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HE ‘* Melancholia” is one of the three most famous copper engravings of the 

great Nuremberg painter, draftsman, and engraver Albrecht Diirer (1471— 
1528). Like other masterpieces, it suggests much more than it clearly expresses, 
and endless meanings, rightly or wrongly, have been read into it. The authors of + 
this book hope, therefore, that they may be permitted to take the brooding figure, 
sitting amidst a litter of mechanical tools, scientific instruments, and mathematical 
symbols, as the embodiment of the spirit of physical science. 

Physics is an znperimontal science, as suggested by the tools — hammer, plane, 
saw — at the feet of the winged figure. Thus, by means of a few simple experiments 
with string, balls, and wax, Gatitso did more to discover the actual facts of motion 
than had centuries of mere observation. Physics is a science of exact meastrement, as sug- 
gested by the balance, the dividers, and the hourglass. Indeed, these three instru- 
ments are designed to measure the quantities mass, length, and time, the units for which 
enter in general into the units for all the quantities dealt with in physics. Physics 
makes use of the tools, methods, and results of mathematics, as suggested by the magic 
square, the sphere, and the cube, so close at hand, But physics is more than experiment, 
more than exact measurement, more than mathematics — these are but its tools; it is care- 
fist, profound, and exact thinking, as suggested by the attitudes and delineation of the 
brooding figures, — the younger learning the methods of the elder through imitation 
and association, — both winged and able to soar to otherwise inaccessible heights, 
but secure in the *' plainness and soundness of observations on material and obvi- 
ous things,"” and perchance using by preference the ladder that leans against the 
house and has its base upon the solid earth. 

As Hermann Schubert points out in his Mathematical Essays and Recreations, the 
term melancholy meant in Diirer’s time “thought or thoughtfulness.” Thus 
“ Diirer’s melancholy does not represent the gloominess of thought, but the power 
of invention. Soberness and even a certain sadness are considered only as an element 
of this melancholy, but on the whole the genius of thought appears bright, self 
possessed and strong... Ata distance a bat-like creature, being the gloom of 
inelancholy, hovers in the air like a dark cloud, but the sun rises above the horizon, 
and at the happy mddle between these two extremes stands the rainbow of 
serene hope and cheerful confidence."” 
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PREFACE 

HIs is a textbook for the serious student who seeks a thorough 
training in science or engineering, who has already mastered 

’ trigonometry, and who has had the equivalent of a good secondary- 
school course in physics. The material provided is designed to arouse 
the interest and test the mettle of even the ablest beginners; yet we 

know from several years’ trial in the first half of the two-year general 
physics course at the California Institute of Technology that it can 
be mastered by any reasonably able and industrious student. 

We have gone far beyond our original plan, which was simply to 

revise the senior author’s Mechanics, Molecular Physics and Heat so 
as to bring it up to date. A thorough treatment of fundamental 
principles rather than the presentation of a large mass of facts has 
been stressed, as before; but the treatment is more comprehensive 

and general than in the earlier book. Comprehensiveness, however, 
has not been gained simply by making the book bulky but rather by 

a correlation of a large amount of related material with a relatively 

few general principles. There is considerable detailed analysis of im- 
portant physical situations, both in the text proper and in the solved 
examples, so as to develop the student’s analytical ability and physi- 
cal intuition, and to lead him to seek insight into phenomena and to 

demand fundamental explanations. 
The present revision makes possible a closer relationship between 

class and laboratory work than even the earlier book afforded. The 
carefully selected experiments are grouped in such a manner that the 

laboratory and class work can be kept in step without expensive 
duplication of apparatus. Because of its comprehensive nature, the 
book will serve also as a class text for courses in which laboratory and 
class work are separated. Some of the experiments provide useful 
and important material for class discussion even if the experiments 
are not actually performed. Our aim has been to develop a realization 
on the part of the student that the essential strength of physics lies 

in its continual resort to experiment and that it is only through the 
constant-interplay of experiment and theory that the science has ob- 
tained its enormous successes. 

A radical departure from the plan of the earlier book consists in 
the inclusion of some of the historical and humanistic background of, 
the subject. Most of the attempts to humanize the teaching of phys- 
ics have reached non-science majors rather than those who later will 
teach and work in the sciences. We have tried to keep the historical 
material and references on the same plane as the analytical treatment 
and have felt free to follow the logical rather than the historical order 
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where it offers real advantages. Much of the historical material ap- 
pears in the form of chapter introductions and plates, and so does not 
affect the continuity of the analytical treatment. 

Great emphasis is placed on the source literature of the field and 
on the value of collateral reading as well as on the desirability of de- 
pending on original sources rather than on the secondary material 
found in ordinary textbooks. Wherever possible, the references, 
quotations, and historical material have been taken directly from the 
original sources, Although references available in English may have 
been overemphasized, we have cited the most important sources found 
inother languages. It is not expected that the student will have either 
the time or the degree of maturity needed to make use of more than 
a small part of the many references; but they are here for his future 
use and for the use of the instructors in this and similar courses. 

We believe that there is very little in the text that will have to be 
“unlearned” by the student when he goes on in physics. Where it 
has been necessary to simplify or specialize the treatment of a topic 
inorder to bring it within the scope of the course, care has been taken 
to indicate clearly the assumptions or restrictions involved. The ter- 
minology and notation are consistent throughout the book and have 
been chosen in the light of the best modern practice. We have not 
hesitated to introduce the calculus in places where its value and im- 

portance can be made obvious, for this encourages the student from 

the start to attack problems by methods which he ultimately must 

use, and vitalizes the mathematics instruction for those who study 

the calculus concurrently with the course in physics. Experience has 

shown, however, that able students who have not had the calculus 

can master the text without undue difficulty. 

Great emphasis is placed on problems, for it is only by practice in 

applying physical principles to many different situations that any 

real understanding of these principles can be obtained. In some 

cases important material has been introduced through the medium of 

solved examples. Sometimes detailed solutions are given, sometimes 

only hints for solution. Significant figures have been taken into ac- 

count in stating the problems and their answers; hence questions of 

the accuracy of data and of calculated results can, and should, be 

stressed continually. 
We are grateful to many of our colleagues and graduate students 

who have made suggestions of great value. We also wish to thank 

the authors, publishers, and libraries who have kindly given us per- 

mission to reproduce material. 
ROBERT ANDREWS MILLIKAN 
DUANE ROLLER 
EARNEST CHARLES WATSON
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SOME IMPORTANT REFERENCES 

T 1s strongly recommended that every student make the ac- 
quaintance of many of the original memoirs of the great phys- 

icists. NieLs ABEL (1802-1829), who died before he was twenty- 
seven years of age, but still “left mathematicians enough to keep 
them busy for five hundred years,” when asked how he had done all 
this, replied, “By studying the masters, not the pupils”; and J. 
CLERK MAXWELL observes in the preface to his A Treatise on Electric- 
ily and Magnelism, “It is of great advantage to the student of any 
subject to read the original memoirs on that subject, for science is 
always most completely assimilated when it is in the nascent state.” 
Carefully selected excerpts from the original papers of more than 
ninety physicists will be found in W. F. Macie’s A Source Book in 
Physics. Every serious student should also have eventually some 
first-hand knowledge of the following original works. They will net 
be found easy reading, —no genuine scientific work can be, — but 
their value to the student will increase as he matures. A more com- 
prehensive list of references appears in the Bibliography on pages 
435-456. Many references to periodical literature, treatises, and 
other books of importance as source material or collateral reading 
will be found in footnotes throughout the book. Asterisks in the 
footnotes mark references that are particularly suitable for beginners. 

GALILEO GALILEI, Two New Sciences, translation by H. Crew and A. DE 
SALviO. 

This, “the first work on modern physics,”" contains practically all that the 
man who founded the science of kinetics had to say on the subject of physics, 

Isaac Newton, Mathematical Principles of Natural Philosophy, translation 
by ANDREW MorTE, revised by F, Cayort. 

This is without exception the most important work on physical science 
extant and is the starting point of most of the modern treatises on dynamics, 
‘The "Principia," as it is usually called, discusses a host of questions that are 
still alive. 

ARCHIMEDES, “On the Equilibrium of Planes,” Books 1 and II; 
“On Floating Bodies,” Books I and II. 

In the first two books the general law of the lever is developed and propo- 
sitions are proved for finding the centers of gravity of numerous plane figures. 
In the last two the foundations of hydrostatics are laid. Translations will be 
found in The Works of Archimedes, translated and edited by T. L. HEATH, 

xiii
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CuristisaN HuyGens, “On the Motion of Bodies through Impact” (De 
Motu Corporum ex Pereussione) 5 

“On Centrifugal Force” (De Vi Centrifuga) + 

“The Pendulum Clock” (Horologium Oscillatorium), 

In the last of these papers the first application of dynamics to bodies of 
finite size and not merely to particles is made and the important and difficult 
problem of the physical pendulum is solved. It is a work of importance second 
only to Newton's Principia, These three papers will be found in the original 
Latin and in French translation in Gfwvres completes de Christiaan Huygens, 
Vols. XVI and XVIII. German translations are available in OstwaLp's Klas- 
siker der Exakten Wissenschaften. 

    

° 

The student will find that it also will add greatly to his interest in, 
and understanding of, physics if he will read biographies of the 
pioneer investigators and good histories of the periods under con- 
sideration. The Bibliography on pages 435-456 lists a number of 
such works, but the following are especially recommended : 

H, Crew, The Rise of Modern Physics. 

Modern, scholarly, and readable. The best book of its kind in English. 

W. C.D. Dampier Witernam, A History of Science. 

‘The best single volume treating the general history of science available 
today, Clear, interesting, and not too difficult, 

E. Macu, The Science of Mechanics, translation by T. J. McCormack. 

‘A fascinating critical presentation of the itistorical development of me- 
chanics which will repay careful study, 

J.J. Fant, Galileo, His Life and Wark. 

‘The best fife in English of the man who started physics in the direction in 
which it is now traveling. 

L. T. More, Isaac Newton, A Biography, 

A vivid but critical narrative of the life and character of the greatest man of 
science Enuland has produced, This is easily the best and the only really ade- 
‘quate biography of NEWTON so far written, 

L. Cameect and W, Garnerr, The Life of James Clerk Maxwell. 

An excellent biography by two men who knew him intimately, one a school- 
fellow and lifelong friend, Ute other his assistant at Cambridge. The poetic 
feeling and overflowing humor of this great physicist are shown in his letters 
and verses, many of which are quoted, 

  

  

B, Jones, The Life und Letters of Faraday. 

‘The standard biography of “the greatest experimental philosopher the 
world has ever seen.”
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CHAPTER ONE 

LINEAR MOTION 

"HERE 1S, ia nature, pethaps nothing older than motion, concerning which the books writ- 
ten by philosophers are neither few nor small; nevertheless I have discovered by experiment 

some properties of it which are worth knowing and which have not hitherto been either observed 
cor demonstrated. Some superficial observations have been made, as, for instance, that the free 
motion of a heavy falling body is continuously accelerated; but to just what extent this accelera~ 
tion occurs has not yet been announced; for so far as know, no one has yet pointed out that the 
distances traversed, during equal intervals of time, by a body falling from zest, stand to one an 
other in the same ratio as the odd numbers beginning with unity. 

It has been observed that missiles and projectiles describe a curved path of some sort; how- 
ever no one has pointed out the fact that this path is « parabola, But this and other facts, not 
few in number or less worth knowing, [have succeeded in proving; and what I consider more 
important, there have been opened up to this vast and most excellent science, of which my work 
is merely the beginning, ways and means by which other minds more acute than mine will ex- 
plore its remote comers. 

Gatuueo Gavane, Two New Sciences," Thitd Day"? 

° 

The physical phenomena that first attract attention are those pre~ 
sented by the motion of objects about us. The science of mechanics 
is concerned ultimately with the conditions which govern motion 
and changes in motion. Before, however, we can hope to explain 
the motion of a body, we must find out how the body moves. This 
necessity of investigating the “how” of phenomena rather than 
attempting to answer the question “why” was emphasized by 
GALILEO GALILEI (1564-1642), who has on this account been well 
called the founder of modern physics. The introduction of this 
point of view really marks the beginning of modern science, and it is 
to it that the remarkable scientific developments since the sixteenth 
century have been largely due. 

The description of how bodies move is usually called kinematics, 
whereas the more fundamental investigation of the causes govern- 
ing motion constitutes what now is called dynamics. Kinematics 

  

ee *Galileo, Two New Sciences, tr. by H. Crew and A. de Salvio (1914), 
|. By permission of The Macmillan Company, publishers, 

ee *E. Mach, The Science of Mechanics (Open Court, 1893), pp. 128-155; also 
*J, Cox, Mechanics (Cambridge University Press, 1919), pp. 69-78. The whole of 
Macu’s classical treatment of the concepts and laws of mechanics should be read. 
eventually by every serious student. 
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differs from ordinary geometry only in that it introduces the idea 

of motion; it takes into consideration the element of time as well 

as the three dimensions of space. 
Of the various kinematical concepts, acceleration is the most 

important; yet the concept of acceleration was not clearly defined 

unti! the late sixteenth century, when GALILEO attacked the 

problem of describing the way in which bodies fall toward the 

earth. This is not surprising, for even given the “‘ scientific view”’ of 

nature — that is, the conviction that all experience can be described 

objectively -— the problem of expressing these observations in terms 

of exact measurements still remains. This is no easy matter; the 

simplest physical phenomenon is so modified and conditioned by 

other related phenomena that great intelligence is required to deter- 

mine its essential features and great skill to measure them and only 

them. 

The first problem of the physicist when he uncovers a new 

phenomenon is to determine what he is to measure; the next to 

devise means to measure it. Take for example the relatively simple 

and now thoroughly familiar problem of a freely falling body. It is . 

a matter of ordinary observation that a stone, a feather, a snow- 

flake, and a droplet of fog fall through the air at different rates, and 

it is not obvious that these different rates result from differences in 

the effects of the air on the various objects. Moreover, objects fall 

so swiftly that experiments with them are difficult to make. It re- 

quired, therefore, a man of GALILEO’S insight into the -essential 

points to be investigated and of his ingenuity in overcoming 

experimental difficulties to clarify this fundamental problem and 

to work out the laws of falling bodies. It is easy enough, looking 

back, to see that others besides GALILEO were acquainted to 

some extent with these laws, but they were inarticulate; they 

possessed no good methods of description and notation for convey- 

ing the meanings of the laws to other people. 

o 

The Problem of Falling Bodies 

1. Galileo’s Contributions. GALILEO’S pioneer experiments on mo- 

tion were published in 1638 in his treatise Discorsi e dimostrazioni 

matematiche, intorno a due nuove scienze.1 He had no means of pro- 

  

1 Translated into English by H. Crew and A. de Salvio under the title *Two New 

Sciences (Macmillan, 1914). See especially the earlier parts of the dialogue of the 

“Third Day” and the latter half of that of the “First Day,” beginning on page 61.
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ducing a vacuum, but by considering various cases of objects falling 

jn a series of fluids of different densities and finding that, as the 
density of the fluid diminished, the objects fell more nearly at the 

same rate, he concluded that “in a medium totally devoid of re- 
sistance all bodies would fall with the same speed.’”’ By making 
the hypothesis that the speed acquired by a falling object is pro- 

portional to the time of fall, he correctly deduced that the verti- 

cal distance traversed would be proportional to the square of the 

time of fall. Before he could verify this conclusion experimentally 

he had to find a way to avoid the high speeds with which bodies 
fall, for the most accurate time-measuring instrument at his dis- 
posal was the water clock, invented by the Babylonians or Egyp- 
tians at least three thousand years earlier. A series of experiments 
showed him that a ball rolling down an inclined plane would follow 
the same kind of rule as a ball falling vertically, and hence that he 

could transfer the results obtained at diminished speed on the in- 
clined plane over to a freely falling body. In this way, GALILEO 
arrived at a genuine experimental law for the fall of a body. 

2. A Modern Experiment. Although many experiments on falling 
bodies have been made since, it was not until the present century 
that GALILEO’s discovery was subjected to an accurate direci test 

with heavy bodies falling from a great height. In this modern experi- 

ment illuminated bombs were dropped at night from an airplane 

and their paths were photographed upon the plates of two cameras 
placed on the ground at the ends of a long base line. The cameras 
took the place of surveying instruments and may be regarded as 
equivalent to two transits. Times were registered on the plates by 
simultaneously closing the shutters of the cameras at intervals 

known to an accuracy of about 0.003 sec. The position of the bomb 
in space at any instant could be determined to within two feet 
approximately, and the speed at any point of the trajectory could 
be found with a similar degree of accuracy.! Some of the resulting 

data are reproduced in Table I (on the next page), and the student 
should satisfy himself that they lead to the following assertions: 

a. The data for the first six seconds show that the vertical dis- 
tance fallen was proportional to the square of the time, or that 

y,= 1627, thus confirming GALILEO’s law. 
b. The distances fallen in successive seconds increased by incre- 

ments of 32 feet during each of the first six seconds, but as the speed 

of the bomb became greater, these increments diminished. Since, 

  

1 Problems in Physics, War Department Committee on Education and Special 

Training, edited by H. L. Dodge.



MONG all the portraits of Garren, the most precious, whether for the ex- 
cellence of the artist, or for the exquisiteness of his work, or for its resemblance 

(which all contemporaries have declared to be perfect), is that which we owe to 
Giusto Sustermans."’ For information regarding the interesting history and vicis- 
situdles of this celebrated picture, see J.J. Fahie’s Memorials of Galileo Galilei (Courier 
Press, 1929), p. 32, from which the foregoing quotation was taken, In 1635, when 
this portrait was painted, Gariteo was just completing the writing of his Two 

Naw Sciences, the foundations for which, however, were laid during the eighteen 
best years of his life, those spent in Padua. 

‘Along with the portrait it is interesting and useful to have the following word 
picture, taken from the excellent description given by one of Garttro’s most 
famous pupils, Vincexzio Vivian. 

Gautteo was square of frame, well proportioned, and above medium height. In 
countenance he was cheerful and pleasant, with eyes that were blue and sparkling, 
and hair and beard that were abundant and of a reddish hue. His constitution was 
sound until the age of thirty, when he experienced a serious illness, and from then 
on he was subject to various complaints which increased in gravity and frequency 
with age. Doubtless this suffering and the troubles, public and private, from 
which he was seldom free contributed to his shortness of temper. Yet, though he 
was easily ruffled, he also was easily pacified. 

His industry was extraordinary. It was said that no one ever saw him idle, and 
cone of his favorite sayings was that occupation is the best medicine for mind and 
body. Gardening was about his only relaxation ftom his studies. He was a con- 
noisseur of wines and attended to his own vineyard. He was perhaps too fond of 
wine for his health and temper; even in old age his taste for it apparently was as 
keen as ever. 

Although conservative in most expenditures, he spared no cost for the success 
of his many experiments, gave freely to charity, and helped those in whom he saw 
promise. He liked friends and received them cordially though simply. Except 
with intimate friends, he seldom conversed on scientific and philosophic subjects; 
when others broached such subjects he skillfully turned the conversation into other 
channels, usually in such a way as to satisfy the curiosity of the inquirer. 

His general demeanor was modest and unassuming. He did not envy the talents 
of others, but pave to each his just dues. As a teacher he was no less loved than 
asa friend. He gave freely of his knowledge and, no matter how clear a subject 
might be in his own mind, was not satished till he made it clear to his pupils, 

  
 



  

  

  

o PLATE 1 oo 

  

  
Gauttzo Gariter, 1564-1642 

From the portrait by Sustermans, in the Uffizi Gallery, Florence
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for the first six seconds, the downward speed »; increased at a con- 

stant rate of 32 feet per second during each second, it follows that 

v;= 3214, again confirming one of GaLILEo’s assertions. Now this 

rate of change of speed, #;/t, was called by GALILEO the accel- 

eration in the downward direction. If we denote the magnitude 

of this acceleration by g, we have #,= gt, where, within the limits 

of accuracy of the measurements, g had the constant value 
32 feet per second per second during the first few seconds that the 

bomb fell. 
c. After about six seconds the acceleration began to decrease in 

magnitude; this can be attributed to air resistance, which increased 

rapidly with the increasing speed of the bomb. 

TABLE I - Data for Bomb. Dropped from an Airplane 

  

  

. : Horizontal displacement x Vertical displacement 
Time / in seconds in feet at time t in feet at time t , 

0.000 0 0 

1.000 98 16 

2.000 196 64 

3.000 294 144 

4,000 392 256 

5.000 490 400 

6.000 587 576 

7.000 684 782 

19,000 1783 5499 

19.075 1790 5539           
3. Acceleration Due to Gravity. It can therefore be concluded 

that, so long as the air resistance is negligible, a body near the earth 
falls with a constant acceleration of approximately! 32 ft - sec~, or 
980 cm- sec~2.. This acceleration due to gravity, as it is called, has 
since the time of JEAN BERNOULLI (1667-1748) been denoted by 
the symbol g. Eventually we shall see that the value of g can be 

regarded as constant only for distances of fall that are small com- 
pared to the radius of the earth, and that it depends on both the 
gravitational attraction and the rotation of the earth and hence on 

  

1The expressions 32 ft-sec-? and 980 cm- sec”? are. to be read “32 feet per 

second per second” and ‘'980 centimeters per second per second”’ respectively. Ob- 

viously they might also be written as 32 ft/sec? and 980 cm/sec?. Other examples 

of the use of exponents in the abbreviations for units are: cm®, for “‘square centi- 
meter”; ft. sec', for “feet per second”; and Ib- ft~8, for “pounds per cubic foot.”
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the latitude and the height above sea level. There are also local 
variations in g of comparatively small amount.! 

The results of careful experiments show that the value at sea level, in 

latitude? 6, is represented by the formula 

= 978.04(1 + 0.00529 sin? 6), [1] 

where go is expressed in centimeters per second per second; thus the total 

variation from equator to pole is about 0.5 percent. The variation with 

altitude is given by the formula 

gn = Bo — 0.0003086 H, [2] 

where gy is the acceleration due to gravity (cm - sec~?) at a height H meters 

above sea level. This variation is. unimportant for most purposes. 

In scientific literature, unless it is otherwise specified, the value 

gs = 980.665 cm - sec? is used in computations and tabulated. data 
which involve the acceleration due to gravity. This value, g., called 
standard acceleration due to gravity, has been adopted as a conven- 
tional constant by the International Committee on Weights and 

Measures. 

oO 

Some Preliminary Ideas about Motion 

It has been seen that the first problem which GALILEO set himself 

to solve was one of describing a particular kind of motion, and this 
independently of any attempt to find out the cause of the motion. 

This process of abstraction, of dealing with one difficulty at a time, 

is an essential part of the scientific method. Thus in the present 
chapter some relatively simple types of motion will be discussed’ in 
detail; but the nature of the bodies which move and the explana- 
tions of their motions are left for future inquiry. 

4, Frame of Reference. When we say that an automobile has 

moved a mile, we usually mean that it has moved a mile relative 

to the earth; relative to the sun, the automobile may be thousands 

of miles from where it started; and relative to us, if we happen to 

be the passengers, the automobile has not moved at all. Evidently 

by the position or by the motion of a body, we can mean only its 

  

1 See the *International Critical Tables (1926), Vol. I, pp. 395-402, for values of 

g at various stations and go at various latitudes. 

2See Appendix 11 for names of Greek letters used throughout this text.
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position or its change of position relative to another body or frame- 
work of lines which must be considered as fixed. The way in which 
we describe the position or motion of a given body will depend on 
our choice of this fixed frame of reference; by choosing wisely, the 
problem of description is often greatly simplified. In all that fol- 
lows it will be understood, unless some other choice is indicated, that 
our frame of reference is fixed in the earth. 

5. Translation and Rotation, In the up-and-down motion of an 
elevator car, or in the motion of a railway car on a straight track, 
all points in the car move along parallel lines. The same kind of 
motion is also to be observed in a piece of straight wire that is held, 
say, in a vertical position but otherwise moved in any irregular 
way whatever. A body that moves in this way without turning is 
said to have a motion of translation or a linear motion. If, on the 
other hand, a certain line in a body remains stationary as the body 
moves, the motion is called a relation or angular motion. Such is the 
motion of the flywheel of a stationary engine, or of a door as it opens 
and closes. All points in the body describe concentric circles about 
an axis and all the radii of the body turn through equal angles, 

However complex the motion of a rigid body may be, it can al- 
ways be resolved into pure translations and pure rotations, and then 
these can be studied one ata time. The motion of a nut on a bolt, 
of the wheels of a passing automobile, or of an airplane in a tail 
spin, may be regarded as a combination of these two kinds of motion ; 
these objects move as a whole with respect to the earth, and they 
also turn. 

Bodies in motion also undergo changes of size and shape. ‘These changes 
are often extremely complicated, but in practice do not always produce im- 

portant effects. In order to simplify our study of motion, we will disregard 
such changes for the present by confining our attention to bodies that do 

not change in size or shape. Such perfectly rigid bodies, of course, exist only 
in the imagination, although objects like a billiard ball or a piece of steel 

may be regarded as perfectly rigid when the forces acting upon them are 

small, 

° 

The Kinematics of a Partie 

We have said that when a body undergoes pure translation, every 
line of points in the body retains its direction relative to the frame 
of reference. This means that the motion of the body will be com- 
pletely described just as soon as the motion of any one of its points 
is given. In other words, in describing the motion of a body that
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has translation without rotation, the body may be treated as if it 
were a single particle. The term particle is here used in its technical 
sense to refer to a moving point considered as defining the position 
from time to time of a very small part of a body. 

6. Position of a Particle. One familiar way to locate a particle on 
the earth’s surface is to give its latitude and longitude and its alti- 

tude from sea level. Since the particle may change its position 
with time, the description is made more complete if the time is also 
given. Four data, then, are needed for the complete location of a 

particle in ordinary space and time: three of these data locate the 
particle in space of three dimensions relative to some fixed frame of 
reference ; the fourth gives the time of loca- 

tion with respect to some ‘‘zero”’ time. 

In the familiar rectangular system of 

coordinates, Fig. 1, the frame of reference 

consists of three mutually perpendicular 
coordinate axes OX, OY, OZ drawn from a 

common point O called the origin. The 
position of a particle P is given in this 
system by its distances x, y, 2, positive or Fic. 1. Method of locating 
negative, from the three coordinate planes a particle in dedre by vwulay 
YOZ, ZOX, XOY. These distances x, y, 2 ° ae te nes ar . ystem 
are called the rectangular coordinates of the 
particle. It is important to note that the coordinate axes in Fig. 1 
are designated in such a manner that upon looking from a point on 

the positive Z-axis we see that a counterclockwise rotation is needed 
to carry the positive X-axis by the shortest way around to the direc- 
tion of the positive Y-axis. This type of rectangular-coordinate 
system is the one now generally used in physics. It is called a 
right-handed system, and if we indicate the X-axis with the thumb, 

the Y-axis with the forefinger, and the Z-axis with the middle finger, 

we can represent it with the right hand. It is evident that if the 
left hand is used, another system of rectangular coordinates is rep- 

resented which is the mirror-image of the right-handed system and 
thus can never be made to coincide with the latter. 

Another way of describing the position of a particle that often 

proves simpler than rectangular coordinates is to locate it as the 
terminal point of a directed line drawn from the origin. In Fig. 1, 
for example, the position of P is completely and uniquely determined 

by giving the direction and length, measured from the origin, of the 
straight line OP, or r. Three data in addition to the time are, of 
course, needed for this purpose. 

Y 
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7. Linear Displacement of a Particle. Suppose that a particle 
moves from the point Ao to the point Ai, Fig. 2, by any path. Such 
a change of position, made without refer- 

ence to the time involved, is called a linear A oo 
: .” . fi ——wA 

displacement, and the easiest way to describe i vw? 
it is by the directed straight line ApAy. Evi- / Ue 
dently change of position, like position itself, i 
is completely described by specifying (a) its 9% 

rngitue, the umber of ats of net po 2, The von 
. . ‘ . . 7 represents a change of 

(b) its direction, or the direction of AoA1. position from Ao to A1 

To say that a particle has moved 10 cm from 

a certain point merely locates it as somewhere on the surface of a 

sphere, but to specify that this motion was, say, eastward is to have 

described completely its change of position. 

° 

Vector Quantities 

8. Vector and Scalar Quantities. A physical quantity, such as dis- 
placement, that is completely determined only when a direction as 
well as a magnitude is given, is called a vector quantity. Evidently 

such a quantity can be represented graphically by a straight arrow 

drawn in the proper direction; the length of the arrow being made 
proportional, upon some convenient scale, to the magnitude of the 
quantity represented. Symbolically a vector may be denoted by 
two letters with a bar over them, the first one indicating the initial 
point or tail of the arrow, and the second one the end point or head. 
More usually, it is represented by a single letter in special type 
(in this book Gothic type will be used). Thus in Fig. 2, either OAo 
or r means the going of the distance OAo in the direction O to Ao. 

Two vectors a and b are said to be equal if they have the same 
magnitude and the same direction; this is symbolically expressed 
by the equation a=b. It follows from this definition of equality 

that the location of a given vector in space may be changed with- 
out changing the value of the vector, provided, of course, that the 

magnitude and direction of the vector are left unaltered. 

Some physical quantities, such as time, volume, distance, mass, 

work, and temperature, are not vector quantities; 25 cm? of water 

and 10sec of time require no specification of direction in space to 
render them complete. Quantities of this kind are completely de- 
scribed by an algebraic magnitude alone and can be represented
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simply by points on a scale. Hence they are called scalar quantities, 
a term which originated with WILLIAM Rowan HaMILTON ! (1805- 

1865). 
The addition and multiplication of scalar quantities are of course 

accomplished by the methods of ordinary algebra. Vectors, on the 

other hand, are not ordinary algebraic numbers, and consequently 

they cannot be added and multiplied by ordinary methods. Vector 

addition and vector multiplication are accomplished by methods 

that have been developed in vector analysis, the branch of mathe- 

matics devoted to the study of vectors.2. We shall find, however, 

that the various vector operations have been so defined that in 

certain special cases they may be identified with the similarly named 

scalar processes. 
9. Addition of Vectors. It is immaterial whether we “cut across” 

a vacant lot or walk around it, so far as the resuiting displacement 

is concerned. Also it does not matter which way we walk around 
the lot. If, in Fig. 2, a particle goes the distance OApo in the direc- 

tion O to Ao and, at the same time or later, the distance AoA: in the 

direction Ao to Ai, it has then undergone two linear displacements, 

OAo and AoA;. But the final position of the particle would have 
been the same if it had gone the single distance OA; in the direction 

0 to A;; that is, the displacement OA; is exactly equivalent to the 

two displacements OAp and AoA; taken together. Thus 0A; is to be 
regarded as the vector sum, or resuliant, of OAo and AoA1; briefly, 

OA, + Addi = OA. [3] 

The vectors OAo and AoA; are called components of the vector sum 

OA;. It is to be emphasized that Eq. [3] is a vector equation; in 
ordinary addition, which deals only with scalar quantities, 

OAo-+ AoA1 > OA1. 

  

1 Lectures on Quaternions (Dublin, 1853); also Elements of Quaternions (Longmans, 

Green, 1866). There are still earlier references in his correspondence ; see R. P. Graves, 

Life of Sir William Rowan Hamilton (Longmans, Green, 1882-1889), Vol. III, p. 354. 

The term vector also is due to HAMILTON. 

2 Vector analysis, in the form in which it is used today in mathematical physics, 

is largely due to the great American theoretical physicist JosrAH WILLARD GIBBS 

(1839-1903), and the treatment of the subject in Gibbs’s Co/lected Works (Longmans, 

Green, 1928), Vol. II, Part 2, pp. 17-90, is one of the classivs in this field. An exten- 

sive treatise on the subject, based on the lectures of GiBBS, was published in 1901 by 

E. B. Wilson. Treatments that are suitable for the ambitious beginner will be 

found in *J. G. Coffin, Vector Analysis (Wiley, \911), and *H. B. Phillips, Vector 

Analysis (Wiley, 1933).
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It is apparent that the operation expressed by Eq. [3] may be 
performed by a graphical method. In fact, any number of vector 
quantities may be added in this way. The 
quantities to be added are first represented 
by arrows drawn to scale (Fig. 3), and these 
arrows are then placed end to end in a chain, 
in any order but without altering their lengths 
and directions; finally, a new arrow is drawn 
to join the initial point of the first arrow to 
the terminus of the last. This new arrow, 

  

which is the closing side of the polygon 

thus formed, is the vector that represents eet mugthod 
the sum of all the other vectors. 

A little consideration of Fig. 3 will convince one that it does not 
matter in what order the vectors are added or how they are grouped ; 

  

Fis. 4. Sum of two vectors 
which make an angle ¢ with 
each other. Note. carefully 
that when the second vector 
is drawn from the extremity of 
the first vector, the angle ¢ be- 
tween the two vectors 1s taken 
as the angle between the sec~ 
ond vector and the first vector 

produced as shown 

ay 

b A 
ay 

Fig. 5. Alternative method of representing 
the sum of two vectors which make an angle 
with each other. Note that thesum is the 
diagonal of the parallelogram formed with 
the two yectors as sides. This statement 
of the rule for the addition of two vectors 
iscalled the parallelogram low; it tells us no 
facts that are not included in the method 
of Fig. 4nd is not so seadily extended to 

include more than two vectors 

thus a+b+ce+d=d+b+a+c=(a+b)+c+d, etc. We ex- 
press these facts in mathematical language by saying that vector 
addition is both commutative and associative, 

EXAMPLE, Let a atid a be the respective magnitudes of two vectors 
that make an angle ¢ with each other (Fig. 4 or 5). Show that if 
‘these two vectors are added, the magnitude a of their sum is given by 

a? = ay? + az? + 2 ayaa cos p, 

Also show that the angle @ which the sum a makes with the vector ar 

is given by = sin! (® sin 4)
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10. Vector Subtraction. The subtraction of vectors offers no diffi- 

culties, for it is merely the inverse of addition; that is, by the 
difference of two vectors is meant the third vector which must be 

added to one of them to obtain the other. Thus, in Fig. 2, AoA; is 
the vector that must.be added to GAp to obtain O4,; hence, ApAy 
is the difference between the iatter two vectors, or 

AgA1 = OA; — OAo. [4] 

It will be recalled that the subtraction of an ordinary algebraic 

quantity is accomplished by changing the sign of the quantity and 
adding. In an analogous man- 
ner, a vector is subtracted by 
reversing its direction and 

adding. For example, 04, ™ 
may be subtracted from OA; 
by adding AgO to OAj; this a 
means that Eq. [4] may 
be rewritten in the form 

AoAi = OAi + Ao0. 
Obviously Aco0 =— OAo. In other words, when a vector is mul- 

tiplied by the scalar quantity — 1, its direction is changed 180° but 

its magnitude is unaffected. 

Y. 

  

Fig. 6, Illustrating the distinction between 
vector addition and vector subtraction 

EXAMPLE. Given that a; and az are two vectors that make an angle ¢ - 
with each other (Fig.6), show that the magnitude of a1— a, is 

Vai? + ag? — 2 aiaz cos . 

o 

Linear Speed 

By the speed of a particle is meant the time-rate at which the par- 

ticle moves along its path. Speed is evidently a scalar quantity, for 

the direction of motion does not enter into its definition. 

11. Average Speed. Suppose that the distances of a particle from 
some point O on its path are so at a time /o, and s; at some later time ¢,. 
The average, or effective, speed v., of the particle is then defined by 

the equation _ 
Vay = 2 *2, [5] 

the distance s; ~ so being measured along the path. More concisely, 
if s is the number of units of distance traversed in ¢ units of time, 

=>, , Van = t [5a]
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12. Instantaneous Speed. If we are told that an automobile has 
traveled 220 km in 3.2 hr, we are able to compute its average speed 
as 69 km - hr7!, but we cannot say how its speed varied during this 
time. Evidently if we wish to know the character of the motion 
more precisely, we must divide the whole distance traversed by the 
automobile into parts and ascertain the average speed in each part. 
The smaller these parts, the more nearly does the average speed in 
any one of them represent the speed at some instant / or point s in 

that part. 

Let so, measured from some reference point O, represent the dis- 

tance traversed by a particle at the end of some time fo, and let 

$i, measured from the same reference point, be the distance trav- 

ersed at the end of a later time 7,. The average speed in the in- 
terval f; — to is (s1 — So) /(t1 — 40), and the limit which this approaches 

as t;— 49 is made to approach zero is defined as the instantaneous 

speed of the particle at a time / in the interval f; — %. This may be 
written 

%= lm %—%, [6] 
(a-to) 20 Ly — Lo 

and is read ‘the instantaneous speed at the time ¢ is the limit of 
(81 — $0) /(ti — to) as fy — to approaches zero.”’ Clearly v; may also be 
spoken of as the speed at a point s in the space interval s; — so. 
Jt is this instantaneous speed v; that is measured by a correctly 
calibrated automobile speedometer. 

To state the foregoing definition more concisely, let As represent 

the distance moved by the particle in an interval of time Az, where 

At includes the time ¢; then A 
: Ss nm fin m 

In the differential calculus this equation is written in the still more 
abbreviated form v; = ds/dt and is read ‘‘v, equals the derivative of s 
with respect to #.”’ Rules for “differentiating,” or finding the value 

of this derivative, are developed in the differential calculus. 

In the case of a particle that is moving with constant speed the 

average speed #,, and the instantaneous speed »; are the same. If 

this constant speed be denoted by », one evidently may write the 
useful relation 

S=utl. [8] 

EXAMPLE. A certain particle starts from a point O on its path and moves 
in such a way that its distance s from O is proportional to the square 
of the time that has elapsed since it started. How does the speed of 
this particle vary with the time?
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Solution. By hypothesis, the distance traversed by the particle in the 
time ? is s= &i?, where & is a constant, and the distance traversed in the 
time + Atiss+As=(t+ At)*. By subtracting the first expression from 
the second, one obtains 

As = 2 kt At + k(At)?, 

and therefore a = 2kt+k Al. 

Then, from Eq. [7], n= lim, (2 kt +k AD = 2 kt. 
Ata 

The speed of this particle is thus seen to be proportional to the time that has 

elapsed since it started. Note that the limit has a definite finite value at any 
time /, even though A?=0, and that it is this limiting value which we call the 

instantaneous speed. 

The differential calculus gives a set of rules for finding this limiting value 
in any given case; in the briefer notation of the calculus, the foregoing 

solution would be written #, = a = 4 (ki?) = 2 ht. 

EXAMPLE. By making use of the result of the preceding example and the 
data in Table 1, show that the downward speed of an airplane bomb 
3.0 sec after it is released is 96 ft - sec™!.: 

EXAMPLE. Find the expression for the speed ofa particle that starts from 
O and moves in such a way that s = 73. 

Solution. From Eq. [6], 1: = lim #@+A0* —2® _ 5 py, 
At>0 At 

13. Scalar Diagrams. A graph in which the distance traversed by 
a body is plotted as a function of the time is often of importance in 
the study of motion. To see how such a 

distance-lime curve is constructed and in- 400 

terpreted, let us examine Fig. 7, where 

some of the experimental data from the “300 
first and last columns of Table I have ‘3 
been plotted. The plotted points have g° 

been connected by a smooth curve, and 4 8 

the position of the bomb. at any given 
instant is represented by the ordinate of 0 
the curve corresponding to that instant. ae inven ae 
At the time é the distance fallen is rep- 
resented by the ordinate fofo, and at a 

later time 7, this distance has increased 
by an amount represented by gp:. The average speed during the 
interval 7, — % is then represented by ghi/og. or tan ghop;; that is, 

by the slope of the chord pofi. If we imagine the interval of time 

t, — tp to be reduced indefinitely, the point 41 moves along the curve 

  

  

Fie. 7, Distance-time curve 
for falling airplane bomb
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toward the point fo and finally coalesces with it; the chord pop: 
then becomes the tangent line to the curve at po and the average 
speed becomes the speed at the instant lo. Hence the speed at any 
instant is represented by the slope of the distance-lime curve al that 
instant. What is the meaning of a positive slope? of a negative 
slope? What if the distance-time curve is a straight line? The slope 
gives the speed in arbitrary units, the nature of which depends on 
the scales adopted for plotting the graph, If distances of equal 
length are used to represent the foot and the second, the slope ex- 
presses the speed in feet per second. 

Another kind of curve that is useful in the study of motion is the 
speed-time curve, obtained by observing the speeds of a body at 
various instants and plotting these speeds as a function of the time. 
It is not always easy to measure speeds directly, but they can be 
obtained indirectly by plotting the space-time curve for the motion 
and measuring the slope at different points of this curve. The stu- 
dent should experience no difficulty in proving that the area bounded 
by the speed-time curve, the axis of time, and any two given ordi- 
nates represents the distance traversed by the moving object during 
the interval of time defined by the two ordinates. 

° 

Linear Velocity 

No matter how much information is available concerning the speed 
of a moving object, its position or destination remains unpredictable 
until the direction of motion is known. There is need, then, for a 
concept that involves direction as well as speed, and this we call 
velocity. 

14. Definition of Velocity. The velocily of a particle is defined as 
its time-rate of displacement or time-rate of change of position. 
Like displacement, velocity is a vector quantity, because it requires 
for its complete description the specification of both a direction and 
amagnitude. To the magnitude of a velocity we have already given 
the special name speed, just as the special name distance is often 
given to the magnitude of a displacement. Two automobiles going 
90 km - hr~! in opposite directions on a straight roadway have the 
same speed, but their velocities are different. 

In Fig. 8 let us suppose that a particle is moving along the curved 
path ApA,A» and that it is at the point Ay at a time fo and at the 
point A, at a slightly later time 4. Then in the interval 4 — fo the
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particle undergoes a displacement Ao4i, and hence its time-rate of 
displacement is given by 

AoA . 
(i—-to)0 bt — to 

  Vi= [9] 

This is the defining equation for the velocity v, at an instant 7 in 

the interval ¢; — fo. The velocity v; has the direction of the tangent 
to the curve described by the particle; this follows from the fact 

that the vector AA; in Eq. [9] has the 
direction of the secant AoAi1, and that 

this secant approaches the tangent in 
direction as A, approaches Ap. 

If ro and r, be the two vectors which 

give the positions of the points Ap and 
A, relative to the origin O, Fig. 8, then 

AoA = 1 ~ fo, and Eq. [9] may be writ- 
ten in the form 

  

ri — to Fic. 8. Velacity is a vector 
v= [10] quantity (1-190 by — to 

15. Motion in a Straight Line. If a particle is moving in a straight 

line, one direction along the line can be taken as positive and the 
other as negative, and it is then no longer necessary to distinguish 

between velocity and speed. In the still more restricted case of 
constant velocity, in which both the speed and the direction are 
constant, Eq. [8] may be used to describe the motion. 

16. Digression on the Multiplication and Division of a Vector by a 

Scalar. We have seen that the vector quantity displacement divided 

by the positive scalar quantity time is another vector quantity 
called velocity. Both the displacement and the velocity obtained - 
from it have the same direction, but they have different magnitudes. 
The magnitude of the displacement is simply the distance, whereas 

the magnitude of the velocity is the distance divided by the time. 
This illustrates the rule in vector analysis that if a vector be mul- 
tiplied or divided by a positive scalar, the resulting product or quo- 
tient is itself a vector; this new vector has the same direction as 
the original one, but its magnitude is the original magnitude mul- 

tiplied or divided by the scalar. Thus an automobile undergoing a 
displacement of 216 km northward in 3.0 hr has an average velocity 
of 72 km -hr~! northward. 

The result of multiplying or dividing a vector by a negative scalar 
is apparent when it is recalled (Sec. 10) that the multiplication of a 
vector by —1 simply reverses the direction of the vector without 
changing its magnitude.
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17. Addition of Simultaneous Velocities. The way in which we de- 

scribe the motion of a given body depends, of course, on our choice 

of the frame of reference. A motorboat going upstream against a 
current will have one velocity with respect to the water and another 
with respect to the banks of the stream. Thus a body may have a 
certain velocity relative to a frame of reference, while the frame of 
reference itself has another velocity relative to a second frame. The 

vector sum of these simultaneous velocities gives the velocity of the 
body in the second frame. 

EXAMPLE. It is observed from the ground that an airplane is flying north- 
east with an average speed of 3.0km-min~ relative to the ground 

and that the wind is blowing from the 

south with a speed of 52km-hr74. N 

Find the average velocity of the air- 

plane relative to the air. 
    52 km-hr" 

Solution. The airplane has a velocity of 

3.0 km + min~! northeast, or 180km- hr7} 

northeast, relative to the ground. The ground 

itself has a velocity of 52km~-hr~! south 
relative to the second frame, the air. The 
velocity of the airplane relative to the air is Fic. 9. Addition of velocities 
the vector sum of these two simultaneous 
velocities. In Fig. 9, this sum is OG + GW = OW. The magnitude of OW is, 

by the theorem of cosines, 

OW = V(180)2 + (52)? — 2-180 - 52 - cos 45° = 1.5 x 10?km -hr-!, 

The direction of OW is obtained with the help of the theorem of sines; thus 

sin (45°— @) sin 45° are 

5D exe’ % 83 
The velocity of the airplane relative to the air is therefore! 1.5 x 10?km-hr7! 

at 31° north of east. This result should be checked by drawing Fig. 9 to 
scale and measuring OW and @ with scale and protractor. 

  

° 

Linear Acceleration 

Mention has already been made of the fact that the concept of ac- 
celeration was introduced into mechanics by GALILEO; this was a 

most important step in the development of the science, for, as we 

shall see later, it made possible the modern conception of force and 
thus marks the beginning of the science of dynamics. In ordinary 

language the expression accelerated motion commonly refers only to 
  

1See Appendix 1, Significant Figures and Notations by Powers of Ten.
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‘increases of speed, but in physical science it is employed in a much 
wider sense to denote any change of velocity. Thus a physicist would 

say that an automobile undergoes acceleration when it slows down 

or turns a corner, as well as when it speeds up. The foot-throttle of 

an automobile is an “accelerator,” but so is the steering wheel or 
the brake. 

18. Definition of Acceleration. Linear acceleration is defined as the 
time-rate of change of linear velocity. It is the quotient of a vector 

and a scalar, and therefore, like displacement and velocity, is a vector 
quantity. Hence the statement 
that a particle has an accelera- 

tion may refer to a change in 

speed, to a change in direction 
of motion, or to a change in both 

speed and direction of motion. 0 
Let us consider these three possi- 
ble cases separately : (3) {c) 

Case 1. If, as in Fig. 10 (a), Fic. 10. The change of velocity is the 
the velocity of a particle at a vector difference obtained graphically by 
time to is represented by the vec- "versing the second velocity and add- 

tae . ing it to the first 
tor vo, and if its velocity at a 

later time ¢; is represented by v,, which has the same direction 

aS Vo, then there has been no change in the direction of motion, 
but only a change in speed, and the average acceleration has been 

(v; — 00) /(t, — to); The expression for the acceleration of the particle 
at an instant ¢ in the interval ¢, — % is then the limit of this quan- 
tity as the interval approaches zero, or! 

V2~ Vo V5, 

Vy          

: v1 — U9 _. Av dy 

* tt tim —to im At di [11] 

It will be noted that. in this case the direction of both the average 
and the instantaneous acceleration is parallel to that of the velocity 
itself, being positive with respect to the velocity if #; > #, negative 

if Vy <i Vo. 

Case 2. The second case is illustrated by Fig. 10 (b). The velocity 
after the interval of time /, — fo is represented by ve, a vector having 

the same length as vo but a different direction; there has been no 

change in speed, but only a change in the direction of the velocity. 
The average acceleration of the particle is here (v2 — vo) /(4, ~ fo) and, 
  

1 Also, since y= &, we have aq = aia) ae’ which is called the secona deriva- 

tive of s with respect to ¢ and means that the differentiation is performed twice. 

d (4) _a’s



O; THE second floor of the Museum of Physics and Natural History in Florence, 
Italy, there has been erected an inspiring monument to Gatiteo,—the Tribuna 

di Galileo. Ie is profusely decorated with frescoes, medallions, busts, and drawings 
illustrating Gattteo's discoveries and inventions, and in its niches may be scen, 
through glass frames, two of his telescopes, his geometrical and military compass, 
and a loadstone, or natural magnet, fashioned by him. At the top of Plate 2 a 
drawing of a fresco from one of the Iunettes above the walls of the central hall is 
reproduced. It shows Gatceo in Pisa, demonstrating the laws of falling bodies 

by experiments on an inclined plane. In the center, just behind the inclined plane, 
down which a ball is rolling, stands Gatareo, explaining the effect to two of the 

spectators. Seated on the right are Don Giovanni dei Medici (a jealous opponent 
of Gatizeo) and the Head of the University of Pisa, both looking very much dis~ 
pleased, On the left are two Peripatetics, bent over a large open book on a table, 
seeking anxiously for some passage in Axistotcé in disproof of Gari.zo's argument. 
In the background are the Baptistery, the Cathedral, and the Leaning Tower. 

‘Vincenzo Viviant, Gatiteo's last and well-beloved disciple, formed the front of 
his house in Florence into a mural monument to his master, One of the sculptured 
plaques, a drawing of which is reproduced in the lower part of Plate 2, shows a 
man observing the sunspots through Gauu.co's telescope, while opposite is another 
figure observing the curve described by a ball fired from a cannon ; between the 
two men is a heavy beam supported at one end, and breaking under its own weight. 
‘These refer to Gattteo’s use of the telescope and to his studies on projectile motion 
and the strength of beams. 

‘The invention of the thermometer is also due to Gatiteo (about 1602). The 
date is uncertain, but Castext1, writing to Feapiwanvo Cesanint, on September 20, 
1638, says: I remember an experiment which our Signor Galileo had shown me 
more than thirty-five years ago. He took a small glass bottle about the size of a hen's 
egg, the neck of which was two palms long (about 22 inches), and as narrow as a 
straw. Having well heated the bulb in his hand, he inserted its mouth in a vessel 
containing a little water, and, withdrawing the heat of his hand from the bulb, in- 
stantly the water rose in the neck more than a palm above its level in the vessel. It 
is thus that he constructed an instrument for measuring the degrees of heat and cold.”’ 

‘These summarize in pictorial form Gaztteo’s more important contributions : his 
epoch-making work on falling bodies and the laws of motion, his astronomical dis- 
coveries, his pioneer work on the strength of beams, and his invention of the ther- 
mometer. The reproductions, together with the foregoing description of them, 
were taken, with the permission of the author's executor, from J. J. Fahie's Me 
morials of Galileo Galilei. 
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Gatitz0’s Inclined-Plane Experiment 

Fresco in the Tribuna di Galileo, after an old engraving 

  

Drawing Castetyt’s Sketch 

of the Sculptured Plaque of 

on the Front of Vivian's GALILEO’S 

House in Florence Thermometer
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as before, the instantaneous acceleration a, is the limit of this quantity 
as the interval 4; ¢9 approaches zero. Since, as 7, — ft) approaches 

zero, V2 — Vo becomes more and more nearly perpendicular to vo, it is 

evident that in the limit the acceleration a; is at right angles to the 
velocity v; An example of this is the acceleration of a particle that 
is moving in a circle with a constant speed. Although the treatment 
of this case offers no particular difficulties, further discussion of it 
will be postponed until Chapter 14. 

General Case. Fig. 10 (c) represents the case in which both the 

speed and the' direction of motion of the particle are changing. The 
average acceleration is (V3— Vo)/(4:— to), and it has the direction of 
the vector v3— Vo. The instantaneous linear acceleration is then 

V3 — Vo Av dv [12] 

ae n-io tito AsoAt dt 

This constitutes the most general definition of linear acceleration 

possible, the others being obviously special cases of it. For the re- 

mainder of the present chapter we will apply these definitions in the 
treatment of the restricted, though very important, case of motion 
with constant linear acceleration. 

0 

Constant Linear Acceleration 

The acceleration of a particle is said to be constant when the velocity 
changes by equal amounts in equal intervals of time; that is to say, 
when the changes in velocity in equal intervals of time all have the 
same magnitude and direction. It is possible to have a constant 
linear acceleration either with or without a change in the direction 
of motion. 

19. Constant Linear Acceleration Without Change in the Direction 

of Motion. The motion in this case is not only in a straight line 
(Sec. 18, Case 1), but there is the additional restriction that the speed 
changes by equal amounts in equal intervals of time. If vo denotes 

the speed of the particle at any given moment and », denotes its 
speed at a time ¢ units later, the magnitude @ of a constant accelera- 

tion is given by the equation 

qa. [13] 

This is often written in the form 

0,= + at. [14]
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The best illustration in nature of a constant acceleration is the motion 
of a falling body, provided it is a heavy, dense body, so that the air 
resistance is not important (Sec. 2). 

In Sec. 13 it-was shown that the speed at any instant is represented 
by the slope of the distance-time curve at that instant. Similarly one 
can show that if the speed is plotted as a func- 

tion of time, the slope of the resulting speed- 
’ time curve represents the acceleration. In a 

case where the acceleration is constant, the 

slope will of course be constant and the speed- 
time curve will be a straight line (Fig. 11). 
What is the nature of the acceleration-time curve 
in such a case? 

Sp
ee
d 

  

  

Oo Time 

Fie. 11. Speed graph 
of a constantly accel- 

erated body 

EXxaMPLe. A northbound train -has its speed 
reduced from 45 to 35 mi-hr-! in 5.5 sec. 
Show that the direction of the acceleration is 
south and that its magnitude is 1.8 mi-+ hr-!- sec, or 2.6 ft « sec~?, 

20. The Equations of Constantly Accelerated Rectilinear Motion. 
Eq. [14] provides a means for calculating the speed 9, at any time / 
of a particle moving in a straight line with a constant linear accelera- 
tion. To calculate also the distance s traversed by the particle in the 
time #, we note that for a constant acceleration (Fig. 11) the average 
speed is $(#o-+ 02); therefore, by Eq. [5a], 

g = Ey, [15] 

Eqs. [14] and [15] are independent and together enable us to 
find any two of the five quantities a, %, 0, s, and 7 if the other three 
are known. Although these two equations are all that are needed 
to describe the motion of a particle in a straight line when the ac- 
celeration is constant, other useful equations can be derived by 
eliminating one of the quantities vo, #,, 4, which occur in both of them. 

Thus if », is eliminated, we obtain 

s— ot Wot at) , 
2 3 

or S = dol + 4 al?. [16] 

In this equation of is the distance that the particle would have 
traveled with a constant speed vp, and 4 af? is the additional dis- 

tance due to the acceleration. Eq. [16] can also be obtained directly 

from Fig. 11, if it be recalled that the area under the speed-time 
curve represents the distance covered.
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If, instead of ,, we eliminate ¢ from Eqs, [14] and [15], there 

results 0 = 0" + 2 as. 07] 

This equation is useful when the interval of time i is not given or 
required, 

Although the defining equations for velocity and acceleration, 
namely Eqs. [9] and [12], are equally applicable whether the par- 
ticle considered moves in a straight or a curved path or with con- 
stant or varying acceleration, the three equations derived from them 
in this and the preceding section, namely Eqs. [14], [16], and [17], 
apply only to motion for which the acceleration is constant. The 
student must therefore never attempt to apply these three equations 
to an actual motion until he has made certain that the acceleration 
is constant, Motion with varying acceleration will be treated in 
Chapter 14. When a particle is moving without acceleration (¢=0), 
Eqs. [14], [16], and [17] obviously reduce to the equations for con- 
stant linear velocity. 

21. Constant Linear Acceleration With Change in the Direction of 
Motion. Path of a Projectile. If the direction of the acceleration is 
not the same as that of the velocity, , 
a change in the direction of motion 0 Fatt ubatipbhe x 
will result even though the accelera~ 
tion is constant. The most familiar 
illustration of this is the case of a $2000 
projectile shot into space in any direc- 
tion except vertically. We will treat 
for the present only the problem of a Z 4000 
projectile shot horizontally; this is 

1000 

  the case of the airplane-bomb experi- a 
ment discussed in Sec. 2. In that ex- y Sao BO 
periment, it will be recalled, the frame Horizontal distance 
of reference was fixed to the earth and Fic, 12, Tr f a bomb, 
the origin of coordinates was taken to * o ae i a 
be at the point where the bomb was 
released, with the positive Y-axis extending vertically downward 
(Fig, 12), For the vertical part of the motion of the bomb, vw = 0, 
s=y, and, for the first few seconds, @ has the constant value g; 
therefore, Eq. [16] is applicable and takes the form y=} gi”. As 
for the horizontal part of the motion, the second column of Table I 
reveals that the horizontal speed remained constant for about five 
seconds, after which it decreased slowly. Hence for this direction, 
s= x and v,= 0, where % denotes the horizontal speed of the air- 
plane at the moment when the bomb was released. Since the ac-
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celeration had the constant value zero during the first few seconds, 
Eq. [16] is applicable and takes the form x =f. Between these 

equations for x and y one may eliminate ¢ and thus obtain the path 
of the bomb for the first few seconds of its motion; namely, 

= £ 2 
¥y 202”? 
  

an equation which will be recognized as that of a parabola. 

° 

EXPERIMENT I. MOTION WITH CONSTANT 

ACCELERATION 

The purpose is to study one example of motion with constant 
acceleration, namely, that of a freely falling body, and to make an 
approximate measurement of the acceleration due to gravity in a 
given locality. 

The experimental method con- 
sists in obtaining on a long strip of 
paper a permanent record of the 
successive positions of a freely 
falling object at instants separated 

by equal short intervals of time 
(Fig. 13). The only resistance 
which the falling body encounters 
is that of the air, which is very 

small in this case. Why? The 
record is obtained by means of a 

series of equally timed sparks which 
jump from a projecting edge of 
the falling weight to a vertical flat 
metal plate over which a strip of 
recording paper has been placed. 
The sparks are produced by means 
of a commutator mounted on a 
constant-speed shaft, so arranged 

that there is one spark for each 

rotation of the shaft. The commutator charges a condenser of large 
capacitance and immediately discharges it through the primary of a 
small high-potential transformer. The apparatus is so made that 

no spark can pass until the weight begins to fall, and thus the first 
mark is made on the paper strip after the weight has attained a 
small speed. 

  

  

          
Fig. 13. Free-fall apparatus
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Adjustment and Operation of Apparatus. Level the apparatus. If 

the strip of paper is in place, remove it by rewinding on the lower reel. 

Hold the weight against the electromagnet and close the switch. 

With the hand placed under the weight, decrease the current in the 

electromagnet by means of a rheostat until the weight falls into the 

hand; then increase the current slightly and again place the weight 

in contact with the magnet. Now start the timing apparatus and the 

spark, and then rélease the weight by opening the magnet switch. If 

the weight appears to fall properly, you are ready for the final adjust- 

ment. Stop the spark. Thread the paper strip through the rolls at 

the lower end, draw it up over the recording surface, and thread it 

through the upper rolls. The strip must be stretched smooth. 

To obtain a record of the fall of the weight, replace it on the mag- 

net and, as soon as it hangs perfectly still, start the spark and open 

the magnet switch. After the weight has fallen, 

open the spark switch, and then make a small x¢ 

circle with a pencil around each spot on the paper ¥ 6. _ 

while it is still in place. Remove the strip by pulling @A 

it back through the upper rolls and cutting it off at oS], 5 

the bottom. “1 S} 
Finally, measure the speed of the timing-apparatus +] © St 

motor by means of a watch and speed-counter. o7|+ 

All of the measurements, derived data, and final 

results should be recorded systematically in tabular ¢ | os 

form just-as soon as they are obtained. These data 

  and results, together with the answers to the ques- wot be 

tions which follow, are to be included in the final Se 

report. 

Part I. Graphical Study of the Motion. a. Make ~~ @10) | se 

a distance-time graph (Sec. 18) of the motion of 

the weight. To insure accuracy in measuring the auf 

distances, place the paper strip against a window 

or other highly illuminated glass, and at each of the 

very minute perforations produced by the spark @12 

make a cross with a sharp metal pointer, the in- pI 

tersection marking exactly the location of the per- 

forated point. Number these points 0, 1, 2, etc., Fic. 14, Record 
co . strip for falling 

beginning at the top (Fig. 14), and then measure the weight 

distances 0-1, 0-2, 0-3, etc., to a tenth of a milli- 

meter. Eliminate parallax by placing the meter stick on edge. In plot- 

ting the distance-time graph, measure time as well as distance from the 
perforation 0 and use as the unit of time the easily calculated time 
7 required for the weight to move from one perforation to the next. 
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1. Why does the distance-time curve have a slope different from zero 
at the origin? 

b. Determine the speeds at various points, including the point 0, 

by constructing tangents to the distance-time curve and measuring 
their slopes. Use these data to construct the speed-time curve for 
the falling weight. , 

2. What does the y-intercept of your speed-time curve represent? What 
does the slope represent? Is there any evidence that the motion of the 
weight during the initial moments was affected by its closeness to the 

magnet? Write the equation for the straight portion of your speed-time 

curve. 

c. Extend the speed-time curve backward until it meets the time 
axis. 

3. What does the x-intercept represent? In making the foregoing 
extrapolation, what do you assume? How can you make use of the 
extrapolated part to obtain the approximate distance through which the 

weight fell before it reached the perforation 0 (Fig. 14)? 

d. Returning to your distance-time curve, construct the portion 
of the curve lying between the origin and the point of zero slope. 

e. Find the acceleration of the falling weight from the speed-time 

curve and then construct the acceleration-time curve. 7% 

4, What is the equation of the acceleration-timecurve? ‘S 
Express the magnitude of the acceleration g both in the penta) 
units used in drawing the graph and in centimeters per Ss 
second per second. In view of the data used and the ~? 
accuracy with which you constructed the curves, how + u,(=0,+4) 
many significant figures! are you justified in retaining 
in this value of g? S; 

Part II. Calculation of g. This calculation is based 
on the assertion that if a body moves with constant 
acceleration, the difference between the distances trav- 

eled in any two successive equal intervals of time 
gives the acceleration. To prove this, let the straight 

line (Fig. 15) be the path of a body moving with uni- + u(=0,+a) 
form. acceleration, let S1, Se, S3, etc. be the distances Fie. 15 

traversed by the body during the Ist, 2d, 3d, etc. 5,_5, =, 
units of time respectively, and let 1, v2, v3, etc. be 

the speeds at the ends of units of time 1, 2, 3, etc. The space passed 

over must always be the mean speed multiplied by the number of 

+ 0,(=0,+ @) 

  
1See Appendix 1.
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units of time in the interval. In case the speed increases uniformly 
this mean speed is the half-sum of the speeds at the beginning and at 
the end of the interval. Hence, for example (Fig. 15), 

a 

Similarly, S3= e+ 4. 

Therefore, Si— Sz = 0g — 02. 

But v3 — v2 is, by definition, 2. Hence, 

wa — S3= a 

Similarly for Sy — Se, Ss—Si, etc. The acceleration can therefore be 
most directly determined by measuring distances traversed in succes- 
sive units of time. The numerical value of @ thus obtained will de- 
pend, of course, upon the time interval chosen, 

a. To obtain the data for calculating g, proceed as follows: First 
discard the points on the paper strip marked 0 and 1 (Fig. 14). Why? 
If the perforation at the bottom of the strip is an odd number, it will 
be found convenient to discard it also. 

For identification, draw a circle around each of the first three and 
the last three points, as in Fig. 14. Locate still another group of three 
circles by observing the last number used (in Fig. 14, it happens to 
be 12), dividing this number by two, and letting the resulting quotient 
determine the first of the middle group of three circles. 

You now have marked with circles three groups of three points 
each. Carefully measure the distance between the first point of the 
first group and the first point of the second group; call this S$). Next 
measure the distance between the first point of the second group and 
the first point of the third group, calling this $2. Then Ss —S, =a. 

Repeat for the distance between the second point of the first group 
and that of the second group, and between that of the second group 
and that of the third group, calling these distances 3", and S’s; then 
proceed similarly for the third points, calling the distances this time 

S" and S's. 
By subtracting S"; from S's, and S$’; from S’’s, compute three 

values of a and average them. Also, from your knowledge of the 
time 7 required for the weight to move from one perforation to the 
next, calculate the length of the time unit involved in your value of a. 

b, In order to see what connection exists between the numerical 
value of the acceleration and the length of the unit of time used, re- 
peat the measurements and calculation of Part II, a, using, however, 
atime unit just one half as large. Thus, if in Part II, a, 5; was the
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distance between point 2 and point 6 (Fig. 14), so that the time unit 
used was 47, find ¢ again for a time unit of 27 by letting S; be the 

distance between points 2 and 4, S: the distance between points 4 and 

6, Ss the distance between points 6 and 8, S’; the distance between 

points 3 and 5, S’z the distance between points 5 and 7, etc. As be- 

fore, @ = Sz — S; = S3 —-- Sz = S’2 — S’; = S’3 — S’2, etc. Compute in 
this way a number of values of a, and average. 

5. Compare the mean values of the accelerations for the two different 
units of time used and state the rule that connects the numerical value of 
the acceleration with the length of the unit of time. 

c. Express in centimeters per second per second the value which 

you have obtained experimentally for the acceleration due to gravity. 
Ascertain the accepted value of g for your locality and compute the 

percentage of error. 

6. How many significant figures! are you entitled to retain in your 
calculated value of g? How does this compare with the number retained 
in the value of g obtained graphically? 

7. Show that the definition of acceleration also yields the rule which 

you have discovered experimentally; namely, that the.numerical value 
of the acceleration varies directly as the square of the interval of time 
taken as the unit. : 

8. The justification for the rather elaborate method used to obtain 
S2— S; etc. is not only that the distances measured are large but that 
every measurement made on the strip is rendered significant in obtaining 
the final average value of a4. Suppose that you had not used this method 
but, instead, had denoted the distances 2-3, 3-4, 4-5, etc. (Fig. 14) by 

Si, Se, and Ss, so that a = Sp — S; = S3 — Se, etc. Show that the average 

of this series of values of ¢@ depends only on the initial and final values of 
S and hence that the intermediate observations are wasted. 

9. State as clearly and concisely as possible the conclusions which 
‘you draw from this experiment. 

© 

QUESTION SUMMARY 
The student should formulate definite answers in his own words 

to the questions that appear at the end of each chapter. By so 
doing he will make for himself a valuable summary of the impor- 

tant topics covered and at the same time will materially increase 
his mastery of the subject. The answers thus formulated, obviously, 
will also be useful for purposes of review. 
  

1 See Appendix 1.
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1. What is meant by a vector quantity? by a scalar quantity? Give 

illustrations of each. 

2. How is the sum of a number of vectors found graphically? the differ- 

ence of two vectors? 

3. How is the sum of two vectors computed? the difference? 

4, What is the result of multiplying or dividing a vector by a scalar? 

5. What data are needed to specify completely the position of a particle? 

6. Define linear displacement, and explain how it is measured. 

%, Define average speed, instantaneous speed, and linear velocity, and ex- 

plain how each is measured. 

8. Define, and tell how to measure, linear acceleration. 

9. State and derive the equations required to find the instantaneous 

speed #, acquired in any time / or in any distance s; the average speed tu, 
during any interval of time; the distance s traversed in any time?; and the 
acceleration (a) for a case in which the velocity is constant, and (b) for a 

case in which the acceleration is constant. 

o 

PROBLEMS 

If the definitions and principles of physics are to be fully under- 

stood, they must be used in the solution of problems. The ability 

to solve problems is not only a dependable test of one’s mastery of 

the science but is an index of the growth of one’s powers to meet 

and solve original situations and to use the subject as a tool in ~ 

future thinking. 

The student is advised to form the habit in solving problems of 

working them through first in an ¢mplicit or indicated form before 

actually carrying out the numerical work. Common factors should 

be canceled and the results reduced to the simplest terms before 

the numerical values are substituted and the actual computations 

made. In this way much tedious numerical calculation will often 

be avoided and comparisons of the results of alternative methods of 

solution can be made accurately. 

1. An object undergoes four successive displacements in the XY-plane. 

The magnitudes of the displacements are 4.0km, 9.0km, 3.0 km, and 

2.0-km, and their directions relative to the X-axis are 25°, 320°, 180°, and 

60° respectively. (a) Find the vector sum of these displacements by plot- 

ting them on a convenient scale in the order given. (6) Plot them in some 

other order and verify the truth of both the commutative and associative 

laws for vector addition. Ans. 8.8km at 345°
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2. Two velocities, each of magnitude 30 cm - sec, include an angle of 

60° between them. Find the magnitude of their vector sum by two different 
methods. Ans, 52cm -sec7!. 

3. A steamship has a velocity of 28 km - hr—! northward, and the smoke 
from its funnels lies 35° south of west. If the wind is blowing from due east, 
what is its speed ? Ans. 40 km-hr-}, 

4. A body moving in a straight line with a speed of 50 ft - sec7! begins 
to lose speed at a constant rate. At the end of 3.0 sec its speed is 20 ft - sec—}. 
(a) How long a time will elapse before the body will come to rest? (b) How 

far will the body move before coming to rest? 

Ans. (a) 5.0 sec; (b) 1.3 x 10? ft. 

5. If an engineer has orders not to stop his train with an acceleration of 
more than 8.0 ft -sec~?, how much time must he allow as a minimum for 
stopping (a) from 30 mi- hr~!? (6) from 60 mi- hr7+? (c) What distance 
does the train travel during each of these times? 

Ans. (a) 5.5 sec; (b) 11 sec; (c) 1.2 x 10? ft; 4.8 x 10? ft. 

6. If the length of a railroad rail is 33 ft, show that the speed of a train 

in miles per hour is equal numerically to three eighths of the number of 
rails passed over in 1 min. 

7. The unit of time usually employed in physics is the mean solar second, 

defined as 1/86,400 of the mean solar day. If the second were redefined as 

1/28,800 of the mean solar day, how would this affect the numerical value 
of g? Ans. 9 times as large. 

8. Ata certain point the speedometer of an automobile reads 12 mi- hr}, 

and 650 ft farther along the road it reads 45 mi- hr-}. If the acceleration is 

constant, find its value. Ans. 3.1 ft - sec~2, 

9. What initial speed in the vertical direction must a stone have in order 
to fall back to its starting point in 7.0 sec? What is the total vertical dis- 
tance traversed during the fourth second? Ans. 34m-sec7)}; 2.5m. 

10. Suppose that the event described in Prob. 9 occurred at sea level, in 

latitude 30°. (a) Would you be justified in using the value 980 cm - sec? 
for.the acceleration due to gravity? (6) What if the stone fell back to its 

starting point in 7.00 sec instead of 7.0 sec? 

11. A stone thrown from the top of a cliff with a horizontal speed of 

100 m - sec~! strikes the ground at a horizontal distance of 300 m. Compute 
the height of the cliff. Ans. 44.1. m, 

12. An arrow is shot with a speed of 40.0m-sec™! from the top of the 

Eiffel Tower, which is 335 m high. What time will elapse before the arrow 
reaches the ground if it is shot (a) vertically upward? (6) vertically down- 
ward? (c) horizontally? (d) In each case, what will be the velocity on 
hitting the ground? Neglect any effects due to the air. 

Ans. (a) 13.3 sec; (b) 5.15 sec; (c) 8.27 sec; (d) 90.4 m-sec7? 

vertically; same; 90.4 m - sec7! at 26° 20’ with vertical.



30 Mechanics - Molecular Physics - Heat - Sound 

13, A train has a maximum speed of 50 mi - hr-!, which it gains or loses 
by constant acceleration in 5 min. Compared with a nonstop run of 70 mi, 

how much traveling time is lost by making a one-minute stop midway in 
the journey? ‘Ans. 6 min, 

14, An automobile passes an intersection with a speed of 30 mi - hr! and 

continues on at this rate. Ten seconds later a traffic policeman starts from 

rest at the intersection with a constant acceleration of 4.0 ft - sec~? in the 
same direction. When and where will he overtake the car? 

Ans. 29 sec after he starts, 1.7 x 103 ft from the intersection. 

15. A ditch 2 ft wide has been cut across a level highway. Will it make 

any difference to a car traveling at 30 mi - hr~' whether the ditch has been 
filled up to within 0.5 in. of the surface of the road or not? How will the 

flattening of the tires because of the weight upon them affect your answer? 

16, Two automobiles have the same initial speed of 8.0 mi-hr-! and 
start from the same point. One moves due west with an acceleration of 

3.0 [t-sec~? and the other moves due south with an acceleration of 
5.0 ft -sec~*. (a) Find the velocity of each after 9.0 sec. (b) Find the veloc- 
ity of the first automobile relative to the second at that time. (c) What is 
their relative acceleration? 

Ans. (a) 39 ft sec! west, 57 ft. sec“! south; (6) 69 {t-sec~! at 34° 20° 
west of north; (c) 5.8 ft - sec~# at 31° west of north, 

17. One ship is sailing south with a speed of 15:2 mi: hr~" and another 
southeast at the rate of 15 mi- hr-!. Find the apparent speed and direction 

of motion of the second vessel to an observer on the first vessel. 
Ans, 15 mi - hr-' northeast. 

18. A body stops with an acceleration of 5.0 ft - sec~*. How long does it 
take to move a distance of 48 ft if the speed at the mid-point is 17 {t - sec“1? 

Ans. 3.2 sec. 

19, Two motorboats having the same speeds » relative to the water start 
simultaneously from an island in a river, One makes the round trip to a 
buoy located at a distance d directly upstream and the other to a buoy lo- 

cated at the same distance d cross-stream. Which boat wins the race? How 
do the times compare with the time the boats would make in traveling the 

same distance on a lake? 

20. It can be shown that the distances traversed during successive equal 
intervals of time by a body falling from rest stand to each other in the same 
ratio as the odd numbers beginning with unity. Prove this for yourself; 
then consult Two New Sciences to see how GALILEO did it,



  

CHAPTER TWO 

THE FOUNDATIONS OF DYNAMICS 

I. Every body continues in its state of rest or of uniform motion in a straight line, except in 
so far as it may be compelled by force to change that state. 

Il. Change of motion is proportional to force applied, and takes place in the direction of the 
straight line in which the force acts. 

Il. To every action there is always an equal and contrary reaction: or, the mutual actions of 
any two bodies are always equal and oppositely directed. 

Newron’s three laws of motion as translated from the Principia 
by Wittiam Txomson (Lorp Kenvin) and Parser Guruare Tarr 

in their Treatise on Natural Philosophy? 

© 

The ideas as to the causes of motion which prevailed in early times 
were so confused and conflicting that we may disregard them and 
consider the science of dynamics as beginning with GALILEO in the six- 
teenth century. Previous to GALILEO’s time it was believed that 
wherever motion existed, force had to exist to explain it. For the 
origin of the notion of force we must go back to the feeling of exer- 
tion that accompanies the use of our muscles in changing the positions 
of actual bodies. This notion was naturally extended to explain the 
similar effects arising from the interaction of any two bodies in con- 
tact with one another. Thus we say, in keeping with this primitive 
anthropomorphic conception of force, that a guy wire “exerts” a 
force on a telephone pole or that a railway train “experiences” a 
force which is ‘exerted ”’ by the locomotive. 

The motion of a falling body had long been attributed to its weight, 
that is, to the force urging it toward the earth. Just as soon, then, as 

GALILEO discovered that bodies do not fall with a constant speed but 
with a constant increase in speed (Sec. 1), the way was opened for the 
conception that the steady pull of the earth must be producing this 

steady increase in velocity. This was an entirely new idea, for it 

pointed to change of motion rather than to motion itself as the criterion 
of the existence of force. For the ancient world the absence of force 
meant the absence of motion; the new conception was that unless 
there is force there will be no change of motion, or acceleration. 
  

1This treatise contains in modern terms a remarkably complete statement of 

NEWToN’s dynamical contributions. Chapter 2 of the same authors’ *Elements of 

Natural Philosophy (Cambridge University Press, 1912) will repay careful study at 
this time. See the Bibliography, p. 449. 
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HE original of this painting has been characterized by Professor Antonio 
Favaro of Padua University, the devoted and scholarly editor-in-chief of the 

monumental national edition of Gatitz0’s works (Le Opere di Galileo Galiler, 20 vols., 

Florence, 1890-1909) and the author of nearly five hundred separate studies on 

matters relative to the life, times, and activities of Gaxiiz0, as follows: 

“ Of all the studies of Galileo, the most admired and, I will say, the most de- 

servedly popular is Galileo in Arcetri, by Niccolé Barabino, which was first exhibited 

at the Turin Exposition of 1880, and is now preserved in the Palazzo Orsini in 

Genoa. Galileo is shown in the last days of his life, ill in bed, and demonstrating 

some geometrical problem to Torricelli (in front), Viviani (writing), and his 

[Galileo’s] son Vincenzio (listening). The attitudes of the three young men, intent 

on the words of the Master, contrasted with his own hieratic calmness is very 

notable, and, however much art critics may find fault with it, the composition is, 

urdoubtedly, the best work on Galileian subjects by which Italian Art has hon- 

ored itself.’’ 

The following description of the scene and characters depicted in the painting 
is given in J.J. Fahie’s Memorials of Galileo Galiles, pp. 100-101. It is reproduced by 

permission of the author’s executor: 

“ Torricelli was with Galileo for the last few months, and, on the latter’s 

death in 1642, succeeded him as First Mathematician to the Grand Duke... . 

Vivian, aged eighteen, joined Galileo in 1639, and remained to the end — his 

last well-beloved disciple... . Vincenzio was a rolling stone, a grief and dis- 
appointment to his father... . 

“ Viviani tells us that in those last days, and amid much suffering, the Master’s 

mind was ever occupied with mechanical and mathematical problems, Thus, one 

day Viviani drew his attention to a flaw in his statement on the falling of a body 
down an inclined plane. That night he lay sleepless in bed, but found the necessary 
correction. He had the idea of preparing two other dialogues, to be added to the 

four already published in his great work ‘Intorno A Due Nuove Scienze,’ Leyden, 
1638. In the first, he would give new reflections and demonstrations on passages 
in the first four dialogues, and the solution of many problems in Aristotle’s ‘ Physics.’ 
In the second, he proposed to open up an entirely new science —— the wonderful 

force of percussion — which he claimed to have discovered, and which, he said, 
exceeded by a long way his previous speculations. These were left unfinished, but 

were put together afterwards by Viviani. ...”” 
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Mass and Momentum 

22. Galileo’s Principle of Inertia. But if force is not needed to ex- 
plain motion but only to explain acceleration, why is it that some 

kind of engine or other active agent is always needed to keep a body 

in steady motion? GALILEO’s conjecture was that this is because a 

body left to itself is slowed down, accelerated, by friction and other 

retarding forces. Such hindering influences are indeed always present, 

although they can be diminished, and it is a matter of common ex- 

perience that with each diminution less efort is needed to keep a 
body in steady motion. Thus it is harder to drag a stone over a rough 
floor than over smooth ice, and if the stone is given a push along the 
floor it is soon stopped by friction, but on the ice it keeps moving 

for a considerable time. One begins to speculate on what would 
happen, or rather not happen, if the ice were perfectly smooth and 
of indefinite extent and there were no resistance due to the air. 

By reasoning along similar lines with bodies rolling up and down 
inclined planes,’ GALILEO became convinced that a body will persist 

in its slate of rest or of constant speed in a straight line unless il ts com- 
pelled by some force to change that state. The importance of this con- 
clusion in the general theory of motion was recognized by CHRISTIAAN 
HuycEns (1629-1695) and later by Issac NEwTON (1642-1727), 

Since actual bodies are never entirely free from external influences, 

the principle is necessarily an idealization from observed facts. Its 
proof is that the innumerable deductions which have since been made 
from it are in harmony with experience. 

23. The Concept of Mass. That it requires effort to accelerate a 
body is described by saying that all matter has inertia. The amount 
of inertia evidently is not the same for all bodies. It is easy to tell, 
for example, whether a passing motor truck is loaded or empty. The 
loaded truck does not bounce around so much and it is less easily 
turned aside from a straight course; it has more inertia than the 
empty truck. Again, in trying to set in motion the massive though 

nicely balanced door of a bank vault one is sensible of a powerful 
resistance, whereas the same effort applied to an ordinary room door 
will quickly set it in motion. This difference in one’s experiences 
with the two doors must be due to a difference in their inertias 
rather than in their weights, for neither door, if properly balanced, will 
assume any particular position by virtue of its weight. 

  

1See *E. Mach, The Science of Mechanics (Open Court, 1893), pp. 140-141, or 
*J. Cox, Mechanics (Cambridge University Press, 1919), p. 78. The latter book is 
the more elementary ; it incorporates many of MAcu's ideas.
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Both CHRISTOPHER WREN (1632-1723) and NEWTON made ex- 
periments with balls of unequal weights swung on cords and correctly 
determined their relative changes in velocity when they collided.! 
It remained for NEWTON, however, to be the first to see clearly that 

it was not the difference in the weights of the balls that determined 

their relative accelerations upon collision but the differences in their 
inertias. In order to compare these inertias quantitatively, NEWTON 
introduced the concept of mass.? A series of experiments with hollow 
pendulums filled with various materials showed him that in any 
given locality the masses, or amounts of inertia, of bodies are pro- 

portional to their weights; moreover, he found the ratio of mass to 

weight to be independent of the chemical composition of the bodies.* 
This furnished him with a method for measuring the mass of one 
body in terms of the mass of another body taken as standard: the 

masses of the two bodies are compared by putting them on an ordinary 

beam balance and comparing their weights. Here we have not only 
an approved method for comparing masses but in practice also the 

best method, for the beam balance surpasses ail other ordinary in- 
struments of the laboratory in accuracy, and it is convenient to 

operate. 

24. Units of Mass. Scientists have adopted as the standard of 
mass a piece of platinum-iridium deposited at the Bureau Interna- 
tional des Poids et Mesures, Sévres, France. It is called the standard 

kilogram and was designed to be, and is very nearly, equal to the mass 

of 1000 cm? of water at a temperature of 4°C. Physicists usually 

employ as the unit of mass the gram, which is one thousandth part of 

the standard kilogram. The pound is defined as the mass of a certain 
block of platinum which is preserved in London; it is equivalent to 

453.5924 g. 
25. Linear Momentum. Certain properties of moving bodies de- 

pend not alone on the mass but jointly on the mass and velocity. 

For example, the effort required to bring a motor truck to rest within 
a given time depends both on how much it is loaded and on how fast 
it is traveling. Thus GaLILEo and NEWTON were led to give a special 

name to the product obtained by multiplying the mass of a body by 
its velocity. They called this product momentum or “quantity of 

motion,” to distinguish it from rate of motion. 
  

1See Chapter 5. 

2 It is probable that HUYGENS, as a result of his work on centripetal force and his 
pendulum experiments, had by 1673 arrived independently at a clear conception of 

mass as distinct from weight. See *H. Crew, The Rise of Modern Physics (Williams and 

Wilkins, 1928), pp. 121-126; ed. 2 (1935), pp. 124-129. 

’ Principia, Bk. III, Prop. VI.
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The linear momentum of a body is defined as the product of the 
mass m and the linear velocity v; that is, 

p= mv. £18] 

Since mass is a scalar quantity and velocity is a vector quantity, 
momentum must be a vector quantity (Sec. 16); its direction is that 
of the velocity v and its magnitude is mv, the product of the mass m 

and the speed ». From the definition it is obvious that the momentum 
of a body changes whenever either the velocity or the mass of the 

body changes. Experience shows, however, that the mass of a 

given body may be regarded as an invariable quantity except when 

dealing with extraordinary cases, such as the motions of electrons 

or of certain astronomical bodies moving with enormous speeds. 
Hence, in all cases of concern to us for some time to come, any change 

in the momentum of a body is to be attributed to a change in its 

velocity alone. 
Let us suppose that a particle undergoes a change of momentum 

of amount Ap in the time A. The average time-rate of change of its 
momentum is then Ap/At. By choosing Af indefinitely small and 
passing to the limit, we obtain for the instantaneous time-rate of 
change of momentum fim SP Ap _ _ dp. 

‘at>0 ‘At di 

Since the mass of a particle.ordinarily may be regarded as con- 
stant, it is obvious that the foregoing expression may be written in 
any of the equivalent forms 

[19] 

Ap __ Av 
lim = lim m>=— =™ma, 20 
At-0 At Ai~O At L J] 

where a is the instantaneous acceleration of the particle. Excepting, 

then, the rare cases where the mass of a body varies appreciably, 
the time-rate of change of linear momentum equals the product of the 

mass and the linear acceleration. 

° 

Newton's Laws of Motion 

We owe to NEWTON the consolidation of the views on physics which 
were current in his time into one coherent system. NEWTON is by 
universal acclaim the greatest figure in all the history of science. 

Born within a year after GALILEO’s death, his creative genius began 
to appear early in life, and while still an undergraduate at Cambridge 
he formulated the binomial theorem in algebra, developed th
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methods of infinite series, and began the invention of his differential 
calculus. NEWTON published the first full account of his dynamical 
results in 1687, in his monumental Philosophiae Naturalis Principia 

Mathematica (‘Mathematical Principles of Natural Philosophy’’), 
usually called simply the Principia, a work which the great LAPLACE 
(1749-1827) characterized as the supreme exhibition of individual 
intellectual effort in the history of the human race.? 

26. Newton’s Three Laws of Motion. In the Introduction to the 
Principia, NEWTON formulates the three fundamental laws of mo- 
tion that are still called by his name. These laws and the accom- 

panying corollaries and scholium are so comprehensive that the 
whole of the GALILEO-NEWTON dynamics is built upon them. In- 
deed, for over two hundred years after their publication progress in 
dynamics consisted largely in deducing from these laws other prin- 

ciples which are more useful for particular classes of motion. 
Stated in modern terms and in a form applicable only to motions 

of translation, NEWTON’S three laws are as follows: 

1. If a body in translation is not acted upon by any external force, 

its linear momentum remains constant. 
2. The time-rate of change of the linear momentum of a body ts pro- 

portional to the force acting on the body and is in the direction 

of the force. 
3. To every force acting upon a body there always exists a correspond- 

ing force exerted by the body, and these two forces are equal in 
magnitude but opposite in direction. . 

As THOMSON and TaIT remark and as NEWTON himself asserts, 
“these laws must be considered as resting on convictions drawn from 

observation and experiment, not on intuitive perception.” 

27. Newton’s First Law. The first law is GALILEO’S principle of 
inertia (Sec. 22). It asserts that force is that which changes the 
momentum of a body, and implies that this is true regardless of the 
nature of the body or of the body’s motion. It is therefore essen- 
tially a qualitative definition of force. The law obviously presupposes 
the existence of a fixed framework, with respect to which momentum 

is constant or changing. This presents a difficulty, for in the uni- 

  

‘The Principia was written in Latin, the international language of learning until 

a few generations ago, but translations are available, the best being that by Andrew 

Motte, first published in 1729 and recently revised by *F. Cajori (University of Cali- 

fornia Press, 1934). The section on “ Definitions” and that on “Axioms, or Laws of 

Motion” (pp. 1-28 of Cajori’s revision) should be read by every student in connection 

with this and subsequent chapters on dynamics.



N EXCELLENT description of Newrow's appearance, habits, and character 
will be found in L. T. More’s Isaac Newton, a Biography (Scribner, 1934), 

pp. 126-137. The number of original portraits of him made from the life is not large, 
and unfortunately most of them were painted when he was an old man and are so 
evidently idealized as to give only a vague and unsatisfactory impression of the real 
man, Concerning the portrait reproduced here, Professor D, E, Smith of Columbia 
University, who has probably the largest collection of Newtoniana in existence, 
says: ‘' For real humanity, however, the painting by Gandy, executed in 1706, is 
one of the most noteworthy. It represents the savant in the prime of life, without a 
wig, and with an expression of determination tempered with kindness that is not 
seen in the more conventional portraits of Kneller and Vanderbank,"” A critical 
listing of the other important portraits of Newzow and the engravings made from 
them is given by Professor Smith in Isaac Navton, 1642-1727, edited by W. J. 
Greenstreet (Bell, 1927), pp. 171-178. 

‘The foundation upon which the whole of the science of mechanics rests was laid 
by Gatttso and Newson, together with Ancummenes (c. 287-212 ».c.) and Cunts- 
miaan Huvces (1629-1695), It is instructive to note that each of these pioneers 
made his chief contribution in connection with the quantitative solution of a particular 
problem. ‘Thus Ancurmepes treated the problem of the lever, Gatateo that of the 
freely falling body, Hoycens the period of the physical pendulum, and Newsos the 
motion of the heavenly bodies. In the course of the solution of these specific and Tin 
ited problems the geveral principles required for the treatment of any mechanical 
situation became clear, and were defnitely formulated by Newrow in his laws of 
motion. All scientific investigations which have led to real progress have begun 
in just this way, by the treatment of simple and specific problems with quantitative 
exactness, not by making deductions from general philosophic schemes ot a prior: 
principles. 

° 

‘When Newton saw an apple Fall, he found 
In that slight startle from bis contemplation — 

"Tis sri (for I'l not answer above ground 
For any sage's creed ot calculation) — 

A mode of proving that the earth turn'd round 
In a most natual whiel, called “ gravitation“; 

‘And this is the sole mortal who could grapple, 
Since Adam, with a fall or with an apple. 
Man fell with apples, and with apples rose, 

If this be true; for we must deem the mode 
In which Sir Isaac Newton could disclose 

Through the then unpaved stars the turnpike road, 
A thing to counterbalance human woes: 

For ever since immortal man hath glow'd 
With all kinds of racchanies, and full soon 
Steam-engines will conduct him to the moon. 

Lonp Brnow, Don Juan, Canto the Tenth, T and It
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Isaac Newton, 1642-1727 

From the portrait painted by William Gandy in 1706. Reproduction made from a lithograph 

copy, executed by G. Black in 1848 and reproduced by Day & Son, in the collection of Professor 

David Eugene Smith of Columbia University, through the courtesy of Professor Smitk
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verse there is no fixed framework. In practice, however, when the 
velocities involved are not too large, it is generally possible to choose 
a reference frame which, without being fixed in an absolute sense, 

can be regarded as such for the purposes of any given problem. This 

reference system consists of a set of axes fixed relative to the average 

position of the so-called fixed stars, and it is designated as the pri- 

mary inertial system. The errors introduced by applying NEWTON’s 

laws of motion to a set of axes fixed in the earth’s surface are, how- 

ever, either small or very easily corrected, and we shall proceed at 

present by neglecting them altogether. 
28. Newton’s Second Law. The second law asserts that force is 

proportional to, and therefore may be measured by, the time-rate 

of change of momentum. Its mathematical statement is, accordingly, 

. Ap 
lim — 

Poe mo At 
. Ap dp 

f=K1 == K.—> 21 
or ano At dt [21] 

where K is a constant of proportionality the value of which depends 

on the units used in measuring force, momentum, and time. In the 

ordinary cases where the mass of the body under consideration does 

not change during the time interval At, we have, in view of Eq. [20], 

f = Kma. [22] 

This equation tells us that force is proportional to the product of mass 

and linear acceleration; in other words, the direction of the force is 

that of the acceleration which it produces, and the magnitude of the 

force is proportional to ma, where m is the mass of the body and a 

the magnitude of the acceleration. 

"The second law thus gives us a quantitative definition of force, but 

we shall find that it is a definition whose usefulness presupposes 

experimental knowledge. 
‘99. Units of Force. The constant K in the equation f = Kma obvi- 

ously becomes unity if we arbitrarily choose as the unit of force 

that force which is required to impart to a unit mass one unit of linear 

acceleration, or, what is the same thing, that force which is required 

to change the linear momentum of a body at the rate of one unit 

per second. When this unit of force is employed, the defining equa- 

tion for force becomes simply f= ma. If the unit of acceleration 

  

1For a critical discussion of the principle of inertia, see E. Mach, The Science of 

Mechanics (Open Court, 1893), pp. 140-143, 232.
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be taken as 1 cm- sec~? and the unit of mass 1 g, this unit of force 
is called the dyne; the dyne is the unit of force in the centémeter- 
gram-second, or cgs, system of units. If, on the other hand, the unit 

of acceleration be taken as 1 ft - sec~* and the unit of mass as 1 Ib, 
this: unit of force is called the poundal; the poundal is the unit of 

force in the foot-pound-second, or fps, system. 

Another unit of force in common use is the so-called gravitational 

unit, which is defined as the weight of a unit mass at a place where 
the acceleration due to gravity g has the standard value g, (Sec. 3); 

that is, it is the force required to impart to a body of unit mass an 
acceleration of amount g,. When this unit is used, the equation 

f= Kma becomes 1=K-1- g,, thus giving K =1/g, numerically. 
If the unit of mass is taken as 1 g, the gravitational unit of force is 

called a gram weight; if the unit of mass is 1 lb, it is called a pound 

weight. To avoid confusion these units should never be referred to 
as the “gram’’ and the ‘‘pound’’; the latter are the names of units 

of mass, whereas ‘gram weight”’ (abbreviation, “gwt’’) and ‘pound 
weight’ (abbreviation, “lbwt’’) designate units of force, 

To summarize : 

Ff (dynes) = m (gram) a (cm - sec7?), 

f (poundals) =m (Ib) - a@ (ft - sec—2), 

f gwt)= = m (gram)-a@ (cm: sec™*), g, = 980.665 [23] 

F (bwt) = * m (Ib)- a (ft-sec-2),  g, = 32.174 

It is to be noted. that g, is used in the last two equations to denote 
pure numbers; ordinarily it denotes standard acceleration due to 
gravity, but here it represents only the numerical values of this 

quantity. 

. Units of force that are defined by making K a pure number in the 
equation f = Kma are called absolute units. Thus the dyne and the 

poundal are the absolute cgs and fps units of force, and the gram 
weight and pound weight are absolute gravitational units of force. 

30. What the Second Law Implies. The second law contains cer- 
tain implications that must not pass unnoticed. 

a. It implies that the effect of a force on a body is independent of 

the state of motion of the body at the time when the force begins 

to act. For example, gravitational attraction at any given place 

always imparts to a projectile the same downward acceleration, re- 
gardless of whether the projectile is shot from a gun or simply 

dropped from a balloon.
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b. When several forces act on a body at the same time, the law 

implies that each force produces its own effect independently of the 

actions of the other forces. It follows from this that the vector sum 

of the accelerations due to the several forces gives the acceleration 

of the body. A special case of this arises when, as a result of the 

action of two forces, a body rernains at rest or else continues to move 

with constant velocity. In this case the accelerations due to the 

two forces must be equal in magnitude but opposite in direction; 

hence the forces producing them are equal in magnitude but oppo- 

site in direction. For example, when an object is suspended by a 

cord it is acted upon by two forces: one is its weight and the other 

is the force exerted by the cord. If the cord is cut, the second force 

disappears and the object falls with an acceleration. 

31. How the Second Law Is Applied. The application of the second 

law of motion to the solution of particular problems can best be 

shown by means of several examples. No difficulties will be encoun- 

tered by the student in making this application if he recognizes 

clearly what body it is whose motion he wishes to determine, then 

lists completely all the forces which act on that body, and finally 

applies the laws of motion to that body alone. 

EXAMPLE. A sled of mass 400 Ib is pulled along a level road by a team 

of horses. If the horizontal force which the tugs exert on the sled is 

25.0 Ibwt and the force of friction is 20.0 Ibwt, will the velocity be con- 

stant? If not, what is the acceleration? How long will it take the 

sled starting from rest to acquire a speed of 4.0 mi: hr-!? 

Solution, The body whose motion is to be determined is the sled. There- 
fore we are not concerned with the weight of the horses or with the forces 
which they exert on the ground. The forces acting on the sled are the for- 
ward pull of the tugs, amounting to 25.0 Ibwt; the backward pull of friction, 
amounting to 20.0 Ibwt; and the downward pull of gravity and the upward 
push of the ground, each amounting to 400 Ibwt. Since the pull of gravity 
and the upward push of the ground have no effect in producing motion 
(Why ?), the total unbalanced force acting on the sled is 5.0 Ibwt or (5.0 x 32) 
poundals, and this will cause an acceleration. Since the mass of the sled is 
400 Tb, the second law gives 5.0 x 32=400a, or a= 0.40 ft-sec~*, in a 
horizontal direction. Also, since this acceleration will be constant, we have, 
by Eq, [14], Chap. 1, 

  

ExaMPie. To the ends of a cord passing over a light, delicately balanced 
pulley are attached two bodies of unequal masses, one of 203 g, the 

other something more than 203 g (Fig. 16). The acceleration imparted 

to the masses is observed to be 245 cm: sec~*. Find the mass of the 

second body.
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Solution. We will assume that the mass of the pulley is negligibly small. 
We will also assume that the stretching force in the cord is the same through- 
out; this amounts to saying that there is no friction between the pulley and 
the cord, and that the mass of the cord is negligible in com- “ 

parison with the masses of the two bodies. Let m denote 
the unknown mass and let F be the force in the cord. The | 
forces acting on m are mg vertically downwards and F 
vertically upwards; hence the total force acting on m is 
(mg — F) dynes, and the equation of motion of m is by 
Eq. [22], mg —_F=m-245. The forces acting upon the 
203-gram mass are 203-g vertically downwards and F m 
vertically upwards; its equation of motion is therefore 
203 g —F=— 203-245. By eliminating F between these fis. 16. A prob- 
two equations, we find m(g— 245) =208(g+245), If, lem involving the 
finally, g at the place under consideration is 980 cm - sec~?, Becone aw © 

motion 
then m = 338 grams. 

In the foregoing solution the equation of motion of each body was ob- 
tained separately and then the unknown quantity F was eliminated by 

solving these two equations simultaneously. A second method of solution 
consists in finding a single equation of motion for the system as a whole. 
Thus the total force acting on the system is (m — 203)g dynes and the total 

mass accelerated is (203+ m) grams; hence, from Eq. [22], (m— 203)g 
= (m + 203)245, or m= 338 grams. Generally speaking, the first method of 

solution will be found to be the more useful. 

EXAMPLE. In the preceding example show that the force F exerted by 
the cord is 2.49 x 10° dynes, or 254 gwt. 

Solution. Either one of the equations of motion given in the first solution 

of the preceding example may be used to obtain F, or one can deduce its 

value from first principles, as the following considerations will show: Since 

all freely falling bodies have the same acceleration g, the weight of any mass 
of m grams is mg dynes. If, because of some retarding force, such as a force 

exerted by a cord, the downward acceleration is not g but some smaller 

quantity a, it is at once clear from the statement of the second law that the 
value of the upward, or retarding, force is m(g — a) dynes. ‘If, on the other 

hand, the body has an upwerd acceleration of amount e, the upward force 

exerted by the cord is m(g+ a) dynes. If the body is at rest or is moving 
upward or downward with constant speed, the force exerted by the cord 
is mg dynes. In the present example, the force F exerted by the cord is 

evidently 338(g — a) dynes, or : 338(g —a) grams weight; it is also 

203(g + @) dynes, or 203(g + a) grams weight. 

32. Newton’s Third Law. A force acting upon a particle of matter 

is always due to the action of another particle upon the one in ques- 

tion. The third law asserts that in such an interaction of two parti-
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cles the first particle exerts a force on the second and the second exerts 

a force on the first; these two forces have the same magnitude but 
opposite directions, and their line of action is the line joining the two 
particles. Itis to be noted that the two forces concerned in this action 
and reaction do not act on the same body; either body experiences 
one of the two forces and exerts the other. There are many familiar 
illustrations of the law: a man sitting in a chair cannot lift himself 
by pulling on the chair; an athlete throwing a hammer must steady 
himself or the hammer will throw him; when a gun is fired, it re- 
coils; it is more tiring to walk-in loose sand or melting snow than on 
a brick pavement. The third law also holds when the interacting 
bodies are not in contact. When one body attracts another from a 
distance, this other attracts it with a force that is equal in magnitude 
but opposite in direction. NEWTON showed this to be true for gravi- 
tational attractions, and he also verified it experimentally for the 
case of magnetic attractions. 
Indeed it is only by means of experiments that one can justify 

either the third law or the implications contained in the second law. 

These experiments can be made in any laboratory. But the most 
convincing evidence of their. correctness is furnished by astronomical 
observations; predictions of eclipses, made years in advance, are 
wholly based upon these laws of motion taken in connection with the 
law of gravitation. 

° 

The Planetary Motions and Gravitation * 

NEwTon’s formulation of the laws of motion was an incident in the 
course of his investigation of the motions of the heavenly bodies. A 
hundred years before the birth of NEWTON, NICOLAUS COPERNICUS 
had published the immortal De Revolutionibus Orbium Coelestium, in 
  

1* Annotated extracts from the original papers of NEWTON, CAVENDISH, and others 

will be found in The Laws of Gravitation, ed. by A. S. Mackenzie (American Book Co., 

1900). Pages 88-98 of J. Cox, Mechanics (Cambridge University Press, 1919) also 

will be found interesting. 

2 Published at Nuremberg in 1543. This is the first of the three greatest master- 

pieces of modern astronomical literature, the other two being Newton’s Principia 

(1687) and Galileo’s Dialogo det due massimt sistemi del mondo, Tolemaico e Coper- 

nicano (Florence, 1632), of which there is a translation under the title Dialogues 

concerning the two Chief Systems of the World, the Ptolemaic and the Copernican, by 

T. Salusbury in his Mathematical Collections and Translations, 2 vols. (London, 1661 

and 1665). Translations of portions of all three of these works will be found in 

*H. Shapley and H. E. Howarth, A Source Book in Astronomy (McGraw-Hill, 1929).
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Trinity College, Cambridge, 

at the Time of Nswron 

From David Loggan’s print of 1690, one of the beautiful and accurate prints of the colleges and 
halls of Cambridge University which appeared in his Cantabrigia Ilustrata (Cambridge, 1690) 

Tue rooms in which Newton wrote the Principia were probably on the second floor 
of the entry to the right of the Great Gate as one enters the Great Court. ‘The small 

garden laid out between these rooms and the street seems to have been reserved for 
his private use, and here in all probability he paced up and down for the only 

exercise he allowed himself.
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After an Illustration from Henry Pemperron’s 

A View of Sir Isaac Newton’s Philosophy 
(London, 1728) 

Reproduced through the courtesy of the Mount Wilson Observatory of the Camegie 
Corporation of Washington 

Hever Pementow was a friend of Newzox and the editor of the third edition of the 
Principia. The illustration reproduced here is based on one executed by J. Pine after 
J. Grison. It is an artist's attempt to describe a part of Newrox's experimental 
‘work in mechanics, particularly his very important experiments on impact (Principia, 
scholium to “‘Axioms, ot Laws of Motion "’), from which he undoubtedly obtained 
his clearest and most definite conceptions of mass and momentum; his experiments 
on fluid resistance (Principia, Book I, scholiums to sections VI and VII); and his 
application of the laws of motion to the pulley, wheel and axle, and other "me 
chanical powers." 

‘The setting for these experimems shown in the illustration is hardly one that 
would be selected as typical today, but it must be remembered that physical 
laboratories are a modern development and that Gatiteo, Newron, Boyt, Yous, 
Hooke, and all the great experimenters of the past carried on their work in their own 
private quarters and wherever else they could. Thus some of Newton's experi- 
ments on air resistance were carried out in St. Paul’s Cathedral in London, as were 
important experiments of Waew and Hooke. It is improbable that the setting shown 
above was intended to represent St. Paul's, but it might well have been.
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which he proclaimed the heliocentric theory of the solar system 
as against the then accepted geocentric, or Ptolemaic, view. The 
essential idea of the heliocentric theory, from the modern point of 

view, is that the complicated motions of the planets reduce to com- 
parative order and simplicity when the sun, rather than the earth, 
is taken as the reference body. The Copernican doctrine had a pro- 

found influence on man’s views of the universe and his place in it, 
but it was by no means a perfect system, as COPERNICUS himself 
realized. Among its hostile critics was TYCHO BRAHE (1546~-1601), 

who proposed a theory of his own,! and in order to test it spent 

twenty-five years making astronomical observations of extraordi- 
nary accuracy. The data obtained by this remarkable experimental- 

ist evidently were not vitiated by prejudice, for in the hands of the 
mathematician JOHANN KEPLER (1571-1630) they became the means 

of placing the Copernican doctrine on a firm foundation. 

33. Kepler’s Laws. COPERNICUS, in the absence of data to the 
contrary, had retained the ancient notion that the planets moved in 
circles with constant speeds, but KEPLER found that such an assump- 
tion led to a difference of as much as eight minutes of arc in the 

computed and observed positions of Mars. ‘Out of these eight 
minutes,” said KEPLER, ‘“‘we will construct a new theory that will 

explain the motions of all the planets.’’ It took a lifetime of the 
most patient study of TycHo’s data, but he finally arrived at the 
three empirical laws which bear his name and which paved the way 
for modern astronomy. KEPLER found that the motions of the plan- 
ets could be predicted by making the following assumptions?: 

1. The orbit of each planet is an ellipse with the sun at one focus. 
2. The speed in the orbit varies in-such a manner that the radius 

vector joining the planet with the sun sweeps over equal areas 
in equal times. 

3. The cubes of the semi-major axes of the elliptical orbits are pro- 
portional to the squares of the periods of revolution or lengths 

of planetary years. 

34. Newton’s Law of Gravitation. When KEPLER’S laws were pub- 
lished, in the early part of the seventeenth century, attempts were 
  

1 De Mundi Aetheret recentioribus Phaenomenis (1588). 

2 The first two laws, together with an account of the laborious process by which 

they had'been found, were published by KEPLER in Chapter 59 of his great work, 

Astronomia Nova ATTIOAOTHTOZ, seu Physica Coelestis (1609). The third law 

was published in Kepler’s Harmonices Mundi Libri V (1619), Bk. V, Part 3.
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already being made to relate the planetary motions to the more 
familiar motions of objects on the earth. KEPLER himself, and also 

DESCARTES and GALILEO, speculated on the notion of gravitation, 

but it remained for NEWTON to give the first clear quantitative ex- 
planation of the relations contained in KEPLER’s laws. By consid- 
ering these laws in the light of the mechanical principles which he 
had developed, NEWTON was able to reduce them to the single law 
that the acceleration, a, of every planet is always directed toward the 

sun, depends only on the distance of the planet from the sun, and 

is of magnitude C 

a= =, [24] 

where 1 is the distance of the planet from the sun and C; is a constant 

which is the same for all the planets. 

NEWTON found, moreover, that this same law described the mo- 

tions of the satellites around their respective planets and that the 

acceleration of the earth’s moon could be explained in terms of the 
gravitational pull of the earth on the moon. He thus arrived at his 
great generalization that the forces exerted by the heavenly bodies 
on one another and by the earth on the bodies at its surface are 

merely special cases of a gravitational attraction existing between 
all particles of matter. For any two particles of masses m; and me, 
at a distance 7 apart, this gravitational force of attraction was found 
to be 

faomm. [25] 

NEWTON assumed that G is a constant for all bodies, regardless of 
their nature or of their location in. space. 

Eq. [25] is the mathematical statement of Newton’s Law of 
Gravitation, which states that any two particles attract each other 
with a force that is directly proportional to the product of their 

masses and inversely proportional to the square of the distance be- 

tween them. The word particle, rather than body, must be used in 

the statement of the law because of the uncertainty as to what is 

meant. by the distance 7 between two extended bodies. NEWTON 
was able to show that a spherical body which may be regarded as 

homogeneous, or as made up of shells each of which is homogeneous, - 
will attract an outside body as if all the particles of the sphere were 

concentrated at its center.! 

  

1 Principia, Bk. I, Prop. LXXI. See also *J. Cox, Mechanics (Cambridge Univer- 

sity Press, 1919), p. 253.
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35. The Constant of Gravitation. The constant G in Eq. [25] is 

called the Newtonian constant of gravitation. It is one of the so-cailed 
universal constants of physics, for its value depends only on the units 

used and not on time, locality, or any particular properties of matter. 

To find the magnitude of G it is necessary to measure the gravita- 

tional attraction in some case where m, m2, and r are known. This 

difficult measurement was first accurately made by HENRY CAVEN- 

DISH 2 in 1798 by means of a type of apparatus known as a torsion 
balance. A very reliable determination has been made recently by 

HEYL? at the United States Bureau of Standards. His result is. 

G = 6.670 x 10-8cm®- g-!-sec-*. This is therefore the force in 

dynes with which a particle of mass 1 g attracts a similar particle 
at a distance of 1 cm. 

o 

The Proportionality of Gravitational Force and Mass 

According to the law of gravitation, the gravitational attraction be- 

tween two bodies is proportional to the masses of the bodies and is 
entirely independent of their physical and chemical nature. This 
means, for example, that the earth exerts the same pull on all bodies 

of 1-kg mass placed at a given distance from its center, regardless of 

whether the bodies consist of lead, water, ice, steam, wood, or what 

not; and for 2 kg of any of these materials the force is just twice as 
much. We have already learned how NEwTon and others demon- 

strated the correctness of this remarkable conclusion and that it is 
the proportionality of mass to weight in a given locality which makes 

possible the comparison of masses by comparing their weights on a 

beam balance (Sec. 23). 
The mass of a body as determined by weighing on a beam balance 

is sometimes referred to as the gravitational mass in order to distin- 
guish it from the inertial mass of the body. The former is a measure 
of the ability of the body to attract other bodies by gravitation, 

whereas the latter is a measure of the inertia of the body. The asser- 

tion that the gravitational mass and the inertial mass are equal is 
a consequence of the principle of equivalence. This important prin- 
ciple, which is supported by many experiments, is one of the three 

fundamental postulates upon which EINSTEIN bases his general 
theory of relativity. 
  

‘For an excellent account of the methods which have been used to determine 

this important constant see *J. H. Poynting and J. J. Thomson, Properties of Matter 

(Griffin, 1913), Chap. 3. 

2 See Plate 7. 

*P. R. Heyl, Journal of Research of the National Bureau of Standards 5, 1243 (1930).



WO lead balls x, x, each 2 in. in diameter, were hung at the ends of a light 
wooden rod hi, 6 ft long, which was suspended horizontally from a long thin 

wire |g attached to its center. The whole was enclosed in a case ABCDDCBAEFFE 
resting on posts fixed firmly into the ground. Two large attracting spheres of 
lead W, W, each 12 in, in diameter, hung outside the case from an arm which could. 
turn around an axis Pp in the line of gl. To insure constancy of temperature the whole 
apparatus was placed in a closed room GGGG, and all adjustments and readings 
were made from outside. 

The method of taking observations was to turn the two large spheres W, W by 
means of the pulley MM into positions as close as possible to the small spheres x, x, 
one on each side, so that their attractions both tended to twist the rod the same 
way. They were then moved round so as to produce an opposite twist, and the 
total twist was measured by telescopes T, T, which were sighted at a scale on the 
torsion rod hh. 

Cavenpisn’s own account of this justly famous experiment is worth studying. It 
“js frequently given for detailed study to young physicists in order to train them 
in the art of reading for themselves periodical scientific literature. Certainly no 
better piece of work could be used for the purpose, whether one considers the in- 
trinsic importance of the subject-matter, the keenness of argument and the logical 
presentation in detail, or the use and design of apparatus and the treatment of 
sources of error '’ (from the preface of A. 8. Mackenzie's The Laws of Gravitation). 

‘The account was published in the Philosophical Transactions of the Royal Society 88, 469 
(1798), and has been reproduced in The Sciemtific Papers of the Honorable Henry Caven- 
dish, F-R.S. (Cambridge University Press, 1921), Vol. Il, pp. 249-286, and in The 
Laws of Gravitation, ed. by A. S. Mackenzie (American Book Co., 1900), pp.59-L07. 

Excerpts from it are also given in W. F. Magie's A Source Book in Physics (1935), 

pp. 106-111. 
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Mass and Force as Dynamical Concepts 

In the preceding pages the essential principles of the dynamics of 

translatory motion have been presented with rather close regard for 
the order and form in which they were developed historically. It 
rarely happens, however, that a really new theory achieves its sim- 
plest and most logical form in the first development. This usually 
comes only after a philosophical study of the nature of the postulates 

and definitions involved. The essential principles of classical dy- 
namics, as they were laid down by NEwrTon, have been but little 

affected by such studies, but several important modifications have 
peen introduced to make the theory a logical conceptual scheme.* 
The remainder of this chapter is devoted to such a systematic presen- — 
tation, in a form that is suitable for elementary instruction. 

