship and he was modest, he stayed at home, didn't on do to campus Dave Rose, who went up didn t come down to campus. Dave Rose, who went up campus. Neither did some other people." Now, as proof of my contention that I am right in this situation, I of my contention that 1 am right in this situation, spoke to Barney oliver one day. I met him by chance, said, "How's Shannon doing? How's my old pal Shannon doing?" He said, "I've never seen Shannon happier." I doing?" He said, "I ve never seen Shannon happier." I said to myself, "I m not surprised. He just went out thing, a belief that you want to be left alone, but the truth is that you want to be fussed over.

Plus, the other syndrome: What do you do for an encore after you've done information theory? Einstein had the same trouble. If somebody at the Institute for Advanced Study had said to Einstein, "Al, old boy, just for my sake, drop this unified field theory for six months and go do something else, something that is totally different in physics." Nobody had the guts to say that to him, so for the rest of his life, from 1917 on, he worked on a subject which produced essentially nothing. Essentially nothing in the following sense: when a new paper of his came out, I asked every physicist at Bell Labs, "Have you read it? No? You can't believe it is important then, if you haven't read it." By the test: did they read it? No. The physicists did not read what Einstein was doing. It is a common syndrome that great scientists have geatime When. an at that big things grow.

 əəs I pue ət!̣м e xof 6u!̣

- ұuem Kәчд әses Kue op

 'Kes pue yoeq әшо० I os 'siəmsue әч7 ұием Кәч7 әләчм

 ptnos I pịes I əouṭ itexbozut ənten tedịouṭd Kyones

 suotitippe) puooəs e uotifexado uotifeotid!tinn auo fnoqe

 プ wns"ə

 SIu pțes I st fit feym op nô ueyz əiouKue moux 7 , uop

 Key woxj etquintoj 7 e səsinos jo əTdnos *e yoot

 7noqe yonu os mouy Kn6 sịч7 səop KчM, 'fiəsKu pəyse

7. upinod әч 7ey7 7ou - 7. usey ән

- 6uṬq7awos $x 0$ xnou ¥Tey

¿Kıошоя чdтеу

 asn TTTM дəumexboxd quasวp ou pue 'poob umep ou s. 7 t

 әч7 โTV •әдәч7, umop squexnezsəi snoṭien әч7 fo әuo
 प7 TM əuṭ

then say, "We now know why you want the frequencies logarithmically spaced. Put your integration that way rather than arithmetically." So we agreed.

Well now, the reason I bring this out to you is what it comes down to - consider the training I needed to do this job. I redesigned the whole experiment. I never went down the manhole and measured a single mathematics in order to do that trick. That's the role of abstract mathematics; you don't use it directly, but you need it so that you can see instantly: of course, there is a matrix; there is a Cauchy principal value; yes, you can interpolate locally to integrate, two sides will cancel out; and yes, if you want equal accuracy, something other than arithmetic spacing might be better. It's a very impressive thing to me how simply it was done.

Now they gave me some hand help to calculate a We ran them off. Later, after about a half a dozen cases (because I had only agreed I would do a couple), I went to Bode and said, "Look, Bode, I agreed to calculate a couple of these, but I didn't expect to spend the rest of my life at them." He grabbed the phone and, after about a five minute conversation, he says, "Tomorrow there will be a girl there. You show her how to do it, and you're out." So I got out. Years and years later they were still using the same method. They hadn't learned a thing!

Well, that is some of the sort of network stuff I got caught in. But you see, when that arose, they had to come to me to do some computing. Dietzold came to me one time (again hating himself) and asked me could
I do some calculations of some other thing on the I do some calculations of some other thing on the machine, which really came down to creating some orthogonal polynomials. I said, "Yes, but you ve got Service Bureau in New York " And I continually did this until they New York in And 1 continually did money renting machine time than it would cost to buy me my own machine or to rent me a machine on the grounds. Well, they rented one, an IBM-CPC (cardprogrammed calculator), but they put it in the attic. They put it in the attic, where no one could see it, whil put it in the attic, where no one could see it, floor with windows so everyone could see it. But this digital computer was to be hidden. It was disgraceful.

GBP: Oh, that s what Peter Lax did. I knew Peter Lax had a connection with the Manhattan Project, but I didn't know what he did.
RWH: He pushed cards.
HOP: And Kemeny did also?
RWH: Yes, the two of them pushed cards. They were GIs. We got them off with all kinds of trouble. The army put in all kinds of rules about this, that, and the other thing, and we wiped the rules out.

HOP: After all these hours, you thought of some more names from Los Alamos!

RWH: They were not mathematicians then; they were undergraduates, or at best, beginning graduate students. But both of them were energetic and eager to learn. They took every opportunity to learn.

GBP: That's where John Kemeny connected with computing. And it came out later. The only thing he talks about is being assistant to Einstein and things of this kind.

RWH: Oh yes, he was a student of Einstein. He made it clear he was his student. We used to call him Von Kemeny. I visited Kemeny once for two weeks at Dartmouth. I helped him get the money to get the computing center up at Dartmouth, so he invited me to come up when they were putting in BASIC, and I spent two weeks up there. He has many talents, a very able guy.

GBP: He is retiring as president of Dartmouth.
RWH: Yes, but you know all the time he was president he insisted on doing some teaching to keep his foot on the ground. That is a very realistic view. So many top management don't do this. I admired him tremendously for that. I admired him in many ways, although admittedly he was snobbish in a way, and as I said, we called him Von Kemeny.
HOP: Greenberg?
RWH: No.
HOP: Didn't know him? Backus.

 putu iəaəu 'sKn6 poob ч7TM yiom sem (souety sot wox

$$
\overline{9} \cdot \overline{o N} \overline{\text { uoṭ7sənర }}
$$

ou 'ou 'ON : HMy

$\bar{\varsigma} \cdot \overline{\mathrm{ON}} \overline{\text { uoṬ } 7 \operatorname{san} \overline{0}}$
iəpog woxf fou fing ibuṭuoṭṭ̣puos
 7,uptnos pue sətqed дəло tโef pinom əm 'sqinq tieus

 Inou ue ITEY IOI əxวч7 uTu prou pue Kep Iวuwns auo
 Ktteəa sem 7 I ibuṭuoṭṭ̣uos iṭe ou sem әдәч7 puy

 -sowety sot fe sn dof spaes paysnd ay 'mour nox

-Kиәшәу әx!̣t '6uṬч7

 , गu!su キeə

-y०oq әч7 ustrqnd ury zəт

-TTnH Kuruoul

and let him do most of the work. I helped him get on the machine and helped him get things going. I did a little analytical work for him, to get a few closed solutions, but they were impossibly messy ones. But there agai
the
mathematics
wasn't
interesting at all. It had no effect on mathematics.
Now, we come down to question number 7 .
HOP: Before you go on to that, you started to talk about the CPC. How successful was that?