36. A Dynamical Definition of Mass. The beam balance affords the 
best practical method for comparing masses: Yet it is evident that 

if the mass of a body is to be the measure of its inertia (Sec. 28), 

then a more direct and fundamental method of comparing two masses 
is to compare their accelerations when both are acted upon by the 

same external influence. . 

Suppose, for example, that the two cars in Fig. 17 run with little 

friction. The spring between the cars is compressed, and the two 

cars are tied together by means of a 

piece of cord. One car contains a lead 
block and the other a wooden block of a 
the same size and color. Which is which 

becomes apparent just as soon as the i617, A dynamical method 
cord is cut, for the two cars acquire veloci- for measuring mass 

ties v; and ve that differ in magnitude to an 

extent far exceeding any difference in frictional effects. The ques- 
tion now arises as to what kind of relation exists between these 
velocities acquired by the cars due to the action of the spring or, for 

that matter, between the changes in velocities of any two bodies when 

they interact. NEWTON concluded, and this is borne out by experi- 
ments, that the ratio of their changes in velocities, Avi/Ave, is a 

constant, regardless of whether the interaction is due to a spring, 

gravitational attraction, impact, or other cause. We may therefore 
assign a number m, to one body, taken as the standard body, and 

  

+The following references are important in this connection: E. Mach, The Sctence 

of Mechanics (Open Court, 1893), pp. 187-255; J. H. Poincaré, Science and Hypoth- 

ests (Scott, 1905), Chap. 6; K. Pearson, Grammer of Science (Black, 1900), Part I.
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define a corresponding number mz for the other by means of the 

equation Avi ms 

Ava ~ my [26] 

\t is this number m which NEWTON called the measure of the mass 
of the body. To compare the masses of two bodies we have, there- 
fore, only to take the ratio of the changes of velocity Av when these 
changes are due to the same external influence. Since we have 
agreed to call the product mv the linear momentum (Sec. 25), 
Eq. [26] is equivalent to the statement that two given bodies inter- 
acting in any way undergo changes of linear momentum that are 

equal in magnitude but opposite in sign. 

37. The Definition of Force. GALILEO avoided the great speeds 
with which bodies fall by using an inclined plane. GEorGE ATwoop! 
in 1784 accomplished the same end by suspending two weights by 2 
thread passing over a light, delicately balanced pulley. We can 
make use of this simple device (Fig. 18) in our 
further investigation of the relation between mass 
and change of velocity. 

Two bodies of the same weight and of masses 
which we will designate by m: and mez are hung 
from the ends of the cord. Since they have the 
same weights, they balance each other. If a 

small body of mass m3 is now added to one of Fie, 18. Atwood’s 
the two balanced bodies, say to me, the whole machine 

system of three bodies will be given an accelera- 
tion. The cause of this acceleration is the weight of the rider. The 
total mass m experiencing the acceleration is m= m+ me-+ mz, if 
the effect of the rotating pulley is neglected. 

At R is a horizontal ring through which mz can pass but which is 
too small for the rider m3, and so the latter is caught by the ring 

while mz passes on alone. With the removal of the rider, it is found 
that the system now moves with a constant speed 7 which can be 
measured by timing one of the bodies over known distances. The 
time of action of the accelerating force can be changed by changing 

the position of the ring R, and if this is done it will be found that the 

final constant speed # is proportional to the time ¢ during which the 
force acts, or 

vot, [27] 

as long as the force and mass are the same. 

    aA Fe   

  

1G. Atwood, A Treatise on the Rectilinear Motion and Rotation of Bodies; with a 

Description of Original Experiments Relative to the Subject (Cambridge, 1784).
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If the total mass of the system is now increased by adding two 
more bodies of equal weight to mm and ms, but not changing ms, it 
will be found that when this same force acts for a given time, the 

speed » produced is inversely proportional to the mass m of matter 

set in motion, or 1 
vas [28] 

By combining the two experimental relations (Eqs. [27] and [28]) 

into a single expression, we obtain 

vx ie, or MHS constant, [29] 
m t 

for a given accelerating force. Thus we arrive experimentally at the 
result that the /ime-rale of change of momentum is the quantity which 
remains constant when the same force acts on various bodies in suc- 
cession. It is this quantity, then, that is to be regarded as the proper 
description of force. We therefore define the force acting on a body 
as a vector quantity that is proportional to the time-rate at which the 
linear momentum of the body is changing (Eq. [21]). 

° 

EXPERIMENT Il. ACCELERATION, MASS, AND FORCE 

The purpose is to become familiar with the relations between mass, 
acceleration, and force, and to measure the masses of several bodies 
by the dynamical method. 

Part I. Determination of the Acceleration Imparted to a Given Mass 

by a Given Force. The apparatus consists essentially of a car and a 
horizontal track. The track consists of a pair of parallel rails which 

are mounted on bases provided 
with leveling screws. A bracket 
at one end of the track supports 
an insulated spark point and a 
light transverse roller (Fig. 19), 
‘The car is provided with a clip 
for attaching the end of a strip 
of sensitized paper which passes 

aver the roller. ‘To the other ‘tien lew mas cans a 
end of the strip is attached fore 
a similar clip with a weight- 
holder, The force is transmitted to the car through the paper strip. 

The record of the motion is made by the passage of electric sparks 
from the spark point to the roller, a dot being made on the surface 
of the paper by each spark passage. The source of the spark is an
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induction coil supplied with current from a 6-volt storage battery 
through a vibrating spark-timer. The time intervals between sparks 

are measured with a watch and impulse-counter. The sweep hand 
of the timer makes one circuit of the dial in 60 impulses, and the 
small hand indicates the total number of rotations of the sweep hand. 
The counter is started and stopped b:r means of a push button. A 

difference of potential of more than 6 volts should not be applied to 
the terminals of the timer. 

a. Place the car! on the track and attach to it a strip of the paper. 
Pass the strip over the roller and attach the clip for holding the 
weights to the free end of the paper at such a point that an attached 
weight hangs clear of the floor when the car is at the roller end of the 
track. 

Adjust the level of the track sidewise so that the paper runs 

smoothly over the roller for its whole length. Move the spark point 

to a position near one edge of the paper; connect this point to one 

secondary terminal of the induction coil and ground the other ter- 

minal to the track. Tilt one end of the track slightly until the car, 

when given a push, runs down the track with constant speed. To 
test the constancy of speed, start the spark-timer bar vibrating and 
let the car run the length of the track. If the spots on the paper are 

not uniformly spaced, adjust and test again, the spark point being 
moved over about 5 mm for this next record. 

b. Secure four time-records on the paper strip as follows: (1) place 
a mass m’ on the weight-hanger, start the spark-timer bar vibrating, 

and let the car run down the incline; (2) move the spark over about 

5mm and repeat; (3) place a different mass m’ on the weight- 
hanger, move the spark over again and repeat; and (4) move the 
spark over once more and repeat. Beginning with the first distinct 
puncture on the paper, number the successive points and then pro- 
ceed to find for each spark record the observed acceleration in centi- 
meters per second per second as in Exp. I. ; 

c. Compare the observed value of the acceleration with the cal- © 
culated value. To obtain the latter, measure with a beam balance 
the total mass M of the car and the mass m of the clip to which m’ 
is attached. Then, from Ea. [22], 

mg = (M+m+m’)a, [30] 

where g is known from Exp. I. Compute the percentage of difference 
between the observed and the calculated values of the acceleration a. 

  

!In order to minimize the effect of the roller it may be advisable to load the car 
to its maximum capacity.
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Part IJ. Comparison of Masses. In this part of the experiment 
two cars of smaller size are employed (Fig. 20). The spark recording 
mechanism will not be needed. 
The two cars are set in motion 
by means of a spring mechanism 
which is placed between them 
and compressed, the cars initially 

being held together by a cord. 

The cars are of approximately the Fie. 20. An apparatus for measuring 
same mass, but one of them is pro- mass by the dynamical method 
vided with a rack upon which 

slotted weights may be placed. Each end of the track is equipped 
with friction brakes for stopping and holding the cars. 

a. Carefully level the track both Icngitudinally and transversely 

with the aid of a spirit level. 
Select a 500-g slotted weight as your standard mass and place it 

on the car provided with the weight rack. Call this car No. 1 and 

the other car No. 2. Place the two cars near the middle of the track, 

compress the springs between them, and fasten the cars together. 
b. When the cars are released by burning or cutting the string, 

they are acted upon by the same external influence, the spring, for 
the same short time, and in this time the cars acquire certain speeds 

v, and vo. If the friction is negligible, these speeds will remain con- 
stant until the cars are stopped. Release the cars and note the com- 

parative distances traveled before the less massive car reaches the 
friction brake. Repeat this procedure, the location of the cars on 

the track being changed until they strike the friction brakes simul- 

taneously. Then measure the distances d; and d2 through which the 
cars have traveled with constant speeds and compute their ratio d;/de. 

  

1. What are the important sources of error in determining di/d,? Can 

you find methods for eliminating any of them? 

Repeat the experiment and again determine d,/d2. If this value 

is not in good agreement with the previous one, make several trials 

and take the average. 

2, Does the amount which the spring is compressed affect the values 
of d; and dz? of d:/d,? If in doubt, resort to experiment to obtain an 

answer. 

Since the distances d, and dz are traversed in the same time with 

the constant speeds #; and tz, it follows that 

di _ 1, 5 te va [31]



  

Exp. IT] The Foundations of Dynamics | Ag 

But if m2. and m2 denote the respective masses of the two empty 
cars, the definition of mass, Eq. [26], gives 

1 mess 
v2. my +500’ 

hence Eq. [81] may be written 

hme, 
dy ~ mm; + 500 [32] 

This equation contains two unknown quantities, namely m; and me. 

c. Remove the standard mass from car No. 1 and find the ratio 
d’,/d’2 for the empty cars. Write the equation for this case that is 
analogous to Eq. [382]. 

d. By means of the two equations which you have obtained, cal- 
culate the unknown masses m, and me. 

e. If time permits, measure the masses of various other objects by 
this dynamical method. 

3. If the two cars could be set in motion by some other kind of inter- 

action, say by means of an electrical repulsion, how would the resulting 
values of #,/#2 compare with those that you obtained with the spring? 
What if a different spring were used ? 

4, Why can masses also be compared by comparing their weights on 

a beam balance? How do the measurements of mass that you have made 

by the dynamical method compare in accuracy with those that you could 

make on the ordinary balance in your laboratory? 

° 

OPTIONAL LABORATORY PROBLEM 

Density of a Solid by Weighing and Measuring, and a Study of Errors. 

Determine the average density of steel, glass, or some other substance of 
which you have a sample in the form of a long, thin cylinder. The average 
density is found by dividing the mass of the cylinder by its volume.. A 
beam balance, a meter stick, a micrometer caliper, and a vernier caliper 4 
will be available. You are to make the most accurate determination that 

you can with such of these instruments as are needed and are to record the 
total time required for the preliminary estimations, measurements, and cal- 
culations. Remember that some preliminary estimations, in which the num- 

ber of significant figures? involved in the various measurements is taken 
into account, may save you considerable time in the end. 

In the event that your determination of the density involved making a 

series of measurements of the diameter of the cylinder, calculate the probable 
error of a single measurement and the probable error of the mean.’ State 

in words what each implies. 
  

1 See Appendixes 4 and 5. 2 Appendix 1, 3 Appendix 2.
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QUESTION SUMMARY 

1, What is meant by the inertia of a body? 

2, What is meant by the mass of a body? How can masses be measured? 

8. Define gram of mass; pound of mass. 
4, Define momentum. 

5. Define force. How can force be measured? 

6. Define dyne; poundal ; gram weight; pound weight. Distinguish between 

a grant of mass and a gram weigh!. 
7. State KmpLer’s three laws of planetary motion. 

8. State Newron’s law of gravitation. What is meant by the statement 
that the Newtonian constant of gravitation is a universal constant? 

9, What is the principle of equivalence? 

° 

PROBLEMS 

1, A man pushes steadily upon a car of mass 1100 kg which is initially 
at rest. After 5.0 sec the car is moving with a speed of 45cm sec7!, Find 

the force exerted by the man, Ans. 10 kgwt, 

2. A particle of mass 12 g is moving in a straight line with a momentum 
of 480 g-m-sec-1 A force of 2000 dynes is applied to the particle so as 
to oppose its motion. (a) How soon will it be brought to rest? (b) Howsoon 
would an 18-g particle moving with the same speed be brought to rest? 

Ans, (a) 24 sec; (b) 36 sec. 

8. A force of 1 megadyne (= 108 dynes) acts upon a mass of 1 metric 

ton for 1 min. Find (a) the speed acquired ; (6) the distance passed over in 
this time; (c) the momentum acquired ; (d) the rate of change of momentum. 

Ans. (a) 6x 10cm-+sec~; (6) 2x10" em; 

(c)6 x 107 g.cm+sec“!; (d) 10° g-cm-sec~?, or dynes. 

4. A man of mass 75 kg jumps out of a balloon with a parachute. After 
the man has fallen freely for 100 m the parachute opens, and in the next 

3.0 sec he is slowed down to a yelocity of 5.0m.-sec~! downward. What 

average force, in addition to the weight of the man, does the parachute 
exert during the 3.0 sec? ‘Ans. 102 kgwt. 

5. Careful measurements show that the mass of a certain cube of 
metal is 96.242 g, (a) Find its weight in grams weight at a place where 
g= 980.572 cm -sec~®; (6) at a place where g=g.. (c) If the cube is 
2,200cm on a side, what is its average density? (d) The ratio g/g, usually 
differs from unity by less than 0.25 percent. When may the mass of a body 
and its weight in the corresponding gravitational units be considered as 
numerically equal ? 

Ans. (a) 96.233 gw; (b) 96.242 gwt; (c) 9.039 2» em-8, 
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6. Over a light, delicately balanced pulley (Fig. 16) are suspended 
masses of 200g each. A mass of 100 g is added to one side. (a) What is 
the resulting acceleration? (b) How far does each mass move from rest in 
1.50 sec? (c) What is the force in the cord while the masses are moving 

freely? Ans. (@) 4g; (b) 220cm; (c) 240 gwt. 

7. Find the force exerted upon the floor of an elevator by a man weigh- 

ing 150 lbwt, if the elevator is (a) ascending with an acceleration of 
3.22 ft-sec—?; (b) descending with an acceleration of 3.22 ft - sec~?; (c) mov- 

ing with constant speed ; (d) descending with the acceleration due to gravity. 

Ans. (a) 165 lbwt; (b) 135 Ibwt; (c) 150 Ibwt; (d) 0. 

8. What is the least acceleration with which a man of mass 75 kg can 

slide down a fire-escape rope which can only sustain a weight of 50 kgwt? 
And what will be the man’s speed after sliding 20 m? 

Ans. 3.3m -sec—?; 11 m-sec71. 

9. Three automobiles, each weighing 3500 lbwt, are tied together 
(Fig. 21) and the engine of the first car is used to speed them up from rest 
to 20 mi- hr-!. If this is accomplished while 

traveling 200 ft, what is the average force &Ge—_fere—lo=a 
causing this acceleration? Neglecting friction, Fie. 21. Problem 9 

find the forces exerted by the towlines connect- a 
ing the cars. Ans. 7.0 X 10? Ibwt; 4.7 x 10? Ibwt; 2.3 x 102 lbwt. 

10. Over a light, delicately balanced pulley are suspended masses of 5 kg 

and 2kg. A force of 2 x 108 dynes pulls down on the 2-kg mass. What are 
the direction and magnitude of the acceleration, and what is the force in 
the cord? Ans. The 2-kg mass upwards; 4 x 10?cm-sec~?; 3 kgwt. 

11. Given the conditions represented in Fig. 22, find the acceleration and 
find the force in each section of the cord. 
Neglect friction. Ans. #g; 175 gwt; 113 ewt. 500g 

12. Two masses M and m are connected 

by a string passing over a light frictionless 

pulley. What vertical acceleration must be 78 100g 
given to the pulley to keep the mass at Fig. 22. Problem 11 
rest? Ans, (M— m)g/2m, upwards. 

13. A train moving in a horizontal direction with a constant speed of 

50 mi-hr~! acquires additional mass at the rate of 1001b-sec7! from a 
vertically falling rain. Find the force, in addition to that necessary to over- 
come friction, required to maintain the speed of the train at 50 mi - hr-1. 

Ans. 2.3 x 102 Ibwt. 

14, The distance of the planet Neptune from the sun is 30.0 times that 
of the earth from the sun. What is its period of revolution? Ans. 164 yr. 

15. The mass of the earth is 80 times that of the moon and its diameter 

is 33 times that of the moon. Assuming that his initial speed is always the 
same, find how high a man could jump on the moon if he can jump to a 

height of 1 yd on the earth. Ans, 6 yd.
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16, The experimental determination of the numerical value of the con- 

stant of gravitation G (Eq. [25]) enables the mass of the earth to be cal- 
culated. Assuming that the earth is a sphere of diameter 8000 mi, calculate 

its mass in metric tons. Calculate also its average density. 

Ans. 6 x 107! metric tons; 5.3 g-cm73, 

17%. In mechanics only three units ordinarily are chosen arbitrarily, 
namely, those of length [L], mass [M], and time [7]. The degrees to which 

these three so-called fundamental units enter into any derived unit are called 

the dimensions of that unit.1 For example, the dimensional formula for 
volume is [V] =[Z8, and that for linear momentum is [p] = [MJLLI[T]~'; 
the squared brackets indicate that it is not the numerical measures of the 
quantities but merely the dimensions of their units that are involved in 

these equations. Write the dimensional formulas for (a) area; (6) linear 

speed; (c) linear acceleration; (d) force; (e) pressure; (f) density; 

(g) angle; (A) cosine of an angle. 

18. Use the second law of motion and GALILEo’s discovery that g is the 

same for all bodies in a given locality to show that the weights of bodies are 
proportional to their masses at a given place. Does this furnish support for 
the principle of the equivalence of inertial and gravitational mass? 

19. Prove that the total gravitational attraction exerted by a thin-walled 

hollow sphere of uniform density upon a body anywhere inside of it is zero. 

Hence prove that the gravitational attraction exerted by any hollow spheri- 

cal body of uniform density upon a body anywhere inside of it is zero. After 
you have done this, read NEwToN’s solution in the Principia, Bk. I, 

Prop. LXX. 

20. Prove that the gravitational attraction of the earth upon a body 
below its surface is directly proportional to the distance of the body from 
the center of the earth. (Principia, Bk. I, Prop. LX XIII.) 

° 

HE BEST and safest method of philosophising certainly seems to be, first to inquire diligently 

"Tie the properties of things and to establish these properties by experiments; and then to 

proceed more slowly to hypotheses for the explanation of them. For hypotheses ought to be used 

only in explaining the properties of things, and ought not to be assumed for determining them, 

except where they are able to furnish experiments. For if from the possibility of hypothesis alone 

anyone makes a conjecture concerning the true nature of things, I do not see by what means it is 

possible to determine certainty in any science; since it is always possible to devise any number 

of hypotheses, which will seem to overcome new difficulties. 

Isaac Newton, Philosophical Transactions 7, 5014 (1672) 

  

1For an extensive and masterly discussion of the theory of dimensions see P. W. 

Bridgman, Dimensional Analysis (Yale University Press, 1922). A brief summary of 
some of the important points brought out in Bridgman’s discussion is given by 

J. C. Oxtoby, ‘‘What Are Physical Dimensions?” The American, Physics Teacher 2, 

85 (1934).



  

CHAPTER THREE 

EFFECT OF SEVERAL FORCES 

ON A PARTICLE 

BODY by two forces conjoined will describe the diagonal of a parallelogram, in the same time that it 

A would describe the sides, by those forces apart. 

If a body in a given time, by the force M impress’d apart in the place A, should with an 

uniform motion be carried from A to B; and by the force N impress’d apart in the same place, 

should be carried from A to C: compleat the parallelogram ABCD, and by both forces acting 

together, it will in the same time be carried in the diagonal from 

A to D. For since the force N acts in the direction of the line AC, 

parallel to BD, this force (by the second law) will not at all alter 

the velocity generated by the other force M, by which the body is 

carried toward the line BD. The body therefore will arrive at the Cc D 

line BD in the same time, whether the force N be impress’d or not; 

and therefore at the end of that time it will be found somewhere in the line BD. By the same 

argument, at the end of the same time it will be found somewhere in the line CD. Therefore 

it will be found in the point D, where both lines meet. But it will move ina right line from A to 

A B 

D by Lawl Corollary 1 to Newton’s laws of motion as trans- 
lated from the Principia in 1729 by Anprew Morte 

© 

In his study of the equilibrium of bodies on the inclined: plane, 
SIMON STEVIN (1548-1620) arrived at the correct method for deter- 
mining the effect of several forces acting at a point.1 He did not, 
however, expressly formulate the method for adding forces. This 

was done by NEwTOoN, who also demonstrated the general dynamical 
validity of the method, in the corollary to the laws of motion which 

is quoted at the beginning of this chapter. This principle of the 
parallelogram of forces, as it is called, was developed independently 
about 1687 by PIERRE VARIGNON,? who applied it to all sorts of 
statical problems. 

38. Addition of Forces. The second law of motion implies that 
each force acting on a particle produces its own effect independently 

of the action of any other force and regardless of whether the par- 
ticle is at rest or in motion (Sec. 30). In the case of actual bodies 
this principle of the independence of forces is not self-evident; it 

  

1See Plate 8; also the Bibliography, p. 452. 

2 Projet d'une Nouvelle Mécanique (Paris, 1687); Nouvelle Mécanique ou Statique 

(Jombert, 1725). 
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ECAUSE of the effects of friction and the difficulties of all exact measurements, 
direct experiments made by the student on an inclined plane will not give 

him the same conviction of the truth of the law of the parallelogram of forces as 
does the proof of Srevis. Does this mean that scientific truths rest after all upon 
a priori reasoning rather than upon observation and experience?’ The answer to this ques- 
tion given by E. Mace is worth quoting [E. Mach, The Science of Mechanics (Open 
Court, 1893), p. 26, by permission of the publishers]: 

* Unquestionably in the assumption from which Stevinus [Latin form of Stevin] 
starts, that the endless chain does not move, there is contained primarily only a 
purely instinctive cognition, He feels at once, and we with him, that we have never 
observed anything like a motion of the kind referred to, that a thing of such a char- 
acter does not exist. This conviction has so much logical cogency that we accept 
the conclusion drawn from it respecting the law of equilibrium on the inclined 
plane without the thought of an objection, although the law if presented as the 
simple result of experiment, ot otherwise put, would appear dubious. We cannot 
be surprised at this when we reflect that all results of experiment are obscured by 
adventitious circumstances (as friction, etc.), and that every conjecture as to the 

conditions which are determinative in a given case is liable to error. That Stevinus 

ascribes to instinctive knowledge of this sort a higher authority than to simple, 
manifest, direct observation might excite in us astonishment if we did not ourselves 

possess the same inclination. The question accordingly forces itself upon us: 
Whence does this higher authority come? If we remember that scientific demon 
stration, and scientific criticism generally can only have sprung from the conscious- 
ness of the individual fallibility of investigators, the explanation is not far to 
seek. We feel clearly that we ourselves have contributed nothing to the creation of 

instinctive knowledge, that we have added to it nothing arbitrarily, but that it 

exists in absolute independence of our participation. Our mistrust of our own 
subjective interpretation of the facts observed, is thus dissipated.” 

 



  

  
  

© PLATE 8 ° 

  

  

Vignette from the Title Page 

of Simon Srevin’s DE BEGHINSELEN. DER WEEGHCONST, 

or Principles of Statics (Leiden, 1586) 

“Wonder en is gheen wonder’? (‘A miracle, and yet it is no miracle’), said 
Stevin. The endless chain is in equilibrium in any position, and the hanging por- 
tion is by itself in equilibrium; therefore, he reasoned, the two inclined sections 

must balance each other, and either would be balanced by a section of vertical 

chain of length equal to the altitude of the triangle. Since the weights of the vari- 
ous portions of the chain are proportional to their lengths and since the force in the 
chain at the top of the incline is evidently equal to the weight of a vertical section, 
it follows that the force required to support a body resting on an inclined plane 
is to the weight of the body as the height of the plane is to its length. The ‘‘wonder’’ 
is the simplicity of the rule; that it really is “‘no wonder’ follows from the fact, 
admitted at once as self-evident, that the endless chain would never of itself start 

to slide on the plane, however frictionless, by virtue of its own weight. 

The remarks of E. Macu in his Science of Mechanics (Open Court, 1893), pp. 24-33, 

upon the nature of Srxvin’s reasoning will repay careful study. A translation of a 
portion of Srevin’s original paper will be found in W. F. Magie’s A Source Book in 
Physics (1935), pp. 23-37. See also H. Crew’s The Rise of Modern Physics (Williams 

& Wilkins, 1935), pp. 86-92, and J. Cox’s Mechanics (Cambridge University Press, 

1919), pp. 41-47.
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can be established only by experiment. If the principle is accepted 
as an experimental fact, it follows that several forces acting simultane- 

ously on a particle impart to the particle one definite acceleration 
which is the vector sum of the several accelerations produced by the 
separate forces. Since each force is proportional to the acceleration 

that it produces and is in the direction of this acceleration, it then 
follows that the vector sum of the separate forces is proportional to, 

and has the direction of, the vector sum of the separate accelerations. 
Thus the vector sum, or resultant, of any number of forces is that 

single force which would produce the same acceleration as 1s produced 

by the joint action of. the several forces. 

The forces acting on a particle are 

therefore added in the same manner 
as other vector quantities; namely, 

by placing end to end the directed 
lines which represent them and join- 
ing the extremities of the broken line 
so formed (Sec. 9). The magnitude 
and direction of the sum can be found  f¢, 23, Addition of two forces 
by the graphical method or, more 
conveniently and accurately, by the use of trigonometry. Thus the 
surh f of two forces f, and fe which include the angle @, Fig. 23, has 

a magnitude f and a direction 6, measured from f,, given by 

fP=fi? +fo? + 2 fife cos o, 

— ani (2 @=sin : (sin 6). 

  

[33] 

The vector sum of three or more forces may be found by adding 
the sum of the first and second to the third, this sum to the fourth, 
and so on. A better method, however, is given in Sec. 40. 

° 

The Resolution of Vectors into Components 

We have seen that vector addition enables us to replace any num- 

ber of vectors by a single vector called the vector sum. This process 

may be reversed and a single vector replaced by any number of 

vectors which, added together, give the original one.. This is called 

resolving a vector into componenis. 

39, Rectangular Components. In practice one usually resolves a 

vector into components that have the directions of the axes of a
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coordinate system. If rectangular coordinates are employed, these 
components will be at right angles to one another, and they are then 

referred to as the x-, y-, and z-components or rectangular com- 

ponents of the vector relative to the chosen axes. 

For the sake of definiteness, let us suppose that a certain force OF, 

Fig. 24, acts for an infinitesimal interval of time on a particle at 0. 

If OA represents the distance which the particle would move in one 
second by virtue of the velocity acquired through the action of the 

given force, then Ox evidently represents the distance moved in the 

direction OX during this second; that is, if OA represents the actual 
acceleration, Ox represents the acceleration in the direction OX. Now 

the component of the force OF in the direction OX is 0x’, and it is ob- 
vious from Fig. 24 that this component is 
equivalent, so far as motion along OX is 4 
concerned, to the given force OF. In 
other words, if the particle were free to 

move only in the direction 0.X, its motion 

under the action of the force OF would 
be precisely the same as though a force pig 24. Or is the component 
Ox’ were acting instead of OF. To help of OA in the direction OX 

visualize this latter statement, one may 

think of a car on overhead rails which is accelerated by means of 

a rope held by a man on the ground. It is apparent from the 
foregoing considerations that the component of a force in any 

specified direction could be defined as that force which, acting in 
the direction specified, would produce the same effect, so far as the 

motion in this direction is concerned, as is produced by the action of 

the given force. 

The process of finding the component of a vector quantity in any 
direction evidently consists in finding the orthogonal projection in the 

required direction of the directed line which represents the given 
quantity. Thus, in Fig. 24 the component of OA in the direction 0X 
has the magnitude 0x = OA cosa. In general, then, the rectangular 
component in the direction of any chosen coordinate axis ts the product 
of the magnitude of the given vector and the cosine of the positive angle 
which the vector makes with the positive direction of the chosen axts. 
Hence if a, 8, -y represent the three direction angles which a vector F 

makes with a certain set of rectangular axes in space, the magnitudes 

F,, F,, F, of the rectangular components are 

F,=F cosa, F,y=F cos 8, F,=F cos y. [34] 

  

Conversely, if we know. the rectangular components F,, F,, F. of 

a vector F, the magnitude and direction of the vector can be obtained
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by means of the relations 

P=Pe+F P+ Fe, 
F. [35] £, =% ok, Fe cos B= Th) cos Y= 

  

cos a= 

ExampLe. A bullet is fired with a muzzle velocity of 1,70 x 10% ft - sec—! 
in an eastward direction and at an angle of 31° 0' with the horizontal, 

Find the horizontal and vertical components of the muzzle velocity, 

Solution, Take the muzzle of the gun as the origin of rectangular axes 
and the eastward direction as OX (Fig. 25). Denote the horizontal and 

vertical components of the velocity by VW; and V, respectively. Then 

Ve=1.70 x 10 cos 31° = 1.46 x 10* ft. sec“! 
Vy=1.70 x 104 cos (90° — 31°) =1,70 X 10* sin 31° = 876 ft - sec". 

As a check obtain V, and V, by a graphical 

method. What would V. represent in this 
solution, and what is its value? 

EXAMPLE. Suppose that the gun in the 
foregoing example is mounted on a truck 

which has a velocity of 88 {t-sec~' 

east. Find the horizontal and vertical 
components of the muzzle velocity rela- 
tive to the earth. 

  

Fis. 25. A velocity resolved 
into x and y-components 

Solution. One method of solution is to add the velocity of the bullet 
relative to the truck to that of the truck relative to the ground, thus ob- 
taining the velocity of the bullet with reference to the ground; the horizon- 

tal and vertical components of the latter are the required components. 
The student should complete this solution and then compare it with the 

following one, which is briefer. 
Denote the required components by Vz and V,; then 

-70 X 10% cos 31°-+ B8= 1,55 x 103 ft sec}, 

.70 x 108 sin 31° = 876 ft - sec. 

  

40. Analytic Method of Adding Vectors. A very simple method of 
finding the vector sum of any number ef vectors is to choose rec- 
tangular axes and resolve each vector into rectangular components 
along these axes. The components parallel to any one axis are then 
added algebraically to obtain the component in that direction of 
the required sum. To illustrate the method, let us suppose that we 
wish to add just three vectors, fi, fe, fs, and that they all lie in the 
same plane, Choose any convenient pair of rectangular axes in the 
plane of these vectors, and let the angles which the vectors make 
with the X-axis be denoted by 04. a’, a3 (Fig, 26), If F represents the



  

3 - 40] Effect of Several Forces on a Particle 57 

sum of the given vectors and F, and F, are the rectangular components 
of this sum referred to the chosen axes, then 1 

7=3 

Fz =fi 08 a4 + fz COS a2 + f3 cos a3 = S f; cos ay, 

im [36] 
Fy =f sin Qy + fo sin 2 + fs sin a3 Shi sin Ay 

. iml 

The magnitude F of the required vector sum and the angle a which 
this sum makes with the X-axis can then be obtained by means of 
the relations v 

Fe = Fo? + FP, | fy 
i 

eg 
tana = Fy, [37] l 

s le 
2 

  t
S
 

x When the vectors to be _ “1 
added do not all lie in one O~VR A tycisa, feosa, 
plane, it is necessary to use 

three rectangular axes and to | 
resolve each vector into its h 

components in these three f, sina, 
directions. Suppose that the 
vectors fi, fe, fs do not lie in 

the same plane and that they Fig. 26. Illustrating the analytic method of 
make angles a1, a2, a3 wit adding vectors 
the X-axis, angles 81, 82, B3 

with the Y-axis, and angles yi, Ye, v3 with the Z-axis. If Fis the sum 

of the given vectors and F,, F,, F, are its components referred to the 
chosen axes, 

f, sin ay 

      fy nt 

. , t=3 

Fz =f cos ai + fz COs a2 +f3 cos as = > fi cos ay, 
a1 

i=3 

F, =fi cos Bi +e cos B2+fscos 8s => ficos B;, [38] 
7=1 

7=3 

F, =f; cos ¥1 + fe cos y2 + fs cos 3 = Df COs Yi. 
i=1 

The magnitude F of the required sum and its direction angles 
a, 8, y are then obtained by means of Eqs. [35]. 
  

ix3 

1 The symbol > J: cos a; is merely an abbreviated way of writing the sum f, cos a1 
i=l 

+ fa COS Qs + fs cos aa, and is read “the sum of the terms f; cos a;, where 7 has all 
the integral values from 1 to 3.”
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The Statics of a Particle 

41, The Meaning of Equilibrium. Siatics is the subdivision of dy- 
namics that deals with the conditions under which bodies are in 
equilibrium. A particle is said to be in equdlzbrium when itsmomentum 
is constant. Since the effect of a force is to change the momentum, 

it follows that a particle can be in equilibrium only when the vector 
sum of the forces acting on it is zero. It is important to see that 

equilibrium does not necessarily mean rest; rest is merely one case 
of constant momentum. A weight hung from a string and swinging 

like a pendulum is in equilibrium only when it is at the middle of its 
path, and this is just the moment when it is moving most rapidly ; 

at the ends of its path, where it is motionless, and at all other points, 

it is acted upon by unbalanced forces and hence is accelerated. Thus 
the criterion of equilibrium is not zero velocity but zero acceleration 

and hence zero force. 
42. Conditions for the Equilibrium of a Particle. When a particle is 

acted on by two forces that have the same magnitude but opposite 
directions, the particle must be in equilibrium, for the sum of the 

forces is zero; each force produces its own effect independently of 

the other, and these two effects just neutralize each other. Con- 

versely, if a particle is in equilibrium under the action of two forces, 

the forces necessarily must be equal in magnitude and opposite in 

direction, for otherwise their vector sum could not be zero. 

STEVIN was the first to prove that three forces acting at a point 

are in equilibrium when the directed lines representing them can be 

arranged to form a triangle. In general, when any number of forces 
acting on a particle are of such a nature.that the directed lines rep- 
resenting them form a closed polygon, the particle is in equilibrium, 
for the vector sum.of the forces then is zero. If the directions of 
three forces producing equilibrium are known, the relative magni- 
tudes of the forces can be found by constructing a triangle with its 

sides in the directions of the forces. 
If the particle under consideration is made the 6rigin of a rec- 

tangular system of coordinates, the conditions for its equilibrium 
under the action of m forces are, by Eqs. [88], 

=n 

F, = > fi cos as = 0, 
f=1 

F, = ¥ fi cos Bi=0, [39] 
ial 
tn 

F, =D cos y;=0;
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that is, the algebraic sum of the force components along each axis 
must be zero. This is evident from Eqs. [85]; for when F,=F, = 

F, = 0, then F = 0. 

EXAMPLE, Show by means of Eqs. [35] that the converse of the foregoing 
proposition also is true; that is, if a particle is in equilibrium, then 

F, = F,=F,=0. 

EXAMPLE. Show that if all the forces acting on a particle lie in one plane, 
then F,=0, and Eqs. [38] reduce to Eqs. [36]; also show that the 

latter equations can then be used to express the conditions for the 
equilibrium of a particle. 

Although a problem involving the equilibrium of a particle usu- 
ally can be solved by finding the conditions for which the vector sum 
of all the forces will be zero, or those for 

which the force polygon will be closed, 
the most general method, and the most 

useful one, is to set the algebraic sum of 

the x-, y-, and z-components of all the 

forces equal to zero, as in Eqs. [89], and 
solve the resulting equations. In order 
to become thoroughly familiar with this 
method, the student should use it in solv- 

ing most of his problems on equilibrium. ye. 27. The particle of the 
a . wire at O is im equilibrium 

EXAMPLE, A rock weighing 450 Ibwt is under the action of three forces 
fastened to a wire that is stretched 

between two posts, as shown in Fig. 27. Find the forces in the parts 
OA and OB of the wire. 

  

Solution. Take the point O as the origin of coordinates, and let F, and 

F, denote the forces in the wire. The forces involved in the problem are 

then Fi, Fe, and the weight of 450 Ibwt. All three of these act on the same 

particle O of the wire, and this particle is, by hypothesis, in equilibrium. 

By writing down the conditions for equilibrium, one obtains 

F, = Fy cos 45° + Fe cos 150° = 0, 

F, = Fy, sin 45° + F2 sin 150° + 450 sin 270° = 0. 

These equations give F, = 4.0 x 10? Ibwt and Fe = 3.3 x 10? lbwt. If these 
results do not look reasonable, they should be checked by solving the prob- 
lem graphically. 

EXAMPLE. Assume that the wire AOB, Fig. 27, could be stretched per- 

fectly straight, and find F; and F2 for thiscase. In view of your results, 

is it possible to stretch a wire perfectly straight between two points 

on the same level?
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EXPERIMENT III. ADDITION AND RESOLUTION 
OF FORCES 

The object is to show that forces follow the rules for the addition 
and resolution of vector quantities. 

Part I. The Force Table, Fig. 28 is a device for applying at a 
common point several known forces that make known angles with 
one another. The forces are applied by means of horizontal cords 
that run over pulleys on the rim of a graduated circle and carry ad- 
justable loads. A pin holds the junction of the cords in position 
at the center. When a test for equilibrium is to be made, the pin is 
removed. 

a. Imagine that two of the pulleys on the force table are set at 
the angles marked 30° and 150° and that weights of 100 gwt and 
150 gwt, respectively, are placed on the 

weight-hangers hanging over these pulleys. 
Calculate with the aid of Eqs. [33] the 
direction and magnitude of the vector 
sum of the two forces. When two or more 
students are working together on this ex- 
periment, each should make an independ- 
ent calculation, after which the results 
may be compared. 

Test the foregoing calculation experi- L 
mentally with the help of the force table. Fras 28- Force-table 
To do this, set two of the pulleys at the 

two given marks on the graduated circle and apply the given weights; 
remember that the weights of the weight-hangers, which will be found 
stamped upon them, supply part of the force applied to the ends. 
Then set a third pulley 180° from the calculated angle, apply the 
calculated weight, and remove the center pin. In order to make sure 
that friction is not a factor in producing equilibrium, displace the 
junction of the cords and tap the table; the junction should return 
to the center. Let the instructor see the results of this test before 
you begin the next part of the experiment. 

  

1, If the weight-holders on the force table are all the same weight, is 
it necessary to take them into account? Explain. 

2. When a particle is in equilibrium under the action of three forces, 
how does the vector sum of any two of the forces compare in magnitude 
and direction with the remaining force? 

b. Choose three forces that have different magnitudes and direc- 
tions and that lic in the same plane. Select a suitably orientated
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system of rectangular coordinates and caleulate the x- and y-com- 
ponents of each force. Then calculate the direction and magnitude 
of the vector sum of the three forces by the analytic method. 

Test the foregoing calculations with the aid of the force table, as 
in a. 

Part II. The Simple Crane. Construct the model of a crane shown 
in Fig. 29. Before putting the spring balance S in place, obtain its 
“zero reading” by hanging it in the particular 
position in which it is to be used in the experi- 
ment and observing its reading when there is no 
load on the hook. 

Hang a known weight W, say 1 kgwt, from the 
end 0 of the boom BO, and adjust the boom to 

a horizontal position with the aid of a spirit level 
or a steel square and plumb line. B oy 

Obtain the force in the cord PO by observing W 
the reading of the spring balance S. Fic, 29. Laboratory 

Measure the distances OP and PB. The point model of a simple 
B may be located by dropping a plumb line from crane 
P tothe boom. Use the known values of OP, PB, 
and the total load to calculate the force in the cord OP. Remember 
that the cord must support half the weight of the boom. (Why?) 
Compare the calculated result with the value obtained by observation. 

    

3. Find by the graphical method the vector sum.of the two forces 
specified in Part I, a, and compare the result with that calculated. In- 
clude the graphical construction in your report. 

4. Resolve the three forces of Part I, a, into x- and y-components, 
and verify the conditions of equilibrium expressed in Eqs. [39]. 

5. State as clearly and concisely as possible the conclusions which you 
draw from this entire experiment. 

6 

QUESTION SUMMARY 

1. What is meant by the sum or resultant of any number of forces? How 
is it found graphically? Describe two distinctly different methods for cal- 
culating it. 

2. What is meant by the component of a given vector in any specified 

direction? How is it found graphically? How computed? Illustrate, using 
force vectors. 

3. If the rectangular components of a vector are known, how may the 
magnitude and direction of the vector be obtained? Illustrate, using force 
vectors.
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4, If a particle is in equilibrium, what must be true regarding (a) its 

momentum? (8) the vector sum of the forces acting upon it? (c) the force 

polygon? (d) the algebraic sums of the x-, y-, and 2-components respec- 

tively? 

° 

PROBLEMS 

1. Does the experiment with the falling airplane bomb Gec. 2) afford 

any support for the principle of the independence of forces? 

2. (a) Show that the acceleration of a body sliding without friction down 

an inclined plane of length / and height A is (h/J)g. (b) Show that the speed 

acquired in sliding down the plane is the same as that acquired in falling 

through the vertical height 4. (c) By dividing the arc ad, 

Fig. 30, of a vertical circle into a large number of small 

inclined planes, show that a body sliding without friction 

down the arc ab acquires the same speed as though it fell b 

vertically from } toc. | 

3. It can be shown that the time of descent down all Z Le 

chords which start from the top of a vertical circle is the Fic. 30 

same. After you have proved this, consult Two New Proble 7 () 

Sciences, pp. 188-194, to see how GaLiLeo did it. om 

4. A man travels 4.0 mi south, then 6.0 mi in a direction 30° south of 
east, then 2.0 mi east, and finally 3.0 mi southeast. What is his final posi- 

tion relative to-his starting point? Ans. 13 mi, 44° south of east. 

5. A particle of mass 300 mg is acted on by forces of magnitudes 1, 2, 3, 
4, 5, and 6 dynes, all in the same plane. The angle between the first force 
and the X-axis, and between each force and the next, is 30°. Assuming these 

data to be correct to three significant figures, find (a) the sum of the forces 

and (b) the acceleration of the particle. 
Ans. (a) 15.3 dynes at 133° 5’; (6) 50.9 cm - sec~?, 133° 5’. 

6. Three forces, of 2.0, 4.0, and 6.0 dynes respectively, act on a particle 

and are directed along the diagonals of the three faces of a cube meeting 
at the particle. Determine their sum. 

Ans. 10 dynes, a = 55° 30’, 8 = 65°, y = 45° 

7%. The top of an inclined plane is 15m above the ground, and a car 

coasting down from the top traverses a distance of 1.5 m during the third 
second. If the friction is negligible, (2) what is the inclination of the plane? 
(b) how long does it take the car to coast down? Ans. (a) 3° 30’; (b) 29 sec. 

8. If friction is neglected, how much force would be needed to pull a 
toad of 1500 Ibwt up a 5-percent grade (percentage of horizontal distance) 
with constant speed? If the speed were changed uniformly from 5 mi- hr7! 

to 15 mi-hr7! in 12sec, what total force would be needed? What if the 
force of friction, which can be considered to be parallel to the incline, were 

10 lbwt per hundredweight of load? Ans. 75 lbwt; 130 lbwt; 280 lbwt.
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9. A bullet is fired from a gun with a velocity of 200m-sec-! at an 
angle of 30° 0’ with the horizontal. (a) How high will it rise? (b) At what 

distance from the gun will the bullet strike the earth? (c) If the gun had 
been on the top of a tower 335 m high, how far from its base would the bullet 
have struck the ground? Disregard the resistance of the air. 

Ans. (a) 510m; (b) 3.53 x 103m; (c) 4.03 x 103m. 

10. A man of 150 Ibwt standing in the middle of a tightrope depresses 

the middle of the rope 5.0 ft below the ends. If the rope is 60 ft long when 
thus stretched, what is the force in it? Ans. 4.5 x 10° lbwt. 

11. A bridge span (Fig. 31) is 5m high and = 
20m long. Find the vertical force and the 5 
horizontal thrust upon each of the piers in 
terms of the weight W which hangs from the G Le 
center of the span. Ans. W/2; W. Ww 

° / ee 10 —>|-— 10 | 
12. A particle is in equilibrium under the 

action of three forces, of magnitudes 10, 25, and Pic. 31. Problem 11 
30 poundals, all acting in the same plane. Find 

the angles between the forces. Ans. 69° 30’; 162°; 128° 30’. 

13. A 100-lb weight is hung from a horizontal beam by means of two 

strings, one of which is 60 in. long. The weight is 48 in. below the beam and 
the force in the 60-in. string is half that in the 

other string. Calculate the length of the sec- 
ond string and the force in each string. 

Ans. 50 in.; 37 Ibwt; 74 Ibwt. 

14. How much force parallel to the plane 
is required to hold a 20-kg weight on a smooth Fic. 32. Problem 15 
inclined plane 10m long and 6m high? Find 

also the force with which the weight presses against the plane. What 
horizontal force would hold the weight? Find the force against the plane in 
this case. Ans. 12 kgwt; 16kgwt; 15 kgwt; 25 kgwt. 

15. Neglecting friction, find the acceleration B 

and the force in the cord for the system shown in 
Fig. 32 when (a) $1 = 30°, o2 = 90°; (b) di = 30°, 
dz == 25°, Ans. (a) 0.70 g, 2.4 kewt; 

(b) 2.3 x 102 cm - sec—?, 1.5 kewt. 

16. A 1000-Ib weight is supported in the man- 
ner shown in Fig. 33. Find the forces in the cable 
OB and in the boom OA. 

Ans. 1.0 x 103 Ibwt, 1.5 x 103 Ibwt. 

17. A streetcar in which you are riding is 

traveling with a speed of 30 mi-hr-!. It nearly é 

runs over a man. The brakes are applied; the Fic. 33. Problem 16 

  

    Wes
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car goes 50 ft before stopping. At what angle with the vertical must you 
lean to keep from being thrown over? Ans, 31°. 

18. A weight of 17.5 kgwt is supported by a pulley free to move along 
the string fastened at A and B, Fig. 34. Angle BAC=90°, AC=/, BC=2 1, 

Find (a) the force in the string and (b) the 
inclinations of the two parts of the string 

with the vertical. Ans. 10 kgwt; 30°. 

19. A stone dropped from an airplane 
moving horizontally is in the air 10sec and 

strikes the ground in a direction making an 

angle of 70° with the horizontal. If air resist- 
ance can be neglected, what is the specd of 
the airplane? Ans. 1.2% 10? ft « secm!. 

20. If aman standing on a pier 25 ft above 
the water pulls in a rope attached to a boat Fis. 34. Problem 18 
at the rate of 2.0 ft-sec~', with what speed 

does the boat approach the pier (a) when it is 100 ft from the pier? (b) when 
it is 15 ft from the pier? (c) Derive a general expression for the speed v’ of 

the boat in terms of the speed » with which the rope is hauled in, the height 
h of the pier, and the distance d of the boat from the pier. 

Ans. (a) 2.1 ft sec“; (b) 3.9 ft -sec—!; (c) o' =n(h? + d2)4/a, 

  

o 

sevinus’s deduction [Plate 8]is ome of the rarest fossil indications that we possess in the primi 
S tive history of mechanics, and throws a wonderful light on the process of the formation of 
science generally, on its rise fram instinctive knowledge, We will recall to mind that Archunedes 

pursued exactly the same tendency as Stevinus, only with much less good fortime. In later times, 
also, instinctive knowledge is very frequently taken as the starting-point of investigations, Every 
experimentator can daily observe in himself the guidance that instinctive knowledge furnishes him, 
If he succeed in abstractly formulating what is contained in it, he will asa rule have made an 
important advance in science. 

Stevinus's procedure is no error. If an error were contained in it, we should all share it. 

lodeed, it is perfectly certain, that the union of the strongest instinet with the greatest power of 
abstract formulation aloné constitutes the great natural inquirer, This by no means compels us, 
however, to creaté a new mysticism out of the instinctive in science and to regard this factor ag 
infallible, ‘That xt is not infallible, we very easily discover... The instinctive is just as fallible 
a the distinctly conscious. Its only value is in provinces with which we are vety familiar. 

E. Maca, The Science of Mechanics (The Open Court 
Publishing Company, 1893), pp. 26-27, By per- 

mission of the publishers,
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A Plate from Varicnon’s 

PROJET D’UNE NOUVELLE MECANIQUE (Paris, 1687) 

Varicnon developed the principle of the parallelogram of forces independently of 
Newton, about 1687, and applied it to the solution of all sorts of statical problems, 

some of which are illustrated on this and the following plate.
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A Plate from Varicnon’s 

NOUVELLE MECANIQUE OU STATIQUE (Paris, 1725) 

Tuere are sixty-four such plates in Varianon’s book. The principle of the parallelo- 
gram of forces enabled him to treat of machines in a much simpler manner than had 
been the case previously, Many of the theorems and methods of presentation used 

in modern elementary textbooks on statics are taken from Varicnon.



  

CHAPTER: FOUR 

WORK, POWER, AND ENERGY 
F THE Activity of an agent be measured by its amount and its velocity conjointly; and if, 

I similarly, the Counter-activity of the resistance be measured by the velocities of its several 
parts and their several amounts conjointly, whether these arise from friction, cohesion, weight, or 
acceleration ; — Activity and Counter-activity, in all combinations of machines, will be equal 
and opposite. From the scholium to Newron’s third law of motion as translated 

from the Principia by Witt1ax Tomson (Lorp Kevin) and Psrer 
Guturze Tarr in their Treatise on Natural Philosophy 

° 

The basis of our modern civilization lies in the use of machinery, and 
there are no notions more intimately associated with a machine than 
are those of work, power, and energy. The physical concepts of work 
and energy originated in the study of simple machines, but it has 
been only gradually and with great difficulty that these concepts 
have attained their present positions of importance in physics. This 
is not strange, for energy is not a notion that comes readily out of 
one’s everyday experience, but is a scientific concept which has been 
created by physics for its own special purposes. It was not until 
the middle of the nineteenth century that the concept of energy 
reached the position of importance that it occupies today. This was 
brought about by the establishment at that time of the principle of 
the conservation of energy, perhaps the most important generaliza- 
tion that has ever been made. 

0 

Work 
43. Definition of Work. When a force acts. upon a body, the work 

done is defined as the product of just two factors, (1) the component 
of force in the direction of motion and (2) the distance through which 
the point of application of the force moves during its action.1 There- 
fore the defining equation for work is 

W=fcos¢-:s, [40] 

where f and s are the magnitudes of the force and displacement, re- 
spectively, and @ is the angle between these two vectors. It is ob- 
  

* This conception of work as the product of force and distance was introduced into 
physics in 1826 by the French mathematician J. V. PONCELET, at the suggestion of 
the French engineer and physicist. G. G. CoRIOLIS, 

65
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vious from this definition that the work performed by a force is also 

the product of (he force and the distance the body moves in the direction 

of the force. Work is a scalar quantity, for it has nothing to do with 

direction. Consequently, to get the total work done upon a body by 

several different forces, the work of each may be computed separately 

and then the ordinary algebraic sum taken. 

When the force varies from point to point on the path of the moy- 

ing body, we first must divide the whole distance into parts, each so 

small that the force may be regarded as constant in both magnitude 

and direction during the motion throughout it. Eq. [40] can then 

be applied to each small part and the resulting increments of work 

added to obtain the total work done. More precisely, if the whole 

distance be divided into » equal parts of length As, and if (f cos }); 

be the force component while the point of application of the force 

moves through the ith part, then the work done in the whole distance 

s is accurately 

Ww =lim[(J cos ob) As + (f cos p)2 As+---+(f cos b),+ As], [41] 

or, more briefly, | 

= lim Sf cos): As = fF cos ods, (421 i , = St 

the last abbreviation being that used in the integral calculus, 
44, Units of Work, The unit of work of course involves a unit of 

force and a unit of length. The cgs unit of work is the dyne-centimeter, 

more often called the erg; an erg of work is done when a body on 

which a force of one dyne acts moves one centimeter in the direction 
of the force. A larger unit is the joule, defined as 10’ ergs. 

Other units of work, used especially in mechanical and civil 
engineering, are the gravitational units centimieler-gram-weight, 
meter-kilogram-weight, fool-pound-weight, etc., the definitions of which 
are obvious from their names.' Since a gram of force is about 
980 dynes, it is evident that 1 cm- gwt is approximately equal to 

980 ergs. 
45. The Work Diagram. The direct calculation of the sum in 

Eq. [41] obviously is tedious, if not practically impossible, when the 
number of terms is large. The method of the integral calculus 
should be employed when possible to obtain the limit of this sum, 
  

‘These gravitational units of work are ordinarily called the centimeler-gram, 
meler-kilogram, fool-pound, etc., names which the student may continue to use, pro- 
vided he remembers that it is force and not mass that enters directly into the defini- 

tion of work.
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but it is often necessary to use a diagram of work for this purpose. 
In this diagram (Fig. 35), which is similar to the indicator diagram 

introduced by JOHN SOUTHERN! for use with 

the steam engine developed by JAMES WATT 

(1736-1819), the force component (f cos 9) is a 

plotted as a function of the displacement of 8 
the body. The actual work done evidently is “* 
represented by the area under the resulting é 

S; 5, s 
curve and can be calculated by measuring 
this area, due allowance being made for the Fic. 35. The shaded area 
scale in which the diagram is drawn. represents the work done 

in the displacement of 

EXAMPLE. Experiment shows that the force magnitude sz — sy 
needed to keep a spring stretched or com- 

pressed is proportional, within certain wide limits, to the first power 
of the displacement of the end of the spring from its unstrained posi- 
tion. When the spring of a certain safety valve is compressed from 
its unstrained length of 49.0 cm to a length of 45.0 cm, it then exerts 
a force of 232 kgwt. How much work will have to be done to com- 
press it from 46.0 cm to 43.0 cm? 

Solution. Here cos é@=1, and f= ks, where & is a constant of propor- 

tionality having the value 58 kgwt -cm7!. Ifa work diagram is drawn with 
the values of &s as ordinates and those of s as abscissas, the resulting curve 
will be a straight line (why ?), and hence 

w=3 CES) = 7.8 x 10? cm - kgwt, or 7.8 x 10° cm - gwt, 

The same result is obtained if the method of the calculus is employed 

(Eq. [42]) ; for 

w= fas=t f sds = $ k(so? — 51?) = 58(386 — 9) = 7.8 x 102 cm - kgwt. 
81 St 

EXAMPLE. Prove that the work done in operating a water motor for any 
given time is P AV, where P is the constant pressure with which the 

water is delivered to the motor and AY is the volume of water which 
passes through it. 

Solution. Suppose that the water enters the motor through an orifice of 
area A. The force f driving the water forward is then PA, and if this carries 
the water forward a distance s during the time under consideration, the work 

done is PAs. But As is the volume of water which has passed through the 
motor. Therefore the total work done is P AV. In cases where the pressure 
  

1H. W. Dickinson and R. Jenkins, James Wait and the Steam Engine (Oxford 

University Press, 1927), p. 229.
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varies during the operation, either the average pressure must be obtained or 

else the method of the calculus or the work diagram must be employed to 

compute the amount of work done. 

46. The Work Principle. The third law of motion (Sec. 32) asserts 
that force is dual in nature, that in the interaction of two bodies the 

first body exerts a force on the second and the second exerts a force 
on the first, and that these two forces are equal in magnitude but 

opposite in direction. The reasons for this assertion and some of 
its consequences will be discussed in Chapter 5. 

An additional and wholly distinct assertion is made in the 
scholium to the third law, quoted at the beginning of the present 
chapter. It is that in any particular machine, during any given time, 
the work of the acting forces is equal to the work of the reacting forces, 
whether these forces arise from friction, molecular forces, gravity, or 
inertia. This is a generalization from experiments upon all sorts of 
machines — levers, pulleys, the wheel. and axle, screws, inclined 

planes, and all combinations of these devices. It is to be noted that 

in all experiments in which there is acceleration, the resistance to the 
acceleration which the body offers because of its inertia must be 
included among the reacting forces; this inertial force must be put 
equal in magnitude and opposite in direction to that force whose 
single action would produce the observed acceleration; that is, equal 
to ~ma, m being the mass of the body and a its actual acceleration. 

If a force applied to a body does work by moving the body in the 
direction of the force, this work will be called posdtive. If the motion 

is in the opposite direction to the force, the work will be called negative. 

With these conventions in mind, the work principle is seen to assert 

that, during any given time, the algebraic sum of the work done by 

the acting and reacting forces is zero. 

o 

Power 

With the growing use of machines and of the steam engine in the 

latter part of the eighteenth century, it became important to have 

ways of describing them in terms of the rapidity with which they 

could do work. Thus James Watt, wishing to compare the practical 

value of his engine with that of a horse as a prime mover, made some 

actual experiments with horses and arrived at the estimate of 

33,000 ft - lbwt of work per minute for the average power of a horse.' 

  

1See *H. W. Dickinson and R. Jenkins, James Watt and the Steam Engine (Oxford 

University Press, 1927), pp. 353-356.
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47. Definition of Power. In ordinary language the word power has 

a variety of meanings, including especially ‘tthe ability to do some 

specific thing.”’ As a physical term it means téme-rate of doing work, 

and it should never be used in physics in any other sense. The de- 

fining equation for the average power of an agent is 

p=, : [43] 

where W is the work done in the interval of time 7. The power de- 
veloped at any instant is, of course, the limit of this average value 
when ¢ becomes very small, or, in the notation of the calculus, 

dw “ P= Te [48a] 

48. Units of Power. The cgs unit of power is the erg per second. 

Since this is inconveniently small, the unit usually employed is the 

joule per second, called the wati. The horsepower has, of course, lost 
its original significance and now means simply 33,000 ft - lbwt per 

minute: this is equal to 745.70 watts, or nearly three fourths of a 

kilowatt. The American horsepower, which is the unit of power now 
tmost commonly used in engineering practice in this country, is de- 

fined by the United States Bureau of Standards as exactly equivalent 

to 746 watts. 

Most practical measurements of work involve measurements of 
power, and this explains why electrical energy is measured com- 
mercialiy in kilowatt-hours. The &ilowati-hour is the work done in 

one hour by an agent working at the rate of 1000 watts; it is a unit 
of work, not of power. 

49. Relation of Power to Speed. When a body on which a force of 

magnitude f acts moves a small distance As, the force does work of 
amount AW =f cos ¢- As, where @ is the angle between the force 
and the displacement. If this is accomplished in the time Af, the 

power of the agent maintaining the force is 

_ 4, AW 4. fcosd: As _ _ As 
Pe im A A =Jcos $ lim 7 

Letting v denote the linear speed of the point of application of the 
force, we have then, from the foregoing equation and. Eq. [7], Chap. 1, 

P =fucos @. [44] 

This explains, for example, why the speed attainable by an automo- 

bile increases with the horsepower. 

EXAMPLE. At what rate, in kilowatts, is work done against gravity when 
an automobile of mass 140C kg moves up a 5° grade with a speed of 
30 km - hr7}?



OR details of the Newcomen engine and other steps in the development of the 
steam engine see Rhys Jenkins, Transactions of the Newcomen Society 3, 96-118 

(1922-1923); 4, 113-133 (1923-1924); A. P. Usher's A History of Mechanical 
Inventions (McGraw-Hill, 1929), Chap. 11; and R, H. Thurston's A History of 
the Growth of the Steam Engine, ‘The following quotation is taken, with the per- 
mission of the Council of The Newcomen Society, from the paper by Rbys Jenkins: 

“Te may be asked— to what extent was Newcomen an original thinker? 
Did the principle of the engine —the condensation of steam under a piston — 
originate with him? Briefly, the sequence of ideas may be sot forth thus = In 1654 
Otto von Guericke, of Magdeburg, carried out an experiment to show the pressure 

of the atmosphere, in which he used a cylinder and piston ; he connected the piston, 
by a rope passing over pulleys, toa heavy weight; then, by means of a small air- 
pump worked by hand, the air was exhausted from the cylinder, whereupon the 
weight was lifted by the pressure of the atmosphere upon the upper side of the pis- 
ton. In 1678-79 Huygens essayed to apply this idea to a motive power engine, and 
constructed an apparatus in which a vacuum was produced under a piston by the 
explosion of gunpowder. Papin in 1687 developed further the application of gun- 
powder, and then, in 1690, he proposed to produce the vacuum by the condensation 
of steam. To Papin then belongs the distinction of first. giving to the world the 
principle of the atmospheric engine. Whether Newcomen became acquainted with 
this proposal of Papin, or whether he arrived at it independently, we do not know. 
‘The apparatus devised by Papin for carrying out the iden was of a very crude char- 
acter, and, while perhaps suitable for laboratory purposes, was altogether unsuit~ 
able for use as an engine, Newcomen, on the other hand, embodied the idea in a 
practical form, and produced a successful engine. It is by mo means easy for us 
today to realize the difhculties which Newcomen had to surmount. Mechanical 
engineering as we understand it had not come into existence. Smiths had attained 
toa high degree of skill in their craft, but workmen for other branches were un 
trained: while the range of materials available for construction was quite limited. 
Newcomen grasped what was possible to do under the existing conditions, and he 
devised 4 machine which it was possible to build with the materials, tools, and 
men at his disposal; a machine which, when built, worked successfully. 
“In 1765 James Watt invented the separate condenser. This improvement, 

according to which the steam, instead of being condensed in the engine cylinder, 
‘was condensed in a separate chamber, resulted in a very considerable saving of fuel; 
but engines of the Newcomen form continued to be built long after this, and at least 
one of them is in use to the present day. 

©The Jabours of James Watt brought the steam engine to a high pitch of per- 
fection, both as to economy in operation, and to mechanical construction, but it 
would seem that his admittedly great merit has been allowed, in the public esti- 
matian, to overshadow the pioneer work done by Thomas Newcomen.” 
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Henry Bercuton’s Drawing 

of Newcomen’s Steam Engine (1717) 

Reduced from 74 X 74 in. 

Tue engine of Taomas Newcomen, erected at Griff in Warwickshire, England, in 

1712, was the first cylinder-and-piston steam engine of which there is any record, 
and this rare print, which is reproduced through the courtesy of The Science 
Museum, London, and The Newcomen Society, is the earliest known document of 

any kind dealing with its construction. The operation of the Newcomen engine, 
which was used for pumping water from mines, was briefly as follows : Steam from 
the boiler B entered the cylinder C and lifted the piston. A jet of cold water then 
condensed the steam, leaving a partial vacuum in the cylinder, and the pressure of 
the air forced the piston down again. It was through studies of a model of this 
engine at Glasgow University that James Warr was led to his important discoveries 
and to the improvements which made the steam engine an efficient machine suitable 

for driving factories as well as for pumping water from mines,
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Solution. Here f = mg = 14 - 10° - 980 dynes; » = 833 cm-sec™!; cos¢ 

== sin 5° = 0.0872. Therefore, by Eq. [44], 

P=1.0 x 10% erg -sec7! = 10 kw. 

EXAmMpLe. If, because of. friction, the force required to keep the auto- 
mobile in the preceding example moving 30 km - hr~+ on a straight, 

level road is 5 percent of its weight, what power must the engine de- 
velop in going up the grade? How many kilowatt-hours of work does 

the engine do in 5.0 min? Ans. 16 kw, 1.3 kw - hr. 

le} 

Energy 

50. Kinetic Energy of Translation. It was stated in Sec. 46 that 
NEWTON’S assertion made in the scholium to the third law of motion 
is equivalent to the statement that in all mechanical operations the 
work done by the acting forces is equal to the work done against 

the resisting forces. If all these resisting forces except inertia are 

absent in a given case, then the only effect of the forces acting on a 

particle is to change the speed of the particle. Now a particle that 

has acquired speed itself becomes possessed of the capacity for doing 
work, for it can now move itself against frictional resistance, com- 

press a spring, raise itself against gravity, or by impact overcome the 
inertia of some other body. This capacity for doing work that a 

body possesses in virtue of the speed which has been communicated 
to it is called kinetic energy. 

As the simplest case, let a particle of mass m acquire a speed v 
under the action of a constant force of magnitude f which is applied 

for a time f and in that time moves the particle a distance s in the 

direction of the force. Next let the particle be brought to rest by 

the action of an oppositely directed constant force f’ which requires 
a time ?’ and a distance s’ in order to destroy the speed v. The 
work W done in setting the particle in motion is fs, and the kinetic 

energy E, or work which the particle is capable of doing because of 
its speed, is by definition f’s’. Now f is measured by the rate at 

which it imparts momentum and f’ by the rate at which it destroys 
momentum or, by Eq. [22], Chap. 2, 

f=Kma and f’= Kma'. 

Also, since the forces and hence the accelerations are assumed to be 

constant, the distances s and s’ are, by Eq. [17], Chap. 1, 

y2 gy’? 

=e and 7 . 

ea e230 
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=fs— a er Hence W =js= Kmay7= K 5 mv, 

’ — flof , vl wl 19 and E = f's’ = Kma ag 5 mo". 

But, by hypothesis, the speed » imparted by f and the speed v’ 
destroyed by f’ are the same; therefore 

W=E=K-km?. [45] 

Thus, if the only resistance is that due to inertia, the kinetic energy 

of translation imparted to a body by the action of.a-force is equal to 
the work done upon it. This conclusion holds equally well when f 
and f’ are variable, for it is only necessary to conceive of them as made 

up each of the same number of very small elements, each element 

being a constant force; then » will be the speed gained under the 

action of one of these constant elements of f and destroyed under 
the action of the corresponding element of f’. 

According to Eq. [45], kinetic energy! E is proportional to 4 mv?. 
This expression enables us to calculate the kinetic energy of a particle 
at any instant without having any knowledge of the forces which 

produced the motion or of the previous history of the particle, pro- 
vided we know its mass and speed at the instant in question. Since 
the kinetic energy depends on the square of the magnitude of the 

velocity and hence not on direction, it is a scalar quantity. It is a 
quantity equivalent to work and hence is measured in the same units 
as work. If cgs units are used, the constant K in Eq. [45] obviously 

is unity and E =4 mw? dyne - cm, or ergs. [46] 

If m is in kilograms, and v in meters per second, E in Eq. [46] is in 
joules, not kilogram-meters. (Why ?) 

51. Comparison of Kinetic Energy and Momentum. For over half 

a century a controversy raged between the followers of RENE 
DESCARTES (1596-1650) and of GOTTFRIED WILHELM LEIBNIZ (1646- 
1716) as to whether the ability of a moving object to overcome op- 

posing forces and to produce changes in other bodies was proportional 
  

1 The term energy was first used to denote mv? by THOMAS YOUNG in his course of 

lectures on natural philosophy given in 1801-1803 at the Royal Institution in Lon- 

don; the passage is reproduced in *A Source Book in Physics (1935), pp. 59-60. It 

was used in its present sense of mv?/2 by LorD KELVIN [Mathematical and Physical 

Papers (Cambridge University Press, 1884), Vol. 2, p. 34, footnote; also, Treatise on 

Natural Philosophy (Cambridge University Press, 1912), p. 222]. Still earlier (1695) 

LEIBNIZ had called mv? the s¢s viva, or “living force,” a term which was later applied 
Oy CORIOLIS to my? /2.
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to the velocity or to the square of the velocity.! It turns out that 
both of these views are correct; every moving body has both mo- 
tentum mv and kinetic energy mv?/2, and which we should choose in 
a given case depends on the purpose in view. Thus, for the particle 
considered in Sec. 50, we may write 

fs=im’=E, [47] 

But by Newton's second law we have also f = ma = mu/t, or 

fl=mo= p. [48] 

Eq. [47] tells us how far and Eq. [48] how Jong the particle will con- 
tinue to moye against a given force f before it can be brought to 
rest. Hence the time required for a bullet to be brought to rest by a 
wooden target depends on its momentum, whereas the distance it 
will penetrate the target depends on its kinetic energy. 

The quantity ff in Eq. [48] is called the impulse * of the force. 
Thus change of momentum depends on the impulse of the force, 
whereas change of kinetic energy depends on the work done by the 
force. 

The Cartesian point of view, adopted by Newton and followed in the 

present text, makes force, mass, and momentum the basic mechanical con- 
cepts. The fundamental equation in this system is Eq. [48], and force 
(= p/t) is measured by the time-rate of change of momentum or, in the cal- 

culus notation (Eq. [21], Chap. 2), by 

s=&. [484] 
The Leibnizian view, followed by Huycens, J. V. PonceLET, and others, 
makes work, mass, and energy the basic concepts. The fundamental equa- 

tion then is Eq. [47], and force (= E/s) is measured by the space-rate of 
change of energy or, in the notation of the calculus, by 

=e, 
i= ds 

Many modern thinkers, arguing that kinetic energy has objective reality 

whereas force does not, regard the latter view as the sounder philosophically. 

52. Potential Energy. Let us consider a case in which the resist- 
ance experienced by the working force is gravity alone, as when an 
object of mass m is pulled from the floor to the ceiling. The work 

[47a] 

  

1See *A Source Book in Physics (1935), pp. 50-60, for excerpts from some of the 
more important papers bearing on this controversy. 

2 This use of the term impulse was first proposed in 1847 by the Frenchman 
J. B. BELANGER; it was later adopted by J. CLERK MAXWELL in his Matter and 
‘Motion (London, 1876), Art. XLIX.
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done on the body is the force of the pull times the distance to the 
ceiling. The pull is a variable force, being a little greater than the 
weight of the body when the motion is starting and a little less 
when it is stopping. The kinetic energy imparted to the body dur- 
ing the initial instants, when the speed is being acquired, is all given 
back during the final instants, when the speed is being lost. Taking 
the operation as a whole, no speed is imparted; hence, neglecting 
air friction, the only resistance is gravity. Then, by the work 
principle stated in Sec. 46, the work which has been done upon 
the body is equal to the work against gravity, the latter being the 
weight mg of the body times the distance h to the ceiling, or mgh. 
But in this case, as in that of Sec. 50, in which the resistance was 
inertia alone, the work may all be regained without the expenditure 
of any more work on the part of the agent. For, if the body be 
dropped from the height h, its speed just before hitting the floor is 
given by 0? = 2 gh, and thus its kinetic energy is mv?/2 =m - 2 gh/2 
= mgh. In other words, if the body be attached over a light, fric- 
tionless pulley to another body of mass m, it is capable when it 
descends of lifting the latter through the height #. This ability to 
do work which a body possesses in virtue of its position is called 
potential. energy.’ If work be done against molecular force alone, as 
when a spring is compressed, the work can be regained by releasing 
the spring, which, when compressed, is possessed of potential en- 
ergy. Potential energy is, then, in general, any capacity for doing 
work thai is put into a system by a change in the position of its parts 
against the forces which hold them together. 

From our discussion of kinetic and potential energy it is evident 
that we may define energy as the capacity for doing work: or, 
better still, since we shall see later that a body or system may pos- 
Sess an enormous store of energy that is not available for work, the 
energy of any system is that property which diminishes when the SYS- 
tem does work on any other system by an amount equal to the work 
so done. 

53. Conservative Forces. We have seen that when the resisting force 
is gravity or molecular force alone, an amount of potential energy 
equal to the work done is stored up; likewise, when the resistance 
is inertia alone, kinetic energy equal to the amount of work done 
appears. But when the resistance is friction alone; the work done 
cannot be entirely regained; a moving body that is opposed by fric- 
  

1 This term was first used by the Scottish engineer W. J. M. RANKINE in a paper 
read before the Philosophicai Society of Glasgow in 1853. See Rankine’s Scientific 
Papers (Griffin, 1881), pp. 203, 229,
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tion loses kinetic energy as its velocity decreases, but it does not at 
the same time gain an equivalent amount of potential energy. 

When forces like that of gravity or of elasticity act, the total 

kinetic and potential energy of the bodies is conserved; that is, 

E+V<=constant, where V denotes the potential energy. Hence 

such forces are called conservative forces, and any system of bodies 
between which the forces are wholly conservative is called a con- 
servative system. The fundamental characteristic of a conservative 

force is that the work which it does during a displacement of a body 

from one point to another depends only upon the initial and final 
positions, not upon the path followed; for example, when an object 

of mass m falls in vacuum from any point in one horizontal plane 

to any point in a lower parallel plane at a vertical distance h, the 

work done is mgh, regardless of the path. Friction, on the other 

hand, is.a nonconservative force, for it causes a permanent decrease 

of the kinetic and potential energy of a system, regardless of. the 

direction in which the motion takes place. The work done in mov- 

ing a body against a nonconservative force depends on the path 

followed and not alone on the initial and final positions. 
54. Heat as a Form of Energy. We have seen that GALILEO, 

HuycEns, and NEwron divined the principle of conservation of en- 
ergy so far as isolated conservative systems were concerned. But it 
remained obscure as to what became of the energy expended against 
friction. It is true that the suggestion had been made, even before 

NEWTON’S time, that heat is simply a mode of motion. ‘The very 
essence of heat . . . is motion and nothing else,” said FRANCIS BACON 
in his Novum Organum (1620), and a similar view was later held also 

by ROBERT BOYLE ! (1627-1691), ROBERT HooKE ? (1635-1703), and 

others. Toward the end of the eighteenth century, however, the 
doctrine that heat is an indestructible fluid came into favor, and this 

led to the idea that the energy expended against friction is lost. 

  

1BoyLeE wrote: “If a somewhat large nail be driven by a hammer into a plank, 

or a piece of wood, it will receive divers strokes on the head before it grows hot; but 

when it is driven to the head, so that it can go no farther, a few strokes will suffice 

to give it a considerable heat; for whilst at every blow of the hammer, the nail enters 

farther and farther into the wood, the motion, that is produced, is chiefly progressive, 

and is of the whole nail tending one way; whereas, when that motion is stopped, 

then the impulse given by the stroke, being unable either to drive the nail further on, 

or destroy its entireness, must be spent in making a various vehement and intestine 

commotion of the parts themselves, and in such an one we formerly observed the 

nature of heat to consist” [Of the Mechanical Origin of Heat and Cold (1675), Sec. II, 

Exp. VI, pp. 59-62; Works, ed. by T. Birch (London, 1772), Vol. IV, pp. 249-250]. 

2“ Observation VIII,” Micrographia (1665), p. 45.
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The first to investigate the nature of heat without prejudice in 

favor of any particular theory was the versatile CoUNT RUMFORD 
(BENJAMIN THOMPSON), an American Tory, who, after having fled 
the United States during the Revolution, enlisted himself in the 

service of the Elector of Bavaria and was put in charge of an arsenal. 

From qualitative experiments on the production of heat in the 
boring of cannon, made in 1798, he was led to conclude that ‘any- 

thing which any insulated body, or system of bodies, can continue 

to furnish without limitation, cannot possibly be a material sub- 

stance.” 1 Heat must be motion, RUMForRD decided, and this view 
received complete quantitative confirmation when JAMES PRESCOTT 
JOULE, in a series of famous experiments extending from 1840 to 

1878, demonstrated the equivalence of heat and work by showing 
that for every definite amount of work done against friction there 
always appears a definite quantity of heat? 

55. Joule’s Equivalent. The experiments of JOULE consisted in 
transforming work into heat in as large a variety of ways as possible, 
by causing various substances to rub against one another, by per- 
cussion, by compression, by the generation of electric currents, the 
energy of which was finally dissipated in heat, and so forth. The 

experiments usually were so arranged that the heat generated was 

taken up by a given quantity of water, and it was observed that a 
given expenditure of mechanical energy always produced the same 

rise of temperature in the water. 

The quantity of mechanical energy which, if entirely converted 
into heat, is capable of raising the temperature of a unit mass of 

water one degree is called Joule’s equivalent or the mechanical equiva- 
lent of heat. This important experimental constant is designated 
by the symbol 7. It was first calculated by J. R. MAYER in 1842 
from assumptions which were at that time very uncertain. The first 
direct experimental determinations were those of JOULE, but the 
best modern value is that obtained by LaBy and HERcus? in 1927. 

  

1For an account of some of these experiments see * The Life and Works of Count 

Rumford (Macmillan, 1876), Vol. II, pp. 471-493; also * A Source Book in Physics 

(1935), pp. 151-161. 

2 Philosophical Magazine 28, 263, 347, 435 (1843), et seq.; Philosophical Transac- 

tions 140, 61 (1850). JOULE’S experiments on the mechanical equivalent of heat cov- 

ered a period of about forty years. Reference to the papers themselves is necessary 

if one is to gain a correct idea of the enormous experimental labor they represent. 

See The Scientific Papers of Jamies Prescott Joule (London, 1884, 1887). Excerpts are 

given in *A Source Book in Physics (1935), pp. 203-211. See also *A. Wood, Joule- 

and the Study of Energy (Bell, 1925). 

3 Philosophical Transactions 227, 62 (1927).



IGURE 1 shews the cannon used in the foregoing experiments in the state it 
‘was in when it came from the foundry. 
“Fig. 2 shews the machinery used in the experiments No. 1 and No. 2. The 

cannon is seen fixed in the machine used for boring cannon. w is a strong iron bar 
(which, to save room in the drawing, is represented as broken off), which bar, 
being united with machinery (not expressed in the figure) that is carried round by 
horses, causes the cannon to tumn round its axis. 

"iw is a strong iron bar, to the end of which the blunt borer is fixed ; which, by 
being forced against the bottom of the bore of the short hollow cylinder that re- 
mains connected by a small cylindrical neck ta the end of the cannon, is used in 
generating Heat by friction. 

“Big. 3 shews, on an enlarged scale, the same hollow cylinder that is represented 
on asmaller scale in the foregoing figure. It is here seen connected with the wooden 
box (g,h, i,k) used in the experiments No. 3 and No, 4, when this hollow cylinder 
was immersed in water. 

“p, which is marked by dotted lines, is the piston which closed the end of the 
bore of the cylinder. 

“jis the blunt borer seen sidewise. 
"4. ecis the small hole by which the thermometer was introduced that was used 

for ascertaining the Heat of the cylinder. To save room in the drawing, the cannon 
is represented broken off near its muzzle ; and the iron bar to which the blunt borer 
is fixed is represented broken off atm. 

Big. 4 is a petspective view of the wooden box, a section of which is seen in 
the foregoing figure. (See g, h, 1, k, Fig. 3.) 

"Fig: 5 and 6 represent the blunt borer n, joined to the iron bar m, to which it 
was fastened. 

“Fig. 7 and 8 represent the same borer, with its iron bar, together with the 
piston which, in the experiments No. 2 and No. 3, was used to close the mouth of 
the hollow cylinder." 

Plate 12 and the foregoing description were taken from Rusorn's paper, "An 
Inquiry Concerning the Source of the Heat which is Excited by Friction," read 
before the Royal Society on January 25, 1798, and published in the Philosophical 
Transactions 88, 80 (1798). It is reproduced in The Life and Works of Count Rum- 
ford (Macmillan, 1876), Vol. Tl, pp. 471-493. Excerpts will be found in W. F. 
Magie's A Source Book in Physics (1935), pp. 151-161, and A. Wood’s Joule and the 
Study of Energy (Bell, 1925).
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These investigators used a continuous-flow calorimeter and obtained 

the value? J = 4.1852 + 0.0006 joules 
per gram of water heated from 14.5° C to 15.5° C. 

56. The Principle of Conservation of Energy. The clear and definite 
establishment of the principle of conservation of energy ? is due to 
JouLs, J. R. MAYER, HERMANN VON HELMHOLTZ, RUDOLF CLAUSIUS, 
and WILLIAM THOMSON (later Lorp KELVIN), about the middle of the 
nineteenth century?; and after the experiments of JOULE, it became 

generally recognized as one of the most fundamental and fruitful of 
all our physical laws. The principle asserts that the sem total of the 
energy in any isolated system remains the same. This energy can change 
from one form to another, and, as we shall see as we pursue our study 
of physics, it tends constantly to become less and less available; but 
it was not observed to change in amount in any case in which it was 
absolutely certain that no energy had either entered or left the system. 

Thus every physical or chemical change of condition has a fixed 
mechanical equivalent; that is, it can be equated, under all circum- 

stances, to one and the same amount of mechanical work. In other 

words, whenever a change takes place in the condition of a body be- 

  

1R. T. Birge, Reviews of Modern Physics 1, 30 (1929). : 

2For an account of the history of the principle of conservation of energy and an 

objective appraisal of the merits of the various claims put forward for MAYER, JOULE, 

Carnot, SEGUIN, and CoLDING, see G. Sarton, Isis 18, 18 (1929). An account of the 

interesting anticipations of the principle by the famous Swiss anatomist_and physiolo- 

gist ALBRECHT VON HALLER (1708-1777) is given by P. S. Epstein, Thermodynamics 

(Wiley, 1937). 
3 J. R. Mayer, “Bemerkungen tiber die Krafte der unbelebten Natur” (‘Remarks 

on the Forces of Inorganic Nature”), Annalen der Chemie und Pharmacie 42, 233 

(1842); a translation by G. C. Foster (1862) is reproduced in *A Source Book in Physics 

(1935), pp. 197-203. MAYER published elaborations of his views in many other papers. 

See collection of J. J. Weyrauch (Stuttgart, 1893); translations of some of these will 

be found in the Philosophical Magazine (4) 28, 25 (1864); 25, 241, 387, 417, 493 (1863). 

H. Helmholtz, ‘Ueber die Erhaltung der Kraft” (‘On the Conservation of En- 

ergy”) (Berlin, 1847). See *A Source Book in Physics (1935), pp. 212-220. 

R. Clausius, ‘Ueber die bewegende Kraft der Warme”’ (“On the Motive Power of 

Heat”), Poggendorff’s Annalen der Physik und Chemie 79, 368, 500 (1850). Transla- 

tions are given in * The Second Law of Thermodynamics, ed. by W. F. Magie (Harper, 

1899), pp. 65-107, and in *A Source Book in Physics (1935), pp. 228-236. CLAUSIUS’S 

papers on the mechanical theory of heat are collected in his Die M echanische Warme- 

theorie (Wieweg, 1867-1879); there is a translation by W. R. Browne (Macmillan, 

1879). 
W. Thomson, ‘On the Dynamical Theory of Heat,” Philosophical Magazine (4) 4 

(1852); also in Mathematical and Physical Papers (Cambridge University Press, 

1882-1911), Vol. 1, p. 174. It is reprinted in * The Second Law of Thermodynamics, ed. 

by W. F. Magie (Harper, 1899), pp. 111-147. Excerpts are given in *A4 Source Book 

in Physics (1935), pp. 237-247,
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cause of the expenditure upon it of mechanical energy (kinetic or 
potential), the change is equivalent to the work done, in the sense 

that if the body can be brought back to its original condition, the 

whole of the energy expended may be regained in the form of either 

work or equivalent heat. 

Applied to a mechanical problem, the principle asserts at once that the 

kinetic energy of a moving body is equal to the work done in setting it in 
motion. Applied to a chemical problem, it asserts, since the oxidation of 
1 g of carbon generates enough heat to raise approximately 7900 g of water 
through 1°C, that, if it were possible to directly pull apart the united 

carbon and oxygen atoms, 7900 x 4.19 j of work would be required to secure 
1 g of carbon from the carbon dioxide. Applied to an electrical problem, 

the principle asserts that if it requires 1000 m - kgwt of work per second to 

drive a dynamo, then the work which this dynamo does per second in the 

motors which it runs, plus the heat developed in all the machines and in all 
the connecting wires, must be exactly equal to 1000 m - kgwt. 

Tt is an essential part of the method of physical science to search 

for the physical quantities that remain constant amid the variations 
of nature, for the laws that prevail, and for the concepts that can be 

retained as permanent. Nothing illustrates this better than the his- 
tory of the principle of the conservation of energy. Like all the 
very fundamental laws of science, this principle is not capable of 
direct proof. It can be tested for any one kind of physical change by 

experiments like those of JOULE, but as a generalization it rests upon 
universal experience rather than upon any particular experiment. It 

describes nature in a way that is consistent with known facts, and has 

proved itself of basic importance in all the physical sciences and in 

engineering; yet it is to be accepted as a correct description only so 
long as no phenomena are discovered with which it is inconsistent, 

© 

Application of the Principle of Conservation of Energy and the 

Work Principle 

The principle of conservation of energy may be regarded as compre- 
hending the whole of abstract dynamics, because the conditions of 

equilibrium and of accelerated motion, in every case, may be derived 

from it. Together with the more restricted work principle (Sec. 46), 

it therefore furnishes a powerful method for the general solution of a 

large number of physical problems. Although NEWTOoN’s laws, as 
set forth in Chapter 2, are adequate to deal with any ordinary me- 
chanical problem, the energy and work principles often have the



‘OULE'S procedure in his earlier experiments was simply as follows: The tem 
perature of the calorimeter containing the frictional apparatus was taken; the 

Tead weights ¢, ¢ wete raised to a height measured by means of the scales k, kj 
the roller f was pinned to the axis of the paddle mounted inside the calorimeter ; 
the weights were then teleased and the paddle revolved until the weights reached 
the floor. This process was repeated twenty times and the final temperature was 
taken. 

Tn the final form of the apparatus the paddle was tapidly turned by hand-wheels 
4, ¢, and the calorimeter, instead of resting on a fixed stool, was suspended from the 
vertical shaft b which carried the paddle. The work done was measured by means 
of a dynamometer which balanced the torque acting on the suspended calorimeter 
(due to the rotation of the paddle) by a torque produced by the tension in cords 
wrapped around an accurately turned groove in the surface of the calorimeter. ‘The 
cords passed over pulleys and supported weights k just sufficient to keep the 
calorimeter in equilibrium. If this torque is constant and of magnitude L, and if 
the paddle makes N revolutions per second, the work done per second is 2 #LN. 

Joure performed many experiments in which heat was produced by friction in 
water, mercury, and sperm oil, by friction of cast iron on.cast iron, by transmission 
of electric currents through resistances, etc, Reference to the original papers them- 
selves is necessary if one is to form a correct idea of the enormous experimental 
labor they represent and the great care with which the experiments were per~ 
formed, See Philosophical Magazine (3) 23, 263, 347, 435 (1843), et seq.; Philor 
sophical Transactions 140, 61 (1850); 169, 365 (1878); also Scientific Papers (Taylor 
and Francis, 1884, 1887), pp. 149, 298, 632, etc. 
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advantage that they enable us to treat whole groups of problems by 
more or less routine forms and so to dispense with the minute dis- 
cussion of them. This is an advantage, and a very important one, 

that every general principle has. Thus, for example, the work prin- 

ciple often relieves us of the necessity of troubling ourselves about the 

details of a machine. As MAcH has pointed out, every principle of 

this character possesses therefore a distinctly economical value. 

EXAMPLE. An open knife of mass m is dropped from a height h onto a 

wooden floor. The blade penetrates a distance s into the wood. Find 
the average resistance that the wood offers to the blade. 

Solution. Let us first employ the detailed method of Chapter 2. The 

average resistance, being a force, is measured by the product of the mass 
stopped and the average acceleration with which it is stopped. Just before 

the knife touches the floor, its speed is »= V2 gh. This speed is lost in 
penetrating the wood a distance s, and hence the average acceleration is 

a= 1°/2s = gh/s. The force required to give the knife this acceleration 

is ma = mgh/s. But if the knife had simply been placed in contact with 
the floor, without having any speed, it would have exerted a force mg on the 

wood because of its weight. The total average resistance F offered by the 

wood is therefore re mgh me mg(h+ 

~  s a= s . 

This result could have been obtained at once simply by writing the equa- 

tion that expresses the work principle — that the work done by the acting 
force must equal the work done by the resisting force; thus mg(h + s) = Fs. 

In applying the work principle it is essential to keep in mind all 
four types of possible resistances: friction, molecular force, gravity, 

and inertia. 

EXAMPLE. What average force must be applied to a kilogram weight to 
raise it 5m above the earth and at the same time give it an upward 

speed of 10 m - sec~1? 

Solution. Here the resisting forces are gravity and inertia. The work , 

done against gravity is mgh; that against inertia is 4m”. Therefore 

Fh=mgh+4me?, or F=2kgwt. 

The student should also solve this example by the method of Chapter 2. 

EXAMPLE, The 1500-lb ram of a pile-driver is dropped on a 500-Ib pile 
from a height of 10 ft above the top of the pile. The ram and pile 
adhere and immediately after impact have a common speed of 
20 ft-sec71, The pile is driven a distance of 2.0 in. into the ground. 
By considering the potential and kinetic energies involved, find (a) the 

speed » of the ram just before impact and (b) the space average of the 
resistance F offered by the ground to the motion of the pile and ram.
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Solution. a. The initial potential energy of the ram is (1500 - 32-10) 
ft - poundals, and its kinetic energy at the moment before it strikes the pile 
is 4(1500 - »?) ft -poundals. By equating these two energies, one obtains 

y= V2 -32-10 ft - sec71 = 25 ft- seem. 

b. The kinetic energy of the system ram-pile just after impact is 
$(1500 + 500) (20)? ft -poundals, and the work done in stopping it is 
j-4ft-poundals. By equating these two quantities, one obtains finally 

f=75 x 108 lowt; 

this is the force required to overcome the kinetic energy of the pile and 
driver. In order to find the total resistance F, the weight of the pile and 

driver must be added to f. Therefore 

F= (75 x 108) + 2000 = 77 x 10° Ibwt. 

Attention is called to the fact that the kinetic energy of the system ram- 

pile just after impact is less than the kinetic energy of the ram just before 

impact. Since there is always loss of mechanical energy on impact (see 
Chapter 5), one must never attempt to solve an impact problem by equating 
the kinetic energies before and after collision. Methods for solving such prob- 

lems are given in Chapter 5. 
o 

Friction between Solids 

The only case of friction which will be considered now is that of one 

solid body moving over another. We will come back in Chapters 10 
and 13 to such complicated phenomena as fluid friction and the re- 
sistance offered by a fluid to a solid body passing through it. 

57. Experimental Facts regarding Sliding Friction.1_ Suppose that 
the block in Fig. 36 is accelerated by a force of magnitude fi, applied 

parallel to the surface of contact. If the 
magnitude of the frictional force opposing 
this motion be denoted by fe, and the 

mass of the block by m, the acceleration 
is (f1 —fe)/m. Evidently, if the block is 

made to move with constant speed, then Fic. 36. Motion of a block 

fi =fe, or the applied force is exactly along a rough horizontal plane 
equal to the friction. Thus we have a 
way of finding experimentally the frictional force between any two 

surfaces when a definite force presses them together and the speed 

has a definite value. Experiments of this kind were first made by 

  

  

1Read *R. S. Ball, Experimental Mechanics (Macmillan, 1888), Lecture V, ‘The 

Force of Friction,” pp. 65-84.
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LEONARDO DA VINCI! (1452-1519), the celebrated artist and engineer, 
and, later, by the French physicist GUILLAUME AMONTONS (1663-1705). 
They were repeated and improved by CHARLES AUGUSTIN COULOMB * 
(1736-1806) and ARTHUR JULES Morin® (1795-1880), a French ar- 
tillery officer. 

The frictional force f is found to be different for different sub- 
stances and to vary with the condition of the rubbing surfaces. For a 
certain pair of surfaces moving in a definite direction it is nearly 
proportional to the normal force N pressing the two surfaces together, 

ae S=uN, [49] 
where y is a proportionality constant called the coefficient of sliding 
(or kinetic) friction. These are practically the only factors upon 
which the friction between solids depends. Within wide limits it is 
independent of the area of the surfaces in contact, and for moderate 
pressures it is nearly independent of the speed. It should be re- 
marked that neither of these statements is true for fluid friction. 

58. Sliding on an Inclined Plane. A body sliding down an inclined 
plane is urged downward by the component of its weight along the 
plane and is retarded by friction. If 
m is the mass of the body, and ¢ the 
inclination of the plane (Fig. 37), the 
force N with which the body is pressed 
against the plane is mg cos #, and the 
force parallel to the plane due to grav- 

ity and friction is mg sin @ — mg cos d. Fic, 37. Motion of a block down 

Hence ig sind —amgeos ¢= ma, [50] a rough inclined plane 

where a is the magnitude of the acceleration down the plane. This 
suggests a method for measuring y, for if the inclination of the plane 
be so adjusted that the body, once in motion, moves down with 
constant speed, then a= 0 and «= tan ¢. 

If the body is initially at rest on the plane, the angle ¢ must be 
made greater than in the foregoing experiment before motion begins. 
This means that the coefficient is considerably greater for starting 
or static friction than for sliding friction. This coefficient of static fric- 

  

  

1See *1. B, Hart, The Mechanical Investigations of Leonardo da Vinci (Open Court, 
1925), pp. 140-141. 

2CovLomp’s experiments on friction were published in his Théorie des. machines 
simples (1779). A part of this monograph will be found in *A Source Book in Physics 
(1985), pp. 103-105. 

See the chapter on friction in Morin’s Fundamental Ideas of Mechanics, tr. by 
J. Bennett (New York, 1860),
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tion is evidently equal to the tangent of the angle of repose, or the 
angle at which slipping begins. When the speed of a body is made 

very small, tlie kinetic friction increases and, at a sufficiently small 

speed, does not differ appreciably from the maximum static friction. 

59. Rolling Friction. When one solid rolls on another without slip- 
ping, as, for example, a ball on a horizontal surface, there is no sliding 
friction, and yet a force is required to keep the rolling body moving 
with constant speed. . This results from slight deformations which 

always occur in the surface and body, so that the latter, in effect, 

is always rolling uphill. It actually may be seen in the case of a heavy 
wheel rolling on a soft rubber mat. When the object is mounted 
on wheels, a part of the resistance is, of course, also due to friction 

in the bearings and to irregularities in the surface over which the 
wheels are passing. When a lubricant is used in the wheel bearings, 

the laws of friction between solids no longer hold, for the friction 

then depends in a complicated way on both the load and the speed. 
60. Efficiency. In all mechanical devices the work that the ma- 

chine accomplishes is inevitably less than the work put into it, 
simply because there is always more or less friction and hence a 

part of the applied work is frittered away into heat. The efficiency 
of a machine is defined as the ratio of the useful work obtained 
from the machine in any given time and the energy expended upon 
it in the same time. In a steam engine, for example, some of the 

energy transferred to the piston from the steam is wasted by fric- 
tion in the engine itself. The rate at which energy is supplied to the 

piston is called the indicated horsepower, as contrasted with the actual 
horsepower available from the engine. Evidently the ratio of the 

actual horsepower and the indicated horsepower is equal to the effi- 
ciency of the engine. 

6 

EXPERIMENT IVa. EFFICIENCY OF A SYSTEM 
OF PULLEYS 

Arrange a block and tackle as in Fig. 38. Use, preferably, three- 

pulley blocks of the commercial type. Regard f’ as the load to be 

lifted and f as the force applied to the system to lift this load. 
a. Hang on the movable block a weight of about 4.00 kgwt, in- 

cluding the weight of the weight-hanger. This, together with the 

weight of the movable pulley, which will usually be found stamped 
upon it, constitutes the load! f’. 
  

1 If small pulley blocks of the laboratory type are employed, make this total load 

f' about 400 gwt, and in b use, say, 500, 600, 800, 1000, 1300, 1600, 2000, 300, and 
350 gwt.
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Find by experiment the force f that will hoist the load f’ with an 
unacceleraied motion. Because of unevenness in the bearing sur- 

faces, it may be found impossible to adjust the weight f so that the 

system will move with constant speed and yet not 
stall at certain places; if this is found to be the case, 
keep the system moving with the minimum amount 
of assistance where it tends to stall and try to make ° 
this assistance the same throughout the experiment. 

Calculate the efficiency of the pulley system. Since 
the efficiency is the ratio of the work done by the 
force f’ and the work done by the force f, a determi- 
nation of efficiency must involve a determination of the 

ratio of the distances through which the points of ap- 

plication of f’ and f move. This can be obtained with- 
out a measurement, as a little consideration will show, 

from the number of strands of rope that support the 

weight f’. Fie. 38. Lab- 
oratory model 

1. Why is it necessary to take care that the system ofa block and 
moves without acceleration? tackle 

  

b. Determine the efficiencies of the pulley system for various 
other loads f’. Use approximately the following values for the 
weights, including the weight-hanger, to be hung on the movable 

pulley: 7.00, 10.0, 14.0, 19.0, 26.0, 34.0, 45.0, 0.500, 1.50 kgwt.- 
Take special pains with the last two determinations. Why are they 

deferred until the end? 

2. Plot on coordinate paper a curve having loads f’ as abscissas and 
efficiencies as ordinates. 

3. Interpret this efficiency-load curve; that is, state the physical laws 
or conclusions that can be drawn from it. 

4. If the friction due to the bending of the cord in passing over the pul- 

leys were negligible, so that all the friction were proportional to the 
load, how ought the efficiency of a system of pulleys to vary with the 

load? Did you find this to be true in the present experiment? Discuss. 

o 

EXPERIMENT IVs. EFFICIENCY AND MECHANICAL 
ADVANTAGE OF AN AUTOMOBILE TRANSMISSION 

A machine may be defined as a contrivance for overcoming a re- 
sisting force at one point by the application of another force, usually 

at some other point. If f is the operating force required to overcome 
a resisting force or load f’, then f’/f is called the mechanical advantage
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of the system. It is evidently a measure of force-multiplying ability. 
In some cases it is useful to distinguish between the ectual mechani- 

cal advantage, as just defined, and the ideal mechanical advantage, 

  

Fie. 39 A. Standard automobile transmission, with the housing partly cut away to 
expose the working parts. For purposes of study, two pulleys of equal diameter, 

X and Y, have been added to the engine and drive shafts respectively 

    
  

  

    

  

  

Fic. 39 B. Simplified diagram of a modern “‘ freewheeling’ gearshift. The 
gears are in high 

which is the force-multiplying ability which the machine would 
have if there were no friction. It is a simple matter to prove that 
the ratio of the actual mechanical advantage and the ideal mechani- 
cal advantage is equal to the efficiency of the machine.
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Since the relative speeds of two parts of a machine are often of 
interest, use is frequently made of the speed-ratio v'/n, where v’ is 
the speed of the part of the machine to which the load f’ is applied 
and p is the speed of the part to which the operating force is applied. 
Thus, in the case of an automobile transmission, the speed-ratio is 
the speed of the drive shaft divided by the speed of the engine shaft. 

1. Show that the speed-ratio of a machine is inversely proportional to 
the ideal mechanical advantage, but not to the actual mechanical 

advantage. 

2. Prove that the efficiency of a machine is equal to the product of 

the actual mechanical advantage and the speed-ratio, 

a. Place the gearshift lever of the automobile transmission! 
(Fig. 39 A) in the “low” position and determine the speed-ratio of 
the machine by three different methods as follows: 

(1) Count the number of teeth on each cogwheel and record the 
data on a rough sketch of the gear assembly, Compute the speed- 
ratios of the several pairs of gears from the respective numbers of 
teeth, and then compute from these ratios the “over-all” speed-ratio. 

(2) Determine the "over-all" speed-ratio by counting the number 
of rotations of the engine-shaft pulley X that corresponds to one 
rotation of the drive-shaft pulley Y. 

(3) Attach a weight f’ to a cord wound on the drive-shaft pulley Y 
and find the weight fi; that must be attached to a cord wound on the 
engine-shaft pulley X in order to cause the load f’ to move upward with 
constant speed. Then find the weight fe which must be applied in 
order that the load ’ shall move downward with constant speed. The 
mean f of these two weights f; and fo is the force needed to raise or lower 
the load f’ without acceleration if there were no friction. Hence f’ /) 
is the ideal mechanical advantage, and its reciprocal is the speed-ratio. 

b, Compute the actual mechanical advantage f’/fi. It will be best 
to make additional experimental determinations of fi. 

c. Use the values which you have determined for the speed-ratio 
and actual mechanical advantage to compute the efficiency of the 
transmission. 

d. Repeat all the foregoing tests and computations for each of the 

other positions of the gearshift lever. 

3, Summarize in a brief statement the information which you have 

obtained on the relative values of the mechanical advantages, speed- 
ratios, and efficiencies for the several positions of the gearshift lever, and 

discuss these results in terms of the actual performance of an automobile. 
  

‘This apparatus was described hy O, H. Blackwood and E. Hutchisson in The 
American Physics Teacher 1, 41 (1933).
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EXPERIMENT IVc. EFFICIENCY OF A WATER MOTOR 

The water motor is attached to the regular water supply of the 

room. Irregularities in the pressure of the latter are equalized by in- 
troducing, between the water outlet and the motor, an airtight tank 

T (Fig. 40) of about 200-l.capacity. Since 
the inlet and the outlet of the tank are at 

the bottom, it is the air in the upper part 
of the tank, compressed by the water- 

supply pressure, that is the immediate 

source of the pressure applied to the 

motor. 

In order to determine the energy ex- 
pended upon the water motor in a given 
time it is necessary to measure both the 
pressure P with which the water is deliv- 

ered to the motor and the volume of water 
AV that passes through it. The input of 

work is then the product P AV (Sec. 45). <a 
The pressure at the orifice O is meas- 

ured by means of a gauge? G. If the scale 
of the gauge is graduated in pounds 

weight per square inch, as is usually the case, it will be best to con- 

vert this reading to grams weight per square centimeter. 

The volume of water is measured by deflecting the discharge water 

for a known time into the vessel V. At the beginning of the experi- 

ment there should be enough water in this vessel so that its initial 

height can be measured on the side tube, and at the end the water 

should be near the top of the side tube. The volume of water AV 

can then be obtained from a knowledge of the two heights of the water 

and the measured diameter of the vessel.? 

  

      

  

Fic. 40. Water motor with 
Prony brake 

  

1 An overflow tank placed about two stories above the motor is a still better source 

of constant pressure. 

2 Some experimenters prefer to use a mercury manometer for measuring the pres- 

sure. If there were no water in either arm of the manometer, the pressure, measured 

in centimeters of mercury, would evidently be the difference between the mercury 

levels in the two arms, and this could be reduced to grams weight per square centi- 

meter simply by multiplying by the density of mercury. However, since the short 

arm of the manometer fills with water, and since it is the pressure at the level of O 

which is sought, the pressure indicated by the mercury height must be diminished by 

that due to a water column of height equal to the difference between the level of O 

and the mercury level in the short arm. 
3 AV can also be determined simply by catching the discharge water in a jar or 

bucket which is weighed when empty and when-nearly filled with the water.
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In order to measure the output of work, or useful work accom- 
plished by the motor in a given time, friction is applied to the pulley 
wheel of the motor by means of a Prony brake! (Fig. 40). This de- 
vice consists of a leather belt hanging from two spring balances,? the 
friction of the belt against the pulley being adjusted by raising or 
lowering the clamps to which the spring balances are attached. If 

the radius of the pulley be R and the difference in the readings of the 

two spring balances be f, then f represents 

the constant pull which the motor exerts at 

a distance R from the axis. When the pulley 
makes one rotation, every point on its cir- 

cumference moves a distance 2 7F in a di- 
rection opposite to that of the resistance f, 
so that the work done by the motor during 
N rotations will be equal to 2 wRNf. 

a. Starting with the valve K’ closed, open Fie. 41. 

  

: . : In this form of 
valve K until a considerable pressure is pro- Prony brake the brake is 

duced in the tank T. Then slowly open K’ prevented from tuming by 

until nearly the maximum available pressure applying a known force f 

is obtained. While one observer holds the ‘© the end of a lever arm 
. . of known length R. The 

gauge-reading constant by continually ad- | oy done by the motor is 
justing K, let another adjust the Prony brake 2 wRNf 
so as to produce tension. Observe the force 

f exerted by the brake. Then deflect the discharge water into the 

vessel V, noting accurately the time of flow and also determining 

with the speed-counter the number of rotations N in this time. 

Measure the initial and final heights of the water in the vessel V, - 
the diameter of this vessel, and the length R of the lever arm. Then 

compute the speed and the efficiency of the motor. 
b. Vary the load on the motor by raising or lowering the Prony 

brake and determine the efficiency for this new load, the pressure of 

the water being left the same as before. 
In this way make five or more different runs with loads that are 

evenly distributed between zero and the maximum which the machine 
is able to carry without stopping altogether; in other words, vary the 

speed of the motor between racing speed and the slowest possible speed. 
Be sure to adjust to the same constant water pressure during each run. 
Compute for each case the speed and the efficiency of the motor. 

  

1 Named for BARON G. C. F. Prony, who was one of the first to make engineering 

applications of the mechanical discoveries of the second half of the eighteenth century. 

2 In the form of brake shown in Fig. 41 the force is measured by means of a single 

spring balance or a large-capacity beam balance placed at the end of the lever.
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1, Plot a curve with speeds as abscissas and efficiencies as ordinates. 
Include on it the points for zero speed and for racing speed. 

2. Find from your graph the speed for which the motor was most 
efficient at the given pressure, 

8. What was the maximum efficiency of the motor? 

4, Find the ratio of the speed at maximum efficiency to the speed at 
zero load. 

° 

OPTIONAL LABORATORY EXPERIMENT 

Variation of the Friction in a Water Motor with the Speed. Put a con- 
stant load on a water motor and determine the force of friction for five 

different speeds. Plot a curve showing the variation of the force of friction 
with speed. Would you expect the friction in a water motor to vary with 
the speed? 

o 

QUESTION SUMMARY 

1, Define work. In what units is it measured? 

2. Define erg; joule; centimeter-gram-weight; kilowatt-hour; give the 

relations between them. 

8. State the work principle. 

. Define power. In what units is it measured? 

. Define a watt and a horsepower, and give the relation between them. 

. Define energy. In what units is it measured? 

. Define, and tell how to measure, kinetic energy and potential energy. 

. What is meant by a conservative force? a conservative system? 

o
n
a
n
 

o
a
 

Pp
 

. Define Joule’s equivalent. 

10. State and illustrate the principle of conservation of energy. 

‘11. Give the experimental facts with regard to sliding frictién between 
solid bodies. Define the coefficient of friction. 

12. What is meant by the efficiency of a mechanical system? 

© 

PROBLEMS 

1. A force of 500 dynes is acting on a certain body. Find the work done 
by the force if the body moves 60 cm (a) in the direction of the force; (6) in 

a direction 60° away from that of the force; (c) in a direction at right angles 
to that of the force; (d) in a direction opposite to that of the force. 

Ans. (a) 3.0 x 104 ergs; (6) 1.5 x 10% ergs; (c) 0; (d) — 3.0 x 10¢ ergs.
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2, Find the horsepower of a steam pump that lifts 10 x 10+ 1 of water 
per hour from a well 30 m deep, Ans. 11 hp, 

8. The average flow over Niagara Falls is 270,000 ft! - see, and the 
height of the falls is 160 ft. (a) If all of this energy were utilized, what 
power could be developed? (b) If all of the energy from the waterfalls 
were converted into electrical energy and sold at 5 ct/kw - hr, how much 
would be realized in a day? Assume two-figure accuracy, 

Ans. (a) 4.9 108 hp, or 3.7 x 10° kw; (b) $4,400,000, 
4, (a) Secure the necessary data for computing the horsepower which 

you develop when you run up a flight of stairs as fast as you can, (b) If 
you could work at this rate for Shr per day and were paid at the. rate of 
7ct/hp «hr, what would be your daily wage? ‘Ans. 56 ct/hp. 

5, Express the kilowatt-hour in (a) foot-pounds-weight ; (b) horsepower- 
hours. ‘Ans. (a) 2.65 x 10° ft - Ibwt; (6) 1.34 hp hr. 

6. How much work is done when 1.0 ft# of water is forced into a boiler 
against a pressure of 80 Ibwt - in? Ans. 1.2 x 10* ft - Ibwt, 

7. A bullet enters a target with a speed of 120 m - sec~! and penetrates 

10cm. What speed should it have in order to penetrate 18 cm if the re- 

sistance offered by the target is the same as before? 
Ans. 1.6 x 10? m-sec~1, 

8, At what rate must energy be expended to raise 1000 kg of water per 
minute to a height of 22 m if the water is discharged from the top of the 
pipe with a speed of 4.0m-sec™!? Express the result both in kilowatts 
and in horsepower. Ans, 3.7 kw, 5.0 bp. 

9. Solve Probs. 2 (b) and 2 (c), Chap. 3, from a consideration of the po- 
tential and kinetic energies of the body at the top and bottom of the plane 
and of the arc, 

10, A bullet of mass 12 ¢ is fired with a muzale speed of 30 km + min~', 
The gun has a smooth bore 750mm long and 9mm in internal diameter. 
(a) What is the energy of the bullet in joules? (b) in watt-seconds? (c) Neg- 
lecting friction, find the average pressure, expressed in grams of weight per 
square centimeter, inside the barrel during firing. 

‘Ans. (a) 1.5 103 j; (8) 1.5 x 10% watt - sec; (c) 3.2 x 10° gwt em~*. 

11, (a) Compare the momentums and kinetic energies of a 25-g bullet. 

moving with a speed of 500 m - sec™! and of a freight train of mass 10° kg 

moving in the same direction with a speed of Lem: sec~'. (b) A constant 

retarding force of 10 megadynes is applied to each of them. Compare the 
times elapsing and the distances traversed before they are brought to rest. 

‘Ans. (a) py=1.3 X 10° g-cm-secm}, p= 10% g- cm - sec~', 
E,=3.1 x 10 ergs, L.=5 x 10% ergs; (b) = 0.13 sec, 
t= 10? sec, sy = 31 m, 55 = 0.5 m. 

12. Write the dimensional formulas for (a) work; (b) power; (c) energy; 

(d) impulse; (e) coefficient of friction; (f) Joule’s equivalent, 
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13. (2) When you pay. the electric-light bill are you paying for power, 
for energy, or for both power and energy? (b) Does the value of a given 

source of water power, say a mountain lake, depend upon the energy avail- 
able, upon the power which it will develop, or upon both of these factors? 
(c) Is the term power used in its correct physical sense in the phrase ¢lectric- 
power line? 

14. A 20-g bullet is fired from a rifle with a speed of 250m-sec-!. Ata 
height of 2680 m it is moving at an angle of 45° with the horizontal. Find 

its speed at this point. Ans. 1.0 x 104 cm - sec7}. 

15. A train of mass 2.0 x 105 kg has a speed of 65 km- hr71. (a) What 

is its kinetic energy in ergs? (b) in joules? (c) in kilowatt-hours? (d) in 
meter-kilogram-weights? (e) If all of this energy were turned into heat, 

how many kilograms of water would it raise from 0° C to 100° C? 

Ans. (a) 3.3 X 1014 ergs; (b) 3.3 x 107j; (¢)9.2kw-hr; 

(d) 3.3 x 10'm-kgwt; (e) 78 kg. 

16. It is found that if the clutch is disengaged from a certain automobile 
of weight 2200 lbwt when it is moving with a speed of 30 mi-hr-} on a 

level pavement. the car coasts 0.50 mi before stopping. (a) Assuming that 
the frictional forces are independent of speed, compute the friction. (b) At 

what rate in horsepower must work be done to keep this car moving on a 
level road with a speed of 30 mi-hr—1? (c) Considering the nature of the 
frictional forces involved, is it likely that these forces are independent of 

speed? Ans. (a) 25 lbwt; (b) 2 hp. 

17. The top of an incline is 1m higher than the bottom. If a body of 
mass 100 g sliding down this incline acquires a speed of 180 m- min=!, how 
much work has been done against friction? Ans. 0.5 j. 

18. A 75-kg block is drawn steadily up a 25° incline by means of a rope. 
The coefficient of sliding friction is known to be 0.20. (a) What is the force 
in the rope if the rope is held parallel to the incline? (b) if it is held hori- 
zontal? (c) What would the answers to these questions be if the coefficient 

of friction were zero? Ans. (a) 45 kgwt; (b) 55 kgwt; (c) 32 kewt, 35 kgwt. 

19. A block of weight 60 kgwt is held against a vertical wall by a hori- 
zontal force of 15 kgwt. The coefficient of sliding friction is 0.15. (a2) What 

vertical force is needed to pull the block up with constant speed? (b) to 
lower it with constant speed? (c) If the least horizontal force that will keep 
the block from falling when at rest is 270 kgwt, what is the coefficient of 
static friction? Ans. (a) 62 kgwt; (0) 58 kewt;. (c) 0.22. 

20. A particle of weight W is to be dragged along a horizontal plane by 

applying to it a force of magnitude F. If the coefficient of sliding friction 
is u, what angle must the direction of the force make with the horizontal 
in order that F may be a minimum? Ans. tan! p.



CHAPTER FIVE 

THE LAWS OF IMPACT 

US uF a sphaerical body A with two parts of velocity is triple of a sphaerical body B which 

follows in the same right line with ten parts of velocity; the motion of A will be to that of 

Bas 6 to 10. Suppose then their motions to be of 6 parts and of 10 parts, and the sum will 

be 16.parts. Therefore upon the meeting of the bodies, if A acquire 3, 4, or 5 parts of motion, 

B will lose as many; and therefore after reflexion A will proceed with 9, 10, or 11 parts, and 

B with 7, 6, or 5 parts; the sum remaining always of 16 parts as before. If the body A acquire 

9, 10, 11 or 12 parts of motion, and therefore after meeting proceed with 15, 16, 17 or 18 parts; 

the body B, losing so many parts as A has got, will either proceed with one part, having lost 9; 

or stop and remain at rest, as having lost its whole progressive motion of 10 parts; or it will go 

back with one part, haying not only lost its whole motion, but (if I may so say) one part more; 

or it will go back with 2 parts, because a progressive motion of 12 parts is took off. And so the 

Sums of the conspiring motions 15 +1, or 16 +0, and the Differences of the contrary motions 

17 — 1 and 18 — 2 will always be equal to 16 parts, as they were before the meeting and reflexion 

ef the bodies. 
Explanation of Corollary III to Newron’s laws of motion 
as translated from the Principia in 1729 by Anprew Mortrs 

o 

61. Conservation of Momentum. It-was seen in Chapter 2 that the 
essential idea of the GALILEO-NEWTON theory of motion is that all 
changes in the velocities of particles are to be-regarded as the results 
of interaction between pairs of particles, and that no matter how 
such an interaction takes place, the result of it is described by the 

equation (Eq. [26], Chap. 2) 

m1 Avy =— M2 Ave. (51) 

Now m Av is change of linear momentum, and hence this equation 
is equivalent to the statement that, so long as one particle is influ- 
enzed only by the other, the vector sum of their momentums does 
not change, however much the momentum of either one changes. 
In other words, the linear momentum is conserved in all interac- 

itons. This important principle is not stated explicitly in NEw- 
7ON’s laws of motion, but it follows immediately from them, and 

indeed was derived by NEWTON as one of several rules for expedit- 

ing the treatment of the more frequently occurring problems of 

niechanics. 
62. Conservation of Momentum in Impact. Let us consider this 

principle of conservation of linear momentum in connection with 
one particular kind of interaction between bodies, namely, that of 

90
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An Artist’s Way 

of Stating Newron’s Laws of Motion 

Tats illustration, taken from J. A. Paris’s Philosophy. in Sport made Science in Earnest 

(London, 1827), reveals George Cruikshank (1792-1878), the famous English 

artist, caricaturist, and illustrator, in the unusual role of a scientific illustrator. 
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An Illustration from Marcus Marct’s 

DE PROPORTIONE MOTUS (1639) 

Reproduced through the courtesy of The British Museum, London 

Joaxnes Manus Marcr (1595-1667), professor at the University of Prague, was 
acquainted with many of the laws of impact later discovered by Huycens, Ween, 
and Wants. Thus he knew that when an elastic body strikes another elastic body 
of the same size and material which is at rest, it loses its own motion and im- 
parts an equal velocity to the other body.
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impact. A systematic study of the various laws of impact! was first 

made in 1668 by JOHN WALLIS, CHRISTOPHER WREN, and HUYGENS, 

at the invitation of the Royal Society of London.? The solution for 

the general case of impact was given by NEWTON in the Principia. 
It was undoubtedly this experimental and theoretical work on col- 
liding bodies that made it possible for NEWTON to obtain his clearest 
and most definite conceptions of mass and momentum. 

Suppose, to begin with, that the two colliding bodies are spheres 
which are small enough to be considered as particles and that: their 
masses are m, and me. Let their respective velocities before impact 

be u; and uz and after impact, vi and ve. Then, by Eq. [51], 

my(V1 — U1) = — M2(v2— U2); 

or muy + MgqUe = My4V1 + Move. [52] 

The left-hand member of this equation is the vector sum of the two 
momentums before impact, and the right-hand member is the vec- 

tor sum of the two momentums after impact; the equation then 
asserts that these two sums are 
equal. To visualize this, one may 
consider the impact of two billiard 
balls. If their total linear momen- 
tum before impact is represented 

by the vector AO, Fig. 42, then 
their total linear momentum after 
impact is represented by the vec- 
tor OB, which is equal in both Fic. 42. The vector sum of the linear 
magnitude and direction to AO. momentums does not change on impact 

In making this application of the principle of conservation of 
linear momentum to the billiard balls, or, for that matter, to any 
bodies that are too large to be treated as particles, it obviously is 
necessary to specify what is meant by the linear momentum of an 
extended body. It will be shown in the next chapter that there can 
be associated with any body a certain point which is called the 

center of mass of the body, and that the linear momentum of the 

  

  

1¥For the historical development of the subject, see *E. Mach, The Science of 

Mechanics (Open Court, 1893), pp. 305-330, and *A. Wolf, A History of Science, 

Technology, and Philosophy in the 16th & 17th Centuries (Alen & Unwin, 1935), 

pp. 231-235. 

2 Translations of these papers, together with a brief historical statement, appear in 

the Abridged Philosophical Transactions (London, 1749), Vol. 1, Chap. V, pp. 457-462. 

Also see Bibliography. 

3 Scholium to ‘‘ Axioms, or Laws of Motion”; see Cajori’s revision (University of 
California Press, 1934), p. 22.
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body is to be regarded as the product of the velocity of this point 
and the mass of the body. In the case of a homogeneous spherical 
body, for example, the center of mass turns out to be at the center 
of the sphere. Thus the linear momentum of a billiard ball is mv, 

where m is the mass of the whole ball and v is the velocity of the 

center of the ball. 
63. Direct Impact. The simplest case of impact between actual 

bodies is that of two homogeneous spheres which are moving before 

impact along the line joining their centers (Fig. 43). The momentum 
of the system is unaltered by the impact, or 

MU, + Mote = m1 + Mot, [53] 

it here being unnecessary to distinguish between speed and velocity, 

since one direction along the common line of motion can be taken 

as positive and the other 

as negative. @® @) @Q 
If the two impinging © 4 Or % 

bodies have surfaces Before impact After impact 

made of clay or similar Fie. 43. The typical case of direct impact 
soft materials, they are . 

changed in shape by the impact, but show little or no tendency to 

recover their form and to thrust each other apart again; they ad- 
here together after impact and move forward as a single body. Such 

a collision is said to be imelastic. For this special case of inelastic 
impact, #, = v2 =v and Eq. [53] reduces to 

Miu + Mol, = (mr + me)0, [53a] 

from which the speed after impact may be calculated. This is the 

problem that was treated by WALLIS, and his results are all sum- 

marized in Eq. [53a]. 
When, on the other hand, the bodies rebound upon collision, as 

is usually the case, the collision is said to be elastic. For a complete 
solution of the case of elastic impact, Eq. [53] will not suffice, since 
it contains two unknown quantities 7; and v2. By assuming con- 

servation of energy as well as conservation of momentum, a second 

equation connecting 2; and v2 can be obtained, namely, 

£m? +} mous? = 4 my? + $ mote”, 

and this, together with Eq. [53], suffices for the solution of those 

very special problems in which the energy is conserved. This was 
the case treated by WREN and HuyYGENS. In actual impacts, how- 
ever, kinetic energy almost always is lost, as we shall soon see, 

and without a knowledge of this loss the principle of conserva-



  

5 - 64] The Laws of Impact 93 

tion of energy is useless. In order to solve the general case of actual 
bodies in which the energy is not conserved, NEWTON had first to 

determine a new constant for colliding bodies, called the coefficient 

of restitution. 
64. Impulse and the Coefficient of Restitution. The average force 

acting on either one of two impinging bodies is equal to the total 

change in linear momentum of the body in question divided by the 

time of duration of the impact. Since this time cannot in general 

be determined, it is convenient to confine attention to the product 
of the average force and the time of duration of the impact. As 
we already know (Sec. 51), this quantity is called the zmpulse of the 

force. It is equal to the total change in momentum which the body 
experiences by virtue of the impact, and if its magnitude be denoted 

by the symbol R, then, by Ea. [53], 

R=m (1 — 41) = — M2(v2 — ue). [54] 

In the case of an elastic impact it is convenient to divide the 
impulse R into two parts, R’ and R”, of which R’ represents the im- 

pulse during the compression, and R” the impulse from the instant 

of greatest compression to the instant of separation. Obviously, 

in the case of inelastic impacts, R’’ =O. If the colliding bodies are 
perfectly restlient, and thus recover completely their original size 
and shape after collision, it might be expected that R’” would be 

equal to Rk’. In point of fact this is never the case, for there are 
_ losses due to internal friction even with bodies that exhibit perfect 

resilience when subjected to static tests. There is, however, a defi- 

nite relation between R” and R’, as was discovered experimentally 

by NEwTon. He found that for any two given bodies making direct 
impact, the ratio R’’/R’ is a constant, so long as the impact is not 

so violent as to produce permanent deformation. The names coeffi- 
cient of restitution and coefficient of resilience have since been given 

to this ratio. Denoting it by the symbol e, we have, by definition, 

R” 

=F 

The coefficient of restitution is a kinetical 1 measure of the elasticity 

of bodies and is used only in dealing with the phenomenon of col- 
lision. It is found by experiment that ¢ is always less than unity. 

At the instant of greatest compression, two impinging bodies 

evidently are moving with the same velocity. Consider again the 

e [59] 

  

1 It is often convenient to think of the science of dynamics as being divided into 

two parts, kinelics and statics, the former dealing with bodies that have accelerations 

and the latter with bodies that have no accelerations and hence are in equilibrium.
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simple case of the direct impact of two spheres, and let their common 
speed at the moment of greatest compression be V; then, from the 
definitions of R’ and R”, 

R =m (V—u) =— ma(V —te), 
R= mi (1 — V) =— ma(v2— V). 

    

Division of the second of these equations by the first yields 

  

This gives two equations, 

m1 —V=eV—em, 

t— V=eV— eu 

Elimination of V by subtraction of the second equation from the first 

gives ty — ty = — er — Wa). (56) 

In words, te relative speed after direct impact is equal lo e times the 
relative speed before impacl, and is in the opposite direction, This is 
known as NEWTON'S empirical law of restitution; obviously it ex- 
presses the same property of matter as the equation R’’ = eR’. 

65. General Solution of the Problem of Direct Impact. We have 
seen that the principle of conservation of momentum, Eq. [53], alone 

cannot give a complete solution of the general problem of the direct 
impact of two spheres. A second relation between 2; and vz is given 
by Eq. [56], however, and any problem of direct impact may be solved 
by writing Eq. (53) and Eg. [56], and solving them simulianeously. 

Thus, by combining Eqs. [53] and [56], there result the following expres- 

sions for the final speeds in the line joining the centers of the spheres < 

n= me + mitavie — enmis(tar — the) | 

my + ma 
py = MUM Matta + emi (ney = tha) 

my ma, 

For the sake of simplicity we have chosen the case where all the speeds 

were in the positive direction (Fig. 43). In applying the equations to other 
cases, care must be taken to give proper signs to the speeds. 

EXAMPLE. (a) Show that when two spheres of equal masses, and for which 
e=1, make direct impact, they simply exchange velocities, so that 
the result is the same as though one had passed through the other 

without in any way influencing it. (6) Explain why the only effect of 
a direct impact of one marble upon a row of equal marbles is to drive 
off the end marble. (c) What will happen if two marbles make impact
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An Illustration from Curistiraan Huycens’s 

DE MOTU CORPORUM EX PERCUSSIONE (1703) 

Axrsoues the correct laws of impact for elastic bodies apparently were discovered 
by Huycens before 1656, his novel and original proofs were not published in detail 
until 1703, eight years after his death. Starting from the assumption that two equal 
elastic masses that collide with equal and opposite speeds v rebound after impact 
with exactly the same speeds, he imagined such an impact to take place in a boat mov- 

ing with the speed v. For the man in the boat the speeds of the two colliding masses 
were still equal, but for a spectator on shore the speeds before impact were 2 v and 0 
respectively and after impact O and 2 v. Then by letting the boat have any speed 
whatever, he showed that equal elastic masses simply exchange speeds on impact. 
In a similar manner he deduced the laws of impact for unequal elastic masses. 

See E. Mach’s The Science of Mechanics (Open Court, 1893), pp. 314-326; or, 

better still, read Huyarns’s paper, which is reprinted in the original Latin and in 

French translation in CEwvres completes de Christiaan Huygens (Société Hollandaise des 

Sciences, 1929), Vol. XVI, and in German translation in Ostwald’s Klassiker der 

Exakten Wissenschaften, No. 138 (Engelmann, 1903).
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An Experiment of Gatt1eo’s 

on the “‘ Force of Percussion ”’ 

Gatrino made a very ingenious attempt to measure the force exerted by the impact 
of a jet of water. He hung two buckets, one above the other, from one arm of a 

beam balance and balanced them by means of a weight hung from the other arm. 
The upper bucket (1) was filled with water, the lower one (2) was empty. A 

plugged orifice in the upper vessel was opened and the water flowed from the upper 
into the lower bucket. Gazrtzo expected the force of the impact of the water on 
the lower bucket to cause a deflection of the balance and planned to measure this 
force by means of a counterweight. Much to his surprise, however, except for a 
slight rise of the buckets at the instant the plug in the upper one was removed, 

there was no effect. Gatixo apparently was unable to clear up the matter satis- 
factorily in his own mind. See if you can do so; then consult E. Mach’s The Sctence 

of Mechanics (Open Court, 1893), pp. 308-313, or A. Wolf’s A History of Science, 
Technology, and Philosophy in the 16th & 17th Centuries (Allen & Unwin, 1935), 

pp. 47-48, :
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with the row of marbles? (d) What will happen if a larger or smaller 

marble makes impact with the row? [These considerations have nu- 
merous applications in the kinetic theory (Chap. 10) and in wave 
motion (Chap. 15).] 

66. Oblique Impact. When the centers of two impinging spherical 
bodies are not moving in the same line before impact, the impact is 
described as oblique. In this case the velocity of each body before 
impact may be resolved into two components, one along the line 

through the centers at the moment of impact, the other in a direction 

perpendicular to that line. If the spheres are perfectly smooth, only 
the first component will be affected by the impact, since the whole 
force in this case is in the direction of the line of centers. The change 

in this component may be calculated as in the case of direct impact. 
If the spheres are not frictionless, there will be a tangential action 

between the bodies giving rise to a motion of rotation and the prob- 
lem becomes too complicated for present consideration. 

EXAMPLE. A smooth ball of mass 100 g is rolling on a table with a velocity 
of 100 cm - sec} east. It strikes a second smooth ball of mass 200 g, 
which is moving with a velocity of 100 cm - sec! northeast. If the 
coefficient of restitution is 0.750, what are the velocities of the two 
balls after impact? 

Solution. Assume that the line of centers of the two balls is in the east- 

west direction during impact, and let this be the X-axis. Let u,, Uy, Un, U'y 

represent the x- and y-components of the velocities before impact and #2, 2,, 
v’,, 0’, those after impact, the primes referring to the 200-g ball. Then 

uz = 100 cm - sec~}, uy = 0, wu’, = 70.7 cm - sec7}, and uw’, = 70.7 cm - sec7}. 

The x-components of the velocities after impact can be computed by the 
method of Sec. 65; thus, by Eq. [53], 

100 - 100 + 200 - 70.7 = 100 », + 200 v’,, 

V_ — 0’, = — 0.750(100 — 70.7). 

By solving these two equations simultaneously, we obtain 9, = 65.8cm - sec~! 
and 2’, =87.8cm-sec—!, Since the balls are perfectly smooth, the y- 
components of the velocities will be unchanged by the impact; hence 
0, = 0 and 0’, = 70.7cm-sec!. The velocity of the first ball after impact 
must therefore be 65.8cm-sec—! east and that of the second. ball 
V (87.8)? + (70.7)? = 113 cm-sec™! at an angle 38°50’ north of east 
(= tan! 70.7 /87.8). . ‘ 

and by Eq. [56], 

67. Loss of Kinetic Energy in Direct Impact. The fact that there is 
never any loss of momentum in an impact by no means implies that 
the kinetic energy is also conserved. The total kinetic energy is 
always less after impact than before, unless ¢ is unity.
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Examete, A putty ball of mass 50 g strikes a billiard ball of mass 500 g 
with a speed of 40cm sec along their line of centers. Calculate 
the common speed ¢ after impact and the kinetic energies before and 
alter impact. 

Solution. The principle of conservation of momentum gives for this case 
3.6cm-sec™!, The total kinetic energy before it 

or 4,0 x 10¢ ergs, and that after impact is 4 - 550 - (3.6) 

or 3.6 10% ergs. The loss in kinetic energy is therefore 3,6 x 104 ergs. 
Thus, even though the momentum is conserved, 90 percent of the kinetic 
energy is lost in this particular case of impact. (What has become of it?) 

        

It is of interest to derive the expression for the loss AZ of kinetic 
energy for the general case of direct impact. For this case, evidently, 

AE = (k mua? + § move”) — (4 mini? + $ mars”), [57] 

or AE = bmi (ua — 01) (ta + 01) + 5 2(ue — v2) (U2 + 02), 

In view of Eq. [54] this may be written 

AE =—F eu +m) +9 Que +02) =— F(t — me) + (mn —e))e [57a] 

It is desirable, however, to express AE in terms of the coefficient of 
restitution, the masses of the two bodies, and their initial speeds. To 

do this, first combine Eqs. [57a] and [56], thus obtaining 

Ae=— Fu —m)(1—e). (576) 

Next solve Eq, [54] for 1. and 72 and substitute these values in 
Eq. [56]; this gives 

Se (1+ e)(@q — 1s), [58] 

Substitution of this value for R in Eq. [576] gives finally 

AE=50—€)(u — us)? oe. [59] 

It appears from this equation that the sole condition for no loss of 
kinetic energy in an impact is that e=1; this is the case of so-called 
perfectly elastic impact, for which the impulse of restitution is equal 
to the impulse of compression, The fact that ¢ is always somewhat 
less than unity then means that in all impacts there is some trans- 
formation of mechanical energy into energy of heat and sound. (Why 
cannot the value of e exceed unity? What is the meaning of zero 
value for e?)
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EXAMPLE. By dividing Eq. [59] by the expression for the initial kinetic 
energy, obtain the expression for the fractional loss J of kinetic energy 
in impact; then show that for the special case where me is initially 
at rest 2 mo 

i= (1 ©) a+ me’ [60] 

This equation shows that the fraction of the initial kinetic energy lost 
in a direct impact is independent of the speed of the striking body, provided 
the struck body is initially at rest. The fraction is large or small according 
as my, is large or small in comparison with mz. In driving a nail, much of the 
energy is spent in deforming the nail; since this diminishes the supply 
available for driving the nail, it is clearly advantageous to use a hammer of 
large mass. If, on the other hand, a hammer is to be used to shape an ob- 
ject, as in forging, the work of deformation should be made large by re- 
peated blows of a hammer of small mass compared to the anvil. 

EXAMPLE. Suppose that a small steel ball is dropped vertically upon a 
horizontal slab of stone. Show that in this case 

2 —1]—2 e=—2 and I=1-e, [61] 

68. Effect of a Series of Rapid Impulses. The effect of a series of 
rapid impulsive forces is the same as that of a constant force, and 
this force, by NEWTON’S second law, is measured by the change of 
momentum per unit time. 

EXAMPLE. A machine gun of mass 15 kg fires 30-g bullets at the rate of 
5.0 per second with a speed of 500m-sec-!. What force must be ap- 
plied to the gun to hold it in place? 

Solution. The bullets are discharged at intervals of 0.2 sec. During the 
short time of one discharge the forces between the gun and bullet are equal 
in magnitude and opposite in direction, and, acting for the same time, pro- 
duce momentums that are also equal in magnitude and opposite in direction. 
At each discharge, therefore, the magnitude of the momentum acquired 
by the gun is 30- 50,000 g-cm-sec~! and the speed imparted to it is 
30 - 50,000/15,000, or 100 cm - sec~!. Suppose now that a constant force 
of f dynes be applied to the gun in a forward direction so as to oppose this 
motion and that this force starts to act 0.1 sec before the first discharge. 
In 0.1 sec the gun will gain a forward speed of » = 0.1 £/15,000 cm - sec-!. 
If f be chosen so that this speed is just one half the backward speed imparted 
to the gun by each discharge, then the first discharge will send the gun 
backward with a speed of 50 cm - sec—!. In order that this may be the case, 
0.1 f/15,000 must equal 50, or f = 7.5 x 10® dynes. Since this applied force 
is constant, it will continue to act on the gun during the 0.2 sec before the 
next discharge. In 0.1 sec it will have overcome the backward speed of 
50 cm - sec~? which the first discharge imparted to the gun, and in another 
0.1 sec (or by the time of the second discharge) will have imparted a forward
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speed of the same amount, which in turn will be reversed by the next dis- 

charge, and the whole process will be repeated. If, then, a constant force of 

7.5 x 108 dynes is applied to the gun, the discharge of 30-g bullets at the 

rate of 5 per second will merely cause the gun to jerk back and forth over a 

distance of 2.5 cm with a speed that varies from 0 to 50 cm - sec~?. Since, on 

the average, the gun stays in place, the series of rapid discharges is exactly 

balanced by the force of 7.5 x LO® dynes, which is therefore the force re- 

quired to hold the gun in place. 

In the foregoing analysis the effect has been treated as discontinuous, as 

it really is. In order to show, however, that it has the same average effect as 

hasa steady force, consider that the momentum is imparted to the gun by the 

discharges at the average rate of 30 - 50,000/0.2, or 7.5 x 108 g-cm- sec2, 

and that this, by definition, is equal to the force; that is, f = 7.5 megadynes, 

as before. 

It is not easy to make direct measurements of the speeds in an 

impact experiment. If, however, the bodies whose interactions are 

to be studied are made the bobs of pendulums, their speeds before 

and after impact can be calculated from easily observable quantities. 

The following experiments illustrate the laws of direct impact for 

the cases of both inelastic and elastic impact. 

° 

EXPERIMENT VA. SPEED OF A BULLET BY THE 

BALLISTIC PENDULUM' 

If a bullet of mass m and unknown speed u is fired into a heavy 

pendulum bob of mass M, so that the bullet buries itself in the bob, 

the impact is then inelastic and the two colliding bodies move to- 

gether after impact with some common speed ». Since no external 

forces are called into play during the interaction, the total linear 

momentum after impact is the same as that before, and therefore, 

by Eq. [53e], 
uy — OM, 

m 

Thus, determinations of m, m-+-M, and » are all that are needed 

to calculate u, the speed of the bullet. 

The speed after impact » can be calculated if one knows the 

length 7 of the pendulum and the horizontal distance s traversed 

by the bob after the impact (Fig. 44). To see this, consider that 

(m+. M)o?/2 is the kinetic energy of the pendulum bob immediately 

  

The ballistic pendulum was invented by BENJAMIN RosINs and was described 

by him in his famous treatise on New Privciples of Gunnery (1742).
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after the collision, and consider that, if the friction is negligibly 
small, all this kinetic energy is used to lift the pendulum through 

the height #, so that 
(M + m)o?/2 = (M+ m)gh. 

The vertical height # is best obtained as follows. By the theorem ~ 
of Pythagoras, 

P=st(r—hAeas?t_r?—Qrh+h?. [62] 

Since # is small compared to s and 7, h? may be neglected. Hence 

2rh= s?, 

_* [63] 
or or 

For a pendulum bob one may use a piece of brass pipe about 
20cm long and 10cm in diameter. The pipe is fitted with four 
small eyebolts placed two at each 
end, at opposite ends of diameters, 

and to these are fastened four sus- 
pending cords of about 2 m length 
each. The bottom of the pipe is r 
equipped with a pin P; this pin 
makes contact with a light aluminum 
rider R, which slides along the hori- 4 
zontal meter stick. A softwood cyl- J eae 
inder is turned to fit inside the pipe. 
Whenever this core becomes badly [P R 

splintered, it should be removed from si P 
the pipe and a new one inserted. Fie. 44. Ballistic pendulum for 

measuring the speed of a bullet. 
To reduce the danger of accident toa Only the front pair of suspensions 

minimum, fasten the rifle in a clamp in is shown 
one end of a rectangular wooden box 

having sides about 2.cm thick and the end opposite the barrel about 10 cm 
thick. Cover the part of the trough not occupied by the rifle with a sliding 
wooden top; before attempting to remove the pendulum bob from the 
trough for the purposes of weighing, first slide this top over so that it covers 
the rifle, thus making it impossible to fire the latter. Openings in the sides 
of the box should be provided for the escape of gas; these may be covered 
with metal screen. 

  

      Rifle 
cS 

  

Adjust the bob M until it is horizontal, and then measure the 

length + of the suspending cords 
See that the meter stick is parallel to If and that the rider R is 

barely in contact with the pin P in the bob. Take the reading of one 
end of the rider on the scale.
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For firing the bullet a 22-caliber rifle may be employed. To pre- 
vent the pendulum bob from receiving momentum from the explod- 
ing gases, place a sheet of paper between the end of the barrel and 
the bob. The rifle is to be fired only when it is fixed firmly in the 
clamp provided for the purpose and aimed at the center of the pendu- 

lum, and then only with the approval of the instructor. Secure a 
cartridge from the instructor, and, after he has inspected the appa- 
yatus and has given his approval, fire a bullet into the center of the 
wooden core in the bob. Record the new position to which the rider 
R is moved. The difference of the two readings is the horizontal 
distance s moved through by the bob as a result of the impact. 

Clean the gun after each shot. Weigh the bob after each shot to 
obtain the mass + M. Obtain the mass m of the bullet by draw- 
ing similar bullets from three cartridges and finding their average 
mass. To draw a bullet, clamp the body of the cartridge between 
two blocks of softwood in a vise and extract the bullet with pliers. 
Do nol clamp the cartridge between metal jaws. 

Repeat the entire procedure to secure three values of u. Calculate 
(a) the mean speed of the bullet; (b) the percentage of deviation 

of each value of x from the mean; (c) the total energy of the bullet ; 
(d) the loss in energy in the impact, by Eq. [57]; and (e) /, by Eq. [60]. 

1, Would it make any difference in your determination of uw if M, 

rather than m + M, were taken as the mass of the system after impact? 

2. How much error was introduced into your result by neglecting h? 

in Eq. [62]? 

3. What becomes of the kinetic energy that is lost in an inelastic 
impact? 

4. Should you expect the fractional loss of kinetic energy to be greater 

in the present case than in the case of elastic impact? Explain. 

° 

EXPERIMENT VB. COEFFICIENT OF RESTITUTION 

Make a test of Newton's law as to the constancy of the coeffi- 
cient of restitution e for two given bodies. This may be accomplished 
by dropping a spherical body of some suitable material through 
a vertical distance /, onto the smooth horizontal surface of some 
hard, massive body, and noting the height /2 of rebound. Since in 
general, for bodies falling freely from rest, v= V2 gh, one has, in 
view of Eq. [61], 
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Use first a steel ball. Drop it from the clamp c, Fig. 45, through 

the hole in the metal sheet R and onto the smooth top of, say, a 

heavy steel plate or a slab of slate. By suc- 

cessive trials adjust the height of R until, in 

the first rebound from the surface S, the bot- 

tom of the ball becomes just visible above R. 
Measure both A, and he from the surface S 

to the bottom of the ball. Only the maximum 
value of 42 that can be obtained consistently 
should be recorded and used in the calculations. 

Make observations for at least three dif- 

ferent heights of fall 4, which vary between, 

say, 30cm and 100 cm. For each case calcu- 

late both e and the fraction / of kinetic energy 
  

  

lost in the impact. . an . Fic. 45. A method for 
Repeat the experiment, this time with a measuring the coefficient 

glass ball. of restitution 

1. Would the value of e which you obtained have been different if the 

balls had been dropped upon a different material, say a large slab of 
glass? 

2. Is the momentum conserved in this case of impact — that is, is the 
momentum after impact equal to the momentum before impact? Explain. 

° 

EXPERIMENT Vc. ELASTIC IMPACT 

Test the law of conservation of momentum as applied to direct 
elastic impact by swinging two steel balls of known masses as 

pendulums and _ finding 
their speeds before and 
after impact through ob- 
servations. of their mo- 

tions over a graduated 

arc (Fig. 46). It will be 
found most convenient to 

cause the ball of larger 
mass m, to swing down 

and make impact with 
the one of smaller mass 
Mz, when the latter is 

hanging freely at the bottom of its arc. The momentum of the sys- 
tem immediately before impact is then my, and that immediately 

  

Fig. 46. A method of studying the elastic impact 
of two spherical bodies
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after impact is 10, + mgv2. The object is to see if these two momen- 
tums are equal, within the limits of the experimental error. 

The ball m, acquires its speed #1 by swinging from rest down the 
arc ab (Fig. 46). Since the amount of friction is negligibly small, 
the speed thus acquired is the same as though the ball had fallen 

freely through the vertical distance 4; that is, #4. = V2 gh. After 

the impact, m: and mz lose their speeds by moving along the arcs bd 
and ce respectively, and thus are lifted by the impact through the 
respective vertical distances h’, and h’2; hence their respective speeds 
at the beginning of this motion, or immediately after impact, must be 

0, = V2 gh’; and 1, = V2 gh’s. Now it is evident from Fig. 46 that 

hy = r(cos B — cos @), 
h', = r(cos 8 — cos y), 
h'g = 1(1 — cos 4), 

where 7 is the vertical distance from the point of support to the center 

of either ball. Thus the equation to be tested in this experiment, 

namely, 71%, = 101 ++ mv2, may be written in the form 

m cos B — cos a = miV cos 8 — cos y + m2V1—cosd. [64] 

A similar substitution in Eq. [56] gives for the coefficient of restitution 

_ V1l—cos6— Vcos B— cosy, [65] 
e= a 

Vcos B — cos @ 

  

  

The fraction | of the kinetic energy lost in the impact. can then be 

obtained from Eq. [60]. Evidently the problem of testing the mo- 

mentum equation and of calculating the quantities e and / has been 

reduced to one of measuring the angles a, 8, y, 6 and the two masses 

my and Mo. 

In the apparatus used, the two balls are swung from a rigid sup- 

port by adjustable bifilar suspensions. The circular scale, which is 

graduated in degrees, has its center at the axis of suspension. The 

angles moved through by the balls are measured by means of two 

light aluminum riders which slide along this scale and give the scale- 

readings of the centers of the respective balls. The riders are so de- 

signed that one will be caught only by the index on the bottom of the 

large ball, the other only by the index on the bottom of the small one. 

To insure direct impact, adjust the leveling screws and the lengths 

of the supporting cords until the centers of the balls are in the plane 

of the graduated arc and equidistant from the axis of suspension. 

Then draw mm, back through some angle a, tie it in this position by 

means of a thread, and observe this initial position a of m1 by bringing 

the large-ball rider into contact with the index of my.
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Now slide the large-ball rider down to a point on the scale just 

short of its expected final position d, as approximately located by a 
preliminary trial. Similarly, place the small-ball rider in the neigh- 
borhood of e. Then burn the thread holding m;, at a point near the 
ball. Catch #1, with the hand as it swings back from d after the im- 

pact. Take the readings at d and e. 

With the small ball hanging freely, bring its rider into contact 
with its index and take the reading c. In a similar way find the posi- 

tion } of the center of the large ball at the moment of impact, that is, 

the position of m, when m2 hangs freely and m, is brought down so 
as just to touch mp. 

Measure 7 and, if the masses of the two balls are not stamped 

upon them, find m, and me by weighing. 

Calculate (a) the angles a, 8, y,6; (6) the two members of Eq. [64] 

and the percentage of difference between them; (c) the momentums 
immediately before and.after impact; (d) e by Eq. [65]; and (e) 1. 

1. Do the terms in Eq. [64] have the dimensions of momentum? Why, 
then, does this equation provide a test of the equalities of momentums 

before and after impact? 

2. Analyze all the forces acting on the two balls at the moment of 
impact. Are any of them external forces? If so, why is the total mo- 

mentum not changed by the impact? 

3. Show that the end points of the arc cd differ in height by the amount 
7(1—cosy) and explain why it is not this quantity, but rather 
r(cos 8 — cos y), which is taken as the vertical distance hk’; moved through 
by the large ball after impact. 

4. How does the value of e obtained in this experiment on elastic im- 
pact compare with that obtained in Exp. VB? Explain. 

5. How should you expect the fractional loss of kinetic energy in an 

inelastic impact to compare with that found in the present case? Why? 

o 

EXPERIMENT Vp. INELASTIC IMPACT 

The form of apparatus for studying inelastic impact is the same 
as that used in Exp. Vc except that a lead ball and a brass cylinder 

filled with lead replace the two steel balls. The index on the bottom 
of the cylinder is so placed that it indicates the position of the cen- 

ter of mass of the cylinder and ball taken together. Complete in- 
elasticity of impact is secured by interposing pads of soft wax at 
the contact surfaces, thereby causing the ball and cylinder to stick 

together after impact.
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The momentum equation which it is sought to verify is mu = 
(m-++ Myo, where m and M are the masses of the ball and cylinder 
respectively. If be the vertical distance through which the ball m 
falls before impact, and if h’ be the vertical distance through which 
the center of mass of m+ M is raised by the impact, then, in view 
of Fig. 47, K=1(Ge P= cosa), iti 

h’ = r(cos y — cos 4), 

and the momentum equation takes the form 

mv cos B — cos a = (m+ M)Vcos 7 — cos 5. [67] 

Note that h’ is the vertical distance between the points d and e, the 
are de being the path traversed by the center of mass of m+ M 
because of the impact alone, 

The point d is the point up to which the center of mass of the 

system ball-cylinder would move if the ball were placed initially 
at b instead of at a, and were then 
released. Hence the motions over 
the arc bc, which subtends angle 
8, and over the are cd, which sub- 
tends angle y, are not to be in- 
cluded in obtaining the expression 

for h and for h’. 
Adjust the apparatus as in 

Exp. Vc, making sure by prelim- Fic. 47, Apparatus arranged for in- 
inary trials that when the ball is elastic impact 
released by burning the thread, 
the cylinder and ball swing smoothly up the are without wobbling, 
Move the rider up the circular scale nearly to the point e which 
will be reached by the center of mass of m+ M. Observe the initial 
scale-reading @ of the center of the ball and, after the impact, the 
final scale-reading ¢ of the center of mass of the ball and cylinder 
together. 

Observe the scale-reading 6 of the center of the ball at the moment. 
of impact and the scale-reading ¢ of the center of the ball when the 
ball is hanging freely. Observe also the scale-reading c of the center 
of mass of the ball and cylinder together. If this reading does not 
agree with that of the ball alone, correct the cylinder index until 

it does. 
Then, with the cylinder hanging freely and the ball held barely 

in contact with it, place the rider in contact with the cylinder index 
and release the ball. The first swing will move the center of mass of 
the whole system to the point d, which can thus be observed. 
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Measure r and also m and mz, if the latter are not stamped on 
the ball and cylinder. 

Calculate (a) the angles a, 8, y,6; (b) the two members of Eq. [67] 
and the percentage of difference between them; (c) the momentums 
immediately before and after impact; and (d) J, by Eq. [60]. 

Repeat all of the foregoing procedure and thus obtain a second 

complete set of the required quantities. 

1. With the aid of a diagram, explain fully why Eqs. [66] give the 
correct values of h and h’. In Fig. 47, why is the arc de, and not the arc ce, 

taken as the path traversed by the center of mass of m+ M because of 

the impact alone? 

2. What becomes of the kinetic energy that is lost in an inelastic 
impact? 

8. How does the fractional loss of kinetic energy in the present case 
compare with that in the case of elastic impact? Explain. 

o 

OPTIONAL LABORATORY PROBLEMS 

1. Find by experiment whether the speed of a bullet is perceptibly less 

with each successive shot when the rifle is not cleaned between shots, 

2. Measure and compare the bullet speeds of various types of cartridges. 

3. Vary the kind of wood used for the core of the ballistic pendulum and 

find the average resisting force that each kind of wood offers to a bullet. 

o 

QUESTION SUMMARY 

1. State clearly the principle of conservation of momentum and illustrate 
this principle by applying it to the case of the impact of two spheres. For 
what particular case does it alone give a complete solution to the problem 
of the impact of two bodies? 

2. Define, and tell how to measure, the coefficient of restitution. 

8. Show how the principle of conservation of momentum, together with 
either the value of the coefficient of restitution or a knowledge of the loss in 
kinetic energy, suffices to solve completely any problem of direct impact of two 
bodies. What is the value of e for inelastic impact? for perfectly elastic impact? 

4, State the procedure for solving the problem of the oblique impact of 

two spheres. 

5. Is mechanical energy conserved in an impact? Reconcile your answer 

with the principle of conservation of energy. If mechanical energy were con- 
served in an impact, what would be the value of the coefficient of restitution 
and what would be the nature of the impact? How large a loss of mechanical 

energy isit possible to have in an impact without having a loss of momentum?
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PROBLEMS 

1. A projectile of mass 4.0 kg is shot with a muzzle speed of 350 m - sec~1 

from a gun of mass 3000 kg. What is the initial speed of recoil ? 

Ans. 47cm-sec™! 

2, A truck of mass 10 tons moving with a speed of 14 ft - sec— is stopped 

by buffers in 0.30 sec. What is the magnitude of the total impulse? of the 

average force? Ans. 2.8 x 105 poundals - sec; 15 tons. 

3. Explain the rise of a rocket. Would the rocket rise in a vacuum? 

4, Is it true that, at the start, the wagon pulls back with the same force 

with which the horse pulls forward? If so, how is any motion produced? 

If not, reconcile your answer with the third law of motion. 

5. What becomes of the linear momentum of a meteorite when it col- 

lides with the earth? What becomes of its energy? 

6. A 300-g baseball approaches a bat with a velocity cf 50m - sec™?; it 

leaves with an oppositely directed velocity of 100 m-sec~1. Find the aver- 

age force of the blow if the impact lasts 0.020 sec. Ans. 2.3 x 10? kgwt. 

7. Two perfectly elastic balls having masses in the ratio of 3 to 1 are 

suspended by threads so as to swing with pendular motions in a plane and 

make direct impacts (Fig. 46). (a) Prove that if the initial speeds of the balls 
are equal, on the first impact the more massive ball will come to rest whereas 

the less massive one will rebound with twice its initial speed, on the second 

impact the two balls will rebound with equal speeds, and hence a definite 

cycle of impacts consisting of two different types of motion will be estab- 

lished. (b) Show that a different cycle of impacts occurs if the less massive 

ball is initially at rest and the more massive one swings down upon it. 

8. Two spheres of masses 50 g and 100 g, respectively, make direct im- 

pact. Their velocities before impact are in the same directions and have 
magnitudes of 600 and 350cm-sec~+, Find the velocities after impact 

(a) ife= 1.00; (b) if e= 0.900. 
Ans. (a) 267 cm:-- sec7}, 517 cm - sec71; (8) 283 cm - sec71, 508 cm - sec™}, 

9. Suppose that one particle is initially at rest and that a second particle 

makes inelastic impact with it. What relation exists between the masses of the 
particles when the fractional part of the kinetic energy transformed into heat 

is (a) 3? (b) 4? (c) 2? Ans. (a) m= Ma; (0) mi =3 ma; (c) Me = 3m. 

10. A rapid-fire gun projects 300 20-g bullets per minute with a velocity 
of 400 m- sec! directly against a steel plate. If the coefficient of restitution 

between the steel plate and the bullets is 0.25, what average force does the 
steel plate exert against the wall which supports it? Ans. 5.1 kgwt. 

11. A 100-g billiard ball moving east with a speed of 200 cm - sec™1 was 
struck by a 4.00-g putty ball moving south with a speed of 2000 cm - sec™}, 

Find the velocity of the balls the instant after impact. 
Ans. 2.07 m- sec7}, 21° 50’ south of east. 

12. A bullet of mass 10.0 g is shot horizontally and with a speed. of 
2400 m-min~? into the center of a wooden ball of mass 500 g which is
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rolling along a horizontal plane with a speed of 400cm-sec~!. If the di- 
rections of the bullet and ball make an angle of 45° before impact and if it 

be assumed that the bullet remains in the ball, (@) how much is the direction 
in which the ball is traveling changed by the impact and (b) what is the 

speed of the ball after impact? Ans. (a) 7° 5’; (b) 453 cm - sec74, 

13. A fire engine throws 161 of water per second from a hose furnished with 

a nozzle 3.0cm in diameter. (a) If inelastic impact is assumed, what force 

does a wall experience against which the jet is directed normally and at 
short range? (0) If each particle of water rebounded with the speed of 

approach, what then would be the value of the force? (c) What normal force 
would the wall experience if the jet were directed at short range and at an 
angle of 30° with the wall, the coefficient of restitution being 0.50? 

Ans. (a) 37 kgwt; (6) 74 kgwt; (c) 28 kgwt. 

14. A smooth ball moving with a speed of 600 cm - sec-! makes impact 

with a second smooth ball of twice its mass, the latter being initially at rest. 
If the velocity of the smaller ball before impact makes an angle of 30° with 
the line of centers at the instant of impact, and if e is 0.5, find the velocity 

of the smaller ball after impact. Ans. 3m-sec7, L line of centers. 

15. A ball falls from a height of 6m onto asmooth floor. If the coefficient 
of restitution is 0.7, how high will the ball rise after striking the floor the 
third time? Ans. 0.7 m. 

16. A 50-g bullet is fired into a block of mass 125g. (a) Find the frac- 

tional loss of kinetic energy. (b) What if the bullet and block had been 
elastic bodies for which e is 1? Ans. (a) 71 percent; (b) 0. 

17. A 200-g billiard ball rolls on a smooth floor with a speed of 
100 cm-sec~!. It strikes a smooth wall at an angle of 45°. Ife is 0.500, 
find (a) the direction of motion after impact; (b) the loss in kinetic energy. 

Ans. (a) 26° 35’; (b) 3.75 x 10° ergs. 

18. A mass of 5.00 kg moving with a speed of 120 cm- sec”! impinges 
directly upon a mass of 20.0 kg which is at rest. The former is observed to 

rebound with a speed of 60.0cm-sec~!. Find (a) the energy lost in the 
impact; (b) the coefficient of restitution. Ans. (a) 0.675 5; (6b) 0.875. 

19. One of the heaviest rainfalls on record anywhere in the United States 
was that reported for a storm occurring in the mountains of California, when 
1,02 in. of rain fell in 1 min. Assuming that the speed of the raindrops was 

300 ft -sec—!, that they struck a 60 x 150 ft horizontal roof at an angle of 
75° with the roof, and that the coefficient of restitution was 0.2, find the 

total force exerted on the roof. Ans. 4 tons, 

20. The coefficient of restitution is very nearly unity for spheres of the 

same size consisting of materials like steel, glass, and ivory, but it is not 

unity for unequal spheres of these same substances. It may be as low as 
0.75 for two steel balls of greatly different sizes. Thus e is a constant of the 
colliding bodies, as well as of the material. By considering vibration losseg 
and the conditions under which vibrations will persist in bodies after impact, 

explain why this is true.



CHAPTER SIX 

RIGID BODIES AND EQUILIBRIUM 

PosTULATE the following 

1. Egaal weights ac equal distances ate in equilibrium, and equal weights at unequal dis: 
tances are not in equilibrium but incline towards the weight which is at the greater distance 

2. If, when weights at certain distances aré in equilibrium, something be added to one of the 
weights, they ure noriteauilibrium but incline towards that weight to which the addition was made. 

Ancrmmenes, “ On the Equilibrium of Planes or the Centres 
of Gravity of Planes.’ Translation by T. L. Heara * 

° 

Although the science of dynamics in its broadest sense had its be- 
ginning with GALILEO, a scientific treatment of the branch of the 
science called statics (Sec. 41) had been begun by the Greeks and 
constituted a considerable body of knowledge at the time of GALILEO. 
Statics developed before kinetics (Sec. 64) because it is much the 
simpler and is more directly concerned with the implements and 
simple machines known to the people of antiquity. These ancient 
inventions of course arose largely by chance to meet immediate 
needs, and previous to the time of the Greeks no generalized theory, 
such as that of the equilibrium of a machine, had been developed 
to explain them or to suggest further discovery. Genuine physical 
theory, treated mathematically, began with the clearing up of the 

theory of the lever and of the center of gravity by ARCHIMEDES 
(c. 287-212 B.c.), who was the greatest mathematician, physicist, 
and engineer of antiquity, and one of the greatest men of all times, 
ARCHIMEDES also laid the foundations for the science of hydrostati 
(Chap. 13), “but above all he introduced into science what might 
be called the Archimedian spirit, a new way of submitting things to 
scientific analyses, the method (and point of view) of mathematical 
physics.""* Very little advance in statics beyond ARCHIMEDES oc- 
curred for the next eighteen hundred years, until STEVIN again dealt 
with the lever and attacked such problems as that of the inclined 

   

  

1*T. L. Heath, The Works of Archimedes (1897), p. 189. By permission of The 
Macmillan Company, publishers. ARCHIMEDES stated, in all, seven postulates which 
he regarded as self-evident, and on the basis of them derived the general law of the 
lever and proved propositions for finding the centers of gravity of various plane 
figures. 

2G. Sarton, Introduction to the History of Science (Williams & Wilkins, 1927-1931), 
Vol. I, p, 166, 

108.
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plane (Chap. 3). Thus we see that the sixteenth century witnessed 
both the revival of statics and its absorption into the more funda- 

mental and powerful dynamics of GALILEO and NEWTON. In this 
text we will not develop statics as an independent science, as did the 

ancients, but will follow the modern method of treating it as a special 
case of dynamics. 

All the deductions made in the previous chapters for the mutual 
actions of two particles can be applied at once to a system of par- 
ticles, and hence to bodies of finite volume, provided we assume 

that the latter can be regarded as made up of particles. Now when 

a rigid body of finite volume has translation without rotation, 
its motion is the same as that of a single particle (Sec. 5). But 

when such a body is in rotation, then its particles no longer all 
move in exactly the same way and there is no longer any one parti- 
cle having a motion that is completely representative of the whole 

body. The motions of the individual particles are still described 
adequately by NEWTON’S three laws, but there is an immense prac- 
tical advantage in having special. rules, derived from these laws, 
that apply to the motion of the body as a whole. Two of these 
rules were suggested to NEWTON by his third law, when he re- 

garded the latter as an extension of the first law to a system of 
particles. For it immediately became apparent that there is one 

particular. point in any body, called the center of mass, which for 

certain purposes may be taken as representing the body, so that, 
for these purposes, the mass of the body may be conceived as con- 

centrated in a particle at this point. 

o 

The Center of Mass and Its Properties 

69. Definition of Center of Mass. The center of mass of two par- 
ticles is defined as a point that divides the line joining them inversely 
as their masses. Thus if ¢ be this point for two particles at A: and 

Ag,. Fig. 48, then 

Ai ., M2, [68] 
cAg my, 

by definition. 

If the rectangular coordinates of the two particles are (x1, y1, 2) 

and (x2, ye, 22), and if the coordinates of their center of mass are 

(%ey Vor 2c), then, from Eq. [68], 

Le ky _ Ma, 
X2— XX, my



Te mosaic is the only ancient pictorial representation of the death of Arcut- 

mepes which we possess. For its history, see F. Winter’s Der Tod des Archi- 

medes (De Gruyter, 1924), from which the reproduction here given, as well as much 

of the following discussion, was taken with the permission of the publisher. 
Since most mosaics ate copies of actual paintings, it is possible that this one is 

a reproduction of a painting made shortly after Arncurmepes’ death, when the recol- 

lection of it and of Arcutmepes himself was still fresh. If this should be the case, 

the painting, though no longer in existence, would antedate any of the historical 

accounts of Arcuimepss’ death, and the stories, such as those given below, may 

have been inspired by it. Since writers on iconography apparently do not recognize 

an ARCHIMEDES among existing portraits, it is to be hoped that this mosaic, which 

has only recently been called to their attention, may fll the need. 
Axcitmzpzs was, as this mosaic so well portrays, and as we know from his life 

and work, very different from the secluded bookworm most modern paintings depict. 

“ He was the type of man who, with all his science, leads a full life in the world 

of practical affairs. After he had participated under Hiero II in great and novel 
undertakings such as the preparation of a magnificent ship built for Ptolemy IV and 
had played a most important part in them, he it was who, when Rome in 214 s.c. 

laid siege to Syracuse, enabled his native city to make the celebrated defence and 
bid defiance for two years to all the efforts of the hostile superior power. On this 
account he found an admirer in the Roman general Marcellus who regretted ex- 
tremely that his orders for the protection of Archimedes issued upon the taking of 
the city, should have been brought.to naught by the violent act of an ignorant soldier. 
This Archimedes, the last representative of the great tradition of the city, the 
mosaic brings before our eyes. He is an elegantly dressed, solid, thickset fgure 

sitting there. Rudely disturbed in his studies, he rises suddenly pointing to the 
intruder with furious glances and words. He spreads his arms over the [sand] table 
containing his diagrams with a movement which shows him dominated entirely by 
the problem which he has just been studying. He betrays, however, not a trace of 
pedantic sentimentality. As characteristic as the whole figure is the head with its 
broad forehead over which the somewhat unkempt tufts of hair stand up. His eyes 
blaze. The exceedingly energetic mouth is closely framed by the short-cropped 
beard. One has the impression of a portrait gained from personal contact with the 
man himself.” 

Accounts of Arcatmengs’ death, differing somewhat as to details, have been 

given by Livy, Plutarch, Valerius Maximus, and others. Plutarch gives three differ- 

ent versions in his ‘‘ Life of Marcellus” : 

** Syracusa beinge taken, nothinge greved Marcellus more, then the losse of 
Archimedes. Who beinge in his studie when the citie was taken, busily seekinge 

out by him selfe the demonstracion of some Geometricall proposition which he 

hadde drawen in figure, and so earnestly occupied therein, as he neither sawe nor 

hearde any noyse of enemies that ranne uppe and downe the citie, and much lesse 
knewe it was taken: He wondered when he sawe a souldier by him, that bad him 

1
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The Death of Ancuimepes 

Puorocrars of a mosaic which probably dates back to before the time of Julius 
Caesar. The original, which is in color and is 51 cm long and 43 cm high, is 

owned by the Scabell family of Wiesbaden, Germany 

© 

go with him to Marcellus. Notwithstandinge, he spake to the souldier, and bad 
him tary untill he had done his conclusion, and brought it to demonstracion: but the 
souldier being angry with his aunswer, drew out his sword, and killed him. Other 
say, that the Romaine souldier when he came, offered the swords poynt to him, to 
kill him: and that Archimedes when he saw him, prayed him to hold his hand a litle, 
that he might not leave the matter he looked for unperfect, without demonstracion. 
But the souldier makinge no reckening of his speculation, killed him presently. It is 
reported a third way also, sayinge, that certeine souldiers met him in the streetes 
going to Marcellus, carying certeine Mathematical instrumentes in a litle pretie 
coffer, as dialles for the sunne, Sphaeres and Angles, wherewith they measure the 

gréatnesse of the body of the sunne by viewe: and they supposing he hadde caried 
some golde or silver, or other pretious Iuells in that litle coffer, slue him for it.”
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= mhs + exe, [69] 
and therefore Xe Ac 

with two analogous equations for y, and z,. Thus if the rectangular 

coordinates and masses of two particles are known, the rectangular 

coordinates of their center of mass can be 
calculated. 

Imagine the particles mm and mz re- 
placed at their center of mass by a single 
particle of mass m+ m2. The center of 

mass of /hree particles mm, m2, and ms is 
then defined as that of mm + m2 and ms. 
By proceeding in this way to a system of 
» particles, we obtain for the x-coordinate z 

of the center of mass of the system as 4. he wa Agate tie 

particles of a body, and ¢ is 
their center of mass 

    

and for y. and z. two analogous equations. These three equations 
for the system of 2 particles may be written in the briefer form 

Sy mix; 3 mi Miki 
reat jo isl, 

MO” OM” [70] 

  

     
  

  Xe 

where M is equal to mm + mo +-- +++ ma, the total mass of the system. 
When the » particles and their center of mass are located by 

means of directed lines ri, 12, - - -; fa» fo, drawn from the origin 0, 
the three scalar equations [70] may be written as a single vector 
equation, 

pmirs 
pot (71   

In many problems involving a body it proves convenient to take 
the origin of coordinates at the center of mass of the body, in which 
case X= Ve = 2, = 0 and Eqs. [70] become 

, > Miz; 
1 21 

(What does Eq. [71] become in this case?) 
Eqs. [70] are perfectly general and can easily be put into the par- 

ticular form required for any given case. 

    

(72] 
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Example. Two homogeneous solid cylinders of lengths 4 and ko, radii R, 

and Rz, and common density p are joined end to end, so that their 
axes coincide (Fig. 49). Locate the cen- 

  

tL : . Y 
ter of mass of the combination. h l + 

Solution. By symmetry, the center of t : OP -~-------f=-=-4-- xX mass lies somewhere on the common axis. If |       

we take this axis as the X-axis and take the 
origin O at the free end of the larger cylinder, 

we need solve only for x.. Since each cylinder 
is homogeneous, its center of mass lies at its 

geometrical center, and hence the problem reduces to one of finding the 
center of mass of two particles. By Eq. [70] or [69], then, 

Fic. 49. Find the center of 
mass of this combination of 

two cylinders 

TRi*hp he mRe*lap( + 2) 

me wRihp + TR2lop . 

EXAMPLE. A circular disk of diameter 16cm contains a hole 12cm in 
diameter which is tangent to the circumference, as shown in Fig. 50. 
Locate the center of mass. 

Solution. It is interesting to note that Eq. [69] can be extended to this 

case of a body containing a cavity merely by first treating the body as if it 
had no cavity and then considering as a ‘negative 
mass’’ the imaginary body which would just fill the 
cavity. Let o be the so-called surface density of 
the disk, or mass per square centimeter. Take the 

origin of coordinates at the center of the larger 

circle and the X-axis through the centers of both 
circles. Then 

__ 64 ma - 0 — 36 ma (— 2) 

  

c= = 2.6cm. 
64 ro — 36 70 . Fic. 50. Locate the 

The center of mass is therefore 2.6 cm to the right of center of mass of this 
the center of the larger circle. 

The positions of the centers of mass of many bodies are evident 
from inspection. In the preceding problems, for example, use was 

made of the obvious fact that if a homogeneous body is symmetrical 

about a point or an axis, the center of mass lies in that point or 

axis. When a body can be divided into parts such that the center 
of mass of each is known, the center of mass of the whole can usually 

be found. Thus, if a triangular area be divided into narrow strips 
  

1 The advantage of the implicit method of solving problems is apparent here, for 
mp cancels out, thus saving much tedious numerical! work.



112 Mechanics - Molecular Physics - Heat - Sound [6 + 70 

parallel to one side, as in Fig. 51, it is seen that the center of mass 
of each strip lies on the line joining the middle of the side to the 
opposite vertex; hence the center of mass of the triangle is at the 

intersection of the three lines that join the vertices to the middles 

of the opposite sides. The most general methods 

of finding the centers of mass of regular bodies 
involve the use of the integral calculus. Such 

methods are illustrated in Appendix 7, which 

also contains the formulas that may be used for Fic. 51. Method of 

bodies of various common shapes. fnding the center of 

70. Displacement, Velocity, and Acceleration of ™*° of a triangular 
the Center of Mass. Suppose that a body is in ance 
motion relative to some point 0, considered as fixed, and that the 

positions of its particles and their center of mass at a certain moment 

  

are given by the vectors 11, ra,---, a, fe, drawn from 0. After an 

interval of time Az these positions will in general have changed to 

new ones given, say, by t’1, t’2,-- +, tx, 1c, also drawn from 0. By 

using Eq. [71], one obtains for the displacement of the center of 

mass in the time Af the vector equation 

  

i=n tmn 

mur’; Mile 

i=l f=1 
rot =* iM —+ wo 

i=n 

mili Vi) [73] 
= 

or Yo te == 4p" 

It will be noted that in obtaining this equation the masses of the 
particles and hence the mass of the body have been regarded as not 

varying with the time (Sec. 25). 

To obtain an expression for the velocity v. of the center of mass, 

divide both members of Eq. [73] by Az and let Az decrease without 
limit; this gives, according to Eq. [10], Chap. 1, 

i=n 

> mi 
tl 

M 
  Vo= , [74] 

where vi, V2, °°, Vz are the velocities of the particles. The terms 

mw; are the momentums of the individual particles, and hence 

Eq. [74] states that the total linear momentum of a body of finite 
volume is equal to Mv,, the product of the total mass and the velocity 

of the center of mass.
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EXAMPLE. Show that the acceleration of the center of mass is given by 
the expression i=n 

Mia; 

—i=l_, a, = St [75] 

Solution. Begin with Eq. [74] and apply the same reasoning as was used 

in obtaining it; then make use of Eq. [12], Chap. 1. 

It remained for JEAN LE ROND D’ALEMBERT (1717-1783) to see 
that Eq. [75] has a very important interpretation. The term m,a; is, 
by the definition of force, the total force acting on the 7th particle 
to produce the acceleration a;. Now there are in general two classes 
of forces acting on a sysiem of particles: the forces that the indi- 

vidual particles exert on one another, called internal forces; and 
the forces applied to the system from the outside, called external 

forces. But NEWTON’S third law asserts that the internal forces 
occur in pairs that are equal in magnitude but oppositely directed, 
and D’ALEMBERT! saw that if this be true, the sum of the internal 

forces is zero. Hence > ma; is simply the sum F of.all the external 
i=l 

forces, and Eq. [75] becomes 
F = Ma.. [76] 

Here we have the great physical property of the center of mass, 
_ the one that makes the dynamics of a particle so useful. For Eq. [76] 

tells us that, no matter what the shape of the body, how it may move, 

or where the external forces are applied to tt, the center of mass moves 

precisely as tf the total mass were concentrated there and ail the external 
forces were transferred, with their directions unchanged, to the center 
of mass. This statement is true no matter whether the particles are 
rigidly connected or are moving relative to one another, as is the 

case with the molecules of a mass of gas. Thus, when gravity is the 

only external force acting on a bomb dropped from an airplane, 
the center of mass of the bomb describes the same parabolic path 
as would a particle under the same circumstances; if the bomb 
explodes during its descent, the center of mass of the fragments 
continues along the same path as if no explosion had occurred, for 
all the forces brought into play by the explosion are internal forces 

and thus add up to zero. 
It is important to note, however, that the external forces applied 

at the center of mass are those actually operating on the various 

particles of the body and not necessarily those that would exist if 
these particles were transferred to the center of mass. 
  

1 J. d’Alembert, Traité de Dynamique (1743).
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71. Equilibrium as Regards Translation. A body is said to be in 
equilibrium as regards translation when its lineat momentum Mv is 

constant, that is, when its center of mass has no acceleration, 
According to Eq. [76], this will be true when the sum F of the ex- 
ternal forces acting on the body is zero. Therefore the condition 
for equilibrium as regards translation is F = 0, or, what is the same 
thing, 

F.=0, F,=0, F.=0, [77] 

where F,, F,, and F, are the algebraic sums of the force components 
along the X-, Y-, and Z-axes respectively. 

  

° 

Moments of Force 

72. The Principle of Moments, When one attempts to set down 
the conditions that govern the rolation of a body, it is found to 
make a great difference where the force is applied. We will solve 
this problem with the help of the scholium to Newron’s third law, 
the essence of which is that in any machine, dur- 
ing any given time, the work of the acting forces 
is equal to the work of the resisting forces (Sec. 46). 
This generalization must, of course, be applied 
to some particular case, and one of the simplest 
is the wheel and axle. This machine (Fig. 52) is 
merely a kind of continuous lever, which has for 
its lever arms the two rigid radii | and /> leading 
out to the tangential points of the cords. A weight 

fi is attached to the cord wound around the axle. 
‘A second cord is wound in the opposite direction © a er The jpheel 

2 = and axle, and the 
about the rim of the wheel, and a spring balance _ principle of moments 
attached to this cord can be used to measure the 
force needed to raise the weight f; at constant speed and also to lower 
it steadily. In the first case the weight roust be lifted and the friction 
in the bearings overcome, whereas in the second case the friction aids 
the applied force in supporting the weight, so that the average of the 
two balance readings is the force fz that would be needed to raise or 
lower the weight f, without acceleration if there were no friction. 
Now if the weight be raised or lowered through some distance s: by 
a steady rotation of the axle through an angle of, say, @ radians, the 
work of the resisting force fi is fisi, or fili@, where /; is the radius 
of the axle. The applied force fy in the same time moves through 
some distance s2 and its work is frs2, or folz0, where 2 is the radius 

RY 
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of the wheel. No other work is done, for there is neither accelera- 
- tion nor friction, and the wheel is regarded as rigid and the support 

rod R as fixed. Therefore, by the work principle, fil9 = fold, or 

Sih =fele. [78] 

This equation is true only for steady rotations or for rest, that is, 
for rotation without angular acceleration. It is therefore the con- 
dition for equilibrium as regards rotation of a rigid, frictionless wheel 

and axle. 
It appears from Eq. [78] that two forces will have equal turning 

effects about a given axis if the product obtained by multiplying 
the magnitude f of either force by the perpendicular distance / from 
the line in which it acts to the axis is equal to the corresponding 
product for the other force. This product fl bears the same relation 

to rotation that force does to translation. It is a measure of the 
importance of a force in producing rotation about a given axis and 

hence’is quite appropriately called the moment or torque of the force. 
We will denote its magnitude by the symbol L. 

LEONARDO DA VINCI seems to have been the first to perceive that 
the two factors which properly measure the tendency of any force to 

produce rotation are the magnitude of the force f and what we now 

call the lever arm 1, or perpendicular distance from the axis of rotation 
to the direction of the force. It is improbable, however, that he 

ever thought of the product fil as constituting a single quantity L 
which is the proper measure of the importance of the force in pro- 
ducing rotation, or that he considered it to be a directed quantity. 

As another simple example of the fact that the torque L of a 

force is the proper measure of its tendency to produce rotation, 
imagine a thin flat sheet of metal, free to rotate in a horizontal 
plane about a fixed vertical axis A, Fig. 53, and in steady rotation 

under the action of the forces f1, fo, fs, and f4, all of which lie in the 
plane of rotation. The force f; is producing clockwise rotation, 
fo and fg are resisting this rotation, and f, has no influence on the 

rotation, since it passes through the axis A. Now the direction in 

which f, acts is not parallel to the direction in which its point of 
application moves, and thus the force that is effective in producing 
the motion is not f; but the component of f; in the direction of 

motion; this component has the magnitude fi sin «1, where €; is the 
angle between the force and the line 1 drawn from the axis A to the 

point of application of the force. Similarly, the effective resistances, 

  

1See *J. B. Hart, The Mechanical Investigations of Leonardo da Vinci (Open 

Court, 1925), pp. 109-113.
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or resistances in the directions in which the points of application 
of fo and fs must move, have the magnitudes f. sin eg and fs sin ¢3. 

Provided there are no additional resistances due to friction or molecu- 

lar forces, the work principle asserts that, for a steady rotation of 

the body through an angle of @ radians, 

ft sin e170 => Cfo sin €2)726 + (fs sin €3)738, 

or fairy sin €; = fore sin € + fgrg sin é3. [79] 

  

  

Z   
Fic. 53. The work principle applied to the rotation of a body acted upon by 

several forces in the plane of rotation 

If perpendiculars /:, 2, and is, Fig. 53, be dropped from A upon the 

lines of action of the several forces, then r1Sine: =, etc., and 
Eq. [79] becomes fal: =folo + fala, [80] 
or 

Ly = Le + Ls, 
[81] 

where Li, Le, and Z3 are the torques of the forces f1, fe, and fs with 
respect to the axis A. Thus if any number of forces are acting in 

the plane of rotation, the condition for rotational equilibrium is 

that the sum of the torques producing clockwise rotation musi be equal 
to the sum of the torques producing counterclockwise rotation; or, if 
clockwise rotations be called negative, and counterclockwise posi- 

tive, the algebraic sum L of the torques must be zero. In symbols, 
this condition is L = 2 (fr sin e) = 0, or, what is the same thing 

L=Zfl=0. (82]
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Although Eq. [82] has been developed only with reference to 
torques about the jixed axis A, it holds, nevertheless, for torques 
taken about any imaginary axis conceived as passing parallel to 
the original axis through any point whatever in the plane of the 
forces, provided the bedy is in equilibrium as regards translation 
as well as regards rotation, and provided the force fs be numbered 
among the acting forces. Thus, if Eq. [82] be true for a body pivoted 
at A, Fig. 53, then it is also true that, if O be any point whatever in 
the plane, : 

Fil’ + fel’s + fal’s + fal’s = 0, - [83] 

where 11, - - -, I’, are the respective perpendiculars let fall from 0 to 
the lines of action of the forces. This conclusion follows from the 

consideration that, since the body is also in equilibrium as regards 

translation, f, + fe-+fs =— fs; that is, so far as any effects pro- 
duced by fi, fz, and fg are concerned, these three forces may be 

replaced by the single force — fy. But the 

torque of — fs about any axis whatever dif- h_ A 
fers only in sign from the torque of fs; hence A ; 
the sum of the torques of the forces which 1 
—f, replaces, namely, f,, fe, and fs, must | 
differ only in sign from the torque of fi. o+-+_4 

EXAMPLE. Two forces f; and fz act on a rod of Fc 4 the seen 
negligible weight which is pivoted at A as torques is wholly arbitrary 
indicated in Fig. 54. Given that the sum of 

the torques of these forces about the fixed axis A is zero, show that the 

sum of the torques about any parallel axis through any point O in the 
plane of the figure also is zero. 

    

  y & 

  

If a number of torques are applied simultaneously to a body and 

these torques act about different axes, they may, with certain re- 

strictions, be added like ordinary vectors (Sec. 80). In the special 

case where the torques all act about the same axis, they may then be 
added algebraically, for the vectors representing them are all local- 

ized in the same straight line. This is the case in Fig. 53, where the 
common axis is parallel to the Y-axis of coordinates. 

73. Conditions for Complete Equilibrium. A body is in equilibrium 

as regards rotation if the vector sum L of all the torques acting on 
it is zero. This condition may be expressed analytically by the 

statement that the algebraic sum of the torques tending to produce 
rotation about each of three rectangular axes must be zero. 

By combining this condition for rotation with that given in 

Sec. 71 for translation, we have as.the conditions for the complete
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equilibrium of a body the two vector equations F=0 and L=0, 
or, what is the same thing, the six independent relations 

Fr=0,  Le=0, 
Fy Ly 

L,=0, 

  

[84]      
where Z,, L,, and L, are the sums of the torques tending to cause 
rotation about the X-, Y-, and Z-axes respectively. 

74, Center of Gravity. In his theory of the lever,! ARCHIMEDES 
made use of the fact that there is a point in any body, called its 
center of gravity, such that the body will 
balance in all positions when supported y 
at this point. Suppose, for example, that | 
the center of gravity C of a flat piece of 1 
tin has been located by experiment and 
that the piece of tin is then supported 
on a horizontal axis through C so as tobe = —~ ax 
free to rotate in a vertical plane (Fig. 55). 
Let C be the origin of rectangular coor- 
dinates, the Z-axis the axis of rotation, 
and the XY-plane the plane of rotation. 
Since the body is near the surface of the ey located saece the cattle 1 

earth, not only is each of its nw particles 4; ight may be conceived!’ a 

subject to the force of gravity but the concentrated at the center of 
directions of all these forces may be mass 
considered as sensibly parallel. The only 
other force acting on the body is f, the upward thrust of the axis C. 
Since the body is supported at the center of gravity, it is in com- 
plete equilibrium in all positions, and hence, by Eas. [84], 

Fio. 55. When a small body 

    

  

F,=0, L,=0, 

Fy=f- Smeg =0, L, =0, 
a a 

F.=0, L. = Ymegxi =05 
i 

Es f= m= Mg, Sma =0. [85] 
* a   

  

‘The first mathematical treatment of the lever, in a literal translation of ARCHI- 
MEDES' own words, and also a less cumbrous proof due to STEVIN, are given in *J. Cox, 
Mechanics (Cambridge University Press, 1919), pp. 4-6. See also T. L. Heath, The 
Works of Archimedes (Cambridge University Press, 1897), pp. 189-194, and E. Mach, 
The Science of Mechanics (Open Court, 1893), pp. 8-19.



  

6+ 75] Rigid Bodies - Equilibrium 119 

The first of these two equations tells us that the line of action of the 
total weight Mg of the body passes through the center of gravity, 
however the body is situated with reference to the earth, and this 
explains why the center of gravity is sometimes defined as that 
point at which the weight of the body may be conceived as con- 
centrated. The second equation, when interpreted in the light of 
Eqs. [72], enables us to conclude that the center of gravily coincides 
with the center of mass. 

One speaks of the center of gravity only when the body is situated in a 
uniform gravitational field; that is, when the body is in a region in which 
the gravitational force acting on a particle does not change either in mag- 
nitude or direction as the particle moves about in it. Thus the term center 
of gravity is appropriate only when applied to a small body at -the earth’s 
surface. If a body has any center of gravity at all, this point must always 
coincide with its center of mass. The center of mass is, however, a perfectly 
definite point which depends in no way upon the location of the body and 
which has remarkable properties quite independent of weight (Sec. 70). 

ARCHIMEDES’ definition of the center of gravity as the point such that 
the body will balance in all positions when supported thereat affords an 
excellent method of finding eitHer the center of gravity or the center of 
mass experimentally. It also enables one to calculate the position of the 
center of mass from the principle of moments. The student should solve 
the illustrative examples given in Sec. 69 from this point of view. 

75. Solution of a Typical Problem in Statics. Although a good part 
of the value to be gained from solving problems consists in develop- 
ing the ability to analyze any new physical situation with which 
one is confronted and to plan a mode of attack, it is still useful to 
outline the general procedure which experience has shown to be the 
most effective in attacking a given type of problem. The solution 
of a problem in statics is usually best carried out in the following 
steps : 

1. Isolate the body (or the parts of the body one at a time) to which the 
problem applies. The selection of the body to be isolated is made in such 
a manner that all external forces are either known or can be calculated by 
the method given below and so that the internal forces between the various 
parts of the body play no part in the problem. This is the step that differ- 
entiates one problem from another and that will test the student’s ingenuity 
and physical insight. Once it is successfully carried out, the solution of the 
problem becomes largely a matter of routine. 

2. Make a diagram in which the known and unknown forces involved in 
the problem are represented by vectors. The forces which are considered 
must all act on the same body, and a! the forces that act on the body must 
be taken into account.
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3. Choose three mutually perpendicular coordinate axes, compute and 

tabulate the components of the forces with reference to them, and then write 

the three equations that express the conditions for equilibrium as regards 

translation. 

4, Compute and tabulate the torques, about the chosen axes, of the com- 

ponents of the various forces; then write the three equations that express 

the conditions for rotational equilibrium. If there is any force with which 

you do not wish to deal, choose the origin of your set of coordinate axes at 

the point of application of this force. 

5. Solve the resulting equations for the required unknown quantities. 

EXAMPLE, A uniform ladder of length S and weight f, stands on a hori- 

zontal floor and leans against a vertical wall, the coefficients of static 

friction at the floor and wall being » and w’ respectively. The ladder 

makes an angle @ with the floor. If a man of iy 

weight f. starts to climb the ladder, how far Hh, | 

can he ascend the ladder before it starts to | 

slip? 

    

Solution. The ladder is chosen as the body to 
be isolated in this problem. A force diagram is 
then drawn, with the forces acting on the ladder 

represented by arrows. An origin and set of axes ~~ uf, i 

are next chosen, as shown in Fig. 56, this particu- 

lar choice of origin being suggested by the fact 
that two forces act through this point. The axes 
are orientated in such a way as to make the deter- 

mination of the force components as simple as have b laced 
. : Man nave een reblace 

possible. Lets be the unknown distance up the Ly the f hich th 
: : . y the rorces whic tney 

ladder to the point where the man is standing and exert 

let fs be the vertical component of the floor reac- 

tion and f, the horizontal component of the wall reaction. Since the ladder 

is on the point of slipping, the frictional forces are ufs and y’fs in the direc- 

tions shown. Applying the conditions for complete equilibrium, Eqs. [84], 

Fic. 56. The ladder is 
the only body shown in 
the force diagram, for the 
floor, the wall, and the 

F,=— pfs + fs= 0, 

Fy=fa—fi—fo+ wte=0, 
F,=0, 

L, = 0, 

L, = 0, 

L=hi : cos ¢ + fos cos @ — fzS sin @ — p’faS cos P= 0. 

Eliminating the unknown forces fz and f, and solving for s, 

—S fu +ss) » i], 
= (an 6+ ¥) 3| 

(What is the effect on s of placing the ladder closer to the wall?)



  

  

  

© PLATE 19 Oo 

  

  

  

  
nr 

If the bar is pivoted at m, then nm, which If an = ar =af/2 =am/2, then, for equi- 

is perpendicular to hf, is the lever arm librium, the weights are in the ratio 8 to 4, 

as shown 

     
If at is a bar pivoted at a, then the lever arm If ad = af = ab/8, then the weights are 
of mis ab, not at, and the lever arm of n is ac, in the ratio 8 to 1, when the bar is in 

not at; hence m and n are in the ratio of ac equilibrium 

to ab, when the bar is in equilibrium     
  

Copies of Tlustrations 

from the Manuscripts of Lzonarvo pa Vinci 

Turse diagrams show Leonarpo pa Vinct’s mastery of the principles of the lever, 
tven for oblique forces, and his appreciation of the significance of the perpendicular 

from the axis of rotation to the line of action of the force.



  

  

      

  

    
  

An Illustration from Varicnon’s 

PROJET D'UNE NOUVELLE MECANIQUE (Paris, 1687) 

Ancinenes’ appreciation of the advantages of the lever and the other “mechanical 
powers” is clearly indicated by the words attributed to him: “Give mea place 
tostand on, and I can move the earth."" ‘The vignette above was drawn to illustrate 
this saying. The Latin motto may be translated thus: "Touch it and you will 
move it.” 

The account given in Plutarch’s " The Life of Marcellus” of the extent to 

which Ancuenes was able to make good his boast is worth quoting: 

  

“ But Archimedes havinge tolde king Hieron, his kinseman and very frende, that it 
was possible to remove as great a weight as he would, with as little strength as he 
listed to put to it: and boasting him selfe thus (as they reporte of him) and trusting 
to the force of his reasons, wherewith he proved this conclusion, that if there were 
an other globe of earth, he was able to remove this of ours, and passe it over to the 
other: kinge Hieron wondering to heare him, requited him to put this devise in 
execution, and to make him see by experience, some great or heavy weight temoved, 
by little force. So Archimedes caught hold with a hooke of one of the greatest 
carects, or hulkes of the king (that to draw it to the shore out of the water, required 
a marvelous number of people to go about it, and was hardly to be done so) and 
puta great number of men more into her, than her ordinary burden: and he himselfe 
sittinge alone at his ease farte of, without any straining at all, drawing the ende of 
‘an engine with many wheeles and pullyes, fayer and softly with his hande, made it 
come as gently and smoothly to him, as it had floted in the sea," — Translation by 
Tuoatas Norra (1579).
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76. The Couple. An interesting case arises when a body is acted 
upon by two forces that are equal in magnitude and opposite in 
direction, but that do not act along the same line (Fig. 57). An 
example is the pair of forces applied by the thumb and finger in 
winding a watch. Such a pair of parallel forces was given the name 
couple in 1803 by the French mathematician Louris Pornsot.! 

The two forces constituting a couple add up to zero, and there- 
fore a couple has no tendency to produce translation of the body 
on which it acts. But it does tend to pro- 
duce rotation. Its torque about any axis f 
is the algebraic sum of the torques of its 
two forces about the same axis. The value 
of this torque depends in general upon the \-- 
axis about which the rotation is supposed 
to take place, but it may easily be shown 
that for an axis perpendicular to the plane F 
in which the two forces act, the torque of 

a couple is equal to the magnitude of either Fic. 57. A rigid body under 
force multiplied by the distance between ‘he action of a couple. The 

. : ; magnitude of the couple is fd 
the lines of action of the forces. The stu- 4, any axis normal to the 
dent should prove this, first for the case plane of the forces 
when the normal axis is at any point 0 
between the forces and then when it is at 0’, outside their lines of 
action (Fig. 57). It may also be proved that if the axis makes an 
angle ¢ with the normal to the plane of the forces, the magnitude 
of the torque is fd cos ¢. We thus arrive at the important result 
that the magnitude of a couple is the same for all axes that are parallel: 
in other words, a couple, unlike either a force or the torque of a force, 

is a nonlocalized, or free, vector. 

Since a couple acting on a body has no effect on the velocity of 
the center of mass, the change in rotation produced by the couple 
must be about some axis through the center of mass. A couple 
evidently cannot be balanced by a single force but only by another 
couple of equal magnitude fd but opposite sign, lying in the same 
plane or in a parallel plane.? The theory of couples, developed by 
POINSOT, provides a method for simplifying complicated systems of 
forces, for it shows that the whole of the forces acting on a rigid 
body are always reducible to a single force, acting at a given point, 
and a couple. 
  

1 Eléments de statique ( 1803). An excerpt from a translation by T. Sutton (1848) 
is given in *A Source Book in Physics (1935), pp. 65-68. 

* For an elementary discussion of other properties of the couple, see * J. Cox, 
Mechanics (Cambridge University Press, 1919), pp. 179-185.
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EXPERIMENT VI. ROTATIONAL EQUILIBRIUM AND 

THE BEAM BALANCE 

The object is to become familiar with the conditions for rotational 

equilibrium and with the principles involved in the beam balance. 

The whole experiment is based upon the principle of the equality 
of opposing torques when no rotation exists. The beam of the model 

balance (Fig. 58) is a meter stick provided with a sliding frame which 

may be clamped at any desired point on the stick. This frame 

carries a knife-edge c which is fixed and 
a knife-edge b which is adjustable ver- 
tically. The frame and beam are sup- C a 
ported by resting either of these knife- 
edges in an adjustable groove clamped 
to a tripod support. The beam is also 
provided with a knife-edge a at the 75-cm 
mark, and with two notches m and mp. Fic. 588. Model of a balance 

The pans P: and Pez are hung from the 
upper edge of the beam on knife-edges p: and pz. Plumb lines are 

dropped from fi, p2, and 6 to facilitate the measurement of the 
lever arms, 

aon ofl ny & 

  

Part I. The Beam Balance. a. Weights of the Pans. Support the 
beam from the knife-edge 6, which should be set. about 1 cm above 

c, and slip the beam through the frame until it balances in an ap- 
proximately horizontal position. Then hang the pans P; and Pes 
from the beam, well out toward the ends, and slide them along the 

beam until the latter is again in horizontal equilibrium. Read off 

the lever arms of the two pans on the graduated beam. Now place 

a 100-g weight in the pan P; and move this pan in toward the ful- 
crum until the horizontal equilibrium is restored. Record the new 

lever arms. For each case write down the condition for rotational 
equilibrium, namely, Eq. [82], and solve these two equations for the 

weights P; and Pz. If the weights of the pans, with attached plumb 

bebs, are not stamped upon them, weigh each pan on the laboratory 
scales and thus check your results. 

b. Bringing the Center of Gravity of the System into Coincidence 

with the Knife-edge c. Remove the pans and raise the upper knife- 

edge as high as is possible. Support the beam this time from the 

knife-edge c, and adjust the positions of the movable knife-edge 
and of the beam until the latter shows no tendency to move out of 
any position in which it is placed. The system consisting of the beam 
and its fittings is then in neutral equilibrium about c, and hence its
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center of gravity has been brought into coincidence with the point ec. 
The foregoing adjustment will be greatly facilitated by the use of 
rubber bands or a small bit of soft wax, which may be attached to 
the beam at any desired point. Also the 
final adjustments can be made more ac- 

curately if the knife-edge ¢ is made to rest 
on the smooth portion of its support 

rather than in the notch. 
c. Weight of the Beam. Having brought 

the center of gravity of the system into 
coincidence with c, again support the 

beam from 6, hang the pans this time in 

the notches, and place known weights 

W, in the pan P, until the beam assumes 

a position inclined about 45° to the hori- 

zontal (Fig. 59). The equation for rotational equilibrium now in- 
volves the three forces Py + Wi, P2, and the weight Ws of the beam, 

and the three corresponding lever arms h, k, Ig. The lever arms 
are to be measured by bringing a meter stick, which is held in a 

horizontal position in a meter-stick clamp, up to the plane of the 

plumb lines hanging from the knife-edges. It may prove better to 
measure /; with the help of a vernier caliper. (Why?) Write the 

equation for rotational equilibrium and solve for W3. 
Obtain the weight Ws; of the beam in another way, by supporting 

it upon the knife-edge @ and producing horizontal equilibrium by 
means of a known weight W (Fig. 60). 

Compare the two values of Ws thus obtained with that found 
stamped on the beam or determined by weighing the beam on the 
laboratory scales. 

Part II. Double Weighing. All the 
errors of a balance are eliminated bya ( 
double weighing, a method devised by 
KARL FRIEDRICH GAUuss (1777-1855). 
To see this, hang unequal pans Pi and 

P, from the notches and slip the beam 

through the frame until a balance is 

obtained. The arms of the balance are now unequal, the pans are 
of unequal weight, and the center of gravity of the beam is not 
beneath the point of support. Put an unknown weight x into Pi 
and find by trial the known weight W1 that balances it. Next 

place x in P2 and balance it by means of a known weight W2 placed 

  

Fic. 59. One method for 
weighing the beam 

          Cs
s
]
 

  W oo 

Fic. 60. A second method for 
finding the weight of the beam 

  

1See Appendix 5, Vernier Caliper.
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in Pi, If 4 and /2 are the lever arms of P; and P2 respectively, the 
equation for rotational equilibrium gives xh = Wil and xl, = Wel), 
‘The solution of these two equations for x gives x=VWWi As 
can easily be shown,' if W, and Ws have nearly the same value, it is 
sufficiently correct to write x =(Wi +We)/2. 

Asa check, find x by weighing on the laboratory scales. Compute 
the percentage of difference. 

       

1. Explain why a balance beam returns to a horizontal position when. 

displaced therefrom. 
2. Why must the center of gravity of the beam be below the knife- 

edge? What would happen if it were exactly at the knife-edge? above 
the knife-edge? 

3. In Part I, ¢, since the arms /, and /; are measured with an ordinary 

meter stick, what is to be gained by using a vernier caliper for meas- 

uring /s? 

4, Which of the three determinations of the weight of the beam do you 
consider the most trustworthy? the least trustworthy? Why? 

5, Prove that if W and Ws have nearly the same value, then VWiW2 

is approximately equal to (Wi + We)/2. 

° 

OPTIONAL LABORATORY PROBLEM 

Sensitivity of a Balance for Different Loads. A balance is said to have 
great sensitivity when a very small difference of weights causes a large de- 
flection. The sensitivily may be defined as the displacement produced when 

some arbitrarily chosen small weight w is added to one pan. 
a. Ariange a laboratory model of a balance in such a way that the knife- 

edges pi, po, b, Fig. 58, are not in the same straight line, and determine 
whether the sensitivity depends upon the load. To do this, set the knife- 

edge b about 4 cm above the line connecting p; and p2 and support the beam 

from b, Hang the pans from the beam, but not in the notches, since a little 
friction at the knife-edges completely vitiates the results. Bring the beam 
into a horizontal position and then read off on a vertically placed meter stick 
the deflection of the beam produced by adding 1 gwt to one of the pans. 
Add, say, 300 gwt to each pan and, if necessary, again bring the beam to 
a honzontal position by changing the position of the pan to which the small 
weight was of added. Find the sensitivity for this new load. How does the 
sensitivity change with the load? What if b were below the line p:p:? 

b, Arrange the balance so that the knife-edges pi, 2, and 6 are in the 
same straight line, and find how the sensitivity varies with the load in this 
case. If a slight bending of the beam occurred with the increased load, how 
would this affect your results? 
  

+See Appendix 3, Errors Introduced by Common Approximations.
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QUESTION SUMMARY 

1. Define center of mass. What is its physical importance? How is its 
position calculated? 

2. Define center of gravity. Distinguish between center of gravity and 
center of mass. 

3. Define torque. Distinguish between torque and work. Do they have 
the same dimensions? 

4, State and illustrate the principles of moments. 

5. State the conditions for rotational equilibrium. 

6. What are the conditions for complete equilibrium of a body? 

7. What is meant by a couple? How may one compute the magnitude 
of the torque produced by a couple? What is required to balance a couple? 

° 

PROBLEMS 

1, At the corners of a square of area 4 ft? are placed particles of masses 1, 

2, 3, and 4 Ib respectively. Find the position of the center of mass of this 
system. 

Ans. If the 1-lb and 2-lb masses lie on the X-axis and the 1-lb 
and 4-lb masses on the Y-axis, then x, =I ft, y, = 1.4 ft. 

2, A thin iron rod 63cm long is bent so that the two parts, of lengths 
27cm and 36cm, are at right angles to each other. Find the position of 

the center of mass. 

Ans. If the shorter arm is made the X-axis, then x, = 5.8 cm, y-=10cm. 

8. A cubical block having 1-ft edges has a cylindrical cavity 10 in. in 

diameter and 8 in. deep cut centrally in the top. Show that if this cavity 
is half filled with a liquid one fourth as dense as the material composing the 
vessel, the center of mass of the whole is 7 in. below the top of the vessel. 

4, The line of action of a 1000-dyne force lies in the XZ-plane and cuts 
the Z-axis at a point 6cm from the origin. What is the torque about the 
Y-axis if the angle between the line of action of the force and the Z-axis is 
(a) 60°? (b) 180°? (c) 330°? 

Ans. (a) 3V3 x 108 dyne-cm; (b) 0; (c) —3 x 103 dyne - cm. 

5. Two men carry between them a load of 50 kgwt supported upon a 
uniform pole weighing 10 kgwt. Where must the load be placed in order 
that one man may carry twice as much of the whole weight as the other? 

Ans. 0.31. 

6. A man wishes to overturn a hollow cubical block which has a 5.0-ft 
edge and a mass of 100 kg. (a) In what direction and with what force must 
he push in order that he may do this most easily? (6) After the block has 
once been set in motion will the required force increase or decrease? Why?
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(c) If the coefficient of friction is 0.4, will the block 
slide or tip when the man pushes horizontally? when 
he pushes at the best angle for overturning the block? (ESS) 3 

Ans. (a) 45°, 50/V2 kewt; (b) decrease; Y U 

. (©) slide ; not slide. . Fic. 61. Problem 7 
7%. A circular ring of weight 5 lbwt rests horizon- 

tally upon three points of support 120° apart (Fig. 61). What is the least 
downward force, applied to the ring in a direction perpendicular to its plane, 

that will cause it to leave one of the points of support ? 
Ans. 5 lbwt. 

8. A uniform board 3.00 ft square and weighing 

25.0 lbwt rests on a block at A, Fig. 62, and is kept 

from rotating by a horizontal force at B. Find the 

force at B and the vertical and horizontal forces upon Fie. 62. Problem 8 

the block at A. Ams. 12.5 lbwt, 25.0 Ibwt, 12.5 Ibwt. ‘ 

9. A 100-lb bench is dragged steadily along the floor by the force F, 

Fig. 63. The center of mass of the bench is at ¢ and the coefficient of sliding 

friction between the bench legs and the floor : 
is 0.10. Find the magnitude of F and of the L-2.9' e200} Apo 

- downward push of each leg on the floor. | ° = 
Ans. F= 11 lbwt, F4 = 49 lbwt, Fg = 45 lbwt. 20° ¢ 

10. Given the five-panel truss shown in | th ]:cotme 's 
Fig. 64, determine the magnitude of the force 
exerted by each member and also whether it Fie. 63. Problem 9 
produces a tensile or a compressive force. The 
lengths of the members are in the ratio 3: 4:5. 

11. The sensitivity of a balance may be defined 4 
as the displacement produced in the beam when 3 Ey 

some arbitrarily chosen small weight w is added "” 

to one pan. Given a balance having arms of 1000 kgwt 

equal length 7 and the knife-edges pi, pa, b in the Fic. 64. Problem 10 

same straight line (Fig. 65), (a) show that for 
such an ideal balance the addition of w to one pan will cause the beam 

to come to rest at an angle @ with the horizontal, such that tan @ = wl/Wd, 

where W is the weight of the beam and d . 
the distance of its center of gravity from { 

the point of support b. (8) Does the sen- 
sitivity depend upon the load in the pans? 
(c) What are some of the points to be 
observed in designing a satisfactory bal- 
ance of high sensitivity? (d) Is it neces- 
sary that the center of gravity of the beam Fic. 65. Sensitivity of an ideal 

be below the point of support? balance 

12. The middle knife-edge b of a certain balance is at a perpendicular 
distance # above the middle point of the straight line pip2 connecting the 
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two pan knife-edges, and the center of gravity is distant d below the knife- 

edge 6. (a) Show that the beam will come to rest when pip2 makes an angle 6 
with the horizontal such that 

q 
tan 0 = TTP te Ph’ 

where P, and P2 are the unequal loads on the pans, w is the difference be- 

tween P; and Pz, and 2/ is the length of the line pips. (6) How does the 
sensitivity change as the load is increased? (c) Write and interpret the ex- 
pression for tan @ for the case where the knife-edge 6 is below the line pipe: 

(d) for the case where h = 0. 

18. A uniform rod 10.0 m long and of mass 20.0 kg rests with the upper 
end against a smooth vertical wall, with which it makes an angle of 60°. 
The lower end is prevented from slipping by a 

peg in the floor. Find the forces exerted on the Ft 
rod at the wall and at the peg. Is the resultant ” 
force on the peg-in the direction of the rod? 20 
Ans. Wall, 17.3 kgwt, horizontal; peg, 17.3 kgwt, 

horizontal, 20.0 kgwt, vertical; no. 

14. (a) Calculate the magnitude, direction, 

and point of application of the third force re- Fic. 66. Problem 14 
quired to balance the two parallel forces F and 

F’ shown in Fig. 66 if -the magnitudes of these forces are 20 and 15 lbwt 

respectively, and the distance between them is 5.0 in. (b) What single force 

is equivalent to F and F’? (c) What single 500k 
force would balance the two forces F and /~50em—+b~50cm hoon 
F’ if they were equal in magnitude? 

Ans. (a) 5.0 Ibwt up, 20 in. from F’. 800 kewt 

  

F 

15. Find the magnitude, direction, and 

point of application of the single force that 

will prevent the bar shown in Fig. 67 from moving. Consider the weight of 
the bar to be negligible. Ans. 640 kgwt, 129°, 20 cm from left enu. 

Fic. 67. Problem 15



CHAPTER SEVEN 

THE DYNAMICS OF RIGID BODIES 

I EACH element of a body be multiplied into the square of its distance from the axis OA and all 

these products be collected into one sum and if this sum is put = Mkk, which I call the moment 

of inertia of the body with respect to the axis OA, then the moment of force required to produce 

acceleration a will be Mik - a. Translated from a paper by Leonnarp Evrzr 

which is reproduced in his Opera Postuma* 

As has already been remarked in the introduction to the preceding 

chapter, the general problem of rotations may be approached by 

regarding a rotating body as a system of particles and applying to 

these particles NEwTon’s three laws of motion. Since the linear 

speeds of the particles vary with their distances from the axis of 

rotation, this procedure is laborious and complicated, but fortu- 
nately we do not have to employ it every time a problem involving 
rotation is solved. The fact that, in equilibrium, torques bear the 

same relation to rotation that forces bear to translation (Sec. 72) 
suggests the practicality of defining still other rotational analogues 

of the various translational quantities. For the case of rigid bodies 
it turns out that these new rotational quantities can be so defined 

that they reduce the equations for rotation to forms which are not 

only exceedingly simple but are the exact analogues of the familiar 

equations for translation. No really new mechanical principles are 

revealed by such transformations, but they save us the individual 
consideration of the separate particles and afford simple rules for 

investigating the rotational motion of a body as a whole with a 

minimum expenditure of thought. This economy of thought is one 
of the necessities for accomplishment in any field of knowledge. 

° 

The Kinematics of Rotation 

Consider the simple though important case of a rigid body rotating 

about a fixed axis, for example, the flywheel of a stationary engine. 
  

1 EULER’S notation has been partly modernized in this translation. The use of the 

notation kk (introduced by THomas HaRRiot in 1631), instead of the modern 2, 

persisted even beyond the time of EULER, although exponential notation was used by 

RENE DESCARTES in 1637. The earliest known attempts to frame such symbolic 

notations were those of RAFAELLO BOMBELLI in 1572 and SIMON STEVIN in 1586. See 

. W. W. Rouse Ball, A Short Account of the History of Mathematics (Macmillan, 1927), 
p. 242. 

128
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The particles of the body move in circles about the axis and turn in 
equal times through equal angles (Sec. 5). Consequently, if polar 
coordinates (Fig. 68) be employed to describe 

the positions of the particles, the angle @ is 
the only space-coordinate that ‘changes during 
the rotation, and its change is the same for 

every particle of the body. 

  

77. Angular Position and Angular Speed. Let Fic. 68. A rigid body 
7 in Fig. 68 be the perpendicular distance of a rotating about a fixed 

particle P of the body from the axis of rota- 2*#8 O that is perpen: 
. : dicular to the plane of 

tion O, and let OX be a fixed reference line. the paper 

If 0 (= XOP) be the angular position, or phase 

as it is usually called, of the particle P at the time fy, and if 0, be 
its angular position, or phase, at a later time 41, then the body has 

turned through the angle 6; — 6) in the interval of time 4 — %. The 
ratio of the angle turned through to the corresponding time interval 
is called the average angular speed w., during that time interval. By 
passing to the limit as the time interval approaches zero, one has 

the defining equation for instantaneous angular speed, namely, 

_ 61-8 _ dO 

1 wn oh—to dt [86] 

It will be observed that the definition for angular speed is precisely 
analogous to the definition for linear speed given in Sec. 12. If w 

and » denote angular speeds expressed in radians per unit time and 

in number of complete rotations per unit time respectively, the two 

are evidentiy connected by the relation w = 2 7m. 

When the angles are expressed in radians, as is usually the case 
in theoretical discussions, the simple relation 

s=70 [87] 

exists between the angle @ turned through by the body and the 

linear distance s traversed by a particle of the body distant 7 from 

the axis; this relation follows immediately from the definition of a 

radian. By dividing both members of Eq. [87] by At and passing 
to the limit, there results 0,=10, [88] 

which is an equally simple relation existing between the angular 
speed of a body and the linear speeds of its particles. 

78. Angular Acceleration. When a body is rotating about a fixed 

axis with varying speed, the magnitude a; of its angular acceleration 

is given by the equation 
. _ day —- lim 2 7%_®, 89) 

Ot (f1 — to) > O ty ~— lo dt [ |
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where wo and w; are the angular speeds of the body at the times 

fy and #, respectively. It is left to the student to prove that, for a 
body having an angular acceleration of magnitude a,, any particle 

distant 7 from the axis of rotation has a linear acceleration along the 
tangent to its path of amount 

Q,= 70. - [90] 

Note carefully that a; in this equation is only one component of the 
total linear acceleration; the particle is moving in a circle and hence 
must also have a component of acceleration in a direction normal 
to its path (see Chapter 14). 

79. Constant Angular Acceleration about a Fixed Axis. If the axis 
of rotation is fixed and the angular speed is changing by equal 
amounts in equal intervals of time, we have a case of constant 

angular acceleration which is precisely analogous to that of the con- 

stant linear acceleration treated in Sec. 19. Consequently the stu- 
dent should experience no difficulty in deriving the following three 

equations : 
w:=wo+ el, {91] 

0 = wot + $ af?, [92] 

w,? = wo” +2 a. [93] 

These equations, like their linear analogues (Secs. 19 and 20), repre- 

sent a very restricted type of acceleration, but they will often be of 

use in connection with the motion of rigid bodies turning on a fixed 
axis and subject to constant external influences such as friction or 
driving weights. Obviously one must never attempt to apply them 
to an actual motion of rotation until he has made certain that the 
angular acceleration is constant. 

80. Vectorial Nature of the Angular Quantities. As in the case of 
linear motion, the description of an angular motion is not complete 
unless both the direction and the magnitude of the motion are 
specified. For this reason it is found advantageous to define three 
new directed quantities which, for obvious reasons, are given the 

names angular displacement, angular velocity, and angular acceleration. 

The two specifications that describe an angular displacement 9 
are (a) the angle 6 through which a body has rotated and (6) the 
direction of the axis of rotation, together with the sense of rotation 

about this axis. Evidently these two specifications can be represented 
graphically by laying off along the axis of rotation a directed line of 
length numerically equal to the number of radians in 6. There 
must also be some agreement as to which direction along the axis 

shall represent a given sense of rotation about the axis; the adopted 
rule is to let the sense of the directed line along the axis be related
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to the sense of rotation as the direction of advance of an ordinary 

right-handed screw is related to its direction of rotation (Fig. 69). 

A finite angular displacement is not properly a 
vector quantity, since the addition of two successive 

finite angular displacements about different axes is @ 

not commutative. To see this, hold a book in the 

hand in any fixed position and imagine a set of 
rectangular coordinate axes drawn in it. Rotate 

the book 90° in a clockwise sense about the X-axis 
and then, from this position, 90° clockwise about 

the Y-axis; note the final position of the book. rule. Notice that this is 
Now reverse the order of these two rotations, start- also the relation which 
ing with the book in the same initial position aS exists between the direc 

before; its final position is quite different from tions of an electric cur- 
what it was in the first case. If the experiment rent and the correspond- 

with the book be repeated, but this time with the ing magnetic field 
two displacements made very small, it will become 

_ Clear that the sum of two infinitesimal angular displacements ts independent 
of the order in which the quantities are added. Thus an angular displace- 

ment that is infinitesimal may be regarded as a vector. 

Fic. 69. Illustration of 
the right-handed-screw 

Angular velocity o; is the analogue of linear velocity, and it bears 

the same relation to angular speed that linear velocity bears to 

linear speed. The two specifications that describe an angular ve- 

locity are the angular speed w; in Eq. [86], and the direction of the 

axis of rotation together with the sense of rotation about the axis. 

As in the case of angular displacement, angular velocity may be 

represented graphically by a directed line drawn along the axis of 

rotation in accordance with the right-handed-screw rule. For ex- 

ample, since the angular speed of the earth about its axis is 27 

radians per day, a directed line to represent the angular velocity: 
of the earth would be made 2 7 units long and would be drawn on 
the earth’s axis, toward the north pole. The addition of angular 

velocities is commutative, since angular velocity is, by definition, an 
infinitesimal angular displacement d@ divided by the corresponding 

infinitesimal time dt. 
Similar considerations hold for angular acceleration a., which is 

the analogue of linear acceleration. Evidently the statement that a 
body has an angular acceleration may imply (a) a change Aw in the 

angular speed, while the direction of the axis of rotation remains 

fixed, this being the case already discussed in Secs. 78 and 79; (b)a 

change in the direction of the axis while the speed about the axis 
remains constant; (c) a simultaneous change in both of these quan- 

tities, this being, of course, the most general. case.
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The Dynamics of Rotation about a Fixed Axis 

81. Kinetic Energy of Rotation. The kinetic energy of any body in 
motion is equal to the sum of the kinetic energies of its 2 particles 
(Sec. 50); that is, 

E= K- &(my01? + mote? 4+ ++ 4 Mat”). [94] 

If the motion of the body is one of pure translation, so that all 

the particles have the same linear speed v, Eq. [94] reduces to 
E=K-%3 Mv?, where Mis the total mass of the body. This is an 

equation that we have made use of many times. On the other hand, 
if the motion is one of pure rotation, Eq. [94] cannot immediately 
be simplified, since the linear speeds of the particles then differ. 
The angular speeds are the same, however, provided the body is 
rigid, and hence we may write, in view of Eq. [88], 

E=K. 4 wo? (m7? + Mor” + oe + Mtn”). [95] 

To simplify the notation let us denote the quantity in parentheses 

by the symbol J; that is, let 

LS myry? + mote? +++ + + mats? = > Mur 3?. [96] 
f=1 

The equation for the kinetic energy of a rotating body then becomes 

E=K-4£ Iw. 7] 

One will note the similarity of this expression to that for kinetic 

energy of translation, namely, K - 4 Mv?, the quantity J correspond- 
ing to mass and the angular speed to linear speed. We shall find the 

quantity J appearing in all kinetical problems that involve rotation. 
It was familiar to HUYGENS through his study of the physical 
pendulum, but was first given a name by LEONHARD EULER ! (1707- 
1783), who called it the moment of inertia of the body about the axis 
of rotation. It is evident from the definition, Eq. [96], that 7 may be 

found by imagining the rotating body divided into minute particles, 
multiplying the mass of each particle by the square of its distance 
from the axis, and then adding these products. 

82. Energy Equation for a Rotating Body. Consider a body mounted 
on a fixed axis and acted upon by a constant torque of magnitude 
L. Let the moment of inertia of the body about the given axis be 
denoted by 7. While the body is turning through an angle @, the 
  

1L. Euler, Theorta Motus Corporum Solidorum seu Rigidorum (1765), p. 166. See 

also the quotation at the beginning of this chapter.
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torque L does work of amount L@ (Fig. 70). If the body be rigid 
and the friction of the bearings be negligible, this work will equal 
the increase in the kinetic energy, or 

LO= kK: + I (a1? —_ wWo7). [98] 

83. Rotational Analogues of Newton’s Laws 
of Motion. In the foregoing case, let 7 de- 
note the time of rotation through the 
angle 6. The average angular speed dur- 

ing this time is $(w: + wo), and therefore 
6=$(o: + wo)i. By substituting this expres- 
sion for @ in Eq. [98] and solving for L, there 
results 

  

Fic. 70. Work done by a 
_ torque. While the wheel 

t= Teo. [99] rotates through the angular 
distance 8, the point of ap- 

This equation for the rotation of a body _ Plication of the force moves 

L=K- 

through the linear distance which is acted upon by a constant torque is s; hence W=f-10=L0 
merely a special case of the general vector 
equation for the rotation of a rigid system about any fixed axis, 
namely, . 

L=K-lim /2—!oo a, Qo d 
=kKkK— = 

aco At gq io=K [100] 

where H=Jw. From the analogy of linear momentum (Sec. 25), 
the vector quantity Jw, the product of moment of inertia and angu- 
lar velocity, is called the angular momentum or moment of momentum 
of the body about the axis in question. Eq. [100] then asserts that 
the teme-rate of change of the angular momentum of a body is pro- 
bortional to the impressed torque, and takes place about any axis 
having the direction of the torque. This principle is the rotational 
analogue of NEWTON’s second law of motion (Sec. 28). 

If L=0, then Jo: = Iwo; that is, the angular momentum of a 
body is constant if the vector sum of the external torques is zero. This 
is the rotational analogue of NEWTON’S first law (Sec. 27) and is 
the condition for equilibrium as regards rotation which we obtained 
in Sec. 73. Sometimes the moment of inertia changes while the body 
is in free rotation, and the angular velocity must then change in an 
inverse ratio. Thus an acrobat turning in the air can regulate the 
rate at which he turns by thrusting out or drawing in his legs or arms. 

In view of the definition of angular acceleration, Eq. [100] may 
also be written in the form 

L=K-TIa, [101] 

provided J does not change with the time.
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Examete. A flywheel mounted on a shaft of radius / is set in rotation 
by a driving weight of mass m (Fig. 70). If Z be the total moment of 

inertia of the wheel and shaft about the axle and if L’ be the magnitude 
of the torque due to the frictional forces at the axle bearing, (2) what 

is the magnitude of the angular acceleration of the wheel, and (0) what 

is the angular speed when m has descended a distance s from rest? 

Solution. a. The force due to the driving weight is m(g— a) absolute 
units, and hence the total accelerating torque is m(g— a)! — L’ absolute 

units. The equation of motion of the system is, therefore, m(g—a)!— L’=Ia, 

by Eq. [101], or _ mgl—L! 

“T+ me 

b. Since @ is constant, we may employ Eq. [93]. Remembering that 

wo = 0 and s = 76, we finally obtain 
1 

= (o mgl—L' s\?, 
= (2 I+ mi? *) 

A second and more direct way of getting this result is to equate the initial 

potential energy of the system, mgs, to the sum of the work done against 

friction, L’0, and the final kinetic energy, 4 mo? + 4 Iw?. 

As for the rotational analogue of NEWTON’S third law (Sec. 32), 
both experiment and theory lead to the conclusion that for every 

torque twisting a body about any axis there always exists a corre- 
sponding torque exerted by the body about the same axis; and these 

two torques are equal in magnitude but opposite in direction. In. 

other words, when one of the two interacting bodies exerts a torque 

TaBLe II - The Important Linear Expressions and Their Angular Analogues 

  

  

Constant acceleration 

Linear Angular 

Displacement... ...... s 2 8 3 

Velocity .......-+... v= a o= S 

Acceleration .......-6. a= a = e 

t,= Vo + al, etc. 

    
w= wo + al, etc. 

    
Inertia. 2... 2... 2 ee M I 

Momentum. ......... p=Mv H=TIwo 

Impulse -. 2... 2. 7 ee R=tt R=Lt 

NEWTON’S second law .. 2. . f= a =Ma L= a =Tla 

Work . 2... 1. eee W=fs W=Lé 

Kinetic energy ......... E=%4 Mo E=43 Iw? 

Power... 2... 0. ee P=fo P=Lw 

s=76 v=To a=Ta w=27H I=Zmr2   
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on the other, the second body exerts a torque on the first; these 

torques are about the same axis and are equal in magnitude but oppo- 
site in sense. 

Table II will be useful to the beginner. If the various angular 
analogues are borne in mind, problems involving rotation about a 
fixed axis can be solved as readily and in the same manner as the 
corresponding translational problems with which the student - has 

become familiar. 
° 

Moment of Inertia 

Moment of inertia I might also be called rotational inertia, for it 
plays the same part in rotation that mass plays in translatory mo- 
tion. Just as the inertia or mass of a body is a measure of the re- 
sistance that the body offers to linear acceleration, the moment of 
inertia of a body is a measure of the resistance that it offers to 
angular acceleration. It is evident, however, that I is not propor- 
tional to mass alone, for everyday experience teaches that two 
rotating bodies may have the same mass and yet offer widely 
different amounts of resistance to the operation of starting and 
stopping, as in the case of two wheels one of which has its mass 
concentrated near the axle, the other on the circumference. Nor 

is J constant for any one body, as is mass under ordinary circum- 

stances, but varies in passing from one axis of rotation to another. 

In other words, moment of inertia is a function both of mass and 

of the distribution of mass, that is, of the distances of the elements 
of mass from the axis. All of this is evident from Eq. [96], the 
defining equation for moment of inertia, namely, 

i=n 

i > ma?. 

t=1 

Moment of inertia is not a vector quantity, for if the direction 

of the axis of rotation is reversed, the moment of inertia is un- 
changed. Nor is moment of inertia a scalar quantity, because its 
value does change in general when the direction of the axis of rota- 

tion is changed. Quantities whose dependence upon direction is of 
this type are called tensors. 

84. Calculation of Moments of Inertia. In order to calculate J, one 

evidently must multiply the mass of each particle in the body by 
the square of its distance from the axis of rotation and then find 

the sum of all these products. In the case of continuous bodies it 
is generally necessary to accomplish this summation with the aid



following graphic picture of Lorp Kexvin as he appeared to his students 
has been given by Andrew Gray in his Lord Kelvin, an Account of his Scientific 

Life and Work (Dent, 1908), pp. 280-285. It is reproduced by permission of the 

publisher. 

“The writer will never forget the lecture-toom when he first beheld it, from his 

place on Bench VIII, a few days after the beginning of session 1874-1875. Sir 

William Thomson [Lord Kelvin], with activity emphasised rather than otherwise 

by his lameness, came in with the students, passed behind the table, and, putting 

up his eye-glass, surveyed the apparatus set out. Then, as the students poured in, 
an increasing stream, the alarm weight was released by the bell-ringer, and fell 

slowly some four or five feet, from the top of the clock to a platform below. By the 
time the weight had descended the students were in their places, and then, as 

Thomson advanced to the table, all rose to their feet, and he recited the third 

Collect from the Morning Service of the Church of England. It was the custom 
then, and it is still one better honoured in the observance than in the breach (which 
has become rather common) to open all the first and second classes of the day with 

- prayer; and the selection of the prayers was left to the discretion of the professors. 
Next came the roll-call by the assistant; each name was called in its English, or 
Scottish (for the clans were always well represented) form, and the answer 
‘adsum’ was returned. . . . 

“The vivacity and enthusiasm of the Professor at that time was very great. The 

animation of his countenance as he looked at a gyrostat spinning, standing on a knife- 
edge on a glass plate in front of him, and leaning over so that its centre of gravity 
was on one side of the point of support; the delight with which he showed that 
hurrying of the precessional motion caused the gyrostat to rise, and retarding the 

precessional motion caused the gyrostat to fall, so that the freedom to ‘precess’ was 
the secret of its not falling; the immediate application of the study of the gyrostat 
to the explanation. of the precession of the equinoxes, and illustration by a model . . . 

— all these delighted his heaters, and made the lecture memorable. 
“Then the gyrostat, mounted with its axis vertical on trunnions on a level with 

the fly-wheel, and resting on a wooden frame carried about by the Professor! The 
delight of the students with the quiescence of the gyrostat when the frame, gyrostat 

and all, was carried round in the direction of the spin of the fly-wheel, and its 

sudden turning upside down when the frame was carried round the other way, 

was extreme, and when he suggested that a gyrostat might be concealed on a tray 

of glasses carried by a waiter, their appreciation of what would happen was shown 
by laughter and a tumult of applause.” 

Much of Kexvin’s scientific work had to do with the mechanics of rotating bodies, 

and his clear ideas on, and physical insight into, this subject were undoutedly due 
largely to the practical knowledge which he gained as a boy spinning tops and 
rounded stones and to his many experiments with. gyrostatic models. See S. P. 

Thompson’s Life of William Thomson, Baron Kelvin of Largs (Macmillan, 1910), Vol. II, 

pp. 736-745. Plate 21 was taken from this volume by permission of the publisher.
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of the integral calculus, and for this reason the expression which 

usually must be evaluated in order to obtain the moment of inertia 
in a particular case is + 

I= lim 2r?- Am; 
Am+0 

M 

that is, I= f 72 - dm. [102] x 

For example, by employing Eq. [102] one obtains for the moment of 

inertia of a solid homogeneous cylinder of radius R and mass M rotating 
about its geometrical axis, T= 4MR. [1020] 

The moment of inertia of a homogeneous solid sphere of radius. R and 

mass M rotating about any diameter is found in like manner to be 

I= 2 MR? [1028] 

In the case of a homogeneous rectangular bar of length a, width 8, thick- 

ness c, and mass M, rotating about an axis parallel to c and through the 

center of mass, T= py M(a? + 0). [102c] 

85. Radius of Gyration. If M is the total mass of a body and & is 
a quantity such that Mk? equals the body’s moment of inertia 
about a given axis, then & is called the radius of gyration of the body 
about that axis. Thus the equation 

I= Zmr? = Mk? [103] 

defines the radius of gyration &. It often will be found convenient 
to write the expression for the moment of inertia in terms of the 

radius of gyration instead of the more complicated expressions in- 

volving geometrical form to which Eqs. [96] and [102] lead. The 
actual ‘evaluation of k, however, is best carried out by means of 

Eq. [103] after 7 has been determined experimentally or has been 
calculated by means of Eq. [102]. 