It was fabulous. By sheer luck, at that time I was going out to Rand with David C. Bomberger to look at the possibility of buying some commercial Gypsy-type looking at their differential analyzer. I heard about the CPC machine they had at Rand, so I went around to talk to the guys just a bit, because I knew a CPC was coming to BTL. They had a gorgeous general-purpose board, a description of which they gave me, with all the wiring diagrams, to do the general purpose work. I changed it a bit (because they had had a mathematician who tried to do everything mathematically instead of practically). I knew some of the stuff he put in was wasting time, so I threw it out and put some more useful stuff in. But essentially, I took their thing and with the help of Peabody got into general purpose computing promptly with their general purpose board, taking it directly from Rand. It was a very useful thing.

But to back up a bit. You see, one of the other things I did early, by about December of 46 or so,.. I was asked by Bode, with Miss R. A. Weiss, to go in and help write some software for the relay computer number 5, which we were delivering to Aberdeen, because that contract required software as well as hardware. Furthermore, Bode asked to get some acquaintance with it, so I did a partial differential equation on the damn thing. The way the magnetic got answers out of that by running it material, and we got answers out of that by running it whenever nothing tha was going on, as a backlog order problem. And suddenly saw how it was that saturation occurred. had these B-H curves on tapes and I looked up the values; and I did the essential functional look up via paper tapes.

He was a very able guy, but by the time I saw him, he was already coasting down hill. Only by looking back and asking other people, did I understand what his great days had been. He obviously was a very good guy. He had a stroke then. And that's where you sons of a gun got me back to be a department head for a while again.

HOP: Howard Aiken.
RWH: That son-of-a-bitch, I couldn't stand him because I was one too. But he gave me a lot of good advice. One of his best ones: we were standing, I think, looking at one of his machines, and he said to me, said, "I m last computer, in said, "Why? And he to using them " said to myself, "It's good enough to using them.", I said to myself, "It s good enough get confused with the machine and the use. The use is more important than the machine. He helped me, by more important than the machine. He helped me, by of the machines that counts, not the machines themselves.

Mauchly and Eckert, want to go on to those guys?
HOP: Yes, why not.
RWH: Mauchly and Eckert were two good guys. When they were bought up by UNIVAC, Mauchly took his vice-presidency to do what he pleased, and Eckert plunged in to do the job that they wanted him to do. As a result, Mauchly was gradually eased out, and Eckert is still very influential. When you go work for a new guy, for heaven's sake go work for him! Mauchly didn't understand this. Mauchly also, demeaning his old age, lied periodically in public about whether he had known J. V. Atanasoff's work, And his signature was right there! Bang! a visitor's signature with a date. But he tried all kinds of ways to get out of this. On the other hand, Mauchly and Eckert between them invented internal programming.

HOP: Householder.

RWH: A man with one interest, in one topic. Again a good personal friend of mine, but so myopic. Very good, but maybe that's all he had, and he played his one talent as best he could with that one little thing. it s better to do one thing well than nothing. But he

әч7 uex nok－әnten xətduos e fo uotionung əч7 mexp
 7 uptp әм 7eч7 puefsiəpun 7，upip Kəч7 7 nq＇pəyiom 71

 ว6exozs 10 7no 7T Tind 07 Kpoqəwos IOT 6ut ipu u

 （

－ләdoxd Kt7uәxedde

К M

¿əлеәт әч рт̣р Кчм
．．．．os ‘injəдeว əдou sem әч ftəsuṭ $10 f$ buṭy

¿S，27！̣q！7S 7eप7 sem＇s גəqunu גə7nduos

 ，әу 7ечм 7suṭebe＇buṭzseos sem әy 7 nq＇noK puṭu peq

 oțuox

 реч Кəч7信
－Kโәวтฺu
имор әш әч7ооs ртnom әч puy •sKем Kuunf uurp itəū

－»OOมqโOH әт̣uxəg

 дәмsue әч7 Moux Kәч7 צит̣ч7 Кәч7＇snowef 007 әшоəəq

$z=x+i y$ around a contour, and you got the w contour. And the number of times $w(z)$ circled something is the until you tried to get a change in the count, and just where it came in showed you the complex values as well as the absolute value. And that's no way to find zeros of a polynomial. That's not a good thing to do.

They buried it quietly, and that was one of the difficulties I had, you see. That was a disaster they had built, publicized it, and it was a lemon, an embarrassment to the math department.

GBP: Not even under the pressure of the war did they build computers.

RWH: They built Model 5 for the military at NACA and Aberdeen. Oh yes. Relay number 1 was the complex computer that Stibitz had built in ${ }^{-39}$ or something like that and exhibited in 40 .

GBP: I saw it June 1940 at 463 West Street, and I saw it, the terminal, at Dartmouth.

RWH: Yes, that was basically a multiplier of complex numbers. Then, number 2, I think, was a complex interpolator. Stibitz, being on the NDRC (National Defense Research Committee), saw that they had to prepare tapes to drive testing equipment, and this computer was simply a device for preparing tapes, an complicated. It did the same sort of thing with fixed point arithmetic. No. 4...

GBP: Who was it built for?
RWH: You'd have to look up the history....
GBP: I am wondering if Aberdeen had a hand in building some of these things?

RWH:
Five, No. 5 was Aberdeen's. There were two copies of five, one went to NACA ${ }_{\star}$ at Columbus, I believe, and the other one to Aberdeen. Now the Aberdeen one actually

* According to the second volume of A History of Engineering and Science in the Bell System (ed. M. D. Fagen. Bell Telephone Laboratories, Incorporated,

Wannier, but that is one thing he frustrated me on, thoroughly. Because I could never understand - nor would he adequately explain - how he did that mysterious thing.