EXAMPLE. (a) Show that the radius of gyration about any given axis 
may be defined as the distance from that axis at which the whole 
mass M of any rotating body might be concentrated without changing 
the value of the moment of inertia about that axis. (b) Show that the 

radius of gyration of a solid homogeneous cylinder of radius R about 

its own axis is 0.707 R. (c) Show that the expression for the kinetic 
energy of rotation of any rigid body may be written in the form 

E= K-4 Mk? 
  

1 Derivations of the expressions for 7 for various bodies will be found in Ap- 

pendix 8. The student who is unfamiliar with the integral calculus may make use 

of the results given in this appendix even though he is unable to follow the derivations.
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86. Moments of Inertia about Parallel Axes. Fortunately, if one 
knows the moment of inertia 7, about an axis passing through the 

center of mass, the moment of inertia about any other parallel axis 

A can be obtained simply by adding to 

I, the mass of the body multiplied by 
the square of the distance between the 

two axes. To establish this theorem, 

which was enunciated by JoSEPH LouIS 
LAGRANGE! in 1783, let the axis of 
rotation A be perpendicular to the 

plane of Fig. 71, and let m be the mass 
of any particle distant 7 from this axis. 

Then, by Eq. [96], J = 2mr?. Nextim- Fig. 71. Lacrance’s theorem of 
agine an axis drawn through the center parallel axes 
of mass ¢ parallel to the axis A. Let d 
denote the distance between these two axes, R the distance of the 
particle m from the axis through c, and ¢ the angle between d and R. 
Then r? = R? + d? — 2 dR cos ¢, and therefore 

I= DmR? + d?im—2d=imR cos 6=I1I,.+ Md? —2dXmx, 

since 2m is the total mass M of the body. The last term of the 

foregoing equation is zero, since Zmx is zero when the origin of co- 
ordinates is taken at the center of mass (Eq. [72], Chap. 6). Accord- 

ingly I=I,-+ Md?. [104] 
The whole problem of moments of inertia is thus reduced to finding 
moments of inertia about axes passing in different directions through 
the center of mass. 

87. Experimental Determination of J. If a body is irregular in form 
or variable in density, the calculation of its moment of inertia is gen- 
erally an impossible undertaking and one must resort to experiment. 

The experiment consists of applying to the body a khown torque 

and observing the angular acceleration thus produced (Eq. [101}), 
or of some procedure that is equivalent to this. 

  

° 

The Dynamics of Rotation about Movable Axes 

If a body is not mounted on a fixed axis, but is free, the applied 
forces will in general produce both a change in the linear momentum 

of the center of mass (Sec. 70) and a change in the angular mo- 
mentum about some axis through the center of mass, in a direction 
  

1 Ceunres (Gauthier-Villars. 1870), Vol. V..p. 5385,
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that depends on the nature of the body and the forces. These two 
motions of translation and rotation are independent of each other 

and are produced independently by the acting forces. Hence in 
considering the motion of any rigid body we may discuss the trans- 
lation as if the body were a single particle with its mass concentrated 

at the center of mass, and the rotation as if the center of mass were 

fixed.t. For describing the translation we make use of Eq. [76], 
Chap. 6, and for describing the rotation, Eq. [100] or Eq. [101]. 

In impact problems it is often better to employ the equations for con- 

servation of linear momentum and conservation of angular momentum, 

which really are generalizations of the foregoing equations. It should be 

noted, however, that both the linear and the angular momentum must be 

considered. In Chapter 5 only the linear momentum was considered. (Why ?) 

An illustration of the independence of translation and rotation 

can be obtained by suspending an ordinary meter stick loosely 
from the fingers of one hand and giving a blow to the stick. Whenever 

the blow is struck so as to pass through 
the center of mass, the stick flies out 

of the hand with a motion of transla- 
tion only. When, on the other hand, 

the blow is struck through any other 

point, not only is a translatory motion 
imparted to the center of mass but the 
stick also rotates about this moving 

center of mass. It is left to the stu- 
dent to explain why, if a chair be tilted Sz 

back and then let fall forward again, Fic. 72. The dotted lines show 
it not only rotates into its original posi- the positions assumed by various 

tion, but also translates forward along bodies during rotation about a 
the floor. ‘ vertical axis 

     
  

The general case of rotation of a free body is much more involved than 

the foregoing considerations might indicate. For, although the motion does 
consist of a simultaneous translation of the center of mass and a rotation 
about an axis through this point, the direction of the axis through the center 
of mass will in general change with time. In other words, the body tends to 
shift its position with respect to an axis fixed in space and, as a result, J will 

change with time as well as w, so that the angular momentum will not always 
have the same direction as the angular velocity. This case is too involved 

  

1 This was first shown in 1834 by Louts PornsotT in a paper in Liouville’s Journal 

de Mathématiques, entitled ‘‘Théorie Nouvelle de la Rotation des Corps.” A transla- 

tion by C. Whitley was published at Cambridge in 1843 under the title ‘‘Outlines of a 
New Theory of Rotary Motion.”
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for discussion here. Suffice it to say that, owing to the inertia which it 
possesses, every particle in the body tends to get as far as possible from the 
axis of rotation and so increase the moment of 

inertia about that axis. Hence the body will not 
spin stably until the moment of inertia is as large 
as possible (Fig. 72). 

88. Rotation of a Body with One Point Fixed. 
The Gyroscope. We will consider briefly one 
interesting case of a rotating body that has 

only one point fixed, namely, the gyroscope, 
the principle of which has many important 
applications. A simple form of gyroscope is 
shown in Fig. 73. A bicycle wheel supported 1s. 73, A simple form 
by a cord attached to one end 0 of its axle of gyroscope 
(Fig. 74) will serve as another simple example.! When the wheel is 
set spinning on its axle OY and released, its weight exerts a torque 
about the horizontal axis OZ at right 

angles to OY. The wheel does not fall, 

however, but begins to revolve, or pre- 

cess, about the vertical axis OX. 

  

In order to understand this apparently 

extraordinary result, let Fig. 75 represent 

the face of the wheel as viewed from the 
positive end of the OY-axis, and let the 
wheel be spinning about OY with constant 

angular speed w in the direction of the arrow. If the wheel were not spinning, 

the torque due to its weight would cause it to fall and, in so doing, to rotate 
about the axis MN in such a way that the quad- 
rants @ and d would move out from the paper 

toward the observer while the quadrants b and ¢ 

would move in, away from the observer. Con- 
sider now the effect of the inertia of a particle 
in each of the four quadrants separately in re- 
sisting this motion about MN. Since the wheel 
is spinning on the axle OY, a particle in quad- 

rant @ is being carried farther away from the 

axis MN and hence is being made to move faster 

in whatever motion there is about MN. Because Fic. 75. Wheel of Fig. 74 

of inertia it resists this increase in speed, and viewed from the positive 
this resistance may be represented as a force end of the OY-axis 
acting on the wheel in a direction perpendicular 

to the plane of the paper and away from the observer. A particle in quadrant 
b is getting closer to the axis MN, and therefore its speed at right angles to 

  

Fic. 74. Theory of the simple 
gyroscope 

  

  

1See the Optional Laboratory Problem at the end of this chapter.
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the plane of the paper must diminish. This diminution results from the action 
of the wheel on the particle, and the particle, by virtue of its inertia, reacts 

on the wheel in a direction away from the observer. On the other hand, the 

reactions of particles in quadrants ¢ and d are in the opposite direction, that 
is, toward the observer. Clearly these four reactions will cause the wheel to 

rotate about the axis PQ, if it is free to do so, instead of about MN. In short, 
if a body pivoted at a point is rotating about an axis OY and a torque is 

applied about the axis OZ, the inertia of the individual parts of the body 
causes it to turn about the third axis OX perpendicular to both OY and OZ. 

The fundamental equation describing quantitatively the motion 
of a gyroscope is derived most simply by a vector treatment as fol- 
lows. Let J and w be the moment of inertia and the angular speed 
of the wheel about its axle, and, in Fig. 74, let the vector OA, drawn 

according to the right-hand-screw rule, represent the angular mo- 
mentum Jw. Let L, be the torque about the horizontal axis OZ 
caused by the weight of the wheel and let OB, or its equal AA’, be 
the change in angular momentum produced by this tipping torque 
in time At; that is, OB = L, Ai. The vectors OA and OB will auto- 
matically and instantly combine into OA’, which is their vector 

sum, and this combination will occur long before enough tipping 
has occurred to be observed, and it will keep on occurring continu- 
ously. The result, then, will be that the gyroscope, instead of falling 
over, precesses; that is, the axle OY slowly turns about OX. 

If w’ be the angular speed of precession, the axle OY will in 
a short time A? turn through a small angle w’ Al, and during this 

time the angular momentum will have changed by an amount 

OB = AA’ =Iw- w’ At. The time-rate of change of angular mo- 
mentum is therefore Jww’, and hence, by Eq. [100], 

L, = Tow’. [105] 

This is the fundamental equation.of the gyroscope. From it we see 
that the rate of precession w’ is directly proportional to the torque 

and inversely proportional to the rate of spin. If w’ be increased, 

L, must increase,.and the gyroscope consequently rises against grav- 
ity. If w’ be decreased, the gyroscope falls. If we try to turn the 

gyroscope in one direction, it turns in a direction at right angles to 
what we expect. If the wheel be supported at its center of gravity, 

so that L, =0, no precession will occur; that is, the axle will con- 

tinue to point in a fixed direction in space. 
  

1 For more comprehensive discussions of these phenomena and their applications 

see H. Crabtree, Spinning Tops and Gyroscopic Motion; J. Perry, Spinning Tops; 

A. Gray, Gyrostatics and Rotational Motion; E. S. Ferry, Applied Gyrodynamics; 

articles ‘‘Gyro-compass” and ‘‘Gyroscope,” Encyclopaedia Britannica, ed. 14,
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Ilustrative Examples on the Dynamics of Rigid Bodies 

In attacking problems on the rotation of rigid bodies one should 
first of all consider whether the axis of rotation remains fixed in 
direction with respect to the body. If it does, the rotational ana- 

logues of translatory motion can be applied and the problem solved 
in the same manner as in the corresponding translational problem. 
If it does not, then methods that are beyond the scope of this book 

must be invoked. 

EXAMPLE. Find a formula for the linear acceleration with which a homo- 
geneous solid cylinder rolls without slipping down a plane inclined at 
an angle @ to the horizontal (Fig. 76). Neglect 
the rolling friction. 

Solution. Although the axis of rotation does not 
remain fixed in space in this case, it does remain fixed 
in direction with respect to the body, and the problem 

can therefore be attacked by elementary methods. We 

  

will solve it in two different ways. Fic. 76. Cylinder 
a. The cylinder can be considered to be rotating rolling down an 

about the line on its surface that is in contact with incline 
the incline at any moment. The weight Mg of the 
cylinder acts in a vertical line through its center of gravity, and hence 

the torque about the momentary axis of rotation is MgR sin @, where 

R is the radius of the cylinder. The moment of inertia of the cylinder 
about the same axis is 4 MR? + MR?, by Eqs. [102¢] and [104]. The angu- 
lar acceleration is therefore 

om f= MER SG BESS, 
I” 3MR? 

and the linear acceleration is 

a=akR=2gsin¢. 

b. Consider the cylinder to be rotating about its geometrical axis. The 

potential energy of the cylinder when it is at the top of the incline is 

V = Mgs sin @, where s is the length of the incline. The total kinetic energy 
acquired in rolling down is F=4Mv?+4 Iw? or, since [= 4 MR? and 

w=0/R, E=2 Mv?. But V=E, or Mgs sin@=2 Mv?; hence 02?=4 gs sing. 
Since the acceleration is constant, v2 = 2 as. Hence, finally, 

2as=%gssing, or a=2gsing, 
as before. 

Does the linear acceleration depend on the size of the cylinder? How 
does the acceleration compare with that which the cylinder would have if 

it slid down the incline without appreciable friction? Why is it less?



N THIS portrait Maxwett is shown with his color-top. Even in later life he 
amused himself with scientific toys, and some of these led directly to scientific 

contributions of value. A favorite game, which he played throughout his life and 
which all his friends came to associate with him, was “ diabolo.’’ It is played with 
a sort of top in the shape of two cones joined at their vertices, which is spun, 

thrown, and caught by means of a string attached to two sticks. Maxwett became 
very skillful with it and developed those physical intuitions which no doubt led him 
to construct the dynamical top with which he demonstrated the properties of ro- 
tating bodies. 

Maxwext’s lifelong friend and biographer, Lewis Campbell, in his Life of James 

Clerk Maxwell, tells the following amusing story of his bringing his dynamical top 
with him to Cambridge in the summer of 1857 and exhibiting it at a tea party in his 
room in the evening: “‘His friends left it spinning, and next morning Maxwell, 
noticing one of them coming across the court, leapt out of bed, started the top, and 

retired between the sheets. It is needless to say that the spinning power of the top 
commanded as great respect as its power of illustrating Poinsot’s Theorie Nouvelle de 
la Rotation des Corps.’’ 

Lewis Campbell also relates that, while at Cambridge, Maxwett tried to find 
out how a cat, when dropped, always succeeds in alighting on her feet. His experi- 

ments must have made a great impression upon the minds of the other students, for 
he wrote to Mrs. Maxwell in 1870: “There is a tradition in Trinity that when I 
was here I discovered a method of throwing a cat so as not to light on its feet, and 
that I used to throw cats out of windows. Ihad to explain that the proper object 
of research was to fnd how quick a cat would turn round, and that the proper 

method was to let the cat drop on a table or bed from about two inches, and that 

even then the cat lights on her feet.”’ 
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James Crerk Maxweti 

as a Young Man 

From a portrait at Trinity College, Cambridge
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EXAMPLE. A putty ball of mass m grams moving with a speed of 
gcm-sec~! in the direction ab, Fig. 77, makes inelastic impact with 

the end of a long thin bar of length 22cm and 
mass M grams which is pivoted at its center of 

mass c. Find an expression for the angular speed 
communicated to the bar. 

Cm b 
I 

Solution. The axis is fixed in this case. We will 
again employ two methods of solution. 

a. Let @ be the angular speed of the bar and ball: 
after the impact and let Az be the time of duration 

of the impact. The speed lost by the ball.is evidently »— wi, and hence 

the average force acting between it and the bar during the impact is 

m(v — wl)/At. The average torque acting during the impact is therefore 
m(v — wl)l/At and this, by Eq. [99], must equal iw /At, where I, is the 
moment of inertia of the bar about the given axis. Thus 

Fic. 77. Putty ball 
hitting a pivoted. bar 

mol 

Ih+ mil? 

b. Regard the ball and bar as comprising a single system. Then, since 

there is no external torque acting about the fixed axis, the angular momen- 

tum of the system before impact must be equal to that after impact. Before 

impact the angular momentum about the fixed axis is mol, and after impact 
it is Iw, where J is the combined moment of inertia of the bar and ball about 
the fixed axis. Hence 

mv — wll = Tye, or w= 

mol — 2 = ; mi=(h+miP)o, or @ i+ mE 

as before. 

How may J, be expressed in terms of M and 1? What has become of the 
linear momentum of the putty ball? 

ExampLe. A uniform thin bar of length 2 J rests on a smooth horizontal 

table. A sharp blow is delivered perpendicular to the bar at one end. 
How far will the bar slide before it completes one revolution? 

Solution. Let R (=f At) be the impulse of the blow. This, impulse will 
impart a linear momentum of magnitude R = Mz to the center of mass of 

the bar. At the same time there will be imparted to the bar angular mo- 
mentum about an axis through the center of mass of amount RI= Iw, 
where I is the moment of inertia of the bar about the axis through the 

center of mass. Since I will be greatest for an axis perpendicular to the bar, 
the bar will start rotating about such an axis and will continue to do so; 

that is, the axis will remain fixed with respect to the body and 7 will remain 

3 MP. By eliminating R between the two equations in which it appears, we 
have Mol = MP’ /3, or » = 1lw/3. If, finally, T is the time required for the 
bar to make one rotation, then T= 2 7/w, and the distance traversed by 
the center of mass is given by 

= pale. s=7T= 3
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EXPERIMENT VI. MOMENT OF INERTIA 

This experiment is the counterpart in rotary motion of Exps. I 

and IT in linear motion. It includes determinations of the angular 
accelerations of a solid, homogeneous disk mounted on a fixed axis 

and acted upon by constant torques, and of calculations, by two 
different methods, of the moment of inertia of this disk about its 
fixed axis. 

Part I. Some Qualitative Experiments. The apparatus for this 

part of the experiment is a horizontal disk mounted on ball bearings 
so as to rotate with almost no friction about a vertical axis. If this 
apparatus is not available, a rotating swing of similar construction 
will serve the purpose. 

a. Stand on the disk, or sit on a stool placed on the disk, with 

arms extended and with a I-kg or 2-kg mass in each hand. Have 

someone start you rotating slowly, and while you are moving lower 
the arms quickly and again extend them. 

1. Describe and explain what you observe. 

2. If your moment of inertia is halved when you lower your arms, how 
much will your angular speed be changed? 

3. What change takes place in the kinetic energy of the system when 
you lower your arms? What is the source of the additional energy? 

b. Stand on the disk and twist the upper portion of your body in 

one direction so as to rotate the disk momentarily in the opposite 
direction. Then resume your normal position and note whether the 
disk returns to its normal position. 

4, Explain this effect. 

Part II. Rotation of a Rigid Body about a Fixed Axis. Adjustment 

and Use of Apparatus. The rotating body employed in this part of 

the experiment is a solid metal disk of several kilograms mass which 

is mounted on precision pivot bearings so as to rotate with very 

little friction about a horizontal axis. A torque is applied by means 

of a driving weight attached to a thread wound around the circum- 
ference of the disk. To obtain a record of the successive angular 
positions of the disk, a series of equally timed sparks is made to 

jump from a spark point to a circular sheet of polar-coordinate 

paper fastened to one face of the moving disk. The spark point is 
mounted on a sliding carriage which can be moved from the periph- 
ery of the disk in toward the axis during the rotation, thus giving 

a spiral trace of spark perforations on the paper chart. The timing 

device for producing the sparks is the same as that used in Exp. I.
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a. Place the apparatus on the edge of a platform which is high 
enough for the driving weight to have a free fall of about 2m. 

Fasten the circle of polar-coordinate paper to the face of the disk 

by means of 6-8 drops of rub- 
ber cement placed around its 
rim. Adjust the spark-timer 
for about 3 vib-sec~! and 
connect it to the binding posts 
on the base of the rotation 
apparatus. Fasten one end of 
a thread or of a silk fishline to 
the circumference of the disk. 
If the disk is not provided 
with a hook for this purpose, 
use soft wax. Wind the thread 
spirally on the circumference 

. : lowing | 

of the dis eine "Hane * Fic. 118. Apparatus for Exp. Vil. The 
. . rotating system consists of a shaft and one 

light weight-hanger from the or more rigidly attached disks 
_ free end of the thread. 

b. Determine whether the friction in the bearings is large enough 
to produce a measurable acceleration of the disk and, if it is, place 
enough small weights on the weight-hanger so that the disk, when 

started, will continue to move with constant speed. Have the spark 

going during this test, but keep the spark point at the extreme outer 

edge of the disk. Observe how many times the disk rotates during 
the descent of the weight. 

c. Rewind the thread and again start the spark. Add a mass of 
100 g to the weight-hanger. Release the disk, carefully avoiding.an 

initial impulse, and at the same time begin to move the spark point 
slowly in toward the axis. After the weight has fallen, open the 
spark switch. Before removing the paper chart from the disk, draw 
a small circle with a pencil around each spot made by a spark. 

d. Repeat c, this time with, say, a 200-g mass on the weight-hanger. 
If the rotating system consists of several disks of different diameters, 

as in Fig. 78, the instructor may find it desirable to have you vary 
the lever arm as well as the force involved in the impressed torque. 

e. It will be necessary to know the following constants of the ap- 
paratus: (1) the time interval 7 between successive sparks; (2) the 
mass M of the rotating system, which usually will be found stamped 
upon the disk; (3) the radius R of the disk. If the disk is of the type 
shown in Fig. 78, it will be necessary to measure both the diameters 
and the thicknesses of its several parts. 
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Calculation of a. The angular accelerations are obtained in the 
same way as were the linear accelerations in Exp. I, Part II, a; 

that is, the data obtained from the polar-coordinate chart are sub- 

stituted in the equation 
A. _ 6, =a, [106] 

where #2 and 4; represent the angles through which the disk turned 
in successive equal intervals of time. This equation is the rotational 
analogue of the equation S,—S,= a, the derivation of which is 

carried out in Exp.I. It must be remembered that it gives the 
magnitude of a when the time interval is the time required for some 
arbitrarily chosen number of sparks to occur. 

a. Use the data obtained with the 100-g driving weight to com- 

pute the values of a, and take their average. The method of mak- 

ing the chart and obtaining 02 — 9, etc. is the same as that employed 
to obtain Sz— S; etc. in Exp. I, except that the points 0 and 1 on 
the chart need not be discarded. Make use of as many of the points 
on the chart as possible. Note that the angles @ can be estimated 
to about two tenths of a degree. 

Calculate the length of time unit involved in your value of a 
and then express a in radians per second per second. 

Calculate the magnitude L of the accelerating torque correspond- 
ing to this value of a. Note that the force in the thread is given by 
m(g—a), where m is the mass of the driving weight and a is its 
linear acceleration. 

b. In a similar manner calculate a@ and L for the motion recorded 
on your second polar-coordinate chart. 

5. Are the angular accelerations. produced in the two cases propor- 
tional to the driving weights? Are they proportional to the torques 
acting? 

6. Derive Eq. [106]. Do its two members have the same dimensional 
formulas? Explain. 

Momeni of Inertia of the Rotating System. By substituting the cor- 
responding values of a and Z in Eq. [101], obtain two values of J 

and average them. Also calculate J with the aid of Eq. [102e]. 
Compute the percentage difference between the values of J obtained 
by these two methods. 

7. If the rotating system used is like that of Fig. 78, find what error 
would have been introduced into your value of I if you had disregarded 
the dimensions of the shaft etc. and had treated the rotating system as 

a single disk of mass M and radius R.
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OPTIONAL LABORATORY PROBLEM 

Some Qualitative Experiments with a Gyroscope. A bicycle wheel 
mounted on an axis provided with handles serves admirably as a gyroscope. 
The moment of inertia of the wheel can be made large by winding wire 

around the rim. Perform each experiment while the wheel is spinning rap- 
idly on its axle. Try to explain the effects observed; if necessary, supple- 

ment your study with references to some of the books mentioned elsewhere 

in this chapter. : : 
a. Hold the gyroscope by both handles and move it in any direction with 

a motion of translation. Suddenly change the direction of the axle. 

b. Suspend the wheel by one of the handles in a loop of cord and note 

the result. Push upward on the free handle. Hang various weights from 

the free handle. How does the rate of pre- 
cession (Sec. 88) vary with the torque? with 
the rate of spin? Why does a bicycle bear to 

the left when the rider leans in that direction? 
Try to rotate the wheel about a vertical axis 

by pushing sidewise on the free handle. When 

an automobile turns a corner, how is its mo- 
tion affected by the presence of the engine 

flywheel ? 
ce. Stand on the horizontal disk of Exp. 

VII, Part I, hold the gyroscope with its axle 

parallel to a radius of the disk, and then apply 
a couple tending to raise one handle of the = 

gyroscope relative to the other. Fic. 79. A gyroscopic wheel 
d.If you have access to a gyroscopic 

wheel that is mounted on gimbals, perform the experiments described by 
A. M. Worthington in Dynamics of Rotation, Chap. XIII, or H. Crabtree 
in. Spinning Tops and Gyroscopic Motion, introductory chapter. 

  

oO 

QUESTION SUMMARY 

1. Define angular displacement; angular velocity; angular acceleration. In 

what different units may each be expressed? Are all of these quantities 

vectors? If so, how may they be represented graphically ? 

2. What relation exists between angular distance and linear distance, 

between angular speed and linear speed, and between angular acceleration 
and linear acceleration? 

3. Define moment of inertia and discuss its physical importance. How is 

the moment of inertia of a body with reference to a given axis calculated ? 

How can it be determined experimentally? 

4. Restate all the laws and equations which have been derived in the 
preceding chapters for translation in terms such that they will apply to the
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case of rotation about a fixed axis. What changes did you have to make in 
order to do this? 

5. If the moment of inertia of a body about an axis through the center of 

mass is known, how may its value about any other parallel axis be cal- 
culated ? 

6. Define radius of gyration in words and by means of an equation. 

7. What is the nature of the motion of a free body under the action of 
forces? Why is this motion more complicated than that of rotation about 

a fixed axis? 

8. State and discuss the fundamental equation of the gyroscope. 

6 

PROBLEMS 

1. A bicycle having a wheel 27 in. in diameter is ridden at the rate of 

11 mi-hr7}. Find (@) the angular speed of the wheel about its axle; (b) the 
linear speed of a particle at its highest point with respect to the axle; (c) the 

linear speed of this particle with respect to the ground; (d) the linear speed 

of the particle in contact with the ground, with respect to the ground; 
(e) the linear velocity of any particle on the rim, with respect to the ground; 

(f) the angular speed of .azy particle on the rim, with respect to an axis 
passing through the point on the rim which is in contact with the ground. 

Ans. (a) 14rad-sec1;| (b) ll mi-hr-!; (c) 22mi-hr-!; (dd) 0; 
(e) 2ucos 6/2; (f) 14 rad - sec}. 

2. The flywheel of an engine runs with a constant angular speed of 
150 rev: min~!. When steam is shut off, the friction of the bearings and of 

the air brings the wheel to rest in 2.2 hr. (a) What is the average angular 

acceleration of the wheel? (b) How many rotations will the wheel make 
before coming to rest? (c) What is the linear acceleration, along the tan- 
gent to its path, of a particle distant 50 cm from the axis of rotation? 

Ans. (a) — 2.0 x 10-3 rad- sec~?; (b) 9.9 x 108; (c) —1.0mm- sec~2. 

8. A constant pull of 200 kgwt applied tangentially to the rim of a wheel 

of 100-cm radius changes the angular speed of the wheel from 2.00 rev - sec—1 

to 4.00 rev - sec~! in 30.0 sec. (a) What is the moment of inertia of the 
wheel? (6) What is the change in the angular momentum during the 30 sec? 

(c) Through what angle does the wheel turn during this change? (d) How 
much energy is expended in producing this increase? 

Ans. (a) 4.68 x 10!°g-cm?; (6) 5.88 x 10" g-cm?-sec7!; 
(c) 180 7 rad; (d) 1.11 x 10 ergs, 

4, (a) Find the moment of inertia of a solid copper cylinder of radius 
2.0 cm, length 30cm, about a longitudinal axis through the center of mass. 
(b) If the friction is negligible, what angular acceleration is produced about 
this axis by a 2.0-kg driving weight suspended by a cord wound around the 
cylinder? (c) What is the angular speed after the force has acted for



148 Mechanics - Molecular Physics - Heat - Sound 

3.0 sec? (d) If the driving weight were removed and & force of 2.0 kgwt 

were applied to the cord, what would be the resulting angular acceleration? 
Ans. (a) 6.7 x 103 g-cm?; (6) 2.7 x 10? rad - sec~?; 

(c) 8.0 x 102 rad - sec—!; (d) 5.8 x 10? rad - sec—?. 

5. (a) What part of the total kinetic energy is energy of translation and 
what part energy of rotation in the case of (1) a rolling hoop? (2) a rolling 

solid cylinder? (3) arolling solid sphere? (b) A sphere of mass M and radius 

R rolls along the ground with an angular speed w. Find its total kinetic 
energy by two methods: (1), by adding the kinetic energy of translation to 
that of rotation about the axis of the sphere; (2) by considering its motion 

as a pure rotation about a point in contact with the ground. 
Ans. (a) 4 trans., 2 trans., # trans.; (b) 75 MR?w?. 

6. A merry-go-round weighs 20 tons and has a diameter of 30 ft. If 

its mass be considered as uniformly distributed over its surface and if fric- 

tion be neglected, what speed will a 0.5-hp engine impart to it in 2 min? 

Ans. 0.7 rad + sec71. 

7. Write the dimensional formula for (a) angular distance; (6) angular 
speed; (c) angular acceleration; (d) moment of inertia; (e) angular mo- 

mentum; (f) impulse of a torque. 

8. The pulley of a certain Atwood’s machine consists of a uniform disk 
of mass 150 g. The masses on the end of the cord are 200 and 250 g respec- 

tively. (a) Considering friction and the mass of the cord as negligible, find 
the linear acceleration of the moving system. (b) What is the equivalent 

mass of the pulley, that is, the mass which at its circumference would offer 

the same resistance to acceleration? Ans. (a) 93.3cm-sec—?; (6) 75.0 g. 

9. The mass of the cylinder over which the paper passed in Exp. I, 

Part I (Fig. 19), is 40g and its diameter is 3.0cm. Assuming that the 

cylinder is solid, show how Eq. [30], Chap. 2, should be modified so as 

to take into account the inertial resistance which the cylinder offered to 

acceleration. 

10. What relation exists between the linear speed acquired by a body in 
sliding without friction down an inclined plane and in rolling without slip- 
ping down the same incline, if the body is (a) a hoop? (6) a solid cylinder? 
(c) a solid sphere? 

11. A hoop and a solid disk start down a hill together. Which will reach 
the bottom first? Find the ratio of their speeds at the bottom. If frictional 

effects are disregarded, why can a heavy man on a bicycle always coast faster 
than a light man on the same bicycle? If heavier tires were used, how would 

the coasting speed of a bicycle be affected? What effect will increasing the 

weight of the frame have upon the coasting speed? 

12. A bullet of mass 5.0 g is moving with a speed of 100 m - sec~! in the 

direction ab, Fig. 80, when it makes inelastic impact with the projection b 

of a wheel mounted on a fixed axis. If the wheel has a moment of inertia 
of 2.0 x 105 g- cm? and a radius of 20cm, how many rotations per second
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are communicated to it? Solve by two different methods: (a) by means 
of the principle of conservation of angular momentum; (b) by the use 
of Eq. [99]. Ans. 0.79 rev - sec™3, 

—p» b 
13. If a thin homogeneous rod were stood verti- ___._ 

cally on end and allowed to fall over, with what 
angular speed would it strike the ground? 

Ans. w= V3 g/l. qd 
14. Two solid wheels, each 20 in. in diameter 

and weighing 20 Ibwt, are keyed to an axle 8 in. in 

diameter and weighing 40 lbwt. A string wrapped Fic. 80. Problem 12 
around the axle is pulled on with a force of 5 Ibwt 

in a horizontal direction, as shown in Fig. 81. Find the linear acceleration 
of the center of mass of the system. Ans. 0.9 ft -sec—2, 

15. A thin rod 1.5m long and of mass 5.0 kg is 

held in a vertical position and struck a horizontal 

blow with a hammer at a point 1.2 m from the lower 

end, the impulse of the blow being 0.20 kgwt - min 

south. If the stick is released at the instant of the 
blow, (a) what linear velocity is imparted to the 

rod and (b) what angular velocity is imparted Fic. 81. Will the spool 
about its center of mass? (c) Find these velocities the lef th 

; move to the lett or to the 
for the case where the blow is struck at the center . right? 
of mass of the rod. (d) Compare the kinetic en- 

ergies of translation and of rotation acquired by the rod in the two cases. 

Ans. (a) 24m-sec™! south; (b) 56 rad - sec—! east, 

° 

10 THOSE who study the progress of exact science, the common spinning-top is a symbol of 

T the labours and the perplexities of men who had successfully threaded the mazes of the plane- 

tary motions. The mathematicians of the last age, searching through nature for problems worthy 

of their analysis, found in this toy of their youth, ample occupation for their highest mathematical 

powers. 

No illustration of astronomical precession can be devised more perfect than that presented by 

a properly balanced top, but yet the motion of rotation has intricacies far exceeding those of the 

theory of precession. 

Accordingly, we find Euler and D’Alembert devoting their talent and their patience to the 

establishment of the laws of rotation of solid bodies. Lagrange has incorporated his own analysis 

of the problem with his general treatment of mechanics, and since his time M. Poinsdt has brought 

the subject under the power of a more searching analysis than that of the calculus, in which ideas 

take the place of symbols, and intelligible propositions supersede equations. 

J. Cumrx Maxwetz, “On a Dynamical Top”, Transactions 

of the Royal Society of Edinburgh, 21, Part 4 (1857)



CHAPTER EIGHT 

ELASTIC BODIES 

— TOOK then a long Glass-Tube, which by a dexterous hand and the help of Lamp was in 

V V such a manner crooked at the bottom, that the part turned up was almost parallel to the rest 

of the Tube, and the Orifice of this shorter leg of the Siphon (if I may so call the whole Instrument) 

being Hermetically seal’d, the length of it was divided into Inches, (each of which was subdivided 

into eight parts) by a straight list of paper, which containing those Divisions was carefully pasted 

all alony it: then putting in as much Quicksilver as served to fill the Arch or bended part of the 

Siphon, vhat the Mercury standing in a level might reach in the one leg to the bottom of the divided 

paper, utd just to the same height or Horizontal line in the other; we took care, by frequently 

inclining the Tube, so that the Air might freely passfrom [sic] one leg into the other by the sides of 

the Mercury, (we took (I say) care) that the Air at last included in the shorter Cylinder should be 

of the same laxity with the rest of the Air about it. This done, we began to pour Quicksilver into 

the longer teg of the Siphon, which by its weight pressing up that in the shorter leg, did by degrees 

streighten {sic} the included Air: and continuing this pouring in of Quicksilver till the Air in the 

shorter leg was by condensation reduced to take up but half the space it possess’d (I say, possess’d, 

not fill’d) before; we cast our eyes upon the longer leg of the Glass, on which was likewise pasted 

a list of Paper carefully divided into Inches and parts, and we observed, not without delight and 

satisfaction, tuur the Quicksilver in that longer part of the Tube was 29. Inches higher than the 

other. 
Rosert Boyte, “Two new Experiments touching the measure 
of the Force of the Spring of Air compress’d and dilated’! 

° 

In the preceding chapters we have, for the most part, treated all 

bodies as if they remained unaltered in size and shape when acted 
upon by ferces. This conception of bodies as perfectly rigid is of 
course an idealization, like that of the particle, but it is an exceed- 

ingly useful one for simplifying the initial approach to the study of 

the mechanics of bodies. Indeed, for certain practical purposes 
many bodies may be treated as if they were perfectly rigid. Thus 
the steel parts of such structures as bridges and buildings ordinarily 
may be regarded as perfectly rigid by everyone except the archi- 

tects and engineers who design them. On the other hand, in 

dealing with fluids the concept of a perfectly rigid body is entirely 
insufficient. 

A body is said to be elastic if it tends to return to its original 
size or shape when the forces which deform it are removed. It is 
  

1 *Part II, Chap. V, p. 58, of A Defence of the Doctrine touching the Spring and 

Weight of the Air, published by Boyle in his New Experiments Physico-Mechanical, 
ed. 2 (Oxford, 1662). 
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“* Gatitzo’s Problem,’’ an Illustration 

from Two New Sciences 

In mis Two New Sciences GartE0 not only solved the problem of falling bodies and 
in so doing laid the foundations of the science of kinetics, but he also began the 
study of the strength of materials (see “ Second Day”). As A. E. H. Love says 
in the “* Historical Introduction ” to A Treatise on the Mathematical Theory of Elasticity: 

“The first mathematician to consider the nature of the resistance of solids to 
tupture was Galileo. Although he treated solids as inelastic, not being in pos 
session of any law connecting the displacements produced with the forces producing 
them, or of any physical hypothesis capable of yielding such a law, yet his enquiries 
gave the direction which was subsequently followed by many investigators. He 
endeavored to determine the resistance of a beam, one end of which is built into a 
wall, when the tendency to break it arises from its own or an applied weight; and 
he concluded that the beam tends to turn about an axis perpendicular to its length, 
and in the plane of the wall.’’ 

This problem, through its association with Gari.z0’s name, has come to be 
called ‘‘ Gatitxo’s Problem,’’
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MGravelet bret dob» 

Rossrt Borie, 1627-1691 

Tus vignette, which is reproduced through the courtesy of the Mount Wilson Ob- 
servatory of the Carnegie Corporation of Washington, appears on the title-page 
of The Works of the Honorable Robert Boyle, edited by T. Birch (London, 1772). In 
the preface Dr. Birch says of this likeness of Borie: 

“* There being only two original pictures of Mr. Boyle now known to be extant, 
it was thought proper to have them both engraved. One, which represents him in 

the 38th year of his age, is placed in the title-page of each volume, copied from a 

drawing of Mr. Faithorne, communicated by Sir Hans Sloane, from’ which likewise 

Mr. Faithorne himself engraved his print, with the instruments accompanying the 

head, according to the design of Dr. Robert Hooke, who thought the face very carefully 

and well done, and very like...” 

The air pump shown at the right is the early form described by Boyze in his New 

Experiments PhysicoMechanicall. In designing and making this pump, and in carrying 
out the experiments performed with it, Boris was assisted by Rosert Hooxe, who 

was the best mechanician of his day. It is almost certain that the “‘we’’ in the quo- 

tation given at the beginning of Chapter 8 refers to Bortz and Hooxe.
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gone longitudinal strain, Since any part of the wire is lengthened 

or shortened in the same proportion as the whole wire, we take as 

the measure of a longitudinal strain the change in length per unit 
length; or, denoting the original length of the 

wire by / and the change in length by AJ, the 
longitudinal strain is AZ/I. 

If the material in the wire be elastic, the 

strain will be accompanied by internal restor- 

ing forces arising between the contiguous 
parts of the wire. If the cross section at any 
point is considered as a dividing plane, the 
part of the wire on one side will act with a 
certain force on the part on the other side, 
and the latter will react with a force that is 
equal in magnitude but opposite in direction. 
When such forces arise in an elastic body, 
the body is said to be under stress, the meas- 
ure of a stress being the ratio of the internal 
force to the area across which it is transmitted. 

In the case.of a longitudinal strain in an elas- 

tic body, the accompanying longitudinal stress 

is equal in magnitude to the external force per 
unit of cross-sectional area that acts on the 
body to produce the strain. Hence, if f be 

the external force applied to one end of a 
wire or rod and A be the cross-sectional:area, 

the longitudinal stress anywhere in the body 
is f/A. 

By increasing progressively the load carried 
by a wire and observing the corresponding 
dimensions of the wire, the data for a curve 
like Fig. 83 may be obtained. If the body be 
maintained at a constant temperature, the 

first part of this curve will be found to be 

  

Fie. 82. An apparatus 
for measuring the change 
in the length of a wire 
as weights are added or 
subtracted. By means of 
a small lever, one end 

of which rests on C, the 
other end on the fixed 
table T, the mirror M is 

rotated through an angle 
as the wire moves up or 
down relative toT. The 
motion of a beam of light 
reflected from the mirror 
is observed through a tel- 
escope. Can you prove 
that the beam reflected by 
the mirror turns through 
twice the angle turned 

through by the mirror? 

practically a straight line. For small strains, then, the longitudinal 

stress is proportional to the longitudinal strain; that is, 

AL f_yAl 
A l 

The constant of proportionality Y, given by 

_ SL, 
Y= 7A 

[107] 

[107]



8-90] Elastic Bodies 153 

is usually called Young’s modulus, in honor of THOMAS YOUNG (1773- 

1829), who was the first to give the constant a physical meaning.t 

It is also called- the stretch modulus, although its value for a given 

material is found to be the same whether 
the stress f/A is tensile (Fig. 82) or com- 
pressive (Fig. 84). 

For the small strains that correspond to 

the straight-line portion of the curve in 
Fig. 83 it is found that a decrease in the 
load is accompanied by a shortening of the 

stretched wire until the length of the wire is 
the same as it was before the load was put on. 
When the range of perfect elasticity repre- 

sented by the straight line is exceeded, in 

which case the wire is said to have passed 
the elastic limit, removal of the load results 

in the wire’s contracting somewhat, but a 

permanent set will remain; the wire from 

then on acts like a different wire with a new 
elastic limit. 

EXAMPLE. If the stress existing in a 

stretched elastic wire does not exceed 
the elastic limit; how much energy is 

stored per unit volume in the wire? 

  

Strain = 4/7 

Fie. 83. Stress-strain diagram 
for a sceel wire. The yield point 
is the stress at which the strain 
begins to increase rapidly, so 

that the wire begins to flow 
much like a very viscous liquid. 
The ultimate strength is the stress 
at rupture. This wire will not 
recover its original length aftez 
removal of the load because 
the stress corresponding to the 
elastic limit has been exceeded. 
What does the slope of the 
straight-line portion of this 

diagram represent ? 

Solution. Employing the method of Sec. 45, one finds that the total work 

done by the stretching force while it increases from zero to f is W = f Al/2. 

By dividing both members of this expression by Al, which is the volume V 

of the wire, one obtains finally 

wi . 
V2 stress - strain. 

90. Hooke’s Law. Eq. [107] expresses the famous law of propor- 
tionality of stress and strain that ROBERT HOOKE discovered in 1660 

but did not publish until 1676, and then only in the form: of an 

anagram meant to represent the words Ut tensio sic vis (Plate 25). 
Although approximately true for a wide range of deformations, 

[108] 

  

1On page 46, Vol. II, of his A Course of Lectures on Natural Philosophy and the 

Mechanical Arts (London, 1807), YOuNG states: ‘'The modulus of the elasticity of 

any substance is a column of the same substance, capable of producing a pressure on 

its base which is to the weight causing a certain degree of compression, as the length 

of the substance is to the diminution of its length.”’ For illustrations of this defini- 

tion see Lecture XIII, Vol. I of the same work, or *A Source Book in Physics (1935), 

pp. 95-97, in which a portion of this lecture is reproduced. It should be noted, how- 

ever, that the modulus defined by Younc differs from the present one. In fact, what 

we now call YounG’s modulus is the weight of the column per unit of area of its base.



Te photostat was made from a copy of Hooxs’s A DESCRIPTION OF HELIO- 

SCOPES, And some other INSTRUMENTS which is in the private library of Dr. 

Grorcz E. Hare. Hooxe announced his law of elasticity in 1676 in the anagram 
given in Invention 3. In his LECTURES De Potentia Restitutiva, or of SPRING Explaining 

the Power of Springing Bodies, published two years later, he stated that he had first 
found out the theory of springs eighteen years before, but had not published his dis- 
covery because he was anxious to obtain a patent for a particular application of it. 
He then continued, “‘About two years since I printed this Theory in an Anagram at 

the end of my Book of the Descriptions of Helioscopes, viz. cetiinosssttuu, id 

est, Ut tensio sic vis; That is, The Power of any Spring is in the same proportion with 

the Tension thereof.’’ 

Facsimile reproductions of both the Description of Helioscopes and the Potentia 

Restitutiva will be found in R. T. Gunther’s Early Science in Oxford (Oxford, 1931), 

Vol. VII, pp. 119-152, 331-356. A portion of the latter is also reproduced iv 

W. F. Magie’s A Source Book in Physics (1935), pp. 93-95. 

  

 



  
  

© PLATE 25 ° 

  

  

To fill the vacancy of the enfuing pape , I have here ad- 
ded a decimate of the centefme of the Inventions I intend to 
publifh, though poffibly notin the fame order, but as I can 
get opportunity and leafure; moft of which, I hope, 
willbeas ufeful to Mankind, astheyare yet unknown and 
new. 

1. A way of Reoulating all forts of Watches or Time- 
keepers, fo 4s to make any way to equalize , if not exceed the 
Pendulum-Clocks wow afed. 

2. The trae Mathematical and Mechanichal form of alt 
manner f Arche: for Building, with the true butment neceffary 
tocach of them. A Problem which no Architedfonick Wri- 
ter hath ever yet attempted , much lefs performed. abcee 
ddeeece f gg iiiiiili IImmmmnmnancoprr ssstttetruusunuuux, 

3. The true Theory of Elafticicy or Springinefs, and 4 par- 
ticular Explication thereof in feveral Subjects in which it is to 
be found: And the way of computing the velocity of Bodies 
movedby them. ceiiinosssttuu, 

4. 4 very plain and practical way of counterpoifing Li- 
quors, of great ufein Hydraulicks. Difcovered. 

5. Anew fort of Object-Glaffes fer Telefcopes and Mi- 

crofcopes, much ontdoing any yet wfed. Difcovered. 
6. 4 new Selenofcope, ‘eafie enough tobe made and ufed whereby the finallef? inequality of the Moons furface and limk 

may be moft plainly diffinguifbed. Difcovered. 
7. Anew fort of Horizontal-Sayls for a Mill , perfermin, 

the moft that any Horizontat-Sayls of that bigne fi are capable A 
and the various #[e of that principle on divers other ottafions, 
Difcovered, 

8. A aew way of Polt-Charriot for travelling far, without 
much wearying Horfe or Rider. Difcovered, 

9. A new fort of Philofophical-Scales, of great ufe in Ex- 
perimental Philofopby. cdeiinnoopsssttuu. 

10. A new Invention in Mechanicks of prodigions fe, ex- 
ceeding the chimera’s of perpetual motions for feveral ufes. 
aaaebccddeeeceeegiii!mmmnnoopparrrrs 
rttununng, 
aaeffhiiiillnrrsstuu,     
  

Photostat of the Concluding Paragraph (pages 31-32) 

of A DESCRIPTION. OF HELIOSCOPES, AND SOME OTHER INSTRUMENTS, 

by Rosert Hooxs (London, 1676)
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the law holds precisely only for very small strains taking place 
under isothermal conditions. The first use of the law was made by 
EDME MARIOTTE! (1620-1684), who stated it independently and 
applied it to GALILEO’s problem of the resistance of beams to rupture. 

Experience has shown that Hooxe’s law may be generalized for 
various kinds of elastic changes into the statement 

Stress = constant - strain. [109] 

The constant thus defined is a characteristic of the elastic material 
and is generally referred to as a modulus, or measure, of elasticity. 

There are as many kinds of elastic moduluses for a given material 
as there are kinds of strains. While these moduluses must be deter- 
mined from measurements made upon a particular piece of material, 

they really are properties of the substance of which the specimen is 

made and not of the dimensions of the particular 

sample. They do vary, however, with the tem- 

perature, diminishing, in the case of solids, as the 

temperature rises; thus, a spring balance stretches 

a little farther for the same force when hot than 

when cold. There is no connection between these 
elastic constants of a material and its “degree” 

of elasticity. The former measure the magni- Fie. 84. A column 
tudes of the stresses required to produce given inder compressive 
strains, the latter the perfectness of the return stress 
to the initial conditions. In popular usage a 

body is said to be “very elastic” if it possesses nearly perfect elas- 
ticity through wide limits. But in technology it is regarded as 

highly elastic only if it has large elastic constants; this is because 
the ability of a material to withstand large forces is generally of 
more importance in engineering than its ability to withstand large 
‘deformations. In the technical sense, then, lead and steel are highly 

elastic, since their elastic constants are large, whereas rubber is not 

very elastic, for its elastic constants are small. 

0 

Elasticity o if Size 

91. Volume Elasticity. A strain that consists of change in size of 
every volume element of a body without change in shape, is called 
a volume, or isotropic, strain. It is measured by the proportion 
  

1Traité du Mouvement des Eaux (Paris, 1686) [see Ceuvres (Leiden, 1717; The 

Hague, 1740)]. A translation by J. T. Desaguliers was published in London in 1718 

under the title The Motion of Water and other Fluids.
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AV/V, in which the volume of the body is changed. In elastic bodies 
such a strain is accompanied by a stress which, if the body be iso- 
tropic, will be a pressure equal in all directions. Such a stress is 

called a hydrostatic pressure because, as BLAISE PasCaL! (1623- 

1662) clearly showed, it is the only kind of stress that can exist in 

fluids at rest. The term pressure is used here in its correct physical 
sense to mean a normal force per unit area; that is, if pressure be 
denoted by P, normal force by f, and area by A, then the defining 
equation for the average pressure? over the area A is P=f/A. 

Experiments show that for small volume strains, Eq. [109] is 
applicable. Now, to produce a volume strain, a uniform pressure 
must be applied at all points on the surface of the body, and this 
external pressure will be equal in magnitude to the resulting stress in 

the body. Hence, if the external pressure for a volume V be P, and 
that for a volume V’ be P’, then 

  

  

vi-V pl P=— , kG 
or AP=—k ar, [110] 

the negative sign merely indicating that the volume gets smaller 
as the pressure increases. The modulus & is called the volume, or 

bulk, modulus. 

All materials, whether their state of aggregation be solid, liquid, 
or gaseous, possess elasticity of volume. Liquids offer less resistance 

to compression than solids, as a rule, but this resistance is so. large 

that even liquids may for many purposes be treated as if incompress- 
ible. However, BRIDGMAN?* has succeeded in compressing water 
into three fourths its ordinary volume by employing a pressure‘ of ' 
20,000 atmospheres. 

EXAMPLE. The reciprocal of the volume modulus is called the compressi- 
bility. Show that the change of volume of a body due to a given change 

of pressure is equal to the product of the change of pressure, the origi- 
nal volume, and the compressibility. 
  

1 Traitez de Véquilibre des liqueurs et de la pesanteur de la masse de fair (Paris, 1663). 

2 If the force isnot uniform over the surface, one must then use the more general 
concept of the pressure at a point, for which the defining equation is 

= lim Af 
P= jim oAA’ 

where Af is the normal force on a small portion AA of the surface. 

3P,. W. BripcMan, The Physics of High Pressures (Bell, 1931). 

4 The standard atmosphere (abbreviation A,) is defined as the pressure exerted by 

a column of mercury 76 cm high, at 0° C and subject to standard acceleration due 

to gravity g.. It is equivalent to 1.01325 x 10° dyne - cm-, or 1.01325 bars. A ber 

is a pressure of 10° dyne - cm™2
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92. Boyle’s Law. When BOYLE published his New Experiments, the 
book met with a certain amount of opposition, although it was on 

the whole a sound record of experimental work. The criticism was 

for the most part unwarranted, but it served to incite BOYLE to re- 

newed research, and in 1662 he brought to light the famous law that 

describes the relation between the volume occupied B 

by a confined gas and the pressure exerted by the | 

gas upon the walls of the containing vessel. BOYLE 

found that so long as the temperature of a given mass 

of gas remained unchanged, the product of the pres- 

sure and volume of the gas was constant (Fig. 85). In 

1676 MARIOTTE ' independently discovered the same 
law and carefully tested it. The constant in BOYLE’S 
law evidently is proportional to the mass of gas 

used; for, if the pressure and temperature be kept 

the same, one must take twice the original volume 

in order to double the mass of gas. We may there- 
fore express BOYLE’S law by means of the equation 

PV= MC, [111] 

where P is the pressure and V is the volume of a 

mass M of gas. The constant C depends on the kind 

of gas and its temperature. In view of Eq. [111] and 

the definition of density (namely, p= M/V), BOYLE’S 

law may be stated in the alternative form: Under 

Fic. 85. Boyre’s 

apparatus for in- 
vestigating pres- 
sure greater than 
that of the atmos- 
phere. Under iso’ 
thermal conditions 
(B+ 4)V is con- 
stant, where B 

is the atmospheric 
pressure expressed 
in centimeters of 

mercury, h is the 
isothermal conditions the pressure in a gas is pro- 

portional to the density and is independent of the 

mass of the gas. 

difference in height 
of the two mercury 
columns, and V is 

the volume of the Measurements made with even an ordinary meter 
gas under test 

stick are accurate enough to reveal the fact that 

the simple law enunciated by BoyLE represents the behavior of 

many gases only approximately. Since we shall have occasion to 

-consider this matter again in chapters that follow, it will suffice to 

say here that for gases like hydrogen and air the departures from the 

law are less than 1 percent up to 10 atmospheres of pressure, but for 

substances like carbon dioxide and water vapor the law is inadequate 
except at temperatures well above their liquefaction points. We 

shall often find it convenient to speak of an ideal or perfect gas, 
which is an imaginary gas whose behavior under isothermal condi- 

tions is described exactly by BoyLE’s law. This imaginary gas is 
  

1 Discours de la Nature de l Air [see Geuvres (Leiden, 1717; The Hague, 1740)}. 

A portion of the paper appears in *A Source Book in Physics (1935), pp. 88-92.
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called ideal because of its simple properties and because it repre- 
sents the behavior of all actual gases to a first approximation. 

Indeed, experiment shows that as the pressure decreases the behav- 

ior of all gases becomes more and more like that of the ideal gas. 
At low enough pressures, therefore, any gas will act like an ideal gas 

to any desired degree of approximation. 
93. Isothermal Elasticity of an Ideal Gas. Suppose that the initial 

pressure and volume of a given mass of an ideal gas are P and V, 

respectively, and that the application of an additional small pressure 

AP changes the volume by the small quantity AV, the temperature 
being kept constant by abstracting heat from the gas during the 
compression. Then, by BoyLe’s law, PV = (P+ AP)(V+ AV). By 

performing the indicated multiplication and neglecting a term which 
is the product of the two small quantities AP and AV, we obtain 

PAV+tVAP=0. If this equation be solved for P, there results, 

in view of Eq. [110], k=P. [112] 

The obvious interpretation of this result} is that, for small strains, 
the volume modulus of an ideal gas is equal to the initial pressure 
provided the process is isothermal. If, however, a gas is compressed 

so quickly that its temperature rises, the resistance to compression is 

much larger than is predicted by Eq. [112]. Liquids also resist a 
quick compression a little more than a slow one, but the difference 
in their case is so small as usually to be negligible. 

° 

Elasticity of Shape 

In the long interval between the discovery of HOOKE’s law and that 

of NAVIER’S equations, work on the elasticity of solids was confined 

largely to the solution and extension of GALILEO’S problem by such 

eminent mathematical physicists as JACQUES BERNOULLI (1654-1705), 

DANIEL BERNOULLI (1700-1782), EULER, and LaGRANGE. The 

theory of the flexure of beams was considered by COULOMB,? who 
  

1 This result might have been obtained in a more elegant manner by the use of the 

differential calculus. For infinitesimal changes, by definition (Eq. [110], 

dP 

bo Vi 
But, by Boy.e’s law, P= MC/V, from which dP/dV=— MC/V2=—- P/V. 

Hence dP 
k= Vo P. 

2 Théorie des machines simples (1779). See *A Source Book in Physics (1935), 

pp. 98-103,
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also investigated the resistance of thin wires to torsion. COULOMB 

was also the first to give attention to the kind of strain that we now 

call a shear, though he considered it in connection with ruptures 

only. It was not until 1807 that the conception of a shear as an 
elastic strain was introduced by YOUNG. 

94. Shearing Strain and Stress. A shearing strain, or shear, is a 

strain that consists in a change of shape only, without any change of 
volume. Since our everyday ideas of change of shape are essentially 

qualitative, we must first agree on a way of measuring the amount 

of shear existing at any point in a distorted body. Suppose that 

abcd, Fig. 86, represents a little rectangular element of the body. 
If the base ab be firmly fixed, a force f 

  

        

applied tangentially to the upper face | oA NAS tf 

will strain the element into the shape |[a@~ / ya le 7 ¢7 

abcd’, just as a thick book lying on the © // ri / / 
table would be distorted by applying a / / / / 
tangential force to the cover. Such a |; / iA / 
deformation in which the adjacent lay- 64 vi / 
ers of the body merely slip past one *¥ aA   
another is evidently a shear, for con- Fic. 86. The sheari _ 

. G. . le shearing strain is 
figuration alone has been changed, the 44! /dgor, if the strain besmall, ¢. 

volume remaining the same as at first. The shearing stress is f/A 
As the measure of this shearing strain 

we shall agree to take the ratio dd'/da. When the shear is small, 
as is usually the case in practice, this ratio is equal to the angle ¢, 

expressed in radians. 
If the shear tends to disappear when the forces that produce 

it cease to act, the material is said to possess shear elasticity or ri- 

gidity. In Fig. 86 imagine a plane drawn anywhere in the element, 

parallel to the top; the part on one side of this plane will exert a 
tangential force on the part on the other side, and this force will 
equal the force applied to the top. The magnitude of this force 

per unit area of the plane (namely, f/A) is the measure of the 
shearing. stress. If HooKE’s law holds, this stress should be pro- 

portional to the shearing strain; that is, 

fe A Ms [113] 

where v is the shear modulus or modulus of rigidity. 
Only solid bodies possess elasticity of shape. In fact, it is upon 

this difference in the elastic behavior of different bodies that the 
definitions of solids and fluids are usually based. A body is called a
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solid’ if it possesses elasticity of both 

size and shape; it is called a fluid if it 

exhibits elasticity of size but not of shape. 
95. Torsion of Hollow Tubes. When 

a thin hollow cylinder (Fig. 87) is twisted 
about its geometrical axis by holding one 
end and applying a torque to the other 

end, a pure shear results. Let usimagine 1s. 87. Torsionofa thin-walled 
the whole length of the cylinder divided "be 2 example of pure shearing 
into thin rings of equal thickness by 

planes perpendicular to the axis. If a series of imaginary planes 
passing through the axis now be drawn before the cylinder is twisted, 
they will divide each ring into very small elements, 
as in Fig. 88. After the torsion each of these ele- 
ments will have a strain like that of the element 
in Fig. 86. 

In the present case it is not so easy to measure ¢ 
directly as it is to measure 6, the angle through 
which the end of the cylinder is twisted (Fig. 87). of the hollow tube 
Now ¢ = 76/I, where 7 is the mean radius and lis js divided into 
the length of the cylinder. Therefore Eq. [113] small elements 
may be written f 6 

  

Fig. 88. Each ring 

Dard" 7” [114] 
where f is the tangential shearing force 

applied to the end of the cylinder and Ar \e 
is the thickness of the cylinder wall. Sup- \, 
pose that the force f is brought into play in | | 
the manner shown in Fig. 89. By the prin-   

. FO 
ciple of moments, fr = FR, or f = FR/r. 

In view of this relation and Eq.-[114], one Fs. 89. The shear modulus 
obtains finally of the material in a tube may 

FRI be investigated by clamping 
n=5—3 [115] one end of the tube, fastening 

2a - Ar: 6 the other end rigidly to a 
This equation expresses the shear modulus grooved circular disk of ae 
in terms of quantities all of which are “ne f » anc’ app ying @ twist : ing force F to the rim of the 
easily measurable. disk by means of weights 

96. Torsion of Rods and Wires. The 
problem of a seléd cylinder which is twisted about its axis may be 

approached by imagining the cylinder to be made up of a large 

  

1For a review of modern work on the solid state, see *R. E. Gibbs, Science 

Progress 29, 661 (1935).
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number of concentric hollow cylinders of thicknesses Ar; and of 
mean radii 71, 72,-:--, 7, °°+, %; (Fig. 90). The torque, say Li, 

needed to twist any particular hollow cylinder of radius 7; through 

the angle @ is, from Eq. [115], 
3 Ay. Li= 2 ats Aré. 

The total torque L which must be applied in order to twist the solid 
cylinder through the angle 6 is evidently the sum of all the torques 
Li, or 

[116] 

      

  

_ 2nd). Sia, 2nd ("5 _27nb rt 
L= i lim 31 Ar; = i fr d= i Z 

Hence, finally, for a solid cylinder of radius 7, 

21L 
= . 11 

ard (47) 

Eq. [117] shows that for a given cylinder the 

torque is proportional to @. The proportionality 

factor wrén/21 is called the constant of torsion 
of the wire or rod; denoting this constant of the Fig. 90. Cross sec- 
cylinder by Z,, we may write Eq. [117] in the form tion of a solid cyl- 

L=LO. [118] inder 
Obviously Z, might also be defined as the torgue per unit twist. 

Eqs. [117] and [118] permit us to express the shear modulus in 

terms of the constant of torsion and dimensions of the cylinder; 

thus 
n= 2 i, 

Tr 

  

[119] 

6 

Relations between the Elastic Constants 

Of all possible elastic changes, the only two that are independent are 
volume strain and shearing strain. Other changes involve both of 
these fundamental kinds. For instance, the stretching of a wire 

(Sec. 89) involves a change in form as well as in volume, for instead 
of increasing or decreasing all dimensions, it increases the length and 

decreases the diameter; this lateral contraction is strikingly shown 

by a stretched rubber band. The various elastic changes have 
moduluses of their own, but these are always expressible in terms of 

the two fundamental ones, & and. For example, it can be shown that 
Younc’s modulus is given by 

Y= 9 kn = SEER [120]
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Since the direct determination of & is not easy, this equation enables 
us to find k if we know Y and », both of which can be easily de- 
termined experimentally. Of the various coefficients of elasticity, 
YOUNG’s modulus is the one most used in practical work. 

° 

EXPERIMENT VIIA. DENSITY OF AIR 
Suppose that a glass bulb of known volume V is weighed when it is 

filed with dry air at atmospheric pressure P, and that the bulb is 
again weighed after the pressure in it has been reduced to Po by 
pumping out some of the air. If o; and pe be the densities of air 
corresponding to the pressures P; and P2 and if m be the mass of air 
pumped out, as revealed by the difference of the two weighings, it is 
evident that Vpi—Vpe=m. But, by Boy.Le’s law (Sec. 92), 
P1/pi = P2/pe; hence Pim 

“VR. Ay yen Pi 

In making the weighings, a counterpoise, which consists of a 
closed bulb having the same external volume as the bulb containing 
the air, is placed on the pan of the balance with the weights. This 
device was first used by the French chemist and physicist HENRI 
VICTOR REGNAULT (1810-1878), known for his exceedingly careful 
and exact measurements of many physical constants, in his classical 
determination of the density of air. It minimizes any errors which 
would arise from changes in temperatures or atmospheric pressure 
during the experiment, provided only that the evacuation of the 
bulb from the pressure P, to pressure Pz is accomplished isothermally ; 
for, with this arrangement, the buoyant effect of the air upon both 
sides of the balance is the same no matter how rapidly the barometric 
pressure or the temperature may change. 

a. To Fill the Bulb with Dry Atr at Atmospheric Pressure. See that 
the stopcocks on the bulb are well greased and that the surface of the 
bulb is clean and dry. By means of a vacuum pump or compressed- 
air system, pass a gentle current of air first through a calcium chlo- 
ride drying tube and thence through the bulb for several minutes. 
  

1See. Appendix 13, Table F, for values of the moduluses of elasticity for various 
substances. 

2 *For more comprehensive elementary treatments of the topics discussed in this 
chapter the student is referred to H. Bateman, article “Elasticity,” Encyclopaedia 
Britannica, ed. 14; E. Edser, General Physics for Students, Chaps. VII-VIII; J. H. 
Poynting and J. J. Thomson, Properties of Matter, Chaps. [V-IX; P. G. Tait, 
Properties of Matter, Chaps. VIII-XI.
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Then turn off the air at its source and carefully close the stopcock in 

the outlet tube of the bulb. Allow the bulb to remain connected to the 

drying tube for several minutes, so that it may assume the tempera- 

ture of the room. Observe the temperature by means of a thermom- 

eter hung near the bulb and observe the pressure Pi, in centimeters 

of mercury, by means of a mercurial barometer.1 Then carefully 

close the inlet stopcock, disconnect the bulb from the drying tube, 

and weigh the bulb. 
b. The First Weighing; Use of the Analytical Balance. The ana- 

lytical balance (Fig. 91) is controlled by means of the pan-arrest p 

and the beam-arrest b. The pans or their contents should never be 

touched except when the 

beam is raised and clamped 
by means of the beam-arrest. 

Remove all dust from the 

bulb and the pans of the bal- 
ance by means of a camel’s- 
hair brush. Then very care- 

fully suspend the bulb from 
the hook ¢ of the left-hand 
pan and place upon the 
right-hand pan the counter- 

poise and a few gram weights 

from the box. of weights. 

Handle the weights only with 
the forceps. Next release the 
pans by pushing in and fas- 

tening the button p. Then 
slowly release the beam-arrest 6 just enough to see whether the 
chosen weight is too heavy or too light; this done, raise the beam- 
arrest immediately but so slowly as not to endanger the knife-edges 

by the slightest jar. By proceeding thus, make a systematic trial of 
the gram weights until you know between what two consecutive 
numbers of grams the condition of balance must lie. Then try in the 
same way the milligram weights in order of magnitude until a weight 
is found such that, when the beam-arrest is completely lowered, the 
pointer oscillates near the middle of the scale over a distance of from 
three to six divisions; a larger swing than this indicates insufficient 

care in lowering the beam-arrest. The rider y may be used in place 
of the small milligram weights, if desired, but it is best not to attempt 

to add fractional portions of one milligram by means of the rider. 

  

  

Fie. 91, An analytical balance 

  

1 Follow the directions given in Appendix 6.
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The next step in weighing is to take the resting point. Before 

  

    

      

doing this, raise the beam-arrest again, taking pains to avoid a jar 

by raising it only at a time when the pointer is at the center of the 
scale. Close the door of the balance so as to shut out air currents, 
and stop all swinging of the pans by gently 
manipulating the pan-arrest p. Then care- | 

fully lower first the pan-arrest and then if amt L ibsslant: 
the beam-arrest and take the resting point O 8 19 15 
R,. This is done by averaging the mean of 

three successive turning points of the Fis. 92. The scale of the 
pointer on one side with the mean of the . balance 
two intervening turning points on the other side. This use of an 
odd instead of an even number of turning points eliminates com- 
pletely the effect of damping. The following example, taken in con- 
nection with Fig. 92, will make clear the method of procedure: 

TURNING POINTS 
Left Right 

6.8 11.7 
7.1 11.2 

7A __ 
Means 7.10 11.5 

oR=93 

Having determined R:, slowly raise the beam-arrest when the 
pointer is in the middle of a swing. Count up the weights on the 
scale pan, calling this sum M,. To avoid error, first record in your 

notebook the values of the weights as obtained by counting the 
vacant spaces in the box and 

then check this by counting 
again as the weights are re- 
turned to the box. Remember 
exactly which of the larger 
weights were used, for you will 

want to use these same weights 

again later. 

c. Evacuation of the Bulb. 
Attach the bulb V toa vacuum 
pump and open-arm mercury manometer (Fig. 93) and pump as much 

of the air as possible out of the bulb. Wait several minutes for the 
evacuated bulb to regain the temperature of the room. Then read 

the two arms of the manometer and at the same time close the stop- 
cock. Since one arm of the manometer is open to the outside air and 

  

Fic. 93. Apparatus for evacuating the bulb
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the other to the exhausted bulb, the difference of the heights of the 
mercury in the two arms gives directly the difference P; — P2 be- 

tween the barometric pressure and the pressure in the bulb. Ob- 
serve the temperature of the bulb; if it differs by more than half a 

degree from that ‘previously taken, the first weighing must be dis- 
carded and another taken for the present temperature. This need 
not be done until after the completion of d. 

d. The Second Weighing. Place the bulb V upon the same scale 
pan as before and, proceeding exactly as in b, balance it by means of 

such weights of mass Mz as will cause the pointer again to oscillate 

near the middle of the scale. In doing this, choose the same larger 
weights as were used in b. Then take the new resting point Re. If 
Re coincides exactly with Ri, then evidently 44; — Mz would be the 

difference in the masses of the bulb in the two cases. But, in general, 

Rz will not coincide with R,, and it is not best to make it do so by 

repeatedly shifting the rider. The most rapid and the only correct 
method of making an accurate weighing is to determine the sensi- 
tévity,! or number of scale divisions that the rest point is shifted by 
the addition of 1 mg, and then to calculate by interpolation the exact 
correction which must be applied to Me in order to bring Re precisely 

into coincidence with R,. This is done as follows: Immediately after 
finding Re, add to the lighter side a small weight, say 2 mg, or 1 mg 
if the balance is very sensitive, and take the corresponding rest 
point Ro’. This procedure simply determines the value in milligrams 
of the scale divisions. Thus, if Re = 10.6 and if, upon the addition 

of 2mg, Ro’ = 7.0, then the sensitivity is 1.8 scale divisions per 
millimeter. From a knowledge of Ri, Re, and the sensitivity, it is an 

easy matter to calculate the mass which must be added to or sub- 
tracted from Me in order that the pointer may be brought exactly to 
the original resting point R;. Thus, in this case, the number of milli- 
grams which would be required to move the pointer from Re (= 10.6) 
back to R; (=9.3) is 0.72. This number of milligrams must be added 
to or subtracted from Me, according as the point 10.6 is farther from 

or nearer to the object being weighed than the point 9.3. Let Mo’ 

represent the corrected value of Mz. Then M; — My’ is the mass m 
of Eq. [121]. 

e. Volume of the Bulb. If the volume V of the bulb is not marked 
upon it, fill the bulb with water and weigh upon a trip scales. Ob- 
  

1 Owing to the bending of the beam, the sensitivity varies with the load and there- 

fore should ordinarily be determined at each weighing (Chap. 6). Since, however, it 

generally requires a considerable change in load to produce an appreciable change in 

the sensitivity of a good balance, one determination is usually sufficient so long as the 

loads involved are of about the same magnitude.
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serve the temperature of the liquid and obtain its density from tables. 
Thoroughly dry the bulb before using it again. 

f. Calculations. Calculate the density 1 of dry air for the con- 
ditions of temperature and pressure that exist in the room. The 

pressures which appear in Eq. [121] — namely, P; and (Pi — P2).— 
must of course be expressed in the same units. If they are expressed 
in centimeters of mercury, the two columns of mercury which they 
represent must have the same temperature ; a difference not exceed- 

ing 5° C will lead to an inappreciable error, however, as an inspection 

of a table of mercury densities ! will show. , 
Compare your value of the density of dry air with the values 

given in Appendix 13, Table D. Since the pressures in the tables 
represent heights of mercury columns at 0° C, it will be necessary 
to reduce your observed value of the barometric height P; to 0° C 
and then to find in the tables the value of the density corresponding to 
this reduced value of the barometric height. This reduction is made 

by multiplying the observed height by the ratio of the densities of 

mercury at the room temperature and at 0° C; this correction, to- 
gether with a slight correction for the brass barometric scale, will be 

found already worked out in Appendix 13, Table G. 

1. Why was it necessary in the two weighings which you made to have 
the air in the bulb initially at the same temperature ? 

2. Derive Eq. [121]. 

3. ARISTOTLE .attempted to determine whether air has weight by 

weighing a flexible bladder, first when it was deflated and afterwards 
when it was inflated with air. He found both weighings to be equal, and 

concluded that air has no weight. Criticize this conclusion. 

4, Show why the true zero of a vibration which is gradually dying 
down because of damping is not obtained by taking the mean of two suc- 
cessive turning points, one on the right and one on the left. 

5. Show why the true zero is obtained by averaging the mean of two 
successive turning points on one side with the intervening turning point 
on the other side. 

oO 

OPTIONAL LABORATORY PROBLEMS 

1. Variation of the Sensitivity of an Analytical Balance with Load. De- 

termine the sensitivity of an analytical balance for zero load in the pans 
and then for each of several loads up to the capacity of the balance. Find 
the capacity from the manufacturer’s catalogue. Plot a curve showing the 
variation of the sensitivity with the load and keep it for use with the balance. 
(See the Optional Laboratory Problem in Chapter 6.) 
  

1 Appendix 13, Table C.
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2. Double Weighing. Determine the weight of a piece of brass on an 

analytical balance by the method of double weighing (see Exp. VI, Part II). 
Prove that the formula to be used in making a double weighing is 

W=wt+ 1 Ria ke 

. 2 s . 

where W’ is the weight that balances the object to within 1 mg, Ri and Re 
are the resting points for the load on the left-hand pan and on the right- 
hand pan respectively, and s is the sensitivity with the load in either pan. 
Do you find that a double weighing requires a larger number of observations 

than a single weighing? 

3. Ratio of the Lengths of the Arms of an Analytical Balance. Weigh 

an object on an analytical balance by the method of single weighing, first 

when the object is in the right-hand pan and then when it is in the left-hand 

pan, and from these two data compute the ratio of the lengths of the arms 
of the balance. How much error does this inequality of the lengths of the 
arms introduce into the determination of the weight of the object by a single 
weighing? 

° 

EXPERIMENT VIIIs. TORSIONAL PROPERTIES OF RODS 

A statical method is employed. The apparatus (Fig. 94) con- 

sists of two heavy table-clamps, one of them carrying a wheel about 
15cm in diameter. In the hub of 

the wheel is a socket in which the 

rod to be tested is rigidly fastened. 
The other end of the rod is held 

in a similar socket mounted in 
the other clamp. The torque for 
twisting the rod about its axis is 
applied by adding weights to the 
weight-hanger attached to the rim 

of the torsion wheel. Angles of 

twist are measured by means of a 
graduated scale on the rim of the 
wheel and a vernier. 

Four rods are to be used, of 

which three are of steel of the same 

length but of different diameters ; 

the fourth is of brass. One of the 
steel rods has a third bushing near 

its middle, which allows it to be 

used in measurements at two different lengths. Numbers should be 

assigned to the rods for identification. Assign No. 1 to the largest 

  

Fic. 94. Apparatus for studying the 
torsion of a rod
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steel rod, No. 2 to the next largest, No. 3 to the smallest, No. 4 to 
the half-length of the same rod, and No. 5 to the brass rod. Record 
also the set-number of the rods which you test, for in a later experi- 
ment (Exp. AIVB) you will study the elastic properties of these rods 
by a kinetical method. 

a. Place rod No. 1 in position. The rod must be initially straight, 
and the clamps must be so aligned that the rod remains straight and 
free from longitudinal stress when both it and the clamps are fastened 
firmly in position. 

b. With the weight-hanger in position, place enough weights on it 

to take up any slack or lost motion in the apparatus; the weight- 

hanger may be sufficient to do this. Carefully set the vernier at zero 

and take this “no-load” reading. Then gently add weights, one at 
a time, to the weight-hanger, and record at each step the load and 

the corresponding scale-reading.! Also take readings as these weights 

are successively removed. Take two distinct readings with the 

maximum load. 

c. Measure the distance between the inside faces of the bushings 
on the ends of the rod and record this as the length / of the rod; if 
‘the rod is equipped with a third bushing near its middle point, the 
length of this bushing as determined with a vernier caliper must. be 
deducted from the length as found above. 

Measure the diameter of the torsion wheel and record its radius R. 
Measure the diameter of the rod in at least ten places equally 

distributed along its length and circumference. Be sure to check the 

zero reading of the micrometer caliper.? 

d. Repeat the preceding observations with rods Nos. 2, 3, 4, and 5. 
e. For each rod calculate the mean twist @ for 100 gwt added to or 

subtracted from the weight-hanger. The following example illus- 

trates the method of averaging to be employed. Suppose that, in 

the case of one of the rods, five weights were successively added and 

then subtracted from the weight-hanger, so that twelve readings 

were made. In the list of recorded scale-readings, subtract reading 1 
from reading 6, 2 from 5, and 3 from 4; likewise subtract 12 from 7, 

11 from 8, and 10 from 9. Do the same with the list of loads. Then 

add up the resulting list of load differences and the list of angle 
differences, and divide the former sum into the latter. 
  

‘Tf the diameter of the rod is about 2 mm, add 100 gwt at a time up to 500 gwt; 

if about 3mm, add 200 gwt at a time up to 1000 gwt; if about 4mm, add 500 gwt 

at a time up to 2500 gwt. The maximum weight should not be so great as to exceed 

the elastic limit of the steel. (How can you tell whether you are still within this 
limit ?) 

2 See Appendix 4,
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Calculate by means of Eq. [118] the constant of torsion of each 

rod. Then use Eq. [119] to compute for each rod. Average the 
values of # found for the steel rods. Compare (a) the ratio of the 
lengths of rods Nos. 3 and 4 with the ratio of the mean twists pro- 
duced in each by unit torque; (b) the ratio of the fourth powers of 

the radii of rods Nos. 1 and 2 with the ratio of the mean twists per 

unit torque; (c) the ratio of the maximum and minimum twists of 

rod No. 2 with the ratio of the maximum and minimum loads. 

1. State in words the relations shown ‘by your experiment to exist be- 
tween the angle of twist and the dimensions of the rod, and between the 

angle of twist and the torque producing the twist. Are these relations 

in accord with Eq. [117]? 

2. Suppose that a, b, ---, hk are the-values of the successive scale- 

readings obtained as weights are added to and then subtracted from the 

weight-hanger. Show that if the mean twist is calculated simply by 
averaging the differences (0 — a), (c — b),---, (g — A), the readings 5, c, 

f, and g are wasted. Show that if the readings are averaged by the method 

which you actually employed in this experiment, no observation is used 

more than once, so that all of them are utilized in obtaining the mean. 
Also show that the latter method of averaging gives to each observation 
precisely the amount of consideration that it deserves; that is, it gives 
a weight of 3 to the observed twist for 300 gwt, etc. 

3. One observer finds the diameter of a rod to be 2.513 mm, and an- 
other finds it to be 2.501 mm. What is the percentage difference of their 

two values of the diameter? What would be the resulting percentage 
difference in the two values of x which they obtained ? 

4, If the radius of the rod were measured to 0.001 cm, with what ac- 
curacy should the length be measured in order that the value of m may 

be affected to the same extent by both? 

5. Decide from a study of your data which one of the quantities in- 
volved in the determination of » introduces the largest error. 

° 

OPTIONAL LABORATORY PROBLEMS 

1. Young’s Modulus and the Elastic Limit for an Annealed Copper Wire. 
Determine YOUNG’S modulus for an annealed copper wire. Between succes- 
sive loadings of the wire return to the initial “no-load” condition, so 

that you will know when the elastic limit is reached. Try to verify the as- 
sertion that if a wire is strained beyond its elastic limit, the yield point is 
raised and a permanent elongation is produced. Does the wire which you 

are testing become more or less elastic after it has been stretched beyond its 
elastic limit? What, approximately, is its ultimate strength?
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2. Indirect Determination of the Volume Modulus. Find the volume 
modulus of some given material by determining YouNc’s modulus and the 

shear modulus for a specimen of the material that is in the form of a rod 
or wire. 

6 

QUESTION SUMMARY 

1. Define stress and strain for each of the following cases: stretching, or 
the application of forces of equal magnitude in opposite directions along the 
same line; volume compression or extension; shear. 

2. State HooKeE’s law. 

3. What is meant by a modulus of elasticity? Define in words and by 
means of an equation: Young’s modulus; the volume modulus: the shear 

modulus. How is each determined experimentally ? 

4. When is a body said to be perfectly elastic? Distinguish between an 

elastic constant of a material and its degree of elasticity. 

5. What is meant by the constant of torsion of a wire or rod? Of what 

is it a constant? How does it depend upon the length of the rod? upon its 

radius ? 

6. State BOYLE’s law and specify the conditions under which it applies. 

6 

PROBLEMS 

1. It is found that when a cast-steel rod of length 5.00 ft and diameter 

0.280 in. is subjected to a stretching force of 300 Ibwt, the resulting elonga- 
tion is 0.016 in. Compute (a) the longitudinal stress; (6) the longitudinal 

strain; (c) YOUNG’s modulus for cast steel. 

Ans. (a) 4.9 x 103 Ibwt -in.~?3 (6) 2.7 x 10-4; (c) 1.8 x 107 Ibwt - in.-2. 

2. A wire 80cm long and 0.30cm in diameter is stretched 0.30 mm by 
a force of 2.0 kgwt. If another wire having the same YOuNG’s modulus is 

180 cm long and 8.0 mm in diameter, what force is required to stretch it 

to a length of 180.1 cm? Ans. 21 kewt. 

3. A copper wire 31cm long and 0.50mm in diameter is joined to a 

drawn brass wire 108 cm long and 1.0 mm in diameter. If a certain stretch- 
ing force produces an elongation of 0.50 mm in the whole wire, what is the 
elongation of each part ? Ans. Brass, 0.27 mm; copper, 0.23 mm. 

4, The work done per unit volume in straining a material to its elastic 
limit is called the resilience of the material. (a) If YOUNG’s modulus for a 

certain piece of steel is 2.98 x 10’ lbwt-in.~? and its elastic limit is 
6.20 x 10* Ibwt - in.~2, what is the resilience? (b) If 1.0 ft? of this steel 

were in the form of a spring so designed as to be strained in every part to 
its elastic limit when wound up, how much energy could be stored in the 

spring ? Ans. (a) 9.3 x 103 ft - Ilbwt - ft~?; (6) 17 hp - sec.
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5. A given mass of an ideal gas is compressed isothermally in a manom- 
eter (Fig. 85), and the successive volumes and corresponding -pressures of 

the gas are observed. (a) If the pressures be plotted as ordinates and the 
corresponding volumes as abscissas, what kind of curve will be obtained? 

(b) What is the physical significance of the area under this curve? (c) If the 
product PV is plotted as a function of P, what will be the nature of the 

resulting curve? 

6. The space above the mercury in a barometer tube contained some air, 
When the volume of this space was 10.0cm?, the barometer indicated 

70.0 cm of pressure. When the volume of the space was reduced to 5.00 cm? 

by pushing the barometer tube down into the cistern, it indicated 69.5 cm. 
What was the true barometric height ? Ans. 70.5 cm. 

7. When the level of the mercury in a McLeod gauge is at b, Fig. 95, 
let the pressure of the air in be be P; and let the volume between b and c 

— be Vi. Suppose that the reservoir R is now raised, A 

causing the mercury to rise into thé upper part of ° a) High | 
the smail closed tube. Let this be continued until the 
mercury in D comes to a level with the top c of the D 

closed tube. If A be the cross-sectional area of 

R 

  

  
the closed tube and & the final difference in heights of | e@--~ 
the mercury columns, show that P, = (A/Vi)h, 

approximately. 

8. At the greatest oceanic depths, about 10 km, 

the pressure is approximately 1.0 kilobar, the bar being 

a unit of pressure equal to 10° dyne - cm~*, (a) If a Fic. 95. Simple form 

piece of ordinary mild steel sinks to this depth, how of the gauge invented 
much is its density changed? (6) Ifthe densityofsea by H. McLezop for 

water at the surface is 64.9lb- ft~*, what is itsdensity measuring low gas 
at this depth? Ans. (a) 0.05 percent; (b) 68 Ib - ft~%. pressures. [Philosophi- 

9. To the opposite faces of a cubical block of gelatin, cal Magia (4) 48, 
30 cm on each edge, parallel and opposite tangential (1874)] 

forces of 100 gwt are applied. If the edge of one face is displaced 1.0 cm, what 

is (a) the shearing stress? (b) the shearing strain? (c) the shear modulus? 

Ans. (a) 1.1 x 10? dyne-cm~?; (6) 0.033 rad; (c) 3.3 x 103 dyne -cm72. 

10. Write the dimensional formulas for (a) strain; (6) stress* (c) YOUNG’S 

modulus; (d) the volume modulus; (e) the constant C in BoyLr’s law; 

(f) the shear modulus; (g) the constant of torsion of a cylinder. 

11. A man grips the circumference of a bar which is 100 in. long and 1 in. 
in diameter and twists it through 1°. He applies the same force to the cir- 

cumference of a similar bar 80 in. long and 2 in. in diameter. Find the re- 

sulting twist. Ans. 0.1°. 

12. The steel propeller shaft of a ship is designed to be 30 ft long and 

to be driven by a 1200-hp engine. What must be the diameter of the shaft 

if the twist is not to be greater than 1° 0’ when the speed of the shaft is 

200 rev: min~!? Ans. 9.0 in.
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13. The constant of torsion of a particular wire is 7.21 x'10® absolute 

units; the diameter of the wire is 2.732 mm, and its length is 50.1 cm. Find 

the torque required to twist a wire of the same material, of diameter 1.00 mm 
and length 4.00:cm, through 90.0°. Ans. 2.55 X 106 dyne - cm. 

14, A glass tube open at one end is 60cm long. The inside is covered 

with a soluble pigment. After a sea sounding, in which the tube is lowered 
vertically, open end down, the pigment was found to be dissolved to within 

5.0cm of the top. The average density of sea water being 1.03 ¢-cm~8, 
find the depth of the sea at the place in question. Ans. 1.1 x 102m 

15. Torques of the same magnitude are applied to a solid glass rod of 
length 100cm and radius 1.0cm, and to a hollow glass tube having the 
same length, a mean radius of 1.0 cm, and a wall thickness of 0.10 cm. 

Compare the twists produced. Ans. 0,222.5 @,. 

6 

R. ROBERT HOOKE was Born at Freshwater, a Peninsula on the West side of the Isle of 

Wight, on the eighteenth of July, being Saturday, 1635, at twelve a Clock at Noon... 

For his Age he was very sprightly and active in Running, Leaping, &c. tho’ very weak as ti. 

any robust Exercise : Was very apt to learn any thing, and after his English soon learnt his Grammay 

by Heart; but, as he says, with but little understanding, till his Father designing him for the 

Ministry, took some pains to instruct him. But he still being often subject to the Head-ach which 

hindered his Learning, his Father laid aside all Thoughts of breeding him a Scholar, and finding 

himself also grow very infirm through Age and Sickness, wholly neglected his farther Education, 

who being thus left.to himself spent his time in making little mechanical ‘ Toys, (as he says) in 

‘ which he was very intent, and for the Tools he had successful ; so that there was nothing he saw 

‘done by any Mechanick, but he endeavoured to imitate, and in some particulars could exceed, 

(which are his own words.) His Father observing by these Indications, his great inclination to 

Mechanicks, thought-to put him Apprentice to some easy Trade (as a Watchmakers or Limners) he 

shewing most inclinations to those or the like curious Mechanical Performances; for making use 

of such Tools as he could procure, ‘ seeing an old Brass Clock taken to pieces, he attemted to 

‘imitate it, and made a wooden one that would go: Much about the same time he made a small 

‘ Ship about a Yard long, fitly shaping it, adding its Rigging of Ropes, Pullies, Masts, &tc. with 

‘a contrivance to make it fre off some small Guns, as it was Sailing cross a Haven of a pretty 

* breadth: He had also a great fancy for drawing...’ 

Ricuarp Watter, ‘‘ The Life of Dr. Robert Hooke ” in the Intro: 

duction to The Posthumous Works of Robert Hooke (London, 1705)



CHAPTER NINE 

TEMPERATURE AND SOME OF ITS EFFECTS 

ET THE First Instrument be that represented by Fig. 1. [Plate 26] which may serve, (as likewise 

LU several others) to shew the changes of the Air, in reference to Heat and Cold, and is commonly 

call’d a Thermometer: ’tis made of Cristal-glass, after this manner. The Artificer by blowing with his 

own Mouth (instead of Bellows) through a Glass-Pipe upon the flame of a Lamp, forces it in one 

continued Stream, or several, at pleasure, from one place to another, where it is requisite; and by 

this means, shapes most curious, and admirable Works of Glass. Such an Artificer we call a Lamp 

blower. Let him then make the Ball of this Instrument of such a Capacity, and joyn thereto a Cane 

of such a bore, that by filling it to a certain mark in the Neck with Spirit of Wine, the simple cold 

of Snow or Ice Externally Applycd, may not be able to condense it below the 20 deg. of the Cane; 

nor on the contrary, the greatest vigour of the Sun’s Rays at Midsummer, to Rarifie it above 80 deg. 

which Instrument may be thus fill’d, viz. by heating the Ball very hot, and suddenly plunging the 

open end of the Cane in the Spirit of Wine, which will gradually mount up, being suck’d in as the 

Vessel Cools. But because ’tis hard, if not altogether impossible to evacuate the Ball of all the Air 

by Rarefaction; and the Ball will want so much of being fill’d as there was Air left init; we may 

thus quite fill it with a Glass Funnel, having a very slender shank, which may easily be made when 

the Glass is red hot, and ready to run; for then it may be drawn into exceeding small hollow 

Threads, as is well known to those that work in Glass. Put the small shank of this Funnel into the 

Cane to be fill’d, and by forcing the Spirit of Wine through the Funnel with ones Breath, or suck- 

ing it back again when there is too much ; you may fill the Instrument up to what mark in the Neck 

you please. The next thing is to divide the Neck of the Instrument or Tube into Degrees exactly ; 

therefore first, divide the whole Tube into Ten equal Parts with Compasses, marking each of them 

with a knob of white Enamel, and you may mark the intermediate Divisions with green Glass, or 

black Enamel: these lesser Divisions are best made by the Eye, which Practice will render easie. 

This done, and with the proof of Sun and Ice, the proportion of the Spirit of Wine found; the 

Mouth of the Tube must be closed with Hermes Seal at the flame of a Lamp, and the Thermometer is 

finish’d. 

Essayes of Natural Experiments Made in the Academic del Cimento, 
pp. 2-3. Translated by Richarp Water (London, 1684) 

o 

By the temperature of a body is meant the number which expresses, 
on some definite scale, how “hot” or how “cold” the body is. The 
general notions which we have of temperature are gained through 
our thermal senses, but these yield neither quantitative results nor 

objective means of making measurements. In fact, temperature 
cannot be measured directly, for it is impossible to express one 
“hotness” in terms of another in the same sense that one length or 
mass may be expressed in terms of another. Temperature, like force, 

can be measured only in terms of its effects. 
172
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97. Early Thermometers.! Although the ancients were familiar 
with some of the effects that heating produces in a body, there was 

no application of this knowledge to the estimation of temperatures 
until GALILEO invented the thermoscope (Plate 2). This instrument 

was merely a glass bulb containing air and having a long stem which 

extended downward into a vessel of water. As the temperature 
changed, the air in the bulb expanded or contracted and the water 

in the stem rose or fell. That changes in the atmospheric pressure 
also affected the height of the water column was clearly recognized 

by PascaL2 and by BoYLeE,® but thermometers of this kind continued 

to be used throughout the first half of the seventeenth century. 
The first use of the expansion of a liquid for the estimation of 

temperature was made in 1631 by a French physician, JEAN REY,‘ 
who determined the body temperatures of his fever patients by means 

of a glass bulb similar to that used by GALILEO except that it was 

inverted and filled with water. Important improvements, which 

consisted in sealing the end of the tube to prevent evaporation and 

in substituting other liquids, such as alcohol, for water, were made 

about 1657 by the Accademia del Cimento at Florence (Plate 26). 

All that was needed to turn these Florentine thermometers into 
modern instruments was a scale that could be accurately duplicated, 

so that measurements of a given temperature made at various places 

and times with different instruments would be the same. 
98. Development of a Temperature Scale. In setting up a tem- 

perature scale it eventually became clear that the first step is always 
to choose at least two temperatures which can be accurately and 
easily reproduced. The two that are now ordinarily chosen are the 

melting point of pure ice and the temperature of condensing steam, 
under a pressure of one standard atmosphere (1 A,). These two 

particular fixed points are termed the ice point and the steam poini 
respectively. HOOKE® suggested the first of these points in 1664, and 

  

1 For interesting accounts of the development of thermometers see *H. C. Bolton, 

The Evolution of the Thermometer, 1592-1743 (Chemical Publishing Co., 1900), or 

¥*A. Wolf, A History of Science, Technology, and Philosophy in the 16th & 17th Cen- 

turies (Allen & Unwin, 1935), pp. 82-92. 

2 Traitez de Péquilibre des liqueurs et de la pesanteur de la masse de l'air (Paris, 1663); 

also Récit de la grande expérience de I équilibre des liqueurs (Paris, 1648). Portions of 

these papers appear in *A Source Book in Physics (1935), pp. 73-80. 

3 New Experiments and Observations touching Cold (London, 1665), p. 71; Works, 

ed. by T. Birch (London, 1772), Vol. II, p. 498. 

4In a letter to MARIN MERSENNE, dated January 1, 1632 [Rey’s Essays (1777), 

p. 136]. 
5 Micrographia (1665), pp. 38-39.



HE Accademia del Cimento was founded at Florence, Italy, in 1657, as a 

direct result of Gatrtxo’s teaching and to carry on his method of investigating 

truth by experiment alone. Among its moving spirits was Viviant, one of GaLiLxo’s 
most distinguished disciples, and its interested and active patrons were the Granp 
Duke Fervranp Il of Tuscany and his brother Leoroty, in whose apartments the 
first meetings were held. In spite of its brief existence (only ten years), the Academy 
achieved remarkable results and exerted an enormous influence in spreading the 

experimental method all over Europe. It made noteworthy improvements in the 
thermometer. Florentine thermometers soon became world-famous and contributed 
powerfully towards the advance of science; some of them remain to this day and 

are matvels of glass blowing and veritable objets d’art. Its members published a 
joint account of their experiments and discoveries in 1667, At the request of the 
Royal Society this account was translated into English by Richard Waller under 
the title BSSAYES OF NATURAL EXPERIMENTS Made in the ACADEMIE DEL CIMENTO 
(London, 1684). It makes most interesting reading. In it are described an im- 
proved barometer, classical experiments on air pressure, experiments on the speed 
of sound, radiant heat, phosphorescence, the compressibility of water and its expan- 
sion on freezing, and the discovery of the rotation of the plane of oscillation of a 

pendulum which was used later by Foucaunr to prove the earth’s rotation. For 
further details consult A. Wolf’s A History of Science, Technology, and Philosophy in the 
16th & 17th Centuries (Allen & Unwin, 1935), pp. 54-59, 87, 307, and M. Om- 

stein’s The Réle of the Scientific Societies in the Seventeenth Century (University of Chicago 
Press, 1928), pp. 73-90, from which the following quotation has been taken: 

“Italy was the home of the first organized scientific academy, the Accademia del 
Cimento of Florence (1657-67). It illustrates more perfectly than any other the 
functions of such societies as centers of the cultivation of experiment. Here nine 
scientists, supplied with the means of scientific research, gave ten years of united 
effort to the elaboration of instruments, the acquisition of experimental skill, and 

the determination of fundamental truths: so completely were their efforts welded 
together that their work was sent into the world like that of a single individual ; so 
exhaustive were their labors that the book they published became the “Laboratory 
Manual’, so to speak, of the eighteenth century, and their own work and methods 
the model and inspiration of other learned societies.”” 

Figs. 1 and 2 of the plate represent the usual type of thermometer made by the Florentine 
Academy. They had either 50, 100, or 300 divisions marked by minute glass beads (white 
enamel for the larger divisions, green or black for the smaller). 

Fig. 3 shows a thermometez with 300 divisions, which, in order to make it more compact, was 
ingeniously coiled into a spiral, ‘‘ This Instrument being made rather for fancy and curiosity to see the 
Liquor run the Decimals of Degrees by the onely impulse of a warm breath, &c. than for any 
accurate Deduction, or Infallible Proportion of Heat, and Cold to be learnt thereby.” 

Fig. 4 is a thermometer of quite a different type. A number of blown glass bubbles were sus- 
pended in alcohol, the weights being adjusted so that first one and then another would sink as the 
temperature rose and the density of the alcohol became less. 

Fig. 5 is a hygrometer for measuring the humidity of the air. It consisted of a hollow cone of 
cork with an outer cover of tin. To the bottom of the cork cone was attached a glass cone. When 
the instrument was filled with ice or snow, moisture from the air was deposited on the glass cone 
and ran into the measuring vessel. Relative humidities at different places and times could be com- 
pared by comparing the quantities of water collected in a given time. 

Fig. 6 is the timing device used by the Academicians. In order to increase the accuracy of their 
measurements they introduced the bifilar suspension. The period of the pendulum was varied by 
means of the sliding clamp shown.
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(London, 1684), somewhat reduced in size
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HvyYGENs,! the second a few months later; but neither of these men 

appears to have realized that at least two points are needed if read- 

ings from different thermometers are to be made comparable with 

one another. The first thermometer graduated by the use of two 
fixed points with which useful observations were made was probably 

that of NEWTON,? although JoacHIM p’ALENCE ? had in 1688 sug- 
gested the same method of graduation. The modern mercury-in-glass 

thermometer with a scale depending upon the ice point and the steam 
point was introduced in 1714 by GABRIEL DANIEL FAHRENHEIT.! 

After the selection of the fixed points the next problems to be 
considered are the subdivision of the interval between them and the 
measurements of temperatures outside this interval. Here use is 

made of the principle that as a body grows hotter to the touch many 
of its physical properties change. Selecting a particular substance 

and a suitable property, such as volume, pressure, or electrical re- 
sistance, whose variations can be accurately and conveniently 

measured, we use the changes in this property to indicate changes 
in the temperature of the body, or of any other body with which it is 
in thermal equilibrium. For example, we could observe the volume 

of a given piece of iron first at the ice point and afterwards at the 
steam point, and then divide the computed increase in volume into 

any convenient number of equal parts. Such a change in temperature 
as will produce a volume change equal to one of these parts is then 
defined as the degree. On the centigrade system, which was proposed 
in 1742 by the Swedish astronomer ANDERS CELsIUs,' the number 
  

1¥n a letter of January 2, 1665, to R. Moray; see Ceuvres complétes de Christiaan 

Huygens, Société Hollandaise des Sciences, Vol. V, p. 188. 

2 Philosophical Transactions 22, 824 (1701); 5th abridged ed. (London, 1749), 

VoL. IV, Part Il, p.1. This interesting paper is reproduced in *A Source Book in 

Physics (1935), pp. 125-128. 

3 Traittez des Barométres, Thermométres, et Notiométres, ou Hygrométres (Amster- 

dam, 1688). This is the first work which lays down rules for graduating thermometers, 

It contains many interesting illustrations of early thermometers. 

4 FAHRENHEIT described his process of making thermometers in five short papers 

in Latin in the Philosophical Transactions (1724-1726). German translations of these 
papers, together with papers by REAUMUR and CELsIus, will be found in Ostwald’s 

Klasstker der Exakten Wissenschaften, No. 57 (Engelmann, 1894). One of them ap- 

pears in *A Source Book in Physics (1935), pp. 131-133. See also *F. Cajori, A History 

of Physics (Macmillan, 1929), pp. 114-116; Isis 4, 17 (1921). 

5 Published in the transactions of the Swedish Academy, Stockholm 4, 197 (1742), 

A German translation appears in Ostwald’s Klassiker der Exakten Wissenschaften. 

No. 57 (Engelmann, 1894), pp. 117-124. CExLsrus actually marked the steam point 

0° and the ice point 100°. The inverted scale with the ice point marked 0° is due to 
CurisTIN of Lyons (1743) and STROMER of Uppsala (1749). Curistin, however, dis- 

regarded the variation in the steam point with barometric pressure.
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of equal parts is made 100, and the ice point is taken as the zero of 
the scale (0° C). 

It is to be noted, however, that the choice of the zero and of the 

size of the degree is entirely independent of the choice of a thermo- 
metric substance and of a thermometric property. It is found that the 
properties of different substances are not generally the same func- 

tions of temperature, and therefore thermometers constructed from 
different substances do not agree exactly with one another at tem- 

peratures other than the fixed points. Hence it becomes necessary 
to choose some particular thermometric substance and some par- 
ticular property of this substance, and to agree that the changes in 

the latter shall be taken as the measure of tem- 
perature. We shall see that certain of the gases 
possess peculiar advantages for this purpose. 

99. The Constant-Volume Hydrogen Thermom- 

eter. The constant-volume gas thermometer is 

based on the principle that a given mass of gas 
contained in a closed vessel of constant volume 

assumes a pressure which is entirely determined 

by the temperature. The bulb 8, Fig. 96, which 
contains the gas, is connected by a bent capillary F 
tube to the tube c through a flexible tube f con- F . 

- lt : 1c..96. A simple 
taining mercury. By raising or lowering the tube (onstant-volume gas 

c, the surface of the mercury in the other tube is thermometer, due to 

always brought to a certain fiducial mark m. This  P. von Joxty and first 

is done first when the bulb 6 is in melting ice, described in Pog 
then when it is in the vapor arising from boiling gendorff's Jubelband or" (1874), p. 82 
water, and finally when it is at the unknown tem- 
perature ¢ which is to be determined. The pressure of the confined 
gas in each case can be measured by reading the difference in level, 
h, of the two mercury columns and adding to this the atmospheric 
pressure as determined by a barometer. 

The centigrade degree on the constant-volume hydrogen thermometer 
is defined as any temperature change which, starting from any 
temperature whatever, will produce in the confined hydrogen a 

change in pressure amounting to 1/100 of that observed when the gas 
is heated from the ice point to the steam point. Accordingly we define 

any centigrade temperature 7, measured on the constant-volume hy- 
drogen scale, as 

  
P,—P 

t=__4t7 {0 _, 122 
x0 (Pio — Po) [22] 

where P,, Po, and Pioo are the pressures of the gas at 7°, 0°, and 100° C 

respectively.
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The expression (P100 — Po)/100 Po, applied to any constant-volume 
apparatus, is called the coefficient of increase of pressure or simply the 
pressure coefficient of the gas. Evidently it represents the ratio of the 

increase in pressure to the pressure at 0° C for 1° change in tempera- 
ture. If this coefficient be denoted by 6, we may write Eq. [122] in 
the form P:— Po 

t= BP ? [123] 

where is the pressure coefficient for hydrogen. 

All gases increase in pressure if heated at constant volume. Ex- 

periments show that the pressure of a gas at any temperature 1, 

when f is measured with a constant-volume hydrogen thermometer, 

is given approximately by the equation 

P,= Pol + it). [124] 

The pressure coefficient 8 is found to have somewhat different values 
for different gases. It will be noted that Eq. [124] can be put into 
the same form as Eq. [123]. 

100. Practical Thermometry. For reasons that will soon be appar- 

ent, H. V. REGNAULT selected the hydrogen constant-volume ther- 

mometer as his ultimate standard of reference in practical thermome- 
try, and this instrument is now universally used for this ptirpose. 
Eq.[1231,as applied to hydrogen and also sometimes tohelium, is there- 

fore to be regarded as the accepted practical definition of temperature. 

Experiments show that the value of 8 for hydrogen is approximately 

1/273.04, and thus 1° C is by definition such a temperature varia- 

tion as will result in a pressure change of 1/273.04 of the pressure 
at 0° C in a given mass of hydrogen kept at constant volume. 

Because of the experimental difficulties in the use of gas thermometers and 
the relatively low precision attainable in a single measurement, the Seventh 
General Conference on Weights and Measures adopted provisionally in 
1927 a standard working scale designated as the international temperaiure 

scale. This scale is defined by a series of fixed points, the temperatures of 

which have been determined by gas-thermometer measurements, and by 

the specification of suitable thermometers for interpolation between the 
fixed points and for extrapolation to higher temperatures. The platinum 
electrical-resistance thermometer is employed in the range —- 190° to 660°C; 

with this instrument temperatures can be determined with ease to 0.0001°C. 

For higher temperatures thermoelectric and optical pyrometers are used.? 
  

1See Journal of Research of the National Bureau of Standards 1, 635 (1928) for a 

complete text of the decisions of the Conference. 

2*Consult H. L. Callendar, article ‘*Thermometry,” Encyclopaedia Britannica, 

ed. 14; G. K. Burgess and H. Le Chatelier, The Measurement of High Temperatures ; 

E, Griffiths, Methods of Measuring Temperature.
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TABLE IIT - Comparison of Hydrogen, Air, and Mercury-in-Glass Thermometer 
Temperatures. (The temperatures are reckoned from the ice point) 

  

  

: Mercury-in-Jena- 
Hydrogen Air mormal-glass 

0° 0° 0° 

20 20.008 20.091 

40 40.001 40.111 

60 59.990 60.086 

80 79.987 80.041 

100 100 100           
Among liquids, mercury is found to agree fairly closely with the 

gas scale, and mercury-in-glass thermometers doubtless will continue 

to be employed in cases where facility of observation is more im- 
portant than the highest obtainable degree of precision. As will 

be seen from Table III, the variations between corresponding read- 
ings on the hydrogen, air, and mercury-in-glass thermometers due to 

irregularities of expansion are for many purposes negligible. 

° 

The Expansion of Gases with Temperature 

Because of the very great effect of pressure on the volume of a gas, 

one must be careful to specify the pressure conditions that are to hold 

during an investigation of expansion. The knowledge which we have 
already gained of controlled quantitative studies as they are made 
in physical science would suggest 

that the simplest way to approach 

the problem of expansion is to main- 
tain the pressure constant and to 
measure the changes in volume of a 

given mass of the gas that occur with Fie. 97. A simple device for study- 
variations in the temperature alone. ing the thermal expansion of a gas 

under constant pressure. Evidently 
it may also be used as a constant- 

pressure gas thermometer 

iM 

5 

101. Expansivities of Gases. Con- 
sider, then, the bulb 6 in Fig. 97, in 

which a given mass of gas is confined by means of an indicating 

globule of mercury m, which moves with little friction forward or 

backward in the stem as the temperature rises or falls. The end of 
the stem is open so that the constant pressure used is that of the 
atmosphere. Experiments made with this apparatus show that the 
increase in volume is approximately proportional to the original



HE first human being to ascend in a balloon was Jean Francois Purarre pe 
Rozier. On November 21, 1783, after having made several ascents in a 

captive balloon, he and the Marquis p’Aranpes rose from the Jardin du Chateau 

de la Muette, in the Bois de Boulogne, Paris, in a large hot-air balloon to a height 
of about 500 ft, and after remaining in the air for 20 to 25 min descended about 
5 mi from the starting point. 

  

    

   
Vaucresson     ; 

Nerfailles 
  

Only ten days later, Jacques ALExanpre César Cuarzes (1746-1823), the dis- 

coverer of the gas law known as the law of Cuarres and Gay-Lussac, ascended 
from the Tuileries in a balloon inflated with hydrogen gas. The balloon, which was 

constructed by the brothers Rozerr, one of whom took part in the ascent, was made 
of lutestring coated with gum elastic and had a diameter of 27 ft. The car was 
suspended from a hoop surrounding the middle of the balloon and fastened to a net, 
which covered the upper hemisphere. After ascending to a height of about 2000 ft 
and covering a distance of 27 mi in about 2 hr, Cuartes and Rosear descended 
neat the small town of Nesle (see the small map above), where Rosert left the car 
and Cuarues reascended alone for a journey lasting a further 35 min, during which 

he reached a height estimated at 2 mi. 

Most of the features of modern balloons are due to Cuartzs. Thus he was the 
first to use hydrogen successfully for inflating balloons, and he invented the valve at 

the top of the balloon as well as the method of suspending the car which are still 
generally used. It is of interest that the names of Cuarzzs and Gay-Lussac, which 

are so intimately associated in the discovery of the gas laws, are also both important 
in the history of balloon flights (see Plate 28). 
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The Balloon Ascension of Caartes and Roserr, 

Paris, December 1, 1783. 

The Second Balloon Journey of Human Beings 

and the First in a Hydrogen-Filled Balloon 

From a wash drawing by Duperreaux in the Musée Carnavalet, Paris
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volume and to the rise in temperature. If we agree always to take 
the volume at 0° C as the “original volume,” it then follows that 

Vi —_ Vo = aVol, 

or V,= Voi+ad, [125] 

where V; and Vo are the volumes at 7° and 0° C respectively, and a 

is a proportionality constant called the expansivity, or coefficient of 

expansion, of the gas. 

In 1787 a Frenchman. by the name of JACQUES CHARLES! dis- 

covered that all gases have the same expansivilies a when heated 

through the same temperature range; and this was confirmed experi- 
mentally some fifteen years later by JOHN DALTON? and by Louis 
JosepH Gay-Lussac,’ who used the apparatus of Fig. 97. This law, 

like that of BOYLE (Sec. 92), has been shown by the later experiments 

of REGNAULT and others to be only approximately correct. However, 
except for the easily condensable vapors, the departures can be 

detected only with the most refined apparatus.‘ Since the different 

gases are described by BoyLe’s law with different degrees of exact- 
ness, these departures from the law of CHARLES and Gay-Lussac 
were to have been expected. In fact, we shall see eventually that 
the kinetic theory requires the result, established by experiment, 
that the gases which show the largest departures from BorLe’s law, 
such as carbon dioxide and nitrous oxide, show also the largest 

variations in the expansivity a with pressure and with temperature. 
The fact that a is not in general constant makes it desirable to 

speak of the mean expansivity between the temperatures 4 and tz, and 

this is defined by the equation 

Vo— Vi m2 Vi, 126 
“ Vo (lz — th} [126] 

Vi and V2 being the volumes at 4° and {2° respectively. The limit 
which this quantity approaches as /2 — f, approaches zero is defined 

  

1 CHARLES did not publish his results. See the paper of GAy-Lussac referred to 

in footnote 3. 
2 Memoirs of the Manchester Literary and Philosophical Society 5, Part 2, 595 

(1802). This paper is reproduced in part in *The Expansion of Gases by Heat, ed. 

by W. W. Randall (American Book Co., 1902), pp. 19-22, 
3 Annales de Chimie et de Physique (1) 48, 137 (1802). A translation of this paper, 

together with papers by Brot, REGNAULT, and others, is available in *The Expansion 

of Gases by Heat, ed. by W. W. Randall (American Book Co., 1902), pp. 27-48. Ex- 

cerpts will be found in *A Source Book in Physics (1935), pp. 166-170. 

4See, for example, *T. Preston, The Theory of Heat, ed. 4 (Macmillan, 1929), 

pp. 196-210.
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as the true expansivity at the temperature 7? in the interval f — 4; 
that is, ym Varvi _ lay, 

@z-—hh)~ 0 Vo(le ~~ ty) Yo di 

the pressure remaining constant. 

as [l2<] 

° 

The Laws of Ideal Gases 

102. The Equation of State of an Ideal Gas. Any equation that 
expresses the relation between the pressure, volume, and temperature 

of a substance is called the equation of state of the substance. In the 

case of a given mass of an ideal gas (Sec. 92), the question of how the 

pressure varies with simultaneous changes in the volume and tem- 

perature can be answered by combining BoyLe’s law with either 
Eq. [124] or Eq. [125]. Let us suppose that the ideal gas is initially 

in the state described by the three gas coordinates Po, Vo, 0°, and that 

it is heated at constant volume Vo until it arrives at the state P’, 

Vo, t. Then, by Eq. [124], 

P' = Po(1 + Bb). 

Next assume that the volume is changed, without changing the 

temperature, until the gas arrives at a third and final state, which is 

characterized by the coordinates P, V, ¢. For this isothermal change, 

by Boy Le’s law, PV=P'Vo. 

By eliminating the intermediate pressure P’ which occurs in both of 

these equations, we obtain, finally, 

PV = PoVo(l + Bt). [128] 

EXAMPLE. Prove that, for an ideal gas, the expansivity @ and the pres- 
sure coefficient 8 are identical quantities. 

Solution. By combining BoyLe’s law with Eq. [125], one obtains, finally, 

PV=PoVo(+ at). A comparison of this equation with Eq. [128] yields 

a= p. 

Experiments show that for any actual gas, a and 6 are never 
exactly equal; nor should one expect them to be, as an actual gas 

is never described exactly by BoyLe’s law. 

EXAMPLE. Show that, if an ideal gas is used as the thermometric sub- 
stance, the equation t= 100(Vi — Vo)/(Vioo — Vo), when applied to 

a constant-pressure thermometer, gives precisely the same definition 
of temperature as does Eq. [122] applied to a constant-volume ther- 

mometer.



N 1804, the French Academy of Science, desirous of ascertaining whether the 

I earth’s magnetic field ceased at a distance above its surface, obtained the use of 

a balloon which had been employed in Napoleon’s campaign in Egypt, and selected 
Gay-Lussac and J. B. Bror for the task. On August 23 they ascended from the 

garden of the Conservatoire des Arts et Métiers in Paris and rose to a height of 

13,000 ft. Gay-Lussac was not satisfied with the altitude reached, and so on 

September. 16 he made a second ascent, this time alone, and succeeded in reaching 

an elevation of 23,000 ft above sea level, the greatest height to which man had 
attained up to that time. Even though the temperature at this height was nearly 
10° below freezing, he remained in the air for some time, making magnetic observa- 
tions, collecting samples of air at different heights, and measuring the variations in 
the temperature, pressure, and humidity of the air with altitude. He concluded that 

the earth’s magnetic field remained sensibly constant even up to 23,000 ft, and on 
analyzing his samples of air could find no difference in their composition at different 

heights. 

The following description of the ascent of Gay-Lussac and Bror, the first ever 
undertaken for strictly scientific purposes, is quoted from the Proceedings of the Ameri- 
can Academy of Arts and Sciences 6, 20 (1862): 

“ Supplied with a full complement of barometers, thermometers, hygrometers, 

electrometer, and instruments for measuring magnetic force and dip, as well as frogs, 

insects, and birds for galvanic experiments, the scientific voyagers embarked in their 
aerial car on the 23d of August, 1804. They began their experiments at the altitude 
of 6,500 feet, and continued them up to the altitude of 13,000 feet, and with a 

success commensurate with their wishes. The last part of the excursion, and es- 

pecially the landing which they made, was so difficult, and even dangerous, that, 
according to the statement of Sir John Leslie, ‘Biot, though a man of activity, and 
not deficient in personal courage, was so much overpowered by the alarms of their 
descent, as to lose for the time the entire possession of himself.’”’ 

It is interesting to compare this description with accounts of more recent ascents, 
such as those of A. Piccarp in 1931 and 1932 [National Geographic Magazine 68, 353 

(1933)], that of T. G.W. Serrre and C. L. Forpney in 1933 [Proceedings of the Na- 

tional Academy of Science 20, 79 (1934)} or that of A. W. Srevens and O. A. Anverson 

in 1935 [National Geographic Magazine 69, 59 (1936)]. 

  

 



  

  

6 PLATE 28 ° 

  

  
Gay-Lussac and Bror Making a Balloon Ascension 

for Scientific Observations in 1804 

From J. H. Appleton’s Beginners’ Hand-Book of Chemistry (Chautauqua Press, 1888)
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103. The Absolute Thermodynamic Scale. In 1824 N. L. Sani 
CaRNOT published his remarkable memoir! on the theory of heat 
engines, in which he showed that the maximum efficiency of an engine 
working through any fixed small range of temperature is independent 
of the nature of the working substance used in the engine and is a 

function of the temperature alone. Twenty-four years later Lorp 

KELVIN? made the brilliant suggestion that a temperature’ scale 

based on CARNOT’S engine would rid the definition of temperature 
of the peculiarities characteristic of any one real substance. This new 

scale is absolute in the sense of being independent of any particular 
property of any particular thermometric substance and is therefore 
called the absolute thermodynamic scale. Now it can be shown that 
an ideal gas would give this thermodynamic scale precisely if it 
were used in a gas thermometer. Thus, either Eq. [123] or Eq. [125], 
when applied to a thermometer containing an ideal gas, may for our 
purposes be regarded as the definition of temperature on the thermo- 
dynamic scale. 

Since an ideal gas thermometer cannot be realized in practice, it 

becomes of importance to see how much the temperatures determined 

by a thermometer containing a real gas differ from absolute tem- 

peratures. With this object in mind, KELVIN devised his famous 
porous-plug experiment (Chap. 11). The work was carried out in 

conjunction with JOULE and finally resulted in showing that hydrogen 
behaves so nearly like an ideal gas that the hydrogen scale may be 

taken for all practical purposes as agreeing exactly with the absolute 

scale at ordinary temperatures.? 
  

IN.L.S. Carnot, Réflexions sur la Puissance Motrice du Feu (1824). A translation 

of this memoir, together with a biography of CaRNoT and an account of his theory, 

the latter by Lorp KELvin, has been published under the title * Reflections on the Mo- 

tive Power of Heat, ed. by R. H. Thurston (Wiley, 1897). A translation also appears 
in *The Second Law of Thermodynamics, ed. by W. F. Magie (Harper’s Scientific 

Memoirs, 1899), ahd in *A Source Book in Physics (1935), pp. 221-228. Although so 
little known that his name appears in few biographical dictionaries, and although he 

died before he was forty and has only this one paper to his credit, CARNoT really 

inaugurated the development of the modern science of thermodynamics. As P. G. 
Talt says in his Thermodynamics, ‘‘ Without this work of CARNOT, the modern theory 

of energy, and especially that branch of it which is at present by far the most im- 

portant, the dynamical theory of heat, could not have attained its now enormous 
development.” 

2 WILLIAM THOMSON, who became LORD KELVIN in 1892, was one of the great 

English physicists of the nineteenth century. His first ideas regarding the thermo- 

dynamical scales were published in 1848 but were vastly improved upon in 1851, in 

the memoir referred to in footnote 3, p. 76. 

3 Data on the departure of various gas scales from the thermodynamic scale are 

given in the *International Critical Tables (1926), Vol. I, p. 53.
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Thermodynamics deals with the relations of heat and work. Like mechan- 

ics, it is a science of great power and universality because it employs a 
small number of primary postulates from which may be drawn a variety of 

far-reaching deductions. The science is based on two very general princi- 
ples, which are known as the first and the second laws of thermodynamics, the 

first of these principles being the law of conservation of energy, with which 

we are already familiar. Thermodynamics differs from the kinetic-molecular 
interpretation of heat phenomena (Chap. 10) in that it is independent of any 

special theory of the mechanism of heat transfer and of the structure of the 
substances involved; it deals with the equilibrium conditions that exist at 
the beginning and at the end of a process, and not with the forces and the 

conditions that intervene, and for this reason requires no model of the 

structure of matter. Indeed, we have already seen (p. 78) how such a 

method affords a powerful means of attacking many mechanical problems 

without the necessity of making the minute analysis that the direct appli- 
cation of NEwTon’s laws requires. Thermodynamics achieved its greatest 
usefulness, however, when it was properly correlated with a kinetic-theory 

point of view, for it then furnished a general theory which is far in advance 
of any that could have been reached by either point of view taken alone. 

104. The Absolute Zero and Absolute Temperature. Let us rewrite 

Eq. [128] in the form 1 

Pove(5+!) PV= —T [129] 

B 

By putting (1/8) -+7?= 7, we introduce a temperature 7, corresponding 
to ¢ but referred to a zero point lying 1/8 below the ice point. This 

zero point is called the absolute zero, and temperatures reckoned from 
it are termed absolute temperatures. The centigrade absolute scale is 

commonly called the Kelvin scale and is referred to by the abbrevia- 
tion 7° K. On the ordinary centigrade scale the temperature of the 

ice. point is f= 0° C,. but on the KELVIN scale it is found to be? 

To = 1/8 = 273.18° K; in other words, it turns out that the pressure 

coefficient 6 for an ideal gas is 1/273.18 and hence that the absolute 
zero corresponds to — 273.18° C. 
  

1 For an interesting history of the notion of the absolute zero see the Collected 

Papers of Sir James Dewar (Cambridge University Press, 1927), Vol. II, pp. 768-775. 

There due credit is given to the French physicist GUILLAUME AMonrTons for having had 

the conception of an absolute zero as early as 1703, and for having calculated its value 

as — 240° C. Note, however, that the concept of an absolute zero arises merely from 

the way in which temperature has been defined and from the behavior of an ideal gas, 

and that it can be entirely avoided simply by defining temperature in a different way. 

2 The latest values reported from Leiden and from Berlin are 273.144° and 

273,16° K, respectively.
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The absolute zero and absolute temperature are concepts that greatly 

facilitate the mathematical expression and application of the gas laws and 
should be treated as such and nothing else. If we attempt to apply the gas 

laws at the absolute zero, we are led to the meaningless equation PV = 0, 

from which we deduce that at the absolute zero a gas either has no volume 
or exerts no pressure. We know, however, that all gases liquefy before this 
point is reached, so that at the absolute zero the gaseous state probably 
no longer exists. 

In practice, many attempts have been made to attain temperatures close 
to the absolute zero. Up to 1877, the lowest temperature attained was 

— 110°C, produced by MICHAEL FARADAY ! in 1844, by the rapid evapora- 

tion in vacuum of ether and solid carbon dioxide, a mixture that ordinarily 
has a temperature of about — 80°C. In 1877 a Swiss, RAouL PICTET, and 
a Frenchman, Louis Pavut CaILLETet, independently liquefied oxygen,? 
which has a boiling point of — 182.97° C. But as neither of these experi- . 
menters obtained the liquid oxygen in a static condition, they could make 

no observation of its temperature. The lowest measured temperature was 
— 140°C, obtained by Picret by the rapid evaporation of nitrous oxide. 

Following these, the two Poles SIGMUND v. WROBLEWSKI and KARL 
OLSZEWSKI and the Britisher JamMEs DEwar (1842-1923) accomplished 
the liquefaction of oxygen, nitrogen, and air in quantity, and by their 

evaporation in vacuum produced and measured temperatures as low as 
— 210°C. In 1885 OLszewskI liquefied hydrogen and located its boiling 
point at — 243.5° C. Hydrogen has since not only been liquefied in quantity 
(1898) but also solidified by DEwar (1900); the boiling and melting points 
of hydrogen are — 252.7° and — 259.1° C, respectively, according to recent 

determinations. Of all the gases, helium was the last to resist liquefaction 
and solidification. In 1908 KAMERLINGH ONNES‘ (1853-1926), working in 
his celebrated cryogenic laboratory at Leiden, accomplished its liquefaction 
at a temperature of only 4.3° above the absolute zero. ONNES made an 

unsuccessful attempt in 1921 to solidify helium but did succeed in reaching 
a temperature of 0.82° K by evaporating the liquid in high vacuum.’ Four 
months after the death of ONNES, in 1926, helium was successfully solidified, 
in the same laboratory, by placing it in a brass tube in a helium bath and 
  

1*Faraday’s Diary, ed. by T. Martin (Bell, 1932-1936), Vol. IV, pp. 166, 191-192. 

See also Philosophical Transactions 185, 155 (1845). This paper is reproduced in 

Faraday’s Experimental Researches in Chemistry and Physics (Taylor and Francis, 

1859), pp. 98-100, and in The Liquefaction of Gases, Alembic Club Reprint No. 12 
(Edinburgh, 1912), pp. 37-39. 

2 The papers of PicreT and CAILLETET appear in *A Source Book in Physics (1935), 
pp. 193-196. 

3 All of Dewar’s papers on the liquefaction of gases will be found in the Collected 

Papers of Sir James Dewar (Cambridge University Press, 1927). 

4See Nature 78, 370 (1908); Communications from the Physical Laboratory of the 

University of Leiden, No. 108. 

® K. Onnes, Transactions of the Faraday Society 18 (Dec., 1922); Communtcations 

from the Physical Laboratory of the University of Leiden, No. 159.
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subjecting it to pressure!’ In this work temperatures as low as 0.71° K 

were reached. Recently P. DEBYE and W. F. GIAUQUE have suggested a 

method of reaching very low temperatures by means of the adiabatic de- 

magnetization of certain magnetic substances kept at the temperature of 

liquid helium. The essential idea is that if heat is prevented from entering 
the substance while it is being demagnetized, the work of demagnetization 

must be furnished by the substance itself. with a consequent lowering of its 
temperature. This method has been applied with success ? at the University 

of California and at Leiden in 1933, and at Oxford in 1934. At Leiden, 
temperatures of less than 0.005° K actually have been reached. 

105. The Gas Constants. In view of the definition of absolute 

temperature, we may write Eq. [129] in the form 

PV _ PoVo, T = 7, [130] 

But Vo is equal to m/po, where m is the mass of the gas and py is its 
density at the ice point Tp; hence 

  PV _ Pom, 
T  poTo 

or a = mR’. [131] 

The constant R’, which has made its appearance here in the equation 
of state of an ideal gas, obviously can be interpreted as the value of 
PV/T for unit mass, or of P/pT, of the particular gas considered. It 
is therefore called the gas constant for unit mass. The fact that its 
value is different for different gases should be noted. 

EXAMPLE. Compute the value of the gas constant R’ for. air, expressing 
it in cgs units. 

Solution. Tables show that the density of dry air at Ty and 1A, is 
0.0012930 g - cm~3. 

Then, since Tp = 273.2° K, and 1 A, = 1.0132 x 10° dyne - cm~2, 

Po 1.0182 108 Sere deg! ct 
poTo 1.2930 x 10-3 x 373.3 ~ 7809 x 10 erg - deg”? - g~*. 

In order to obtain a final form for the equation of state of an ideal 

gas, one must take into account a thoughtful guess made in 1811 by 
the Italian physicist AMEDEO AvoGapRo, to the effect that equal 

volumes of different gases at the same temperature and pressure contain 

R cir = 

  

1W. H. Keeson, Nature 118, 81 (1926); see also Science 64, 132 (1926) and Com- 

munications from the Physical Laboratory of the University of Leiden, No. 184 (6). 

2 Physical Review 48, 768 (1933). Physica 1, 1 (1933); 2, 81, 335 (1935). Proceed- 
ings of the Royal Society 149, 152 (1935).
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equal numbers of molecules. This important law, now known to be 

exact only for ideal gases, although approximately true for real 

ones, leads immediately to the conclusion that moles, or gram- 

molecular weights, of the various gases will occupy the same volume 

at the same pressure and temperature. Consequently, if Mi be the 

number of grams in a mole of one kind of gas, Mz that of another 

kind, etc., one has, from Eq. [131], 

PR = MR) = MaR'y=---=R, [132] 

where V is the volume of a mole and FR is a new constant called the 
gas constant per mole. Evidently R is a universal constant; that is, 

it is the same for all gases, its numerical value depending only upon 
the units in which P, V, and T are expressed. Its value in cgs units, 

as computed from experimental data, is R = (8.3136 + 0.0010) x 
10’ erg - deg~1- mole~!. When the pressure is expressed in atmos- 
pheres, R has the easily remembered numerical value of 82 (approxi- 

mately). 

If, in Eq. [131], we put R’ = R/M, from Eq. [132], and m= NM, 

where N is the number of moles of gas used, then the equation of 

state of an ideal gas attains the final form that is commonly used in 
physical science and in engineering, namely, 

PV = NRT, [133] 

where V is the volume of N moles. 

° 

The Expansion of Liquids and Solids with Temperature 

106. Expansivities of Liquids and Solids. That the expansion of a 
liquid or solid is not exactly proportional to the change in its tem- 
perature is evident from the fact that thermometers made from such 

bodies by dividing the increase in volume between the ice point and 

the steam point into 100 equal parts do not agree at intermediate 

temperatures with the gas thermometer (Sec. 98). The volume V 
of a liquid or solid at any temperature ¢° C can in general be repre- 
sented by an equation of the form 

Vi= Vol +at+ b2+cBh+---), [134] 

where Vo is the volume of the specimen at 0° C and a, b, ¢, -- - are 
constants characteristic of the substance. If this entirely empirical 
expression be put into the form V;= Vo [1+ (a+ bf+- cl? +-- -)é], 

and this in turn be compared with Eq. [125], it is seen that the mean
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volume expansivity of a liquid or solid between the temperatures 0° 

and ?° C is a=atbitc?-----, [135] 

EXAMPLE. Show that the trwe volume expansivity of a liquid or solid is- 
a@=a+2bt+3c+--+ 

Solution. Substitute the empirical expression for V; in*Eq. [127] and 
perform the indicated differentiation. 

The number of constants a, 6, c, - - - that must be used in any par- 

ticular case depends upon the accuracy desired, the temperature 
range involved, and the solid or liquid under investigation. For 
some substances, 8, c, etc. are so much smaller than @ that this one 

constant is sufficient. This is true for most solids and for mercury 
at temperatures below 100°C. For example, a mercury-in-glass 

thermometer graduated by dividing the increase in volume between 

0° and 100° into 100 equal parts differs from a hydrogen thermometer 
at no point in this interval by more than 0.2°. Hence, in ordinary 

work with these substances, a is usually considered to be constant 

and equal to a, and the equation 

Vi= Vo(l tar) [136] 

is applied in the same way as in the case of a gas. 

If a body be heated from i,° to 4°, the increase in volume will be 

V2— Vi = Voa(l2 —t). For most liquids and solids, but not for 

gases, a is so small that the error introduced by replacing Vo by Vi 
in this equation is usually less than the unavoidable errors of ob- 
servation which occur in measuring the quantities involved. 

107. Measuring the Expansion of a Liquid. The expansion coef- 
ficients of most liquids other than mercury increase rapidly with the 
temperature. For example, in passing from 0° to 40° C the mean 

expansivity of ethyl alcohol increases about 6 percent, and that of 

turpentine, about 8.5 percent. Between 0° and 4° C water possesses 

the peculiar property, which is also shown by bismuth and by certain 
alloys, of contracting as the temperature rises; that is, between 0° 

and 4° C it has a negative coefficient. 
An accurate and convenient method of studying the expansion of 

a liquid at various temperatures is to place it in a glass vessel having 

a large bulb and a graduated capillary stem (Fig. 98), to heat it 

from t° to f°, and then to observe the resulting rise J of the liquid 

in the stem. If the volume corresponding to cne scale division on 

the stem be v, the apparent increase in the volume is #/. This increase 

is, in reality, the difference between the expansion of the glass and 

of the liquid. Now, the increase in the volume of the dilatometer is
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precisely the same as would be the increase in the volume of a solid 

piece of glass of the same volume as the interior of the vessel, for the 

solid piece may be conceived as made up of a 

series of concentric hollow vessels, each of which 

expands independently of all the rest. This means 

that, if we let Vo represent the volume occupied 

by the liquid at 0° C and let a, represent the vol- 
ume expansivity of the glass, then the increase in 
the volume of that part of the dilatometer which is 

occupied by the liquid is Voa, (fz — tf). Similarly, 

if a: be the expansivity of the liquid, the true 
increase in the volume of the liquid is Voe:(t2—t). 

Since the apparent expansion a1 is the difference 
between these quantities, there results 

al . 

Vo (tz — th) 

This equation shows that it is impossible to obtain 
a, from measurements made with a dilatometer 
unless a, is also known. The right-hand member 
of Eq. [137] is referred to as the apparent expan- 
sivity of the liquid in glass. 

108. The Absolute Expansion of Mercury. If the 
expansion coefficient of some one liquid were de- 

termined by a method that is independent of the 
expansion of glass or of any other substance, this 

Ai — Ay = [137] - 

  

Fic. 98. The dil- 
atometer is simply 
a thermometer with 
a very large bulb. 
It has been used in 
many of the classi- 
cal researches made 
on the expansion of 

liquids 

liquid could be used for determining a, for a particular dilatometer, 
and the latter could thereafter be used for investigating other liquids. 

Early in the last century P. L. DULoNG and A. T. PETIT, and later 

REGNAULT? and others, studied mercury by a 

very elegant method of this kind. The princi- 
ple is simple, though its application is less so. 
The vertical tubes in Fig. 99 are connected 
at the bottom by a capillary tube and contain 

mercury. One is surrounded by melting ice and 

the other by a water jacket of known tempera- 

ture # According to the laws of hydrostatics 

(Chap. 13), the levels of the liquids in the two 
tubes must adjust themselves so that the pres- 
sures are equal at any two points A and Bin 

A 

| 
ho hy 

B 

Fie. 99. Apparatus for 
determining the expan- 

sivity of a liquid 
  

1 Annales de Chimie et de Physique (2) 7, 124 (1818). 

2 Relation des Expériences (Paris, 1847), Vol. 1, p. 271; Mémoires del’ Académie des 
Sciences 21 (1847).
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the same horizontal plane. The pressure at A is Aopog and that at B 

is h.p.g, where po and p; are the densities of the liquid at 0° and 7° C 
respectively ; hence Pi y hopo = hupr. [138] 

Now, by combining Eq. [136] with the defining equation for density, 

there results 

Pt _ Po, [tal [139} 

Therefore, from this equation and Eq. [138], one obtains for the 

mean expansivity of the liquid between 0° and f° C 

_fim—ho, 
~~ hgt 

By using a very much improved form of the DULONG and PETIT 

apparatus, CALLENDAR and Moss! found the mean expansivity of 
mercury between 0° and 100°C to be 1.8205 x 10-* per deg C. A 
similar apparatus has been used recently at the Reichsanstalt? to 

make a careful study of the expansivity of water. 

109. Linear Expansivities of Solids. The volume expansivity which 
thus far has been discussed is the only thermal expansion coefficient 

that must be defined for fluids. For solids, on the other hand, it 
is advantageous to consider also the expansion in any one direction. 
The mean linear expansivity, or mean coefficrent of linear expansion, ), 

for the temperature range ¢; to f, is defined as the expansion per 
degree per unit length reckoned from zero; that is, 

l—- i 
A=; 

loz — hh) 

where Jo, :, and J. are the lengths of any given line of the body at 

0°, 4°, and 2° respectively. Evidently the quantity (1/lo) dl/dt is the 

true linear expansivity at the temperature ¢. 

[140] 

[141] 

It is found that solids generally expand in such a way that the length /, 

at any temperature may be represented as a function of ¢ by an empirical 
equation similar to the one used for volume expansion, namely by 
lp =[Io + at + 0't2+.---). As before, the constants 6’, c’, --- are much 
smaller than a’, so that for small temperature changes the linear expansivity 

A may be regarded as constant. 

It is the coefficient \ that is usually made the subject of measure- 
ment in the case of solids; for, if \ is known, then a, the volume 
  

1 Philosophical Transactions 211, 1 (1911). 

2 The Reichsanstalt is the national physical laboratory of Germany.
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 expansivity, can be computed. In order to see this, consider a cube 
of the material whose side is Jp) at 0° C and whose volume at 0° C 

is therefore Vo = Jp3. When heated to f° the volume of the cube be- 

comes V,, where 

Vi=[lo(l + MB = Voll £3 M43 N+ AR). 

Since d is always very small, scarcely ever greater than 3 x 10-5 
per deg C, the terms containing 4? and A? may be neglected in com- 

parison with the term containing 4; hence V;= Vo(1-+3 XZ), and 

therefore a=3. 142] 

The volume expansivity is, then, to a first approximation, equal to 
three times the linear expansivity. This is true for an isotropic solid 
of any form whatever, since a body can always be considered as made 

up of infinitesimal cubes. But it is not true for anisotropic bodies, 
since the linear expansivity is then not the same for all directions. 
Substances that crystallize in the cubic system are truly isotropic. 

Metals are quasi-isotropic; they have the same average properties 
in all directions, for they are composed of a very large number of 

small crystals orientated entirely at random. 

In the case of solids, different specimens of the same material do not ex- 

pand alike, and thus the data on expansivities given in tables! must be re- 

garded merely as mean values. The determination of linear expansivity 
can be accomplished by various optical 

methods or by the use of a comparator. 

The optical method illustrated in Fig. 100 

was introduced by Lavoisier and La- te 
PLACE toward the end of the eighteenth \ : 
century. When only small specimens of LLL LLL LLL LLL 
a substance are available, another opti- 

cal method can be employed which in- Fy, 100. Measuring the expansion 
volves the use of an interferometer. In of a bar with an optical lever 

the comparator method, two separate 

fixed microscopes are focused upon fine scratches near the ends of the bar 

to be investigated; these microscopes are provided with micrometer eye- 

pieces by means of which a direct measurement is made of the elongation 
produced by a given rise in temperature. 

ot Vy 

rf 
f V i 

rf. 
y 

  

1 Appendix 13, Table J. 

2? See the Optional Laboratory Problem which accompanies Exp. IXs.
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EXPERIMENT IXA. THE PRESSURE COEFFICIENT OF AIR 

The constant-volume gas thermometer which is to be used is 
shown in Fig. 101. The volume is kept constant by bringing the 

mercury in the closed arm, before each reading, exactly into coinci- 

dence with the fiducial mark m, which consists of a line etched upon 

the short section of glass tubing connecting the bulb to the manome- 
ter system. This adjustment is made by turning the screw S at the 
base of the instrument. The copper jacket J sur- 
rounding the bulb serves both as a steam bath and 
to hold shaved ice and water. 

Let Po represent the observed pressure of the 
confined gas when the bulb is at the ice point 
(0°C). Let P; represent its observed pressure when 

the bulb is at the temperature ¢ of condensing 
steam; this temperature is usually appreciably 

lower than 100°C. If it could be assumed that 

the volume of the bulb remains constant and that 
all of the confined gas undergoes the same change 

of temperature, then the expression for the pres- 
sure coefficient 8 would be simply 

P:— Po 
Pot” 

from Sec. 99. But, in point of fact, the observed 
pressures are all slightly different from the pres- 
sures appearing in the foregoing expression, for 

the latter correspond to an absolutely constant 
volume and toa condition in which all of the con- 
fined gas undergoes the heating or cooling opera- 
tion. Since neither of these conditions is realized in practice, two 

corrections must be applied to the observed pressures. 

Consider first the correction for the expansion of the bulb. If Vo 

be the initial volume of the bulb and if a; be the volume expansivity 
of the cast iron of which the bulb is made, then the volume of the 

bulb at 7° C will be Vo(1 + at). If this volume of the gas in the hot 

bulb were reduced back to Vo without changing its temperature, the 

resulting pressure x of the confined gas would be such that, by 

[143]   

  

Fic. 101. The gas 
t hermometer 

BoYLr’s law, P,Vo(1 + at) = xVo, 

or x= P(l+ar). 
When this is substituted for P, in expression [143], the expression 
for 6 becomes . 

P= Po 4, Po [144] 
Po Po
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Consider next the correction that must be applied to all of the 
observed pressures in order to make allowance for that portion of the 
confined gas which escapes the changes in temperature taking place 
within the bulb. Let » be the volume of the gas in the dead space 
between the bulb and the fiducial mark m, let t; be the temperature 
of the room near this dead space, and let p be the density of the gas 
at 0° C and pressure Po. Since no gas enters or leaves the apparatus 
during any of the operations, the total mass of gas in the bulb and 

dead space when the bulb is at 0° C is equal to that in the bulb and 
dead space when the temperature of the bulb is #° C. It can be shown 
that this results in the equation 

Up P, Yop Pwo 
Vop + = + . 145 PFT BG Po +B) * Pol -+ Bh) (Mel 

By dividing all the terms of this equation by Vop and neglecting the 
small quantity 6%, whenever it occurs in a term that is multiplied by 

the very small fraction 7/Vo, one obtains 

uv _ P t 1 P t v 

Vo Pol+Bt' Po Vo 

After solving this for §, there results finally 

  

  

  

  

ma 
ga Pia Po Me 

Pot y—-2 Pix Po 

Vo Po 

—Pi—Po oP: NN, or p= PS (i+ é ) 146] 

The terms omitted in this expression all involve the square or higher 

powers of the very small quantity #/Vo, and therefore they can be 

neglected. Hence the correction for the dead space is accomplished 
by adding ! to expression [144] the quantity 

  

P= Poo Pr, 
Pot Vo Po [147] 

Thus the expression for 8 to be used with this gas thermometer is 

_Pi=Poy Pi Pi= Pow Pr, 
B= pe TR TO RE Ve Po [148] 

1. Derive Eq. [145] and also give a complete derivation of [147]. 

Measurements. a. Take the reading of the fiducial mark m on the 

central graduated scale with the help of a small square or draftsman’s 
  

1 Strictly speaking, the two expressions are not additive, but the error introduced 

by so treating them is negligible.
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Professor Kamertincn Onnes (right) 

Working at the Helium-Liquefying Apparatus 

in the Cryogenic Laboratory 

of the University of Leiden 

Photograph kindness of Professor C. A. Crommelin
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The Physical Laboratory, University of Leiden, Holland, 1922 

Photograph kindness of Professor C. A. Crommelin 

Tuts laboratory is famous for the cryogenic work done under the late Kamertincu 
Onnes. A temperature of less than 0.005° K has been attained. 

The Cavendish Laboratory at Cambridge University, England. 

Original Wing Built by Maxwett and Opened in 1874 

Ts laboratory is still among the most productive in the world. The high ideals 
and standards of accomplishment set by Maxweztt have been carried on by a re- 
markable succession of directors —J. Crerx Maxwetzi (1871-1879), Lorp 

Rayviercn (1879-1884), Sir J. J. Tomson (1884-1919), and Lory RurHerrorp 
(1919-1937) — all men whose names will ever be landmarks in the history of 

physics. An interesting history of this laboratory was published by Longmans, 
Green, and Company in 1910.
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Some of Datron’s Pictures of Atoms 

Reproduced from Jomy Datron’s A New System of Chemical Philosophy (Manchester, 1810), 

Part II, p. 548 

Daxton conceived of the atoms as being hard particles with “atmospheres of heat’ 
(tepresented by rays in his drawings) emanating from them. Note the different 

volumes occupied by the atoms of hydrogen and nitrogen (azote).
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Recent Pictures of Atoms 

‘Tuese illustrations were prepared by E. O. Wortan and A. H. Compton [Journal of 
the Optical Society of America 24, 229 (1934)] from data on x-ray scattering in gases. 

They represent the electron distributions in the various atoms, and therefore corre- 

spond to “photographs” of the atoms which appear, in general, as regions more or 
less diffusely filled with electricity. These “‘photographs”’ are in good agreement 
with the modern quantum theory of atomic structure. (The abbreviation A denotes 

a unit of length called the Angstrom; 1 A= 10-8 cm.)
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triangle, one edge of which is held against the graduated scale while 

the other is brought into coincidence with the etched line. Make 

three independent observations and average them. 

b. Screw the cap c to the top of the jacket J and pass steam into the 

latter from the steam-generator through the upper hose-nipple, all the 

while keeping the mercury level in the closed arm of the manometer 

at the fiducial mark m. 

When the mercury has ceased to rise in the open arm, observe, by 
means of the sliding index 7, the reading of the top of the mercury 

meniscus upon the central graduated scale. Make three independent 
settings and observations and average them. 

c. Read the barometer. 
d. Disconnect the steam-generator; remove the screw-cap of the 

jacket J; close the lower hose-nipple with a short piece of rubber 
tubing and a pinch clamp. Pack shaved ice carefully about the bulb, 
again keeping the mercury level in the closed arm of the manometer 

at the fiducial mark m. Pour distilled water over the ice until the 
bulb is completely immersed, adding more ice if necessary ; the water 
is added both to insure good contact and to make certain that the 

temperature of the ice is not below 0° C. 
After the mercury in the open arm has become stationary, read, 

as before, the level of the meniscus. 

When the readings have all been taken and checked, drain the 

water and ice from the jacket J by removing the pinch clamp from 
the rubber tubing on the lower hose-nipple. 

e. Record the values of # and Vo, which will be found marked on 
the apparatus. The value of a; for cast iron is 3.2 x 10~5 per deg C. 
The temperature of the steam bath is determined by finding from 
tables the boiling point of water for the observed barometric pressure.? 

jf. Calculate 8 by means of Eq. [148]. In computing Po and P;, 
remember that the difference between the two mercury levels is in 

each case to be regarded as negative if the open-arm reading is the 
lower of the two and that it is the algebraic sum of this difference 
and the corresponding barometer reading which gives the pressure. 

Taking the accepted value as 3.663 x 1073 per deg C, calculate 

the percentage of error in your value of f. 

2. How much error would have been introduced into your value of 8 

if you had failed to correct for the expansion of the cast-iron bulb? if 

you had failed to correct for the dead space? 

3. From the result of your experiment, calculate the temperature at 

which the pressure of the air in the bulb would be zero. 
  

1See Appendix 6. ’ 2 Appendix 13, Table E.
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OPTIONAL LABORATORY PROBLEM 

Standardization of a Mercury-in-Glass Thermometer. Employ a water 
bath to compare the readings of a mercury thermometer with those of a 
constant-volume air thermometer at several points between the two fixed 

points. Then determine, in the order named, the steam point and the ice 

point of the mercury thermometer. The ice point thus found is termed the 

depressed zero, since it is usually lower than the value found if the two fixed 
points are determined in the reverse order. Why? The depressed zero point 

is the one to be used for calibration, and for accurate determination of tem- 
perature it always should be determined immediately after taking the tem- 

perature in question. In all the foregoing determinations, make sure that 
the mercury thermometer is immersed to the top of the mercury thread. 

Plot a curve of corrections for the mercury thermometer. Regard the 
corrections as positive if the mercury thermometer reads too low, negative 

if it reads too high. What if the thermometer is later used with a part of 
the mercury thread exposed to the air of the room? 

0 

EXPERIMENT [X8 EXPANSIVITY OF A VOLATILE 
LIQUID 

The simplest accurate method of determining the volume ex- 

pansivity a; of a nonvolatile liquid like mercury is one in which the 

observations are reduced to weighings. But in the case of a volatile 
liquid of small density, such as ethyl alcohol, the accuracy obtained 

by employing weighings is more than counterbalanced by. the errors 
introduced by evaporation. For this reason the use of the dila- 

tometer (Fig. 98) is preferable with volatile liquids. As is apparent 

from Eq. [137], a; cannot be obtained by means of a dilatometer 

until three constants of the instrument have been determined; these 

are the volume # corresponding to one scale division on the stem, the 

volume expansivity a, of the glass, and the volume Vp of the bulb 

up to the zero mark on the stem at 0° C. 
a. Determination of the Volume Corresponding to One Scale Division 

on the Stem.1 Place enough pure mercury in the dilatometer to fill 
  

1 Tf the liquid to be tested has so small an expansivity that it is necessary to employ 

a dilatometer equipped with a stem of very small bore, the following more difficult 

method of calibration will have to be employed. Gently warm the bulb of the dila- 

tometer and then allow it to cool with the open end of the stem under mercury. In 

this way almost fill the stem with a thread of mercury without allowing any of the 
mercury to enter the bulb. Measure the over-all length s of the mercury thread in 

terms of the scale divisions marked on the stem, using for this purpose either a cathe- 

tometer or a mirror-scale; if a cathetometer is used, avoid the error due to lost motion
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the stem almost to the top of the scale and observe the scale-reading 
of the mercury meniscus. Pour nearly all of the mercury that is in 

the graduated part of the .stem into a small weighed cup and de- 
termine its mass m. Again observe the scale-reading of the mercury 

meniscus in the stem. Observe the temperature ¢ of the laboratory. 
The volume # corresponding to one scale division is evidently mv;/s, 

where s is the length of the poured-out column of mercury expressed 
in terms of the scale divisions on the stem, and 2 is the volume of 

1g of mercury weighed in air at the temperature 7; tables show that 
2,18 given by 

, a, = 0.07355 (1 + 0.000181 £) cm?.., [150] 

b. Expansivity of the Glass in the Bulb. If the value of a, is not 
marked on the glass, determine it by means of the following procedure. 
Fill the dilatometer with pure mercury so that, when the bulb is 

immersed in an ice bath, the column of liquid in the stem rises only 
a small distance above the zero mark. Observe the scale-reading ly 
of the mercury meniscus when the bulb is immersed in the ice bath, 

and then observe the scale-reading /; of the meniscus when the bulb 

is immersed in, say, a steam bath. Determine the mass M of the 

mercury in the dilatometer by weighing the latter first when it 
contains the mercury and second when it isempty. Read the barom- 

eter and find from tables the temperature ¢ of the steam. The volumes 

of the mercury, and hence of the bulb, up to the zero mark on the 

stem are Vo = Moo — Iov, at O° C, and V;= Mv, — la, at i C, where 

v and »; are given by Eq. [150]. Since Vo, Vi, and ¢ are known, the 
mean value of a, between the temperatures 0° and 7° C can be cal- 
culated with the help of Eq. [136]. 

c. Volume of the Bulb at 0° C. If the observations for a, have been 
carried out as described in b, no additional ones need be made to 

obtain the volume of the bulb at 0° C, since the latter is simply 

Mto — lov. But if b has been omitted it will be necessary to perform 

an experiment of the following kind in order to obtain Vo. 

  

by always bringing the cross hairs up to the mercury meniscuses from the same side. 

Also measure the height # of the mercury meniscus in terms of a scale division. Again 

warm the air in the bulb and thus expel the mercury into a small weighed cup. De- 

termine the mass m of this mercury by weighing. Observe the temperature ¢ of the 

laboratory. The ends of the mercury thread are not plane but convex, and therefore 

the observed length s is slightly too large. It can be shown that for a capillary tube 

it suffices to subtract from s the quantity 0.4 #. When this correction and Eq. [150] 

are taken into account, the expression for » becomes 

te 0.97355 m(1 + 0.000181 4) .n3. [1491 

s—O4h



194 Mechanics - Molecular Physics - Heat - Sound — [Exp. Xz 

Determine the mass of the dilatometer, first when empty and dry, and 
second when nearly filled with air-free distilled water. Such water may be 

prepared by boiling distilled water for half an hour. Observe the tempera- 
ture f of the water and the scale-reading I, of the water meniscus in the stem. 

Now, tables show that 1 g of water, weighed with brass weights in air, oc- 

cupies very nearly (2.00106 — p,)cm3, where p; is the density of water at 
the temperature ¢. Therefore the volume of the bulb up to the zero mark 
on the stem is, at this temperature, [44(2.00106 — p,) — 1#] cm?, where M is 
the mass of the water. The volume Vp can then be obtained by means of 

Eq. [136]. 

d. Volume Expansivity of the Liquid. Determine the volume ex- 
pansivity of, say, ethyl alcohol, turpentine, or benzol. To do this, 

place the dilatometer containing the liquid under investigation in a 

large water bath and observe the scale-readings i, la, - - - of the liquid 
meniscus for several bulb temperatures! #,, #2, ---. Stir the bath 

continually and make observations only when you are sure that the 
liquid in the dilatometer is in thermal equilibrium with the bath. 

Employ Eq. [137] to calculate the mean expansivities of the liquid 

between the temperatures 0° and #,° C, 0° and 2° C, etc. 

1. Calculate the mean apparent expansivity of the liquid in this dila- 
tometer for the range 0° to 4° C. 

2. In work of extreme precision it is necessary to calibrate the stem of 

the dilatometer throughout its length in order to correct for irregularities 

of the cross-sectional area. Explain how this could be done. 

3. Derive an expression for the volume of the liquid under investiga- 
tion at the temperature /, in terms of the quantities V., a,, t, J, and v. 

4, Devise and describe a method of obtaining a, for a nonvolatile 
liquid such that all the observations, except those for the temperatures, 

are reduced to weighings. 

0 

OPTIONAL LABORATORY PROBLEM 

Linear Expansivity. Determine the mean linear expansivity of a speci- 

men of brass or of glass which is in the form of a hollow tube. Next to the 
difficult method involving the use of an interferometer, the following 

method of measuring linear expansivity is probably the most accurate. 
Place the tube in a heat-insulating jacket, which is mounted horizontally 

upon supports, and focus two micrometer microscopes upon fine scratches 

near the two ends of the tube.. Pass a current of tap water through the tube 

until the temperature has become constant. Then set the movable cross 
  

1 It will probably be necessary to standardize the thermometer with which these 

temperatures are measured. Directions for doing this will be found in Appendix 10.
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hairs of the microscopes accurately upon the scratches and take readings on 

the scales in the micrometer eyepiece; in each case make a number of set- 

tings. Repeat these observations while a rapid current of steam is passing 

through the tube. Calibrate each microscope by focusing upon a standard 
scale and observing how many turns of the micrometer screw correspond 
to 1 mm. 

o 

QUESTION SUMMARY 

1. What is meant by lemperature? From what does our original notion 
-of temperature come? How is an accurate measure of temperature obtained ? 

2. In the development-of modern thermometers, what has determined 

the choice of (a) thermomeiric substance, or property? (b) fixed points? 

(c) zero and size of degree to be used? Why is it necessary to have two fixed 

points? 

8. What is the present.standard thermometer for practical thermometry ? 
.Why was it selected? Give a precise definition of any temperature 7 in 
terms of it. 

4, Why is the mercury thermometer often used to measure tempera- 
ture? Define any temperature 7 in terms of it. How greatly does this tem- 

perature scale differ from the constant-volume hydrogen gas scale? 

5. Discuss the possibility of giving a definition of temperature that is 
absolute in the sense of being independent of the properties of some particu- 

lar thermometric substance. How does this scale of temperature differ from 
the hydrogen gas scale? from an ideal gas scale? 

6. Define absolute iemperaiure. To what temperature centigrade does the 

absolute zero correspond? How nearly has it been reached experimentally ? 

7. Define (a) pressure coefficient of a gas; (b) expansivity of a gas, liquid, 

or solid; and (c) linear expansivity of a solid. What is the relation between 

the linear and volume expansivities of a solid? 

8. What experimental fact did CHARLES and Gay-Lussac discover? Is 
it correct to say that Gay-Lussac discovered that the pressures of all gases 

vary directly as the absolute temperatures provided the volume remains | 

constant, and that the volumes of all gases vary directly as the absolute 
temperature provided the pressure remains constant? What is involved in 
this statement other than the experimental fact found by Gay-Lussac? 

9. From BoyLe’s law, Gay-Lussac’s law, AVOGADRO’S law, and the 

definition of absolute temperature, derive the equation of state of an ideal 

gas, PV = NRT. What sort of constant is R? 

10. How can the numerical value of R be calculated? What is its value 

in absolute units? What is its value when the pressure is expressed in at- 

mospheres and the volume in cubic centimeters?
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PROBLEMS 

1. In a gas thermometer like that of Fig. 96, the mercury in the tube c 

is 15cm above the fiducial mark when the bulb is in melting ice and the 
atmospheric pressure is 750 mm of mercury. Ignoring the expansion of the 
bulb, find the bulb temperature for which the mercury will be 5.0 cm below 
the fiducial mark. Ans. — 61°C. 

2. The volume of a certain mass of carbon dioxide was found to be 
100.0 ml at 0° C and 1 A,. When the temperature and pressure were raised 

to 100° C and 1.369 A, respectively, the volume was found to be unchanged. 
What is the mean pressure coefficient of carbon dioxide between 0° C and 
100° C? Ans. 0.00369 per deg C. 

3. The pressure in an automobile tire, as indicated by a gauge registering 
pressures above that of the atmosphere, was found to be 35 lbwt - in.~? on 
a cool day when the temperature was 16°C. Assuming that the volume 

change is negligible and that there is no leakage, find the pressure in the 

tire on a hot day when the temperature is 36° C. Ans. 53 Ibwt - in.-2, 

4, (a) With the help of the general gas law and the definition of density, 
derive a single equation that will enable one to calculate the density of an 

ideal gas for all temperatures and pressures if the density has once been de- 

termined for one single value of the temperature and pressure. (6) Given 

that the density of air at 16° C and under a pressure of 740 mm of mercury 

is 1.189 x 1073 g-cm78, compute its density at 0° C and 760 mm of pres- 
sure. (c) What volume will 28.9¢g of air occupy at 0°C and 760mm 
pressure ? Ans. (6) 1.293 x 1073 g-cm~8; (ce) 22.361. 

5. How much work is done against atmospheric pressure when a quan- 
tity of air of mass 14 g is heated from 0° to 50° C under a constant pressure 
of 1 A,? Ans, 2.0 x 10? j. 

6. If the molecular weight of a certain gas is 28, | 

what volume will be occupied by 12g of the gas 
under a pressure of 2.0 A, and at 35°C?) Ans. 5.41. 

7. What is the pressure exerted by 0.50 g of argon 4 
contained in aclosed vessel of capacity 5.01 at 20° C? 

Ans. 62 gwt-cm7?. 

60cm 

30cm 

8. A gas is enclosed in a tube of uniform cross sec- 
tion. If the conditions shown in Fig. 102 apply when ; 

the temperature is — 20°C and the pressure is 1A,, Fic. 102. Problem 8 
at what temperature will the mercury surfaces be at 

the same level? Assume that the change in the density of the mercury 

and the change in the outside level are negligible. Ans. 354°C, 

9. In dealing with thermal problems by dimensional methods it is often 
found desirable to introduce another fundamental unit in addition to those 

of length, mass, and time. The unit of temperature is a convenient choice. 

Denote the dimension of the unit of temperature by [@] and write the di-
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mensional formulas for (a) the volume expansivity a; (3) the pressure 
coefficient 8; (c) the product PV; (d) the gas constant for unit mass R’; 

(e) the universal gas constant R; (f) the linear expansivity A. 

10. PIERRE has found that, for chloroform between 0° and 63° C, the con- 

stantsin Eq. [135] are a= 1.1071 x 10—-3, b= 4.6647 x 10-8, c= 1.7433 x 1078. 

From these data calculate the increase, in percentage, of the mean expansiv- 

ity of chloroform in passing from 0° C to 40°C. Ans. 2.69 percent. 

11. A soft iron ball 5.000 cm in diameter is 0.01 mm too large to go through 

a hole in a brass plate when the ball and plate are at 20°C. At what tem- 
perature (the same for both the ball and the plate) will the ball just pass 

through the hole? Ans. 53°C. 

12. A glass bulb of capacity 10 cm? is filled with mercury at 20°C. How 

much mercury will run out if the bulb is heated to 100°? Ans. 1.78. 

13. Given that @ is the cxpansivity of mer- 

cury and that A is the linear expansivity of a 
scale which is correct at the temperature fp, 
derive a formula for reducing the reading B; ofa 

barometer at a given temperature 7 to what it 
would be if the temperature were 0° C. 

Ans. By ={1 + AG — fo] + af)! B, 

14. In one type of compensated pendulums 
(Fig. 103) the expansion of one set of rods lowers 

the bob, whereas that of another set raises it. 

Suppose the first set to be made of cast iron, and 
that i,+l,=90cm. If the material of the 

second set is zinc, what must be the length 4 if - 
the bob is to be neither raised nor lowered with Fis. 103. The gridiron 

changes in the temperature? Ans. 36cm. pendulum 

  

        

  

15. Accurately calibrated thermometers read correctly only when the 

whole mercury column is immersed in the bath whose temperature is to be 
determined. Find the reading of a mercury-in-glass thermometer if the bulb 
and stem up to the zero mark are exposed to a temperature of 210° C while 
the remainder of the stem is at 18°C. Assume the mean linear expansivity 

of the glass to be 5.8 x 10~§ per deg C. Ans. 203°C. 

° 

CCURATE AND minute measurement seems to the non-scientific imagination a less lofty and 

dignified work than looking for something new. But nearly all the grandest discoveries of 

science have been but the rewards of accurate measurement and patient long-continued labor in 

the minute sifting of numerical results. -- - 
Lorp Kexvin, Report of the British Association for 

the Advancement of Science (1871), Vol. 41, p. 91.



CHAPTER TEN 

THE DISCRETE NATURE OF MATTER 

AND THE 

KINETIC-MOLECULAR THEORY OF GASES 

1. From nothing comes nothing. Nothing that exists can be destroyed. All changes are due 

to the combination and separation of molecules 2. Nothing happens by chance: every occurrence 

has its cause, from which it follows by necessity. 3. The only existing things are the atoms and 

empty space; all else is mere opinion. 4. The atoms are infinite in number, and infinitely various in 

form; they strike together, and the lateral motions and whirlings which thus arise are the beginnings 

of worlds. 5. The varieties of all things depend upon the varieties of their atoms, in number, size, 

and aggregation. 6. The soul consists of fine, smooth, round atoms, like those of fire. These are 

the most mobile of all: they interpenetrate the whole body, and in their motions the phenomena of 

life arise. Democartrus’s principles, as quoted by Jour 

Tynpatt ! in his Belfast Address in 1874 

° 

A little reflection will convince one that there are only two possible 

hypotheses as to the constitution of matter: either matter is con- 
tinuous in structure, so that, however far division or subdivision is 

carried, iron is always iron and will always exhibit the characteristics 

of iron; or else the contrary is true and subdivision carried far 

enough will bring us to particles called atoms, meaning, literally, 
something that cannot be cut. It is not surprising, then, to learn 

that an atomistic philosophy was taught as early as the fifth cen- 

tury B.c. by the Greek philosopher LEucippus and his famous pupil 
and associate DEMOCRITUS (c. 460-370 B.c.). Little is known of the 

writings of these “ atomists,”’ but their theory of matter has been im- 
mortalized in verse by Lucretius (Titus Lucretius Carus), the 

famous Roman poet of the first century B.c., in “the greatest philo- 
sophical poem of all times,” De Rerum Natura, Many of the views 
expressed in this poem and in the principles of DEMocRITUS which 
  

1* Fragments of Science, ed. 5 (Appleton, 1879), p.472. The first few pages of 

this address give an excellent account of the atomistic philosophy of the ancients. 

2’This poem has been translated, under the title *On the Nature of Things, by 

H. A. J. Munro (1905), Cyril Bailey (1910), and many others. There are metrical 

translations by John Evelyn (1656) and by William Ellery Leonard (1922) and 

others. ‘“‘Lucretius’s poem is an amazing performance; it does not contain new 

scientific facts or theories, but sets forth Greek views in a wonderful manner, with 

many flashes of genius. It isa masterly exposition of the rationality and determinism 
of the universe. It marks the climax of Roman scientific thought” (Sarton). 

198
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are quoted at the beginning of this chapter, with a few modifications 

and omissions, might almost pass muster today. The fact is, nearly 

all the qualitative conceptions of the modern kinetic-atomiic theory of 

matter were developed more than two thousand years ago, for the 

Greek atomists had almost as clearly developed a picture of a world 

made up of incessantly moving atoms as has the modern physicist. 
The difference is that the idea had its roots in one case in a mere 

speculative philosophy; in the other case, like most of our modern 

scientific knowledge, it rests upon direct, controlled quantitative 

investigations. 

That matter is granular in structure is not very evident from 
casual observation; the human eye has never seen, and indeed can 

never see, an individual atom or molecule. Thus, under the opposing 
influence of the teachings of EMPEDOCLES (c. 490-435 B.c.) and ARIS- 
TOTLE (384-322 B.c.), and because the then civilized world was soon 

to succumb to the attacks of the barbarians, the atomic theory of the 

Greeks languished and died. EMPEDOCLES held that matter consists 
of one primordial substance which is the habitat of four elementary 
properties — earth, air, fire, and water. Such a view is not as fan- 
tastic as it may seem on first thought, and it at least had the merit 
of being productive, for it provided a theoretical basis for the idea 

of transmutation of base metals into precious ones, and thus helped 

to furnish the alchemists with the motive power for nearly all chemical 

experimentation down to the eighteenth century. 

° 

The Atowic-Molecular Theory of Matter 

110. Dalton’s Atomic Theory. More than twenty-two centuries 
elapsed before the purely speculative views of the Greek atomists 

were placed on the substantial foundation of experiment. This was 
accomplished by the English chemist JOHN DALTON ! (1766-1844), 

who was led by his studies of the physical properties of gases to 

formulate an atomic theory having, in essence, the following two 
features: (a) each chemical element consists of identical atoms, there 

being as many different kinds of atoms as there are kinds of elements; 

(b) when different elements combine to form a compound, the 
smallest possible portion of the latter contains a definite number of 
atoms of each element. A study of thousands of experiments on the 
  

14 New System of Chemical Philosophy (Manchester, 1808). Reprints of earlier 

papers will be found in Foundations of the Atomic Theory, Alembic Club Reprint No. 2 
(Edinburgh, 1923).
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proportions by weight in which various substances combine chemi- 
cally reveals several very fundamental principles that find their most 

simple and natural interpretation in this atomic hypothesis. These 
principles were known to DALTON, and they have played am impor- 
tant part in providing tests for his theory. 

111. The Laws of Chemical Combination. a. The Law of Defintie 
Proportions. This law states that the proportions by weight in which 
the elements enter into a given compound are invariable. For ex- 

ample, it is found that hydrogen will unite with chlorine, so as to 
leave no free hydrogen and no free chlorine, only when the mass of 
hydrogen present bears to the mass of chlorine one definité propor- 
tion. The same may be said of the combination of hydrogen with 
bromine. These ratios are 

1.0000 g hydrogen to 35.183 g chlorine; 
1.0000 '¢ hydrogen to 79.297 g bromine. 

Similarly, the chlorides of potassium and silver are always found to 
contain the following proportions: 

[151] 

38.793 g potassium to 35.183 g chlorine; 
107.05 g silver to 35.183 g chlorine. [152] 

Although the law of definite proportions was established by JosEPH 
Louts Proust (1754-1826) without reference to any particular theory 
as to the constitution of matter, its evident interpretation in the 
light of an atomic hypothesis can only be that the atoms of each 

element are of constant mass and that any given compound is made 

up of discrete portions, each of which is always of the same atomic 
composition. 

b. The Principle of Equivalence. From the foregoing examples it 

is evident that 35.183 g of chlorine and 79.297 g of bromine may be 
called equivalent quantities in the sense that each one of them com- 

bines with exactly the same mass of hydrogen, namely 1 g. Similarly, 
38.793 g of potassium and 107.05¢ of silver may also be called 

equivalents, since each of them combines with the same mass of 

chlorine. These latter elements cannot be made to combine with 

hydrogen directly, but since the masses given combine with just the 
amount of chlorine that has been found to be the combining equiva- 

lent of 1 g of hydrogen, these masses may also be said to have been 

found in this indirect way to be the equivalents in combining ability 
of 1 g of hydrogen. So much for the definition of eguzvalent. Now the 

fact of peculiar significance is this. A quantitative analysis of the 

bromides of potassium and silver leads to precisely the same numbers 

for the equivalent masses of these elements as did a study of the
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chlorides. Thus the only proportions in which these elements will 

combine with bromine are 

38.793 g potassium to 79.297 g bromine; 

107.05 g silver to 79.297 g bromine. [153] 

When, further, a study of, say, the iodides of potassium and silver leads 

again to the same results, it becomes certain that some very definite 

physical significance lies behind these numbers. The simplest possible 
interpretation to put upon them is, to take a particular case, that the 
atoms of potassium which combine with chlorine to form potassium 
chloride are exactly like the atoms which combine with bromine to 
form potassium bromide, and with iodine to form potassium iodide. 

The facts of equivalence which have been presented here, 

and which constitute one of the strongest arguments for the atomic 
hypothesis, may be summarized thus: the study of many different 

compounds leads often to precisely the same number for the com- 
bining equivalent of a given element with reference to hydrogen. 

c. The Law of Multiple Proportions. In some cases the study of 

different compounds leads to more than one number for the equiva- 
lent of a given element with reference to hydrogen. For example, 

DALTON found that ethylene gas yielded upon decomposition the 

two elements carbon and hydrogen in the proportions by weight of 

5.96 parts of carbon to 1 part of hydrogen, whereas methane yielded 
the same two elements in the ratio 2.98 parts of carbon to 1 part of 
hydrogen. Again, in the three compounds nitrous oxide, nitric oxide, 

and nitrogen oxide the masses of oxygen which combine with 1 ¢ of 
nitrogen were found to be in the ratio 1:2:4. Further study of other 
compounds revealed to DALTON the principle that whenever ele- 

ments can combine in different proportions, these proportions always 

bear simple ratios to one another. This is known as the law of multiple 
proportions. Its evident interpretation, in the light of the atomic 
hypothesis, is that it is possible in some cases for two or three or some 
other small number of atoms of a given element to enter into the 
constitution of the smallest units of a compound. 

Enough has now been said to show how to each element there may 
be assigned an experimental number which in itself, or when multiplied 
by some small integer, expresses the mass by which the element enters 

into combination with other elements. This experimental number is 

called the atomic weight of the element, although it is more properly a 
“combining mass.’’ For reasons which we need not discuss, modern 
tables of atomic weights are not based upon the atomic weight of hy- 
drogen as 1.0000 but upon that of oxygen taken as 16.000. On this 

oxygen scale, hydrogen is found to have an atomic weight of 1.0078.
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112. Molecules and the Law of Avogadro. GAy-Lussac! discovered 

that the various gases, under conditions of equal pressure and tem- 
perature, combine in simple volumetric proportions. He found, for 
instance, that two volumes of hydrogen combine with one volume of 

oxygen to form two volumes of steam. This did not fit in well with 

DaLtTon’s idea that the elementary gases were always composed of 

single atoms, and it led AVOGADRO? to modify the Daltonian idea of 

the ultimate particles of substances by distinguishing between two 

types of structures, one of which is the atom and the other that 

which is now called the molecule. Molecules are the smallest units 
into which either compounds or elements can be divided without 
chemical decomposition. The molecule is in turn made up of one or 

more atoms, there being always the same number of the same kind 
of atoms in every molecule of a given substance. In the case of an 
element, the molecule contains atoms of that element only, whereas 

the molecules of a compound must contain the atoms of at least two 

different elements. Today we know that compounds that are in the 

liquid or solid state often have for their smallest structural unit 

the atom and not the molecule. For this reason it is best to define the 
molecule as the smallest unit of a substance that exists in the gaseous state. 

As we already know (Sec. 105), AvVoGADRO went farther and 

postulated that equal volumes of different gases at the same tem- 

perature and pressure contain equal numbers of molecules. This 

enabled him to determine the numbers of atoms in the molecules of 
the various gases. Thus he found that one volume of hydrogen and 
one volume of chlorine combine to form two volumes of hydrogen 

chloride. In accordance with AVOGADRO’S law, there must therefore 

be twice as many hydrogen chloride molecules present after the re- 
action as there were hydrogen molecules before it; since, however, 

each hydrogen chloride molecule must contain a hydrogen atom, the 

hydrogen molecules must each have consisted of two atoms before the 
reaction. Analogous considerations apply to the chlorine molecules. 

One of the proofs of AVOGADRO’s law rests upon a remarkable re- 

lation which is found to exist between the densities of gases and the 

numbers representing their combining masses. Table IV brings out 

  

1‘*Memoir on the Combination of Gaseous Substances with Each Other,” read 

before the Philomathic Society, December 31, 1808, and published in the Mémoires 

de la Société d’Arcuetl 2, 207 (1809). A translation appears in Foundations of the 

Molecular Theory, Alembic Club Reprint No. 4 (Edinburgh, 1923), pp. 8-24. 

2 A. Avogadro, “‘“Essay on a Manner of Determining the Relative Masses of the 

Elementary Molecules of Bodies, and the Proportions in which they Enter into 

Compounds,” Journal de Physique 78, 58 (1811). For a translation see Foundations 

of the Molecular Theory, Alembic Club Reprint No. 4 (Edinburgh, 1923), pp. 28-51.
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clearly this striking relation. The densities given in this table are 
the results of experiments at a given temperature and pressure, the 

density of oxygen being taken, for convenience, as 32. It is seen that 

in the case of the compounds the numbers that represent the densi- 

ties in terms of a gas 3/5 as dense as oxygen are throughout very 

nearly equal to the numbers that represent the molecular weights, 

the latter in each case having been obtained by taking the sum of 

the atomic weights of the atoms in the molecule of the substance. 

But if the molecular weights of a number of gases bear the same ratios 

as the masses of the gases per unit volume, then evidently the num- 

ber of molecules per unit volume must be the same in all the gases. 

TABLE IV - An Experimental Verification of Avogadro’s Law 

  

  

  

  

  

        

Gas Symbol Density relative Atomic weight 

Hydrogen. ....... H 2.012 1.008 

Helium ......... He 3.999 4.00 

Nitrogen ........ N 28.05 14.01 

Oxygen... 2... , oO 32.00 16.00 

Bromine ........ Br 159.9 79.92 

Density relative Molecular 

Gas Formula to O as 32 weight 

Hydrogen chloride . . . . HCl 36.59 36.47 

Methane ........ CH, 16.21 16.03 

Carbon monoxide .... co 28.17 28.00 

Carbon dioxide... ... CO2 44,75 44,00 

Nitric oxide . 2... 2... NO 30.19 30.01 

Nitrous oxide ...... NO 44,45 44,02 

Water ......... H20 18.17 18.02     
This remarkable conclusion, which applies necessarily to all the 

compounds represented in Table IV, provided only that their mo- 

lecular constitutions are correctly given, is seen to apply also to all 
the elementary gases in the table, if only the molecular weights of 
hydrogen, nitrogen, oxygen, and bromine, but not helium, be as- 

sumed to be twice the values of the atomic weights of these elements, 
that is, if the molecules of these gases be composed each of two atoms; 

for then the molecular weights become numbers which are in close 

agreement with those given in the column of densities. In the case 
of helium the atomic and molecular weights are the same; helium 

is one of the few substances that are monatomic. 
Now it is found that with equally simple choices as to the molecular
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constitution of those gases in which the combining equivalents of the 

constituent elements leave two or more choices open, the densities 

of all known gases are in close agreement with their molecular 
weights. This agreement is least perfect in the case of those gases 

that show the largest departures from Boy.e’s law. For actual 
gases, then, this law, like the laws of BOYLE (Sec. 92) and of CHARLES 

and Gay-Lussac (Sec. 101), is only a close approximation. 

The agreement between molecular weights and gas densities is 

not by any means the only experimental basis for the law of Avo- 

GADRO. The actual determination of relative masses of hydrogen, 
nitrogen, and oxygen atoms in collision, as observed from the 

C. T. R. WILSON cloud tracks, has confirmed the masses indicated 

by the law. More recently, accurate determinations of the relative 

masses of the elements in the periodic table by means of the mass- 
spectrograph yield values that fit in with all its predictions.” 

6 

The Kinetic Theory of Gases 

Many years before the establishment of the atomic-molecular theory 
of chemistry, the accumulating knowledge of such purely physical 

phenomena as the elasticity of gases and the effects of heat on matter 

had led to a revival of the ancient Greek conjecture that matter is 

composed of particles. In order to account for the elastic properties 
of air, two views were advanced. The first was the repulsion theory, 

according to which the pressure exerted by confined air was attrib- 

uted to repellent forces existing between the molecules, which were 

assumed to be at rest. This view was held by prominent scientists 

even as late as the middle of the nineteenth century. When BoyLe’s 
law was discovered, in 1662, it of course became necessary to recon- 

cile the theory with it, and this could be done only by making the 
assumption that the molecules repel one another with forces that 
are inversely proportional to the distances between them. The 

theory has now been altogether abandoned: first, because such a 

law of molecular force is wholly at variance with all modern views as 

to the nature of molecular force; second, because it necessitates the 

conclusion that the pressure which a gas exerts is a function not of 

its density and temperature alone but also of the shape and size of 
the containing vessel, a conclusion which is directly contradicted by 
experiment; third, because the fact that a gas does not experience 
  

1 See, for example, J. A. Crowther, Ions, Electrons and Ionizing Rediations. 

2F. W. Aston, Isotopes; also, Mass-Spectra and Isotopes.
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a rise in temperature when it expands into a vacuum proves that no 

repulsion exists between its molecules. Just a few years after 
NEWTON’s death DANIEL BERNOULLI ! crystallized these ideas of a 

particle structure into the hypothesis that a gas consists of perfectly 

elastic particles in rapid motion of translation, and in this way made 
the first attempt to explain the observed properties of a gas on a simple 
mechanical basis. In his treatise Hydrodynamica (1738), he explains 
the pressure on the walls of a vessel enclosing a gas as due to the 
impacts of the particles and deduces an expression for the pressure 

in terms of their speeds.2, He does not specify accurately what is 

meant by the speed of the gas particles, or by pressure, or by tem- 

perature, and hence this must be regarded as only the first rough 
quantitative sketch of what has since come to be the important 
branch of theoretical physics known as the kinetic theory of gases. 

It was not until after the middle of the nineteenth century, when the 

discovery of the mechanical nature of heat ? gave added interest to 
these problems, that JOULE,* A. KROniIG,’ and especially RUDOLF 

CLAUSIUS ® (1822-1888) laid the foundations of the theory, which 

was then rapidly developed by JAMES CLERK MAXWELL’? (1831-1879) 
and Lupwic BOLTZMANN ® (1844-1906). 

  

1 DANIEL BERNOULLI (1700-1782) was one of the most distinguished members of 

a celebrated Dutch-Swiss family. No less than fifteen members of this family earned 

reputations in various scholarly fields, chiefly in mathematics and physics; and of 

these, eight attained eminence. For an interesting account of this unusual family see 

Die Naturwissenschaften 22, 717 (1934). 

2 The Hydrodynamica was written in Latin, but.a translation of the first six sec- 

tions of the tenth chapter, which contain this first successful application of the kinetic 

theory, will be found in *A Source Book in Physics (1935), pp. 247-251. 

3 See Secs. 54 to 56. 

4 Memoirs of the Manchester Literary and Philosophical Soctety 9, 107 (1851); also 

Philosophical Magazine (4) 14, 211 (1857). Tuis paper has been reprinted in The 

Scientific Papers of James Prescott Joule (Taylor and Francis, 1884), Vol. I, pp. 290- 

297. An excerpt appears in *A Source Book in Physics (1935), 255-257. 

5 Grundziige einer Theorie der Gase (Berlin, 1856); Poggendorff’s Annalen der 

Phystk und Chemie 99, 315 (1856). 

6 Poggendorft’s Annalen der Physik und Chemie 100, 353 (1857); 105, 239 (1858) ; 

115, 1 (1862); et seq. Translations of these papers appeared in the Philosophical 

Magazine (4) 14, 108 (1857); 17, 81 (1859); 23, 417, 512 (1862). Most of CLausius’s 

work on the theory of heat and of gases is collected in his Die Mechantsche Warme- 

theorie. For his contributions to the kinetic theory, see Die Kinetische Theorie der 

Gase (Wieweg, 1889-1891), Vol. ITT. 

1 Philosophical Magazine (4) 19, 19 (1860); 20, 21 (1860). Philosophical Transac- 

tions 156, 249 (1866) et ‘seq. See The Scientific Papers of James Clerk Maxwell 

(Cambridge University Press, 1890), Vols. I, II. 

8 Vorlesungen tiber Gastheorie, ed. 1 (1895); ed. 2 (Barth, 1910). A French trans- 

lation was published by Gauthier-Villars (1902).
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113. Model of an Ideal Gas. The fact that at very low pressures 
the physical behavior of all gases is represented by simple laws in- 
dicates that all have a common and simple structure, and thus the 

construction of a model of an ideal gas that would yield these laws 

became the first objective in the kinetic theory. In the light of the 

atomic-molecular theory of chemistry, and the experiments on the 

nature of heat which showed heat to be simply the energy involved 

in the random motions of molecules, the following postulates came 
to be formulated : 

1. A chemically homogeneous gas is composed of identical molecules 
which are moving in so random a fashion that the number 
moving in any one direction is on the average the same as that 

moving in any other. 
2. The actual space occupied by the molecules ts negligible in com- 

parison with the space between them. 
3. The molecules exert no forces on one another except when they 

actually collide; that is, their velocities are changed only by 
collision with other molecules or with the walls of the containing 
vessel. 

4, The impacts between molecules and with the walls must be perfectly 
elastic, for otherwise there would be a continual loss of energy as 
time progresses (Sec. 67). It would be better to say that, on 
the average, the impacts must be perfectly elastic; in the case 
of. diatomic molecules, for example, an individual collision 

may result in some of the translational energy’s being con- 
verted into rotational energy, thus apparently disappearing, 

whereas in other collisions the reverse effect will occur. 

114. Kinetic-Theory Interpretation of Gas Pressure. In 1848 
JOULE,! building on a sounder foundation of experimentation than 
had BERNOULLI and probably without knowing of the latter’s work, 
succeeded in deducing from the foregoing postulates an expression 
for the pressure of a gas in terms of the number, the speed, and the 
mass of the molecules. Imagine the gas to be confined in a rec- 

tangular box (Fig. 104) the lengths of whose sides are x, y, and z, 
and let m be the mass of each molecule. We will fix our attention 
upon some particular molecule having at the moment a velocity v, 

the rectangular components of which are »,, v,, and v, respectively. 
Suppose this molecule to impinge on, say, the top wall of the vessel. 

The normal force which it exerts on this wall depends upon its 
momentum in the Y direction only, that is, upon mv,. Since it re- 
  

1See footnote 4, p. 205.
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bounds with a velocity the component of which perpendicular to the 
top surface is — v,, the total momentum imparted normal to this 

surface in one impact is 2 mz,. 

Now this particle will make against the 
top wall v,/2y impacts in unit time, for », is 

the distance that it moves in unit time in the 
Y direction, and 2 y is the distance moved in 0 4 
this direction in the interval between suc- a x 
cessive impacts on the top wall. Thus the g * 
amount of momentum which it imparts to 

this wall in unit time is 2 mv,(0,/2 y), or Fra. 104, Method of ob- 2 . , taining the kinetic-theory 
mo,?/y, and this, by NEWTON’s second law, expression for pressure 
is the average normal force exerted by the 

molecule on the top surface. Since there are other molecules present 
in the vessel, the molecule considered will, of course, collide with 

them in its excursions to and fro. But, so long as the volume oc- 

cupied by the molecules is negligibly small, the number of impacts 

on the wall will be unaltered by these collisions; for when two per- 

fectly elastic spheres of equal masses collide, the effect is the same 
as though one particle had passed through the other without influ: 
encing it Gec. 65). 

The total normal force exerted on the top wall evidently is the 

sum obtained by adding the quantities mv,?/y for all the molecules, 

and the pressure P is this sum divided by xz, the area of the surface; 
thus 

Y 
  
  

            

p= %,2; 
XYZ 

or, letting N denote the total number of molecules in the box, V 

the volume xyz, and p the density, 

2 2 

The quantity (20,7) /N is the average of v,? for all the molecules, and 

if this average value be denoted by (#,?)a., then 

P=p (By? avs 

Now, for any one molecule, »? = 2,” + »,? + 2,7, from which it follows 

that the average of v? for all the molecules is given by (0?) = 

(027 )ay + (By? )av + (022)ay. Since the molecules are moving wholly at 

random, (027)a» = (0y?)ao = (027 )av, and therefore (0?)., = 3(,?)ev3 

hence P= 3 p0)ax . [155] 
As was shown by JOULE, this equation at once affords a means of 

calculating the quantity (#?).., which is called the mean-square speed
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of the molecules. This was the first molecular magnitude to be cal- 

culated quantitatively.1 It gave an astounding result. 

By extracting the square root of the mean-square speed, there 
results what is known as the root-mean-square speed. This quantity 

is defined by the equation V (?)a,= V(2v?)/N. It is somewhat 
greater than the arithmetic-mean speed, defined by va, = (2v)/N, be- 

cause the squares of numbers increase more rapidly than the numbers 
themselves. 

Example. Find the root-mean-square speed of hydrogen molecules at 

orc, 

Solution. Since the density of hydrogen at 0° C and 1 A, is, from physical 

tables, 8.99 x 10-5 g -cm~3, and since 1 A, = 1.0132 x 10° dyne - cm~2, 

3 x 1.0132 x 106 - VO en = BP [810182 x10 Oe os x io = 1.84 x 105 cm - sec!. 

115. Dalton’s Law of Partial Pressures and Graham’s Law of Dif- 

fusion. Among the various laws that any satisfactory theory of 
gases must be able to explain is DALTON’s experimental discovery ” 
that a mixture of gases having no chemical action on one another 
exerts a pressure that is the sum of the pressures which would be 
exerted separately by the several constituents if each alone occupied 
the same volume at the same temperature. The law obviously fol- 
lows immediately from our initial postulates (Sec. 118), inasmuch as 

the molecules are considered to be so small as not sensibly to ob- 
struct one another. Thus, if oxygen and hydrogen are in the same 
containing vessel, the molecules of one gas will move exactly as if 
those of the other gas were not present and will exert the same 

pressures as they would exert if occupying the vessel alone. One 

would expect this to be true only if the pressure were low, and indeed 

DALTON’s law is found to be in accord with experiment only in this 
case. 

The kinetic theory also explains a law of diffusion obtained ex- 

perimentally by THOMAS GRAHAM.’ This law states that the time- 
rates of flow of gases through a thin porous diaphragm, such as a 
  

1 A few attempts to estimate molecular distances had been made previously. Thus 

YOUNG in 1816 gave some really remarkable estimates based upon surface-tension 

data, in a paper on “Cohesion” written for the Encyclopaedia Britannica [reproduced 

in the Miscellaneous Works of Thomas Young (Murray, 1855), Vol. 1; see especially 

p. 461], Later this method was made more precise by LoRD RAYLEIGH [Philosophical 

Magazine (5) 30, 285, 456 (1890); Scientific Papers (Cambridge University Press, 
1902), Vol. ITI, p. 423]. 

2 Memoirs of the Manchester Literary and Philosophical Soctety 5, 535 (1802). 
3 Philosophical Transactions 186, 573 (1846).
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thin plate of graphite (Fig. 105), are inversely proportional to the 

square roots of the densities of the gases, if their pressures and tem- 

peratures are the same. Consider two gases A 

and B that have the same pressures and tempera- 

tures. Then, by Eq. [155], 

The Kinetic-Molecular Theory of Gases 

V NV Ca? dav Jaw _ VPs [156] 

V @B*)av VPA 

Since it can be proved that root-mean-square 
speeds are in the same ratio as arithmetic-mean 
speeds, this equation tells us that, to take a par- 
ticular case, hydrogen molecules move on the 

  

  

Fic. 105. A glass 
tube is stopped at 

average nearly six times as fast as chlorine mole- 

cules, for chlorine has a density nearly thirty-six 
times that of hydrogen at the same temperature 

and pressure. And since, at the same pressure 

and temperature, both gases contain the same 

number of molecules per unit volume, the hy- 

drogen will diffuse six times as rapidly as the 
chlorine. 

116. Kinetic-Theory Interpretation of Tempera- 

ture. Since p= nm, where n is the number of 

one end by a porous 
plug S, is filled with, 
say, hydrogen, and 
then is placed with 
its open end under 
aliquid. The liquid 
tises in the tube, 
and after a time it is 
found that the gas in 
the tube is no longer 
hydrogen but air 

molecules in a unit volume of the gas, Eq. [155] may be changed 
to read 

P=k nm?) [157] 
The average kinetic energy E., of each molecule of the gas is given 

by Ea» = 4 m(v?)a, and hence we may also write, instead of Eq. [157], 

P= 2nEw. [158] 

In order to introduce the temperature, use may be made of the 

empirically determined equation of state PV = RT, where V is the 
volume of one mole of the gas and FR is the gas constant per mole 

‘Sec. 105). Putting the value of P from Eq. [158] into this general 

gas equation gives 
2nEaqV = RT. [159] 

Now the product nV is equal to N,, the number of molecules in the 

mole. This number, N., known as the Avogadro number,! is evidently 

the same for all substances. Its numerical value, as determined by an 
indirect method depending on the evaluation of the charge on the 

  

1 The number of molecules per unit volume of an ideal gas at 0° C and pressure1 As 

_is called the Loschmidt number (symbol .). Its value can be computed easily; or 
see Appendix 13, Table K.
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electron, is (6.064 + 0.006) x 102% per mole. Putting the AVOGADRO 

number N, into Eq. [159], we have 

2N Ew = RT. [160] 

This important deduction not only tells us that the average kinetic 

energy of the molecules is a function of the temperature alone but is 
still more specific in that it shows it to be directly proportional to the 
absolute temperature. The kinetic theory thus makes it easy to un- 

derstand how the temperature of a body can be raised by doing work’ 

upon it, as when a gas is compressed, or how a heated body can itself 
do work. (What is the physical meaning given to the quantity RT 

by Eq. [160]?) 

EXAMPLE. (a) Show that Eq. [160] renders possible the calculation of the 

root-mean-square speed of the molecules of any ideal gas at a given 

temperature merely from.a knowledge of R, T; and the molecular 

weight of the gas. (b) Given that the atomic weight of helium is 

4.00, calculate the root-mean-square speed of its molecules at 0°C; 

(c) at 820° C. 

A form of Eq. [160] that will often be found in the literature is 
obtained by solving for E,,; thus 

Bay = RT, f161] 

[162] 

ic
o 

a 

where ko= Ny 

k, being another universal constant, which is known as the Boltzmann 
constant or as the gas constant per molecule. It will be noted that, 

from the point of view of the kinetic theory, the absolute zero on the 

thermodynamic scale is the temperature at which the gas molecules 

have no kinetic energy at all and therefore come completely to rest. 
Although actual gases liquefy, and even solidify, before reaching this 
temperature, the gas helium can be used in a gas thermometer to 
within a few degrees of the absolute zero. 

117. Equipartition of Energy. If two gases A and B are contained 
in different vessels but have the same temperature, it follows im- 
mediately from Eq. [161] that the average kinetic energy of the 
molecules, namely E.,; is the same for both gases; that is, 

& Ma (Ua? )av = $ Mp (OR? )av- [163] 

If the gases were mixed in the same vessel, there is no reason to 
suppose that the same condition would not hold, and in fact direct 
experiment shows that it does. It is concluded, therefore, that the 

molecules in a mixture of any gases have the same average kinetic 
energy of translation. Eq. [163] thus represents a particular case



10+ 119] The Kinetic-Molecular Theory of Gases 211 

of the very important law called the law of equipartition of energy 
or equal distribution of energy among the molecules. This law is 
applicable only when dealing with a large number of molecules. 

118. The Brownian Movement. One of the proofs of the law of 
equipartition of energy comes out of the study of Brownian move- 

ments. JEAN PERRIN, for example, studied under the microscope 

the motions of various kinds of colloidal particles suspended in 
water, and found that the mean kinetic energies of these particles 
were the same, and equal to that of a gas at the same temperature; 

this was true for particles varying in mass from 60,000 to 1. 

The highly interesting phenomenon known as the Brownian move- 
ment was first observed in 1827 by ROBERT BROWN,? a botanist, 

who found, to use his own words, that ‘Extremely minute particles 

of solid matter, whether obtained from organic or inorganic sub- 

stances, when suspended in pure water, or in some other aqueous 
fluids, exhibit motions for which I am unable to account and which, 
from their irregularity and seeming independence, resemble in a 

remarkable degree the less rapid motions of some of the simplest 
animalcules of infusions.” The cause of the Brownian movement was 
long in doubt, but with the development of the kinetic theory came 

the realization that the particles move because they are bombarded 
unequally on different sides by the rapidly moving molecules of the 
fluid in which they are suspended. The Brownian movement never 
ceases. “It can be seen in liquid occlusions in quartz, which have 
been sealed up for thousands of years. It is inherent and eternal.’ 3 
Here, then, is direct experimental evidence of the same sort of per- 

petual motion that we have assumed the molecules themselves to 
have. 

119. The Maxwell-Boltzmann Law and the Introduction of Statistics 

into Physics. In our discussion of the motions of molecules we have 
dealt with mean speeds and therefore have tacitly assumed that the 
molecules do not all move alike. The laws of elastic impact tell us 
that such an assumption is warranted, whether or not the gas as a 
whole is in a state of equilibrium; for, even if the speeds originally 

were equal, the encounters between the molecules would produce an 

  

1 Brownian Movement and Molecular Reality, tr. by F. Soddy (Taylor and F rancis, 
1910); also, Atoms, tr. by D. L. Hammick (Constable, 1923). 

2 BROWN’S original paper makes most interesting reading. It was published as a 

pamphlet with the title *A Brief Account of Microscopical Observations made in the 
Months of June, July and August, 1827, on the Particles Coniained in the Pollen of 

Planis; and on the General Existence of Active Molecules in Organic and Inorganic 

Boies. A portion of it is reproduced in *A Source Book in Physics (1935), pp. 251-255. 

3*J. Perrin, article “Brownian Movement,” Encyclopaedia Britannica, ed. 14,
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inequality. Since the velocities of the molecules are constantly 
changing in both direction and magnitude, it is obviously hopeless 

to attempt to follow their individual 
behaviors. Curiously enough, how- 

ever, it is just this complete disor- 

derliness of the motions, combined 

with the assumption that the num- 
ber of molecules is enormously large, 
that makes it possible to describe 

the behavior of a gas as a whole in 

terms of the motions of its mole- 

cules; for it is under such circum- . 

stances that one can apply the well- ° 
known laws of probability. 

The problem of how the veloci- 
ties are distributed among the vari- 

ous molecules was solved by the 
joint efforts of MAXWELL! and 
BOLTZMANN,” and the famous law 

developed by them is known as 
the Maxwell-Boltzmann law of the 
distribution of molecular velocities 

(Figs. 106 and 107). Its mathemati- 
cal treatment is beyond the scope 
of this text; but, to quote Max- 

WELL? himself, “the distribution of 

the molecules according to their 
velocities is found to be of exactly 
the same mathematical form as the 
distributions of observations ac- 

  

  

Pr
op

or
ti

on
 

of
 
mo

le
cu

le
s 

v 

Fie. 106. The Maxweti-BoLtzMANn 
distribution for a given temperature. 
Speeds, v, are represented by the 
abscissas, and the proportions of 

molecules having these speeds are 
represented by the ordinates. The 
curve has zero ordinate at the origin, 
and after passing through its maxi- 
mum it comes down asymptotically 
to the v-axis. The abscissa value cor- 
responding to the peak of the curve 
is called the most probable speed for 
the temperature represented. The 
arthmetic-mean speed comes a little far- 
ther out on the abscissa, and the 
root-taean-square speed still farther out. 
Tt can be shown that these three speeds 
are in the ratio 0.8165 : 0.9213: 1. 

Calculations show that about 0.4 of 
all the molecules have speeds that do 
not exceed the most probable speed. 
About one molecule in 10” Pas a 
speed that is five times the most prob- 
able speed, and about one in 2 & 104? 

has a speed that is ten times that value 

cording to the magnitude of their errors, as described in the theory 
of errors of observation. The distribution of bullet holes in a target 

according to their distances from the point aimed at is found to be 

  

1 Philosophical Magazine (4) .19, 19 (1860); also The Scientific Papers of James 

Clerk Maxwell (Cambridge University Press, 1890), Vol. I, p. 377. The portion of 

this paper which deals with the distribution of molecular velocities is reproduced in 
*A Source Book in Physics (1935), pp. 258-261. 

2 Wiener Sitzungsberichte 58, 517 (1868); 66, 275 (1872). Vorlesungen tiber 

Gastheorie, ed. 2 (Barth, 1910), Vol. 1, p.15; Legons sur la Théorie des Gaz (Gauthier- 

Villars, 1902), p. 15. 

3* Theory of Heat, ed. 10 (Longmans, Green, 1891), p.316. Chapter 22, on molecular 

theory, and also the first three chapters of the book are especially valuable for be- 

ginners.
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of the same form, provided a great many shots are fired by persons of 

the same degree of skill.’’ This introduction of statistical methods 
into physics is historically a step of 
the greatest importance and sig- 
nificance. In the hands of Max- 
WELL, BOLTZMANN, and WILLARD 

GIBBS! (1839-1903), it has led to 
the development of statistical me- 

chanics. Today statistical meth- 
ods are proving to be a powerful Fis. 107. The Maxweti-Bo.tzMann 

: distribution for each of two tempera~ 

means of attacking many of the ures. The areas under the two curves 
most fundamental problems of ae equal ; that is, both curves refer to 

i i the same total number of particles. It 

physica’ science. Free Path. In will be noticed that even ft 773° K an 

Sec. 114 we sew how the kinetic fprsuble roorignol hemoleus 
theory leads to the result that the able speed for 1273° K 
speeds of gas molecules are of the 
order of magnitude of a kilometer per second. This was very puzzling 
at first in view of the fact that the time required for the odor from, 
say, an open bottle of ammonia to travel 

a few meters across a room free from air Oo PP 

1273° K 
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currents is a matter of hours rather than of i oo 

fractions of a second. CLAUSIUS saw that i fo oO 
the explanation lay in the collisions of the oF ¥ oO 9 

molecules: a molecule of ammonia cannot Bro 
move very far in one direction without 6 ‘Sy “SO 
striking a molecule of air, and the succes- SON ° 
sion of unequal zigzag paths which it thus 206 a) 5 Oo 
traverses is such that it might take.several if O 
hours to travel a few meters in any given oO ff 

oO 4 0 
direction. CLAUSTIUS proceeded to deduce a 

formula for the mean distance that a mole- . Fic. 108. Method of deter- 

cule travels between collisions. This dis- mining the mean free path 
tance he called the mean free path, and it @ molecule that has been 
has come to be an important quantity in > vavionary ee cute . die 
molecular theory. Its meaning is illustrated tributed at random 
by the following considerations. 

Assume a molecule to be a sphere of diameter d, and imagine it to 

be projected into a group of similar molecules which are at rest and 
distributed at random (Fig. 108). The projected molecule will 

  

1 Elementary Principles in Statistical Mechanics (Scribner’s, 1902); reprinted in 

The Collected Works of J. Willard Gibbs (Longmans, Green, 1928), Vol. IT.
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collide with any other molecule whose center lies within the distance d 
of the line drawn through the center of the projected molecule in the 

direction of its motion. In a time / the molecule travels a distance 

Vat, where Ua, is the arithmetic-mean speed appropriate to the tem- 

perature of the gas; and, since the linear dimensions of the molecules 

are assumed to be negligibly small compared with the distances be- 

tween them, the number of collisions in the time ¢ is equal to the 

number of molecules whose centers lie in a cylinder of volume 7d70,,t. 

If » is the number of molecules in unit volume, the number of col- 

lisions made in the time ¢ by the projected molecule is therefore 
nrd2vept. Since the molecule traverses a total distance 7.é in this 

time, its mean free path A is given by 

oo 
nid? 

It is easy to see that this simple calculation cannot be exact, for 
it has been made on the assumption that all the molecules but one 
are at rest. By taking into account the fact that all the molecules 
are moving, thus increasing the chance of collisions, and also that 

their speeds are unequal, MAXWELL fourid the mean free path to be 

given by the expression 

\=—_l_.. 
nrevV2 

Thus the mean free path is inversely proportional to m and therefore 
to the density p of the gas. Obviously, if both \ and 7 are determined 
experimentally, Eq. [164] permits the calculation of molecular diam- 

eters. If, however, 2 is not known (and of course in the early days 
of the kinetic theory it was not), then a second equation connect- 
ing n and d must be obtained before either can be calculated.t 

As a result of extensive experiments on the motions of electrons 
through gases, the predictions of kinetic theory as to mean free paths 
and the distribution of molecular velocities have been verified to an 
accuracy of better than one part in a thousand. In passing, it should 

be remarked that, according to more modern theory, each atom of 

a gas molecule consists of a positively charged nucleus surrounded 

by negative electrons, and it is the forces proceeding from these elec- 
trical charges that may be regarded as acting between the molecules 
to divert them from their rectilinear paths. The deviations become 
larger the closer the mutual approach of two molecules, and hence 
the molecular paths, although still zigzag in nature, are without any 

sharp corners. Moreover, it is now improper to speak of the diam- 

[164] 

  

1See Prob. 15 at the end of this chapter.
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eter of a molecule as though it were a rigid sphere. The quantity d 
in Eq. [164] is therefore better defined as the distance of nearest ap- 
broach of the centers of two molecules in an impact; this obviously 
would equal the diameter of one of the molecules if the molecules 
were rigid spheres and came into actual contact. The term diameter 
of a molecule is, however, a convenient one, and for this reason we 
shall continue to use it. 

Methods have recently been developed for making direct measure- 
ments of mean free paths,’ but originally definite values for this 
quantity, and therefore for the diameters of the molecules, had to 
be obtained indirectly from studies of the phenomena of viscosity, 
of diffusion, and of the conduction of heat. These phenomena pro- 
vide three distinct means of evaluating 4, and the comparatively 
good. agreement of the results obtained was regarded as strong evi- 
dence for the validity and accuracy of the methods of the kinetic 
theory (Table V). 

TABLE V - Molecular Radii Calculated from the Kinetic Theory of Gases* 

  

  

From the co- | From the co- From conduc- From devia- 
Gas efficient of efficient of tion of heat tions from 

viscosity diffusion BOYLE’s law 

Hydrogen . . | 136x10-8 | 136x 10-8 | 136x10-8 | 1.27% 10-8 
Helium ... 1.09 1.10 0.99 
Nitrogen .. 1.89 1.92 1.89 0.78 
Air... 1.87 1.87 1.87 1.66 
Oxygen... 1.81 1.82 1.81 

Carbon dioxide | 2.31 2.19 2.41 171               

121. Viscosity. By viscosity is meant the internal friction that 
arises when contiguous layers of a fluid are in bodily motion relative 
to one another. Except for the fact that it is a nonconservative force 
(Sec. 53), so that energy spent in doing work against it is changed 
into heat, this viscous resistance to fluid motion in no way resembles 
friction between solids (Sec. 57). 

Let Fig. 109 represent the traces of two imaginary parallel planes, 
As apart, described in a fluid that is flowing in parallel layers from 
  

1 For a description of the elegant method afforded by the use of molecular beams, 
see, for example, R. G. J. Fraser, Molecular Rays (Cambridge University Press, 1931), 
Chap. 2. 

2 Extracted from J. H. Jeans, The Dynamical Theory of Gases, ed. 4 (Cambridge 
University Press, 1925), Chap. 14. The radii are given in centimeters. This table, 
however, somewhat overdoes the consistency of the observational data.
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left to right. Let the layer of fluid in the lower plane be moving with 

a speed u while that in the upper plane is moving with a larger speed 

u-+ Au. The quantity Au/As is evidently the average change in the 

speed of flow per unit distance in a direction perpendicular to the 

layers, and the limit du/ds which this approaches as the interval As 

approaches zero is called the velocity gradient 

ata point inthisinterval 4 7° © —_— 

The fluid above the plane 00’ in Fig. 109 ------y—-——> #+du 

is flowing more rapidly than the fluid below 27~~ 4° > 

it and therefore exerts on the latter a tan- --_.O.__. O- 

gential force f tending to speed it up; at Hie. 109. Velocity gradient 

the same time the fluid above the plane 00’ in a fluid 

is acted upon by a retarding force of equal 

magnitude. This force f is evidently proportional to the area A of the 

plane 00’; and, since it is called into play by the relative motion of 

the parts of the fluid above and below the plane, it is natural to 

assume, as did NEWTON, that it is also proportional to the velocity 

gradient du/ds at 00’. This assumption cannot be justified by direct 

experiments, but very extensive experimental tests of predictions 

based upon it afford indirect proof of its validity. It follows that 

fana . [165] 

where 7 is a proportionality constant, called the coefficient of vts- 

cosity. The value of 7 is found to depend on the nature of the fluid 

and on its temperature. For gases its value increases with tempera- 

ture, whereas for most liquids it decreases very rapidly. 

It is to be recalled that friction between solids is, within wide 

limits, independent of the speed with which one body slides over the 

other (Sec. 57). Since this is not at all true in the case of viscosity, 

there must be a fundamental difference in the nature of these two 

kinds of resistance. 

EXAMPLE. Show that the definition of 7 given by Eq. [165] is in accord 

with the following one, which appears in MAXWELL’s Theory of Heat: 

“The coefficient of viscosity of a substance is measured by the tan- 

gential force on the unit area of either of two horizontal planes at the 

unit of distance apart, one of which is fixed, while the other moves with 

the unit of velocity, the space between them being filled with the 

viscous substance.” 

122. Kinetic-Theory Explanation of Viscosity in Gases. In Fig. 110 

let OO’ again represent the trace of an imaginary plane in a gas 

which is flowing from left to right and let the vectors which are 

drawn parallel to this plane represent the velocities of flow of the
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layers relative to the velocity of the layer 00’. The molecules above 
OO’ have a greater velocity of flow than those below it. Because they 
also possess a random heat motion, some of these molecules will cross 
OO’ from the upper to the lower side, and an equal number will pass 

upward to replace them. Thus the layer above 00’ is continually 

losing the momentum associated with its flow, and that below is con- 

tinually gaining it. This will tend to stop the relative motion of 
adjacent layers of the gas; in other words, 
as a result of this transfer of momentum 
there exists a tangential force on the plane ——-—------—»<—-—-——- 
00’, and it is this which constitutes the _? "| 
viscous drag. Since the energy of flow of -—-~<———--—-—-~~~—~~— 

the gas as a whole is being changed con- 2“ TTT TTT 
tinually into the energy of random motion Fy, 110. Theory of the vis- 
of the molecules, the process is accom- cosity of a gas 

panied by the appearance of heat. 
It will be supposed that the bodily speed of flow u is very small in 

comparison with the random speed #,, of the molecules. Owing to 
the latter the molecules are of course moving in all possible directions, 

but the effects in the gas are the same as if, in each unit volume, 2/3 
of them were moving with a speed »,, normally to 00’ while the other 
two groups of 7/3 each were moving in mutually perpendicular direc- 

tions parallel to this plane. Only the first group of /3 molecules 
per unit volume crosses 00’, and of these the number per unit 

volume moving downward through the plane OO’ is ”/6 and the 
number moving upward is also 7/6. The total number of particles 
that, in unit time, cross the plane from the upper to the lower side 
is equal to the number moving in this direction that are contained in 
a column of height #,, and cross-sectional area A, where A is the area 

of the plane; this number is 4 #v,,A. An equal number are moving 
upward through the plane in unit time. Now these molecules thus 
crossing the plane because of their heat motion began their paths at 
different depths, but on the average they come from a distance from 
00’ which is equal to the mean free path 4 without suffering an en- 
counter on the way. Hence their mean horizontal speed of flow upon 

arrival at the plane is \ du/ds, where du/ds is the velocity gradient 

perpendicular to 00’. Therefore each molecule carries with it mo- 
mentum md) du/ds, and the total momentum carried over in unit 
time is $70.A-md du/ds. Simultaneously there pass through the 

plane in the opposite direction 4 vv.,A molecules, each of which also 
comes from an average distance ) from the plane, and the total 

momentum carried over in this direction is — i mtq~A- md du/ds. 
Therefore the layer of gas above 00’ loses in unit time the momentum 

ut— 
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4 nv.A-mddu/ds, and this is the tangential force f exerted on the 
plane. By solving for f/A and substituting in Eq. [165], one obtains 

finally 1 =4 pte, | [166] 
since nm is the density p of the gas. 

A more exact calculation,! made by BOLTZMANN and by TalIT on 

the basis of the MAXWELL-BOLTZMANN law of distribution of molecu- 
lar velocities, gives 1 = 0.35 pay d, [167] 

where #,, is the arithmetic-mean speed of the molecules. The con- 
stant appearing in this equation is not accurately known, however. 

Since \ is inversely proportional to p (Sec. 120), it follows that 
pd in Eq. [167] is independent of the density, and hence that the 
coefficient of viscosity 7 for a given gas is independent of the pressure 

to which the gas is subjected. Thus, concluded MAXWELL, the oscil- 
lations of a torsion-pendulum in a gas:should be equally damped by 

gaseous friction, however low the pressure might be. This conclusion 
was so contrary to the general opinion of physicists at the time that its 

experimental confirmation, which took place soon afterward, formed 

one of the most brilliant successes of the kinetic theory in its earlier 
history.2 Later experiments have shown that at very low pressures, . 
when the mean free path is comparable with the dimensions of the 

vessel enclosing the gas, the viscosity is no longer independent of 

pressure. That there is also an upper pressure limit beyond which the 

law no longer holds may also be inferred from the method used in 

deducing the law. 
It is left to the student to show that Eq. [167] also. leads to the 

conclusion that the coefficient of viscosity of a gas increases with 
rising temperature in linear ratio with the square root of the absolute 
temperature. Actually, experiment shows that 7 increases more 

rapidly than would be the case if this law held.? 
123. Diffusion in a Gas. The phenomenon of gaseous diffusion can 

be treated in a manner that is very similar to that employed with 
viscosity, except that we no longer investigate the transfer of mo- 
  

1See O. E. Meyer, The Kinetic Theory of Gases, tr. by R. E. Baynes (Longmans, 

Green, 1899), p. 444. 

2 See footnotes 1 and 2, p. 225. 

3 This result is predicted by classical kinetic theory when account is taken of the 

forces of attraction between the molecules, which will pull in a slowly moving molecule 

but not a fast one [for example, see W. Sutherldnd, Philosophical Magazine (5) 36, 

507 (1893)]. It has become evident, however, that to make the most progress in 

accounting for the many new results of this type revealed by present experimental 

methods it is necessary to replace classical theory by the more fundamental methods 

of attack furnished by modern quantum theory.
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mentum across the plane 00’, Fig. 110, but rather the transfer of 
mass. It is a matter of experience that, if the density of a gas is 
not uniform, diffusion will take place from regions of greater density 
to those of lesser density, and will not cease until the density is 
everywhere the same. It follows that the time-rate of flow of the 
diffusing gas at any point in any direction must depend on the 
densily gradient at that point and in that direction. In the case of 
steady diffusion in a direction perpendicular to the plane 00’, it 
is evident that the total mass which diffuses in unit time, dM/di, is 
proportional to the area A of the plane 00’, and it is simplest to 
assume that it is also proportional to the density gradient, — d p/ds, 

fe 1 at 00’; that is, dM dp, 

“ae MAG’ 
where u is a constant of proportionality, called the coefficient of dif- 
fusion. 

By means of reasoning similar to that employed in obtaining the 
kinetic interpretation of viscosity (Sec. 122), it is possible to show 

[168] 

that dM/dt = —4v.,Am) dn/ds, where n is the number of molecules 
in a unit volume “of the gas, and hence that 

=F OwA. [169} 

As in the case of Eq. [166], this result is not based on an exact cal- 
culation. 

It follows from Eq. [169] that the coefficient of diffusion, unlike 
the coefficient of viscosity, is dependent upon the pressure of the gas. 

Also, at a given pressure, » varies as T?, a result which experiments 

with actual gases show to be inexact. 

124. High Vacuum. Whenever the domain of experiment is ex- 
tended, unexpected and often startling new facts are likely to come 
to light. There is no better illustration of this important truism 
than that offered by the.extension of the experimental domain to 
regions of very low pressures, an advance which led to-the discovery 
of the electron, of x-rays, and of so many other new phenomena that 

at the present time experimental methods involving high-vacuum 
technique predominate in most physical laboratories. 

The study of gases at reduced pressures has presented kinetic 

theory with many new and difficult problems, for it has been found 
that all the laws describing the behavior of gases in motion change 
completely at very low pressures. Indeed, we have already learned 

how the coefficient of viscosity varies markedly at low pressures, al- 

though ordinarily it is independent of the pressure (Sec. 122), and 

it is found that.this is also true of the thermal conductivity of a gas.



HE five years 1860-1864, during which Maxwext was Professor of Natural 

Philosophy in King’s College, London, were perhaps the most fertile in his 

career. It was during this period that he produced his Bakerian lecture on “The 

Viscosity of Air at Different Temperatures and Pressures’? and two other im- 
portant papers on the kinetic theory of gases. 

Maxwe.t’s experiments on the viscosity of gases were carried out in the large 
garret of his residence (8 Palace Gardens Terrace, Kensington). In order to raise 
the temperature of the room, great quantities of water were boiled in open kettles 

over a large fire, the exhausting work of acting as stoker being performed by Mrs. 
Maxwell. Later the garret was cooled by bringing in great cakes of ice. 

The following amusing incident of Maxwexu’s stay in London is related by 
Lewis Campbell in The Life of James Clerk Maxwell : 

“On one occasion he [Maxwell] was wedged in a crowd attempting to escape 
from the lecture theatre of the Royal Institution, when he was perceived by Faraday, 

who, alluding to Maxwell’s work among the molecules, accosted him in this wise 

— ‘Ho, Maxwell, cannot you get out? If any man can find his way through a crowd 
it should be you.’”’ 

> BortzMann compared Maxwety’s memoir “On the Dynamical Theory of Gases’ 
to a musical drama as follows: 

“A mathematician will recognize Cauchy, Gauss, Jacobi, Helmholtz, after read- 

ing a few pages, just as musicians recognize, after the first few bars, Mozart, 

Beethoven or Schubert. Perfect elegance of expression belongs to the French, 
though it is occasionally combined with some weakness in the construction of the 
conclusions; the greatest dramatic vigour to the English, and above all to Maxwell. 

Who does not know his Dynamical Theory of Gases? At first the Variations of the 

Velocities are developed majestically, then from one side enter the Equations of 
State, from the other the Equations of Motion in a Central Field; ever higher sweeps 

the chaos of Formulae; suddenly are heard the four words: ‘putn=5.’ The evil 
spirit V (the relative velocity of two molecules) vanishes and the dominating figure 

in the bass is suddenly silent; that which had seemed insuperable being overcome 
as by a magic stroke. There is no time to say why this or why that substitution was 
made; who cannot sense this should lay the book aside, for Maxwell is no writer 
of program music who is obliged to set the explanation over the score. Result after 
result is given by the pliant formulae till, as unexpected climax, comes the Heat 

Equilibrium of a heavy gas; the curtain then drops.”’ 

  

 



  

© PLATE 33 6 
  

  

  

  
Some Classical Apparatus 

at the Cavendish Laboratory, 

Cambridge, England 

Maxwe t's apparatus for measuring the viscosity of air at different pressures is 
shown on the right. A phonetic wheel of Rayteicu’s stands to the left on the table. 

The coils shown are those used in some of the classical determinations of the ohm.
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The physical reason for these anomalies is that in a high vacuum a 

gas molecule makes many more impacts with the solid walls of the 
containing vessel than with other gas molecules, whereas at ordinary 

pressures the impacts of a molecule with the walls are very infre- 

quent compared with its impact8 with other molecules. Evidently 
the physical criterion of whether a gas is to be described by the laws 
holding for low pressures or by those holding for ordinary pressures 

is given by the length of the mean free path as compared with the 
linear dimensions of the vessel in which the gas is contained. 

Although the first air pumps were made about 1650 by Orro von 
GUERICKE,! the greatest progress in high-vacuum technique has come during 
the last twenty years with the investigations of 

electronic emission and the application of elec- 

tronic devices in radio and other fields. Modern 

vacuum pumps may be divided into two classes: 
those which produce a vacuum as low as about 

10-3 mm of mercury and which are usually 

called fore pumps because they are widely used 
to produce the preliminary vacuum required 
before pumps of the second class can come into 
operation; those which produce a vacuum as 
low as 10-7 mm of mercury and which are re- 
ferred to as high-vacuum pumps. Many different 

types of fore pumps have been developed, but 

most of the modern ones are rotary pumps which Fig. 111. The Langmuir 
work immersed in oil. The high-vacuum pumps mercury-vapor condensation 

now in use are modifications of the GAEDE dif- pump. Original single-stage 
fusion pump and the LANGMUIR condensation glass form 
pump, both of which operate with no moving 

parts larger than gas molecules.? In. the form of high-vacuum condensation 
pump shown in Fig. 111, mercury is heated in the boiler 6, and the stream 
of evaporated mercury passes down through the nozzle O, is condensed into 
drops in a tube surrounded by a water jacket, and then returns through f 

  

  

1 Experimenta Nova (ut vocantur) Magdeburgica de Vacuo Spatio (Amsterdam, 

1672). There is a German translation of Book III in Ostwald’s Klasstker der Exakten 

Wissenschaften, No. 59 (Engelmann, 1894). The first published account of von GUE- 

RICKE’S air pump, however, is by K. Schott in his Mechanica Hydraulico-Pneumatica 

(1657) ; it was probably this work that stimulated BoYLE to employ HooKE to con- 

struct the pump described in New Experiments Physico-Mechanicall (Oxford, 1660) 
2 For detailed descriptions of various pumps and the methods of producing and 

measuring very low pressures, consult S$. Dushman, Preduction and Measurement of 
High Vacuum; L. Dunoyer, Vacuum Practice; F. H. Newman, Production and Meas- 

urement of Low Pressures; G. W.C. Kaye, High Vacua. For good, brief accounts 

of vacuum technique, see *E. N. da C. Andrade, article “Vacuum,” Encyclopaedia 
Britannica, ed. 14, and *$. Dushman, Journal of the Franklin Institute 211, 689 (1931).
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to the boiler. As the high-speed mercury particles rush by O, they collide 

with the gas molecules diffusing in through V from the system to be ex- 

hausted and impart to them a velocity component. The gas thus removed 
from the vessel collects in f at a pressure much below that of the atmos- 

phere, though this pressure is still relatively high, and from there a fore 

pump removes it. For rapid work, and when it is desirable to operate with 
a relatively high fore vacuum, use is often made of two-stage and three-stage 

mercury-vapor pumps, in which the stages are arranged in series. 
In order that mercury vapor from the pump may not reach the exhausted 

system, some form of trap is inserted between the two (Fig. 111). The trap 
may be cocled by liquid air or solid carbon dioxide, or it may be coated on 

the inside with an alkali metal, which strongly absorbs the mercury vapor. 
Recently condensation pumps have been constructed in which the mercury 

is replaced by one of the phthalates, for example butyl benzyl phthalate; 
with such a pump it is not necessary to surround the condenser with a water 
jacket, and, for many purposes, the refrigerant trap can also be eliminated. 

To obtain the very lowest pressures, a liquid air trap, which may contain 

activated charcoal, must be used to remove condensable vapors. The glass 
parts of the whole apparatus must be subjected, during evacuation, to pro- 

longed baking at as high a temperature as the glass will stand without col- 

lapsing; this removes water and other vapors from the walls. If metal parts 
are present, the gases must be eliminated from them by high-frequency 
heating during exhaust or by some other convenient method. If an apparatus 
is to be sealed off from the pumps, a small amount of some substance known 

as a getler is introduced into it; after the seal-off the getter removes residual 

gases either by chemical action or by adsorption. It should be pointed out 
that the term adsorption is not to be confused with absorption. When gases 

condense on a surface, the phenomenon is referred to as adsorption. If they 

actually enter the substance as a solute, the process is known as absorption. 

Gases may also, of course, combine chemically with a substance. 
For measuring pressures down to 10-4mm of mercury the McLeod 

gauge (Fig. 95) is the standard instrument. The accuracy of this type of 
gauge depends upon the closeness with which the gas in question is described 
by BoyLe’s law. (Why?) It has the great defect, as we shall presently see, 
of not indicating the pressures of condensable gases, such as water. In order 
to be able to measure very low pressures, special gauges have been devised 

which depend for their action on the anomalous behavior of gases at low 

pressures. Four different types of gauges, which depend respectively on vis~ 

cosity, thermal conduction, ionization, and the radiometer effect will be men- 
tioned. Viscosity gauges make use of the law that at low pressures the 

viscosity is proportional to the pressure. The conductivity, or Pirani-Hale, 
gauge is based on the similar relation existing between thermal conductivity 
and pressure; this gauge is much like an electric lamp, the voltage required 

to keep the filament at constant temperature being a measure of the change 
of the heat conductivity of the gas with pressure. The third type of gauge, 
the ionization gauge, is practically a thermionic valve; it utilizes the law 
that at low pressure the ionization produced in a gas by a definite electron
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current is proportional to the pressure. The fourth type, the Knudsen ab- 

solute manometer, is unique in that its readings do not depend on the nature 
of the gas; it is based on the so-called radiometer effect, or mechanical re- 
pulsion between two surfaces of unequal temperature when gases at low 

pressure lie between them, a phenomenon that is independent of the atomic 
weight of the gas. 

o 

EXPERIMENT XA. VAPOR DENSITY AND 

MOLECULAR WEIGHT 

The object is to determine the ratio of the densities of carbon 
tetrachloride ! and air by the method developed by J. B. A. Dumas,? 

and thus to determine the molecular weight of carbon tetrachloride. 

In Dumas’s method for determining vapor densities, a glass bulb of 

known volume V is weighed, first when full of air at pressure P,, tem- 

perature T,, and then when full of vapor at pressure P2, temperature 

Tz. In these weighings a closed bulb of the same volume as the 

density bulb is used as a counterpoise. (Why?) If the difference 
in mass, as determined by the difference between the first and second 
weighings, be represented by AM, this quantity being of course 

negative if the second weight exceeds the first, then evidently 

Via, — Vp», = AM, or Pos __ 1 AM | 

Pay Vea, 

where pa, is the density of air at P:, 71, and p,, is the density of the 
vapor at Pe, Tz. In Eq. [170] the expansion of the bulb is neglected, 

because in the determination that follows it will not affect the result 
by more than a small fraction of 1 percent. 

Now, the quantity that is sought in this experiment is the density 

of the vapor in terms of the density of air at the same temperature 

and pressure, namely, the ratio p,,/pc,. This means that Eq. [170] 
must be modified by taking into account the equation that expresses 

the relation between the densities of air at P;, Ti, and at Ps, Te; 

namely, 

[170] 

a, Fi T 

By combining this equation with Eq. [170], the student can easily 
show that the required ratio p,,/pa, is given by 

Pos 1 — pM) a 172 
Paz ( V po, Ps Ty (172) 

  

1 Instead of carbon tetrachloride, the student may find it desirable to determine 

the relative vapor density of water-free alcohol or of ether. 

2 Annales de Chimie-et de Physique (2) 88, 337 (1826).
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All the quantities in the right-hand member of this equation, ex- 

cepting pa,, are measured directly in the experiment. The quantity 
Pa; can be obtained either from Eq. [171] and the result of Exp. VITIA 
or from tables.! 

The accepted value of the density of air relative to oxygen is 

0.90469, and the molecular weight of oxygen is 32. Hence, if the ratio 

Pv;/Pa, aS determined by Eq. [172], be multiplied by 0.90469 - 32, 

the density of the vapor is obtained in terms of oxygen as 32. This 
is the quantity which, according to the law of AVOGADRO (Sec. 112), 
should agree with the molecular weight of the vapor. 

Technique and Measurements. Tables show that the maximum 

pressure exerted by carbon tetrachloride vapor at ordinary tem- 

peratures is less than atmospheric pressure. Consequently it is im- 
possible, under ordinary atmospheric conditions, wholly to replace 

the air in the density bulb by the vapor. This 

can be done easily, however, at any tempera- 

ture at which the maximum pressure of the 

carbon tetrachloride vapor is more than atmos- 
pheric. Hence use is made of the following 

method, which was employed by Dumas as 

early as 1826. Since parts of this method do 
not differ in principle and technique from Exp. 

VIII, the latter experiment should be reviewed a d 
ue termining the density 

at this time. of a vapor by the method 
a. The density bulb is a thin glass flask, fur- of Dumas 

nished with a narrow stem which has been 
drawn to a capillary tip o, Fig. 112. Carefully dry the bulb by re- 
peatedly warming and exhausting it through a calcium chloride 
tube. Then weigh the bulb upon an analytical balance, making use 
of the counterpoise and following the directions for the first weigh- 
ing given in Exp. VIIJa. Read the barometer height P, and the 
temperature 7, of the air near the bulb. 

b. Introduce into the bulb about 10 ml of pure carbon tetrachloride 

by heating the bulb slightly and then letting it cool with its tip 
beneath the liquid. Heat a water bath to about 75° C, a temperature 

which is below the boiling point of carbon tetrachloride, and immerse 
the bulb in it with about 2 cm of the stem protruding. Support the 

bulb in this position by means of a three-pronged wire holder. Cover 
the bath, heat the water to boiling, and boil it steadily until the 
carbon tetrachloride vapor no longer escapes, as shown by its failure 

to deflect a flame applied at the tip. With the water boiling steadily, 

a 

Fic. 112. Bulb for de- 

  

1 Appendix 13, Table D.
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gently heat the exposed stem by means of a second burner in order 
to vaporize completely any liquid carbon tetrachloride that may have 
condensed in it. Then, with the water in the bath boiling continu- 
ously, so that no air will be forced into the bulb, quickly seal the tip; 
this is best done by applying a fine blowpipe flame to the stem just 

above the surface of the bath, heating to softness, and then drawing 
off the tip. Carefully preserve this drawn-off tip. 
Remove the bulb from the bath, dry it thoroughly, and test for 

a leak by allowing the condensed carbon tetrachloride in the bulb 
to run down to the tip of the stem and observing whether or not fine 
bubbles enter the bulb. After the bulb has come to the temperature 

of the balance case, weigh it together with the drawn-off tip. 

Read the barometer to obtain Pe, the pressure of the vapor in the 

bulb at the time of sealing the stem. Determine 72, the temperature 

of the vapor at the time of sealing the stem, by finding from tables 
the boiling point of water for the observed barometric pressure.t 

c. To obtain the volume of the bulb, weigh it upon trip scales, 
then crush the capillary tip with a pair of cutting pliers under water, 

and weigh the bulb full of water upon the trip scales; obtain the 
density of the water from tables? and compute V. If the bulb does 
not completely fill with water, the filling may be completed with the 

help of a pipette; it is true that Eq. [172] is not then rigorously 

correct, but unless the bubble is quite large the error introduced will 

be negligible. 
d. Compute the ratio p,,/pe, and, from this, the density of the 

vapor in terms of oxygen as 32. Compare the latter value with that 
of the molecular weight of carbon tetrachloride as computed from 
the formula CCl,. 

1. State as clearly and concisely as possible the conclusions which you 
are able to draw from this experiment. 

2. Is it reasonable to suppose that the percentage difference of your 
determination of the molecular weight from that corresponding to the 
formula CCl, is due mostly to deviation of the vapor from the laws of 

ideal gases? 

8. How could Eq. [170] be modified so as to take into account the ex- 
pansion of the density bulb? Can you justify the statement that neglect- 
ing the expansion of the bulb will not affect the final result by more than 
a small fraction of 1 percent? 

4, Estimate the percentage error in the vapor density caused by leav- 
ing in the stem of the bulb 0.01 g of liquid carbon tetrachloride at the 
time of sealing. 
  