But I learned a tremendous amount from Gregory, he was a big help. I worked a Monte Carlo problem with him, which was very nice. It was the only truly successful Monte Carlo problem I did - by John Tukey's definition. He came to me in the card program calculator days, with an integral equation in which each functional a plane, pould fly But asked the source. It was a charged particle that was accelerated by an electric field

I wanted to do a Monte Carlo, but, unlike friends, I waited until I had a problem which Bell Labs needed done. So I converted this to a Monte Carlo problem. We had 10,000 cards made up; we got the numbers from the proper distributions. I got IBM to bid on the job, and run it off. I let them throw away a few cards at random when they got card jams, because they had a great deal of trouble. Like idiots, they had bid on the thing, and they didn't know what they were bidding on. They were losing money, so I let them off the hook. Well, I plotted the curves and gave them to Wannier, and the first thing he does is complain about the accuracy. I tell him, "You agreed to this." Secondly, he says, "Ah ha, they're really Maxwellian distributions, off-center, like that." I said, "Yes, anybody can see that." And he grabs a piece of paper, furiously starts writing (ignoring me completely), and derives the whole thing analytically. By John Tukey's definition: the only good Monte Carlo is a dead Monte Carlo, that's the only one that worked out for me. Now he went on. When he had the actual answer and compared it with mine, mine were systematically off a little bit. Well, I didn't like that, so I looked into the matter. I found out that the very unlikely events had been preferentially removed by the cards they had removed from the deck. Never run a Monte Carlo and pick out a removable random card, never mind how random. But that was a very good model. It was my first really big Monte Carlo. It was my first really successful Monte Carlo

I went to Von Neumann over that. Tried to pull a "swindle". I went down to the Institute, tried to

－OS9 puovas e әлеч of pey I mes

 KTteutf uәчm pu甘 •uțequteu 07 piey Kiən sem
 71 Uourt reəa e sem 7！

 әч əurnsadd I $\cdot 7$ u ut spaes әч7 7 nd sem op of pey әч tit－K7！̣ィţonpoid sfị buṭtqnop 7souite snyf－squbịu
 Kń e 706 I pue ‘dn papeot Kโə7əโduos 7 T pey uoos ∂M

－Daコ anok fob noK ə7ex Kue 7v

 әч7 Э0 əuo sem 7eप山 •7uem nok IT，wətqoad əuo

 әч puy，suoṭtipuos Kıepunoq əxоu OMz pəəu I＇OM7

 Uotisnjfip e 47 tim punoxe səwoo əy pue ssed ITTM

 ©
 ut əләтtəq 7 uop I－pəznduos I əлоэəq butznduos sem

 әрṭs7no әtdoəd 7noqe чənu yte7 7，uptp I fnq＇səx

：dOH

 ino xuṭy7 I puey 12470 әप7 uo uәәq pey 7τ әдәчм

 ！̣емен о7 әиоб реч иет̣dәтS дәч7әчм ‘әтduехә доя •әәs

．．．．
II •sieuṭurs of buṭo6 Kq 子ey7 op 7，uop noK puy • jeaK

HOP: How soon was that?
RWH: I can t tell you the number of months, but it was very soon. But Bode obviously wouldn't move. I went to Tukey and Tukey says, "Order it." I said "Yeah, but how are you going, to get authority?" He said, "Just order it, and I will take care of it." And sure enough, just as the second machine is coming in the door, Tukey has taken care, somehow, of the paperwork at the top. So I got a second 650. I never knew how he did it, but I was rescued.

Bode? No, one machine was enough. Although, give him credit. Very early he said to me, "These machines haven't helped my girls, my hand calculator girls at Thus he put my attention on the small problems on these machines? Second do 1 do more important, one time he said at a department more important, one time he said at a department meeting, "Hamming and his girls shouldn't worry about the fact that they can't do all the problems." I went home and said, "Bode s crazy. Look at all these important problems not being done." But then, I said,
"Well, Bode isn't dumb. He must have meant something." It finally dawned on me that really what he wanted was for me to find out what machines could do rather than to do it. My real problem in the research department was to find out what computers could do. And so, I shifted to some extent, to try and find out what range of science the machines could do was rather than merely getting work done.

HOP: How was work on the 650 paid for?
RWH: Originally it was loaded on all the vice-presidents ${ }^{\text {D }}$ areas equally. And I used that fact by talking to various vice-presidents, saying "Of course, you realize you're paying for part of my 650, and you aren't getting any machine time in your whole vicepresidential area."
"What?"
"Oh yes! It's loaded on the whole company; you're paying for it."

In about two or three months or less, then somebody from his area comes wandering around saying, "Say, could I use your machine? Then we moved the charg

HOP: Abe Taub.
RWH: Didn't like him at all. He was at Illinois, where they once tried to get me to come back. I would never have gone back, because Wanda wouldn't let me. But Taub, he tried to live on having worked with Von Neumann too long, like Goldstine.

HOP: Forsythe.
RWH: You mean George Forsythe?
HOP: George Forsythe.
RWH: He was the reason I went to Stanford for the year in 1960-61. Very nice guy. Let me back up and speak of the subject. At Los Alamos, I became envious of these other guys like Feynman, and so on, and I wanted to envied Gilbert some talents. I envied Forsythe-s being a gentleman I just never could be the gentleman he is, although I tried to learn a little bit about being polite. He was a very nice guy. He didn't do great mathematics, but he caused other people to, which is almost as good, if not as good. Like Oppenheimer. Oppenheimer could inspire people to do good work. He was a great leader. He was a great do good work. He was a great leader. He was a great didn't do great mathematics himself, but he was a didn't do great mathematics himself, but he was a great man anyhow. "There are many ways to heaven" and the reason I went there as against other places.

I could have gone almost any place, because after all, Bell Labs was paying the bill then. But I wanted to write that book. I didn't dare to go to MIT, and I didn't dare to go to some other places. I didn't dare to go to Berkeley. And the second time, in 1970-71, I went to Irvine; I didn't dare to go to Santa Cruz because I thought the redwood trees would make me too ide, and MIT would get me to go to too many seminars. I wouldn't get the book written. With the second book, I ginned out two pages a day, seven days a week for a year, because I turned out 732 pages in the one

* Numerical Methods for Scientists and Engineers (New York: McGraw-Hill, 1962; 2nd ed. 1973).
¿sofeyet Kxoug Kq pəu6ịsəp גə7nduro boteue əsodind-โexəuә6

$$
\bar{L} \cdot \overline{O_{N}} \overline{\text { uOṬ } 7 \operatorname{son} \bar{\prime}}
$$

 Kei әрочұes әч7 of yoot pue ut sqiq әч7 find nox sueəu גə7nduos иәəм
 e foj pip ays zeym op oz 6uţaq

 MəF e əбuey

 e quads I pue ssṭəm •Op pinoo siəznduos te7titip feчм op 7 ,uptnos siaznduros boteue 7eप7 fuṭod fuequodur ue pəтeג7suowəp pey I puy qo! Kiefitiu 6т̣ e

子noqe Kヶ́uox

- $\overline{\text { sṭTIDd }}$ uety

 I pue pteuogow yuen -pteuodow əxtt sem yettod 'tiom
-реәче о

-••7nq 'pịp Ktqeqoad I : doh

RWH: It was known I was a digital character, and I would say the whole Gypsy was designed without telling me anything. McMillan had a hand in it partly. All they did was take gun director parts, make them of a matched impedance of one megohm, bring them up to a double patchboard of the telephone switchboard type, and remove some of the windage, drag, and other things, and replace idiot hyperbolic functions on potentiometers.