1 Appendix 13, Table E. 2 Appendix 13, Table B.



Exp. XB] The Kinetic-Molecular Theory of Gases 225 

EXPERIMENT XB. THE COEFFICIENT OF VISCOSITY 
OF AIR 

The classical experiments of O. E. Meyer! and of MAXWELL? on 

gaseous viscosity were made by observing the damping of the 

torsional oscillations of a disk suspended in the gas. This method 
involves serious difficulties of a mathematical nature, and in recent 

work methods have been employed that are based on observations 

of the flow of a gas through a channel or tube. The idea of using tubes 

is not new, however, for THoMaS GRAHAM® used a capillary-flow 

method in the first experiments ever made on the viscous resistance 

of gases. In the present experiment on air we will employ a modi- 
fication of a simple form of capillary-flow viscometer devised by 
A. O. RANKINE.4 The procedure consists essentially in measuring 
the volume of air that is forced through the capillary tube in unit 

time owing to a difference in pressure of known amount between the 
two ends of the tube. 

Experiments show that when a fluid moves at a constant rate 
through a narrow tube, the lines of flow are parallel to the axis of 
the tube, provided a certain critical speed of flow is not exceeded. 
Moreover, if one imagines a very large number of cylinders to be 

described in the fluid about the axis of the tube, the motion is found 

to consist in the slipping of cylinder through cylinder, like the slip- 
ping of the tubes of a pocket telescope through one another. 

Let us first consider the steady flow of a Itquid through a narrow 

tube; this case is simpler to treat than that of a gas, since liquids are 

almost incompressible, and it is also a case of great practical im- 

portance. If an cmaginary cylinder of radius r be described about the 
axis of the tube, the velocity gradient du/dr (Sec. 121) obviously 

will be the same at every point of this cylinder, and hence the 

viscous drag exerted on the liquid inside the imaginary cylinder by 
the slower-moving liquid outside of it is given by 

du 
f=q- 2a. {173} 

  

1 Poggendorff’s Annalen der Physik und Chemie 118, 55, 193, 383 (1861); 125, 177, 

401, 564 (1865); 143, 14 (1871). See also Meyer’s The Kinetic Theory of Gases, tr. by 

R. E. Baynes (Longmans, Green, 1899), pp. 181-188; this book, though old, re- 

mains one of the best treatments of the kinetic theory ever written. 

2 Proceedings of the Royal Society 15, 14 (1866); Philosophical Transactions 154, 

249 (1866); also The Scientific Papers of James Clerk Maxwell (Cambridge University 

Press, 1890), Vol. II, p. 1. 

3 Philosophical Transactions 186, 573 (1846); 139, 349 (1849). 

4 Proceedings of the Royal Society 88, 265 (1910).
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where / is the length of the tube. This result is derived directly from 
Eq. [165] by supposing that the cylindrical surface is made up of a 
large number of plane strips. 

The pressure is greater where the liquid enters the tube than 
where it leaves the tube by some amount AP, and thus the liquid 

within the imaginary cylinder is subject to an accelerating force of 

magnitude wr? AP. But since the flow is assumed to be steady, the 
total force acting upon the liquid in the cylinder must be zero, or 

ne Qa = ar AP 
dr 

By solving this equation for du and integrating, we obtain 

AP, “= Tal 1? + k, [174] 

where & is the constant of integration. Now there is weighty evi- 
dence in favor of the assumption that very little or no slip occurs 

between the walls of the tube and the liquid immediately in contact 
with them. In other words, if R be the radius of the tube, it may be 

assumed that u = 0 when 7 = R, and Eq. [174] becomes 

=— a (R? — 72), [175] 

This equation gives the speed of the liquid at a distance r from the 

axis of the tube. 

It now becomes necessary to obtain the expression for V/t, the 
volume of liquid that crosses any section of the tube in unit time. 
Consider two of the imaginary cylinders which are of nearly equal 
radii, r and r+ dr, and which therefore cut off an annular strip of 
area 2 wr dr from any cross section of the tube. The volume of liquid 
that crosses this strip in unit time, namely, the differential of V/t, 

is evidently 
  a(T) =u: 2ardr=— GOP (R? — 12) dr; 

t 27 

V__ AP 2 72 therefore ; Sal wort 7(R? — 1”) dr, 

V__ wRAP 
or 1 78a [176] 
This is the well-known formula that was developed by J. L. M. 
POISEUILLE,' an anatomist who was interested in the physicstof 
  

1 Annales de Chimie et de Physique (3) 7, 50 (1843). This is “tone of the classics of 

experimental science and is frequently quoted as a model of careful analysis of sources 

of error and painstaking investigation of the effects of separate variables” (G. Barr). 
See Bibliography, p. 452, for complete references.
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blood circulation. It is used in determining the coefficient of vis-— 

cosity of a liquid flowing through a capillary tube. 
POISEUILLE’S formula is not di- 

rectly applicable to a gas, for a gas 
is highly compressible and there- 
fore changes in density as it passes 
along the tube from places of higher 

pressure to those of lower pressure. 
However, in a very short element 

of length d/ of the tube (Fig. 113), between the ends of which the 

pressure difference dP is infinitesimally small, the density may be 

considered to be constant, and Eq. [176] then applies; thus 

V__ wktdp 
t 8nd’ 

where V/t is now the volume that flows in unit time through the 
element in question. If both members of this equation be multi- 
plied by the density of the gas in the element, the resulting expres- 

sion gives the mass of gas that flows through the element in unit 

time, and this quantity is the same for all elements of the tube. 
Let p’ be the density of the gas under unit pressure and let P be the 
pressure in the element in question. Then, if it be assumed that 
Boyie’s law applies, the density in the element is p’P, and the mass 
that flows through the element in unit time is 

a R* dP —p Pea dl 

  

  

Fie. 113. Flow of a gas through a tube 

[177] 

This mass is equal to that which enters the tube in unit time; hence, 

if P, be the pressure at the entrance to the tube and if Vi/t be the 
volume which enters in unit time, then 

Vi_ pp 7RdP pPis=—p i 87y dl 78] 

By multiplying both members of this equation by di and integrating, 
we obtain ; p 

Yn (qk P, } [a= Br Ah, PaP, 1179] 

where P2 is the pressure at the end of the tube from which the gas 
emerges. If we carry out the indicated integration and then solve 

for y, there results finally 

wR (P 2 —P. 2? )t 

i6i Av, [180]
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The Experiment. The U-tube of the viscometer (Fig. 114) is a 

glass tube of not more than 3.5-mm inside diameter, the two limbs 
being approximately 35cm and 10cm in length. To the shorter 

limb is attached, by means of rubber tubing, a piece of clean ther- 
mometer tubing of not more than 0.20-mm internal diameter and 

about 20-cm length. Cleanliness is essen- 
tial. See to it that the tubes, beakers, 

and other glassware used are clean and 

use only the cleanest mercury. If the 

capillary tube is not clean, force through 
it, by means of compressed air, first an 

aqueous solution of potassium hydroxide, - oO 

then distilled water, and finally a thread 
of mercury. Do not touch the ends of the 

tube, as there is danger of clogging it. 

a. Rotate the apparatus clockwise into 

a horizontal position and introduce 
enough mercury into the bulb at the 
end of the long limb of the U-tube to Fic. 114. Ranxive’s simple 

form a pellet about 8 cm long. capillary-flow viscometer 
When this pellet is allowed to slide 

down the U-tube, it furnishes the pressure needed to force the air 

out through the capillary tube. Rotate the apparatus counterclock- 

wise back into a vertical position, and observe the time required for 
the pellet to traverse some measured distance in the fall tube. 

Invert the apparatus by turning it again clockwise and observe 
the time the pellet takes to return a measured distance. 

Repeat these operations several times and compute the average 
times of fall for the erect and the inverted position. 

Measure the length of the mercury pellet on the scale provided 

on the apparatus. Observe the barometric pressure and the tem- 

perature of the room. 

b. Repeat the foregoing procedure with at least two other shorter 
lengths of mercury pellets, each obtained by removing some of the 

mercury from the tube. 

c. Determine the length / and the radius R of the capillary tube. If 
the value of R is not marked on the tube, determine it by weighing 

on an analytical balance, to two significant figures at least, the thread 

of pure mercury of known density that fills a measured length of the 

tube; to obtain R accurately enough for the purposes of this experi- 
ment is evidently a very difficult matter. 

d. Find the cross-sectional area of the fall tube by weighing the 

mercury pellet that fills a measured length of the tube. 
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e. Calculate the other quantities that appear in Eq. [180], namely, 
Vi, Pi, and Pe. The volume Vj is obtained by multiplying the dis- 
tance through which the pellet slid down the fall tube by the cross- 
sectional area of this tube. For the case in which the air is forced 
out through the capillary tube the pressure P2 is the barometric 
pressure expressed in dynes per square centimeter. The pressure P, 
is obtained by adding to P2 the pressure due to the pellet of mercury ; 
the latter can be calculated from a knowledge of the length of the 
pellet, the density of mercury, and the acceleration due to gravity. 
(What are P; and Pz for the case in which the air is drawn in through 
the capillary tube ?) 

By means of Eq. [180] calculate, in cgs units, the values of 7 
corresponding to the six or more sets of data which you have ob- 
tained. Remember that the pressures P; and P. must also be ex- 
pressed in cgs units. If two or more of the determinations were made 
under the same or nearly the same conditions of temperature, com- 
pute the average value of ». 

1, Convert Eq. [180] into a laboratory equation, that is, into a form 

such that all measured and observed quantities can be substituted di- 
rectly in the formula. 

2. List all of the assumptions made in deriving Eq. [180] and make 

clear at what point each enters the derivation. 

3. How much, approximately, would the temperature of the room have 
to change before a difference in 7 would be produced that could be de- 
tected with this apparatus? 

4, Since to some extent the mercury sticks to the walls of the fall tube, 
the pressure furnished by the pellet is diminished by some amount co: 

consequently the value of given by Eq. [180] is a little too high. As- 
suming ¢ to be constant during a given run, show how the equation should 
be modified so as to take this effect into account. 

5. Explain how the value of o in question 4 can be determined experi- 
mentally. If the instructor so directs, correct your value of 7 for the 

sticking of the mercury pellet. 

6. Employ the data of the present experiment and of Exp. VIII to 
find the root-mean-square speed, the arithmetic-mean speed, and the 

mean free path of air molecules under standard conditions of tempera- 
ture and pressure. 

© 

QUESTION SUMMARY 

1. Contrast the ancient and modern views of the structure of matter. 
What is the essential difference between them? What date would you 

assign as the beginning of the modern period ? .
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2. State the law of definite proportions, the principle of equivalence, and 

the law of multiple proportions. 

3. State AVOGADRO’s law. What is its experimental basis? 

4, What are the two possible explanations of the elastic properties of 
gases? What experiments and arguments finally settled the question? 

5. Describe briefly the kinetic-molecular theory of gases, giving pre- 

cisely the two fundamental hypotheses upon which it rests. 

6. Deduce the expression for the pressure exerted by a gas in terms of 

the mass and velocity of the molecules. Point out clearly what simplifying 

assumptions are involved in the derivation. Are all of them necessary? 

7. What was the first molecular magnitude to be determined quantita- 

tively? How was it calculated, and what was its approximate value? 

8. From the kinetic-theory point of view, what is the physical meaning 

of temperature? Give a quantitative relation connecting the average kinetic 

energy of the molecules and the absolute temperature. 

9. What is meant by the mean free path? How is it related to the mo- 

lecular diameter ? 

10. What was the second molecular magnitude to be determined quanti- 

tatively? How was it determined ? 

11. Define coefficient of viscosity. What connection exists between the 

coefficient of viscosity of a gas and the mean free path? What is the effect 
of pressure on gaseous viscosity? of temperature? 

12. Define coefficient of diffusion. How is it related to the mean free path? 

13. How would one go about determining from kinetic-theory data alone 

the effective diameter of a gas molecule and the number of molecules in a 

given volume? 

° 

PROBLEMS 

1. Given standard conditions of temperature and pressure, calculate the 
volumes occupied by (a) 2.016 g of hydrogen; (b) 32.00 g of oxygen; and 
(c) 30.01 g of nitric oxide. Explain the connection between the results. 

2. A spherical body of mass 2.00 mg is moving to and fro between two 

parallel walls which are 10.0 cm apart. If the speed of the body is 
2.00 x 10? cm sec} and its impacts with the walls are perfectly elastic, 
what force is needed to keep the walls from moving under the influence of 
the impacts, (a) when the diameter of the body is negligibly small, and 
(b) when the diameter is 4 mm? Ans. (a) 800 dynes; (b) 833 dynes. 

3. Suppose that the actual speeds of 10 molecules are found to be 1, 2, 3, 
4, ---, 10cm-~-sec~! respectively. (a) Compute their root-mean-square 
speed. (6) Compute their arithmetic-mean speed. (c) If the mass of each 

molecule is m, what is its average kinetic energy? (d) Explain why the root-
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mean-square speed of gas molecules will always be greater than the arith- 
metic-mean speed. 

Ans. (a) 6.2cm -sec~!; (b) 5.5cm-sec~!; (c) 19 mergs. 

4. 1.0 g each of nitrogen and of helium are introduced together into an 
’ evacuated bulb of radius 10cm. Find the pressure which this mixture of 
gases exerts on the walls of the bulb when the temperature is 25° C. 

Ans. 1.3 x 10? mm. 

5. The density of dry air at 0° C and 1 A, is 1.2930 g -1-! and that of 
oxygen under the same conditions is 1.4290 g-1~1. Assuming that air is 
composed entirely of nitrogen and oxygen, find the percentages by volume 
of these gases in dry air. Ans. 76.2 percent; 23.8 percent. 

6. One cubic centimeter of a certain mixture of nitrogen and carbon 
dioxide at 0°C contains 2.0 x 102° molecules of nitrogen and 5.0 x 10% 
molecules of carbon dioxide. Calculate the partial pressure due to each gas 
and also the total pressure. Ans. 7.4 As; 0.0019 Ay; 7.4 A,. 

7. Calculate the value of the BOLTZMANN constant. 

Ans. 1.37 X 10716 erg - deg—} - molecule}. 

8. (a) What is the average kinetic energy of translation of a molecule of 
any ideal gas that is at 300° K? (6) Calculate the total energy of linear mo- 
tion of all the molecules in 1 1 of ideal gas at 0° C and 1 A,. 

Ans. (a) 6.17 x 10714 erg - molecule—; (6) 1.52 x 109 ergs. 

9. (a) Given that the density of nitrogen at 0° Cand 1 A, is 1.2505 g-1™, 
find the mean-square speed of nitrogen molecules at this temperature. 

(6) From the AVOGADRO number and the molecular weight of nitrogen, find 

the mass of a nitrogen molecule. (c) Without using any additional data, 

calculate the BOLTZMANN constant. 

Ans. (a) 24.3 x 108 cm? - sec—2; (6) 4.63 x 10-23 g; 
(ce) 1.37 x 10~-!8 erg - deg~! - molecule, 

10. (a) Assuming the validity of the law of equipartition of energy, cal- 

culate the root-mean-square speed of a molecule of oxygen at 0°C, if the 
root-mean-square speed of a molecule of hydrogen at this temperature is 
1.839 x 108cm-sec~!. (6) When the temperature is 364°K, what is the 

arithmetic-mean speed and what is the most probable speed of the hydrogen 

molecules? 

Ans. (a) 461 m-sec—!; (6) 1.96 x 10®cm - sec~!, 1.74 x 108 cm - sec}. 

11. Two trains are moving in the same direction on parallel tracks with 
speeds of 10 mi- hr~! and 40 mi- hr—! respectively. If 30 sec are required 

for one train to pass the other completely and if during this time 2.0 tons of 
bricks are thrown from each train to the other, what average force, in addi- 
tion to that necessary to overcome friction, is required to keep each train 

moving at its original speed? / Ans. +1.8 x 10? lbwt. 

12. Given that the coefficient of viscosity of hydrogen at 0° C and 1 A, 
is 8.67 x 10-5 g-cm7" - sec—!, calculate (a) the mean free path for hydrogen 
at 0°C and 1 A,; (8) the number of collisions per second suffered by a hy-
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drogen molecule at 0° C and 1 A,; (c) the diameter of a hydrogen molecule. 

(d) How does this diameter compare with that of the helium molecule, for 

which A is 1.72 x 10-5 cm at 0°C and 1 A,? 
Ans. (a) 1.6 x 10-5 cm; (b) 10!°sec745 (ce) 2.3 x 1078 cm; 

(d) 2 percent larger. 

18. (a) By employing the most refined high-vacuum technique, the air 
pressure in a vessel can be reduced to about 10-8 mm of mercury; how 

many gas molecules are there in 1 cm? at this pressure? (b) How many are 

there when the pressure is 10~§ mm of mercury, which is the highest vacuum 

ordinarily used in commercial work? 
Ans. (a) 4x 108 cem~3; (6) 4 x 10! cm73. 

14. (a) The mean free path in oxygen under ordinary conditions of pres- 

sure and temperature is about 10-'cm. Find from this its approximate 

value for a pressure of 10-3 micron of mercury (1 micron = 107° m). 
(b) Obtain information on the sizes of the finest capillary tubes used in 
gas manipulations and decide whether the flow of oxygen at atmospheric 
pressure through them is described by the laws holding for ordinary pres- 
sures. (c) In the case of the connecting tubes ordinarily used in high-vacuum 
apparatus, how low would the pressure have to be before the laws for ordi- 

nary pressures would cease to apply? Ans. (a) 8X 108 cm. 

15. The values of the molecular diameter d and of the number of mole- 
cules 2, in 1.cm? of a gas at 0° C and 1 A, were first calculated by JosEPH 

LOSCHMIDT! in 1865. Try making the calculation for hydrogen, given that 
the density of gaseous hydrogen at 0° C and 1 A, is 9 x 10-5 g-cm~$, the 
density of liquid hydrogen is 0.07 g -cm~3, and the coefficient of viscosity 
of hydrogen gas at 0°C and 1A, is 8.67 x 10-5 g-cm™-sec~. [Hint. 
(a) Derive an expression for the total volume » of the molecules in 1 cm? of 
any gas in terms of m, and d. (6) Calculate »’, the volume of liquid formed 
by the liquefaction of 1 cm? of hydrogen, in terms of the density of the gas 
and the density of the liquid. (c) Assume that » = 0’. (How good an approxi- 

mation do you think this is? Can you make a better one?) (d) Compute 
the mean free path X from the coefficient of viscosity. (e) Combine the 
equation obtained in (c) with Eq. [164] and solve.] 

Ans. d=2xX 10-7 cm; mo =5 x 10% cm73, 
  

1 Wiener Sitzungsberichte 52, 395 (1865). See also O. E. Meyer, The Kinetic 

Theory of Gases, tr. by R. E. Baynes (Longmans, Green, 1899), Chap. 10.



CHAPTER ELEVEN 

THE PROPERTIES OF VAPORS 

HE ORDINARY gaseous and ordinary liquid states are, in short, only widely separated forms 

Te the same condition of matter, and may be made to pass into one another by a series of grada- 

tions so gentle that the passage shall nowhere present any interruption or breach of continuity. 

From carbonic acid as a perfect gas to carbonic acid as a perfect liquid, the transition we have seen 

may be accomplished by a continuous process, and the gas and liquid are only distinct stages of a 

long series of continuous physical changes. Under certain conditions of temperature and pressure, 

carbonic acid finds itself, it is true, in what may be described as a state of instability, and suddenly 

passes, with the evolution of heat, and without the application of additional pressure or change of 

temperature, to the volume, which by the continuous process can only be reached through a long 

and circuitous route. In the abrupt change which here occurs, a marked difference is exhibited, 

while the process is going on, in the optical and other physical properties of the carbonic acid which 

has collapsed into the smaller volume, and of the carbonic acid not yet altered. There isno difficulty 

here, therefore, in distinguishing between the liquid and the gas. But in other cases the distinction 

cannot be made; and under many of the conditions I have described it would be vain to attempt to 

assign carbonic acid to the liquid rather than the gaseous state. 

THomas Anprews in his 1869 Bakerian Lecture, “ On the 

Continuity of the Gaseous and Liquid States of Matter ”’ 

o 

To just what extent the ideal gas laws which we have been consider- 
ing fail to describe the behavior of the gases found in nature was in- 

vestigated first by that most skillful and patient experimenter 

REGNAULT,! and later by Emme HirairE AMAGAT? (1841-1915). 
BoyYLe himself had noticed small departures from constancy of the 

product of pressure and volume, but he ignored the failure of his law 
to hold accurately because of its simplicity and general usefulness. 

Now if BoyLe’s equation, PV = constant, actually did apply accu- 

rately to a real gas, the curve connecting PV and P, for a given mass 

of gas kept at a constant temperature, would be a straight line 

parallel to the axis of pressures. REGNAULT and AmMaGaT found, how- 

ever, that when a gas is tested over a wide range of pressures and at 
different temperatures, curves like those of Figs. 115 and 116 are 
obtained. In general, the value of PV diminishes at first, but when 
  

1 Mémoires de ’ Académie des Sciences 21, 329 (1847); Relations des Expériences 

(Paris, 1847-1870). For translations of two of REGNAULT’S papers on the coefficient 

of expansion of gases, see The Expansion of Gases by Heat, ed. by W. W. Randall 

(American Book Co., 1902), pp. 65-150. 

2 For a bibliography of AMAGAT’S papers on the gas laws, and translations of two 

of his papers, see The Laws of Gases, ed. by Carl Barus (Harper, 1899), pp. 108-109. 

233
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the pressure exceeds a certain value, which depends on both the gas 
and its temperature, it steadily increases. It will be observed also 
that as the temperature increases the marked drops in the curves 
disappear (Fig. 116). At high enough temperatures, depending on 

PV 
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Fic, 115. Variations of the product Fic. 116. Variations of PV with 
PV with pressure for a given mass pressure for a given mass of carbon 
of various gases kept at constant dioxide at various constant tem- 

temperature peratures 

the gas, the curves are tound to show only an upward slope. In the 

case of hydrogen (Fig. 115) and helium, this is true even at room 

temperature. 

In considering experiments such as these, there naturally arises 
the question of what happens to the properties of a gas when it 

approaches close to the liquid state. As early as 1822 CHARLES 
CAGNIARD DE LA Tour? had observed that when a liquid was heated 
in a hermetically sealed tube it evaporated silently as the temperature 
rose up to a certain point, and then the boundary between liquid and 
gas grew indistinct and completely disappeared; the densities of the 
liquid and gas had become the same and the distinction between the 
two states of aggregation had vanished. A more thorough study of 
this effect was made later by THOMAS ANDREWS? (1813-1885) during 
the course of his classical experiments on the behavior of carbon 
  

1 Annales de Chimte et de Physique (2) 21, 127, 178 (1822); 22, 410 (1823). See 

*A Source Book in Physics (1935), pp. 181-187. 

2 *Bakerian Lecture, ‘On the Continuity of the Gaseous and Liquid States of 

Matter,” Philosophical Transactions 159, 575 (1869); also Scientific Papers (Mac- 

millan, 1889), p. 296. See *A Source Book in Physics (1935), pp. 187-192, and also 

the quotation at the beginning of this chapter.
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Gas Compressor Used by Tuomas Anprews 

in His Work on Gases 

at Queen’s University, Belfast 

Photograph taken outside the physics laboratory by A. R. Hogg, 67 Great Victoria 

Street, Belfast
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A Medallion 

Commemorating the Work of van per Waats. 

The Model of a Surface 

Represented on the Reverse Side 

is a Three-Dimensional Plot 

of the van per Waats Equation 

Reproduced from Isis 9, 258 (1927), by permission of the editor
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dioxide under pressure at different temperatures. 
ANDREWS had begun these experiments in an 
attempt to solve one of the great problems of 
his period, the liquefaction of what were then 
called the ‘permanent gases,” an extensive 
study of which had been made by FaRapay! 
from 1823 to 1845. 

125. Andrews’s Experiments. The apparatus 
used by ANDREWS is shown in Plate 34 and 
Fig. 117, and results typical of the kind which 
he obtained are illustrated by the isothermal 
curves in Fig. 118. It is seen that the curve for 
48.1° C is nearly a perfect hyperbola, so that at 
this temperature carbon dioxide behaves almost 
like an ideal gas. But at lower temperatures the 
deviations from BoyLe’s law become greater and 
the curves change in character, taking a form 
similar to that for the isotherm marked 32.5° C. 
In this latter curve a jog is apparent, and for the 
higher pressures the curve is very steep. Indeed, 
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: Carbon 
Air dioxide 

—Mercury 

Fie. 117. Schematic 
diagram of Anprews’s 
apparatus. The gas is 
compressed by forc- 
ing the mercury up 
into the tubes. One of 
the tubes contains air, 
which is used to meas- 
ure the pressure ex- 
erted on the carbon 

dioxide 

in this respect the curve resembles the isotherm for a liquid, since a 
relatively large increase in pressure causes only a small decrease in 
volume. Yet no sign of liquefaction of the carbon dioxide could be 
noted at this temperature or above it, p 
however much the pressure was increased. 

But for temperatures below 31.1°C a 
radical change occurs in the nature of 
the isotherms. Taking the curve for 
21.5° C and starting from the point A, 

we see that as the pressure is increased 

the volume diminishes rapidly until the 
point B is reached; between A and B 

we are evidently dealing with a gas. If, 

after reaching the point B, an attempt 

be made to compress the gas further, it is 

found that some of it liquefies and that 
a considerable change of volume takes 
place with no change of pressure; ‘in 

  

  

Fic. 118. Isotherms for a given 
mass of carbon dioxide 

  

1* Philosophical Transactions 118, 160, 189 (1823); 185, 155 (1845). These paper 
are reproduced in *Faraday’s Experimental Researches in Chemistry and Physics (Lon- 
don, 1859) and in *The Liquefaction of Gases, Alembic Club Reprint No. 12 (Edin- 
burgh, 1912). See also *Faraday’s Diary, ed. by T. Martin (Bell, 1932-1936).
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other words, in the portion BC gas and liquid exist together with a 

visible meniscus between them, more and more liquid being formed 

as C is approached. At C the carbon dioxide is again homogeneous, 

all of it now being in the liquid state; beyond this point the gradient 

is very steep, since a liquid is not easily compressed. 
126. The Critical Constants of a Substance. It will be seen from 

Fig. 118 that a smaller contraction in volume upon liquefaction takes 
place at 21.5°C than at 13.0°C, and thus that the difference in den- 
sity between the liquid and its vapor will be smaller the higher the 

temperature.. When a temperature of 31.1°C is reached, the hori- 

zontal part of the isotherm has disappeared altogether, and no separa- 
tion into liquid and vapor can be effected, however much the pressure 

is increased. The temperature at which this occurs is called the 
critical temperature t,; and the pressure that is just sufficient to 

liquefy the gas at its critical temperature is called the critical 

pressure P,. Above the critical temperature a gas cannot be lique- 
fied by pressure alone; that is to say, a separation of the gaseous 

and liquid states cannot be effected. Indeed, it is possible to pass 
from any point A, where the substance would undoubtedly be re- 

garded as a gas, to a point D, where it is in the dense, almost incom- 

pressible condition that one would naturally call liquid, without 
having the liquid distinct from the vapor at any time; to do this it 

is only necessary to vary the pressure, volume, and temperature in 

such a way as not to pass through the region bounded by the dotted 

curve, inside which alone heterogeneity is possible. In other words, 

above the critical temperature the two states become identical, a 
property which is referred to as the continuity of the liquid and gaseous 

states. 

The properties represented by the isotherms for carbon dioxide 

(Fig. 118) are characteristic of all substances that have been studied, 

but the critical constants differ widely. Thus the critical temperature 
of water is 374°C; of air, — 141°C; and of helium, — 268°C. It is 

customary to give the name vapor to a substance in the gaseous con- 

dition when it is below its critical temperature and to confine the 

term gas to a substance when it is above the critical temperature. 
This distinction is not important, however. 

127. Finite Volume of the Molecules. Since the liquid and gaseous 

states are continuous, it should be possible to obtain a general equa- 
tion of state connecting the pressure, volume, and temperature that 
will apply to a substance whether it be in the liquid or the gaseous 

state. The simple equation PV = NRT obviously will not hold for 
this more general case, but it might be possible to modify this equa- 
tion by removing some of the simplifying assumptions used in de-
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riving it in kinetic theory (Sec. 118). A hint as to one of the ways in 
which this can be done is furnished by the nature of the curves in 
Fig. 116. It is found that for very high pressures these curves be- 
come for any given substance a system of sensibly parallel lines. The 
equation for any one of these lines evidently will be PV= bP +c, 
where the quantity 5, which is the slope of the curves, is found to 
depend upon the nature of the substance, and the quantity c, which 
is the PV-intercept, depends upon the temperature. By writing this 
equation in the form PV —b)=c, [181] 

‘one sees that P becomes infinite, for ¥ =, and hence that 6 can be 
interpreted as the least volume into which the substance can be 
compressed. Thus V—% is the whole space in which the gas is 
enclosed, diminished by the least volume of the substance. If V — b, 
rather than V, be considered as the volume of the gas, then BoyLe’s 
law may be said to apply to all gases even at high pressures. 

From the point of view of kinetic theory, as CLausrus himself 
recognized, V — 8 is the volume which is available for the free motion 
of the molecules. In other words, the assumption that the volume 
occupied by the molecules themselves is negligible compared with the 
space between them (Sec. 118) is not exactly true for actual gases. 
The result is that the number of collisions, in a given time, of any 
molecule with the other molecules or with the walls of the containing 
vessel is greater than that calculated from the theory in Chapter 10, 
and that in the collisions with the walls the effect is the same as if 
the molecules themselves were negligibly small but were confined in 
a smaller space. 

128. Influence of Intermolecular Actions; the Joule-Kelvin Experi- 
ment. In attempting to account theoretically for the departures 
from the laws of ideal gases exhibited in Figs. 116 and 118, one must 
also take into account the fact that the forces which the molecules 
exert on one another will not be entirely negligible. In the case of 
liquids and solids the existence of such forces is sufficiently evi- 
dent to be familiar to everyone. The first attempts to detect their 
existence between gas molecules were made by Gay-Lussac? and, 
later, by JouLe.? In JouLE’s experiments (Fig. 119) a copper vessel 
  

1 Mémotres de la Société d’Arcueil 1, 180 (1807). A translation is given in The Free 
Expansion of Gases, ed. by J. S. Ames (Harper’s, 1898), pp. 3-13, and an excerpt will 
be found in *A Source Book in Physics (1935), pp. 170-172. . 

? Philosophical Magazine (3) 26, 369 (1845); Scientific Papers (London, 1884), 
Vol. 1, p. 172. This paper is reproduced in The Free Expansion of Gases, ed. by J. S. 
Ames (Harper’s, 1898), pp. 17-30, and an excerpt appears in *A Source Book in Phystes 
(1935), pp. 172-173.



238 Mechanics - Molecular Physics - Heat - Sound (il - 128 

containing air at a pressure of 22 atmospheres was connected with 

another similar vessel from which the air had been exhausted. Upon 

opening the stopcock between the two vessels the air expanded and 

filled both vessels. Now the gas expanded into a rigid container and 

hence did no external work during expansion; therefore, unless there 

were forces between the molecules, there would be no change in the 

potential energy of the molecules and hence none in their kinetic 
energy; that is, the gas as @ whole would not change in temperature 
(Sec. 116). JouLE could not detect any 
change in the temperature of the surround- 
ing water bath asa result of the expansion. 

JOULE varied the experiment by placing 

the two vessels in separate water baths, 
when it would be expected that the drop in 
temperature of the vessel initially contain- 
ing the gas would be greater than the gain 
in the other vessel if intermolecular attrac- 
tion exists. Again he found that the tem- 
perature lost by the one vessel was equal 
to that gained by the other. JOULE there- 
fore concluded that if intermolecular forces 
exist, his experiments were too insensitive to detect them. As a 
matter of fact, the effect sought for is very small, whereas the 

thermal capacity of JouLz’s apparatus was so large compared with 
that of the gas that it would have required a change in temperature 

of several degrees in the gas to produce any noticeable effect in the 

water. 
Lorp KELVIN thought that this matter should be tested by a 

better method, and this led him to devise his classical porous-plug 
experiment, which he and JouLE carried out together.!_ The improve- 
ment consisted in making the expansion of the gas continuous in- 

stead of intermittent. The gas, kept at constant pressure by a pump, 
was allowed to flow continuously through a porous plug of tightly 
packed cotton, as indicated in Fig. 120. The resistance offered by the 
plug to the flow was so large that the kinetic energy of the flow was 
negligible; the gas merely expanded through the plug. The lowering 

  

  

    

Fic. 119. Joure’s apparatus 
very much simplified 

  

1J. P. Joule and W. Thomson, Philosophical Magazine (4) 4, 481 (1852); Philo- 

sophical Transactions 148, 357 (1853); 144, 321 (1854); 150, 325 (1860); 152, 579 

(1862); abstracts appear in the Proceedings of the Royal Society for these same years. 

See also Joint Scientific Papers of James Prescott Joule (London, 1887), Vol. IE, 

pp. 216-362; Thomson’s Mathematical and Physical Papers (Cambridge University 

Press, 1882-1911), Vol. I, pp. 333-455; The Free Expansion of Gases, ed. by J. S. 

Ames (Harper, 1898), pp. 33-102.
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of temperature which was actually found in this experiment for all 

gases except hydrogen and helium can be explained by assuming that 

there is a very slight attraction be- 

tween the gas molecules, so that there 

is an increase of potential energy upon 

expansion which takes place at the ex- 

pense of the kinetic energy. The fall 

of temperature is found to be nearly 

proportional to the difference between 

the pressures on the two sides of the 

plug, and to increase as the initial tem- 

perature of the gas decreases. These results are of great importance, 

because from them can be calculated the corrections necessary to re- 

duce the readings of a gas thermometer to absolute thermodynamic 

temperatures (Sec. 103). They also form the basis of the method 
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Fie. 120. The porous-plug 
exp eriment 

developed by KARL RITTER VON LINDE in 1895 
for liquefying air and the other so-called ‘‘perma- 
nent’’ gases on a large scale for commercial pur- 
poses (Fig. 121). It has been found that even 
hydrogen and helium are cooled by their own 
expansions if their initial temperatures are below 
a certain value, called the temperature of inver- 

sion, which is — 80.5°C for hydrogen and about 

— 238° C for helium. This fact is of great impor- 
tance in the liquefaction of these gases. 

In order to explain the heating which was observed 

during the expansion of hydrogen and helium at ordi- 

nary temperatures, it is necessary to analyze this ex- 
periment in more detail. Let W:+ W: be the total 
internal energy per unit mass of the gas (kinetic plus 

potential) as it enters the plug, shown diagrammati- 

cally in Fig. 120, and let W:’ + W,’ be its total interna 

energy as it leaves the plug. Similarly, let P and v be 

the pressure and the volume per unit mass of gas on 

side A, and P’ and #’ the pressure and the volume per 
unit mass on side B. If no heat enters or leaves the 
gas from without and if the speeds of inflow and out- 

  

  

Fic. 121. In Linpe’s 
method compressed 
gas passes along the 
inner tube, expands 
through a valve, and 

passes back through 
the outer tube. The 
cooling thus goes 
on progressively until 
some of the gas lique- 
fes as it escapes from 
the valve. Actually 
the tubes are arranged 
in the form of a spiral 

flow of the gas are equal, then the decrease in total internal energy per 
unit mass in passing through the plug must equal the external work per 

unit mass done by the gas, or 

(Wit Wi) — (Wi + Wi) = Pv’ — Po. 

If now BoYLe’s law holds, so that Pv = P’v’, then 

Wit Wi=Wi t+ Wy.



240 Mechanics - Molecular Physics - Heat - Sound [11 - 128 

Consequently, if there are no forces between the molecules, so that W;== W,’, 

then also W,= W;’ and there will be no temperature change. But if there 
are intermolecular forces of any sort whatever, the potential energy W; must 

change on expansion, and W; will not equal W.’; consequently W, cannot 
equal W,’ and the temperature, which is a function of W, (Sec. 116), must 
change. When the intermolecular forces are attractive, the gas must cool 
on passing through the plug. 

If, however, the product Pv increases as the pres- 

sure decreases, as AMAGaT found it did up toa cer- 

tain point for all gases except hydrogen and helium { 
(Fig. 115), then P’v’ is greater than Po,and Wit Wi \| ~77F \ 
must be greater than W,’+ W,’. In this case we ee” 
should expect a cooling even though there are no \ y 
intermolecular forces. On the other hand, if Ps in- 
creases with the pressure, as it does in the case of hy- oo 

drogen and helium and all other gasesbeyondacer- + \ 

tain point, then Ps is greater than P’v’,andW;'+Wi i 

is greater than W;+ W;; there will then bea heating Se 

even though there are no intermolecular forces. 

The deviations from BoOyYLE’s law caused by the 

Wall 

finite size of the molecules thus produce in this 
experiment temperature changes which must be 
added (algebraically, of course) to the cooling pro- 
duced by the work done against the intermolecular 

attractions. In the case of hydrogen and helium, 

at ordinary temperatures the heating due to this 
cause is sufficient, since the intermolecular forces 
are small, to produce a rise in temperature. At 
sufficiently low temperatures, however, the cooling 

effect predominates. 

It having been established that intermo- 
lecular forces exist, the next question is how 
they affect the pressure and volume of a gas. 
In the interior of the gas the resultant effect 
is indeed negligible, for the molecules are at- 
tracted equally in all directions by the other 

Fic. 122. Around each 
molecule there may be 
circumscribed an imag- 
inary sphere of very small 
radius r, called the sphere 

of molecular attraction, out- 

side of which the inter- 
molecular force exerted 
by or upon a molecule is 
inappreciable. For any 
molecule that is at a dis- 
tance less than r from 
the wall, only the forces 
tangential to the wall 
will be balanced, and 
hence there will be a 
resultant force acting in- 
ward toward the gas 

molecules. But not so in the layers next to the walls of the contain- 
ing vessel, where the resultant attraction is directed inward toward 

the gas (Fig. 122), thus tending to reduce the volume occupied by the 

gas, just as an increase of pressure would do.. The effect of molecular 

attraction may therefore be represented by adding to the pressure P, 
which is applied to the gas externally, a quantity P’, representing the 
pressure due to internal attraction. Our gas equation, Eq. [181], then 
becomes 

(P + P’)(V—b) = NRT. [182]



11 - 130] The Properties of Vapors 241 

129. Equations of State of a Fluid. Of the numerous attempts that 

have been made to deduce a general equation holding for any sub- 

stance throughout the liquid and gaseous states, the most celebrated 

is that developed by JOHANNES DIDERIK VAN DER WAALS? (1837-— 

1923). His equation may be derived from Eq. [182] by assuming 
that the quantity P’ is proportional both to the number of molecules 
striking a unit area of the wall in unit time and to the number of 
molecules attracting any given molecule. Since both of these factors 

are proportional to the density of the fluid, P’ will vary directly as 
the square of the density or inversely as the square of the volume; 
hence, denoting P’ by a/V?, Eq. [182] takes the form 

(P 4 my — b) = NRT. [183] 

This is known as the van der Waals equation. The coefficients @ and 

b depend upon the amount of gas as well as upon its nature, @ being 

proportional to the square, and b to the first power, of the mass of 

gas.2. When one considers the simplicity of this equation, its general 

agreement with experiment is remarkable. CLausrus, C. DIETERICI, 

and many others * have proposed equations that are improvements, 

in one respect or another, on the VAN DER WAALS equation. Sub- 

stantial advances in theory have resulted from their efforts, but the 
use of the equations in practical applications introduces complica- 

tions that tend to offset any advantages gained. 
130. The Kinetic Theory of Liquids and the Process of Evaporation. 

If the molecules of a gas are in rapid motion, the molecules of a 

liquid must be also, for we have seen that no fundamental distinction 

exists between the liquid and the gaseous states (Sec. 126). In fact, 

at high temperatures the two states become absolutely identical. 

Below the critical temperature the possession of a clearly marked 

surface may be taken as the distinguishing feature of a liquid. 

  

1On the Continutty of the Liquid and Gaseous States (Leiden, 1873). The original 

edition is in Dutch. A German translation by F. Roth (Barth, 1899) has been trans- 

lated into English [Physical Memoirs (Physical Society of London, 1890), Vol. I, 

Part 3.] . 

2 Tt simplifies the use of the VAN DER WAALS equation if the pressure P is expressed 

in atmospheres and the volume V as the ratio between the actual volume and the 

volume which the substance would occupy if it were an ideal gas at 0°C and 1 As. 

Consequently the values of ¢ and } found in tables are usually expressed in terms of 

these special units. In this case NR will have the numerical value 0.00366. (Why ?) 

3See, for example, T. Preston, The Theory of Heat, ed. 3 (Macmillan, 1919), 

pp. 484-489. More than fifty such equations of state are listed by J. R. Partington 

and W. G. Shilling, The Specific Heats of Gases (Benn, 1924), pp. 29-34,
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Direct experimental evidence of molecular motion in liquids is 
furnished by the Brownian movement (Sec. 118). The molecules of 

a liquid are crowded so close together, however, that their paths 

between impacts are extremely minute, being of the same order of 
magnitude as the diameters of the molecules. At the free surface of 
a liquid, where there is greater freedom of motion, the paths of the 

molecules are influenced not only by collisions but also by the attrac- 

tions of the other molecules. On account of the enormous number 
of molecules present in or near the surface, this downward force 

upon a molecule just above the surface is doubtless very large; so 
large, in fact, that the molecules which are moving away from the 

surface are, in general, unable to leave it. They simply rise to a 

certain distance by virtue of their velocities, 

after the manner of projectiles shot up from 

the earth, and then fall back again into the 
liquid (Fig. 123). 

At a given temperature the average kinetic 

energy of the molecules of a given liquid is 
always the same. Nevertheless at any in- 

stant a large number of them will be moving 

with energies greater than the average and fy. 123. The kinetic pic 
still others will be moving with less than aver- ture of a liquid and its 
age energy. Thus a molecule near the surface vapor. The zigzag and 
may escape from the liquid if it possesses ‘w2ved lines represent pos- 

er sible paths of the par- 
enough kinetic energy to overcome the effect ticles 

of the powerful attractive forces existing in a 

thin layer near the surface; in this case it moves off as an independ- 
ent gas molecule into the space above. (In the light of the kinetic 

theory, how do you account for the cooling which a liquid undergoes 

while it is evaporating ?) 

If the space above a liquid surface is enclosed, it gradually be- 
comes filled with the gaseous form of the substance comprising the 
liquid. This gas becomes more and more dense as more molecules 
escape, but there is evidently a limit to its possible density, for many 
of the escaped molecules chance, in their wanderings, to return to the 

surface and re-enter the liquid. The number of molecules thus re- 
turning in unit time evidently increases as the number above the 
liquid increases; that is, it is proportional to the density of the 

vapor. When this density has reached a certain limit, there is set up 
a condition of equilibrium in which the average number returning 
will equal the average number escaping. A vapor thus in equilib- 
rium with its liquid is said to be saturated; that is, it has the largest 

density which it is ever able to have at the existing temperature, 
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and it therefore exerts the largest pressure which it ever can exert 
at this temperature. If the vapor is not allowed to accumulate over 
the liquid, it will remain unsaturated, equilibrium will not be reached, 
-and the liquid will gradually disappear by evaporation. (Why does 
fanning greatly facilitate evaporation ?) 

131. Densities and Pressures of Saturated Vapors. If the tem- 
perature of a closed vessel containing a liquid and its vapor be raised, 
the vapor evidently can have a higher density ; 
for the number of molecules escaping in unit time 
must be greater at the higher temperature because 

of the higher mean kinetic energy, and hence the 

density of the vapor must be greater before the con- 

dition of equilibrium is set up. Also, since the 
pressure exerted by the vapor is proportional both 
to the density and to the mean kinetic energy of 
each impact, and since both density and kinetic 
energy increase with temperature, it is evident that 
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the pressure must rise with twofold rapidity as the 
temperature rises. If, on the other hand, the tem- 

perature be held constant, all attempts to increase 

the density or the pressure of a vapor which is in 

contact with its liquid in a closed vessel must be 

futile. To see this clearly, suppose that a few 

drops of some volatile liquid, such as ether, are 
introduced into a barometer tube so as to fill the 

space above the mercury with ether and saturated 
ether vapor (Fig. 124). As soon as the density of this 
vapor is momentarily increased by lowering the 
tube, thus compressing the vapor, the equilibrium 

at the surface is destroyed, and immediately more 

molecules begin to enter the surface in unit time 

Fig. 124. Ina the 
space above the mer- 
cury column con- 
tains nothing but 
mercury vapor. Inb 
a small quantity of 
some volatile liquid 
has been introduced 
into this space. Inc 
the volume occur 
pied by the vapor 
has been decreased 
by lowering the 
tube, but the height 
of the column of mer- 
cury has remained 

unchanged 
than escape from it. Hence, in a very short time 
enough ether condenses to restore the original condition of density 
and pressure. It is left to the student to explain how, when the tube 
is raised and the volume is thus increased, the condition of equi- 
librium is soon re-established at the same density and pressure. 

Evidently the foregoing experimental facts may be summarized 
in the statement that the pressure exerted by a saturated vapor is a 
function of tis temperature only. If the liquid above the barometric 
column in Fig. 124 be heated, the vapor pressure steadily increases, 
and by making a number of observations at various temperatures 
a saturaiton vapor-pressure-iemperature curve may be constructed. 

Such a curve for water is shown in Fig. 125. (What is the nature
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of the isotherms for a saturated vapor?) These various properties of 

a saturated vapor really are already familiar to us from ANDREWS’S 

experiments with carbon dioxide, for in the region under the dotted 

line in Fig. 118 liquid and vapor 

exist together and the vapor is 
saturated. In fact, the points in 
the area enclosed by the dotted line 

represent all the physical condi- 
tions under which liquid carbon 
dioxide and its vapor can be in 
equilibrium with each other. 

The fact that the VAN DER WAALS 070 10 8 cate MO 
equation applies both to the gas- 
eous and to the liquid state makes 

it certain that the isotherms plotted 
from it will not have the discontinuities that appear in the experi- 

mental curves of Fig. 118. Instead, these isotherms have the form 

shown in Fig. 126. Inside the dotted curve they are not only con- 
tinuous but cut the horizontal lines BC etc. in three points; this is 

because the VAN DER WAALS equation is of the third degree with 
respect to V, and in this region all three roots are real. The critical 

point is evidently the particular point 
where the pressure P, and temperature 
T, are such as to make the three roots 
equal. Above the critical point the 
equation has only one real root. 

It is to be noted that the part of the 

isotherm which lies between B and C, 

Fig. 126, shows a minimum and a maxi- 

mum. It is, of course, impossible to 

realize physically the segment of the 

curve lying between the minimum and 

the maximum, for the volume would 

then have to increase with increasing 
pressure. Under certain circumstances, 

however, the parts of the curve ex- 

tending from C to the minimum point 

and from the maximum point to B can 

be realized. The first part represents the condition of a superheated 

liquid; the second, that of an undercooled or supersaturated vapor. 
132. Mixtures of Vapors and Gases. The saturated vapor pressure 

for a given temperature is not affected measurably by the presence 
of gases that do not combine chemically with the vapor. For example, 

360 

to
 8 

tp
 

= o 

Pr
es
su
re
, 

cm
. 

of
 
Hg
 

o
o
 

Oo 
gS
 

g 
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in Fig. 124 the space above the mercury column contains mercury 
vapor as well as ether vapor, but the presence of the mercury has 

practically no effect on the ultimate amount of ether that will 
evaporate into the space. The ether vapor exerts its own pressure 

independently of that of the mercury, making the total pressure the 
sum of the two. This is also true when air, even at greater densities 

than that of the ether vapor, 1s present above the mercury. In other 

words, DaLTON’s law of partial pressures (Sec. 115) applies to a 
mixture of gases and saturated vapors. It fails, of course, at high 
pressures. 

The presence of gases does have a very marked effect, however, 

in retarding evaporation. When ether is introduced into a space 
containing air, the maximum density of the vapor may not be reached 

for several hours, whereas when it is introduced into a vacuum, 

the condition of saturation is reached in a few seconds. 
133. Vapor Pressures of Liquids. As was shown in Sec. 181, for a 

given liquid at a given temperature there is only one pressure which 

its vapor can have and still exist in equilibrium with the liquid. This 
saturation pressure ordinarily is referred to simply as the vapor 

pressure of the liquid. It is to be distinguished from the pressure of 
the vapor, which when not in contact with the liquid may have any 
value from zero up to one somewhat exceeding the saturation vapor 
pressure. The vapor pressure of a liquid increases rapidly with the 
temperature. No very convenient or exact formula connecting it 
with the temperature has been devised, however; so the relation is 

usually shown by means of a graph like Fig. 125 or by means of 

tables.1 

From the laws of thermodynamics it is possible, however, to derive an 

exact differential expression for the slope of the curve that connects the vapor 
pressure P of a liquid with the absolute temperature 7. This expression, 

which is known as the Clapeyron-Clausius equation,® is as follows: 

aP_ J 
dT T(t) — 0) 

where J is JOULE’s equivalent, Z is the heat of vaporization (Chap. 12), and 
vy, and »; are the volumes occupied by a unit mass of the substance in the 
saturated-vapor and liquid states respectively. The derivation of this equa- 
  

7 

i Appendix 13, Table E. 

2 This equation was derived from Carnot’s work by B. P. E. Clapeyron, Journal 

de ’ Ecole Polytechnique 14, 153 (1834) [tr. in Scientific Memoirs, ed. by R. Taylor 

(London, 1837), Vol. 1, pp. 347-376]. It was first rigorously established by CLausrius 

in his papers on the mechanical theory of heat. A similar equation applies to the 

melting of solids.
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tion rests upon the second law of thermodynamics and is beyond the scope 

of this text. There is perhaps some advantage, however, in becoming ac- 

quainted with the form of the equation, if not with its derivation. Since at 

the boiling temperature of a liquid the vapor pressure is equal to the external 
pressure upon the liquid and vapor (Sec. 135), the CLAPEYRON-CLAUSIUS 
equation also expresses (more clearly in inverted s 

form) the change of boiling point with the external 

pressure. 

The vapor pressure of a liquid with a curved 
surface must be different from that of the 
same liquid with a plane surface. The magni- 
tude of this effect was first calculated in 1870 
by Lorp KELVIN.! Fic. 127. Effect of sur- 

. . . face curvature upon the 
EXAMPLE. With the help of Fig.127, which saturation vapor pressure 

represents the sphere of molecular attraction 

outside of which the attractions of other molecules for molecule m are 
inappreciable, and from considerations similar to those employed in 
Sec. 130, show that the saturation vapor pressure over a concave sur- 

face must be smaller than it is over a plane surface, and that ever a 

convex surface it must be larger than over a plane surface. 

  

134. Vapor Pressures of Solutions. If a gas present in the space 
above a liquid is soluble in the latter, as in the case of ammonia or 

carbon dioxide in water, there will result a decrease in the pressure 
of this component of the mixture. It is found that the amount of 

dissolved gas is proportional to the partial pressure of that constitu- 
ent and independent of the pressure due to other gases present. 

When one volatile substance is dissolved in another, as when 
alcohol is dissolved in water, the vapor pressure of the solution is 

not even approximately equal to the sum of the pressures which the 
components would exert if each were by itself. The actual relation 
between the various factors involved in any given case must be 
determined empirically, since the relations are too complicated to 
be generalized easily into a single statement. 

In the case of a solid dissolved in a liquid, the relation, at least for 
dilute solutions, is a simple one: the vapor pressure of a given solvent 
is lowered by an amount that is directly proportional to the number 
of molecules of dissolved material in unit volume of the solution. If, 

in the process of solution, some of the molecules of the dissolved sub- 

stance dissociate into smaller electrically charged particles, called 
tons, as happens in the case of aqueous solutions of acids, bases, or 
  

1 Proceedings of the Royal Society of Edinburgh 7, 63 (1870); *Popular Lectures and 
Addresses (Macmillan, 1891), Vol. 1, p. 64.
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salts, the lowering of the vapor pressure is then proportional to the 
total number of ions and un-ionized molecules present. 

EXAMPLE. Explain, from the point of view of the kinetic theory, why dis- 

solving a solid in a liquid lowers the vapor pressure. 

135. Boiling. Evaporation takes place to some extent at all tem- 

peratures whenever the space above the liquid is not saturated. If 

the liquid be under a constant external pressure, such as that of the 

atmosphere when the barometer is steady, an increase in the tem- 
perature of the liquid will result in more rapid evaporation, until 

finally a temperature is reached at which the evaporation begins to 
take place not simply at the surface but also within the body of the 
liquid; that is, bubbles of vapor begin to form beneath the surface 
upon the sides of the containing vessel, whence they rise to the top, 
growing rapidly as they ascend. It is evident that this condition 
cannot be reached until the maximum pressure exerted by the vapor 

formed from the liquid is at least equal to the outside pressure; for 

if the pressure exerted by the vapor in the bubbles were less than 
that outside, these bubbles, even if formed, would at once collapse. 

This temperature, then, at which the pressure of the saturated 
vapor becomes equal to the outside pressure, is called the bosling 
temperature. The vapor-pressure-temperature curve (Fig. 125) may 
therefore also be called the botling-temperature curve, the pressures 
now signifying the total pressure on the liquid. The boiling point of 
any substance, as distinguished from its boiling temperature, is 

defined as the temperature at which the vapor pressure of the satu- 
rated vapor is equal to 1 A,. 

EXAMPLE. Ona diagram like that of Fig. 125, indicate roughly the nature 
of the vapor-pressure-temperature curve for a dilute aqueous solution 

of a solid, and then make use of these two curves to explain what effect 
a dissolved solid has on the boiling temperature of a liquid. 

A liquid will not always necessarily boil as soon as its temperature reaches 

the boiling temperature. In fact, the temperature of a boiling liquid must 
always be at least a trifle higher than that at which the pressure of the 
saturated vapor is equal to the outside pressure, for the pressure within the 

bubble of vapor must be sufficient to overcome not only the outside pressure 
but also the weight of the superimposed liquid and the surface tension of the 
bubble. But when the bubble rises to the surface and breaks, the pressure 
exerted by the vapor contained within it must fall exactly to the atmospheric 
condition; and the temperature of this vapor must also fall, by virtue of ex- 
pansion, to that temperature at which the pressure of the saturated vapor 

is equal to the existing atmospheric pressure. Hence a thermometer which 
is to indicate the true boiling temperature must be placed not in the boiling
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liquid itself but in the vapor rising from: it. The temperature of the liquid 
itself is in fact a very uncertain quantity. Gay-Lussac found that the tem- 

perature of boiling water in a glass vessel was usually 1°C to 3°C higher 

than in a metal vessel. For the reasons already mentioned, it must always 
be a trifle higher than the boiling temperature; but under some circium- 

stances it may rise many degrees above this temperature. For it is by no 
means necessary that bubbles of vapor begin to form as soon as the tempera- 

ture is reached at which they are able to exist after being formed. The 
presence of air in the liquid or occluded in the walls of the containing vessel 
or of dust particles or other impurities is found to be essential to the genesis 
of bubbles. A Frenchman named Donny found, in 1844, that when he 
carefully removed the dissolved air he could raise the temperature of water 
in-a clean glass vessel to 137°C before boiling began.! But in all such cases, 
since the pressure of the saturated vapor corresponding to the temperature 
of the water is much more than the atmospheric pressure, as soon as a bubble 

once starts it grows with explosive rapidity and produces the familiar phe- 
nomenon of “ boiling by bumping.” This usually occurs whenever a liquid 

has been subjected to long boiling, and has been suggested as a possible 

cause of boiler explosions. 

136. Vapor Pressures of Solids. Solids also evaporate and may 
change, therefore, from the solid state directly into the vapor state, 

as in the evaporation of camphor, or of snow in cold dry weather. 
This process is called sublimation. Solids have definite saturation 
vapor pressures, and for certain substances, such as iodine, these 

pressures are appreciable even at room temperature. The vapor 

pressure increases with temperature in much the same way as does that 
of a liquid, and in some cases, such as that of solid carbon dioxide 

(“dry ice”), reaches atmospheric pressure at a temperature below 

the melting point. This temperature is called the sublimation point. 

At the melting point the vapor pressures of the solid and liquid 
are equal, since at this temperature the solid and liquid can exist 

together in equilibrium; if they were not equal, the state with the 
greater vapor pressure would necessarily pass over gradually into 

the other. In Fig. 128 are shown diagrammatically the vapor- 
pressure curves for water. Curve A is for the liquid, curve B for ice, 

and curve C is the melting-temperature curve. Point p is called the 
triple point; it gives the temperature and pressure at which the three 
states of aggregation — solid, liquid, and vapor — can exist to- 

gether in equilibrium. The vapor-pressure curve for the ice must be 
steeper than that for the water. This may be proved as follows. 
  

1A more complete discussion of these questions, with references to the original 

literature, will be found in *T. Preston, The Theory of Heat, ed. 4 (Macmillan, 1929), 

pp. 349-353.
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Consider ice, water, and water vapor in equilibrium in a heat- 

insulated container. If salt is added to the mixture, the vapor pres- 
sure of the water is lowered and the equilibrium is destroyed; the 

water vapor condenses, while the ice, PI 

having a higher vapor pressure, evap- c 
orates. Since the energy necessary to Liquid 

evaporate the ice must come from the Solid ‘A 
system itself, the temperature falls 

until the vapor pressure of the ice p 

equals that of the water, or until all 45™™ Vapor 
the ice is melted. If, therefore, equi- Bt 

librium between the ice and the so- 0.0072" C r 

lution is to be possible, the rate of Fis. 128. Schematic triple-point 
change of vapor pressure with temper- diags ram for Bes ad ee 
ature must be larger for the solid than  };brinm curves for solid-liquid and 
it is for the liquid; that is, the vapor-  solid-vapor, combined in the same 

pressure curve for ice must be steeper diagram. Curve B is steeper than 
than that for water. This conclusion curve A, although the difference 

: has been exaggerated hete. (Can 
tay confirmed experimentally by Gus- you show that the three curves 

must intersect in a common point p?) 

        

EXAMPLE. On a diagram like that of Fig. 128 indicate roughly the nature 
of the vapor-pressure-temperature curve for a dilute aqueous solution 

of a solid and then make use of the curves to explain what effect a dis- 
solved solid has on the freezing temperature of a liquid. 

137. Hygrometry. The water vapor in the earth’s atmosphere is 
usually unsaturated, and hence precipitation in the form of rain, fog, 
or dew may not occur even if the thermometer falls suddenly through 
many degrees. The humidity of the atmosphere at any time can be 
expressed exactly in terms of either the pressure P or the density p 

of the water vapor present; the latter quantity, p, is often called 

the absolute humidity. But it is usually preferable to describe the 
humidity by means of either the dew point or the relative humidity, 

two quantities that suggest more directly the effects due to the pres- 
ence of the water vapor. The dew point 7 is the point to which the 
temperature of the atmosphere must fall, without change of pressure, 

in order that the water vapor existing in it may be in the saturated 
condition; as soon as the temperature falls below this point con- 
densation must of course ensue. The relative humidity 7 is defined as 
the ratio of the density of the water vapor actually in the atmosphere 
at any given time and the density of saturated water vapor at the 
  

1 Poggendorff’s Annalen der Physik und Chemie 108, 206 (1858).
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existing temperature. The experimental determination of any one of 
the four quantities P, p, r, and 7, taken in connection with the pressure- 
temperature curve of a saturated vapor, suffices for the calculation 

of all the rest. In the air-mass analyses used in the newer methods 
of weather forecasting, two other hygrometric quantities are found 
useful. One is the water-vapor content, or mixing ratio, w, defined by 
the equation w= p/pa, where p and pq are the densities of the water 
vapor and of the dry air respectively. The other quantity is the 

specific humidity q, which measures the amount of vapor associated 

with the moist air; that is, g= p/(o9+ pa)=w/(1+w). 

The earliest known hygroscope was of the absorption type and is described 
in the works of NICOLAUS DE Cusa, a German cardinal of the fifteenth cen- 
tury.1 An early hygrometer constructed by the Accademia del Cimento in 
the seventeenth century is shown in Plate 26. Ab- 
sorption hygrometers of the type shown in Fig. 129 
are still in common use, but, as was proved by 
REGNAULT in 1845, the only reliable method of 
graduating such an instrument is an empirical 
one, as by comparison with a dew-point hygrom- 
eter, and frequent calibration is necessary. 

Accurate measurements in hygrometry began 
with the introduction by J. F. DANIELL, in 1823, 
of the dew-point hygrometer (Fig. 132), and this in- 
strument in one or another of its numerous modi- 

fications has become the standard of comparison 
for the testing and graduation of all other hygrom- 
eters; it consists essentially of a polished metal 
tube, the temperature of which is in some way 
lowered until dew is observed to form upon its sur- 
face. The: instrument which is now used most 

. . A . Fie. 129. An absorp- extensively in meteorological observations was first ~- 
: * tion hygrometer, due to 

proposed by the Scottish physicist JoHN LESLIE De Saussure. The hair 
in 1790. It is called the wet-and-dry-bulb hygrom- changes in length with 
eter, or psychrometer, and consists of two similar changes in the humidity 
thermometers mounted side by side, one of which 
has its bulb covered with a light wick kept moist with water (Fig. 133). Evap- 
oration from the wet bulb will cool it as compared with the dry bulb, and the 
drier the air the larger will be the difference in temperature between the two. 
This difference, however, also depends in a complicated way upon the baro- 
metric pressure and upon the speed of the air currents near the bulb. For- 
mulas connecting the difference of temperature with the hygrometric state 

  

  

  

1See *F. Cajori, A History of Physics (Macmillan, 1929), p. 53; also *A. Wolf, A 
History of Science, Technology, and Philosophy in the 16th and 17th Centuries (Allen 
& Unwin, 1935), pp. 306-309,
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Farapay at Work in His Laboratory 

at the Royal Institution, 1852 

From 2 water-color drawing by Harriet Moore, in the possession of the Royal 

Institution. By permission of the Managers



  
  

Oo PLATE 37 ° 

  

  

The Royal Institution of Great Britain 

From a water color by T. Hosmer Shepherd, painted about 1840. By permission of the 

Managers of the Royal Institution 

Tue Royat Insrirvrion, founded in i799 by Counr Rumrorp for the purpose of 
“teaching by courses of philosophical lectures and experiments the application of 
science to the common purposes of life,’ has exerted an enormous influence upon 
the development of science through the researches of Younc, Davy, Farapay, 

Tynpant, Dewar, and others, that were conducted within its walls. Its public 

lectures have been equally influential in diffusing a knowledge of science and its 
methods. See T. Martin’s ‘“The Professors of the Royal Institution,’’ Nature 135, 

813 (1935); also F. Cajori’s A History of Physics (Macmillan, 1929), p. 402.
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of the air have been obtained both theoretically and empirically, in the latter 
case by means of long series of comparisons of this instrument with the dew- 

point hygrometer. In practice it is more convenient to use the empirical 

*. tables usually furnished with such instruments. 

° 

EXPERIMENT XIA. PRESSURE OF A SATURATED 
VAPOR BY THE STATIC METHOD 

_ Tae object:is to observe, by the static method, the pressures ex- 
erted py saturated water vapor at different temperatures. The ap- 

*..paratus is shown in Fig. 130. The bulb B, originally open at c, was 

first half-filled with mercury. The long arm, also 

originally open at the top, was then exhausted 
and inclined until mercury. completely filled it 

up to a point at which it had been drawn down 
to capillary dimensions. The tube was then sealed 
off at. thig peat; so that when the instrument 
was vertical the gifference between the levels of 

.., the mercury in the bulb and in the tube was 
~ equal to the barometric height. Water was then 

inserted at c and boiled until the air was all 
driven out of the bulb, when the opening at ¢ 

was sealed off.. Since, then, only water and water 

vapor exist above the mercury in the bulb, the 

difference between the levels in the bulb and in 
_ the tube gives.at once the pressure of the satu- 

rated water vapor in the bulb. It is, therefore, 

only necessary to vary the temperature of the 

bulb in order to obtain the curve which expresses 
the relation between the pressure and the tem- : 
perature of saturated water vapor. Fie. 130. Apparatus 

a. Immerse the bulb in cold water contained for determining the 
in a glass jar. Place ice or snow in the jar until variations of the bolt 
the temperature falls approximately to zero. ie res sure by the 
While waiting for the mercury level to cease fall- static method 
ing, have some water heating in another vessel. 
Three thermometers are needed for the experiment; the first one is 

placed in the water bath and should, if possible, be one which has 

been compared with a standard thermometer and for which a curve 

of corrections has been prepared'!; the second is placed with its 

  

        

  

      

  

4 See Appendix 10.
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bulb at about the middle of the exposed stem of the first one; and 

the third is hung near the long arm of the manometer (Fig. 130). 
Read the two mercury levels and record the temperatures. 
b. Remove all of the ice and part of the water from the jar, add 

enough warm water to raise the temperature of the'bulb to 10°C 

approximately. Stir the water continuously and, after the mercury 
level has become stationary, repeat the observations described in a. 

c. Repeat at intervals of 10° to 12° C until a temperature of 50° C 
has been reached. 

d. Replace the jar by a metal pail and apply heat directly to the 

pail by means of a Bunsen flame. The level of the mercury in the 
bulb cannot now be read, but a method for inferring its position will 
be given presently.t Record the temperatures and the level of the 
mercury in the long arm at intervals of about 5° C up to the highest 
temperature that can be reached. 

e. After obtaining the last reading, lower the pail and quickly ob- 

serve the position of the mercury surface in the bulb. From a knowl- 
edge of the positions of the mercury surface in the-bulb at 50°C 

and at the highest temperature reached, find by interpolation its 
positions for the intermediate temperatures. ! 

j. Correct the observed temperatures of the vapor for the errors 

of the thermometer and for the error due to the exposed stem. 
g. In order to compare your results with tabulated values of vapor 

pressures, it is necessary to reduce all pressure-readings to what their 
values would have been if the room temperature had been 0° C. 

This is effected by multiplying the observed pressure by the ratio 

of the densities of mercury at the mean temperature of the long arm 

of the manometer and at 0°C. Below 75°C this correction is so 
small that it may be ignored. 

h, The observed pressures should also be corrected for the capillary 
depression of the mercury in the tube.” 

1, Plot your observations on rectangular-coordinate paper, using tem- 
peratures as abscissas and pressures as ordinates. Employ a scale that 
will make the resulting curve fill the entire page. 

2. On the same sheet plot the accepted values of the pressures of satu- 
rated water vapor as given by tables.’ 

8.Is the behavior of a saturated vapor correctly described by 

Eq. [124], Chap.9? Which shows the more rapid increase of pressure 
with temperature, a gas or saturated water vapor? 
  

  

1 This difficulty can be avoided by substituting a large thin-walled glass beaker 

for the pail, in which case the apparatus should be suspended in the water bath. 

2 Appendix 13, Table H. 3 Appendix 13, Table E.
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4. In what physical state is water when its pressure and temperature 
correspond to a point below the curve? above the curve? 

5. To what extent does the presence of mercury vapor in the bulb 
vitiate your data? 

6. Assume that the laws for ideal gases hold also for vapors up to the 
very point of saturation. Then, with the aid of the known density of air 
at 0°C,1A, (mamely, 1.293 x 10-3 g-cm~8), the density of water vapor 
in terms of air (namely, 0.624), and the experimental values for the pres- 
sures of saturated water vapor, calculate the densities of saturated water 
vapor at 10°C, at 40°C, at 70°C, and at 100°C. Compare these cal- 
culated values with the experimentally determined values of the densities 
given in tables and in this way show how closely the gas laws apply to 
saturated vapors. 

0 

EXPERIMENT XIs. PRESSURE OF A SATURATED 
VAPOR BY THE KINETIC METHOD 

The object is to observe, by the kinetic method, the pressures ex- 
erted by saturated water vapor at different temperatures. The kinetic 
method, which is due to REGNAULT, 

consists in the direct observation of 
the temperatures of the vapor that 
rises above a liquid made to boil un- 
der various measured pressures. In 
Fig. 131, Brepresents a boiler, which 

may be either a balloon-form boiling 

flask of about 1-1 capacity or an air- 
tight metal boiler. Cis a Liebig con- 
denser, through-which a slow current 

of water is passed from a tap. It is 
only by virtue of the immediate con- 
densation of the vapor as it forms that 

the pressure within the boiler can be 
kept constant. (Which of the two 
tubes in the condenser jacket should 
be connected to the water inlet, and 

why?) R is an airtight reservoir of 

sufficient capacity to smooth out 
small fluctuations in pressure. The 
only other essential features of the 

apparatus are an open-tube manom- 

      eter M and some kind of vacuum Fy. 131, Reonaurt’s form of vapor- 
pump, such as a water aspirator. pressure apparatus
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a. Have the boiler about half-full of water. Test the system for 

leaks by exhausting to the highest vacuum attainable by means of 

the pump, and then closing the stopcock S and letting the system 

stand a few minutes. 
b. Slowly turn the stopcock S so that the system is placed in 

communication with the atmosphere. Start the circulation in the 

condenser and heat the water in B to boiling. After the conditions 

have become stationary, read the barometer and its temperature,! 

and observe the temperature of the steam as given by the thermom- 

eter in the: boiler. 
c. Turn the stopcock S so as to-connect the system with the pump, 

and exhaust until a difference in height of 5 to 10 cm has been pro- 

duced in the arms of the manometer. Then close S$ entirely, and after 

about two minutes of continued boiling observe the temperature of 

the steam and at once observe the positions of the mercury surfaces 

in the manometer. 

d. Again connect the system with the pump, and repeat the opera- 

tions described in c after the pressure has been reduced to a lower 

value. Continue in this way until the boiling temperature has fallen 

to about 75° C, below which temperature the difficulty of boiling 
with bumping is encountered. (Why?) It is best to make each re- 
duction of pressure smaller than the one that precedes it, so that the 

pressure steps represent approximately equal changes of tempera- 

ture —- for instance, about 5°. 

e. If the instructor so directs, attach a small pressure pump at S 
and investigate the temperatures of the steam for pressures somewhat 

higher than that of the atmosphere. 
f. Correct the observed temperatures of the steam for the errors 

of the thermometer, exactly as in Exp. XIA, f. 
g. From the corrected barometer reading and the manometer 

readings calculate the total pressures above the surface of the liquid. 
Remember that the open-tube manometer indicates the so-called 
gauge pressure, or difference between the pressure in the system and the 
pressure of the atmosphere. The pressures should be reduced to 0° C 

and corrected for capillary depression, as in Exp. XIa, g and h. 

1. State precisely what two quantities you have observed in this ex- 
periment and what relation they bear to the pressure and temperature of 

saturated water vapor. 

2. Plot your experimentally determined values of the pressure and 
temperature of saturated water vapor on the sheet of coordinate paper 
used in Exp. XIa, question 1. 
  

1 Appendix 6.
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3. How may the boiling point of water be determined from your ob- 
servations ? 

4, What determines the highest temperature for which this apparatus 
is applicable? the lowest temperature? 

5. Just how does the reservoir R perform its function? What are the 
causes of the small fluctuations of pressure in the system ? 

6. A simpler but less exact form of the CLAPEYRON-CLAUSIUS equation 

(Sec. 133) can be derived by making the assumptions that the volume of 
a unit mass of the liquid »; is negligible in comparison with that of the sat- 

urated vapor », and that the saturated vapor conforms to the ideal gas 
laws. Thus, putting ».=0 and #, = R’T/P, we get dP/dT = JLP/R’T?, or 

dP _ JLdT. 
P RT? 

This equation can be integrated if it be assumed either that the heat of 
vaporization L is a constant or that it is proportional to the first power of 
the absolute temperature (which is more nearly the case if the temperature 
range is large). On the first assumption one obtains log P=A—(B/T), where 
A and B are constants, and on the second, log P= A — (B/T) + C log T, 
where A, B, and C are constants. These equations fit curves like Fig. 125 

well over a limited range of temperatures. How well does the equation 

log P= A —(B/T) fit your experimental data? Using the pressures 
which you determined in this and in the preceding experiment for a 
temperature near zero and a temperature near 100°C, compute values 

of A and B. Then compute several intermediate values of P and see 
how closely they fit your curve. 

° 

OPTIONAL LABORATORY PROBLEM 

Acceleration Due to Gravity from Boiling-Temperature Measurements. 

At two different places, where the accelerations due to gravity are g and g, 
respectively, the barometric pressures B and B, will be different even when 
the atmospheric pressures at the two places are the same; for if the pressures 
were the same, then Bog = B,pg,, where p is the density of mercury. If now 
the dependence of the boiling temperature of a given substance upon the 

barometric height B, is known from formulas or tables for a place where the 

acceleration due to gravity is g,, then it is possible from a determination of 

the boiling temperature at a second place to find the barometric height which 
would correspond to the atmospheric pressure at that place if the accelera- 
tion due to gravity there were g,. The actual barometric height B at the 

time and place of the boiling-temperature measurement can be determined 
in the usual way with a barometer. The unknown acceleration due to 
gravity g can then be calculated from the equation g = B,g,/B. This method 

has yielded valuable results in gravitational surveys.
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Use a reliable thermometer accurate to at least 0.01° C to determine the 

boiling temperature t; of water. Then find B, corresponding to this value of 
t, from tables (International Critical Tables, Vol. ITI, p. 112) or else calculate 
it from the interpolation formula 4 = 100 + 0.0375(B, — 760), where B, is 

in millimeters of mercury; this formula is quite accurate within the range 

715 = B, = 775. Read the barometer, reduce the reading to 0°C, and 

calculate g. 

° 

EXPERIMENT XIc. HYGROMETRY 

The object is to determine the hygrometric state of the atmosphere 
in two ways: with the dew-point hygrometer and with the psy- 

chrometer. 

Part I. The Dew-Point Hygromcter. The form of dew-point hy- 
grometer that offers the greatest possible precision in the determina- 
tion of the dew-point temperature is that designed originally by 
ALLUARD (Fig. 132). A metal tube having a 
nickel-plated and highly polished face is 

mounted on a heat-insulating support. The 

tube contains ether, through which a stream 

of air is bubbled by means of an aspirator 
bulb until the temperature is lowered to the 
point at which dew begins to form on the 
polished surface. To facilitate determination 

of the moment at which condensation begins, 

there is mounted close to the polished sur- 

face, but not in thermal contact with it, a 

second polished nickel surface upon which no 

dew is formed. Thermometers are provided 
for determining the temperatures of the ether 

and of the atmosphere. The instrument 

should be protected from air currents, for 
otherwise the observed dew points are too low. Fie. 132, Arruarn’s form 

1. Why too low? ° of dew-point hygrometer 

  

In order to avoid error due to body heat and moisture, the polished 

surface and thermometer should be observed through a telescope 
placed several meters away. At the instant when the face of the tube 
begins to look cloudier than the adjacent polished surface, the tem- 

perature of the ether is noted. Then, with the current of air stopped, 

the temperature at which the cloudiness disappears is observed. 

With a little practice the temperatures at which the dew appears 

and disappears can be made to approach each other to within
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about 0.1°C. The mean of these two temperatures! is taken as 
the dew point r. 

a. Place the hygrometer in a room in which there is no evaporating 
water, pour enough ether in the tube to cover the window, and turn 
the polished face into as favorable a light as possible. Make a quick 
approximate determination of the dew point. In subsequent ob- 
servations regulate the evaporation of the ether so that the tempera- 
ture falls very slowly in the neighborhood of the point sought. In 
taking observations with rising temperatures an occasional air bubble 
may be allowed to pass through the ether in order to keep it stirred. 

b. Make at least five careful determinations of +. Observe each 
time the temperature of the atmosphere near the instrument. 

c. Use the average value of 7 to find the pressure P of the water 
vapor in the atrhosphere. This is simply the pressure of saturated 
water vapor at the temperature 7, and is obtained at once from tables?; 
for, although the cooling of the layers of atmosphere which are in 
contact with the metal surface causes an increase in the density both 
of the air and of the water vapor of which these layers are composed, 
yet, since the barometric pressure is in no way affected by the cooling, 
it is evident that the pressure both of the air and of the water vapor 
within these layers must remain precisely the same as outside, where 
no cooling takes place. 

d. Find the absolute humidity p. A table of Densities of Saturated 
Water Vapor gives the value of this quantity within the cooled layer, 
but in order to obtain its value at a distance from the instrument the 
density within the cooled layer must be multiplied by 7,/7., where 
T, and Tz are the absolute temperatures of the dew point and of the 
atmosphere respectively ; this follows from the law that, for constant 
pressure, density is inversely proportional to absolute temperature. 

Instead of obtaining p in this way from tables, it may be calcu- 
lated directly from P with the help of Eq. [171], Chap. 10. For it 

can easily be shown that, since the density of air at 0° C and 1A, is 

1.293 x 10-8 g- cm73, and since under like conditions of temperature 
and pressure the density of water vapor in terms of air is 0.624, 

Eq. [171] becomes P 

p = 0.00029 7 [184] 
a 

  

1 The observed temperatures, if carefully taken, will be slightly below the actual 

dew point. This is because the initial deposit is in the form of minute droplets, whose 

vapor pressure is greater than that for a flat surface at the same temperature (Sec. 183). 

At ordinary temperatures and for droplets of radii 10-4 cm, the error introduced by 
this effect is approximately 0.02° C. It may therefore be neglected ordinarily. 

2 Appendix 13, Table E.
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where P is expressed in millimeters of mercury. This extension to 

unsaturated vapors of an equation which holds rigorously only for 

ideal gases must be permissible in practice, since the results of 

Exp. XIa, question 6, show that at ordinary temperatures Eq. [171] 

may be applied with very little error even to saturated water vapor. 

e. Calculate the relative humidity r. 

Part II. The Psychrometer. a. Have the wet bulb thoroughly satu- 

rated with water. If the psychrometer is of the stationary type, in 

which the thermometers are mounted on a base, hang the instrument 

from a cord and allow it to swing as a pendulum 

for several minutes. If it is of the sling type 

(Fig. 133), whirl the thermometers rapidly for half 

a minute. The rate of rotation should be a nat- 

ural one, for if it is too violent or irregular the 

instrument may be damaged. Take care not to 

strike the instrument on any object. 
Stop the instrument, and quickly read the wet- 

bulb and then the dry-bulb thermometer. Imme- 

diately set the instrument in motion and then 

take a second set of readings. Repeat until at 
least two successive readings of the wet-bulb 

thermometer are found to agree closely, thereby 

showing that the wet bulb has reached its lowest 

temperature. Observe the barometric pressure B. 

b. Calculate the pressure P of the water vapor in 

the atmosphere by means of the empirical formula 

P = Py — 0.00066 Bla — tw), [185] 

where f, and tf, are the readings, in degrees 

centigrade, of the dry bulb and wet-bulb ther- 

mometers respectively, and P. is the pressure of 

saturated water vapor as given by tables for the temperature t.. 

c. With the help of Eq. [184] and tables, calculate p, r, and r. 

2. Derive Eq. [184]. 

3. If the temperature of the air at sunset on a clear day is 10° C, and 

if the wet-bulb thermometer reads 8° C, at what temperature will dew 

form? Need there be fear of frost during the night? 

4. If, in question 3, the wet-bulb thermometer had read 4.5° C, what 

would the dew point have been? In this case frost would have been al- 

most certain. Why? 

SH
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OPTIONAL LABORATORY PROBLEM 

Simple Chemical Hygrometer. Fill three 250-ml flasks with small frag- 
ments of pumice stone. Saturate two of them with strong sulfuric acid and 

the third with distilled water. Weigh very carefully the flasks containing 
the acid. Connect the three flasks to a water aspirator, with the one con- 
taining the water in the middlé, and pass a gentle stream of air through 
them for a considerable time. Disconnect and again weigh the flasks con- 

‘taining the acid. The ratio of the gains in weight obviously will be the rela- 
tive humidity. What are the advantages and the disadvantages of this type 
of hygrometer? A still better form of chemical hygrometer is described in 
connection with Prob. 13 at the end of this chapter. 

° 

QUESTION SUMMARY 

1, What is the nature of the departures of actual gases from the equation 
of state for ideal gases? If the product PV at constant room temperature 

is plotted against P, what is the nature of the curve obtained (@) for an ideal 

gas? (b) for hydrogen and helium? (c) for all other gases? 

2. How are these departures explained by the kinetic theory? What 
other evidence is there that this explanation is correct? 

3. State the VAN DER WAALS equation of state; make clear the meaning 
of each constant in the equation and the reasons for its introduction. How 

closely does this equation fit the facts for real gases? 

4, Illustrate the continuity of the liquid and gaseous states by describing 
ANDREWS’S experiments on carbon dioxide. Define critical temperature. 

5. What is the distinction between a gas and a liguid? Contrast the 
kinetic-theory picture of a liquid with that of a gas. 

6. On the basis of kinetic theory, how is evaporation explained? Why 
is it a cooling process? 

7. Define saturated vapor. Upon what factors do the density and pressure 

of a saturated vapor depend, and how do they depend upon them? 

8. What is meant by the boiling temperature? Why must a thermom- 
eter which is to indicate the true boiling temperature be placed not in the 
boiling liquid itself but in the vapor arising from it? 

9. How does the presence of a dissolved solid affect the vapor pressure of 

a liquid? the boiling temperature? the freezing temperature? 

10. Name and define the four quantities involved in hygrometric deter- 
minations. How are they determined experimentally? Explain in detail 
how each may be calculated with the help of a table of densities and pres- 

sures of saturated water vapor when one of these is known. Why is it that 

if the dew point 7 is known, the pressure P can be obtained directly from the 
table, or vice versa, whereas the density p cannot?
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PROBLEMS 

1. Isebaric curves are the curves that connect the volume and the tem- 

‘perature when the pressure is kept constant. Indicate the form of the iso- 

bars (a) for ideal gases; (6) for actual gases. 

9. In the VAN DER WAALS equation, Eq. [183], when V is the volume of 

the gas in terms of its volume at 0° C and 1 A, as the unit, and P is the pres- 
sure in atmospheres, the constants @ and 0 for air have the values 0.0026 and 
0.0021 respectively. (a) Given 1.001 of air at 0° C under a pressure of 1 Ag, 
what will be its new pressure if it is compressed to 0.1501 and brought back 
again to the same temperature? (6) How does the pressure at the smaller 

volume compare with that predicted by BoyLe’s law? 
Ans. (a) 6.65 A,; (b) 6.67 As. 

3. By writing the VAN DER WAALS equation in powers of V and making 
use of the fact that the three roots of this cubic equation are equal at the 
critical point, show that the critical temperature T., the critical pressure P., 
and the critical volume V, are, in terms of the VAN DER WAALS constants, 

T,=8a/27NRb; Pe=a/27b?; V.=30b. 

4. Explain why,.from the standpoint of kinetic theory, a lower tempera- 

ture can be reached by fanning an open vessel of ether than by fanning an 

open vessel of water. 

5. Isometric curves are the curves that connect the pressure and the tem- 
perature when the volume is kept constant. Indicate the form of these 
curves for (a) ideal gases; (6) actual gases; (c) a saturated vapor in contact 

with the liquid. 

6. In a uniform barometer tube in which the mercury stands but 40.0 cm 
high, the space above the mercury is 40.0 cm long and contains at first only 

dry air and mercury vapor. A few drops of ether are then introduced into 
the tube. If the pressures of saturated ether vapor and of saturated mer- 
cury vapor at the existing temperature are 30.0 cm and 9.0 x 1075 cm of 

mercury respectively, to what point above the mercury in the cistern will 
the mercury in the tube ultimately fall? Assume that the barometer stands 

at 76cm. Ans. 21 cm. 

7. If 150 cm3 of oxygen are collected over water at a pressure of 740 mm 
of mercury and a temperature of 20.0° C, what volume would the dry oxygen 
occupy under standard conditions of pressure and temperature? The maxi- 
mum pressure of aqueous vapor at 20.0° C is 17.6 mm of mercury. 

Ans. 1383 cm3. 

8. Find the boiling temperature of water on a mountaintop at a time 
when the barometer reads 22.0 in. of mercury. Ans. 91.6°C. 

9. How much work is done against the external atmospheric pressure 
in evaporating 100 g of water at 98° C and 707.3 mm of mercury, the density 

of steam under these conditions being 0.560 kg - m~3? 
Ans. 1.68 X 10" ergs.
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10. Is it correct to say that a hot-air furnace dries the air, in the sense of 
lowering the absolute humidity? Does it lower the relative humidity? 

11. Two thousand cubic centimeters of dry air at 15°C and 1A, are 
passed through flasks which contain a known mass of carbon disulfide at 

15° C, and the resulting mixture of air and carbon disulfide vapor is allowed 
to escape into the room at a pressure of 1 A,. When the flasks are reweighed, 
the decrease in mass is found to be 3.011 g. What is the vapor pressure of 

carbon disulfide at 15° C? Ans. 242 mm of mercury. 

12. (a) How would you proceed in order to raise the humidity in a house 
that is heated by means of a hot-air furnace? (6) How much water would 
have to be evaporated in order to raise 
the relative humidity of a room of 
volume 500 m® from 20 to 50 percent, 

the temperature being 20° C? 
Ans. (b) 2.6 kg. 

13. With the help of BoyLe’s law 
and Eq. [184], derive the laboratory 

equation for use with the chemical hy- Fic. 134. The chemical hygrometer, 

  

grometer of Fig. 134, namely first used by C. Brunner in 1844. Air 
is drawn through drying tubes and the 

Am=0. ooo29 = PB- BoPay increare Am in the mass of the tubes 
—P Is measured 

where P, is the pressure of saturated water vapor at the temperature of the 
atmosphere, and V is the volume of water that has been drawn out of R 
during the experiment. Show that P is the only unknown quantity in this 
equation. 

14. When the relative humidity is 0.47 at 21°C, what will be the dew 
point? Ans. 9.3°C. 

15. The density of dry air at 18.0°C and 755mm of mercury is 
1.205 x 1073 g-cm~3. Find the density of the atmosphere at this tem- 
perature and pressure when the dew point is 10.0° C. 

Ans. 1.199 x 10-3 g¢-cm73, 

o 

ENT TO the Royal Institution last night in hopes of hearing Faraday lecture, but the lecture 

was given by Mr. Pereira upon crystals, a subject of which he appeared to be master, to 

judge by his facility and fluency. ... Met Dr. Buckland and talked to him for an hour, and he intro- 

duced me to Mr. Wheatstone, the inventor of the electric telegraph... . There is a cheerful- 

ness, an activity, an appearance of satisfaction in the conversation and demeanour of scientific 

men that conveys a lively notion of the pleasure they derive from their pursuits. 

Greville’s Memoirs, March 17, 1838



CHAPTER TWELVE 

QUANTITY OF HEAT AND CALORIMETRY 

t was formerly a common supposition, that the quantities of heat required to increase the 

heat of different bodies by the same number of degrees, were directly in proportion to the 

quantity of matter in each; and therefore, when the bodies were of equal size, the quantities of 

heat were in proportion to their density. But very soon after I began to think on this subject, (anno 

1760) I perceived that this opinion was a mistake, and that the quantities of heat which different 

kinds of matter must receive, to reduce them to an equilibrium with one another, or to raise their 

temperature by an equal number of degrees, are not in proportion to the quantity of matter in each, 

but in proportions widely different from this, and for which no general principle or reason can 

yet be assigned.... This opinion was first suggested to me by an experiment described by 

Dr. Boerhaave (Boerhaave, Elementa Chemiae, exp. 20, cor. 11). After relating the experiment 

which Fahrenheit made at his desire by mixing hot and cold water, he also tells us that Fahrenheit 

agitated together quicksilver and water unequally heated. From the Doctor’s account, it was quite 

plain, that quicksilver, though it has more than 13 times the density of water, produced less effect 

in heating or cooling water to which it was applied, than an equal measure of water would have 

produced. He says expressly, that the quicksilver, whether it was applied hot to cold water, or 

cold to hot water, never produced more effect in heating or cooling an equal measure of the water 

than would have been produced by the water equally hot or cold with the quicksilver, and only 

tworthirds of its bulk. He adds, that it was necessary to take three measures of quicksilver to two 

of water, in order to produce the same middle temperature that is produced by mixing equal 

measures of hot and cold water. 
Joszrn Biack, Lectures on the Elements of Chemistry, de- 

livered at the University of Edinburgh, Vol. J, p. 79 

° 

That bodies change in temperature is a fact of direct observation, 
but the notion that a something called heat passes between bodies of 

changing temperature is of the nature of a hypothesis. This hypoth- 
esis has taken two rival forms (Sec. 54). One is that heat is an im- 

ponderable and indestructible fluid, called by the French chemists 

DE MorRVEAU, LAVOISIER, BERTHOLLET, and DE Fourcroy! the 

caloric, the passing of which into or out of a body is the cause of 

temperature change. The other is that a rise in temperature is an 
increase, not in the quantity of a contained heat fluid, but simply in 
the mean kinetic energy of the molecules themselves (Sec. 116). A 

knowledge of the caloric theory is now important only because of the 

  

1 Méthode de Nomenclature Chimique (Paris, 1787), pp. 30-31; tr. by J. St. John, 

Method of Chymical Nomenclature (London, 1788), pp. 22-23. The term calorimeter 

is due to LAVOISIER (1743-1794); see Traité Elémentaire de Chimie (Paris, 1789), 

Vol. II, pp. 389-390; tr. by R. Kerr, Elements of Chemistry (Edinburgh, 1790), p. 845. 
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Joszru Biacx as Caricatured by John Ray 

and as Portrayed by Henry Raeburn 

Goop caricatures, like good portraits, are a valuable addition to the history of 

science. They may depict facts in the life of the person caricatured or may exag- 

gerate personal traits or habits in a way that a true portrait cannot do. Thus, from 

the friendly caricature reproduced here, one can conclude, quite correctly, that 

Back was a deliberate and complacent lecturer of methodical habits, quiet manner, 

and precise speech. These characteristics are embodied in Raeburn’s portrait, but in 
the portrait they are not humorously accentuated by the wig, glasses, and gown, as 

they are in the caricature. The following word picture given by Bracx’s pupil, 

colleague, and friend, Jou Rosison, is interesting in this connection: 

“ His [Black’s] personal appearance and manner were those of a gentleman, and 

peculiarly pleasing. His voice in lecturing was low, but fine; and his articulation 

so distinct that he was perfectly well heard by an audience consisting of several 
hundreds. His discourse was so plain and perspicuous, his illustration by expeti- 
ments so apposite, that his sentiments on any subject never could be mistaken, even 

by the most illiterate; and his instructions were so clear of all hypothesis or con- 

jecture, that the hearer rested on his conclusions with a confidence scarcely exceeded 

in matters of his own experience.”’



  
  

© PLATE 39. © 

  

  ns 

A Group of German Physicists 

of the 19th Century 

Photograph from Die Naturwissenschaften 13, 36 (1925). By permission of the publishers 

Ruporra Craustus (lower right) (1822-1888) has been called by Maxwezt the 
principal founder of the kinetic theory of gases ; he also helped make thermodynamics 
a science and advanced the dissociation hypothesis to explain electrolysis. Avevst 
Kunor (left) (1839-1894) was Hermnontz’s successor at Berlin; the Kunpr tube 

for comparing the speeds of sound in various mediums is known to every student of 
physics. Grore Quincxe (center) (1834-1924) of Heidelberg is known for his 
work on surface tension, magnetic permeabilities, and dielectric constants. Frrsp- 

rics Wirnetm Kontrausce (upper right) (1840-1910) was director of the Reichs- 

anstalt from 1895 to 1905, succeeding Hermnorrz; his texts on practical physics, 
which have been translated into many languages, did much to stimulate experimental 

physics.



12 + 138] Quantity of Heat and Calorimetry 263 

light that it throws upon the terminology of heat. The theory was 
altogether abandoned after JouLE’s demonstration of the equivalence 
of heat and work (Secs. 54, 55). 

138. Unit Quantity of Heat. The heat unit employed by the calo- 
rists was the quantity of heat that must enter a unit mass of water 
in order to raise its temperature one degree. This definition has been 
retained, but the old concept of the transfer of a heat fiuid has been 
replaced by the concept of a transfer of molecular energy, kinetic or 
potential or both. In other words, the heat unit is now to be re- 
garded simply. as an arbitrarily chosen unit that is especially con- 
venient for measuring energy which is in the form of heat. The heat 
unit may also be defined as the quantity of heat that must leave a 
unit mass of water in order to lower its temperature one degree ; for 
experiments show that when a given mass of water cools one degree, 
it gives out an amount of heat equal to that absorbed when it is 
heated through the same range of temperature. 
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Fic. 135. Relative values of the calory at different temperatures, taking 
the 15° calory as the unit 

Accurate experiments show that the amount of heat which must 
enter or leave a unit mass of water in order to produce a change of 
one degree in the temperature is not the same at all temperatures 
(Fig. 135); hence the following more precise definitions of the thermal 
units of energy. The cgs unit of heat is the calory. There are two 
calories in common use. The 15° calory (cals) is defined as the quan- 
tity of heat required to change the temperature of 1 g of water from 
14.5° to 15.5°C. The mean calory is defined as one one-hundredth 
of the quantity of heat required to change the temperature of 1 g of 
water from 0° to 100°C. In each case the pressure is taken to be 1 A,. 
Experiments show that the mean calory is practically equivalent to 
the 15° calory. As stated in Sec. 55, the latter is equivalent to 
4.185 j. In the fps system the unit of heat is the British thermal unit 
(B.t.u.), which is the heat required to raise 1 Ib of water through 1° F. 

EXAMPLE. Show that I B.t.u. is equivalent to 252 cal.
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Thermal Capacity 

139. Thermal Capacity. The first investigator to draw a sharp dis- © 
tinction between heat and temperature was JOSEPH BLACK, who by 

his discovery of specific and latent heats laid the foundations of 
the quantitative science. of heat.t. In about. the year 1760 BLACK? 
arrived at the important conclusion that “the quantities of heat 
which different kinds of matter must receive . . . to raise their tem- 
peratures by an equal number of degrees, are not in proportion to 

the quantity of matter in each - - -.”’ In other words, the quantity 
of heat given up by 1 g of water in falling through one degree would 

raise very different masses of other substances through one degree — 
‘for example, about 30 g of mercury or 9 g of iron. The calorists ex- 

plained these facts by the assumption that equal masses of different 

substances possess different capacities for the heat fluid. Thus the 
thermal capacity of a body came to be defined as the number of heat 

units required to raise the temperature of the body through one de- 
gree, and the thermal capacity of a substance, or specific heat (symbol c), 

as the number of heat units required to raise the temperature of a 
unit mass of that substance through one degree. 

These definitions are still retained now that heat is regarded as 
molecular energy; but the fact that different amounts of this energy 
must be communicated to equal masses of different substances in 

order to produce the same increase in temperature, or, what is the 

same thing, the same increase in the average kinetic energy of trans- 

lation of the molecules (Sec. 116), is attributed to two factors: 

a. The differences in the number of molecules contained in equal 
masses of different substances. 

b. Other differences in the internal work which are incidental to 
an increase of temperature. The term internal work includes not 
only (1) the work AW, done in raising the temperature of the body 
but also (2) the work AW, done in augmenting the energy, kinetic 

or potential, of the atoms and electrons inside the molecules, and 
(3) the work AW; done:in increasing the distances between the 

molecules, in case the average distance separating them is increased. 
  

1See *D. McKie and N. H. de V. Heathcote, The Discovery of Specific and Latent 

Heats (Arnoid, 1935). 
2See the quotation at the beginning of this chapter. These * Lectzres, published 

jn 1803, after BLACK’s death, were written out from his own notes, supplemented by 

those of some of his students, under the editorship of John Robison. BLAck’s heavy 

duties, ill-health, lack of initiative, and almost morbid horror of hasty generalization 

prevented him from going further than forming a plan of the work, and during his 

lifetime most of his great discoveries on heat remained unpublished.
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The first of these two factors can easily be investigated, for if 
this were the only cause of the differences in the specific heats of 
different substances, these differences would disappear in a com- 
parison of quantities which represent, not equal masses, but equal 
numbers of molecules. Such a quantity evidently can be obtained 
‘by taking, in each case, a mole of the substance. The number of 

TABLE VI - Molar Thermal Capacities of Various Substances. (The values are 
for constant pressure and, in the case of gases, for 15° C and 1 A,) 

  

  

  

  

  

  

  

  

  

Group Substance Formula cat lecular ne 

A Helium... 2. 2 He 4.96 
Argon. 2... A 4.96 

Hydrogn ......... He 6.86 
Nitrogen 2... 2... 0.2, No 6.93 
Oxygn. . 2... Oz 7.04 

B Carbon monoxide . 2... co 6.94 
Nitricoxide . 2 2. 2. NO 7.00 
Hydrochloric acid . 2... Hcl 7.15 
Chlorine 2... 2... Cle 8.15 

Cc Carbon dioxide. . 2 2... CO, 8.79 
Nitrous oxide 2... 1. N:O 8.85 

Sodium .........0, Nae 13.5 
D Potassium... 2... 0.2. Ke 12.9 

Copper .......0.. Cue 12.1 
Mercury .... 2.0.0. Hge 13.3 

Nickel monoxide . . 2... NiO 11.9 
E Cupric oxide. 2... 1, CuO 11.3 

Mercuric oxide. . 2. 2 Lt HgO 11.2 

Calcium chloride... 2... , CaCle 18.2 
F Zinc chloride. . 2.2... ZnCle 18.6 

Barium chloride ..... . . BaCle 18.6 

G Calcium sulfate . 2... CaSOx 26.7 
Lead sulfate. 2... PbSO, 26.4             

units of heat required to raise the temperature of one mole of a sub- 
stance through one degree is called its molar thermal capacily or 
molecular heat. Evidently this quantity is simply the product of the 
specific heat and the molecular weight. Table VI shows that many 
of the differences in thermal capacities do in fact disappear upon 
comparison of equal numbers of molecules. The differences which 
are still left must be attributed wholly to the second factor. It is
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true, of course, that when a substance is heated under atmospheric 

pressure a. certain amount of external work AW, must also be done 

in expanding against the atmospheric pressure; but this may be 
neglected in the case of solids and liquids, and for gases it is practically 
a constant quantity. (Why constant?) 

In 1831 F. E. NEUMANN ! investigated the molar thermal capacities 

of chemically similar substances the molecules of which possess the 
same number of atoms, and found them to be nearly the same in a 

given state of aggregation —- for example, in the gaseous state. This 

is known as Neumann’s law. It must of course be inferred from this 

law that the internal work is about the same for such similar sub- 
stances. The law is not exact, nor could it be expected to be in view 

of the differences in the attractions which exist between different 
sorts of molecules. 

Since the molecules of gases are not subjected to appreciable mutual 
attractions, it might be expected that with molecules of equal com- 
plexity the molecular work would be less in the gaseous than in the 

liquid or solid condition (groups B and D, Table VI). Again, it 
would be natural to conclude that for substances in the same state 
of aggregation the internal work would, in general, increase with the 

complexity of the molecule, and this inference is also in accord with 
the facts presented in the table. 

140. Variations of Specific Heats with the Temperature. Experi- 

ments show that the specific heat of a given substance is not con- 

stant, but that in general it increases steadily with the temperature. 

The rate of increase, fortunately, is slight for water and for most solids 

with the exception of carbon, boron, and silicon, so that in ordinary 

work at moderate temperatures it may be disregarded. But for most 

liquids it is far from negligible. For example, REGNAULT found that 
the specific heat of ethyl alcohol is 0.548 cal- g-1- deg71 at 0°C 
and 0.648 cal- g-1- deg! at 40°C. The fact of the dependence of 

the specific heat of water upon temperature, which has already been 

referred to in Sec. 188 and Fig. 135, was first established by RE- 

GNAULT.2 The first extensive work upon this variation was done by 

H. A. ROWLAND? of Johns Hopkins University, in 1879. 

It is apparent that the quantity usually obtained by experiment 
is not the specific heat at a given temperature but rather the mean 

specific heat between two specified temperatures. Thus, if Q repre- 
  

1 Poggendorff’s Annalen der Physik und Chemie 28, 1 (1831). 
2 Poggendortff’s Annalen der Physik und Chemie 79, 241 (1850); Relations des Ex- 

bériences (Paris, 1847), Vol. 1, p. 729. 
3 Proceedings of the American Academy of Arts and Sciences 15, 75 (1879-1880) ; 

Physical Papers (Baltimore, 1902), p. 387.
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sents the quantity of heat passing into or out of a mass m while it 
changes in temperature from f to f2, then the mean specific heat c 
between t, and tz is Q 

c= — 186 
m(l2 — ty) [186] 

For example, the mean specific heat of water between 14.5° and 

15.5° C is equal to the 15° calory. If we take infinitely small intervals 

of temperature we obtain, for the specific heat at temperature | in the 
interval dt, Q 

C= m di . [187] 

It is usually permissible to put c:, the specific heat at a certain tem- 

perature, equal to the mean specific heat c of an adjoining interval 

of moderate size. 
141. Specific Heats at Constant Volume and at Constant Pressure. 

As has already been pointed out in Sec. 189, a quantity of heat @ 

communicated to any body may expend itself in one or more of several 
ways. A portion of it, AW, may be employed in raising the tem- 

perature of the body, and another portion, AW,, in increasing the 
energy inside the molecules. Since an increase in temperature is in 

general accompanied by an increase in volume, a part of the heat 
energy Q may also be expended in two other ways. For if the body 
be subjected to external forces, external work of expansion AW, 

will be done against these forces while the volume is changing. So 
also internal work of expansion AW; will be done against internal 
forces, such as molecular attractions, while the volume is changing. 
In general, then, 

JQ = AW; + AW, + AW; + AW., [188] 

where the quantities in the right-hand member are expressed in 
mechanical units, @ is expressed in thermal units, and J is JOULE’S 

equivalent (Sec. 55). This equation is simply an expression for the 
particular case at hand of the first law of thermodynamics (Sec. 108). 

A more general mathematical statement of the first law is 

JQ = AU + AW, 

an equation which states that a quantity of heat Q absorbed by a 
system is, in general, used up partly to produce an increase AU in 
the internal energy of the system and partly to cause the system to 
do external work of amount AW. 

It is evident from Eq. [188] that the specific heat of a substance 
is an indefinite quantity unless one specifies the conditions under 

which the heating is carried out. There are two important cases: 
when the substance is heated at constant volume, in which case
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AW; = AW, =0, and when it is heated at constant pressure. We 
therefore distinguish between the specific heat at constant volume, Cz, 
and the specific heat at constant pressure, Cy. (Is c, always larger 
than ¢, ?) : 

With the volume kept constant, let a mass m of a substance be 

heated through At degrees. The quantity of heat Q which must be 
communicated to the substance is c,m At; and, since AW, = AW; =0 

when the volume is constant, Eq. [188] becomes, upon rearrangement, 

AW, + AW. 
Jm At 

Suppose, on the other hand, that the substance be heated at con- 

stant pressure. In this case Q = c,m At. By inserting this expression 

for Q in Eq. [188] and subtracting Eq. [189] from the result, we get 

for the difference of the two specific heats 

oo AW AWe, 
po” Jm At 

In the case of gases, AW; is usually very small (Sec. 128), whereas 

AW, is very large because of the large expansivities of gases. In the 
case of solids the reverse is true: AW; cannot be neglected because 
of the large cohesive forces between the molecules, whereas AW, is 

negligibly small because of the small expansivities of solids. The 
differences between the two specific heats c, and c, are found to be 
much larger in the case of gases than for solids and liquids, however, 
and this is the only case to which we shall give further consideration. 

142. Specific Heats of a Gas. It will now be shown that for any 
ideal gas, if one of these specific heats is determined by experiment, 
the other can be deduced. Let us first consider the difference c, — c,. 
Imagine a mass m of an ideal gas to have been heated at constant 
pressure P until the temperature and volume have changed by the 
amounts AT and AV respectively. Then, since AW; == 0 for an ideal 

gas (Sec. 118) and AW,=P AV when the pressure is constant, 
Eq. [190] becomes ¢,—¢,= PAV/JmAt. But, by Eq. [131], 

Chap. 9, PV = mR'T, and therefore PAV= mR’ AT for constant 
pressure; hence 

C= [189] 

[190] 

- 

Cp = 7 [191] 

where R’ is the gas constant for unit mass of the ideal gas in question. 
Essentially this equation was used by Mayer! in 1842 to make the 
  

1‘ Bemerkungen iiber die Krafte der unbelebten Natur,” Annalen der Chemie und 

Pharmacie 42, 233 (1842). See Sec. 55 and footnote 3, p. 76.
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James Prescorr Jouze, 1818-1889 

From the painting by G. Patten, in the possession of the Manchester Literary and 

Philosophical Society
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Facsimile of a Portion of a Letter 

      
from J. Crerx Maxwett to Batrour STEwart 

Reproduced through the courtesy of Professor H. Lowery 

In txIs LeTTER, which is preserved among the historical items in the Department of 

Pure and Applied Physics in the College of Technology, Manchester, England [see 
the interesting paper on ‘‘ The Joule Collection in the College of Technology, Man- 
chester,” by H. Lowery in the Journal of Scientific Instruments 7, 369 (1930); 8, 1 

(1931)], Maxwet expresses appreciation for Joutz’s work as follows: 

“There are only a very few men who have stood in a similar position and who 
have been urged by the love of some truth which they were confident was to be 
found though its form was as yet undefined to devote themselves to minute observa 
tions and patient manual and mental toil in order to bring their thoughts into exact 
accordance with things as they are ””
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first computation of 7, the other quantities in the equation having 

been determined by experiment. 
Direct determinations of the specific heat at constant volume are 

difficult to make because of the smallness of the mass of the gas which 
can be enclosed in any container, as compared with the mass of the 

container itself. For this reason, values of c, are usually obtained 
from those of ¢,, either by use of Eq. [191] or from a knowledge of the 
value of the ratio y of the two specific heats for the gas in question, 
namely, 

— &, Y=o [192] 

The value of this ratio can be determined experimentally! or com- 
puted from a knowledge of the speed of sound in the gas (Chap. 15). 

143. Theoretical Values of the Specific Heats of Ideal Gases. De- 

grees of Freedom and Equipartition of Energy. A simple calculation 

made with the help of Eq. [191] will show that the molar thermal 
capacity of an ideal yas at constant pressure exceeds that at constant 
volume by the amount R/J, or 2 cal - mole—! - deg-1, approximately. 

By applying this result to the experimental data for gases which ap- 
pear in Table VI, we see that for the monatomic gases (group A) the 
molar thermal capacities at constant volume all have the value 
3 cal-mole—! - deg—1, whereas for the diatomic gases (group B) they 

have the value 5 cal - mole—1- deg—1, approximately. Let us see how 

well the theoretical predictions afforded by kinetic theory agree with 
these experimental values. 

The molar thermal capacity at constant volume is, by definition 

(Sec. 141), the quantity of heat that must be communicated to one 
mole of a substance held at constant volume in order to raise its 
temperature one degree. In the case of a monatomic gas heated at 
constant volume, AW, = AW; = AW. = 0, and therefore all this com- 

municated heat goes to produce an increase in the kinetic energy 
of translation AW, of the molecules. Now for a mole of gas the total 

kinetic energy of translation is N.Za, where N, is the AVOGADRO 
number and E.,» is the average kinetic energy of each molecule; and 

NEw = 3 RT, by Eq. [160], Chap. 10. Hence the additional kinetic 
energy which must be imparted to a mole to raise its temperature 

one degree (AT = 1) is $ R. Since the value of RF in thermal units is 
roughly 2 cal - mole~!- deg-1, this gives for the molar thermal capac- 
ity at constant volume the theoretical value 3 cal - mole - deg~!, 

in agreement with experiment. 
  

1See *J. R. Partington and W. G, Shilling, The Specific Heats of Gases (Benn, 1924), 

Chap. 2, for a detailed discussion of the experimental methods for determining cp, 

Cy, and ¥
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Before proceeding to the cases of other gases, it will be found help- 
ful to introduce the concept of degrees of freedom of a body. As we 
well know, a particle in space can move in three, and only three, di- 

rections such that its motion along any one of these has no component 

along either of the other two. These three independent directions, 
obviously, are mutually perpendicular. In view of this fact, a particle 

is said to have three degrees of freedom, or three possibilities in the 

way of motion. It cannot rotate, because it has no appreciable di- 

mensions. If the particle is constrained to move in a single plane, 

it is said to have two degrees of freedom; and if it is still further 

limited to motion in a straight line, it then possesses only one degree 
of freedom. A ball thrown through the air has, on the other hand, 

six degrees of freedom, of which three are translatory and the re- 
maining three are associated with the independent rotations of the 
body about three mutually perpendicular axes. If the baJl were 
rolling on a table, it would then have only five degrees of freedom, 

two of translation and three of rotation. A very thin straight rod 
thrown into the air may be regarded as having five degrees of free- 
dom, three of translation and two of rotation, the rotation of the 

rod about its geometrical axis being neglected because of the small 
moment of inertia of the rod about that axis. In the case of a system 
of unconnected bodies, the number of degrees of freedom of the system 

is the sum of the number of degrees of freedom possessed by the 

several bodies. Thus, if there are N monatomic molecules in a given 
mass of gas, the system has 3N degrees of freedom, for each mona- 
tomic molecule has three degrees of freedom. 

The degrees of freedom of a system of monatomic molecules may 

be divided into three groups, corresponding to the three mutually 

perpendicular directions of translatory motion, and with each of 
these groups is associated kinetic energy. According to the theorem 
of equipartition of energy, which has already been mentioned in 

Sec. 117, when such a gas is heated each degree of freedom in one 

group receives, on the average, the same amount of kinetic energy 

as does a degree of freedom in any other group. Thus, since the 

molar thermal capacity of a monatomic gas kept at constant volume 
is 3cal- mole! - deg~!, it follows, on the assumption of equiparti- 
tion, that in the heating of a mole of the gas through one degree of 

temperature each of the three groups corresponding to the three 
degrees of freedom takes up 1 cal of heat. 

Consider now the motions of a molecule of a diatomic gas like 
hydrogen, a simple model of which is shown in Fig. 136. The center 
of mass of such a molecule has a motion of translation, which in- 

volves three degrees of freedom. Besides this, the molecule has ap-
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preciable moments of inertia about axes at right angles to the line 
joining its two. atoms, and hence the energies associated with these 
two rotational degrees of freedom must be 

taken into account. If equipartition be as- 
sumed, each of the five degrees of freedom 

has associated with it 1 cal-mole~!- deg-!. 
The molar thermal capacity of a diatomic Fic. 136. Simple model 
gas should therefore be 5 cal- mole~*- deg-1, o¢ vibrating hydrogen 
which observation shows to be approximately molecule 
the case. In a polyatomic gas there are three 

rotational degrees of freedom and hence six degrees of freedom in all. 
The resulting theoretically predicted value of 6 cal - mole! - deg-1 
is also in reasonable agreement with experiment. 

  

In a similar manner the numerical values of the ratio y of the two specific 
heats can be calculated. Thus, by Eqs. [189] and [190], 

y= & —AWit at ae + AW,. [193] 

For any gas, AW; is very small (Sec. 128) and 

AW, = PAV= RAT =2 cal - mole—! - deg, 

approximately. Hence, for a monatomic gas, 

—3+040 (approx.) +2_5_ 

Y - 340 3 
for a diatomic gas, 

1.7; 

—3+2+4+0 (approx.)+2 7 _1,, 
Ys 342 apal4s 

and for a polyatomic gas, 

—3+3+4 0 (approx.)+2_ 8 

y= 343 g7 lS 

These values are in excellent agreement with the experimental values given 
in Table VII for the gases of simple molecular structure. Fer very complex 
molecules, such as ether, AW, should become large (for reasons given in the 

next paragraph) and y should approach unity, which is also verified. 

TABLE VII. Experimental Values of y for Various Gases at 15° C and 1 As 
  

  

            

Gas Y Gas Y 

Helium. . 2... 2... 1.666 |} Oxygen. . 2. 2... 1.396 

Argon ........ 1.666 || Air 2... ee, 1.403 

Hydrogen. . 2.2... 1.408 || Carbon dioxide . . . . {| 1.302 

Nitrogen . . . . . . . | 1405 || Ether vapor. ..... 1.024 
  

Some diatomic gases, such as chlorine, and also various polyatomic 

gases of complex molecular structure, possess thermal capacities that
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are distinctly larger than the theoretically predicted values. It is 

found that these discrepancies tend to disappear if it be assumed that 
the molecules are not rigid but that the atoms composing them can 

vibrate with respect to one another under the action of binding forces 

which act like springs and which vary in magnitude with the sub- 
stance and the temperature. On the assumption of equipartition 

such intramolecular vibrations receive their share of the energy. 