I stayed away from it as much as possible, but I had several problems I wanted to do and as that was a suitable machine, I used it a couple of times. Bode ${ }^{\text {asked me one time - I think he d rigged it. He said, }}$ months and finish the military report. Will you run the thing?" I says to him, "I see the problem. I get it running well enough to get credit, but not so well that I'll get stuck with it." And he laughed in my face. So, what happened is, within a couple of weeks, I cleaned up the style of running it, and there was no
more backlog at all, and everyone was happy. And the machine was idle! So I never got rid of it.

When I found I was stuck with it, I started redesigning the thing. In the first place, to take one example, they had "overload lights" on a panel.
HOP: Why did people insist upon keeping it?
RWH: Oh, it was very valuable. It did all kinds of problems.

But let me tell you. It had overload lights over here on the mainframe, but over there, is where you watch for the trajectory coming out,.... Well, you
weren't looking when it overloaded, naturally. So I weren't looking when it overloaded, naturally. So I said to the maintenance man, "I want sound." They fussed, and fussed, and fussed, and they finally connected a little thing up, a charged-condenser to run a little one-inch speaker that went "Naah!" "Naah," you knew to step over there, stop the thing look at the overload lights, Simple device. Greatly increased productivity and reliability of the answers.

Next, all the "time constants" of the integrators were changed by girls reaching in and changing the corresponding wires by hand among the high voltages, which I didn't like. Furthermore, all the feedback

RWH: Very, very ingenious guy. If somebody could've disciplined him from the superficial into profundity, I think you'd have had more, but perhaps somewhat worse. What could've been done? He certainly is a talented guy in a lot of ways, but what has it been? A lot of slick stuff. Clever, ingenious, but Bode once said, "Show me the guy who writes the definitive book," and after getting mad at that and saying, "Just because you wrote a book like that,..." I came around to believe that he was right.

HOP: Ruth Weiss?
RWH: Very fond of her, and I said several times I was more dependent upon her than I was on my wife many times. dependent upon her than I was on my wife many times. Schelkunoff pointed out to me that we had worked together so long that she took me as being too infallible, and that was a mistake. And after thinking it over a little while, I said, "Yes." In the early 650 business I did something to her differently. I told her, "You're going to do the programming. I'm not going to learn how to program the machine. I ll tell you what I want programmed, but I won't do the programming." She didn t believe me. I day look want program to do this. She would show me, I d look at wouldn't tell her. She found out then, that she had to be dependent upon herself and that made her grow a great deal. But it took Schelkunoff to point it out to me, and then I had to set about the business of getting her independent of me. And she had limited talent. She never could see the big picture really well, like Gwen Hansen, although she was somewhat better than Gwen Hansen. I don't think that, in some respects, she was as good as Leagus.

HOP: Ed Gilbert?
RWH: There's a guy who hurts. Next to Tukey, he's the most talented mathematician I 've seen up close. You see, I haven't seen Von Neumann up close, but Gilbert I have. If you mean by mathematician a man who can take an ill-formed problem, formulate it, and lay down an attack, Ed Gilbert s got it. On the other hand, the sith a with anything, I argued with him many, many years a, string them together in a book showing the underlying method." He doesn't care. He's going to die, be a
-əләчмәшos ло 'sə

 pey oчm sKnb Kueur әч7 jo əuo sem sofexet puy

¿Кем әч7 Кq ‘шохэ әшоゝ sоұехет реч әдәчм

-6uṭjəəuṭ6uə ueuny 7 noqe

 पכ7tMs e butmoiut Kq pasoto io pauədo əiəM siətittdure

 әч7 s.7I ¿әu!t peq e buṭ

 - WgI 7 e əдojəq sieəK Kueu 'Kueu uossət Ku pauxeət I

 sey tenptatput әuf sdeuxəd. məts jo futod s fstzuəios

-əuṬTdṬOsṬp

HOP: Is he?
RWH: Yes. Well, some more trouble with that. By that time I was running so successfully that I soon had both bigger problems than I could do as well as more Gypsy. We looked put first. Can we buy commercially? Well, we were at least one bit better in accuracy and Well, we were at least one bit better in accuracy and for one bit, we built a second copy! But I went to don t care how you build it" (because they wanted to build it fancy), "but it must be exactly like the first Gypsy. If you're going to change the second, you've got to change the first." And we had a little trouble over that, but I insisted that the two had to be exactly compatible. If they wound up creating a new one, they had to reach in and upgrade the old one at their expense.

HOP: Who built it?
RWH: I don't know. I can't say. I went out there with Bomberger. Bomberger and I did a lot of work together in those times, and I wanted him to help test the new machine before they brought it over, since they had assembled it at Whippany, He said, "Oh, it's perfectly safe." So I patched up $y^{\prime \prime}+y=0$, which is
supposed to draw circles if you plot y against y^{\prime}. It supposed to draw circles if you plot y against y^{\prime}. It didn't draw circles. We patched a couple of different integrators. We tried various things. We finally called the guys that built it in and showed it to them. When we went to lunch, they were busily looking at what was wrong. It's a very simple thing to upgrade the integrators, amplifiers, and so on, and they had not put in a heavy enough bus, a copper bus, so that the leakage current was running around through great big copper bus. But that was one of the things I insisted upon, compatibility. When we put in heavy copper it worked fine. We had the connections from one to the other; we connected two as one, or separate.

HOP: You've mentioned Dave Bomberger several times.
RWH: Yes.
HOP: My recollection of him is that of a power engineer. What else had he done?
"Voyeurism is no substitute for experience," not only in sex, but in research.* If you have not done it, you really can t know to some extent what it is. Pierce had done it, not once but a lot of times.

He would come in your office when he was boss and say, "What's new?" And if you didn't start telling something interesting, if it was dull, you looked up, a little while, you realized that you had, at any moment, to be prepared to say what you were doing that moment, to be prepared to say what you were doing that was interesting, He was a real good boss that way. But he didn't fill out forms, he didn't do all kinds of things, and in that way he was a bad boss. I think he's great.

HOP: McIlroy.
RWH: McIlroy is a curious thing. He worked for me when he came in first. I sized him up. I said, "Hamming, don't tell him anything. Leave him alone." I helped helped him with all the mechanics, but I wouldn't tell him what to do at all. He did some very good work in the beginning. Then he petered out. He hasn't been managed properly. There's a talent there. (I saw him this time, when I was back.) There s a talent there, but somehow or another it got lost. He could've continued to be very productive, - not that he's unproductive - but I think he's got much more, particularly in view of what he already did in the early days. It's not been gotten out of him somehow. It's a shame, 'cause I don't know how to do it.
HOP: Ed Moore?
RWH: Ed Moore. I used to enjoy him until somebody said, "We ought to have a case to charge time that Ed Moore wastes." And I stopped and thought awhile and decided that after that I was no longer going to listen to Ed Moore. He'd come by and tell you the most fascinating
thing about type fonts, about this or that, but he

* R. W. Hamming, "We Would Know What They Thought When They Did It," in A History of Computing in the Twentieth Rota (New York. Academic Press, 1980), p. 8.
¿Sqeq trog əpțs7no pue
 (SSṬəM pue buṭumeh) ZT pue (sn6eət pue sịquotom) tT əaəM КчM

-ețxpuexəty 7e Kxexqit әч7

Kллом of TLG Iof wərqoid queziodut Kiən 'Kiən e st

 -

 I qo! TOL sty7 uo fsity ury yłtm pantonut 706 KTtea

 I 7eप7

 se top tiṭ Kәч7 pue ‘op pinous Kəч7 feчm moux ətdoəd
 sұә6 ән - ор pinous әч चечм smouy ән •Kчdexboṭtqiq

 op 7 , uop noK It 'גəsṭey 'yoot "uțu of Kes Kiteuṭ I $\cdot 7$ -

 I pue noK f, uop Kumu 'pies i "'yoot tiomu 'дəsịey of

Number 8 is a delicate question. Let me give you my version, which is not the official version, but $\frac{m}{I}$ think it is the correct one.

Wolontis and I went to the one-week 650 school IBM r an to learn about it. I saw immediately that I did not want to run in that language. Boal ia got to me. (Down a way [on the list of questions] is "What is the think it was Bode's prodding me, "It isn't helping the girls," He made me think about what computing was, and my favorite saying, "The purpose of computing is my favorite saying," "The purpose of computing is single thing I did. The purpose was to advance Bell Laboratories, not to get numbers.) Well, I saw that I could not use that crazy 650 language. Furthermore, it was a fixed-point machine.

Within the week, I saw that I could make a threeaddress system like the CPC, like Stibitz's machine, A times B equals C, three digits for the first address, three for the second, and three for the third. But that meant that I could not refer to the upper 1000 registers. Okay, so I could put the software system there. I saw that much. At first, I only saw that we could have ten instructions, for one decimal position, but then I saw that most instructions didn t require
the second address, A times B equals C, but sine A the second address, A times B equals C, but sine A
equals C. There's no second argument. So I could use equals c. There's no second argument. So I could use the zero operation to say, "Look at the second
argument for more details of the instruction you are argument for more details of the instruction you are
to do next." Well, I got this thing quite a way along. to do next." Well, I got this thing quite
Now I did this using top-down philosophy.

Wolontis was working for me. He was panicked over the logic at some stage along the way. But we had gotten the whole thing laid out: where it was going to Monday with all the the other thing. He came in one couldn't so trying to build L2 at the time. In order to be reasonable, we simply stopped doing the symbolic reasonable, we simply stopped doing the symbolic absolute address, and absolute instructions. I wanted symbolic instructions, so debugging would be much easier. I had to wait for about a year or so, and then produce the L2, because to produce the L2 directly, when Wolontis really had stepped up and done it suddenly, was troublesome. So we simply let go that way, but really the evidence is nifty. One day,

HOP: What's your guess?
RWH: If you get left behind - you do good work but get left behind - you feel unappreciated. I think that's it for the most part. About Rice, I'm not sure. He didn't speak too well of Bell Labs. I don't know. He's such a nice guy, he probably wouldn't say evil of anybody. But, a lot has passed him by.

HOP: George Baldwin?
RWH: I tried with Baldwin repeatedly to get him not to I tried with Baldwin repeatedly to get him not to computers, but to look. George didn't want to look. Furthermore, George would promise A to the first guy and non-A to the second guy. George wanted to be liked. I think he was able, but his desire to be liked vitiated almost anything he could do.

HOP: Jim Kaiser?

RWH: Kaiser obviously is a good friend of mine. He was out here recently. You know that book Digital Filters by me? Let me tell you a story about that. Being being obsolete and the analog computer, I stopped W. O. Baker in the hall one day and said that I had watched the analog guys not convert to digital. I had watched various other nonconversions. I had watched the earliest ones. The old relay guys would not learn electronics. They were pushed aside. I said to Baker that they were an economic loss, but to my mind, worse, they were a social loss. They were disgruntled. "The telephone company is rapidly going digital," I said to Baker, "and if we don't get these analog guys and other people over to digital computing and a digital way of thinking, with digital filters, we're gonna have the same thing." He looked interested. I said, "I think what we need is a good elementary book which will help convert them." He said, "Yes, I think you should."

I knew I'd been had. I walked off. I got repeated feedback from Baker through Tukey that Baker was glad I was looking into matters and so on. So I went to

* Published by Prentice-Hall in 1977. - Ed.

¿SṬY7 UṬ pəntonut əmoч uәmo 7,usem

 noK ptoz I se 'əsnes '7no 706 I puy •ətqȚssod

¿улом s, КроqKגәлә op of 6uт̣Kג7 pue

-spieoq

 - fiəsuṭ spreoq 6ntd əч7 ite ut fnd pue 'sədeq stu TTe

 uxəpou e 7ey7 mes I tịfun toL e дəpio 7ou ptnom

$$
\bar{\sigma} \cdot \overline{O N} \overline{\text { uOṬ7sonర }}
$$

sдəәдes queseətd uo pue sqet tiəg uo yoeq yoot әot pur

 ก० tou 1

 әлеч 7 ,uop noK 'ssəuṭsnq boteue әч7 uI - buṭueaw Kue

-səx
$\cdot 7 s+̣ n b K_{N}$ pəuoṭ孔uәu nor

HOP: Well, I never knew it, that she was retiring
RWH: I knew. I've still get the gossip.
HOP: She was working in BIS (Business Information Systems) at the end.