Now, as in the case of an ordinary pendulum, the energy of these 

vibrations is at any moment part kinetic and part potential, and it 
can be proved that if the vibrations are of the simplest type, the 
average amount of potential energy associated with each vibrational 

degree of freedom is the same as its average kinetic energy (Chap. 14). 

Each sibrational degree of freedom must therefore have associated 
with it not 1 but 2cal-mole~!-deg-!. For example, a diatomic 

molecule having six degrees of freedom, one of which is vibrational, 

would have a theoretical thermal capacity of 7 cal - mole! - deg—!. 

It turns out, then, that if the vibrational degrees of freedom are 

taken into account, the theoretical values of the thermal capacities 
are no longer lower than the experimental values. As a matter of 

fact, they are a little too high, although this discrepancy tends to 

disappear as the temperature increases. It would appear from this 
that a part of the molecules, but not all, in their collisions with other 

molecules receive enough energy 

oo
 

from the impacts to start them 

vibrating. This would also explain 
why many diatomic molecules, 

such as hydrogen, appear to have 

no vibrational degrees of freedom 

at ordinary temperatures; their 
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thermal capacities do not exceed 
5 cal- mole-!-deg-! simply be- 
cause their molecules are too tightly 
bound to be set into vibration by 
impacts at ordinary temperatures. 

It is interesting to note in this 
connection that when hydrogen is cooled below 60° K, its thermal 
capacity drops to 3cal-mole~!- deg—! (Fig. 137), which means that 

it then behaves like a monatomic gas; at this temperature even its 
rotational degrees of freedom appear to be suppressed. 

This idea that the energy of impact must exceed a certain critical 
value, which depends upon the kind of molecules, before a certain 

degree of freedom becomes active. obviously gives a simple explana- 
tion of the variation of the thermal capacities of gases with tempera- 

Fie. 137. Variation of the thermal 
capacity of diatomic hydrogen with 
temperature. [See F. K. Richtmyer, 
Introduction to Modern Physics, ed. 2 

(McGraw-Hill, 1934); p. 297]
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ture. It presents the very great difficulty, however, that it is actually 
contrary to the classical laws of mechanics. According to the classical 

theory, every degree of freedom would receive its share of energy at 
all temperatures, just as a pendulum can be set into vibration, though 

‘possibly minutely, by even the smallest blow. The results of experi- 
ments in various fields of physics since 1900 have forced the con- 
clusion that the laws of classical physics must be extended if they are 
to be able to interpret molecular and atomic phenomena satisfactorily, 
and that a molecule which has a natural frequency of v vibrations 
per second will not be put into oscillation until it receives a quantity 
of energy equal to hv, where A is a new universal constant known as 
the constant of action. This condition was first enunciated by Max 
PLANCK‘ in 1900. The quantity hy is called a quantum of energy, 
and the theory the quantum theory. According to quantum theory, 
then, hydrogen molecules, which have relatively small moments of 
inertia and consequently high natural frequencies of rotation v, do 
not receive enough energy hv by impact with other molecules below 
60° K to set them into rotation. Larger and heavier molecules, like 
oxygen, have larger moments of inertia and therefore smaller natural 
frequencies, so that the energy Av required for rotation is smaller; 
hence we should expect their rotational degrees of freedom to remain 
active at lower temperatures than in the case of hydrogen, a conclusion 

that is borne out by experiment. 

144, Atomic Thermal Capacities. The Law of Dulong and Petit. 

NEUMANN’S law for molar thermal capacities, referred to in Sec. 139, 

is historically an extension of an important law discovered in 1818 
by PIERRE LouIs DULONG and ALEXIS THERESE PETIT,? in accord- 

ance with which the atomic thermal capacities, or products of the 

specific heat and atomic weight, of all the solid elements are nearly 

the same, amounting to about 6.4 cal per gram atomic weight per - 
degree (group D, Table VI). The fact that this law makes the atomic 
heat capacity, rather than the molar, the invariable quantity in the 
case of solids would seem to indicate that it is the atoms, and not 

the molecules, that are concerned in the kinetic energy of agitation 
which governs the temperature of solids. Such a conclusion has since 
received support by evidence from numerous sources, one of the most 
  

1The most important of PLANCK’s early papers on radiation are republished in 

Ostwald’s Klassiker der Exakten Wissenschaften, No. 206 (Leipzig, 1923). See also 

PLANCK’S Nobel Prize Address, delivered at Stockholm, June 2, 1920, and entitled 

“The Origin and Development of the Quantum Theory,” tr. by H. T. Clarke and 
L. Silberstein (Oxford University Press, 1922). 

2 Annales de Chimie et de Physique (2) 10, 395 (1819). An excerpt appears in *A 

Source Book in Physics (1935), pp. 179-181.
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striking of which is the work of Max VON LAUE and of the BRAGGs, 

who showed by an x-ray method that it is the atom rather than the 
molecule which is the unit in solid crystals. Now, because of the 

definiteness of the structure of a solid, the atoms must be held in 

place between their neighbors, and thus the only sort of heat motions 

which they can undergo are motions of vibration about their posi- 
tions of equilibrium. Hence 
the atoms have only three 

degrees of freedom, all vibra- 
tional. As in the vibration 
of gas molecules, each vibra- 

tional degree of freedom has 
2cal associated with it, for 

equipartition of energy di- 
vides the vibrational energy 

for each direction into equal 
parts of kinetic and potential 
energy. The atomic thermal 

capacity of a solid should 
therefore be 6cal per gram 
atomic weight per degree, 
which is, to a first approxi- 
mation, the value given by 
DULONG and PETIT’S experi- 

mental law and is close to 
the value approached asymp- 
totically by the experimental 
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Fic. 138. Variations of atomic thermal capac- 
ities of solids with temperature. The curves 
for nearly all solids lie between the curve for 
lead and the curve for diamond. It will be 
observed that the thermal capacity for lead 
at room temperature Is approximately that 

predicted by Dutone and Prriz’s law, but 

below 100° K it drops rapidly to zero. The 
curves for the other substances differ from 
lead mainly in the temperatures above which 
they acquire the Dutone and Perir value and 

curves in Fig. 138 as the tem- 

perature increases. 

It was known very early that nonmetallic elements of small 

atomic weights and high melting points, such as carbon, boron, and 

silicon, were notable exceptions to DULONG and PETIT’S law. Ex- 

tended research, especially after low-temperature measurements be- 

came possible, showed that at least one reason for this was the fact 

of the variation of thermal capacity with temperature. It was found 
that at low temperatures the thermal capacities of all solids examined 

approach zero and that it is only at relatively high temperatures 
that they approach values in accord with DULONG and PETIT’s law 

(Fig. 138). As with gases, these variations with temperature have 
their explanation in the quantum theory. If the binding forces acting 
in the directions of the three vibrational degrees of freedom are dif- 

in their slopes below these temperatures 

  

1See W. H. Bragg and W. L. Bragg, X-Rays and Crystal Structure (Bell, 1924).
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ferent, the atom will have correspondingly different frequencies of 

vibration » in those directions. Hence the energy fv imparted to the 
atom by an impact may be sufficient to start the vibration character- 

istic of one degree of freedom but not of another, and the latter 

remains inactive. At low temperatures very few of the impacts supply 

enough energy to start vibration in any of the degrees of freedom, and 
accordingly the value of the thermal capacity approaches zero at 
such temperatures. The fact that light elements with high melting 
points do not have thermal capacities in ac- 
cord with the DULONG and PETIT value is 
also explained; the atoms of such elements 

are bound together by relatively large forces, 

their natural frequencies are large, and hence 

a high temperature is required to awaken 

all degrees of freedom. 

145. Adiabatic Processes. Any physical or 

chemical process carried out in such a way Fic. 139. Curves showing 

that no heat is allowed to enter or leave the the adiabatic relation be 
system during the change is called an adig- tween P and V for a given 

. : . . mass of air. The dotted 
batic process. This condition may be realized curves ate isotherms 
in practice either by having the entire sys- 
tem in an enclosure whose walls are impervious to heat or by having 

the process take place so rapidly that there can be no appreciable 

transfer of heat by conduction even when the heat insulation is im- 

perfect. A sudden expansion of a gas is adiabatic, since time is not 

allowed for inflow of heat. When the stopper is suddenly removed 

from a flask containing compressed air, the alr expands adiabatically 

and is cooled (Fig. 139); the external work done by the expanding 

gas has been at the expense of its internal energy. 

The relation between the pressures and volumes of an ideal gas in 
an adiabatic change was obtained by LAPLACE! and SIMEON DENIS 
PoIsson? before 1823. To derive this relation, consider a given mass 
m of ideal gas. Let the gas undergo an adiabatic change until its 
pressure, volume, and temperature have changed from P, V, T to 
P4t4dP,V+4dV, T-+ dT respectively. Then, since Q = 0in an adia- 

batic process, and since AW; = 0 for an ideal gas, Eq. [188] becomes 

dW.+ dW.+ PdvV =O, or 

d(W,+ W.) =— Pav. [194] 

P 

  
  

1 Published in the last volume of his famous Traité de Mécanique Céleste (1823), 

Vol. V, Bk. XH, Chap. III. 

2 Annales de Chimie et de Physique (2) 28, 5 (1823).
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This equation tells us that the change in the internal energy is equal 
to the external work done, the negative sign indicating that if the 
external work is done by the gas, the internal energy is decreased. 

Now, by Eq. [189], d(W:+ W.) =c,Jm- dt; therefore 

C,Jm-di=— P dv. [195] 

From Eq. [131], Chap. 9, we obtain 

PdV+ VdP =mR' dT. [196] 

Solve this equation for dT and substitute in Eq. [195] for dt; then, 

remembering that R’ = J(¢p — ¢,) by Eq. [191] and that c,/c, = y, 
we have 

F+yY=0 [197] 
Integration of this differential equation gives 

log P+ + log V= constant, [198] 

or P-V*=constant. [199] 

This is the equation of the adiabatic curves, like those in Fig. 139. 
As doubtless will have been observed, its derivation involves the 

assumption that c, and y are independent of the temperature, some- 
thing which is not implied in our definition of an ideal gas. But even 
if the assumption is not valid, Eq. [199] will hold over a small range 

of temperatures for which c, and y are sensibly constant. This equa- 

tion was used by CLEMENT and DESORMES! in their experimental 

determination of y in 1819. 

EXAMPLE. Prove that for small strains taking place adiabatically the 

volume modulus of elasticity of an ideal gas is 

k=yP, {200] 

where P is the initial pressure of the gas. 

Solution. Employ a method similar to that used in the treatment of 

isothermal elasticity (Sec. 93). 

5 

Heats of Transformation 

146. Energy Changes Associated with Changes in the State of Aggre. 

gation. Up to BLack’s time it was generally supposed that the rise 
in temperature of a substance in contact with a hot body was con- 
tinuous: but BLAck pointed out that while ice or snow is changing 

  

1 Journal de Physique (de la Métherie) 89, 321, 428 (1819). See also Laplace, 

Traité de Mécanique Céleste (1823), Vol. V, Bk. XII, Chap. ITI.
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into water it maintains, if well stirred, a perfectly constant tempera- 
ture. To the relatively large amounts of heat which he found had to 
be added at constant temperature to solids to change them into liquids 
and to liquids to change them into gases, or, inversely, which are 
given out in the freezing of liquids and the condensation of gases, 
BLack gave the name “latent heats.’’ In order to explain these 
latent or hidden heats the calorists assumed that the caloric and the 
solid, say, formed a kind of chemical compound, namely the liquid, 
thus suppressing the properties of the caloric so that it could not 
produce a rise in temperature. From the modern point of view, as 
exemplified by Eq. [188], it is evident that fusion and vaporization 
simply represent changes for which AW; is zero. While fusion or 
vaporization is progressing, the temperature of the body remains 
constant because all of the energy of motion communicated to its 
molecules by the source of heat is at once transformed into potential 
energy; that is, the heated molecules immediately break away from 
the forces which have been holding them in the given state, solid or 
liquid as the case may be, and thereby lose their increased kinetic 
energy of translation as quickly as they receive it. 

By heat of vaporization (symbol L) is meant the energy required 
to change a unit mass of a substance from a liquid at a certain tem- 
perature to a vapor at the same temperature under a specified pres- 

sure. Similar definitions exist for heat of fusion and heat of sublimation. 
147. Crystalline and Amorphous Solids. The change from solid to 

liquid at a definite temperature, which depends only on the nature of 
the substance and the pressure, is characteristic of solids having a 

definite crystal structure. Solids that do not have such a structure, 

called amorphous solids, of which waxes, glass, and most alloys are 

examples, pass gradually through all stages of viscosity in melting 
or solidifying. In such cases the temperature changes continually, 

there being no definite point at which the substance may be said 
to melt. Newer methods of analysis, involving the use of x-rays, 
have shown that many apparently amorphous solids are really made 
up of extremely small crystals, whereas others appear to represent 
undercooled liquids of very high viscosity. For example, quartz oc- 

curs ordinarily in the crystalline form, but when melted and allowed 
to cool it undercools rather than freezes and becomes sufficiently 
viscous to assume, to casual inspection, all the properties of a solid. 

The existence of a definite melting point in the case of a crystalline solid 

does not necessarily mean that the process of melting is a sharp transition 
from the crystalline to the liquid state. The two states undoubtedly are 

continuous, and the transition from the one to the other probably goes 
through a seguence of unstable states, characterized by the same hooklike
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shape of the PV-curves as occurs in the VAN DER WadaLs isotherms for a 
fluid below the critical temperature (Fig. 126). There is considerable evi- 

dence that near the melting point the solid .is no longer entirely crystalline, 
and that the liquid after melting is still to a great extent crystalline but 

gradually becomes less so as the 
temperature is raised.! 

Besides having definite 

melting points, many crystal- 
line substances have been 

found to exhibit other definite 
transformation temperatures 

at which they undergo changes 
in crystal structure. At each 

of these transformation points, 
AW, is zero and there exists a 

heat of transformation (Fig. 
140). Thus, if a piece of iron 

wire heated to bright orange 

  

Time 

color is allowed to cool, it be- Fie. 140. Typical cooling curve for a crystal- 
duall ad < line substance that can exist in several crystal 

comes gradually redder until forms. At A the substance is freezing, and at 
a temperature of about 900°C each of the points B, C, and D it is under- 
is reached, at which point it going a transition from one crystal form to 

suddenly brightens, and then another. By taking suitable precautions it is 
becomes redder again until all often possible to unclercoo! te Higuicl before 
color has disappeare d. This eezing, as shown by the dotted portion of 

the curve 
sudden flash of color, which 

indicates a reheating, occurs because iron exists in at least two crys- 

talline forms, known as a-iron and y-iron. As it cools down through 

the temperature 900° C, it changes from the y to the a form, and 

this change is accompanied by the evolution of heat, which reheats 

the wire. 

Oo 

Calorimetry 

Calorimetry 2? is concerned with the measurement of energy that is 
in the form of heat. Two general methods have been adopted for 
making such measurements, and these may be referred to as thermo- 

  

1See *J. Frenkel, “Continuity of the Solid and the Liquid States,” Nature 136, 

167 (1935). 
2 See the excellent article on “Calorimetry” in A Dictionary of Applied Physics, 

ed. by R. Glazebrook (Macmillan, 1922), Vol. I, pp. 32-75.
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metric calorimetry and change-of-state calorimetry. In the first 
method the estimation is reduced to observations of temperatures 
and the thermometer is the instrument of prime importance; in the 
second method fixed temperatures are employed and no thermometer 
is needed. 

148. The Method of Mixtures. An example of the thermometric 
method having considerable historical and practical interest is the 
method of mixtures. It consists in mixing known masses of substances 
of different temperatures, observing the resulting temperature, and 
then writing out an equation that contains in one member all the 
heat quantities lost by the cooling bodies, and in the other all the 
heat quantities gained by the warming bodies. For example, suppose 
that it be required to find the heat of vaporization of steam L from 
an experiment in which a mass m, of steam at temperature t, is 
condensed in a mass mz of water of temperature ¢ and specific 
heat co. Let zt, be the final temperature attained by the mixture. 
Then the quantity of heat lost by the vapor in condensing is L - m;; 
that lost by the condensed vapor in passing from its temperature of 
condensation ¢; down to tn is comi(t — fm). The heat gained by the 

water iS C272(fm— 2). But heat is also gained by the calorimeter 
vessel which holds the liquid during the experiment, and by the 
thermometer and stirrer. If the combined thermal capacity of these 
last bodies be represented by c¢’, the quantity of heat absorbed by 

them is ¢’(¢,,— tz). Hence, if it be assumed that no heat is lost to, 

or gained from, the surroundings during the experiment, the equating 
of the heat losses and gains would give 

Ly + coms (ty — tn) = CoM (tm — te) + ¢' (lm — te). [201] 

Unless special precautions are taken, the transfer of energy to or from 
the surroundings is relatively large. It is due to convection currents set up in 
the air immediately in contact with the calorimeter vessel, to the emission 

or absorption of radiant energy by the vessel, and to the conduction of heat 

through the surrounding medium. In general this transfer can be reduced 

by enclosing the calorimeter vessel in stagnant air surrounded by thermally 
insulated constant-temperature walls, by using such large quantities of 

liquid that the temperature change is small, by making the initial tempera- 
ture of the liquid about as much below the temperature of the enclosure as 
the final temperature ¢,, is above it, and by having the outside surface of the 
calorimeter vessel highly polished so that it emits and absorbs radiation 
very weakly. , 

By observing the foregoing precautions with the form of calorimeter 
shown at H in Fig. 141, the cooling correction can be reduced considerably. 

The correction is made with the help of an empirical law, announced by
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NEWTON ! in 1701, according to which the time-rate of cooling-of a body is 

proportional to the temperature difference between the body and its sur- 

roundings. Since the rate of cooling will also be nearly proportional to the 
rate of loss of heat if the thermal capacity of the cooling body is constant, 
it follows that the time-rate of loss of heat is proportional to the difference in 

temperatures. NEWTON’S law of cooling is not even approximately correct, 
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Fic. 141. Recnavutt’s apparatus 
for measuring the specific heat of 
a solid or liquid by the method of 
mixtures [Annales de Chimie et de 
Physique’ (2) 73, 5 (1840)]. If the 
specimen is a solid, it is placed, in 
fmely divided form, in a wire net 
which is heated in the inclined 
tube F by means of the tempera- 
ture bath P, and then is lowered 

ona thread into the calorimeter. 
If the specimen is a liquid or 
powder, or is soluble in water, it 

is first sealed up in a thin-walled 
tube of good conducting material 

Fig. 142. A highly developed calorim- 
eter, carefully designed to reduce con- 
vection and conduction losses and 
stirring and lag errors. It is closed 
against evaporation and completely 
surrounded by a shielding mass of cir- 
culating water whose temperature is con- 
trolled thermostatically. [Reproduced 
by permission from W. P. White, The 
Modern Calorimeter (Reinhold Publishing 
Corporation, N. Y.), a classic treatment 

on this subject] 

but, when the cooling correction is small and the temperature difference is 
not more than 5° C, its incorrectness will not generally introduce an appre- 
ciable error into the result. 

In modern calorimeters designed for the greatest possible precision, the 
correction for radiation is eliminated by the use of a jacket maintained at 
the temperature of the calorimeter throughout the whole of the experiment. 

The greatest sources of error which then remain to be guarded against are 
the loss of water by evaporation and the conduction of heat out of the calo- 
rimeter along such metallic paths as the shaft of the stirrer or the thermom- 

eter leads. Fig. 142 shows such a modern calorimeter with which a precision 

as great as 0.1 percent can be obtained. 

  

1 Abridged Philosophical Transactions (London, 1749), Vol. IV, Part II, p. 1. This 

paper is reproduced in *A Source Book in Physics (1935), pp. 125-128. '
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The method of mixtures is also used to determine the amount of 
heat evolved or absorbed in various chemical reactions, and for this 
purpose special forms of calorimeters have been developed. In the 
bomb calorimeter, first devised by MARCELLIN PIERRE EUGENE 
BERTHELOT! in 1881, the heat of combustion of, say, coal is deter- 
mined by exploding the coal in a closed vessel, or bomb, which con- 
tains oxygen under high pressure, the explosion having been started 
by an electric spark. The explosion method has also been used for 
measuring the specific heat at constant volume of a gas at very high 
temperatures, the gas to be investigated 
being placed with a known amount of 
explosive mixture in a special type of 
steel bomb.? 

149. The Method of Continuous Flow. 

The important method of continuous flow was 
used by H. L. CALLENDAR and H. T. BARNES? 

in their work in 1902 on the variation of the 
specific heat of water with temperature (Fig. 
135). In the form of apparatus shown in 

Fig. 143 a steady stream of water is allowed 

to flow past the point where heat is being Fis. 143. One form of the Jo 

evolved, in such a manner that all the heat ig 5RS continuous-flow calorim- 
absorbed by the stream. If the rise in tem- tet; attanged for determining 

: the heat of combustion of illu- 
perature and the rate of flow of the water minating gas 
are observed, the quantity of heat carried 

away by the water in unit time can be calculated. The great advantage 
of this method is that the cooling correction (Sec. 148) can be obtained 
simply by making experiments with different rates of flow but with the rise 

of temperature kept constant. 

The method of continuous flow has also been used to determine JOULE’S 
equivalent, the specific heats of gases at constant pressure, and the con- 

ductivity of heat down a metal bar. In such experiments it is now the general 

practice to use electrical energy as the source of heat; this has many advan- 

tages when experiments of the highest precision have to be made, on account 

of the facility with which the heat supply can be controlled. 

150. The Method of Cooling. A convenient way to determine specific 
heats is the method of cooling. It consists in comparing the times required for 

  
  

1 Annales de Chimie et de Physique (5), 23, 160 (1881), et seq. See the excellent 

article on ‘‘Bomb Calorimeters” in A Dictionary of Applied Physics, ed. by R. Glaze- 

brook (Macmillan, 1922), Vol. I, pp. 26-31; also T. C. Sutton, Journal of Scientific 

Instrumenis 10, 286 (1933), for a recent design capable of high precision. 

2 See *J. R. Partington and W.G. Shilling, The Specific Heats of Gases (Benn, 1924), 
pp. 112-132. 

3 Philosophical Transactions 199, 55, 149 (1902).
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a given closed vessel to cool in air, through a given number of degrees, first 
when filled with water and then when filled with the substance whose specific 
heat is sought. If 4; and dz are the times of cooling and ce; and cz the corre- 
sponding heat capacities of the vessel and contents in the two cases, then 

it may be shown that ho 

le c2 

For, since the nature and area of the cooling surface are the same in both 
cases, at a given temperature and given outside conditions this surface must 
always lose heat at the same rate, no matter what substance may be enclosed 

in it. Let, then, AQ denote the quantity of heat that passes out of a given 
surface at temperature T in an infinitely short element of time. This loss in 

heat will be associated with a small fall in temperature AT;, which will be 

determined by AQ=c,AT;. If now the heat capacity be changed from ¢; 

to cz by a change in the contents of the vessel, the new fall in temperature 
AT? in the same infinitely short interval of time and at the same temperature 

T will be determined by AQ = cz AT2. Hence 

AT, _ &. 
AT2 . C1” 

that is, at any given surface temperature the two changes in temperature 
during the same small interval of t2me are inversely proportional to the heat 
capacities. This is exactly equivalent to the statement that, at a given tem- 
perature, the two intervals of time required for the small change in lemperature 

are directly proportional to the heat capacities. Since, then, the times re- 
quired to pass through each small element of the scale, say from 60° to 59°, 
are proportional to the heat capacities, the fofal times required to pass 
through any interval of temperature made up of these small elements must 

be proportional to the heat capacities. 
It is to be observed that this conclusion involves no assumption whatever 

regarding the nature of the law of cooling, or regarding the relation between 

the roles played by convection currents and by true radiation in the cooling 

process. It rests solely upon the assumption of similarity in the outside 
temperature conditions and uniformity of temperature in all parts of the 
cooling body. This last condition is difficult to fulfill when the cooling vessel 
contains solids; hence the method has not in general proved satisfactory for 
the determination of the specific heats of such substances.! For liquids, how- 
ever, it has been found both accurate and convenient.? 

151. Methods Depending upon Change of State. These methods con- 
sist essentially either in determining the mass of ice m that a heated body 
will melt while its temperature is falling to 0° C or in finding the mass of 

steam m’ that a cold body will condense while its temperature is rising to the 
boiling temperature of water. The heat given up by the body in the first 

  

1See, however, W. G. Marley, Proceedings of the Physical Society 45, 491 (1933). 
2See A. Ferguson and J. T. Miller, Proceedings of the Physical Society 45, 194 

(1933), for a recent application of the method.
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case is then 79.6 - m calis, since the heat of fusion of ice is 79.6 cal - gt 
That taken up in the second case is L- m’ (Sec. 146). 

The ice calorimeter is as old as BLAcK, but the modern form is due to 
ROBERT WILHELM BUNSEN ! (1811-1899). It depends on the fact that a 
change of volume occurs during fusion. In Fig. 
144 the mantle of ice b is formed in the air-free 

_Water w by inserting a freezing mixture into the 

tube D. The point to which the mercury M rises 

in the graduated capillary tube 7 is then noted. 

The heated specimen which is to be tested is 
next dropped into D, where it melts a certain 
amount of ice. The movement of the mercury in 

T to the right because of the contraction of the 

ice on fusion is proportional to the amount of ice 

melted. The value in thermal units of one divi- 
sion of T is determined by inserting in D a sub- 

stance of known thermal capacity or by placing 
an electrical heater in D and measuring the heat Fic. 144. The Bunsen ice 
supplied as electrical energy. Although this calo- 
rimeter has proved itself valuable for determin- 

ing the specific heats of very small specimens, the objection to its use for 
precise work is that the density of ice appears to vary, probably owing to 

the presence of traces of dissolved air in the water and perhaps to strains 

set up in the ice during its formation. 
The steam calorimeter (Fig. 145) was used 

by J. JoLy,? in 1886, to make the first accurate 
determinations of the specific heats of gases at 

constant volume. Two similar hollow copper 

bulbs hang in a closed chamber from the two 

arms of a balance. One of the bulbs is ex- Q 

Tv 

  

calorimeter 

  

hausted and the other contains the gas under 
investigation. When steam is admitted into the 

chamber, it condenses upon the bulbs and the NA 

walls until’ their temperature reaches that of Fic. 145. Jory’s differential 
the steam. The bulbs are provided with pans ’ 

steam calorimeter, very much 
to catch the water condensed upon them. More simplified 
water is condensed on the bulb containing the 

gas than on the empty one, and the difference is measured by adding 
weights until balance is restored. If m is the difference in mass of water 
condensed, Lm is the quantity of heat required to raise the mass of gas con- 

tained in the full bulb from its initial temperature to that of the steam. Cor- 

rections for the expansion of the bulbs are necessary. 

      

  

1 Poggendorff’s Annalen 141, 1 (1870); 142, 616 (1871). Annales de Chimie et de 

Physique (4), 23, 50 (1871); Philosophical Magazine (4), 41, 161 (1871). 

2 Proceedings of the Royal Society 41, 352 (1886); 47, 218 (1889); Philosophical 
Transactions 182, 73 (1891),
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The steam calorimeter, equipped with only one bulb, has been used to 

measure the heat of vaporization of water. The temperature of the empty 
bulb is raised from the ice point to the steam point by surrounding it with 

steam, a mass m of steam being condensed on the bulb; the bulb is then filled 
with a mass M of water and the process-repeated, a mass m’ of steam being 
condensed this time. The student can easily show that, if the mean calory 
is taken as the thermal unit, L = 100 M/(m’ —m). This method is of im- 

portance because it makes possible a determination of Z directly in terms 

of the mean calory. 

° 

The Second Law of Thermodynamics 

The convertibility of heat and work as expressed by the first law of 
thermodynamics (Secs. 108, 141) places heat on the same basis with 
all forms of mechanical energy. According to the law, for example, 

the heat generated when a rotating flywheel is brought to rest by 
friction is equal to the loss of kinetic energy of the wheel; or again, 

the heat generated when a falling object hits the ground is accounted 
for by the loss in kinetic energy of the object. Now, so far as the first 
law is concerned, the reverse of these processes would also be possible: 

a flywheel at rest could suddenly start rotating, thus gaining kinetic 

energy while the bearings lost an equal amount of heat energy and 

became cooler; or an object lying on the ground could suddenly 

jump up into the air while the ground at the same time became cooler. 
Neither of these processes violates the first law. Yet they never 
have been observed to happen. Considerations of this kind lead to 
the conclusion that when heat is one of the forms of energy involved, 
conservation of energy alone is not a sufficient condition for the oc- 
currence of a process in nature, although itis a necessary one. 

The restricting principle which, together with the first law, pro- 
vides a sufficient criterion of allowable processes grew out of the 
work of CARNOT (Sec. 103). It was first formulated by CLausius 
and KELVIN, and was called by the former the second law of thermo- 
dynamics. One of its simplest formulations, due to KELVIN, is as fol- 
lows: There is no natural process the only result of which is to cool a 

heat reservoir and do work as exemplified by raising a weight. The law 

really is a generalization of the principle that when two bodies at 
different temperatures are placed in contact, the flow of heat is 

always from the hotter to the colder. It does not exclude the transfer 
of heat from a colder to a hotter body, a process which happens, for 
example, in mechanical refrigerators, but it does say that this 
  

1See footnote 3, p. 76.
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transfer cannot occur unless some outside agent does work or there 

is some other additional effect that is a compensation for this un- 

natural result. Obviously if it were not for the principle set forth by 
the second law, heat from the condenser of an engine could be col- 

lected, raised to boiler temperature without doing work, and used 
again as a source of energy for the engine. This would result in a 

kind of perpetual motion which, because its existence is denied by 
the second law, is called perpetual motion of the second kind. 

No attempt will be made here to develop the quantitative expres- 

sion for the second law; . this is not due to any special mathematical 
difficulties but because an adequate discussion of the concepts in- 

volved would require more space and time than we have at our dis- 
posal.1 The quantitative formulation has to do with the efficiency 
of any engine for transforming heat into work. No heat engine can 

have a better efficiency than (Q, — Q2)/Q:, where Q, is the heat 
drawn from the boiler and Q2 is the heat rejected at the condenser 

during a given time; this will be clear if one notes that (Q; — Q2)/Q 

is the fraction of the heat received that is transformed into work. 
Now the second law states that even if an engine were entirely free 
from friction its efficiency (Q:—Q2)/Q: cannot exceed (71 — T2)/T1, 

where 7, and 72 are the absolute temperatures of the source of heat 

and the condenser, respectively ; that is, 

Qi — Q2 < Ti — To, F202] 
Qi T1 

For example, with the boiler of a steam engine at 160°C and the 

condenser at 70° C, the efficiency cannot be more than 21 percent, 
even tf no frictional or other losses are involved; the actual efficiency 

probably would be about 15 percent. The point evidently is that 
only a part of the total heat Q, drawn from the boiler can be con- 
verted into work. The remainder Qe, although not annihilated, is 

wasted in the sense that it has descended to the temperature of the 
surroundings and has become unavailable for doing work. The 
second law provides a measure of this loss of availability or degrada- 
tion of energy. After all, it expresses quantitatively what all of us 
feel intuitively: that although energy is conserved whenever heat is 
evolved, yet there is something that has been lost; the heat in an 
object is not so available for doing work as is the kinetic energy of 

  

1¥For an interesting, elementary account of the history and implications of the 

second law, see *M. Mott-Smith, The Story of Energy (Appleton-Century, 1934). An 

elementary mathematical treatment will be found, for example, in *A. W. Barton, 
A Textbook on Heat (Longmans, Green, 1933), Chap, 13.
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the object when it is in motion as a whole. Heat is unique among the 

various forms of energy; it can be converted into other forms only 

partially and temporarily. If all temperature differences in the uni- 

verse are eventually wiped out, then gross mechanicai motion will 

no longer be possible and we must approach what the philosophers of 

the nineteenth century called the “ Warmetod,” or “heat death,” — 

a sort of thermodynamic Gotterdammerung. 

In 1854 CLaustus ! gave another interpretation of the second law, 

in the course of which he introduced a new concept. The inequality 

[202] can be rearranged in the form 

Q1 — Q2 : 

whzre Q,/7, depends only on the source of heat and Qe/Tz only on the 
condenser. The very important quantity Q/T CLausius? called the 

entropy of the heat at the temperature 7. The foregoing inequality, 

then, states that in any actual engine, entropy of amount Q,/7; is 

taken from the source of heat and a larger amount of entropy, 

Qo/Ts, is given to the condenser. Such considerations lead to another 

way of stating the second law: In any isolated system every change re- 

sults in an increase in the entropy of the system. 

CLAUSIUS summed up all of this in his famous statements of the 

two laws of thermodynamics: (a) The energy of the universe is 

constant; (b) the entropy of the universe is always increasing. To- 

day we should be more cautious about extrapolating our laws into 

regions where they have not been tested; experiments have not been 

made in all parts of the universe. Moreover, it must be remembered 

that thermodynamics ignores the mechanisms of a process and makes 

no assumptions with regard to the structure of matter (ec. 108). 

When the behavior of the molecules and atoms of matter is taken into 
account by means of the methods of statistical mechanics, the state 
of maximum entropy predicted for any isolated system by the second 
law comes to be interpreted as the most probable state. Thus the sec- 
ond law, with its implication of constantly increasing unavailable 
energy of the universe, applies to the average probable condition to 
be met over exceedingly long periods of time. From this point of 

view the '‘Warmetod”’ need not be regarded as inevitable. 

  

1 Poggendorff’s Annalen der Physik und Chemie 98, 500 (1854). 

2 Poggendorff’s Annalen der Physik und Chemie 125, 390 (1865). A part of this 

paper appears in *A Source Book in Physics (1935), pp. 234-236,
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EXPERIMENT XITA. DETERMINATION OF Y BY THE 
METHOD OF CLEMENT AND DESORMES 

The method of CLEMENT and DESORMES is of interest not only 
because it represents the earliest experimental work on adiabatic 

processes but because it affords a direct determination of the ratio +. 
A quantity of air is compressed into a vessel until its pressure has a 
value which we will designate by P;. The vessel is then momentarily 
put into communication with the atmosphere until the pressure inside 

falls to the atmospheric pressure, here called Pe. During this expan- 
sion, which may be assumed to be adiabatic, the temperature of the 
gas falls. After the vessel is closed again, the gas takes up heat from 

its surroundings until it reaches its initial temperature, and in so 
doing attains a final pressure P3 which will be above that of the at- 
mosphere. Consider a unit mass of the gas, and regard the gas as 

ideal. During the adiabatic expansion its volume changes from V; 

to V2 and, according to the adiabatic equation for pressure and 
volume, Eq. [199], PiVy" = PoV2". 

Now the volume of the gas in the closed vessel remains constant 

while the gas is warming, and hence the final volume of unit mass of 

the gas is also Va. Thus, since the initial and final temperatures are 

the same, we have PiV = P3V>. 

By eliminating Vi/V2 between the two foregoing equations, we ob- 

tain finally __ log Pi — log Po, 
~ log Py log P3 [204] 

The desired ratio“y may therefore be obtained experimentally by 

observing the values of the three pressures. 

It must be pointed out that the method of CLEMENT and DESORMES is 
open to serious objections! The most important of these is that when the 
vessel is opened to the atmosphere momentarily, oscillations of the air occur 

and it is impossible to know at what moment to close the vessel so as to 

have the pressure inside exactly equal to the atmospheric pressure. 

Apparatus and Measurements. The apparatus is shown in Fig. 146. 
The vessel V is a flask or carboy of about 5-1 capacity. The mouth of 
this vessel is plane ground and is covered with a plate of metal or 

glass C, also plane ground, which is provided with a hose-nipple. 
Means should be provided for holding the cover firmly against the 
  

1For a comprehensive discussion of the sources of errors to be avoided in the ex- 

periment, the student is referred to *J. H. Poynting and J. J. Thomson, Heat (Griffin, 

1911), pp. 288-294.
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ground rim of the vessel; a small rod R, held in a clamp and with a 

rubber stopper on the end, will answer the purpose. The hose-nipple 

is connected through a T-tube to an oil manometer M and to a 

bicycle pump, or other small compression pump, as shown in Fig. 146. 
A drying agent, such as strong sulfuric acid, 

calcium chloride, or phosphorus pentoxide, 

is put into the vessel V in order to dry 
thoroughly the enclosed air. 

a. Compress the air in the vessel until 

the difference in pressure Pi — Pe is between 
20cm and 40cm of oil, and then close the 

connecting tube to the pump. Allow about 
15 min for the compressed air to regain 

temperature equilibrium with the TOOM, P4146. Modified form of 
as shown by the pressure’s becoming con- Cyfwenr and Desormes’s 
stant, and then read the manometer and apparatus 

the barometer. 
b. Momentarily open the vessel to the atmosphere by sliding the 

cover C sidewise and, after an interval of about a half-second, sliding 

it back. During this operation it may be found desirable to improve 

the thermal insulation of the vessel by surrounding it with cotton 
batting contained in a wooden case. 

c. Wait until the temperature of the air in the vessel has risen 

again to that of the room, as indicated by the pressure’s becoming 
constant, and then read the manometer. 

d. Repeat a, b, and ¢ at least twice. 

e. From each set of data calculate the value of y for air by means 
of Eq. [204], and take the mean of the results. Remember that the 
readings of the barometer and of the oil manometer must be reduced 
to the same unit of pressure; if the density of the oil is not known, 

it will, of course, be necessary to determine it.t 

  

1. Do you see any objection to an initial exhaustion of the gas in place 
of the compression? Actually this was the method followed by CLEMENT 
and DESORMES in 1819, the method of initially compressing the gas having 
been employed at a later date by Gay-Lussac and J. J. WELTER.” 

2. When WILHELM KONRAD RONTGEN ? repeated this experiment in 
1873 he employed a device similar to an aneroid barometer to measure 
the changes of pressure. Why would such an instrument be preferable 

to a liquid manometer? 
  

1 The density may be determined with a Mohr-Westphal balance, asin Exp. XJITA. 
2See P. S. Laplace, Annales de Chimie et de Physique (2) 20, 267 (1822); also 

Tratié de Mécanique Céleste, Vol. V, Bk. XII, Chap. TI. 

3 Poggendorff’s Annalen der Physik und Chemie 141, 552 (1870); 148, 580 (1873).
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8. Construct on a PV diagram the curves P Isotherm 

that will represent the changes which occurred for room 
temperature    

   

  

in your experiment (Fig. 147). This may be 
done as follows. Let specific volumes, or vol- 

umes per gram, be the abscissas. Taking the 2B 

density of air at 0° C and 1 A, as 1.2930 ¢ - 171, 

calculate with the help of the gas law the Vp V 
specific volumes corresponding to the values Fie. 1 Graphical 

of room temperature and P1, P2,and Ps found Ps: 147. Graphical rep- . . resentation of the operations 
im your experiment. Construct the corre- f din th : 

ding isotherm. Draw the vertical line Pe™Onmst 7? ENG experi: sponding I ua ° mental determination of y 
through the pomt corresponding to P3 on 

this isotherm. Draw the horizontal line through Pz. The intersection 

of these two straight lines will be Pe, Ve. Why? Draw the adiabatic 
curve and interpret the complete diagram. 

Adiabatic 

° 

EXPERIMENT XIIs. THE HEATING VALUE OF 
ILLUMINATING GAS! 

The heating value, or quantity of heat evolved by the combustion 

of a unit volume of the gas, is usually determined with a JUNKERS? 

continuous-flow gas calorimeter of the type shown in Fig. 148. A 

measured volume V of gas under an observed pressure P is burned 

in the calorimeter, and the rise in temperature from 4° to fo° of a 

mass M of water as it flows through the calorimeter is determined. 

If Q be the heating value of the gas, expressed in thermal units per 
unit volume, and ¢ be the mean specific heat of water between f,° 

and 12°, _ -M(lz — hh). 
~ V 

Since the calorimeter is so constructed that the heat liberated by the 
condensed water which is formed by the combustion of the hydrogen 
and hydrocarbons in the gas is not allowed to escape, the quantity Q 

in Eq. [205] gives the maximum utilizable heat evolved by the gas; 
this quantity Q is called the heat of combustion or gross heating value 
of the gas. There are many industrial operations where the water 
formed in combustion escapes as steam, however, and hence it is 

frequently the practice to deduct the amount of heat thus lost from 

Q [205] 

  

1See Circular of the Bureau of Standards, No. 48 (1914), “Standard Methods of 

Gas Testing’; No. 65 (1917), ‘‘Gas Calorimeter Tables”; also C. W. Wardner and 

E. F. Mueller, “Industrial Gas Calorimetry,” Technologic Papers of the Bureau of 

Standards, No. 36 (1914) ; also C. G. Hyde and F. E. Mills, Ges Calorimetry (Benn, 

1932). 

2 Zeitschrift fur Instrumentenkunde 15, 408 (1895).
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the gross heating value. The resulting lower value, Q’, is called the 

net heating value. Thus if the mass of the condensate is m and its 
temperature as it emerges from the condensate drain (Fig. 148) is ’’, 
then evidently the net heating value Q’ of the gas is given by 

_ cM (te — hh) — mL;— cmt — 0’) 
  Q’ [206] 

where L, is the heat of vapori- 
zation of water at the tem- 
perature of condensation t. 

  

1. Explain the physical sig- 
nificance of each term in Eq. 

[206]. 

  
Adjustments and Measure- 

ments... Connect a pressure- 

regulator and a direct-reading 

gas meter in the line supply- 
ing gas to the burner under 
the calorimeter. Adjust the 

pressure of the gas to about 

1.5 in. of water by adjusting 

the weight of the floating cylin- 

der in the pressure-regulator. 
Before lighting the gas, turn 
on the water and regulate : | HE 

its flow until there is a con- HE OK ee 
stant small stream passing 

out through the overflow E. 

Then remove the burner from 
the calorimeter, light it, and 

replace it in the calorimeter, 
taking care to center it prop- 

erly with the help of a mir- Fic. 148. Improved form of the Junxers 
gas calorimeter. A, combustion chamber; B, 

ror placed below the burner. condenser tubes; C, outlet for exhaust; D, 
Regulate the flow of water damper for exhaust; E, inlet overflow weir; 
and gas and the exhaust G, inlet water valve; 1, water space; L, out- 
damper D, until the burned let overflow weir; O, air space; T, exhaust 
gas leaves the calorimeter at thermometer; U, condensate drain; W, de- 
approximately the tempera- tachable exhaust chamber 

ture of the entering gas, and until there is a difference of from 20° to 

  

  
      

        mS 
To measuring ~\\ 

vessel. ie 

  

1Jf the calorimeter at your disposal differs in its details from the one described 

here, consult the operating instructions furnished by the manufacturer.
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40° F in the inflowing and outflowing water. Never attempt to adjust 
the gas or to light the burner while the latter is inside the calorimeter. 

Wait until the temperatures indicated on the various thermometers 
have become constant. Then, at an instant when the large hand of 
the gas meter passes through zero, begin to collect in vessels both 
the heated overflow water and the condensate water. End the run 
when 1 ft8 of gas has been used. Read thermometers R and S fre- 
quently during the run; if thermometer S fluctuates rapidly, read it 
as often as possible so as to obtain a fairer average. If the tem- 
perature readings have not stayed constant within a few tenths of a 
degree, discard the results and attempt to better the conditions. 

Before making any further adjustments in the apparatus, be sure 
that you have obtained all of the following data: the gas pressure; 
the temperatures of the entering gas, of the burned gases, of the 
condensate, and of the room; the average temperatures of the in- 
flowing and of the outflowing water; the masses of the empty over- 
flow vessels, of the vessels and overflow water, of the empty con- 
densate vessel, and of the vessel and condensate: the barometer 
reading; and the volume of the gas burned. 

Calculate the heat of combustion and the net heating value of the 
gas in British thermal units per cubic foot; in doing this the vol- 
ume V in Eqs. [205] and [206] should be reduced to standard con- 

ditions of temperature and pressure; in industrial and commercial 

tests made in this country it is customary to take these as 30 in. of 
mercury and 60° F. 

Make a second complete run, this time with a gas pressure of about 

2.0 in. of water. 

2. Express the gross heating value of the gas in calories per cubic 
meter of gas measured at 0° C and I A,. 

3. Why is it the practice to reduce the volume of gas V to standard 
conditions of pressure and temperature ? 

4, Explain why an attempt is made to adjust the apparatus so that the 
temperature of the products of combustion as they leave the calorimeter 

is the same as that of the gas which enters. If these two temperatures 
were not the same, how would you correct. your results for the error thus 
introduced ? 

5. The exhaust gases are saturated with water vapor, whereas the air 
that enters is not. What error will this introduce in your results, and how 
would you correct it? 

6. What factors determine the amount of condensate water? 

7. Why is it not necessary to take into account the thermal capacity 
of a continuous-flow calorimeter?
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OPTIONAL LABORATORY PROBLEMS 

1. Specific Heat of Mercury by the Method of Mixtures. Enclose the 

mercury in a small bottle, warm it in a steam heater, and then lower it 

into the water in the calorimeter vessel. Observe the precautions mentioned 

in Sec. 148. Allow the boiler to run throughout the experiment so that the 

temperature of the surroundings will remain constant. The thermometers 

in the water jacket and in the calorimeter should be read to tenths and to 

hundredths of a degree respectively. After the bottle containing the mercury 

has been placed in the calorimeter, stir the water continuously and take its 

temperature at half-minute intervals until the temperature begins to fall, 

and then at longer intervals. 

The mean thermal capacity of the bottle can be obtained by making a 

separate experiment with the empty bottle. That of the calorimeter vessel 
and stirrer can be calculated from a knowledge of the masses of the vessel 
and stirrer and the specific heat of the material of which they are made. In 
the case of the thermometer, the thermal capacity is equal to the volume of 

the immersed portion multiplied by 0.45 cal - deg-!, the mean thermal 

capacity of one cubic centimeter of the glass and mercury. 
To find the cooling correction (Sec. 148), employ the equation 

Q=k(i—1t')D, in which Q is the quantity of heat lost to or gained from 

the water jacket during the experiment, ¢ is the mean temperature of the 

water in the calorimeter vessel during the experiment, 7’ is the mean tem- 

perature of the water jacket, D is the time of duration of the experiment, 

and k& is a constant of proportionality. The constant & can be determined 

by filling the calorimeter to the same level as in the original experiment with 
a known mass of water which has been heated to the highest temperature 

t, reached by the mixture in the original experiment. 
The time required, with continuous stirring, for this 

water to cool through, say, a half-degree is then noted, 

and from this and the temperature of the water jacket 

the constant & can be determined. 
2. Specific Heat of Alcohol by the Method of Cooling. 

Partly fill a nickel-plated cooling bottle (Fig. 149) with 
a known mass of the alcohol to be tested. Gently heat 
the bottle over a burner until the temperature of the 4 

alcohol is about 37° C, and then suspend it in the air Fie. 149. Cooling 

space in the inner calorimeter vessel. Read the ther- calorimeter 
mometer about once a minute until the temperature has 
fallen perhaps twelve degrees; be sure to observe the exact time of each 
reading. Also observe the temperature of the water jacket from time to time. 

Make a similar set of readings with the bottle filled to the same level as 

beforehand, but this time with warm water. 
Plot the two cooling curves to the same large scale, and read off upon 

them the two times included between any two selected temperatures. The 
specific heat of the alcohol can then be calculated from a knowledge of these 

times, the masses of the alcohol and of the water, the specific heat of the 
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water, and the thermal capacity of the bottle and thermometer (Sec. 150). 

If the thermal capacity of the bottle is not known, it will have to be de- 
termined by a separate experiment. The mean thermal capacity of the 

thermometer may be taken as 0.45 cal - deg-! per cubic centimeter of the 

glass and mercury that was immersed in the liquid during the experiment. 

6 

QUESTION SUMMARY 

1. Distinguish clearly between temperature and quantity of heat. Con- 
trast the two hypotheses which have been proposed to account for the fact 
that bodies change temperature. 

2. Define calory; British thermal unit. These are units of what? 

8. Define specific heat; molar thermal capacity; atomic thermal capacity. 

How can the fact that different substances have different thermal capacities 
be explained ? 

4, Why is the specific heat at constant pressure greater than the specific 
heat at constant volume? How much greater is it in the case of gases? 

5. On the kinetic theory what value would be expected for the molar 

thermal capacity at constant volume of an ideal gas? Do actual gases have 

this value? 

6. What is meant by degrees of freedom? In general, how many degrees 
of freedom does a particle have? a solid body? What is the law of equipar- 
tition of energy? 

7. If the law of equipartition of energy holds, what value would be ex- 
pected for the molar thermal capacity at constant volume of a diatomic gas? 

of a polyatomic gas? Is this found to be the case? 

8. What value would be expected for the ratio of the specific heats at 

constant pressure and at constant volume for an ideal gas? for a monatomic 
gas? for a diatomic gas? for a polyatomic gas? Is this found to be the case? 
How do you account for values of y less than 1.33? 

9. Do the specific heats of all gases vary with the temperature? What 
types of gases show the largest variations? Account for these variations. 

10. Explain why the molar thermal capacity of hydrogen decreases from 
5 cal - mole7! - deg-! at ordinary temperature to 3 cal - mole“! - deg! at 

about 60° K. Why does not oxygen or nitrogen behave similarly? 

11. In the case of solids at high temperatures, is it the molar or the atomic 
thermal capacity that is the same for all substances? What is the signifi- 

cance of this fact for the kinetic theory? 

12. State DULONG and Perit’s law. What is the nature of the excep- 
tions to it? Account for the fact that the atomic thermal capacities of 
solids are approximately 6 rather than 3cal per gram atomic weight per 

degree. ,
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13. Describe in detail how the atomic thermal capacities of solids vary 
with the temperature. How is this variation explained? Why do substances 

with a high melting point and low atomic weight, like silicon, depart from 

DuLonGc and Perit’s law at higher temperatures than substances with a 

low melting point and a high atomic weight, such as lead? 

14. What is an adiabatic process? What is the relation between the pres- 

sure and the volume of an ideal gas in an adiabatic change? How is this 

relation made use of in determining y? 

15. How does the mechanical theory of heat account for the fact that the 

temperature remains constant while ice is melting or while water is boiling? 
Define heat of vaporization; heat of fusion; heat of sublimation. 

° 

PROBLEMS 

1. A flywheel of mass 300 kg and diameter 2.00 m has an angular speed 
of 1.00 rev - sec~!. If the whole mass of the wheel is assumed to be concen- 
trated in the rim, how much heat is produced in stopping it by friction? 

Ans. 1.41 x 108 cal. 

2. In one of the first of JouULE’s experiments (Sec. 55), the work done by 

falling weights was expended in stirring water (Fig. 150). After allowances 
were made for the friction of the pulleys, the 
speed of the weights at the end of their descent, 

etc., the data obtained in the first experiments 
were: total mass of weights, 57.8 1b; height of 
fall, 5.00 ft; number of times weights were al- 

     
      

lowed to fall, 21; rise in temperature of water, My oot 

0.563° F; thermal capacity of water and con- ro} 

taining vessel, 13.9 B.t.u. per deg F. Calculate re 
the value of TouLE’s equivalent from these data. 1 orth | 

Ans. 775 ft - Ibwt/B.t.u. = 4.17 j + cal7}. ee     
3. Will the drop in temperature of 10 gof Fic. 150. Diagram of Joutz’s 

water from 65° to 35° C heat a given mass of apparatus for determining the 
cold water as much as the drop of 5g from mechanical equivalent of heat 
95° to 35° C? , 

4. In the manufacture of lead pipes the solid lead is forced through an 
annular die by applying a pressure of, say, 2.0 x 10* Ibwt - in.~2. Given 

that the mean specific heat of lead is 3.13 x 10-2 cal - g-} - deg—! and that 
its density is 710 lb - ft~3, how much will the temperature of the lead rise 
in passing through the die? Ans. 93°C. 

5. (a) By following the method of MAYER, compute JOULE’s equivalent 
from the experimental data for oxygen in Tables VI and VII. (6) Show that 
this method involves the assumption that no heat is expended in internal 
work of expansion. (c) Was MAYER justified in making this assumption? 

Ans. (a) 4.16 x 107 erg - cal7}.
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6. When heat is applied to a quantity of chloroform kept ai constant 
vclume, for which y is 1.15, what fraction of it goes into increasing the 
kinetic energy of translation of the molecules? How is the remainder 
expended ? ‘ Ans. 23 percent. 

7. By combining Eq. [199], which. gives the relation between the pres- 
sures and volumes of an ideal gas in an adiabatic change, with Eq. [133], the 
equation of state of an ideal gas, show that the relation between volumes 
and temperatures of an ideal gas in an adiabatic change is 

TVy—1 = constant, 

and that the relation between pressures and temperatures is 

l-y 

TP * =constant. 

8. A given mass of air, initially at 27° C and 1 A,, is suddenly compressed 
to half its initial volume. Assuming that the compression is adiabatic, find 
what temperature the gas will attain. What will be the final pressure? 

Ans. 123°C; 2.6 As. 

9. (@) Show that the external work done by an ideal gas at the tempera- 
ture 7 during an isothermal expansion from volume V; and pressure P; to 
volume Vz and pressure P2 is given by 

Vo 

AW.= | PdV=NRT log, ~2 = P.V; log, @ = P2V2 log, 2. 
Vi Vi Vy Vi 

(b) Calculate the work done in compressing 2.0 liters of gas isothermally 
until its volume is 1.0 liter, the initial pressure being 72 cm of mercury. 

Ans. (b) 1.3 x 102}. 

10. Show that the external work done by an ideal gas during an adia- 
batic expansion from pressure P; and volume V; to pressure P2 and volume 
V2 is given by Va. 1 

AW.= | “PdV= 
Vi Y—- 1 

  (PiVi — P2V2). 

11, A quantity of hydrogen is contained in a cylinder fitted with a mov- 

able piston, both the cylinder and the piston being made of some material 
that is impermeable to heat. The pressure and volume of the gas are 2 A, 

and 1 ft* respectively. If the piston is allowed to move out until the pres- 

sure is halved, (a) by how much is the volume increased, and (b) by how 
much is the heat content of the gas decreased ? 

Ans. (a) 0.6 ft; (b) 6 x 10 cal. 

12, At 100°C and 1 A, the heat of vaporization of water is 538.7 calys-g7! 
and the density of steam is 5.98 x 10-4 ¢-cm~3. (a) What part of the heat 

of vaporization of water is used in doing external work against the atmos- 

pheric pressure, and (b) what part is used in increasing the internal energy 
of the water? Ans. (a) 7.5 percent; (b) 92.5 percent. 

13. How many British thermal units would be required to convert 
1.0 lb of snow at — 10°C into steam at 98°C? The specific heat of ice is 

0.50 cal - g-! - deg-l. Ans. 1.3 x 10? B.t.n,
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“14. When a substance that expands on freezing is subjected to an in- 

creased pressure, the melting point is lowered. The melting point of a sub- 
stance that contracts on solidifying is raised in similar circumstances. 
(a) Is this what you should expect? (b) Explain the phenomenon, first ob- 
served by FARADAY, that when two pieces of ice are pressed together and 
then released, they are frozen onto each other. (c) It is observed that where 

lava forms a pool the crust sinks in when it is broken; can you use this fact 
to account for the interior of the earth’s being solid even though it is at 

very high temperatures? 

15. (2) Which are the more likely to burst in freezing weather, the hot- 
water or the cold-water pipes ina house? (b) Calculate the greatest average 
force per unit area which can be exerted by pure water in freezing; take the 
density of ice as 0.917 g-cm~3 and neglect the variation of the heat of 

fusion of ice with pressure. Assume also that the temperature is low enough 
so that the water will freeze no matter what the pressure. 

Ans. (b) 3.7 x 10!° dyne - cm~? or 270 ton wt - in.~? 

° 

CAN never forget the British Association at Oxford in the year 1847, when in one of the sections 

I heard a paper read by a very unassuming young man who betrayed no consciousness in his 

manner that he had a great idea to unfold. I was tremendously struck with the paper. I at first 

thought it could not be true because it was different from Carnot’s theory, and immediately after 

the reading of the paper I had a few words of conversation with the author James Joule, which 

was the beginning of our forty years’ acquaintance and friendship. On the evening of the same 

day that very valuable Institution of the British Association, its conversazione, gave us opportunity 

for a good hour’s talk and discussion over all that either of us knew of thermodynamics. I gained 

ideas which had never entered my mind before, and I thought I too suggested something worthy 

of Joule’s consideration when I told him of Carnot’s theory. Then and there in the Radcliffe 

Library, Oxford, we parted, both of us, I am sure, feeling that we had much more to say to one 

another and much matter for reflection in what we had talked over that evening. But what was 

my surprise a fortnight later when, walking down the valley of Chamounix, I saw in the dis- 

tance a young man walking up the road towards me and carrying in his hand something which 

looked like a stick, but which he was using neither as an Alpenstock nor as a walking stick. It 

was Joule with a long thermometer in his hand, which he would not trust by itself in the char-a-bancs 

coming slowly up the hill behind him lest it should get broken. But there comfortably and safely 

seated on the char-t-bancs was his bride — the sympathetic companion and sharer in his work of 

after years. He had not told me in Section A or in the Radcliffe Library that he was going to be 

married in three days, but now in the valley of Chamounix, he introduced me to his young wife. 

We appointed to meet again a fortnight later at Martigny to make experiments on the heat of a 

waterfall (Sallanches) with that thermometer: and afterwards we met again and again and again, 

and from that time indeed remained close friends till the end of Joule’s life. I had the great pleas- 

use and satisfaction for many years, beginning just forty years ago, of making experiments along 

with Joule which led to some important results in respect to the theory of thermodynamics. This 

is one of the most valuable recollections of my life, and is indeed as valuable a recollection as I 

can conceive in the possession of any man interested in science. 

Wituam Tuomson (Lorp Kexvin), Address delivered on the occasion of 
the unveiling of Joutz’s statue in Manchester Town Hall, December 7, 1895



CHAPTER THIRTEEN 

THE MECHANICS OF FLUIDS 

OSTULATE 1. 

Let it be supposed that a fluid is of such a character that, its parts lying evenly and being con- 

tinuous, that part which is thrust the less is driven along by that which is thrust the more; and 

that each of its parts is thrust by the fluid which is above it in a perpendicular direction if the fluid 

be sunk in anything and compressed by anything else. 

Posrurate 2. 

Let it be granted that bodies which are forced upwards im a fluid are forced upwards along the 

perpendicular [to the surface] which passes through their centre of gravity. 

Arcuimepss, ‘‘On Floating Bodies.”’ Translation by T. L. Heatx? 

° 

A fluid is distinguished from a solid by the fact that the fluid cannot 

permanently sustain a shearing stress (Sec. 94). This and many 
other properties of fluids have been discussed in connection with the 
phenomena of elasticity, thermal expansion, diffusion, viscosity, 

and change of state. Indeed, some of the mechanical principles of 
fluids that are treated in the present chapter are already known to 

the student from his study of gases and from his experiences in the 
laboratory with the barometer, water aspirator, and other instru- 

ments that utilize these principles. 

° 

Archimedes’ Principle and the Statics of Fluids 

152. Archimedes’ Principle. In the first book of his treatise “On 
Floating Bodies,’”’ in which he established the principles of hydro- 
statics, ARCHIMEDES stated his famous discovery that a solid body 

immersed in a fluid at rest under gravity is buoyed up by a vertical 

force equal in magnitude to the weight of the displaced fluid. The 
law was restated in 1586 by STEVIN,? who advanced for it the follow- 
ing proof. Within a body of fluid, isolate in thought some mass by 

means of an imaginary bounding surface S, Fig. 151. Since the mass 
  

17. L. Heath, The Works of Archimedes (1897), pp. 253-300. By permission of 

The Macmillan Company, publishers. ARCHIMEDES founded his whole theory of 

hydrostatics upon these two postulates. 
2 De Beghinselen des Waierwichts (‘Principles of Hydrostatics”) (Leiden, 1586). 

For a French translation, see Les uvres Mathematiques de Simon Stevin de Bruges, 

ed. by A. Girard (Leiden, 1634). 
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IMON STEVIN of Bruges has been called by Sanron ‘‘the most original man of 
science of the second half of the sixteenth century,” and ‘‘one of the greatest 

mathematicians of the sixteenth century and the greatest mechanician of the long 
period extending from Archimedes to Galileo” [see Isis 21, 241-303 (1934); 

this is an excellent discussion of Stevin’s life and achievements]. He was best 

known to his contemporaries for his works on the science of fortification (readers 
of Sterne’s Tristram Shandy will remember that Srevin’s book on this subject was 
constantly quoted by Uncle Toby), and for his invention of a carriage that was pro- 

pelled by sails and ran on the seashore, carrying twenty-eight passengers faster than 
a horse could gallop. He was also chiefly responsible for the introduction of a 
proper system of bookkeeping in the Dutch and French national accounts. 

Of more fundamental and lasting importance, however, were Srevin’s contri- 
butions to mathematics and mechanics. He, wrote the first systematic treatise on 

decimal fractions, established the essential value of such fractions, and suggested 
for the first time (1585) the extension of the decimal idea to weights and measures. 

In addition to giving a very simple and original demonstration of the law of 
equilibrium on an inclined plane, based on the postulate of the impossibility of 
perpetual motion (see Plate 8), Srevin deduced the laws of hydrostatic pressure 
and applied them to floating bodies, as well as to the computation of the pressure on 
the sides and bottoms of vessels containing liquids. He discovered the hydrostatic 
paradox, that the pressure at the bottom of a liquid depends only upon the height 
and density of the liquid and not at all upon the size and shape of the liquid column 
producing it, and proved it experimentally by making one pan of a balance the bot- 
tom of a vessel which could be filled with various liquids and be given different shapes. 

9 

 



  

  

oO PLATE 42 0 
  

  
Simon Stevin, 1548-1620 

Reproduced from Isis 21, 244 (1934), by permission of the Editor
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of fluid within this boundary is in equilibrium, its weight must be 

neutralized by forces exerted by the surrounding fluid. But these 

latter forces depend only upon the conditions that 
exist outside of S, and are wholly independent of 

the nature of the substance within S. Hence any 
immersed body whatever which has the surface S$ 
must be buoyed up by forces the sum of which 

> 

  

  

is equal to the weight of the displaced fluid. Fig. 151. Srevin’s 

153. Weight of a Body in Vacuum. From proof of AxcatmEpes’ 

ARCHIMEDES’ principle it follows, for example, principle 

that when a body is balanced upon scales in air, 

the balancing weights do not accurately represent the true weight 

of the body, that is, its weight in vacuum. For both the body and 

the weights are buoyed up by the air, and since, in general, the vol- 

ume of air displaced by the body is not the same as that displaced 
by the weights, the buoyant. effects upon the two sides of the balance 
must be different. The true weight W can be obtained easily from 

the apparent weight W,, the volume of the body V, the density of 
air p., and the density of the weights p,. For, since the resultant 

downward force on the body is W— Vp, and that on the weights 
W.— (Wapa/ Pw), we have, by assuming that the balance arms are equal 
and applying the principle of moments (Sec. 72), 

~ Js [207] a 

Ww 

  w=w.t(v— 
\ 

154. Density Determinations by Hydrostatic Weighing. ARCHIMEDES’ 
principle also furnishes a convenient and accurate method for de- 
termining the densities of irregular solids and of liquids. Thus, if 
any solid body the weight of which in vacuum is W be found to 
undergo an apparent loss of weight AW when immersed in a liquid 
of density p;, the density p of the solid is evidently 

_ Wor. 

In order to find AW accurately an air correction must, of course, 

be applied. For if the apparent weight of the body in air be W, and 

its apparent weight in the liquid be W;, then the equation of balance 

for this case, in which the body hangs in the liquid while the weights 

nang in air, is evidently W— Vp. = Wi— (Wipc/ pw). By substituting 
the value of W found in Eq. [207], there results at once 

AW =Voi=W.—Wit (ve {209} 
Ww
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EXAMPLE. It is found that a certain solid body undergoes an apparent 
loss of weight AW, when immersed in a liquid of known density p; and 
an apparent loss of weight AW2 when immersed in another liquid of 
unknown density pe. Show that 

the unknown density is given by 
the formula 

_ AWs 
p2= AW, 

In using Eq. [210] the weighings in 
the two liquids may be made with an 
ordinary balance, of course, but for the 

sake of rapidity a modified form of bal- 
ance due to the German pharmacist 

Kari FRIEDRICH Mour (1806-1879) is 

commonly used (Fig. 152). Strictly Fie. 152. The Mohr-Westphal bal- 
speaking, the apparent losses of weight ance. It is described in Exp. XUla 
AW, and AW, are subject to the air cor- 

rections given by Eq. [209], but since in practice the densities p, and pe 

usually differ little from each other, the influence of these corrections upon 
the result is negligible. 

  pie [210] 

  

155. Two Fundamental Principles of Fluids at Rest. The explana- 
tion which STEVIN gave for ARCHIMEDES’ principle (Sec. 152) in- 
volves the hypothesis that the fluid exerts a force on each element 

of a body with which it is in contact and that this force still exists 
when any portion of the fluid itself is regarded as a body immersed 
in the rest of the fluid; it is because a simple explanation can be 

found for ARCHIMEDES’ principle on the basis of this hypothesis that 

the principle is so important theoretically. The force which a fluid 

exerts can be traced to various causes. When the fluid completely 
fills a vessel, forces exerted on the fluid surface, as by atmospheric 

pressure or by a piston, are a source of force in the fluid. Gravity is 
a second source, since the weight of the upper layers of the fluid is 

sustained by the lower layers. Molecular attractions also produce 

force-in a fluid, but this will not be considered until later. 

Since there can be no shearing stress in a fluid at rest Gec. 94), 

the force exerted by a fluid obviously can have no component parallel 

to the surface upon which it acts; in other words, 

1. The direction of the force exerted by a fluid at rest upon any ele- 
ment of surface is perpendicular to the surface. 

Now our study of the elastic properties of fluids (Sec. 91) made 

it clear that pressure is a more useful and important concept in the 
mechanics of fluids than is force. What is more, we found that ina 

fluid at rest this pressure is a hydrosiatic pressure; in other words,
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2. At any point in a fluid at rest the pressure ts the same in all 
directions. 

This principle can easily be proved by applying the conditions for 
equilibrium given in Sec. 73 to any small portion of the fluid. 

156. Fluids at Rest under Gravity. In .- 

order to study the effects of gravityon = 
the pressure of a fluid at rest, consider = 

   
first the forces that keep a horizontal =7—77=—7 7 = 

cylindrical portion of the fluid in equi- = pet 1-7; 
librium [(a) in Fig. 153]. Let the area =2°2 
of each of the vertical end faces of the —- —~— —*- — ——=—- 

cylinder be A and let Pz and Ps be the Fy, 153. Pressure in a fluid at 
pressures at these two ends. Then, since test under gravity 
the forces on the curved side surfaces 
of the cylinder have no components in the direction of the length 
of the cylinder, the conditions for equilibrium give P2= P3; or 

3. The pressure in a fluid at rest under gravity ts the same at all 

points in the same horizontal plane. 

Next consider the equilibrium of a vertical fluid cylinder [(6) in 
Fig. 153]. Let the height Ay of this cylinder be so small that the 
density p of the fluid may be considered as constant throughout the 
cylinder. If P, and P2 denote the pressures on the upper and lower 
faces respectively, the force (P2— P;)A must be equal in magnitude 
to the weight pgA Ay of the fluid cylinder, or 

P2— Pi = pg Ay. [211] 

(In what units must the pressures P, and Pz be expressed here ?) 
The result of integrating Eq. [211] enables us to conclude that 

4. The difference in pressure between two points at different levels in 
a mass of fluid at rest under gravity is equal to the weight of a 
column of the fluid of unit cross-sectional area reaching vertt- 

cally from one level to the other. 

If we assume what is practically true for the case of most liguzds, 

namely, that the density p does not vary with the depth, Eq. [211] 

gives the difference in pressures for any value of Ay without the 
necessity of integrating. Indeed, the student will recall having thus 
used the equation in the calculation of fluid pressure as indicated 
by a manometer. 

These laws of equilibrium of fluids were demonstrated in the most 
simple manner by the French philosopher, mathematician, and man 

of letters BLAISE Pascat and amply confirmed by experiments in
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his Trattez de l’équilibre des liqueurs . . .,1 which was published in 1663 

but was probably written before 1653. Except in the matter of 
simplicity and elegance of expression, however, PascaL made little 

advance over STEVIN. 

EXAMPLE. On the assumption that the earth’s atmosphere is an ideal 

gas and that the temperature does not vary with altitude, show that the 

atmospheric pressure B at any altitude y and temperature T is given by 

— Mey 

B= Boe ®? , [212] 

an equation due to LAPLACE,? in which Bo is the atmospheric pressure at 

the level where y = 0, ¢ is the base of natural logarithms, and M is the 

molecular weight of atmospheric air. 

  

Solution. By writing Eq. [211] and the equation of state of an ideal gas 
in the forms dP = — pg dy and PM = pRT, respectively, and eliminating p 

between them, one obtains the differential equation 

aP__ Mg, 
_P RT 

The negative sign signifies that the pressure P decreases as the altitude in- 
creases.’ Indicating the integration of both members of this equation, one has 

B y [Ea a, 
iB, RT Jy 

which yields log B — log Bp = — Mgy/RT, and hence Eq. [212]. In carrying 
out the integration the value of g was treated as constant because its vari- 

ation with altitude is small and may be neglected. In practice a tem- 

perature correction will have to be applied to Eq. [212], since in general the 

temperature decreases about 6° C for each kilometer increase in altitude.* 

157. Pascal’s Principle and the Hydraulic Press. According to 

Eq. [211] the difference in pressure between two points in‘a fluid at 
rest under gravity depends only on the difference in the levels of the 
points and on the density of the fluid, and not at all on the size and 
shape of the vessel. It follows from this that if the pressure at any 
  

1 Excerpts appear in *A Source Book in Physics (1935), pp. 75-80. 

2 Traité de Mécanique Céleste, Vol. V, Bk. XII. 

8 This was proved conclusively in 1648 by PascaL and his brother-in-law, FLORIN 

PERIER, in the famous experiments carried out on the Puy-de-Déme, a high mountain 

in Auvergne; see *A Source Book in Physics (1935), pp. 73-75. 

4See W. J. Humphreys, Physies of the Air (McGraw-Hill, 1929), Part I, Chap. III. 

5 This hydrostatic paradox, as it is often called, was clearly enunciated by PascaL 

in 1653 and applied by him to the invention of the hydrostatic press; but, as SARTON 

has pointed out [Zsts 21, 24] (1934)], STEVIN in 1586 had given a good statement of 

the paradox and had unmistakably indicated the application of it that later Ied to 

the hydraulic press.
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point in the fiuid be increased, there will be an equal increase of 

pressure at every other point, provided the density does not change 
appreciably. This statement is commonly referred to as Pascal’s 
principle of the transmissibility of pressure. 
It is practically true for liquids, since 
liquids are so nearly incompressible. Al- 
though gases are much more compressible, [F=—7-—=- 
their densities are usually so small that F=——— 
the pressure in a small volume is every- [>>> ==> : 
where nearly the same, and hence the Fic. 154, Simple hydraulic 

principle holds well for gases also. It is press 

in the hydraulic press! (Fig. 154) that 
PascaL’s principle finds its most beautiful experimental demonstra- 

tion. “The pressure applied at the pump of the hydraulic press 

usually is so great that the pressure due to gravity is insignificant 

by comparison, and may be neglected. 

      

  

y 
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Capillary Phenomena 

The foregoing principles show that if the pressure exerted by the 
atmosphere upon the free surface of a liquid of density p is B, then 

the pressure P at any depth y beneath the surface is given by 

P=B-+ pgy. [213] 

There follows at once the result, in general confirmed by observation, 

that the surfaces of a liquid at rest in a series of communicating 
vessels lie in the same horizontal plane. But it was observed as early 
as 1490 by LEonaRDO Da VINCI that if a tube with a very narrow 
bore, called a capillary tube because the bore is as ‘‘fine as a hair,” 

is placed with one end in water, the liquid rises some distance above 
the level in the outer vessel, as in Fig. 157, b. Later and more careful 

investigation has shown the existence of a large number of other 

phenomena to which the ordinary laws of hydrostatics do not apply. 
Thus a drop of mercury, instead of spreading out into a thin film, 

as it would do if gravity alone acted upon its molecules, is held to- 

gether in an approximately spherical form, and the tendency to 

sphericity becomes more pronounced as the drop becomes smaller 

and its weight less important in comparison with the cohesive forces. 
These are all manifestations of the same intermolecular forces as were 
taken into account by VAN DER WAALS in arriving at his equation of 
  

1 Patented by JOSEPH BRAMAH in 1795.
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state of a fluid (Secs. 128, 129), and as were assumed in Sec. 130 

in order to reconcile the existence of liquid surfaces with the theory 
of molecular motion. 

158. Additional Evidence as to the Existence and Nature of Inter- 

molecular Forces. The simplest experiments show that, whereas the 

intermolecular attractive forces have enormous values at short range,! 

they diminish so rapidly with the distance as to become wholly in- 
appreciable at distances that are certainly much less than 10-2 mm 

_ and that are probably less than 10-5 mm. Thus a sheet of glass may 
be brought extremely close to a surface of water without appearing 

to be attracted toward it sensibly, but as soon as contact is made the 
glass clings to the water with remarkable tenacity. The surface of 
two metal blocks may be pressed together without showing any ap- 

preciable attraction, but as soon as they are brought somewhat 

nearer, as by high pressure or welding, it may require tons of force 
to pull them apart again. In order to account for this rapid dimi- 

nution with the distance it has been found necessary to assume that 

forces between molecules vary inversely with the distance according 
to a power higher than the fifth and perhaps up to the seventh, so far 

as present knowledge goes. Such laws of variation should be no cause 
for surprise. Even if these forces turned out to be gravitational 
forces, it does not necessarily follow that the ordinary law of inverse 
squares (Eq. [25], Chap. 2) will hold for them ; for the law of inverse 
squares was arrived at from experiments on the attraction of masses 
of finite volume, the distances between the nearest points of which 

are almost infinitely large in comparison with the distances between 
the molecules of the bodies. 

159. The Theory of Molecular Pressure. In Sec. 128 and Fig. 122, 
which should be reviewed at this time, it was shown that there 

exists in the layers of a gas next to the walls of the containing vessel 
a resultant inward pressure P’ due to the intermolecular forces. 
Similar considerations evidently hold for those molecules of a liquid 
that are nearer to the surface than the radius 7 of the sphere of 
molecular attraction. For while the molecules within the space cefd 
of the sphere (Fig. 155) exactly neutralize the effects on the molecule 

m of the molecules within the space acdb, the downward resultant 
of the interrnolecular forces of all the molecules in efg is wholly un- 
balanced. This force continually urges the molecule m into the in- 
terior of the liquid. The result of the action of all these unbalanced 
  

1 Repulsive forces which cause the molecules to occupy space do not come into 

play until the distances are still smaller.
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forces upon all the molecules contained in a surface layer of thickness 

r, called the active layer, must be, then, an interior pressure of un- 

certain, perhaps enormous, magnitude. It has been estimated for 

water at something like 10* atmospheres, but it has never been 

  

  

Fic. 155. An explanation of molecular pressure 

measured directly and never can be. For, since a liquid is always 
bounded on all sides by a surface, this molecular pressure usually 

balances itself and therefore cancels out in hydrostatic measurements. 

Hence it is that Eq. [213], which leaves the existence of molecular 

pressure altogether out of account and treats the liquid molecules as 
though they were so many independent grains of sand, nevertheless 

gives, in general, correct results. But it is exactly such apparent 

violations of the ordinary hydrostatic laws as are shown in capillary 

phenomena that furnish a beautiful proof of the existence of molecular 
pressures in liquids. 

160. Variation of Molecular Pressure with Curvature of Surface. It 

is easy to show that the molecular pressure must be greater under- 

neath a convex surface and less underneath 

a concave surface than it is beneath a flat one. 
Thus let m, Fig. 156; represent a molecule 

that lies in the active layer at a given distance 
beneath a surface, and let the circle drawn 

about m represent the sphere of influence of 
intermolecular forces. The surface will first 

be assumed to be flat (ach), then convex (ecf), 

and finally concave (gch). In the first case, Fre. 156. Effect of surface 

since pidjq neutralizes pacbg, the resultant Qvature on the molecular 
downward force acting upon m is due to the pressure 

attraction of the molecules lying within the . 
segment zojd of the sphere. In the second case pkdlg neutralizes 

pecfg, and the resultant downward force is due to kold, a volume that 

is greater than zojd. In the third case the resultant force is due to 
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mond, a volume that is less than zojd. Hence the resultant downward 
force upon the molecules in the active layer is greatest beneath the 
convex surface and least beneath the concave surface. It is evident 
also from the same kind of reasoning that. the greater the convexity 
the greater the pressure. All of this may be summarized by saying 
that if the molecular pressure beneath a plane surface be represented 
by P,’, that beneath a curved surface is P,’ + P,’, in which the mag- 
nitude of P.’ depends upon the nature of the liquid and the magni- 
tude of the curvature, its sign being plus or minus according as the 
surface is convex or concave. LAPLACE! proved by a mathematical 
analysis of the forces exerted by segments of the kind shown in 
Fig. 156 that P,’, expressed in terms of a characteristic constant S 
of the liquid and the two principal radii of curvature? R,; and Rs 
of the surface, is , 1 1 

Ps =S(e +3): [214] 

Since the quantity in parenthesis is, by definition, the curvature 

of the surface, this equation states that P,’ is proportional to the 
curvature. 

161. Capillary Ascension and Depression. By starting with the fact 

of observation that a liquid in a capillary tube has a curved instead 

of a flat surface, its rise or fall in the tube, according as its surface is 

concave or convex, follows as a matter of course from a simple con- 
sideration of the pressures involved. Thus, the correct value of the 

pressure at a distance y below a plane surface is not that given by 
Eq. [213] but rather that given by the expression 

B+ pgy + P,’, 

and the pressure at the same distance y beneath a concave surface 

in a capillary tube (Fig. 157, @) is given by 

B+ pay + Py! —S(q +): 
2 

Hence there can be no equilibrium until the larger molecular pressure 

beneath the flat outside surface has pushed the liquid in the tube to 
  

1 Traité de Mécanique Céleste, Supplement to Bk. X (1806); tr. by N. Bowditch 
(Boston, 1829-1839). 

2 The principal radii of curvature of a surface at any nonsingular point may be 

found geometrically as follows. Let the intersection of two mutually perpendicular 

planes lie along the normal to the surface at the point considered. These planes will 

intersect the surface in curves of radii of curvature R; and Re. Rotate the two per- 

pendicular planes about the normal until R, and Rz are a maximum and a minimum. 

R, and Rez are then the principal radii of curvature of the surface at the point consid- 

ered. (What are the principal radii of curvature of a spherical surface? of a cylindri- 
cal surface?)
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such a height # that the total pressures at any two points in the same 
horizontal plane of the liquid are equal; that is, until 

B+ pay-+ Py! =B+ pay + Py! —S( z+ pe) + eeh 
-s(ist\. or pgh = s( z+ B) F215] 

The quantities R, and Re are the principal radii of curvature at the 

point considered (for example, 1, 2, or 3, Fig. 157, b), and & is the ele. 

vation of this point above 

the outside plane surface. 

It thus appears that, cor- 

rectly speaking, a liquid 

does not rise in a capillary 
tube because of a “capillary 
attraction,’”’ any more than 

it rises in a suction pump 
because of the attraction of 
the vacuum created by the 

lifting of the piston. Inboth Fic. 157. Rise of a liquid in a capillary tube 
cases the liquid is pushed 

up by a pressure existing outside. In the case of the pump this is the 
atmospheric pressure acting on top of the water in the well; in the 

case of the capillary tube it is the pressure acting in the surface 

layer of the outside liquid. 
162. Measurement of the Capillary Constant S. If it were possible 

to remove entirely the molecular pressure within the capillary tube, 
the height of rise would be a measure of P,’, just as the height of rise 
of the water in a long evacuated tube is a measure of the atmospheric 
pressure. Since, however, nothing more can be done than to obtain 

a curved surface within the capillary tube, it is only the capillary 

constant S that. can be found from observations of the quantities 
h, p, Ri, and Re which appear in Eq. [215]. In the general case it is 

difficult to measure R; and Re, but if the tube is circular in cross 
section, it then follows from symmetry that at the middle of the 
meniscus, Rj = Ro = R, so that Eq. [215] reduces to 

28 
pgh = =~ [216] 

  
If, further, the tube is so sraall that the height of the meniscus 

(M, Fig. 157, 6) is negligibie in comparison with #, in which case 

h is practically constant for all points of the surface, then: it follows 
from Eq. (215] that. the curvature (1/R1) + (1/R2) also is practically
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constant. But the only surface of constant curvature that can 

fulfill the condition imposed by Eq. [216] is a section of a sphere 
of radius.R. Hence, finally, if r is the radius of the tube and a is 

the angle of contact, or angle at which the liquid surface meets the 
immersed portion of the tube wall (Fig. 158), then 
+= Rcosa and Eq. [216] becomes 

pgh = 28 cos a. [217] 

If the liquid can be made to wet completely the in- 
terior of the tube, so that its angle of contact a with 
the walls is zero, then the meniscus must be a hemi- F . 

. - oe 1a. 158. Rise 
sphere, and the radius R of the surface is simply the ¢ , liquid in a 
radius r of the tube. It is left to the student to show capillary tube 
that, for zero angle of contact, if the height of the 

meniscus is not wholly negligible in comparison with A, the mean 

value of the latter can be obtained by adding 4 RF to the height of 
the lowest point of the meniscus. Eq. [217] thus modified is found 
to hold for tubes of as much as 1-mm diameter. 

Eq. [217] asserts that, other things remaining the same, the 
height of rise # is inversely proportional to the radius of the tube, a 

law discovered experimentally by JAMES JURIN (1684-1750) and 

known as Jurin’s law. JURIN also found (and this too follows from 
the equation) that the value of # depends on the section of the tube 
at the position of the meniscus and is independent of the form of 
the remainder of the tube. Eq. [217] makes the measurement of 

the capillary constant S a very simple matter in the case of liquids 
that wet the solids of which capillary tubes can be made. 

163. Angle of Contact. It remains only to show why a liquid in a 
capillary tube assumes a curved surface, a task of no difficulty when 
it is remembered that a liquid surface can be in equilibrium only 
when it is perpendicular to the resultant force (Sec. 155). Consider 
a molecule of the liquid at the point O where the liquid touches the 
solid wall of the containing vessel (Fig. 159). Let f, represent the 

vector sum of all the forces exerted upon this molecule by such 
portion of the liquid as lies within the sphere of molecular attraction 
when the liquid surface is assumed horizontal, and let f, represent 

the vector sum of the forces exerted upon the molecule at O by the 
molecules of the wall which lie either above or below the horizontal 

  
  

1 When the radius of the tube becomes larger than 1 mm, Eq. [217] requires correc- 

tion because the meniscus is no longer spherical. Tables for making this correction 

are given in *N, K. Adam, The Physics and Chemistry of Surfaces (Oxford University 

Press, 1930), pp. 295-301, and in the *International Critical Tables, Vol. IV, p. 435.
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line passing through 0. The attraction f, between like molecules is 
called cohesion, and the attraction f, between unlike molecules, ad- 

hesion. The angle at which the liquid surface meets the immersed 
portion of the solid is known as the angle 
of contact, and will be denoted by a. Three 

cases may now be distinguished : 
a. If a is to be 90°, the vector sum F 

of the three forces must be parallel to the 

wall. From Fig. 159 it will be seen that 

this is possible only if f, =2/f,, or if the 

attraction of the liquid for itself is twice 

that for the solid. Fie. 159. The case where the 
b. If f. > 2f., the vector sum F is di- angle of contact is 90° 

rected into the liquid, as shown in Fig. 160, 

and equilibrium cannot exist until the surface near O has become 
convex and the angle of contact a obtuse. This is true for paraffin 
and water and also for mercury and 
glass, the angles of contact in these two 

cases being approximately 105° and 140° 

respectively. An angle of 180° would in- 
dicate no adhesion between the liquid 

and solid and is never realized. Angles of 
contact are rarely, if ever, quite definite, 

but may have any value between two 

extremes. If the liquid edge is advanc- 

ing along the solid, the angle is a maxi- 

mum; if receding, the angle is a minimum. This may be observed 
clearly in the case of a raindrop traveling down a dirty windowpane. 

c. Iff.< 2f., the vector sum F is di- 

rected into the solid, as shown in Fig. 161. 

Hence equilibrium cannot exist until the 

surface near O has become concave and 
the angle of contact q@ acute. If the 

liquid attracts the solid as much or more 
than it attracts itself (that is, if f. = fa), 
the angle of contact is necessarily zero 
and a thin film of the liquid lies flat Fic. 161. The angle of contact 

against the face of the solid. Liquids is here acute 
that do this are said to wei the solid. 
That the angle of contact must be zero. for this case is evident from 
the consideration that when a partially immersed body is raised 
from a liquid, the angle of contact will remain constant at a value 

greater than zero only if the liquid retreats down the side of the 

  

  

  

Fic. 160. In this case the angle 
of contact is obtuse 
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body as rapidly as the body rises; that is, the angle of contact 
will exceed zero only if the liquid is one that does not wet the solid. 

164. Formation of Thin Films on the Surface of a Solid or Liquid. 

In accordance with Pascat’s principle (Sec. 157) the molecular pres- 
sure P, existing because of adhesion in the region 
O where the liquid meets the solid is transmitted 
undiminished in a direction parallel to the sur- 
face of the solid. There exists, therefore, a force 

that tends to move the molecules in this region 

along the solid surface (Fig. 162), and the only 

opposition to this force is the component parallel 

to the wall of the cohesive force f,. Hence unless 

the cohesion exceeds the adhesion a thin film of 

the liquid must spread out indefinitely over the 

surface of the solid. This conclusion is not sur- . 
ae . . . Fie. 162. Formation 

prising, since it means simply that a body that o¢, liquid film on the 

attracts a liquid strongly will tend to draw every surface of a solid 

particle of it as near as possible to itself. 
Thus it is that a drop of water spreads out indefinitely over a per- 

fectly clean glass or mercury surface, that a drop of olive oil spreads 

over water, or, in general, that any liquid spreads out over any per- 

fectly clean surface which it wets. Clean surfaces are difficult to 
obtain, of course, and that is true on account of the prevalence of 

this very phenomenon. Thus, the least drop of oil placed qn a mer- 

cury or glass surface spreads over it quickly and completely changes 
the effect of adding a drop of water. However, such familiar facts 

as the rapid spreading of oil over water and over the surface of a glass 
container attest the correctness of the foregoing conclusions. Of 
course, when but a drop of the liquid is present or when the surface 

is of great extent, a limit to the spreading must be reached when the 

film is one molecule thick. LorD RAYLEIGH,’ in 1890, measured 
films of olive oil on water that had a thickness of but 1.6 x 10-§ mm; 

this therefore sets an upper limit to the diameter of a molecule of 
olive oil. More recently, IRVING LANGMUIR? and others? have shown 

that films of oil and other insoluble substances on water are only one 

molecule in thickness and that the molecules often orient themselves 

very simply in these films. Measurements on such films therefore 

provide a method of great simplicity for studying the properties of 

  
  

1 Proceedings of the Royal Society 47, 364 (1890). 

2 Journal of the American Chemical Society 39, 1848 (1917). 

3See *N. K. Adam, The Physics and Chemistry of Surfaces (1930), Chap. II, for 

an excellent discussion of the experimental methods used in the more recent work and 

a summary of the interesting conclusions drawn from the study of surface films.
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the molecules themselves, such as their size, shape, flexibility, and 

the forces around them. It is becoming increasingly clear that these 

forces are chemical in nature and identical with those which cause 

chemical reaction and solution. 
165. Work Done in Extending a Liquid Surface; ‘Surface Tension.” 

Another important result of intermolecular attraction is that liquid 
surfaces tend to contract to the smallest possible area and therefore 
behave as though they were in a state of tension. For, since every 
molecule in the active layer (Sec. 159) is always being urged into the 

interior, it follows that as many molecules as can do so will leave this 

layer and pass within; that is, a liquid will tend to draw together 
into a shape which makes the surface area, and therefore the potential 

energy, least for a given volume. Thus it is that all bodies of liquid 
which are not distorted by gravity or other external forces always 
assume the spherical form, as, for example, a raindrop, a soap bubble 

or a globule of oil floating beneath the surface of a liquid of the same 
density. 

This tendency to assume the form of smallest surface should result 
in a sensible contractility in the case of a liquid film with gas on both 

sides, as, for example, a soap bubble, because in this case the area 

of the surface is so large. Experiment amply supports the conclusion. 

Thus, a soap bubble may be observed to begin to draw back into the 

bowl of the pipe as soon as the blower removes 
his mouth. A wet loop of thread laid upon a fi 
soap film formed in a wire ring (Fig. 163) is 
drawn out at once into a circular form as soon ©) 
as the film within the loop is pierced with a hot a 

wire. A film formed in the wire frame abdc, Pye. 163. Loop ina 
Fig. 164, snaps the movable wire ab back toward soap film 

cd as soon as the stretching force f is removed.! 
The fact that the loop of thread in Fig. 163 takes an accurately 

circular form shows that it is subjected to precisely the same force 

at all points on its circumference; yet the fact that such a film ex- 
hibits varying colors shows that it has a widely varying thickness. 
One must therefore conclude that the contractility of liquid films is 
independent of their. thickness. Thus the force f which must be applied 

  

  

1 For further examples of this fundamental tendency of liquid surfaces to contract 

to the smallest possible area, see the extended studies of JosEPH ANTOINE FERDINAND 

PLATEAU (1801-1883), the blind physicist, which are described in his Statique expéri- 

mentale et théorique des Liquides soumis aux seules Forces moléculaires (1873); for 

translations, see Taylor’s Scientific Memoirs (London, 1844 and 1852), Vols. IV and 

V, and the Smithsonian Reports (1863-1865). See also *C. V. Boys, Soap Bubbies 
(Macmillan, 1928).
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to the wire ab in Fig. 164 to keep the film from contracting must 

always be the same, whether the film has been stretched little or 
much; that is, whether it is thick or thin. Now, if the liquid surface 

really were an elastic membrane, HOOKE’s law (Sec. 90) should be 
applicable to it and the foregoing result would be a very strange one. 

But if it be remembered that when a liquid surface is stretched, the 

increase in surface is made possible by the 
transfer of new molecules from the interior 
to the surface, and that these are acted 

upon by precisely the same forces as the 
original surface molecules, the fact that f 

is independent of the extent of the sur- 
face is explained. 

It follows from the constancy of f that, Fie. 164. Stretching a film 
if the wire ab, Fig. 164, be pulled down a 

distance d, the work done by f is equal to fd and is proportional to 
the increase in surface. Let o represent the work which must.be done 
against the intermolecular forces in order to bring enough molecules 

into the active layer to form one new unit area of surface; then, since 

the total increase in surface (considering both sides of the film) 
is 2ab-d, it follows that fd=oc-2ab-d, or c=f/2ab. But 2 ab 

is simply the length of the line of surface to which the stretching 

force f is applied. Hence, since ¢ =f when 
2 ab = 1, it follows that in any liquid surface 
the work required to bring up into the active <= 
layer, against intermolecular attraction, enough eT 

molecules to form one new unit area of surface 
is equal numerically to a tangential contractile Frc. 165. The coefficient 
force across an imaginary line of unit length in of surface ene 1s 
the sur face Fig. 1 65). equal to a tangential con- 

tractile force across an 

The work necessary to extend a liquid sur- imaginary line of unit 
face is of fundamental importance in dealing with length in the surface 

liquid surfaces, and many problems can be at- 
tacked without knowing more than the magnitude c. In the solution of 
such problems, however, the mathematical device of substituting for this 
work a hypothetical contractile force acting in all directions parailel to the 
surface is used to simplify the calculations. This is what is generally known 

as the surface tension. The term should not be taken so literally, however, 
as to imply an actual mechanism in liquid surfaces such as exists in a 

stretched membrane. The fundamental mechanism is the perpendicular 
inward attraction exerted on the surface molecules by those lying immedi- 

  
  

1 This method was introduced by THOMAS YOUNG in an essay on the “Cohesion 

of Fluids,”’ Philosophical Transactions 95, 65 (1805).
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ately under them; there is no need to speculate how this can be trans- 
formed into a surface tension parallel to the surface, for the surface tension 
does not exist as a physical reality, but is only the mathematical equivalent 

of the work done against the molecular pressure in enlarging the surface. 

166. The Coefficient of Surface Tension. The quantity o is called 
the coefficient of surface tension. This surface energy! can be ex- 

pressed either in ergs per square centimeter or in dynes per centimeter. 

As we shall see in the next section, it is identical with the constant Sin 

Eas. [214] to [217]. The value of « depends upon the purity of the 
liquid in the surface, upon the temperature, upon the age of the 

surface, and upon the gas with which the surface is in contact. 

Experiment shows that the surface tension almost invariably decreases 
with rise in temperature; although this is to be expected, since a rise of 
temperature corresponds to a pushing apart of the molecules, clear conclu- 

sions as to its exact meaning in terms of molecules have not yet been reached. 

At the critical temperature i., where a liquid and its vapor become 

identical, the surface tension at the interface should diminish to zero. The 
following formula for the coefficient of surface tension at temperature ¢° C 
is found to hold well : \n 

0; — Oo (1 _ r) ’ 

where go is the value of ¢ at 0° C and 7 is a constant which varies slightly 
from liquid to liquid but has a mean value of about 1.2. The surface ten- 
sion depends only slightly on the nature of the gas above the surface. A 

liquid, of course, is always in contact with its own vapor or the gas in which 
it is immersed, so that all surface tensions are in reality interfacial tensions. 
Such interfacial tensions exist also at the interface of two liquids. 

167. Relation between Surface Tension and the Molecular Pressure 

under a Curved Surface. As an illustration of how ‘‘surface-tension” 

problems may be solved simply from a knowledge of the magnitude o 

of the work necessary to form one new unit area of surface, let us 

derive Eq. [214] from such considerations instead of by the very 
difficult mathematical method employed by LapLace (Sec: 160). 
The pressure under a convex liquid surface must be greater than that 

under one which is plane simply because the displacement of a curved 
  

1 The student should perhaps be warned that the coefficient of surface tension ¢ 

is not equal to the total surface energy € per unit area. Since the surface tension 

decreases with rising temperature, a liquid ‘film must cool on extension: hence in the 

isothermal extension represented in Fig. 164 a quantity of heat g per unit area was 

absorbed from the surroundings. The total energy e of formation of unit surface is 

therefore o +, and hence ¢=«—~g. The quantity ¢—g is what is known as the 

free energy per unit area. It can be shown by a thermodynamic argument to equal 
€+ T (dc /dT), where T is the absolute temperature.
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surface parallel to itself and toward the convex 
side results in an increase in area, and the work 

involved in this increase must be done by the 
pressure difference which moves the surface. 

Let ABCD, Fig. 166, be a small rectangular 
element of the surface and let it be displaced 

parallel to itself a small distance ds into the 

position A’B’C’D’. Let the normals to the sur- 
face at A and B meet at 0, and the normals to 

the surface at B and C meet at Oz. Denote the 
radius of curvature of the arc AB by R; and 

that of BC by Ro. Draw BE parallel to AA’, Fic. 166. Work done 
The increase in length of the arc AB is therefore ™ dsplacing oe 

iqui surtace 

EB’ =ds- Z EBB'=ds- 2 AO;B=ds- AB/R. 

Similarly, the increase in length of the arc BC is ds- BC/Rz. The in- 

crease in area of the element of surface after the displacement is 
therefore 

  

(4 448, as) (zc +B, as) — ABCD, 
Ry Ro 

or, if second-order terms be neglected, 

1 1 
ABCD .- ase + rs) . 

If o be the coefficient of surface tension, the work done in bringing 
about this increase in area is 1 

1 
ao- ABCD: as + ia) 

and this must equal the work done by the pressure difference P,’ 

under the curved surface. This work is the pressure difference 

multiplied by the change in volume, or P,’ - ds- ABCD. Hence 

1 1 
7 — — P/= af zt in) [218] 

If this equation is compared with Eq. [214], it will be seen that the 
capillary constant S is simply the coefficient of surface tension o. 

Instead of using the foregoing energy method, Eq. [218] could 

have been derived also by treating the surface tension as a hypo- 
thetical contractile force acting in all directions parallel to the surface 
and finding the normal component of this force. That this is legitimate 
was shown in Sec. 165. Consider an infinitely small rectangular ele- 
ment of a convex surface bounded by the arcs As, and Ase, Fig. 167. 

Let these arcs correspond to the two principal radii of curvature R, 
and Re. If the coefficient of surface tension of the liquid composing the 
surface be o, then the force that acts on each of the arcs As; iso - Asy.
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These forces are, of course, tangential to the 

surface and perpendicular to the arcs. Simi- 

larly, the force that acts on each of the arcs 
Ase iso - Asg. Since the surface is curved, all 

four of these forces have small components in 
the direction of the normal ON, and the pres- 
sure P,/ beneath the element is evidently the 
sum of these normal components divided 

by the area As; - Asz of the element. Now 
the component of o- As; parallel to ON is B, 167. A convex sur 
a - As; cos 0 =a - As; sin ¢. But in the limit, face element 
sin @ = Ase/2 Rz. Hence the sum of the ner- 
mal components of the two forces o- As; isa-As;-Asz2/Re. Simi- 

larly, the sum of the normal components of the two forces ¢- Asz is 
o- Asa: As;/R,. Hence the pressure P,’ due to the curvature is 

  

g- As As: , ¢- Asi - Ase 

ee Ry Re _ 1 l s 

Pie Ag alg +B) 
which is Eq. [218]. This demonstrates the usefulness of the notion 
of surface tension; although it is only a mathematical fiction, it 

enables us to deal with surface effects without making explicit refer- 

ence to the more fundamental concept of molecular attractions upon 
which the phenomena in reality depend. 

EXaMp_e. Show that the pressure beneath a convex spherical film, such 

as a soap film, is given by 

p=, [219] 

where R is the radius of curvature of the film. 

Eq. [219] gives the amount by which the air pressure within a. 
spherical soap bubble must exceed the outside pressure in order to 
counteract the force due to the surface tension of the soap film. If 
the spherical bubble has only one surface, as in the case of a bubble 

of steam in water, the pressure within needed to counteract surface 

tension evidently is 2 a/R. 
168. Summary of Methods of Dealing with Surface-Tension Problems, 

Surface-tension problems can usually be. solved by any one of the 
three methods which have been discussed, for they have been shown 

to be mathematically equivalent. These methods are: (a) the 
classical method ! of LapLacr, Gauss, and Porsson (Sec. 160); this 
  

1Excellent reviews of the classical theories are given in Maxwell’s article on 

“Capillary Action” in the Encyclopaedia Britannica, ed. 9 [reprinted in The Scientific
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method is highly difficult mathematically and, as it is based on 

the assumption of infinite subdivisibility of the liquid, gives no 
information regarding the properties of the individual molecules: 
(b) the energy method, which considers simply the work per unit 
area o done against intermolecular attractions in forming new sur- 

faces; this is a simple and powerful method and gives much infor- 

mation regarding the nature of molecules and molecular forces; 

(c) the surface-tension method, founded by Younc, which considers ¢ 
as a hypothetical tension acting in all directions parallel to the sur- 
face; this method is exceedingly useful as a mathematical device, 
but, taken alone, it can never tell us anything about the mechanisms 
that exist in a liquid surface. 

o 

Fluids in Motion 

Because of the complexity of the laws of moving fluids,! we shall 
make no attempt to deal with any except the simplest cases of steady 
flow. The motion of a fluid is said to be steady if the velocity of flow at 
any point is constant in magnitude and direction. It is to be noticed 
that the term steady flow does not imply that the velocity of any 
particular particle of the fluid is necessarily constant but only that 
the velocity at a particular point remains constant. At very low 
speeds the motion is usually steady, but as the speed is increased 

the velocity at any given point begins to vary in an irregular manner. 

The motion is then said to be turbulent. For any given case there is 

some definite crztzcal speed at which the change from the one type 
of motion to the other takes place. In the case of steady flow, the 
particles of the fluid move along definite stream lines which remain 

fixed in position. Any narrow tubular portion of the fluid that is 

bounded by stream lines is called a tube of flow. It is evident that 
such a tube has the property that any particle of fluid that is ina 

given tube remains in it during the whole course of the flow. 

169. Bernoulli’s Theorem for an Incompressible Nonviscous Liquid in 
Steady Flow. Let AjAo, Fig. 168, be a section of a tube of flow in 
  

Papers of James Clerk Maxwell (Cambridge University Press, 1890), Vol. II, pp. 541- 

591, and revised by LORD RAYLEIGH in the Encyclopaedia Britannica, ed. 11] and in 

Kapillaritét und Oberflachenspannung, by G. Bakker [Vol. VI of the Wien-Harms 
Handbuch der Experimentalphysik (Leipzig, 1928)]. 

3A classical treatise in this field is H. Lamb, Hydrodynamics. For a comprehensive 

elementary discussion, see *E. Edser, General Physics for Students (Macmillan), 

Chaps. 11-13. A more advanced treatment will be found in A. G. Webster, The 

Dynamics of Particles and of Rigid, Elastic, and Fluid Bodies (Teubner, 1904).
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an incompressible liquid that is flowing steadily without friction in 
a pipe of varying cross section. When a volume V flows in through 
Az, an equal volume flows out through Az. 
The liquid below A; acts like a piston in 

forcing the volume V of the liquid across 
the boundary Aj, and if the pressure at this 
point be P;, the work done on the liquid is 
PiV. In the same time the liquid between 

A; and Az does work PeV in forcing liquid 
out across As. The net amount of work 

done on the liquid in A,Az is (Pi — P2)V, 
and, since the friction is assumed to be neg- 

ligibly small, all of this work must appear 

in the form of increased kinetic and poten- 

tial energy. Let the heights of A; and Ag 
above some arbitrarily chosen level be 2, and 
he and let the speeds of the liquid at these points be 2; and #2., The 
increase in the potential energy between A; and Ag is thenVpg(hzs— h,) 

and the increase in the kinetic energy is $Vp (v2? — 2,2). Hence 

(P1 — P2)V = Vpg(he — hn) + 4 Vo @2? — 017), 

or Pi -+ pghy +4 poy? = Po+ pghe + ¢ pve? = constant. [220] 

  

Fic. 168. Section of a tube 
of flow 

This is the expression at which DANIEL BERNOULLI arrived in his 
Hydrodynamica (1738). Its physical meaning is that, when an in- 

compressible liquid is in steady motion with- 
out friction along a tube of flow, the energy 
required to force a unit mass of the liquid 
into one end of the tube plus the potential 
and kinetic energy of the unit mass is a 
constant. This constant is of course not the 
same for different stream lines. ; j 

Asanapplicationof BERNOULLI’stheorem, Fs. 169. The pressure in 
. a horizontal pipe is least 

consider the steady flow of water through a where the speed of the 
horizontal pipe containing a constriction, fluid: is greatest 

such as is shown in Fig. 169. If the pipe 

is of small cross section, the differences in level of the liquid at 

various points may be neglected, and Eg. [220] becomes 

Py+ 4 pr? = Pe+ $ pte. [221] 

If the pipe is entirely filled with the liquid, the speed v2 at the con- 

striction is greater than the speed 2; in the larger part of the pipe. 

Hence the pressure P2 inside the constriction is less than that in the 

larger part. This is exactly what one would expect if it be remem- 
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Photograph courtesy of the Swiss Federal Railroads 

Basex, beautifully located on the Rhine, is famous in the history of science as the 

birthplace and home of most of the members of the illustrious Bernouii family and 
of Lronsarp Eurer. Four of the most famous of the Bernourtis — Jacquzs, two of 
the Jeans, and Dawret, — were professors at the University of Basel, which was 

founded in 1460 and is the oldest university in Switzerland.
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of Dantet Bernouiur’s HYDRODYNAMICA (1738) 

Tue array of hydraulic machines which this vignette depicts shows how extensive 
was the practical hydromechanical knowledge of its time.
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bered that a particle entering the constriction is accelerated and 
that this can be accomplished only if the force behind the particle 

exceeds that in front of it. This principle is utilized in the aspirator 

(Fig. 170) and also in the Venturi meter for 
gauging the flow of water in pipes. 

BERNOULLI’S theorem does not apply to 

gases, because gases are highly compres- 

sible; nevertheless, the theorem does pre- 

dict qualitatively many effects that are Fic. 170. The aspirator is a 
observed in a flowing gas. The ordinary form of air pump. Water from 
atomizer, the forced draft of a locomotive, * faucet 1s forced through the 

: . constriction while the side 
and the curving of a baseball furnish tube is connected to the vessel 
familiar illustrations. which is to be exhausted 

170. Motion of a Viscous Fluid. If the 
effects of viscosity and of other friction in the pipe are very marked, 

a straightforward application of BERNOULLI’s theorem would lead to 

erroneous conclusions. Thus, if a viscous incompressible liquid is 

flowing steadily in a horizontal pipe of uniform cross section, there is 

a dissipation of energy throughout the pipe because of the friction 

and, since the speed in this case must be the same at all points, 
the decrease in mechanical energy must take place at the expense 
of the pressure. Asa result, there is a fall of pressure along the pipe. 

The student should at this time review the basic ideas on viscos-’ 
ity that appear in Sec. 121. In Sec. 122 the kinetic explanation of 
viscosity in gases is given, and in Exp. XB the theory of the steady 

flow of a viscous fluid through a capillary tube is develoned. Measur- 

ing the flow through a capillary tube was the first method used for 
determining coefficients of viscosity and is still the most generally em- 
ployed. In the case of a liquid, the coefficient of viscosity may also 

be found by observing the speed with which a small sphere of known 

diameter and mass falls in it. The theory of this method was first 

worked out by GEORGE GABRIEL STOKES,! who showed that a small 
sphere falling in a viscous medium soon attains a constant speed. -This 
is true of raindrops. Finally, the coefficient of viscosity of a liquid can 
be found by measuring the torque required to rotate one cylinder in- 
side another with constant speed, the space between being filled with 

the liquid (Fig. 174, p. 323).2. A knowledge of the viscous properties 

of various fluids obviously is of importance in such practical problems 
as the determination of the value of oils for lubricating purposes. 

  

  
1 Transactions of the Cambridge Philosophical Society 9, 8 (1850), Part I, Sec. IV; 

Mathematical and Physical Papers (Cambridge University Press, 1922), Vol. ITI, p. 55. 

2 For a comprehensive consideration of these various methods, see G. Barr, A 

Monograph of Viscometry (Oxford University Press, 1931).
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EXPERIMENT XIIIA. DENSITY OF LIQUIDS 

The object is to determine the densities of several liquids with a 
Mohr-Westphal balance and with a constant-weight hydrometer. 

Part I. The Mohr-Westphal Balance.! The density of a liquid can 

be determined rapidly and at the same time accurately by means 
of a Mohr-Westphal balance (Fig. 152). One arm of the beam of 

this balance is graduated decimally and supports a glass plummet B. 
The other arm is so counterpoised that the beam will balance when 

the plummet is in air. If the plummet be immersed in a liquid, it 

suffers an apparent loss of weight (Sec. 154) and suitable riders must 

be hung from the various notches on the beam in order to restore 

the balance. 
The absolute weights of the riders need not be known if only their 

relative weights are 1.0, 0.1, 0.01, and 0.001. For suppose that to 
balance the beam when the plummet is immersed in water of density 

p1, riders must be placed as indicated in Fig. 152. The apparent loss 
of weight AW, of the plummet, expressed in terms of the weight 1.0, 

is then evidently 1.1044. Suppose now that when the water is re- 

placed by another liquid of the same temperature and of density po, 
the beam balances when rider 1.0 is in notch 9, 0.1 in notch 2, 0.01 in 

notch 4, and 0.001 in notch 9. In this case the apparent loss of weight 

AW, is 0.9249. Hence, from Eq. [210], 

_ 0.9249 
P2= 77044 7! 

The density of water at any temperature p; can be obtained from 

tables,? and hence p2 can be calculated no matter what happens to 
be the weight of rider 1.0. In practice the plummet is so made that 

its loss of weight AW, when immersed in water at 15° C is equal to 
the weight of the rider 1.0; hence, if no high degree of accuracy is 

desired, the reading of the balance when the plummet is immersed 

in any liquid gives at once the density of that liquid. 

  

+The Mohr-Westphal balance can be used to determine the densities of the 

manometer oil used in Exp. XIIa and the alcohol used in Exp. XIIIs. It can also 

be employed to find the density of liquid air, thus enabling the student to calculate 

the diameter of air molecules and the AVOGADRO number. Observe the following pre- 

cautions with liquid air: @¢. Handle the fragile Dewar flask with care so that the 

liquid does not splash; protect your eyes. b. Immerse objects in the liquid air very 

slowly, and do not attempt to make observations until the air has ceased to boil. 

c. Do not close the neck of the flask with a stopper. d. Do not allow the liquid air to 
saturate any organic material. 

2 Appendix 13, Table B.
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In using the balance, first turn the base so that the leveling screw 
S les in the vertical plane which includes the beam. Clean the plum- 
met B and hang it from the hook ¢ by means of a single strand of fine 
wire. With the plummet in air, adjust the screw S and, if necessary, 
the balancing weight at the left end of the beam until the two points 

at a are accurately together. Immerse the plummet in distilled water, 
remove with a glass rod any air bubbles that cling to its walls, and 
then place on the beam such riders as are necessary to bring the 
points together again. Read the temperature of the liquid. Clean 
the plummet and take similar readings with it immersed in the liquid 
of unknown density. 

1, What kind of correction must be applied if the temperatures of the 
two liquids are not the same? 

Part I. The Constant-Weight Hydrometer. Take the readings of 
a direct-reading constant-weight hydrometer (Fig. 171) when it is 
floated in water and then in each of the other liquids. 
The theory of this instrument is too simple to require 

explanation. The directly calibrated scale should be 
read by looking through the liquid, with the eye 
placed as little as possible beneath the level of the 
surface. If the instrument, does not read the correct 
density of distilled water at the observed, tempera- 
ture, a correction amounting to the difference must be 
applied to its indication of the density of another 
liquid. 

  

2. When a hydrometer having a stem 1 cm in diame- 

ter is floated in water, with what force due to the sur- fig. 171. The 
face tension of the water is it pulled downward? How constant-weight 
much deeper does it sink in the water than it would ina hydrometer is a 
liquid of the same density that does not riseon the stem? convenient in- 

8. The specific gravity of a substance is defined as strument for finde 
the ratio of the mass of a certain volume of the sub- rarity ofatiquid 
stance to the mass of a like volume of some standard when precision 

substance. In the case of solids or liquids, the standard ;, unnecessary 
usually chosen is water at 4°C. Why is the Mohr- 

Westphal balance sometimes classed as a specific-gravity balance? 

4, How does specific gravity differ from density ? What are the specific 
gravities of the liquids which you tested? 

5. If liquid air was one of the substances tested in this experiment, 
calculate the diameter of the molecules of air and calculate the AVOGADRO 
number. Make a summary of all the experimental data and calculated 
molecular constants for air that you have obtained in Exps. VIIIJa, Xz, 
and the present experiment.
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EXPERIMENT XIlIs. COEFFICIENT OF SURFACE 
TENSION 

The object is to determine by two different methods the coefficients 
of surface tension for distilled water and for alcohol, at room tem- 

perature. Since the presence of the least trace of oil or other con- 
tamination upon the surface of a liquid may change completely the 

value of the surface tension, it is important to clean thoroughly all 

parts of the‘apparatus which are to be brought into contact with the 
liquid and thereafter not to touch these parts with the hands. The 
beakers and other glassware should be cleaned by washing them first 
with soap and water, then with an aqueous solution of potassium 

hydroxide, and finally with distilled water. 
Part I. The Capillary-Tube Method. One method of measuring the 

capillary constant S, and hence the coefficient of surface tension g, is 
to observe the rise of the liquid in a glass capillary tube (Sec. 162). 