RWH: I have more gossip than you have about Bell Labs. Well, you asked, "How did the Computing Science Research Center develop?" Let me say this. For more than ten years, I bitched to my management regularly, "Get the damn machines out of the research department. We can do no research." For example, I complained and back, "We must have it to do research on it." Finally, it seemes to me they got the message. Just as no Library Science Department should run the library, no Computing Science Department should run the computer. They finally got the message. I think that, plus possibly much more influential, I can't tell - the budget was now so large. It was obvious that the Math Department, or even the Research Department, shouldn't be controlling that much budget. It was inappropriate. I wouldn't be surprised, if it were sheer dollars, if the vice-presidents looked at the budget and said, "Hey, now wait a minute, we need someone to manage that thing directly. We can't let that be hidden down there." Well, I certainly complained for more than ten years, regularly, that the machine was stopping all research. We finaliy got rid of the computer. The moment we did and we got the guys loose, UNIX came out of it and such other things.

HOP: There was some time gap between there
RWH: Not much. My version there is the following. I went Not much. My version there is the following. I went
to Ed David and said "Look." (They all knew I tried to to Ed David and said "Look." (They all knew I tried to get rid of the computers. I was a persona non grata, cause the toy was going away.) I said to Ed David wou can, that you can get away with. If it's too small they lil sulk, but those guys are very good. They-1l be very ambitious theyll get great work out They ll be very ambitious, they ll get great work out He gave them that, and UNIXTM the stage, Ed David caused UNIX ${ }^{\text {Th }}$ to appear. Now the stage, Ed David caused UNIX to appear. Now nobody knew what they were going to do. But we knew
that these guys with ambition would have to make the small machine do big things.... Everybody really knows a small machine can do practically as much as a big

HOP: Steve Rice
RWH: Rice obviously did some very important work. But at the back end, he seemed to me long since out of date. He tried messing with machines. I've got to give him ip computers. Nevertheless, while he could use them, I don't know what he produced of any great importance late in life. Although he worked hard. Again, see, the essence of doing important work is doing the right roblem, and that s the danger. He did the same thing Shannon did, and others. If you have to get a job done next week, you close your door or you work odd hours or something. You can get more work done in the short haul while your door is shut and you re on your own. But if you do that too long, you no longer know what to work on. Rice worked by himself. He came in early you know, in the morning. After years, he no longer knew what to work on.

Riordan had a tough life. Of his most important paper, probably the most widely cited, Nyquist said, Well, if you want to publish it all right, but I don't see why you waste your time on it." I learned a tuck at Bell stuck at Bell Labs. He had no degree, and he coulan o to a and myself, and anytime Bell Labs couldn t get along with e I could go elsewhere. So I never had to

John Tukey said to me one time, "Why don't you ask the greatest living combinatorialist instead of me." I said, "Who?" He said, "Riordan." But Riordan is for years. He was writing the combinatorial book. I asked him, "Will you please really give the rules for the symbolic stuff?" He says, "They"re all in E.T. Bell's book." And I said, "It isn't exactly intelligible, and besides that, sometime or another, you admitted it wasn't there." So he hemmed and hawed. He would never put down - nor would Gilbert - just what the rules are. Riordan was like Euler. He worked out many particular cases. Beyond when I was bored he d work on another case before he came to a eneral one. One time he made a derivation, got down to the end, symbolically, and said "That's the wrong answer. Let's start again." He derived it a different way, got a different answer. He said, "Okay, that s the right answer." Why one and not the other? He would not do the mathematical business of trying to find out why one instead of the other. But I / m not

 O7 реч Кәч7 әәs о7 uebəq Kəч7 '6uțituoxduoo pə7גe7s

 I ‘əртs $1 ә ч 70$ әч7 uo dn tte wәч7 pәppe pue әu!t e maip I © os pue os 'os pue os 'qunowe әч7 umop

-KTq!̣suəs yoxeəsəa op

 əu7 dn 5uipəəds
-әวueuәquт̣eu

iəu!ty e Kueu s6uṭy7

 - uotsin ietnooutq butəas KTtenzo isietnooutq u7tM ฯวコวм คт位

 - ətpuey of sey əu stistio e- skepuns pue sKepanzes

them all see the impossibility of that many hours.
But Bode never understood this. Bode kept asking me if he could put another problem on the machine. "Could you look at this problem too without dropping something else?" Would I? I've got to drop something else. He never could understand that a machine has a finite capacity. He always wanted me to do another problem squeezed in somewheres. I had trouble with him.

HOP: When did Gypsy finally disappear?
RWH: I don't know the date. But we got rid of it, along with the maintenance man. We gave it to Stevens, isn't it?

HOP: Brooklyn Poly.
RWH: Right, Brooklyn Poly.
It was an interesting problem. My first experience with management in a certain sense. I got the damn Gypsy with this maintenance man. Now it ran fine when other analog computers didn't. Question: Is it the maintenance man or is it that these parts were debugged by the war and the arctic and the deserts and so on? Was that the reason it ran well? So over his objections, I lashed up cables, and I did this, that, and the other thing. I gradually got acquainted with him and the machine, and I concluded he was totally incompetent. With a positive feedback loop, he would stand right on the you shouldn't be doing that problem He could never understand Gypsy as a whole. He knew all the pieces understand Gypsy as a whole. He knew all the pieces computer was for My problem was, not knowing electronics, to decide whether a man was good or bad, and I decided he was no good.

But that's one of my many lessons. So many people have no vision of the whole. They see not the total purpose. Gwen Hansen was like that. I could never get her to see a problem on the Gypsy as a whole. She could only see the pieces. Consequently, if the problems were formulated wrong by the physicist seeing, from the way the computing goes, that it is the problem that is wrong.
else to go to. He is much younger than I am, too.
Tukey. I worked closely with Tukey for five or seven years, and much that I learned about mathematics I learned from him. He was creating power-spectrum theory at the time 1 was working with him. I thought, well. I don't know how to as it Neumann, but Tukey wo thin maybe He^{-}too say too thin, maybe. he s too desirous of being the entery had tobcons you everything, so you had to come back and ask him. reform. I think he has now; he's writing some books But he just tried to do too much, too many different things. He may have wasted one of the greatest talents I 've ever seen, bar none.

GBP: He wrecked himself?
RWH: Tukey ruined his own talents, destroyed himself by trying to do too much. He could've been much greater, I think, if he tried to do less. He misunderstood what makes great science. He's one of the ones that bothers me the most, because in some sense, I owe so much of my education to him. But I also realized after a while, I had to get loose from him, otherwise wasn't going to be me. So I gradually pried myself loose.

You haven't got down there the name of Milt Terry, which you really should have.

When Milt Terry turned up, I was in charge of computing. He wanted to do statistics, which involved keypunching; we had a 101 statistical sorter. Looking him over for a while, I said to Milt, "Look, you run half of the computing center; I'll run the main computing part. You take the keypunch and so on. Why should you ask me always for this, that, and the other thing?" Well, Milt was a difficult guy to get along with. I'm difficult. We never had one bit of trouble between us in all the years we divided it up between us.

Now Milt had this feature. Like Tukey, Milt would consult with a guy, but he kept the main control to rim wher nom thing together. we will get the program running on the machine; and when we finish you will know how to run tl" I tried to make them independent of mew Tukey

 әч7 pey Kәч7 pue 's7xed ut 00S6\$ дəч7oue 746noq

 e pəzeonpə peif I stoof qei se sqet əч7 ofut s ᄀeч -wว

-7ey7 7noqe x[e7

- Кем 7еч7 suowər дә66т̣

[^1]

 Kеu әэ!

- uouueys znoqe parte7 әм • पоиueys
-pəuәddey pəuәddey

 sKemie әч - piey pəriom әч uot̄sənb ou s, әләч7-

507 -07 ห ィе7

Question No. 10
Computer science is now developing as a separate discipline Is this right? Is a background in other fields necessary?

RWH: Well, let me continue a little further, and we'll take these in order. That computing science is developing as a separate discipline, I have no comments beyond the following. For years I preached to deans and prexies and such things in universities, "You are creating a Computer Science Department so that computer science can be created." I didn't maintain that it was, but I said, "You are putting the department together do it." I am now embarrassed, to say the least.

On the other hand, no. When I look at computer science, it doesn't look like there's much unity, emphasis, or coherence. It doesn't look like there's much. But when I look at other departments.... Let us look at say math, the guy who gets a Ph.D in topology. What is there there? Is there so much more there than there is in computer science? No. If I judge where the field ought to be, the unity it ought to have, computer science doesn't exist. When I look at other fields, it isn't so bad.

Still I really am mixed up. I am a member of the Computer Science Department. I am planning, quietly, not officially, but I ve already made contact. By ' 85 I expect to be in the Math Department. I may take a detour through Electrical Engineering, but I expect to end up in the Math Department, because I am very unhappy in the Computer Science Department.

My whole department - all of them are busy, in action. They get a machine; they play with it; they want to get more machines, do more things. They don't doing. I'm struggling to get them to tone down a bit, but you can't stop them from having their playthings, but you can t stop them from having their playthings, what they want. They assign theses which become doing are used to well-structured situations in which they are used to well-structured situations in which they
know what to do. When the battle occurs, they know all the ground rules and everything else. They love well-structured situations. But this is supposed to be an educational institution, and they need training in ill-structured things, which means you sit and think; you're not told what to think.

Labs took him back, he never did a damn thing compared to what he had. Adn I believe he could have if he had the guts to try.

Now Schelkunoff was another case entirely. Schelkunoff was in West Street. He was in the math department, but he was separate. He and Miss Gray had this office on West Street, which I used a great deal cause I used to go to West Street a good deal. Since he didn't come to work till three o'clock, after a year or so, he gave me use of his office, which was a
lovely big one. He got up at six in the morning (he lovely big one, He got up at six in the morning (he worked all day, and when he was through work, when his energies were gone then he walked to work and processed pieces of paper there.

As I understand it, and this is only an understanding, the idea of the waveguide was around somewhat. He was looking at the thing, and he found that the eigenvalues showed that the impedence decreased with increasing frequency. And he says, "Man, bandwidth is the name of the game! This is it! This is what we should investigate." He put a great
deal of effort behind that, much effort behind waveguide and such other things, although I don't think he was the first. But he wrote the damn book of his in his own notation. He rediscovered much of electromagnetic theory in his own notation. He didn't understand, as Shannon did, the selling problem. If he had written in common notation, he'd be a much bigger name now. But he didn't do it.

Shewhart is another person who's missing. Shewhart discovered Quality Control. If you will look (you can check up on it) when I last looked the Society of Quality Control was bigger than the Statistical Society. Recently I worked two days a week for two or three years at Princeton in the Statistics Department. I bugged them regularly about the neglect of Q.C. How come? Because quality control does not involve fancy mathematics, it isn't popular. Neither were, for a long, while, error-correcting codes, because they didn t then involve fancy mathematics, as Shannon s information theory did Shannon s information theory oorrecting codes got more algebraic theory in them, correcting codes got more algebraic theory in them, did they become more legitimate.

Shewhart was very valuable in lots of ways. I would often go down to Shewhart's office. Shewhart

 oste I puy. PTIOM Tear əu7 uT uo səo6 feym fe yoot of

\cdot sqo! sqet trog op of sueəur e әxe siəznduoo

$$
\overline{\tau \tau} \cdot \overline{O N} \overline{u o T ̣ 7 \operatorname{sen} \overline{0}}
$$

 แケบ әวกnb

 ән •s
 әч7 Sem ән •mouy noK se 'KIpṭdex әuṭ әч7 dn buṭob

-sKn6 7еәлб әч7

 ut Kep e sinou uәəचxts of uəəzinof pəyiom əus dn

RWH: I've been asked this for so often, I've got a standard I've been asked this for so often, I ve got a standard
speech, practically. I was using Stibitz's errordetecting machine. It was a Model V relay computer. It and the Model VI had error detection on them. If before they abandoned the problem try twice more bachine over weekends. I would assemble a bunch the problems, one after another, after another to of When I came in Monday one time, no answers, because When I came in monday one time, no answers, because and dumped them one after another. Well, I tell my friends, "You have to wait another week." Next week, the same thing. This time, we leave Friday; the machine drops, fails promptly.

Well, I'm angry. I'm sufficiently angry to say, "Damn it! If the machine can find out there is an error, why can't it find out where it is?" Now the involvement, and it caused me to say something different. As soon as I say it, I know; of course, I can build three computers, and by comparing circuits, I can do it. So there's no question, Can you build the machine? A little thinking shows me that a rectangular array with parity checks horizontal and vertical, would give me the coordinates of any single failure. That comes about because, in Pasteur's words, "Luck favors the prepared mind." I had thought about why the two-out-of-five codes that Stibitz used worked. I had generalized it to find, in general, $\frac{n}{0}$ bits with one parity check would do the whole job. So I have that. Now, the semiperimeter is naturally best for a square shape, and I'm pretty smug about the whole thing. I'm driving in the company car to West Street one day and suddenly - I cannot come up with the details- I realize that a triangular one, where I put the check with the row and the column on the area The moment that the best possible? ${ }^{\text {that }}$ few minutes and I say, "a three-dimensional cube, check the planes, and I'll have just the three edges; $3 n$ against n_{3} would be even better. If three dimensions are good, why not four or six? After all, I'm not going to put the relays in that arrangement; $I^{\prime} m$ only going to wire it that way. By the time I arrived there, I know that $2 \times 2 \times 2 x .$. is really good. But it doesn't take very long to realize that $2 \times 2 \times 2$... will give me n+1 checkbits, and that that $2 \times 2 \times 2$... will give me $n+1$ checkbits, and that
gives $2 n^{n}+$ different possible syndromes (I didn't have gives $2-$ different possible syndromes (I didn t have a syndrome for the right answer and one for each wrong

He worked on Nike, he produced a book one time, but the book was long out of date before he did it.

Bode was the head of the department. I found great inspiration from him, but some people didn't. I found him highly inspiring.

Sid Darlington. I never could understand, in spite of the fact I'd go to his office and ask, I could not cannot read his published papers. But he is still going, and he and J. B. Johnson were the only two elderly scientists who, I thought, ever had new ideas in Bell Labs

Bob Dietzold was my boss. I told you, for years I did ${ }^{\frac{B}{\prime} t} \frac{1}{\text { like him, but he finally said, that All he ever }}$ thought of was carrying out Bode's ideas. And then I thought he was very good.

Clara Froelich we discussed.
Marion Gray was superb, but she had her faults. She was trained in computing like nobody else was. hard of hearing - and I excuse a lot of that because my mother was hard of hearing - but she would not step forward. When I first came to BTL, I met her in west Street only and I thought she was great, but ultimately I ended up as her boss. One time, she said to me, she should do more research. I said, "Yes, Miss Gray, I wish you would. I wish you d quit doing problems for other people and do research." She looked dubious. So I said, "I will get Bode to come and tell you. I will get the director, I will get VicePresident Baker to come in and tell you, "Miss Gray, will you please do more research and less service? ${ }^{\prime}$ Result, she started crying.

Now there are two interpretations. One interpretation is that she cried because apparently so many people cared about her. That's a possibility. the other is that she needed the feedback fommotion tomont she couldntran without the feedback regularly. I'm inclined toward the second theory, but of course I can't prove it.

Lakatos was a nice guy, but I don't think he really had the big picture. The way he designed the analog

 puti nok op Moh isbutch xəu7o snotiden pue sədots putj

$\overline{\text { ©T }} \cdot \overline{\mathrm{ON}} \overline{\mathrm{UOTTSanO}}$
－aney am tte

$$
\overline{\varepsilon \tau} \cdot \overline{o N} \overline{u o t ̣ 7 s ə n ర}
$$

7noqe әures

 โәqет әч7 әшеи

 p7seวt st

Ktpuəṭł noK buṭnṭ6 qou w．I pue＇dịssob pue uoṭuṭdo

：əโdoad buṭMottoj

$\overline{9 T} \cdot \overline{\mathrm{ON}} \overline{\mathrm{UOTTSanO}}$

 о7 рдеч s，7t pue＇puey Kq op noK 7ечм u！әбиечว

 $7 T$＇ssən6 I＇smoux KpoqKiənə чวтчм）әutw то бutKes

 07 pey I sqei trog fe səuṭ uəzop e frey fnoqy
－хәч7тә 7 т puezsдәрй

位

infinite number of cases." A theorem that 34 is the smallest number of such and such a property is not a theorem. You just look at the first 33 and see how they got it - provided you make the test in a finite number of trials.

Since mathematics is so intimately connected with infinity and machines are so obviously finite, it doesn't help a great deal: I was an eager devotee of from the particular cases we compute; we'll learn lots." And I knew that Dickson had done a lot of computing. He had two or three girls at all times employed at desk calculating finding special cases to conjecture general theorems. And we have done some good work in algebra, but I put it up to Lehmer, who's used a great deal of computing. He didn't find anything really significant such as Gauss's congruences, and so on. No. They've elaborated things, they found more details, but I don't think they ve added anything to the real heart of mathematics - including the four color problem.
HOP: Well what do you think of the four color theorem?
RWH: Well I don't think anybody gives a damn one way or the other. When Ed Moore was working on it at Bell Labs, I said to him, "We don't care about the theorem. If you find an interesting way of proving it, the method of proof may be important, but the result is not. If you did succeed, for a couple of more years you'd go around and give speeches around the country. And then what? Unless the method of proof is important, the result is not.

HOP: Well, Ed spent his time trying to find a counter example rather than trying to prove it.

RWH: But he didn't even find a counter example. Had he found one it would have been useless, unless he found it by an ingenious method. The method would count. The method they used to prove the theorem isn't The method they used to prove the theorem isn t It's a little bit better than finding a million digits of pi, but not a hell of a lot. That really isn't mathematics. This book Im trying to write on calculus really has as a title, Methods of Mathematics Applied to Calculus, Probability, and Statistics.

GBP: I think of William Shanks, who spent twenty years of his life more than a century ago computing pi to 707
decimal places; modern calculations have shown that about the last two hundred digits in his value for pi were wrong.

RWH: I don't really think, as most people do, that mathematics and computing have much in common.
Question No. 15
Do you still think highly of computer-appreciation courses?
RWH: Yes. I think highly of computer-appreciation courses. The average person in the United States, the average educated person should have some acquaintance with computers. I don think they need to be taught, thourses should be taught. courses should be taught. They shou* be taught differently now than of the book I wrote.
HOP: When should they be taught?
RWH: High school and college. Somehow or other you have make the average person aware of the larger problems, such as, Can machines think? They are after all, going to be the heart of the revolution, the computer revolution.

HOP: Why does the average person have to think about that? What difference does it make?

RWH: Emotional attitude towards it, just like the industrial revolution. Why does the average person have to be aware of it?

HOP: Well then, you ought to teach it in elementary school.
RWH: Possibly. Now I don't say where, but I think the average person needs more than he has.
HOP: What sort of computer education should the average person have all over?
RWH: Well, I guess they should know how to run programmable computers at least, if not microcomputers. If you can

* Computers $\frac{\text { and }}{\text { Company, }} 1972$ Society (New York: McGraw-Hill Book

[^0]:

[^1]: sṭ 7eym