In the case of liquids like pure water and alcohol in contact with clean 
glass, the angle of contact is zero and the cosine term in Eq. [217] 

becomes unity. 

a. Prepare a number of fresh capillary tubes by heating to softness 
bits of clean glass tubing in a Bunsen flame, and drawing them down 

to diameters of from 0.1 to 0.6mm. On account of the difficulty of 
cleaning tubes of small bore, .it is best 

to employ tubes that have never been 
soiled. 

b. Select two tubes which appear to 
be of circular cross section and fasten 
them to a clean mirror scale by means 
of rubber bands, allowing their ends to 

project beyond the lower end of the 
scale, as in Fig. 172. Take the reading 

hg of the fixed point O on the scale by 

placing the eye so that the image of 0 

comes into coincidence with 0 itself. 
c. Immerse the lower end of the scale, ose as 

with its attached tubes, in distilled water . 
: . : Fic. 172. The capillary-tube 

contained in a clean beaker, and raise and hod of E f 
. . metho 3 measuring surface 

lower it several times so as to wet thor- tension 
oughly the capillaries above the points , : 
to which the water rises. Clamp the scale in a vertical position and 

then, preferably by means of a rack-and-pinion adjustment, raise the 

clamp until the pointer O comes exactly into contact, from below, 

with the liquid surface. Slip each capillary tube up a trifle (Why ?), 

  

  
    

  

 



Exp. XIIIB] The Mechanics of Fluids 321 

and then take the scale-reading #, of the bottom of the meniscus in 

each tube. Obviously the height of rise # is given by Ay — fp. 

d. Take the temperature of the liquid. 

e. On each tube mark with a bit of wax the point to which the 
liquid rose. Remove the tube from the scale, scratch it with a sharp 
file at this point, and break it off as squarely as possible. Attach it 

upright to the side of a block of wood with soft wax and measure the 
diameter of the bore at the broken end by means of a micrometer 

microscope. Repeat this measurement several times, in each case 
with a different diameter. 

f. Repeat operations b to e with two other tubes and with alcohol 
as the liquid. 

g- Employ Eq. [217] to calculate the coefficients of surface tension 
o (= S) for water and for alcohol at room temperature. The density 
of the water at any temperature can be obtained from tables.2 If 
the density of the alcohol is not known, it can be determined by 

means of a Mohr-Westphal balance (Exp. XIIIA). 

1. How do you explain the differences between the results obtained 
with different tubes? 

2. How high would the alcohol tested rise in a tube 0.12 mm in 
diameter ? 

3. Would corrections for the heights of the meniscuses improve your 

values of the surface tensions? 

Part II. A Direct Method. The most direct method of determining 
surface tension obviously is to measure the force necessary to support 

a film of liquid of known length. For example, if a straight wire of 

length / be carefully lifted horizontally from the surface of a liquid, 

it will draw a film of liquid with it. If the force f which is necessary 
to balance the force exerted by the stretched film be measured with 

a delicate spring balance, then, in view of Sec. 165, the coefficient of 

surface tension is given by f 

o=37 [222] 

a. Clean the platinum wire frame a, Fig. 173, by holding it with 

a pair of tweezers in a Bunsen flame until it is red-hot. Without 
touching the frame with the fingers, hang it on the delicate helical 

spring s. 
b. Raise the platform 6 carrying the beaker of distilled water 

until the frame is immersed. Then slowly lower the platform by 
  

1See Appendix 9, The Micrometer Microscope. 

2 Appendix 13, Table B.
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means of the rack and pinion 7. At the same time 
lower the glass mirror which slides on the scale so 

that the scratch on the mirror is always left directly 
back of the flat disk which marks the base of the 
spiral spring. 

Lower the platform until the vertical film of water 

just breaks, and record the scale-reading at which. 

the rupture occurs. Be sure to place the eye so that 
the image of the disk in the mirror is directly back 
of the disk itself. (Why ?) 

c. Repeat the foregoing operations until a num- 

ber of consistent readings have been obtained. If 

it appears that the liquid surface has become con- 
taminated in spite of all precautions, stir the liquid 
vigorously after each observation by means of a Fic. 173. Appa 
clean glass rod. ratus for a direct 

' d. Take the temperature of the liquid. a ice tension 

e. Take the reading of the disk when the frame is 
out of the liquid and it and the spring are hanging freely. If this 

reading be subtracted from the readings taken with the film, the 
difference obviously is a measure of the total force exerted on the 

wire by the two surfaces of the film. 
f. Repeat operations a to e with alcohol as the liquid. 
g. Measure the length / of the wire frame. 

  

4, Will an ordinary ruler suffice for the determination of J, or should 

a vernier caliper be employed? 

h. Observe the elongation of the spring produced by a known 
weight of the same order of magnitude as the force exerted by the 
film. 

i. On the assumption that the elongation of a spiral spring is 
proportional to the stretching force, calculate the total force f ex- 
erted by each of the liquid films. Then calculate the coefficient of 
surface tension for each liquid. 

5. Do the results of this experiment confirm the conclusion arrived at 
theoretically (Sec. 167), that the capillary constant S in Eq. [214] is 

simply the coefficient of surface tension ¢? 

6. Why is it not necessary to take into account the adhesion between 

the platinum wire and the liquid? 

7. Explain how the direct method of measuring surface tension could 
be employed to prove experimentally that the coefficient of surface 

tension is independent of the thickness of the film and also of its length.
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EXPERIMENT XIIIc. COEFFICIENT OF VISCOSITY OF 
A LIQUID 

The object’ is to employ the method of coaxial cylinders to de- 

termine the coefficient of viscosity of lubricating oil at room tem- 
perature and to study the variation 
of viscosity with temperature. The 
viscometer, shown in Fig. 174, is simi- 

lar to the one designed by G. F. C. 
SEARLE ! for the measurement of the 
coefficients of viscosity of very viscous 

liquids. In the theory that follows it 
will be shown that a constant torque 
applied to the movable inner cylinder 

will cause it to rotate with a speed 

that depends only on the viscosity of 
the liquid contained in the space be- 
tween the cylinders. 

Suppose that the inner and outer 

cylinders (Fig. 175) have radii R,; and 
Ro, respectively, and that the length 

of the inner cylinder covered by the 
liquid is /. Let the inner cylinder be 
rotated with a constant angular speed 

a. If it be assumed that the liquid wets the walls of the cylinders, 
so that there is no slip between the walls and the liquid, and if it 
be assumed that there is no abrupt change of 

speed between contiguous particles of the liquid, 

then it follows that successive cylindrical layers 
of the liquid must be rotating about the com- 
mon axis of the cylinders with angular speeds 

w which fall off from w, at the inner cylinder 

to zero at the outer cylinder. Consider an im- 

aginary cylinder of radius 7 described about the Fic. 175, Transverse 
axis. The speed of the particles on the inner section of the two co- 
surface of this cylinder will be greater than that axial cylinders. The 

. : space between them is 
of the particles on the outer side. The ve- ied with the liquid 
locity gradient (Sec. 121) normal to this surface, under test 
namely — du/dr, evidently will be the same at 
every point of it, and hence the dragging torque exerted on the 

  

  

Fic. 174. Coaxial-cylinder type 
of viscometer 

  

1 Proceedings of the Cambridge Philosophical Society 16, 600 (1912); also G. F. C. 

Searle, Experimental Physics (Cambridge University Press, 1934), pp. 250-254.
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fluid inside this imaginary cylinder by the slower-moving liquid 

outside of it is 
du —f.pan. 27{— #2). L=f-r=y-2 ar? ( i) [223] 

This equation is derived directly from Eq. [165], Chap. 10, by sup- 

posing that the cylindrical surface is made up of a large number of 

plane strips. 

Now u, the linear speed of the particles at a distance 7 from the 

axis, is related to the angular speed w by “ [88], Chap. 7, and hence 

um _¢ a TO= =w+r ae, [224] 

by the rule for the differentiation of the product of two functions. 

The first term, w, in the right-hand member of this equation ex- 

presses the difference in the linear speeds of two adjacent particles 

on the radius 7 which are moving with the same angular speed w; 

since there is no angular displacement of one of these particles rela- 

tive to the other, no shearing stress is involved in this term. The 

second term, 7 dw/dr, does, however, involve a shearing stress, for it 

expresses a difference in the linear speeds of two particles that are 

moving with different angular speeds. In view of these considera- 
tions, Eq. [223] may be written in the form 

dw —_7- By oe, L 4-2 rl dr [225] 

Since the fluid is in a steady state of motion, the torque Z must also 

be the torque applied to the inner cylinder in order to keep it in 

steady rotation. 

Upon rearranging the quantities in Eq. [225] and integrating, 

one has Rn 6 

Lf Ba—n- 2nlf deo 
R, 7 oy 

Performance of the indicated integration and solution for 7 gives 

Ror— Ri? L 

“4 TIRYPRo? OL [226] 

As indicated in Fig. 174, the torque L is produced by means of a 

weight attached to a thread wound around a drum on the inner 
cylinder. If the mass of the weight is m and the radius of the drum 
is Rs, the torque on the cylinder when the weight descends with con- 
stant speed is mgR3. The constant speed » of the weight is given by
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oik3. By substituting for L and w; in Eq. [226], one obtains finally 

_— (Ro? — Ri*)gRs?_ m 
a= 4 WIR{?Re? . Y [227] 

in which all the quantities except m, », and J remain constant through- 
out the experiment. 

The End Correction. From Eq. [227] it appears that the mass m 

needed to produce a constant speed » varies directly with the length 

1. Hence, if the experiment be performed with different lengths / 
of the cylinder covered by the fluid, and if the observed values of 
the mass m required to produce a given speed be plotted as a func- 

tion of /, the result will be a straight line. This straight line will not 

pass through the origin, however, but will intersect the Laxis on the 

negative side of the origin, which means that force would be required 

to produce the constant speed » even if the cylinder were of zero 

length. This is because there is a torque exerted by the viscous fluid 
on the bottom surface of the cylinder, a fact which was not taken into 

account in deriving Eq. [227]. This end effect may be expressed as a 
correction to the length /; that is, if the Lintercept of the plotted 
curve is 1’, then /+-/’ is the corrected length to be used in Eq. [227]. 
The quantity /-+ 1’ evidently gives the length of a cylinder without 
end area equivalent to the actual cylinder. 

Part I. Coefficient of Viscosity at Room Temperature. Experi- 

mental Procedure. a. Mount the apparatus on the edge of a platform 
so that it is somewhat higher than the table. Place absorbent paper 
under the base of the apparatus so as to catch any spilled oil. If 

the dimensions of the apparatus are not known, carefully remove the 
inner cylinder and measure its length and also the diameters of the 
two cylinders and of the drum. Be careful not to injure the bearing 
pivots. Fill the apparatus to the top of the inner cylinder with the 
lubricating oil, castor oil, or other liquid to be tested. Be very careful 
to prevent oil from getting on the outside of the apparatus. 

b. Attach a 5-g mass to the end of a silk fishline and wind the line 
on the drum with as little overlapping as possible. Select a point 

about 10cm below the position of the mass m, and as the weight 
descends with constant speed measure the time required for it to 
traverse the known distance from this point to the floor. Make at 
least two trials: Make similar observations with masses of 10, 20, 

30, etc., grams used as the driving weights. 
c. Remove a little more than half of the liquid from the apparatus. 

Measure accurately the length 7 of the inner cylinder that is now 

covered by the liquid. Then repeat , using as the driving weights 
masses of 2, 5, 10, 15, etc. grams.
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d. Note the temperature of the oil. 
Calculations. From the data obtained in 6, plot a curve with values 

of m as abscissas and of v as ordinates. The reciprocal of the slope of 
this curve gives an average value of m/v. On the same sheet plot 

a second curve from the data obtained in c. Then choose some value 
of v and draw a horizontal line; the intersections of this line with the 

two curves evidently determine the masses necessary to produce 

the chosen speed » for each length of cylinder. 
On a separate sheet of graph paper plot these two masses as ordi- 

nates and the corresponding lengths of the cylinder as abscissas. 
The J/-intercept of the resulting curve gives the correction J’ to be 

added to the actual length / of the cylinder. 
By making use of this corrected value of / and the average value 

of m/v obtained from the first curve, calculate the coefficient of 
viscosity. 

1. Do the first two curves which you plotted pass through the origin? 
What information does this give with regard to the friction in the 
bearings ? 

2. Does Eq. [227] apply to gases as well as to liquids? Give reasons 
for your answer. 

8. What would have been the percentage error in the final result if 
you had failed to make the end correction? 

4, The rotating cylinder of the viscometer used in this experiment is 
so designed that its average density is approximately the same as that of 
the oil. What is the advantage? 

Part II. Variation of the Coefficient of Viscosity with Temperature. 

The outer cylinder of the viscometer has built into it an electrical 
heating coil which operates from a 110-volt source.? Fill the appa- 
ratus with oil and heat it to about 90°C. Take temperatures im- 

mediately before and after each run with a thermometer having a 

stem thin enough to permit its insertion in the narrow space between 

the cylinders. Stir the oil and, when its temperature has become 
steady, remove the thermometer and make the run with a 10-& mass 

as the driving weight. 
Repeat at progressively lower temperatures and thus obtain the 

necessary data for a viscosity-temperature curve. 

5. How does the coefficient of viscosity for the liquid tested vary 
with temperature? 
  

1It may prove to be more convenient to defer making these calculations until 

the experimental data required in Part II have been obtained. 

2 If the viscometer is not equipped with a heating coil, heat the oil by playing a 

Bunsen burner about the lower part of the cylinder.
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QUESTION SUMMARY 

1. State ARCHIMEDES’ principle. Is it an empirical principle or can a 
rigorous theoretical proof of it be given? What are its practical and its 
theoretical importance? 

2. State four fundamental! principles of fluids at rest under gravity. 

3. Explain the rise of liquids in a capillary tube. Discuss fully. Cal- 
culate the height to which a liquid will rise in a capillary tube of radius 7. 

4, Describe some other phenomena in liquids that are due to the same 
cause as the rise in capillary tubes and show how they may be used to deter- 

mine the capillary constant. 

5. Explain why one would not expect the stretching of a liquid film to be 
described by HooKE’s law. What sort of law does describe it? Define the 
coefficient of surface tension of a liquid. In what units is it measured? Can 
it be expressed in any other kind of units? 

6. In what three ways is the capillary constant defined? Show that the 
three definitions are equivalent. 

7. Distinguish between sieady and turbulent flow in fluids. State and 
prove BERNOULLI’s theorem. What is its practical importance? Discuss 
the implications of the various assumptions involved in its proof. 

° 

PROBLEMS 

1. It is said that ARCHIMEDES discovered his principle while seeking to 
detect a suspected fraud in the construction of a crown made for Hiero of 
Syracuse. The crown was thought to have been made from an alloy of gold 
and silver instead of from pure gold. If it weighed 1000 gwt in air and 
940 gwt in water, how much gold and how much silver did it contain? As- 

sume that the volume of the alloy was the combined volumes of the 
components. Ans. 811 g of gold; 189 g of silver. 

2. The gas bags of a certain large airship have a total volume of 
3.5 x 106 ft?. At sea level, under standard conditions, 1.0 x 10° ft? of air 

weighs approximately 80 Ibwt, and the same volumes of the impure hy- 
drogen and helium used in airships weigh approximately 10 lbwt and 15 Ibwt 
respectively. (a) What is the total lift of this airship when it is filled with 
hydrogen? (6) How much larger would the gas bags have to be if filled 
with helium in order to lift the same total load? 

Ans. (a) 2.5 x 105 lbwt; (0) 8 percent. 

3. A cylinder of cork is floating upright in water. (a) If the air above 
the water be removed, will the cylinder rise or sink in the liquid? (6) Derive 
an expression for the ratio of the lengths of the submerged portions. 

4, An uncalibrated constant-weight hydrometer (Fig. 171) is immersed 

successively in two liquids of densities 1.0 and 1.1 g - cm~, the two points
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of immersion are marked accurately on the stem, and the intervening stem 

is then divided into ten equal parts. Assuming that the stem is accurately 
cylindrical, state whether the instrument so calibrated 

will give correct readings in liquids of intermediate den- 

sities. Explain fully. 

5. One arm of an inverted Y-tube (Fig. 176) is placed 
in a liquid of unknown density, while the other arm is 
placed in water. A portion of the air is pumped from 

the tube until the unknown liquid stands at a level of 
33.1 cm above that in its open vessel, and the water 

stands at a level of 30.0cm above that in the vessel 
of water. The temperature is 20.0°C. (a) Find the un- 

known density of the liquid. (b) Is it possible to find 
the pressure in the tube above the liquids without 
knowing the pressure of the outside atmosphere? 

Ans. (a) 0.905 g-cm73, 

6. Explain why a needle or other small body which 
is much more dense than water may yet float upon water Fic. 176. Density 

provided the angle of contact @ is finite (Fig. 177). of a liquid by the 

7. In Fig. 178 a drop of water placed in the conical method of balanced 

tube is observed to travel rapidly toward the small : 

end, whereas a drop of mercury travels toward the large end; a bubble 
of air in a conical tube filled otherwise with water moves toward the large 
end. Explain. 

8. (a) Deduce Eq. [217] from the consid- 

eration that, in a capillary tube in which the = 
liquid is elevated, the total upward force is 
the vertical component of the surface tension 
acting upon a line whose length is the cir- 

cumference of the tube, while the balancing downward force is the weight 
of the liquid raised. (b) How high will water rise in pores that are 0.001 mm 

    

Fic. 177. Heavy body floating 
on water 

in diameter ? Ans. (b) 3 X 108 cm. 

9. Given a liquid that wets glass, prove a Ss 
by two different-methods that its height of a i 
rise between two parallel glass plates is the Y 

same as that for a cylindrical tube provided = 
that the distance between the plates equals , e 
the radius of the tube. Fic. 178. Motion of drops of 

liquids and air bubbles in con- 
ical tubes. a, drop of water; 

b, drop of mercury; ¢, air bub- 
ble in water 

10. The gifted physicist JoszpH HENRY 
(1797-1878) suggested the determination of 
the capillary constant by attaching a manome- 

ter toa soap bubble, thus measuring the pres- 

sure existing in the bubble. Assuming the coefficient of surface tension of a 
soap solution to be 70 dyne - cm, find the difference in levels in the arms of 

a water manometer attached to a bubble 7 cm in diameter. Ans. 0.8 mm.-
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11. What, approximately, would be the boiling point of water if so much 
of the air had been driven out of the water by heating that the bubbles 
forming in the water were only 10-4 mm in radius? Assume that the coef- 
ficient of surface tension is independent of temperature and has a value of 
75 dyne-cm~!. Is this a fair assumption? What is the value of the co- 
efficient of surface tension of water at this temperature if the critical tem- 
perature is 374° C? Ans. 200°C... 

12. How much work must be done against molecular forces to blow a 
soap bubble 15 cm in diameter? Ans. 9.9 x 104 ergs. 

13. Neglecting loss of energy due to viscosity, show that the speed of 
efflux of a liquid into the atmosphere from an orifice ina large tank (Fig. 179) 
which is kept filled to a constant level by "the 

continuous addition of fresh liquid is » = V2 gh, 
where # is the depth of the orifice below the free 
surface of the liquid. This result was obtained by 
EVANGELISTA TORRICELLI ! in 1641. 

14. A vertical pipe 3.0 in. in diameter contains 
a constriction 0.50 in. in diameter. If the flow of Fic. 179. Liquid flow- 
the water is 0.050 ft® - sec~1and the pressure at a ing from an orifice in a 

  

  

point 4.0 ft above the constriction is 90 Ibwt - in.~2, tank 
what is the pressure in the constriction? Neglect 

friction. Ans. 83 lbwt - in.-2. 

15. In the Venturi water meter, water flows through a horizontal con- 
stricted tube, and the pressures at the wide and constricted sections are 

determined by means of gauges placed at these points (Fig. 169). Neglect- 
ing friction, show that V/t, the volume of water flowing in unit time, is 
given by v_ A 3 oh : 

NES As 

where A; and Ae are the cross-sectional areas of the wide and constricted 
sections, respectively, and A is the difference in pressure between these two 
points expressed in centimeters of water. Because viscosity has been neg- 
lected, this result will be in error by as much as 5 percent. 

  

1 See Bibliography.



CHAPTER FOURTEEN 

MOTION WITH VARYING ACCELERATION 

IVEN A pendulum composed of any number of weights,' if each of the weights be multiplied 

by the square of its distance from the axis of oscillation and if the sum of these products be 

divided by that obtained by multiplying the sum of the weights by the distance of the common 

center of gravity of all the weights from the same axis of oscillation, there results the length of 

a simple pendulum which is isochronous with the compound pendulum, or in other words the 

distance between the axis and the center of oscillation of the given compound pendulum. 

Translated from Huyczns’s Horologium 
Oscillatorivm, Part IV, Proposition V 

68 

In our study of linear acceleration, in Chapter 1, and of angular 
acceleration, in Chapter 7, we confined our attention for the most 

part to the very restricted though important cases of constant ac- 

celeration. In the present chapter we shall first discuss briefly a 

more general case of linear acceleration in which the velocity of a 
particle moving in a plane is changing with time in any way whatever, 
and then shall proceed to the study of sev- 
eral important cases of variable acceleration 

in which the motion is periodic in nature. 
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171. Motion in Any Curved Path in a 

Plane. When a particle P moves in any 
plane curve, its acceleration may be re- 

solved conveniently into two rectangular 

components (Sec. 39), one along the tangent and the other along the 
normal to the path. In Fig. 180 let + be a vector of unit length which 
is, at each instant, directed along the tangent in the sense in which 

the motion is described. Then, if » be the speed of the particle and 
if v be its velocity, we evidently may write 

V=0T. [228] 

From Sec. 18 we have, as the defining equation for linear acceleration 
at any instant ¢, Av_ dv 

a= kim At => x [229] 

Fic. 180. Motion of a par- 
ticle in a curved path 

which now may be written 

a= £ (or), [230] 
  

1 HuYGENS did not here distinguish between mass and weight. 

330
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This equation becomes, by the ordinary rule for the differentiation 
of a product, 

a= Be po. [231] 

Here, obviously, we have the total acceleration at any time ¢ expressed 
as the sum of two components.’ The first of these, which has the 
magnitude dv/dt, is in the direction of + and hence is the component 

of acceleration along the path; it is therefore referred to as the 

tangential acceleration. As for the remaining component, we shall 
proceed to show that it is along the normal to the path and is directed 

toward the center of curvature of the path; this component is ac- 
cordingly called the centripetal, or normal, acceleration. 

First we must interpret the differential coefficient dt /dt in Eq. [231]. 
Imagine the particle P to be moving along the curve in Fig. 180, and 
let t and t’ be the values which the unit vector + has at the beginning 

and end of the interval of time dt: then the vectors +, +’, and dr 

must make up a triangle, asshown. If d@ denotes the angle in radians 
through which the unit vector + turns in the time df, it is evident 
from the figure that dr is equal in magnitude to d@. Moreover, since 

dt is an infinitesimal time, d@ is also infinitesimal, and hence the vector 
dx is at right angles to the unit vector +. Hence, if we denote by n 
a vector of unit length drawn along the normal to the path toward 

its center of curvature C, we may write for our differential coefficient 

div d@ 
Ud = Ed n. [232] 

Returning to Eq. [231], we have then, for the fotal linear accelera- 
tion of a particle moving along any path, 

a= —Tttesn [233] 

Translated into words, this equation states } 
that the tangential acceleration is equal in r 
magnitude to the time-rate of change of the 

speed, and that the centripetal acceleration 

is equal in magnitude to the speed of the 

particle multiplied by the time-rate at which Fis. 181. Force applied 
its linear velocity is changing direction. It particle P tnoving . : 
1s important to note that dy/dt represents curved path 
only the time-rate of change of the speed and 
hence that it does not give the entire acceleration except in the 
special case when the direction of the velocity is constant, that is, 
when the motion of the particle is in a straight line. 

P T



HE clock shown in this plate is, in all of its essentials, identical with the 

pendulum clocks in use today (see any modern article on clocks, such as that 
in the Encyclopaedia Britannica). The last hundred and eighty years have seen only 
minor changes. Improved workmanship, however, has brought about a steady in- 

crease in accuracy, until the best modern Riefler clocks have been found to be in 
error by no more than 0.02 second at the end of a month’s run. 

Clocks with hands and trains of wheels driven by weights and regulated by a 
frictional or an inertial resistance were in existence long before the time of Huycens, 

but they were so unreliable that, for example, Gate, in his experiments on falling 

bodies used in preference the ancient water clock (see Sec. 1, p. 4). Later Gatirzo 

perceived the advantages of using pendulums to measure time, and it was at his sug- 
gestion that physicians adopted a simple pendulum of variable length as a “ pulse 
measurer.” Evidently what was needed for measuring extended times was a 
pendulum that would continue to swing and a means of counting the oscillations. 
Gatrteo left behind suggestions for such a device, but it was Huveens who was 
the first to realize it, and by so doing he raised the measurement of time to a new 

level of refinement. 

But in all of Huycens’s investigations the theoretical aspects of the problem 
always shared his interest with the practical; in fact ‘‘no man of science ever pre- 

served a more harmonious balance between all those sources by which scientific 
truth can be revealed.’ Thus his very practical study of pendulums and clock 
mechanisms — investigations which resulted in a lasting benefit to mankind — 

arose from his recognition of the clock as an important scientific instrument and led 
in turn to profound studies of the fundamental laws of dynamics.. 
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Huycens’s Pendulum Clock of 1657 

From CEwores completes de Christiaan Huygens, Vol. XVI, by permission of the Board of Directors 

of the Hollandsche Maatschappij der Wetenschappen, Haarlem, Holland



332 Mechanics - Molecular Physics - Heat - Sound — [14-172 

. EXAMPLE. Given that f in Fig. 181 is the total accelerating force applied 
at a given instant to a particle of mass m which is moving in a curved 
path in a plane, show that the tangential and centripetal components 

of the force are given by the two expressions 

fcos@ = Km do | 

a gt [234] 
fsin @ = Kmo 7 = Kmow = Km, . 

where v is the instantaneous speed of the particle and 7 is the radius 
of curvature of the element of path over which the particle is passing. 

5 

Periodic and Vibratory Motions 

In many of the physical processes that occur in nature, a definite 

physical condition constantly recurs after equal intervals of time. 

Such processes are called periodic. The time T required for each 
repetition is called the period, and the reciprocal of the period, 1/T, 

is generally called the freguency. The planets in their orbits about 
the sun, a point on a vibrating violin string, the balance wheel of a 
clock, the piston of an engine —- these undergo motions that will be 

recognized as periodic. We shall also see, in Chapter 15, that wave 
motions are the result of periodic motions of the particles of the 
medium which transmits the waves. 

172. Motion in a Circular Path with Constant Speed. This familiar 
type of periodic motion, first investigated by HuyGENs,! needs no 
  

1JIn a letter to the Secretary of the Royal Society, dated September 4, 1669, 

HuyYGENS said: ‘“Isend you herewith appended, some anagrams which I shall be 

pleased to have you keep in the registers of the Royal Society, which has been so 

kind as to approve this metliod of mine for avoiding disputes, and for rendering to 

each individual that which is-rightly his in the invention of new things.’ Two of the 

fourteen anagrams which were enclosed give the essential theorems concerning the 

magnitude of centripetal force. One of them was as follows: 

a bed e f g hilmnepqrstuxyaz2z 

3060710051323 2063 4 4 «1 

9013512064152 002 4065 0 

A translation of these anagrams, in Latin, first appeared in the Horologium Oscilla- 

torium (1673). Each line of numerals in the anagram represents a line in the Latin 

theorem, and each numeral denotes the number of times that the letter immediately 

above it appears in that line. A translation of the theorem reproduced here is as 

follows: If a body traverses a circumference with the same speed. which it would gain 

in falling from a height equal to one quarter the diameter, the centrifugal force then 

acting upon the body will be equal to the pull of gravity upon it. that is, it stretches
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extensive discussion, for it is merely a special case of motion in any 
curved path (Sec. 171). One may describe it by writing dv/dt = 0, 
and d@/di = w=constant. Accordingly, in view of Eq. [233], the 
total acceleration is of constant magnitude ow P 
and is entirely centripetal, that is, always di- 

rected along the radius and toward the center Aa A 
of the circle. When a particle P revolves in 
a circle of center 0, Fig. 182, the position of oS 
P at any moment may be assigned by giving 
the angle that PO makes with some fixed fio. 182. The phase of 
radius, such as OA. This angle is called the a periodic motion is the 
Phase of P’s motion. If, at any moment from angle wt swept out by 
which we begin reckoning time, P is at the the lme OP since the . : : . time when the particle point A, then after a time / it will have re- g. cupied some chosen 
volved through an angle wf, where w is the reference point A 
angular speed of the particle. The angle wt 
is related to the period T of the motion, which is the time taken by 

the particle in making one complete revolution, by the equation 

_2m 
— 

‘If a particle of mass m moves in a circle of radius r with a constant 

linear speed 2, the total force f required to maintain the acceleration 
obviously is entirely centripetal in direction and has a constant 
magnitude f which is given by any of the following expressions: 

v? 4 12 
f= Kma= Kmow = Km 7 Kmrw* = Kmr TT 

= Kmo 2a = Kmr-4y?, [235] 

at i. 

where w is the angular speed of the particle expressed in radians per 
unit time and » is the frequency, or angular speed, expressed in revo- 
lutions per unit time. If the quantities which appear in Eqs. [235] are 

expressed in cgs units and the factor K is thus made unity, the force 

will be given indynes. The student should employ Eas. [22], Chap. 2, 
[86] and [88], Chap. 7, and [233] in the verification of Eqs. [235]. 

  

the cord which retains it just as much as if the body were suspended by this cord. 

Translations of others of HuyGENs’s theorems on centripetal force will be found in 

*A Source Book in Physics (1935), pp. 28-30. Proofs of these theorems were found 

among HUYGENS’s papers after his death and have been published by the Société 

Hollandaise des Sciences under the title “De Vi Centrifuga” in Geuvres complétes de 

Christiaan Huygens, Vol. XVI. A German translation is given in No. 138 of Ostwald’s 

Klassiker der Exakten Wissenschaften (Leipzig, 1903).
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EXAMPLE. Prove that the period of rotation of the conical pendulum 
shown in Fig. 183 is given by 

r=2n,/h 

g 
[236] 

and hence depends only on the depth # of the circular path below the 
point of suspension and on the acceleration due to gravity. 

Solution. The two forces acting on the particle are 
its weight mg and the force F due to the cord. The ac- 
celeration of the particle is entirely centripetal and is of 
amount wes, or r-4 72/T?. Hence the equation of mo- 
tion for the horizontal direction is F sin 6 = mr -47?/T?, 
and that for the vertical direction is F cos ¢ — mg = 0. 
Eq. [236] can be obtained from these two equations. 

173. Simple Vibratory Motion. When a motion 
is a to-and-fro motion, it is said to be vibratory 
or oscillatory. Among the motions that are both 

vibratory and periodic the simplest type, and the 
most important, is that in which the vibrating 

body is at every instant urged toward some nat- 
ural position of rest with a force which varies 

  

Fig. 183. A conical 
pendulum consists of 
a material particle 
of mass # suspended 
from a flexible, mass- 

‘less cord. As the 
particle moves with 
constant speed in a 
horizontal circular or- 
bit, the cord sweeps 
out a conical surface 

directly as its distance from that position. We 

shall, call this type of vibration simple vibratory 

motion. It is the type of vibration which is un- 
dergone by a weight suspended from an elastic cord, as in Fig. 184, 
when the weight is pulled down slightly and then released. In fact, 
all vibrations arising from the elasticity of matter are either simple 
vibratory motions or are compounded of such motions; for, as was 
stated in Sec. 90, the restoring forces called into play by any sort of 
strains in material bodies are proportional to the displacements, so 
long as the strains are small and take place under isothermal condi- 
tions. Thus the vibrations of tuning forks, of the strings of stringed 

instruments, of the balance wheel of a watch, are cases of simple vi- 

bratory motions. Although there are other kinds of vibratory motion 
that are not simple vibratory in nature, it was shown by the French 
mathematician JEAN BAPTISTE JOSEPH FOURIER, in his renowned 

Théorie Analytique de la Chaleur: (1822), that any finite periodic 

motion, however complicated, can be represented as the summation 

of a number of suitably chosen simple vibratory motions. Simple 
vibratory motion is usually referred to as simple harmonic motion, a 
  

1 The Analytical Theory of Heat, tr. by A. Freeman (Cambridge University Press, 

1878).
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name given to it by Lorp KELvin and P. G. Tait?! (1831-1901), 
probably because the simplest musical sounds are caused by bodies 

that are executing such vibrations. 

Let us now restate the definition of simple vibratory motion in 

mathematical form. Suppose a particle to be moving back and forth 
with such a motion over the path A’O4A, Fig. 184. 

Denote by s the displacement of the particle from 
the center of motion 0 at any moment, and let 

values of s be considered as positive when the par- 

ticle lies between 0 and A, and as negative when it 

lies between O and A’. When s is positive, the 

accelerating force fis toward O and is therefore in 
the negative direction, and when s is negative, f, 

being still directed toward 0, is in the positive 

direction. Hence, if the constant of proportion- 

ality of the magnitude of f to the magnitude of 

s is denoted by k, we have, by the definition of 
simple vibratory motion, 

f=—khs. [237] 
The constant & is called the force constant of the 

system. Its value depends upon the nature of the 
vibrating system. 

In view of NEWTON’S second law of motion, 

if the force f is expressed in such units that K in 
Eq. [22], Chap. 2, can be put equal to unity, the 
defining equation for simple vibratory motion may 
also be written in the form 

a=—“s, 
™m 

  

Fie. 184. A body 
suspended by an 
elastic cord. When 
displaced to A and 
then given its free- 
dom, it undergoes a 
vertical motion that 
is simple vibratory in 
character, since it is 

acted upon at each 
instant by a force 
directed toward O 
and proportional to 
the displacement s 

from that point 

[238] 

where m is the mass of the vibrating particle and a is-its linear ac- 

celeration. The acceleration is entirely tangential, since the motion 

of the particle is in a straight line, and hence, by Eq. [233], is equal 
in magnitude to dv/di, where v is the speed. This enables us to write 
Eq. [238] in the alternative form 

“= =cos. [239] 

From either of the last two equations, it is seen that @ motion is 

simple vibratory tf the acceleration is always proportional to the dis- 
  

1Kelvin and Tait, Treaitse on Natural Philosophy (Cambridge University Press, 
1912), Part I, pp. 37-38.
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placement but opposite in sense to it. The acceleration is greatest 

when the particle is at the ends A’ and A of its path and is momen- 
tarily motionless; the acceleration is zero when the particle is pass- 
ing through 0, its natural position of rest. If we integrate Eq. [239], 
the resulting equation will enable us to deduce additional properties 
of simple vibratory motion. But before attempting to do this it will 

be best to familiarize ourselves with the method of solving a still 
simpler type of differential equation ; namely, the defining equation 

for motion with constant linear acceleration. 

174. Digression on the Integration of the Defining Equation for 

Constant Linear Acceleration. The case of motion with constant 
linear acceleration was discussed in Secs. 19 and 20, and the expres- 

sion for the speed » and distance traversed s were deduced in those 
sections by a method which is rather lengthy, in general, but which 
avoids the use of the calculus. It is these expressions, namely 

Eqs. [14] and [16], Chap. i, that we shall now derive in a very 
simple manner with the help of the calculus. 

The defining equation for motion with constant linear acceleration is 

do _ dn a, or dv=adt, [240] 

where @ is a constant. Indicating the integration which will give the value 
of », we have 

v=fad=afa. 

By performing the integration, we obtain 

p=at+C, [241] 

where C; is the constant of integration. If we let »= 2 when f= 0, then 
Ci = a and 

ua v= atl + 00, [242] 

which is Eq. [14], Chap. 1. 

In order to derive the expression for s, the distance traversed by the 

particle during the time ¢, we start with Eq. [242], which may be written 
as follows: d 

a = att 0. [243] 

Indicating the integration, we have 

s=aftdt+ of dt. 

By carrying out the integration, we obtain 

s= bal? + mf + Ce, [2441
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where Cz is again a constant of integration. If we let s=0 when t=O, 
we have C2 =0; hence 

s= fal? + wl, [245] 
which is Eq. [16], Chap. 1. 

175. The Equations of Simple Vibratory Motion. We return now 
to Eq. [239], the defining equation for simple vibratory motion, from 
which we shall deduce expressions for the speed and displacement of 
a particle undergoing this kind of motion. The method of solution 
is similar to that employed in the preceding section. 

In order to be able to integrate Eq. [239], multiply both members 
by 2 ds; then, since ds = 9 di, we have 

20dv=—22 sds. [246] 
Integration of both members gives , 

where C; is the constant of integration. Its value depends upon the 

initial conditions under which the motion started. Thus, if the par- 

ticle were pulled out from the origin a distance A (OA in Fig. 184) 

and let go, then v= 0 when s = A, and therefore C, = kA?/m. By 

putting this value of C; in Eq. [247], we obtain finally 

—_— ae 2 2 9 si pay (4?—s ). [2484 

This gives the speed for any given value of s. The quantity A, 
which is the maximum value of’s and therefore the maximum dis- 
tance which the vibrating particle moves out away from its position 

of equilibrium at O, is called the amplitude of the motion. Clearly 
the values of s lie always between A and — A. 

In order to obtain an expression for s, we substitute ds/di for 2 

in Eq. [248] and upon rearrangement obtain 

ds _ {R a 

sin7} A = Jett Co, 

or s=Asin (Je: + ca). ‘ [250] 

In order to evaluate the constant of integration Ce, we will agree to 
reckon time from the tnstant when the particle reaches the positive 

Integration gives
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end of ils path; that is, when t= 0, then s= A. When the time is 
thus reckoned, Cp =sin-! 1 = 7/2; and Eq. [250] becomes 

=asin(./£147 s=asin(JEr+2), 

cos «ft [251] 

The quantity Vk/mt is termed the phase of the motion, and is 
evidently a measure of the fraction of a whole vibration completed 
since the particle occupied the chosen reference point, namely, the 
positive end of the path. 

Eq. [251] shows that a given value of s occurs periodically, since 
if tis increased by 2 7/Vk/m, then s becomes 

k am\ k 
ten (SG) ae aE 

my 

Thus the period 7, or time for one complete cycle of changes in the 
value of s, is 

      

[252] 

  

or, in view of Eqs. [237] and [238], 

T=27 HF = Br Is. [253] 

Ss 

‘This expression shows that the period of a simple vibratory motion 
does not depend on the amplitude but only on the ratio s/a. Such 
vibrations, whose period is independent of the amplitude, are called 
isochronous. Since f and s are always opposite in sign (Why?), the 
quantity under the radical is always positive. 

If the period 7 is known, either k/m or f/s can at once be de- 
termined. Thus, if the vibratory motion is due to the elasticity of a 
cord, as in Fig. 184, the constant f/s can be determined not only by 
the static method of observing the force f required to stretch the 
cord through a given distance s, but also kinetically, by observing 
the period of vibration 7 of the system when any mass m is hung 
from the cord and substituting for m and T in Eq. [253]. 

By successive differentiation of Eq. [251] and by suitable sub-  
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stitutions, one may obtain the following expressions for the speed 
and the acceleration of the particle at any given time 7: 

a4 M4 gn ((E1) = 27 4 cin (2 t=F= Via sin mt) = 7 Asin (F ) [254] 

an : 

_d__k VE = 48 4 oo (27 )\-_ 2 a= a= mm 4.008 ( mi)= 73 A.cos (© )= s. [255] 

Their derivation is left as an exercise for the student. 

EXAMPLE. Derive the equations for the displacement, speed, and ac- 
celeration of a particle undergoing simple vibratory motion, for the 
case where time is reckoned from the instant when the particle is 
passing through its position of equilibrium. 

176. The Circle of Reference and Simple Vibratory Motion. It can 
be shown that when an object, such as the bob of the conical pendu- 
lum in Fig. 183, is caused to move with constant speed in a horizontal 

circle in the beam of light from a pro- -w2A coset 
jection lantern, the shadow of the object P' 
moves back and forth across the screen 

with a simple vibratory motion. In other 
words, simple vibratory motion is the wt 
component, in a single direction, of mo- O P 
tion in a circle with constant speed. To 
prove this, suppose the particle P’ in 

Fig. 185 to be moving with constant 

angular speed w in a circular path of Frye, 185. Illustrating the circle 
radius A. If P is the projection of P’ on of reference and how it may be 
any arbitrarily selected diameter A’0A, employed to deduce the ex- 
P vibrates once along A’OA in each Pression for the acceleration of 
revolution of P’. Since the motion of P Pan ibratory. ero simipie 
is that part of the motion of P’ which is 
in the direction of A’OA, the acceleration a of P is the component of 
the acceleration of P’ in that direction. The acceleration of P’ 
is w?A in the direction P’0, or — w?A in the direction OP’ (Sec. 172). 
Hence the acceleration of P is 

  

a =— wA cos al, [256] 

where wt is the phase of the motion of P’ and hence also of the motion 
of P. Since w = 2 7/T, Eq. [256] becomes finally 

4 a? 20 
a=——ay A cos (=),
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which is Eq. [255]. Hence any simple vibratory motion may be re- 
garded as a projection of a uniform motion in a circle. The circle is 
called the circle of reference of the simple vibratory motion. 

By projecting the speed and displacement of P’ on the diameter 
A'OA, Fig. 185, expressions for the speed and displacement of a 
particle undergoing simple vibratory motion can also be deduced. 
The circle of reference therefore affords a means of obtaining all 
the equations of simple vibratory motion without the use of the 

calculus. 
177. Summary of the Equations of Simple Vibratory Motion. The 

following equations summarize the results of Secs. 173, 175, and 176: 

  

Period: [257] 

Phase: [258] 

Displacement: s= A cos wl. [259] 

Speed: y=aVA?— 3? =—wAsin at. [260] 

Acceleration: a=—w*s=—w*A cos wl. [261] 

Force; f=— ks =— mus. [262] 

178. Angular Simple Vibratory Motion, A 
body rotating backward and forward about 
an axis is said to have a simple vibratory mo- 
tion of yolation when each of its particles 
moves with simple vibratory motion. The 
balance wheel of a watch and the torsion 
pendulum (Fig. 187) afford excellent exam- Fas: Ls. Illustrating ae 
ples, In order to obtain a defining equation PY! "HtOHy Motion ol 
for angular simple vibratory motion, let 
the body shown in Fig. 186 oscillate about the axis C in such a man- 
ner that each particle P follows the equation of simple vibratory 
motion, namely, 4c? 

72 

If r be the distance of the particle in question from C, then the linear 
quantities @ and s are related to the corresponding angular quanti- 
ties a and @ by Eqs. [90] and [87], Chap. 7, and hence the equation 
a=—47%s/T? may be at once transformed into 

  

  s. 

Any a=   [263]  
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Thus a body may be said to be executing simple vibratory motion 
of rotation zf its angular acceleration is proportional to its angular dis- 
placement and ts opposite in direction. 

The combination of Eq. [263] with the rotational analogue of 
NEwTON’S second law of motion, namely Eq. [101], Chap. 7, gives 
for the accelerating torque L in simple vibratory motion of rotation 

L=-155-6, [264] 

where I is the moment of inertia of the body about the axis of oscil- 

lation. It is to be noted that Eqs. [263] and [264] are the rotational 

analogues of Eqs. [261] and [262]. 

179. The Torsion Pendulum. The torsion pendulum 

consists of a vertical wire. which is clamped at the 

upper end and rigidly attached at the lower end to 

the center of a horizontal disk (Fig. 187). When the 

disk is twisted around the wire as axis and released, it 

performs angular vibrations. Now we found in Sec. 96 
that the angular displacement @ produced in a given 

wire by an applied torque LZ is proportional to L: 

that is, L = L,8, where L, is the constant of torsion 

of the wire. But the torque exerted by the twisted 

wire is equal in magnitude and opposite in direction 
to the torque required to produce the twist. Hence 

the accelerating torque exerted by the wire on the disk Hic. 187. The 

is — L,@ when the displacement is 6, or torsion pendu- 

L=—L,@. [265] ‘am 

Comparison of this equation with Eq. [264] shows that the motion 
of the disk is one of angular simple vibratory motion of period 

  

[ 
T=297 L [266] 

It is evident from this equation that the moment of inertia I of any 
body may be determined experimentally by suspending it from a wire 
for which the constant of torsion is known and observing the period 
of vibration. 

180. The Physical Pendulum. Any rigid body suspended by a hori- 
zontal axis and free to swing about its position of equilibrium under 
the action of its own weight and the reaction of the axis of support 
constitutes a physical, or compound, pendulum. An ordinary clock 
pendulum is an example. The mathematical theory of the physical 
pendulum was first worked out by HuyGENS and published in his
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Horologium Oscillatorium in 1673. This was the second great prob- 
lem to be solved in kinetics, the first (that of falling bodies) having 
been solved by GALILEO (Sec. 1). It was the first successful attempt 
to deal with the kinetics of a rigid body ; in fact, it was in this con- 
nection that the concept of what we now call the moment of inertia 
first came to light.! 

Fig. 188 represents a vertical section-through the center of mass, ¢, 
and perpendicular to the axis of suspension, S, of such a pendulum. 
If M denotes the mass of the entire pendu- 
lum, and d the distance Sc, then when the 
pendulum is pulled aside through an angle # 
and set free to vibrate, the only external force 
having a torque about 5 will be the weight Mg, 1 

applied at ¢ (Sec. 74). This torque is equal in i 
magnitude to Mgd sin @ and is opposite in di- ' 
rection to the displacement 0, or Me 

L=— Mgdsin 6. [267] Fie. 188. The physical 
pendulum 

The motion therefore is no? angular simple 
vibratory motion, for L is not proportional to @ but to sin @. How- 
ever, in the limit, when the vibration is of infinitely small amplitude, 
sin @ is equal to @ expressed in radians. Then Eq. [267] becomes 

L=— Mgdé, [268] 
from which it can be concluded that a physical pendulum swinging 
with a very small amplitude follows the laws of simple vibratory 
motion of rotation. These laws may be applied to pendulum prob- 
lems only if the amplitude be kept so small that the error intro- 
duced by replacing sin @ by @ is less than the necessary observational 
errors of the experiment, Under these conditions, then, we have 
for the period of a physical pendulum, from Eqs. [264] and [268], 

a tT Tale [269] 

where J is the moment of inertia of the body about the axis of sus- 
pension. 

EXAMPLE. Prove that the period of vibration of a physical pendulum 
is given by 

=o n, fete Tr=22- i , 

where &, is the radius of gyration of the pendulum about an axis 
through its center of mass and parallel to its axis of suspension. 
  

* See the quotation at the beginning of this chapter.  
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ExaMpLe. Are the vibrations of a physical pendulum strictly isochro- 
nous? the vibrations of a torsion pendulum? Explain in what way the 
two cases differ. 

181. The Ideal Pendulum. By an ideal pendulum is meant a ma- 

terial particle suspended by a massless cord. It may be regarded 
as a special case of a physical pendulum, and the student.can easily 
deduce from Eq. [269] the result that, for small amplitudes, the period 
is given by j 

where / is the length of the pendulum. 

Of course no actual pendulum is ideal, although a small heavy ball sus- 
pended from a fixed point by a thread may with little error be treated as 
such. Indeed, pendulums of this kind were employed prior to the middle of 

the eighteenth century for the determination of the acceleration due to 
gravity at a given place. This was accomplished by adjusting the length 
until the pendulum vibrated a little faster or slower than the pendulum of 

a standard clock and then making observations by the method of coincidences, 

which is a very accurate method for comparing two periodic motions of 
nearly the same period.1 However, despite its simplicity in construction and 
use, the ideal pendulum does not in actual practice provide an entirely satis- 

factory method for determining g with a high degree of precision, one great 

objection being that it is necessary to make a complicated correction for the 
slackening of the suspension thread which occurs as the pendulum ap- 

proaches the limits of its swing. Since this defect is absent from the physical 
pendulum, it is better to use some form of the latter for the determination of g. 

EXAMPLE. Derive the expression for the period of an ideal pendulum by 

two additional methods: (a) by equating the accelerating force on the 
bob to the product of the mass and linear acceleration of the bob and 

then applying the equations of simple vibratory motion ; (b) by equating 

the potential energy of the bob when it is at the extremity of an oscilla- 
tion to the kinetic energy when it is at the mid-point of an oscillation. 

182. The Reversible Physical Pendulum. Given any physical pen- 
dulum vibrating about an axis S, as in Fig. 188, our next problem is 

to find other points along the line Se about which the pendulum will 
vibrate with the same period as about S. We will solve this problem 
by a graphical method. First, with the aid of LAGRANGE’s theorem 

of parallel axes (Sec. 86), we rewrite Eq. [269] in the form 

I,+ Md? T=29 ete ho Me [271] 
  

1In Exo. XIVc. g is determined by means of an ideal pendulum and the method 
of coincidences.



HRISTIAAN HUYGENS must be placed with Axcammupes, Gauiteo, and 
Newron in the first rank of mechanical investigators. The first problems 

in the dynamics of systems composed of many particles were solved by him. His 
HOROLOGIUM OSCILLATORIUM (1673) is a dynamical work of importance exceeded 
only by the Principia, In it will be found the solution of the celebrated problem of 
the “center of oscillation," the invention and construction of the pendulum clock, 
the determination of the true relation between the length of a pendulum and the time 
of its oscillation, the determination by pendulum observations of the acceleration 
due to gravity, the invention of the theory of evolutes and the discovery that the 
cycloid is its own evolute and is strictly isochronous, the ingenious idea of applying, 
cycloidal cheeks to clocks, and the theorems concerning centrifugal force which 
formed the necessary prelude to Newron’s Principia, In the proposition, there as~ 
sumed as an axiom, that the center of gravity of any number of independent bodies 
can rise to its original height but no higher, is expressed for the first time one of the 
most fruitful principles of physical science, now known as the principle of the con- 
servation of energy. 

For excellent appraisals of Huvouss’s life and work, see P, Lenard’s Great Men 
of Science. (Macmillan, 1933), pp. 67-83; E, Mach's The Science of Mechanics (Open 
Court, 1893), pp. 155-187; and H. Crew's The Rise of Modern Physics (Williams 
& Wilkins, 1935), pp. 120-133, 

  

 



  
  

© PLATE 46 ° 

  

  
Currstiaan Huycsns at the Age of Forty-two 

From the portrait, painted in 1671 by Kaspar Netscaer, which hangs in the Municipal Museum, 

The Hague 

Tuts porTrair of Huycens shows him in his prime. It was painted two years before 
the publication of his HOROLOGIUM OSCILLATORIUM (1673). Huycsns was at this 

time living in Paris, having been invited by Cotperr on behalf of Louis XIV to 

be a member of the newly founded Academy of Sciences (see Plate 47), where he 

occupied an influential, if not a dominant, position.
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T where d is the distance from the 
center of mass ¢ to the axis of sus- 
pension, and /, is the moment of 
inertia of the body about an axis 
through its center of mass and par- 
allel to the axis of suspension. If 
the period of vibration now be found 
and plotted for various values of d, 
curves are obtained similar to those 
reproduced in Fig. 189, Correspond- 
ing to any given axis of suspension 

  

Fic. 189. Relation between the 
period and the position of the axis 

Si or period 7) there are, in general, of a physical pendulum. The point ¢ 
three other parallel axes Sg, S3, and corresponds to the center of mass of 
S, along the line Sc about which the the pendulum, and d is measured to 
pendulum will have the period 7,, the right or tothe left ofc according 
The four axes may be grouped in 
two pairs, S; and Sy, Sz and Ss, 

as the axis of suspension $ is on one 
side or the other of the center of mass 

such that the axes of a pair are equidistant fromc. Let cS;=Syc=di 
and cS: =Sc= dy. This enables us to write for the period 

be Md? IT. -+ Mds? TaD TE adn et Mee, 

or pads) = dds? (272) 

If d; is not equal to ds, we may divide both mem- 
bers of Eq. [272] by di — do; when this is done, 
there results 

Nh=2 (ite. [273] 

From this it is seen that the period 7; is the same 
as that of an ideal pendulum (Sec. 181) of length 
d,+ ds, whether the physical pendulum be stis- 
pended from an axis through S, or S», or be in- 
verted and set to vibrate about an axis through 
S3 or Sy. Thus, if the pendulum were supported 
at Si, its period would be the same as if the whole 
of its mass were concentrated at the point S;, 
Fig. 189. The point S; was therefore called by 

  
Fic, 190. Karer’s 
reversible pendulum 

HuyceEns the center of oscillation corresponding to the center of sus- 
pension S;. It is obvious that the centers of oscillation and suspension
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are interchangeable and that the distance between them is equal to 

the length of the equivalent ideal pendulum. Hence if d, + de be 

measured, g can be found from Eq. [273]. This property of the pen- 
dulum was pointed out by HUYGENS in 1673, but it was first used by 
HENRY KATER,! an Eng- 
lish sea captain, in 1817, 

in the reversible pendu- 

lum (Fig. 190) with which 
he made his celebrated 

determination of the 

value of g. 
It is clear from what 

precedes that a physical 
pendulum does not swing 
as if its mass were con- 

centrated at the center 

of mass c. Although it 
is true that the potential 

energy of the pendulum, 

in any position, is the 
same as if its mass were 

concentrated atc, the 

pendulum does not swing 

  

Fie. 191. A block with a 
bifilar suspension. When 
swinging parallel to the 
plane of the figure, the block 
does not rotate and the pe- 
riod is that of an ideal pen- 
dulum of length equal to the 
length of the cords. When 
swinging perpendicular to 
the plane of the figure, the 
block has energy of rotation 
and the period is that of an 
ideal pendulum of length SS’, 
where S’ is the center of 

oscillation 

Fig.192. Simplified 
schematic diagram of 
the Eorvés balance. 
A light horizontal 
rod, suspended at the 
middle by a delicate 
fiber, supports at 

its extremities two 

weights which are 
at different vertical 

heights 
as if all its mass were at 

that point because its kinetic energy is that of its mass supposed 
concentrated at ¢ plus its energy of rotation about ¢ (Fig. 191). 

In modern practice KATER’s reversible pendulum, or some other 
form of physical pendulum, is used mainly for making absolute de- 
terminations of g. In making measurements of small variations in g 
from one point to another, such as are caused by variations in geo- 

logical structure, the instrument usually employed is the Edérvés 

torsion balance * (Fig. 192), which combines the necessary sensitivity 
with portability and comparative ease in use. It is used commer- 
cially in explorations for oil § and other valuable natural deposits. 

  

1 Philosophical Transactions 108, 33 (1818). For more detailed discussions of the 

reversible pendulum see *J. H. Poynting and J. J. Thomson, Properties of Matter 

(Griffin, 1913), p. 12, or *F. H. Newman and V.-H. L. Searle, The General Properties 

of Matter (Macmillan, 1933), p. 40. 

?R. von Eétvés, Wiedemann’s Annalen 59, 354 (1896). See also F. H. Newman 

and V. H. L. Searle, The General Properties of Matter (Macmillan, 1933), pp. 52-57, 

and the “Eétvds” Torsion Balance (published by L. Oertling, Ltd., London). 
®See *L. L. Nettleton, ‘Applied Physics in the Search for Oil,” The American 

Physics Teacher 3, 110 (1935). .
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EXPERIMENT XIVA. CENTRIPETAL FORCE 

The object is to study the type of periodic motion represented by 
the motion of a body with constant speed in a circular path. The 
experiment consists essentially in revolving a body of known mass M 
in a circular path and adjusting the angular speed until a spring to 
which the body is attached is 1 i 
extended a definite amount. — 
The force necessary to stretch = i 
the spring this amount is then A anf] 
measured, as are also the ra- 7 ‘ 
dius y and the frequency of FE = 
revolution y. One then has 
all the data needed to test the 
expression for the centripetal 
force first developed by Huy- 
GENS; namely, 

f=KeM-Ar%vr, [274] 

    
The apparatus is shown in 

Fig. 193. The body 1 slides 
horizontally in the frame 2 and 
is attached toa spring 3, which 
in turn is attached to the 
frame. When the frame is ro- 
tated about the vertical axis 
11, the body moves out away 
from the axis until the spring 
exerts enough centripetal force 
to keep the body moving in a 
circle. As the body moves out- 
ward it actuates the lever 7, causing the pointed tip 10 to move 
upward; when the latter has risen to a point opposite the index 11, 

the apparatus is rotating at the speed for which it was designed, The 
tension in the spring can be changed by turning the threaded collar 
4, thus making it possible to perform experiments at a number of 
different speeds. The weight 23 is simply a counterweight, to pro- 
vide balance for the apparatus during rotation. 

a. Adjustments. Remove the apparatus from the socket of the 
rotator and adjust the tension of the spring to its lowest point. By 
turning the screw 21, Fig. 193, set the friction drive of the rotator at 
the zero position, so that the spindle does not turn when the motor is 
running. Reclamp the apparatus on the rotator and start the motor. 

Fio, 193. Centripetsl-force apparatus
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Slowly increase the speed until the pointer is even with, but no 

higher than, the fixed index. To increase the speed beyond this 
point may harm the apparatus or cause more serious damage. Since 

the speed of the motor will probably vary slightly, it will be necessary 

to make such continual slight adjustments of the screw 21 as will 

keep the tip of the point oscillating freely about the index as an 

average position. 

b. Frequency of Rotation. The manipulations here described 
should be practiced several times before any observations are 
recorded. One observer is to pay constant attention to the proper 
adjustment of the speed. The other observer, holding a stop watch 
or a watch with a second hand, is to obtain the value of the speed 

in the following manner: (1) record the initial reading of the 
revolution-counter; (2) engage the revolution-counter with the gear 

on the spindle and at the same time start the stop watch; (3) after 

the lapse of exactly 1 min @ min if an ordinary watch is used), dis- 

engage the counter; to make sure that the gear on the counter does 
not continue. to turn after it is disengaged, 

apply the finger lightly as a brake; (4) re- ! | | 

cord the final reading of the counter. 

    Repeat the foregoing set of operations at ae 

least five times; use each final reading of 
the counter as the initial reading for the 
next trial. If the numbers of revolutions 
in successive 1-min intervals differ by more 

than two or three, it is an indication that 

greater care should be exercised in making 
the manipulations. 

c. Force Exerted by the Spring. Remove i 

the apparatus from the rotator and hang it ae 
by the hook in the counterweight as shown 
in Fig. 194. By means of a fine wire attach 

a weight-hanger to the hook in the body £3 
that was revolving. By adding weights to Fic. 194. Method of meas- 

: : uring the force exerted by 
the hanger, stretch the spring until the the spring 

body, as shown by the indicator, is in the 

same position as it occupied during the rotation. Record the total 
force f applied to the spring; this consists of the weight of the hanger 
and added weights, and the weight of the body that was revolving. 

If the mass M of the latter is not stamped upon it, remove and 

weigh it. 
d. Radius of Rotation. With the apparatus still in the position 

shown in Fig. 194, measure with vernier calipers the distance, when 
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the pointer is opposite the index, from the axis of rotation to the 
mark 31, which designates the center of mass of the body. The 
average of at least five such measurements is to be taken as the value 

of the radius of rotation r. 
e. Repetitions of the Experiment with the Spring at Differen! Ten- 

sions. Adjust the spring to its maximum tension, replace the appa- 

ratus on the rotator, and repeat b and c, 
Adjust the spring to a tension midway between the two values 

previously used, and repeat 6 and c. 
f. Calculations, The following calculations are to be made for each 

of the three sets of observations obtained with different spring 
tensions. 

To calculate the average frequency of revolution », divide the 
reyolution-counter readings taken in b into two equal groups; for 
example, if six readings are taken, the first three constitute the first 
group and the second three constitute the second group, By taking 
the differences between corresponding readings in the two groups, 
three values are obtained, the average of which is the number of 
revolutions during three times the time interval to which the obser- 

vations apply. 
Substitute the experimentally determined values of f, M, », and r 

in Eq. [274] and simplify. Compute the percentage difference be- 
tween the right-hand and left-hand members of the equation, 

1. What kind of curve would be obtained if the force exerted by the 
spring were plotted as a function of the square of the frequency of 
revolution? 

2. For any one of the values of the tension of the spring compute the 
period of revolution 7 and angular speed w of the revolving body, and 
also the linear speed v of its center of mass. 

8. In calculating the average value of the frequency of revolution v, 
why should one not follow the simpler procedure of taking differences 
between each two consecutive readings of the counter and averaging? 

4. Explain in detail how a centripetal-force apparatus could be used 
to compare the masses of two bodies. Of which would this be a direct 
comparison, the inertial masses or the gravitational masses? 

5. How could the apparatus be used to determine the acceleration 

due to gravity? 
  

‘In addition to the elongation produced in the spring by the revolving body, a 
slight elongation also takes place because the spring itself has mass. ‘The apparatus 
is so designed, however, that this possible source of error can be ignored.
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EXPERIMENT XIVB. SIMPLE VIBRATORY MOTION 

This experiment affords a study of simple vibratory motion. In 
Part I the object is to study the motion of a loaded spiral spring and 
to determine the force constant of the spring by two different methods. 

In Part II a torsion pendulum is employed to determine the torsional 
properties of a steel rod and the moment of inertia of a body. 

Part I. The Loaded Spiral Spring. a. When a body is suspended 

from a vertical spiral spring as in Fig. 195 and is set into vibration 

along a vertical line, the total force acting on the 
body at any instant is evidently the vector sum 
of the force of gravity and the elastic force 

exerted by the spring. If it can be shown ex- 

perimentally that this total force is proportional 
to the displacement of the body from its posi- 

tion of equilibrium, it then follows from Eq. 

[237] that the vertical oscillations of the body 
represent a case of simple vibratory motion. 

Use a 50-g weight-hanger for the body in ques- 
tion and attach it to the spring, as in Fig. 195. 

In order to determine whether the force f is 
proportional to the displacement s, add five 100-g 
weights to the weight-hanger, one at a time, and 

observe the resulting positions of the pointer on 
a graduated mirror placed behind the spring.t 
In taking a reading place the eye in such a posi- 
tion that the tip of the pointer and its image 
appear to be in line with each other. (Why ?) 

      

  

Fie. 195. A loaded 
spiral spring 

1. Plot a curve of which the abscissas represent the weights on the 
hanger and the ordinates represent the corresponding positions of the 
pointer. What does the slope of this curve represent ? 

b. Calculate the mean displacement of the weight-hanger for 
100 gwt added to it. To obtain the mean, use the method of differ- 
ences described in Exp. VIII, e. 

Calculate the force constant of the spring, — f/s, in cgs units. 
c. Since it is found that the loaded spring will follow the laws 

of simple vibratory motion if set to vibrating vertically, it is alse 

  

1 The initial load on the spring should be large enough to separate the spirals. If 

the spring is a heavy one, such as is commonly used to close doors, it may be necessary 

to employ an initial load of several kilograms and to add weights in increments of 
several hundred grams.
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possible to determine the force constant of the spring by observing 

the period of vibration T for a given load m, and substituting in 
Eq, [253], 

Hang on the spring a total load of, say, 100 gwt. Note the position 
of the pointer on the mirror-scale, and use this position for a reference 
line. Set the mass vibrating vertically through a moderately small 
amplitude and take with a stop watch the time of 50 vibrations, 
Count the vibrations by observing the transits in one direction of the 
pointer across the reference line. Compute the period 7 in seconds 
per vibration. 

Also determine the periods when the total loads on the spring are 
200, 300, and 400 gwt. 

Before attempting to calculate the force constant from these data, 
we must take into account the fact that the spring itself has mass 
and hence that the period of the system is a little larger than it would 
be if the spring were massless. In other words, Eq. [253] should for 
our present purpose be written in the form 

Tao |_mtAm, (275) 
5 

where m is the suspended mass and Am is the correction factor for 
the inertial effect of the spring. 

2, With the aid of Eq. [275] prove that if the values of T are plotted 
against the corresponding values of m, the intercept of the resulting curve 
on the mass-axis gives the correction factor Am. 

3, Using your observed values of 7 and m, plot 7? as a function of m 
and thus find Am for the spring used in this experiment. 

By substittiting corresponding values of T and m-+Aym in Eq. [275], 
calculate the values of f/s and average them to obtain the force 
constant of the spring. Compute the percentage difference between 
this value and that obtained in 6. 

d. It can be shown theoretically that the correction factor Am is 
equal to one third of the mass of the spring. Weigh the spring and 
compare the value of Am thus afforded with the value obtained by 
the graphical method. 

4. How much error would have been introduced into the determination 
of the force constant by failure to correct for the inertial effect of the 

spring? 

Part Il. The Torsion Pendulum. The torsion pendulum (Fig. 187) 
used in this experiment consists of a solid metal disk suspended from
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one of the steel rods of Exp. VIIIs. In the former experiment both 
L,, the constant of torsion of the rod, and , the shear modulus of 

the steel in the rod, were determined by a statical method. The 

present experiment affords a kinetical method of determining not 
only these two quantities but also the moment of inertia J of the 
suspended disk. For, in view of Eq. [266], this may be accomplished 

by observing first the period Tf of the torsion pendulum alone, and 
then the period 7; when it is caused to vibrate after the addition to 

the disk of a second body of known moment of inertia J;. The period 

of the system after the addition of J; is given by 

  T=29 ra. [276] 

The elimination of L, from Eqs. [266] and [276] gives 

L 

and the elimination of J gives 

Ly = 4 8 gh og [278] 

a. Use the rod of greatest length and smallest diameter and be sure’ 

that it is the one which you tested in Exp. VIIIB. With the disk 
alone attached to the rod, observe with a stop watch the time of, 

say, 25 vibrations and compute the period 7 in seconds per vibra- 

tion.! In setting the disk into oscillation do not at the same time set 

it swinging and do not twist the rod through an angle of more than 10°. 

5. Why should the amplitude be made moderately small? 

b. Add to the disk a heavy metal ring and observe the new period 

T,. Be sure that the rod passes through the center of the ring. 

(Why ?) 
Calculate J,, the moment of inertia of the ring for the axis about 

which it was rotating. Obtain the mean diameter of the ring by 

measuring the inside and outside diameters, adding these, and divid- 

ing by 2. If the mass is not found stamped upon the ring, determine 

it by weighing. 

  

1 If greater accuracy in the determination of the period is desired, the method of 

coincidences should be employed (see Exp. XIVc). Also see *D.C. Miller, Laboratory 

Physics (Ginn, 1903), p. 102; *B. Stewart and W. W. H. Gee, Elementary Practica 

Physics (Macmillan, 1885), Vol. I, p. 187; or *J.S. Ames and W. J. A. Bliss, A Manual 

of Experiments in Physics (American Book Co., 1898), p. 168.
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6. Beginning with Eq. [103], Chap. 7, the general equation for mo- 
ment of inertia, prove that the moment of inertia of a hollow cylinder 
about its geometrical axis is 4; = § M(Di2 + Do"), where D; and D2 are 
the outside and inside diameters of the cylinder. Hence show that 

I) = }M(D? + /), where D is the mean diameter and / is the thickness 
of the cylinder. Can ¢ be neglected in calculating 4; for the ring used in 

this experiment? 

c. Calculate with the aid of Eq. [277] the moment of inertia I 
of the disk about the axis of rotation. Also measure the diameter 
and mass of the disk and calculate J by means of Eq. [102a], Chap. 7; 
the mass of the disk will probably be found stamped upon it. Com- 
pute the percentage difference in the two values of J. 

Calculate by means of Eq. [278] and Eq. [119], Chap. 8, the con- 
stant of torsion of the suspension rod and the shear modulus of the 
steel in the rod. Compare these values with those obtained for the 
same rod by the statical method. 

7. Why was it not necessary to take into account the moment of in- 

ertia of the suspension rod and its fittings? 
8. Derive a laboratory equation which would enable one to employ 

the torsion pendulum for the comparison of the unknown moments of 
inertia of two bodies. 

° 

OPTIONAL LABORATORY PROBLEM 

Determination of Moments of Inertia by Various Methods. Determine 
by several different experimental methods, and also, if possible, by calcula- 
tion, the moment of inertia about a given axis of some cormmon object or 
some object of which it may be important to know the moment of inertia, 
such as an ordinary hand wrench, an automobile flywheel or piston rod, the 
wheel of an Atwood’s machine, or the wheel of the apparatus used for study- 
ing the torsion of a wire by the statical method (Exp. VIIIp). In the case 
of either the Atwood’s machine or the torsion apparatus, do not attempt to 
remove the wheel from its bearings. 

° 

EXPERIMENT XIVc. DETERMINATION OF g BY MEANS 
OF AN IDEAL PENDULUM 

In Exp. I an approximate determination of the acceleration due 
to gravity was made by the direct method of observing the accelera- 
tion of a freely falling body. The pendulum furnishes an indirect 
method of measuring this quantity, which is capable of yielding much
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more accurate results. The advantage of using an ideal pendulum 
for the determination is that its length / can be measured directly, 
whereas the equivalent length of a physical pendulum is not easily 
obtained. The unknown period 7 of the ideal pendulum is obtained 
by comparing it with the known period T, of a standard pendulum. 
Since the period T enters Eq. [270] as a sec- 
ond power whereas the length / enters as a 
first power, the value of 7 must be known to 
a higher degree of precision than the value 
of /. For this reason we shall determine T 
by the valuable method of coincidences, which 

is a very accurate method for comparing two 
periodic motions of nearly equal periods. 

The apparatus for determining the instant 
of coincidence is shown in Fig. 196. When the 
ideal pendulum A and standard pendulum C 
are in coincidence, they pass through the mer- 
cury contacts ¢ and d at the same instant, 
thus completing an electric circuit and caus- 
ing the electric bell to sound. Since the two 
pendulums do not have exactly the same 
period, no further signal is heard until the 

faster pendulum has gained one half-vibration . Fic, 196. Apparatus for 
upon the slower. If between two such coin- determining the period of 

: an ideal pendulum by the 
cidences the standard pendulum has made “rethod ‘of coincidences 
N half-vibrations, then the ideal pendulum 

has made either (N+ 1) or (N — 1) half-vibrations, depending upon 

whether its period T is shorter or longer than the period 7, of the 
standard pendulum. Hence the time interval between two succes- 
sive coincidences is 

  

  

  

r _t 

_ TN 
from which =a   [279] 

However, on account of the difficulty of observing accurately 
the exact instant of coincidence, it is preferable to observe the num- 

ber of half-vibrations N of the standard pendulum that occur in 

several successive intervals x. In this case one pendulum will have 

gained n, instead of one, half-vibrations on the other, and Eq. [279] 

must be modified to 
_ TN . 

“NEN 
  [280]
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Adjustment of Apparatus, No adjustment of the standard pendu- 
jum should be made except under the supervision of an instructor. 
Always keep the electric circuit open whenever both pendulums are 
motionless. 

The length of the ideal pendulum should be such that the dis- 
tance from its knife-edge to the center of its bob differs from the 
corresponding distance on the standard pendulum by not more than 
0.5cm. The coincidences will then not occur more ihan once in 
about 5 min, which is desirable. The contact points on the two pen- 
dulums should be clean, and they should rest exactly in the centers 
of the mercury globules when the pendulums are at rest. There 
must be enough clean mercury in the cups to insure good contact but 

not so much that the mercury is visibly drawn to one side by the 
passage of the contact point through it. 

By means of a thread tie back the bob of the ideal pendulum a 
distance of about 4 cm, taking care not to twist the suspension wire 
in the least. Complete the electric circuit as shown in Fig. 196. Set 
the ideal pendulum in motion by burning the thread. If a signal is 
heard at every passage, set the standard pendulum into vibration 
with an amplitude somewhat smaller than that of the ideal pendulum. 

(Why smaller?) It will be noted that there is not just one signal at a 
coincidence, but that signals occur for several successive swings. This 
is because one pendulum gains only slightly on the other and the 
passages of the contact points through the mercury are not instan- 
taneous. The mean of the first and last of these successive signals 
is to be regarded as the coincidence. 

Observations. Start counting the half-vibrations of the standard 
pendulum at any convenient time, preferably just before a coinci- 
dence occurs. Record the ordinal number of each half-vibration 
that is accompanied by a’signal; for example, if signals accompany 
the counts 14, 15, 16, record these ordinal numbers. Continue this 
count uninterruptedly for at least 20 min. 

Note whether the ideal pendulum gains or loses on the standard 
pendulum, 

Find the length / of the ideal pendulum; this may be taken, with- 
out appreciable error, as the distance from its knife-edge to the 
center of its bob. Do not remove the pendulum from its mounting 
for this purpose unless necessary. Measure the diameter of the bob 
with vernier calipers, Obtain the length of the suspension wire by 
means of the scale and vernier which are mounted back of the 
pendulum ; usually the zero of this scale is exactly at the knife-edge. 
If the apparatus is not equipped with a scale and vernier, use a meter 
stick or, for greater accuracy, a cathetometer. 

  



Exp. XIVc] Motion with Varying Acceleration 355 

Record the period 7, of the standard pendulum; its value will 
be found marked on the apparatus. 

Calculations. Compute the ordinal numbers of the particular 
half-periods at which it is estimated that exact coincidences occurred : 
for example, if the successive signals occurring during some one time 
of approximate coincidences were numbered 81, 82, 83, 84, then 824 
is to be taken as the ordinal number that corresponds to exact 
coincidence. 

Calculate the mean number of half-vibrations N of the standard 
pendulum in # successive intervals between coincidences. This is 
done by dividing the ordinal numbers which correspond to exact 
coincidence into two groups of 2 numbers each and then subtracting 
the first reading of the first group from the first reading of the second 
group, and so on to the end. The average of these differences is N. 

Calculate T and g by means of Eq. [280] and Eq. [270] respectively. 
Compare the value of g thus determined with the accepted value for 
your locality. 

1. In what ways does the pendulum used in this experiment fall short 
of the requirements of a simple pendulum? 

2. Derive the expression for the period of a physical pendulum that 
consists of a sphericalbob of radius R suspended from a wire of negligible 
mass and of length ]— R. Then find by actual calculation whether an 

appreciable error! was introduced into your determination of g by the 

assumption that the pendulum used was an ideal pendulum of length 1. 

3. Explain in detail why it was necessary to confine the vibrations of 
the pendulums to small amplitudes. 

4. A more exact expression for the period of an ideal pendulum 

vibrating with an amplitude @ is? 

_ Lf ya lene O neh of raanfi{i+tein 9 + eq sin gt 

Find by actual calculation whether an amplitude of 4cm for the ideal 
pendulum used in this experiment was large enough to produce an ap- 
preciable error in your determination of g. 
  

1For a discussion of the corrections for air resistance, curvature of knife-edges, 

yielding of support, etc., which must be made in very accurate pendulum determina- 

tions, see *F. H. Newman and V. H. L. Searle, The General Properties of Matter 
(Macmillan, 1933), pp. 43-49. 

2¥For a derivation of this equation see A. G. Webster, The Dynamics of Particles 

and of Rigid, Elastic and Fluid Bodies (Teubner, 1904), p. 48.
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QUESTION SUMMARY 

1. What is the vector expression for the total instantaneous acceleration 
of a particle moving in any plane curve whatever in terms of the speed of 
the particle and the time-rates of change of speed and direction? State 
clearly what each component and each term of this expression means physi- 
cally. How would you calculate the magnitude of the total acceleration? 

its direction? What is the vector expression for the total instantaneous 
acceleration in terms of the speed, its time-rate of change, and the radius 
of curvature? 

2. What is meant by a periodic motion? Define the period, frequency, 
and phase of a periodic motion. 

8. If a particle of mass m moves in a circle of radius 7 with a constant 
linear speed », what is the magnitude of the total acceleration? What is its 
direction? What are the magnitude and direction of the force required to 
maintain this acceleration? 

4, Define simple vibratory motion in words and by means of an equation. 

What is meant by the displacement in such motion? by the amplitude? 

5, Upon what does the period of a simple vibratory motion depend? 
Give expressions for calculating the displacement, speed, and acceleration 
at any time J, and the speed and acceleration for any displacement s; state 
clearly the meaning of each symbol used. 

6. Upon what does the period of a torsion pendulum depend? Does it 
depend upon the amplitude? 

7. Starting from the expression for the period of a simple vibratory mo- 
tion of rotation, derive expressions for the periods of physical and ideal 
pendulums: point out clearly any simplifying assumptions made and the 
limits within which these assumptions are valid; state in words the exact 
meaning of each symbol used. 

8. Define center of oscillation. What is its importance? 

° 

PROBLEMS 

1. A particle of mass 5 g is moving in a curved path, and its total ac- 
celeration at a given moment is (T+ 4 Nn) cm-sec~%, Find (@) the tan- 
gential acceleration; (b) the centripetal acceleration; (c) the magnitude of 
the total acceleration; (d) the angle @ which the total acceleration makes 
with the tangent to the curve; (e) the tangential component of the acceler- 
ating force; (f) the centripetal component of the accelerating force; (g) the 
total accelerating force. 

2. A projectile is fired from a gun with a muzzle velocity of magnitude v 
and elevation ¢ above the horizontal. (a) Disregarding the resistance of the 

air, derive expressions for the speed and for the tangential acceleration of 
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the projectile at the end of the time #. (6) At what point in the trajectory 

will the centripetal acceleration be equal to the total acceleration? (c) What 
is the value of the total acceleration? 

3. Assume for the sake of simplicity that the bodies of the solar system 
are particles and that the planets move about the sun in circular orbits. 
(a) Show that it follows at once from KEpLER’s second empirical law of 
planetary motion (Sec. 38) that the total orbital acceleration of any planet 

is directed along the line connecting the sun and the planet. (6) Prove that 
it follows from KEPLER’S third law and HUYGENS’s expression for centripetal 

acceleration that the accelerations of the planets toward the sun vary in- 
versely as the squares of their distances from the sun. (c) Show that the 
foregoing results, taken together with NEWTON’s second law of motion, lead 
to the conclusion that the gravitational force of attraction of the sun for 
any planet is a central force which varies inversely as the square of the dis- 

tance between the two bodies. 

4. (a) Assuming that the moon revolves around the earth with constant 
speed in a circular orbit of radius approximately sixty times the radius of 
the earth, calculate the centripetal force which must act upon each unit 
mass of the moon in order to hold it in its orbit. Take the period of revolu- 

tion of the moon as 27 da 8 hr. (6) Compare the foregoing result with the 
force of the earth’s attraction upon a unit mass at the distance of the moon 
as computed from NEwTon’s law of gravitation; it was this computation 
that led NewTon to assert his law of gravitation (Sec. 34). 

Ans. (a) 0.271 dyne-g-!; (b) 0.272 dyne - g71. 

5. (a) Taking the radius of the earth as 6370 km, calculate the centripetal 
force required to hold a 1-g mass upon the surface at the equator, and also 

in latitude 45°. Hence find what would be the values of g at the equator 

and in latitude 45° if the earth did not rotate. (6) What would the period 

of rotation of the earth have to be in order that bodies at the equator might 

have no weight? (c) The weight of any body in absolute units is, by defi- 
nition, mg, where m is the mass of the body and g is the acceleration due to 

gravity. In view of this definition is it correct to say that the weight of a 
body is equal to the gravitational pull of the earth upon it? Is it correct 
to say that g at any point is equal to the gravitational attraction of the earth 

for a unit mass placed at that point? Speaking literally, is g the “acceleration 
due to gravity’’? Ans. (a) 3.37 dynes, 2.38 dynes, 981.41 cm - sec—2, 

982.31 cm - sec~?; (6) 1.4 hr. 

6. When a train is rounding a curve, it is desira- 
ble that the forces exerted on the two rails should 
be equal and hence that the total force exerted by —= 

the train should be perpendicular to the plane of Fy, 197. Elevation of 

the track. Prove that for a train rounding a curve the outer rail 
of radius r with speed », the angle ¢, Fig. 197, 

which the plane of the tracks should make with the horizontal is 
@ = tan} (y?/rg). 

 



UYGENS settled in Paris in 1666, where for more than fifteen years he occupied 
an influential position among the group of men who founded and composed 

the Academy of Sciences, He resided and worked in the philosophic seclusion of 
the Royal Library, in which was set aside also the room shown in Plate 47 for 
meetings of the academy. 

‘The plate shown is a reproduction, considerably reduced in size, of a copperplate 
engraving made by Sébastien Le Clerc and used as the frontispiece of each volume 
of the sumptuously printed editions of the early work of the Academy of Sciences 
which were distributed as personal gifts by Louis XIV. It is the earliest known 
representation of an actual mecting of a learned society. The figures in the center 
are Louis XIV and Consent. 

‘The French Academy of Sciences was the outcome of informal gatherings of a 
group of philosophers and mathematicians in Paris near the middle of the seventeenth 
century. ‘The group included such men as Descanres, Fenmar, Huyoens, Mensexe, 
and Pascan. Finally Corset proposed to Louis XIV the establishment of a regular 
academy, and the first meeting was held December 22, 1666. Members received 
pensions from the king and financial assistance with their researches. These re~ 
searches were divided into the two groups of mathematics, including mechanics and 
astronomy, and physics, which at that time included chemistry, botany, anatomy, and 
physiology. After Cocssnt’s death the work of the academy was diverted to the 
practical details of constructing “the new paradise at Versailles.” ‘The suggestion 

of this task is artfully introduced into the background of Le Clerc’s picture, while 
in the foreground are many symbols of the materials and instruments of the sciences 
in which the academy was interested, ‘The air pump invented by Roaent Bore in 
1660 appears on the table at the left in the picture. 

For further details, consult A. Wolf's A History of Science, Technology, anil Philosophy 
in the 16th and 17th Centuries (Allen 8 Unwin, 1935), pp. 63-67; M. Ornstein’s 
The Role of the Scientific Societies im the Seventeenth Cantury (University of Chicago Press, 
1928), pp. 165-193. 
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A Meeting of the French Academy of Sciences 

on the Occasion of a Visit by Louis XTV
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7. A car, after descending a steep incline, runs around the inside of a 
vertical circle of large diameter P, as in Fig. 198. (@) Show that if there were 
no friction, the car must start from a point 
1.25 D above the lowest point of the circle in 
order that it may keep to the track at the 
highest point of the circle. This is essentially 
one of HuyGENs’s theorems on the magnitude 
of centripetal force (see the footnote on page Fie. 198. Problem 7 

332). (b) What force does the track exert on 
the car when the latter first reaches the lowest point of the circle? (c) when 
the car is halfway up the circle? ‘Ans. (b) 6 mg; (c) 3 mg. 

8. A particle moves with a simple vibratory motion of period 2 sec in a 
path 10cm long. Calculate the displacement, speed, and acceleration of the 
particle at half-second intervals during a complete vibration, and plot upon 
a single sheet of graph paper the results of the several sets of calculations. 

9. A particle of mass 5g describes a simple vibratory motion with a 

period of 0.6 sec and an amplitude of 18cm. Find the phase, speed, and 
accelerating force at an instant when the displacement of the particle 
is—9 cm. Ans. 120° or 240°; 1.6 x 10? cm + sec~?; 5.0 x 108 dynes. 

10, The gravitational force of a solid sphere of uniform density upon a 
particle embedded in it varies directly as the distance of the particle from 
the center of the sphere (Prob, 20, p. 52). If the earth were such a sphere, 
and if a hole passed completely through it along a diameter, how long a 
time would be required for a body dropped through the hole to reach the 
other side? Take the radius of the earth as 4,0 x 108 mi. Ans. 42 min, 

11. A wrought-iron shelf is moved horizontally with a simple vibratory 

motion, A block of soft steel rests on the shelf, and it is observed that this 
block just begins to slide when the vibration has a period of 2.5 sec and an 

amplitude of 1.0 ft. What is the coefficient of static friction for steel on 
iron? Ans. 0.20, 

12. (a) By evaluating the expression 

r 
2 f Edt, 
Ty 

where £ is the instantaneous value of the kinetic energy of a particle which 
is executing simple vibratory motion, show that the time average of E, aver- 

aged over one complete vibration, is mA*w*/4. (b) In a similar manner 

derive an expression for the time average of the potential energy averaged 
over one complete vibration. (c) Is it true that the total energy of the par- 
ticle is on the average half kinetic and half potential, as was asserted in 
Secs. 143 and 144, in the discussion of the theory of thermal capacities? 

13. The period of a certain pendulum was 1.002 sec at sea level. It was 

carried to the top of a mountain and the period found to be 1.003 sec. Find 
the height of the mountain above sea level, Ans, 4 mi.
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14. A thin, uniform hoop of diameter D hangs on a nail. It is displaced 
through a small angle in its own plane, and then released. Assuming that the 
hoop does not slip on the nail, prove that its period of vibration is the same 

as that of an ideal pendulum of length D. 

15. A thin homogeneous rod of length / is oscillating about a horizontal 

axis passing through one end of it. Find the length of the equivalent ideal 
pendulum and the position of the center of oscillation. Ans. 21/3. 

° 

T 1s difficult for us, at this late date, to realize how great a stride was made by Huygens when 

I he discovered how, by simply weighing and measuring a given body, say a lath, one could sit 

down and compute its period of vibration when suspended about any particular line as axis. 

The problem of a freely falling body, solved by Galileo, is the first great solution in dynamics; 

that of the physical pendulum by Huygens is the second and an immensely more difficult one. It 

was, in fact, the first dynamical system, as distinguished from a particle, to be studied. It was 

too complex for Galileo; and it was a stumbling block to Descartes; but perplexity is the be- 

ginning of knowledge. Some of the most important concepts and principles of dynamics center 

about the pendulum. . . . 

Mechanics is in a peculiar sense an Italian science. Its first and simplest chapter — Statics — 

was written by Archimedes in Sicily. Its earliest applications to engineering were made by 

Vitruvius, Frontinus, and Leonardo da Vinci. Its second and most fundamental chapter — 

Dynamics -- was written by Galileo who conceived the idea of acceleration as the criterion of 

force. The final chapter (in a certain sense; in the true sense, there is no final chapter in science) 

of classical mechanics was written by Lagrange, a native of Turin. The pendulum is the first great 

dynamical problem solved outside of Italy. 

H. Crew, The Rise of Modern Physics (The Williams & Wilkine 
Company, 1935), pp. 131-132. By permission of the publishers



CHAPTER FIFTEEN 

WAVE MOTION AND SOUND 

ie VELOCITIES of pulses propagated in an clastic Quid, ate in a xatio compounded of the 
subduplicate ratio of the elastic force directly, and the subduplicate ratio of the density in- 

versely; supposing the elastic force of the uid to be proportioual to its condensation. 
Proposition XLVI, Book I, of Newron’s Prin= 
copia, as translated by Anpxew Morte in 1729 

° 

If we consider what experience has taught us about the various ways 
in which energy can be transferred from one point to another, we find 

that these ways fall into two general classes. Perhaps the most ob- 
vious of these is the passage of matter from point to point, as when a 
projectile possessing kinetic energy passes from a gun to a target, 
when a fuel possessing stored-up heat of combustion is transported 

from the mine to the consumer, or when energy is carried by the wind, 
by running water, or by the charges in an electric current. The 
second class may be illustrated by the transmission of mechanical 
energy by means of a moving axle or shaft, by the propagation of 
sound energy through matter, and by the transmission of energy of 
motion by ocean waves. This second method, in all cases that come 
to our notice in ordinary experience, is characterized by the fact, that 
it involves the existence of a continuous, material medium which 
extends from the source of the energy to the point where the energy 
is utilized. In some cases the transfer of energy through the con- 
tinuous medium consists solely of a propagation of a state or con- 
dition of some kind from the one point to the other without any 
motion of the medium as a whole. This important process is called 
wave motion, and it is the one to which we shall give our attention in 
this chapter. 

When a rod is struck on the end with a hammer, a single wave- 
pulse in the form of an endwise compression of the rod travels along 
its length. If the rod is struck periodically, a succession of similar 
pulses is sent along it, and this constitutes what is called a wave-train. 
The idea that sound energy from, say, the vibrating string of a musi- 
cal instrument is propagated through air in this manner was familiar 
to ARISTOTLE.’ ‘With modern apparatus it is possible actually to 
  

‘See D, C. Miller, Anecdotal History of the Science of Sowid (Macmillan, 1935), 
p.3. 

360
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measute the exceedingly minute variations of pressure! that con- 

stitute an ordinary sound wave; and, what is more striking, these 

waves have been photographed (Fig. 199) and the photographs ap- 
plied to the development of scientific methods of determining the 

acoustical properties of large buildings and auditoriums.? 

  

  

  

    

  

  

a 6 

Fic. 199. Photographs of sound pulses in a gas. The pulse is produced by an electric 
spark which is placed behind a shield so that the light from the spark will not reach 
the photographic plate. The pulse is photographed by passing light through it from 
a-second spark which is produced automatically a fraction of a second after the first 
one. The time interval between the two sparks may be varied at will. In a the 
spherical pulse bas just emerged from behind the light shield and is spreading out so 
that after a few thousandths of a second it occupies the position shown in.b. [A. L. 

Foley and W. H. Souder in Physical Review 35, 373 (1912)] 

A good illustration of how waves originate and upon what proper- 
ties of a medium their propagation depends is afforded by the 

familiar water waves that emanate from a point where a stone dropped 
into the water strikes the surface. Series of photographs taken at 
  

1A sound whose frequency is 500 vib - sec"! will be just audible if it produces a 

variation in the pressure of the air of 10-3 dyne - cm-? or 10-9 As. Such a variation 

requires an amplitude of about 10-9 cm [see H. Fletcher, Speech and Hearing (Van 

Nostrand, 1929), pp. 182~166]. The energy of sound waves is thus very small, and 

the ear must be extremely sensitive in order to detect such minute variations in pres- 

sure. “Ifa million persons were to talk steadily, and the energy of their voices were 

to be converted into heat, they would have to talk for an hour and a half to produce 

enough heat to make a cup of tea” (R. L. Jones in Bell Laboratories Record). 

2 Various methods of recording and photographing sound waves are described in 

D.C. Miller, The Science of Musical Sounds (Macmillan, 1916), Lecture III. For a 

description of the method of spark photography see, for example, E. G. Richardson, 

Sound (Longmans, Green, 1927, 1935), p. 17; A. B. Wood, A Textbook of Sound 

(Macmillan, 1930), p. 340; or A. Wood, Sound Waves and their Uses (Blackie, 
1930), p. 19.
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various stages of such disturbances! show that the surface of the 
water under the stone is forced down, leaving a hole, and that the 
water forced out of the hole first piles up about the edges and then 
begins to fall back into the hole and also forward upon the outer 
undisturbed surface; because of the inertia of the water, this action 
does not cease when the hole has been filled but. goes on until a de- 
pression is formed where the water previously was heaped up, and 
the liquid piles up on each side of this new depression. The whole 
process is then repeated until the viscous resistance brings the 
oscillating liquid to rest. 

It should be evident from these considerations that if energy is 
to be transmitted through a medium by means of waves, the medium 
must possess either the following properties or else properties that 
are physically analogous to them: 

a, There must be a tendency for the medium to return to its 
original condition after being disturbed. In large water waves 
gravity is the cause of the return, and in ripples it is the surface 
tension. In sound waves the requisite restoring force is due to the 
elastic nature of the matter through which sound travels, 

b. The medium must be capable of storing up energy; that is, it 
must possess inertia. 

c. The frictional resistance must not be so great that the oscillatory 
motion cannot take place. The absorption of wave-energy by fric- 
tion is called damping. 

° 

Speeds of Waves in Elastic Mediums 

The study of waves that are propagated through matter by virtue 
of the fact that matter possesses elasticity very evidently has its 
foundation in the application of the theory of vibratory motion 
(Chap. 14) to the fundamental laws of elasticity as revealed by dy- 
namical and statical investigations (Chaps. 5 and 8). Since our 
present discussion will be confined almost entirely to such types of 
waves, we shall for the most part be on quite familiar ground, for we 
have merely to extend our study of elastic vibrations so as to be able 
to describe their transmission threngh a medium. Studies of this kind 
were begun early in the history of elastic theory by GaLILEo,? and 
since then have been associated with such great names as MARIN 
  

‘Many stich photographs are reproduced in A, M. Worthington, A Study of 
Splashes (Longmans, Green, 1908). 

= * Two New Sciences, " First Day.” Much of our knowledge of GALILEO’s achieve- 
ments in the field of acoustics is derived from MERSENNE. 
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MERSENNE,! NEWTON,? YOUNG,? ERNST CHLADNI,! the brothers 

WEBER,* FELIX SAVART,* and, more lately, HELMHOLTz,’ KaRL 

RUDOLPH KOENIG,® and RAYLEIGH.® 

183. Speed of a Compressional Pulse in Any Homogeneous, Isotropic 

Medium. We will first consider the speed of propagation of a com- 

pressional pulse in a homogeneous, isotropic, elastic medium. For 

convenience of analysis imagine a portion of the medium to be con- 

tained in a rigid tube of unit cross-sectional area and of infinite 
length. Let the density of the medium be represented by p and the 

pressure under which it stands before any compression is produced 

by P. Let the medium be conceived 
to be divided into unit cubes, 1, 2, Ss Sa 
3, etc., as in Fig. 200. Imagine one =a lel is 

end of the tube to be closed by a Fic. 200. Model used in deriving the 
massless, frictionless piston, and let theoretical expression for the speed 
the piston suddenly be started for- of a compressional wave in an elastic 
ward by the application to it of a medium 
constant pressure slightly greater 

than P, namely, P+ dP. There will then be started down the tube a 

compressional pulse which will travel through the medium with some 
speed v. It is this speed which it is desired to determine. 

As soon as the piston starts to move forward, cube 1 begins to be 

compressed and the pressure inside it rises. When this pressure has 
reached the value P + dP, the cube will cease to be compressed any 

farther and thenceforth will merely transmit pressure to cube 2. 
Call — dV the change of volume, measured in fractions of a unit of 
length, which cube 1 thus experiences. Under the action of the 
pressure P+ dP transmitted from cube 1 to cube 2, the latter also 
  

1 Harmonie Universelle (Paris, 1636). An abridgment in English is given in 

J. Hawkins, A General History of the Science and Practice of Music (London, 1853, 
1875), pp. 600-616. 

2 Principia, Bk. II, Sec. VIII. 

3 Philosophical Transactions 90, 106 (1800); Lectures on Natural Philosophy and 

the Mechanical Arts (1807); Miscellaneous Works, ed. by G. Peacock (London, 1855), 
Vol. I, p. 64; Vol. II, p. 141. 

* Enideckungen tiber die Theorie des Klanges (Leipzig, 1787); Die Akustik (Leipzig, 
1802); Neue Beytrage zur Akusitk (Leipzig, 1817). 

5 W. E. and E. H. Weber, Wellenlehre auf Experimente gegriindet (Leipzig, 1825). 
5 Annales de Chimie et de Physique (1819-1840). 

7 Vorlesungen uber die mathematischen Principien der Akustik (1898): Die Lehre 

von den Tonempfindungen (1862), On the Sensations of Tone, tr. by A. J. Ellis (Long- 

mans, Green, ed. 1, 1875; ed. 2, 1885; ed. 3, 1895; ed. 4, 1912). 

8 Quelques Expériences d’Acoustique (Paris, 1882). 

° The Theory of Sound (Macmillan, 1877, 1894).
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will be compressed an amount —dV and thereafter will merely 
transmit the pressure P+ dP to cube 3. Similar reasoning may be 
applied to the remaining cubes in their numerical order. Since the 
tube has unit cross section, a reduction — dV in the volume of any 
particular cube, such as 6, is accompanied by a forward motion of 
the piston through a distance numerically equal to — dV, and each 
of the cubes previously compressed (namely, 1, 2, - - +, 5) will move 
forward a distance numerically equal to — dV. Thus, as the pulse 
moves down the tube, the piston, and with it all the compressed cubes, 
will move forward uniformly. Since v represents the speed of the 
pulse, and since the cubes have unit length, it follows that in unit 
time each of » cubes will experience the compression — dV, During 

the same time the piston will therefore have moved forward a dis- 
tance #(— dV), The average speed of the piston is therefore »(— dV). 
Evidently this is also the expression for the speed with which all the 
cubes which have been compressed are moving forward at the end of 
unit time. 

Now the speed » with which the pulse moves forward may be 
found by an application of NEWTON'S principle of work (Sec. 46) as 
follows, In the foregoing operation the acting force is numerically 
equal to the pressure applied to the piston, namely, P+-dP. The 
work done by this force in unit time is (P+dP)-v(—dV). This 
work accomplishes two things: (a) all of the substance contained in 
v cubes acquires potential energy by being compressed from a con- 
dition in which it exerts a pressure P to one in which it exerts a 
pressure P+ dP; and (b) all of the mass contained in v cubes ac- 
quires an average speed of amount »(— dV), The mean force over- 
come in the first operation is half the sum of the initial and final 
forces, namely, P+-4dP, and the work done against this force in 
unit time is (P+4dP)-v(—dV). In the second operation, since the 
mass of each cube is p, and since in unit time » cubes are set in mo- 
tion with an average speed v(— dV), the average kinetic energy im- 
parted in unit time is 4 po - 2°(— dV)*, Now, by the work principle, 
the work done by the acting force is equal to the sum of the potential 
and kinetic energies imparted to the substance; hence we have 

(P+ dP) -0— av) = (P+ 9) (dV) +5 poh dV 

or I= pav" [281] 

Since we are dealing with unit cubes, the quantity dP/dV is the 
force applied per unit area divided by the change in volume per unit
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Coxzapon and Sturm’s 

Determination of the Speed of Sound in Water 

Lake of Geneva, Switzerland, 1827 

From a restoration in the Deutsches Museum, Munich
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Diagram of Coutanon and Sroax’s Apparatus 
for Determining the Speed of Sound in Water 

Two soars were stationed 13,487 m apart (see Plate 48). A bell suspended from 
one of the boats was struck under water by means of a lever m which at the same 
moment caused the candle I to ignite the powder p and set off a visible flash of light. 
An observer in the second boat with a listening tube measured the time which 
clapsed between the flash of the light and the sound of the bell. ‘The mean of a 
number of such observations gave a value of 9.4 sec. ‘The temperature of the water 
was 8°C. The speed of sound in water at 8° C is therefore 13,487/9.4, or 
1435 m+ sec", The results were reported in detail in the Annales de Chimie ct de 
Physique (2) 36, 236 (1827) and in Poggendorff's Annalen der Physik und Chemie 12, 

171 (1828).
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volume, and this, by Eq. [110], Chap. 8, is equal to — k, where & is 
the volume modulus of elasticity of the medium. Hence, finally, we 
have for the speed of a compressional wave in any homogeneous, 
isotropic medium ; 

, p [282] 

This result was obtained by NEWTON by a very difficult type of 

reasoning but one that clearly shows his great genius; it appears in 

the Principia! (In what units must & be expressed in Eq. [282]?) 
Since the foregoing expression involves only the constants k and p 

of the medium, it is evident that a pulse once started will travel on 

and on down the tube at a rate which has nothing whatever to do 

either with the size or shape of the tube or with whether the piston 
continues to move forward or not. In other words, we have deduced 
a general expression for the speed of a compressional pulse in the kind 
of medium under consideration. The expression must hold for the 
speed of propagation of a sound pulse that originates at a point 
within the medium and spreads radially from the center of dis- 

turbance; for in this case, as in the case just discussed, the pulse is 

one of pure compression, since the particles are free to move only in 

one direction, namely, along radii emanating from the point of dis- 

turbance. 

It will be interesting to see how well the results obtained by the use 

of this formula, which has been deduced from purely theoretical consid- 
erations, agree with the results of direct experiment. In 1893 AmaGaT? 

published results of his experiments on the compressibility of water which 
showed that at 10° C a change in pressure from 1 to 50 atmospheres pro- 
duced a change in volume from 1.0000 to 0.99757 cm’. From these data 

we get as a theoretical value for the speed of a compressional pulse in 
water at 10°C 

_ 49 x 76 X 13.6 x 981 _ i” 

= \E= ~~ Tx 0.00243. = 143,000 cm - sec 1430 m «sec 

J.D. CoLLapon and J. K. F. Sturm made a direct measurement of the speed 

of sound in Lake Geneva in 1827 and obtained a value of 1435 m - sec! at 
8° C (see Plates 48 and 49). The difference between this value and the one 
calculated from Eq. [282] is well within the limits of observational error. 

Water, obviously, is the only liquid in which large-scale measurements of 
the speed of sound are practicable. In recent years the methods of sub- 
marine signaling have been applied to experiments in sea water. Charges 

  

1See the quotation at the beginning of this chapter. 

2 Comptes Rendus 116, 41 (1893).
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are exploded under water, and simultaneously radio signals, instead of 
yisible-light signals, are sent out. The sound pulses are received by 
microphones.t 

Since both & and p in Eq. [282] in general vary with temperature, 
the speed of a compressional wave also depends on the temperature.” 
In water above 4°C, k increases with temperature whereas p de- 
creases ; hence » increases with temperature for water above 4° C. 

184. Wave-trains and Wavelengths. If in the case of the tube 
and piston of Fig. 200 the applied pressure had been P — dP in- 
stead of P+dP, the piston would have started back instead of 
forward, and cube 1 would have expanded until its pressure reached. 
the value P — dP, which expansion would have been followed by a 

similar expansion of cube 2, etc. Thus a pulse of rarefaction instead 
of one of condensation would have traveled down the tube, and. 
reasoning in every respect identical with that which precedes shows 
that, the speed of this pulse also would have been V/k/p. 

It is important to observe that in a pulse of condensation the 
particles of the medium are always moving in the same direction as 

the pulse, whereas in a pulse of rarefaction the direction of motion 
of the particles is always opposite to the direction of propagation of 

the pulse. If the piston is moved alternately forward and backward 
at regular intervals, a wave-train, or succession of compressions and 
rarefactions, will follow one another down the tube. In this case it is 
evident that the motions of all the particles of the medium follow, i 

succession, exactly the motions of the piston; that is, each particle 
moves forward for an interval of time that is just equal to that re- 
quired for the piston to move forward, and backward for an interval 
just equal to that required for the piston to move backward. If then 

the piston is replaced by the vibrating prong of a tuning fork or by 
any other body that vibrates under the influences of its own elasticity, 
the backward motion will begin at exactly the instant at which the 

forward motion ends, and hence at the end of one complete vibration 
of the prong — that is, at the end of the time required for the prong 
to go from A to C and back again to A (Fig. 201)— the whole of 
the medium between the prong A and some point a to which a pulse 
travels during the period of one vibration may be divided into two 

  

‘E. B. Stephenson, Physical Reniew (2) 21, 181 (1923); E. A. Eckhardt, Physi- 
val Review (2) 24, 452 (1924); A.B. Wood and H. E. Browne, Proceedings of the 
Physical Society of London 85, 183. (1923); Proceedings of the Royal Society 103, 
284 (1923). 

* For data on the speed of sound in various substances and at various temperatures, 
see International Critical Tables, Vol. VI, pp. 461-467.
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equal parts, ac and cA, such that all the layers between c and a@ are 

moving forward and are in a state of compression, while all the layers 
between c and A are moving backward and are in a state of rare- 

faction. The relative velocities of these layers are represented in the 
figure by the arrows. As the fork continues to vibrate, the whole 
region about it becomes filled with a series of such waves, each wave 
consisting, as in Fig. 201, of a condensation and a rarefaction. The 

distance between the beginnings of two successive condensations or 

two successive rarefactions, or, in general, the distance between any 

two successive particles that are in the same condition or phase of 

vibration, is called a wavelength. It is obvious that if represents the 

A Cx <«—-<« ¢ >> -4@ 

UL 

Fic. 201. Wave-train maintained by the vibrating prong of a tuning fork 

speed of the wave-train, v the frequency of the fork in vibrations per 
unit time, and » the wavelength, then the following relation holds: 

v=)». [283] 
A distinction often made between a musical note and a mere noise is 

that the former consists of a train of waves, whereas the latter consists 

either of a single pulse or of irregularly timed pulses. This distinction is, 

however, not sufficient. Many sounds due to regularly timed pulses are in- 
terpreted as noises because they are too complex in 1 structure to be analyzed 
and understood by the ear. 

185. Speed of Sound in an Ideal Gas. In applying Eq. [282] to the 

calculation of the speed of sound in a gas, NEWTON assumed that the 
small volume strains that make up a sound wave were proportional 
to the stress. This would be the case, according to BOYLE’Ss law, if 

sound waves produce no temperature changes in passing through a 
gas. On this assumption the bulk modulus of an ideal gas, as we have 

already seen (Sec. 93), is equal simply to the pressure P under which 
the gas stands. Hence
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If the gas is air under ordinary circumstances, then P is simply the 
barometric pressure expressed in absolute cgs or fps units. By using 
this formula and the data at his command, NewTon! calculated a 
value for the speed of sound in air which was nearly 16 percent smaller 
than the best experimental values. He ascribed this discrepancy to 
the fact that the molecules of the actual atmosphere occupy space, 
and tried to explain it by assuming that 16 percent of the linear 
distance traversed was thus occupied, and that the sound, passing 
instantly through the molecules, required time only to traverse the 
interspaces, There is no justification for this assumption, however. 
In 1738 a commission appointed by the French Academy of Sciences 
made the first really accurate experiments on the speed of sound in air. 
Cannons were fired at two stations about 18 mi apart, and observers 
at these stations recorded the time interval between flashes and re- 
ports. By combining the various observations, the effect of the wind 
was eliminated. The results were still so much larger than NEWTON'S: 
theoretical value that the discrepancy could not be explained by de- 
partures from the ideal gas laws. 

It was more than one hundred and twenty years after NEWTON 
published his calculations when LaPLAcE * pointed out that the pas- 
sage of sound through a gas is an adiabatic process and not an iso- 
thermal one, as NEWTON had assumed it to be.’ Now it was stated 
in Sec. 145 that for small strains taking place adiabatically the volume 
  

1 Principia, Bk. 11, scholium to Sec. VIII. For a discussion of the experimental 
values which NEWTON had at his disposal, see *A, Wolf, A History of Science, Tech- 
nology, and Philosophy in the 16th and 17th Centuries (Allen & Unwin, 1935), 
p. 286; also *D. C. Miller, Anecdotal History of the Science of Sound (Macmillan, 1935), 
pp. 27-29. 

* Mémoires de l'Acadimie des Sciences (1738). 
"Annales de Chimie et de Physique (2) 8, 238 (1816); 20, 266 (1822); Trailé de 

Mécanique Ciéleste (1823), Vol. V, Bk. XII. See also S. D. Poisson in Journal de 
L'Ecole Polytechnique (1807); Annales de Chimie et de Physique (2) 28, 5 (1823). 

4 It is sometimes said that the process is adiabatic because the sound vibrations 
are so rapid that the temperature inequalities produced by the compressions do not. 

have time enough for equalization. But this statement implies that Newton's ex- 

pression, Eq. [284], would give correct values provided the frequency were made low 
enough, whereas experiment. shows that just the opposite is the case. RAYLEIGH 

[The Theory of Sound (Macmillan, ed. 2, 1896), Vol. II, p. 28] has shown that the 

heat conduction actually increases with the frequency, and an analysis based on 

kinetic-theory considerations [E. U. Condon, The American Physics Teacher 1, 18 

(1933)] shows that heat conduction should cause appreciable departures from the adia- 

patie behavior only for waves of such high frequency that the wavelength is compa- 

rable with the mean free path of the gas molecules, that is, fora wavelength of 10-5 cm 

approximately. Ordinarily sound is of too low, rather than too high, a frequency for 
the process to be isothermal.
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modulus of elasticity of an ideal gas is given by k= yP, where y is 

the ratio of the two specific heats of the gas and P is the pressure as 

before. Hence on this view the theoretical expression for the speed 
of sound in an ideal gas is 

v= pe [285] 

which gives results in conformity with experimental values.1 Con- 

versely, this formula makes it possible to obtain the value of y with 
great accuracy from experiments on the speed of sound. 

In view of the equation of state of an ideal gas (Sec. 105) and the 
definition of density, Eq. [285] may be rewritten in the form 

v= ae, [286] 

in which M is the molecular weight of the gas. From this equation 

we may conclude that the speed of sound in ideal gases depends only 
on the kind of gas and the temperature, and is wholly independent of 

changes in pressure. Thus its speed on a mountain top is the same 

as that at the foot of the mountain if the temperature is the same at 

both places. If we denote by » the speed of sound in a given gas 
at T° K and by vp the speed in the same gas at T° K, and apply 

Eq. [286], there results 

=o r 

By substituting in this equation the best determination of the speed 
of sound in dry air at 0°C, namely? 331.45 m - sec—1, one finds that 

the speed of sound in air increases about 0.6m for each degree 
centigrade of rise in temperature. 

186. Speed of Compressional Waves in Thin Solid Rods. The 
analysis in Sec. 188 shows that if a medium is confined in a rigid 
tube so that there is no possibility of its expanding laterally, the 
speed of a compressional wave depends only upon the volume 
modulus of elasticity and the density of the medium. This condi- 

tion is realized also when a disturbance originates in the interior 
of an elastic medium of great extent in all directions. But when the 
wave travels along a thin rod of solid material, slight lateral expan- 
sions and contractions occur in that portion of the rod which is 

  

  . [287] 

  

1 *For discussions of the experimental determinations of the speed of sound, see A 

Dictionary of Applied Physics, ed. by R. Glazebrook (Macmillan, 1923), Vol. IV, 

pp. 687-691; A. B. Wood, A Textbook of Sound (Macmillan, 1930), pp. 229-271; 

E. G. Richardson, Sound (Longmans, Green, 1935), Chap. 1; . J. H. Poynting and 

J. J. Thomson, Sound (Griffin, 1899), pp. 22-31. 

2%*International Critical Tables, Vol. VI, p. 462.
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undergoing the volume strain. Hence if we imagine a rod of unit 
cross section divided into unit cubes after the fashion of Sec. 183, 
and apply a small pressure dP by means of a piston at one end 
(Fig. 200), then while each cube is undergoing a volume compression 
of amount —dV the piston will move forward not now —dV, but 
some distance ds numerically a trifle larger than — dV. From reason- 
ing identical with that given in Sec. 183 an equation results which 
differs from Eq. [281], that is, from 

1dP t=\ cay’ 

in no respect save that ds replaces — dV. We obtain, then, 

r= [288] 

But dP is the force applied per unit area, and ds is the change in the 
length of the rod per unit length. Hence, by Eq. [107], Chap. 8, 

dP/ds is YOuNG's modulus Y. Thus in thin rods compressional waves 
move with a speed given by the expression 

ir P 
187. Speed of a Transverse Wave along a Stretched Wire. It will 

be noted in what precedes that we have considered merely the 
longitudinal motion along the axis of the rod and, safely enough if the 
rod is thin, have not taken into account the fact that a solid has 
shear elasticity as well as volume elasticity (Sec. 94). In substances 

that possess shear elasticity an additional type of elastic wave motion 
is possible — namely, transverse wave motion, which is characterized 
by the fact that the particles of the medium vibrate in paths which 
are perpendicular to the direction of propagation of the wave. The 
waves that travel along a rope when one end is caused to vibrate 
by the hand are of this sort. Transverse waves obviously may be 
regarded as having two degrees of freedom (Sec. 143), for the particles 
can vibrate in two independent directions at right angles to the direc- 
tion of propagation. Compressional, or longitudinal, waves, on the 
other hand, have only one degree of freedom, since the particles move 
in the line of propagation of the wave itself. In substances that do 
not possess shear elasticily, longitudinal waves are the only kind 
of elastic waves possible, 

Let us now consider the case of a transverse wave-pulse sent. down 
a stretched string, such as the string of a violin. It will be assumed 
that the string is perfectly flexible and uniform and that it is stretched 

[289]     



15 - 187} Wave Motion and Sound 371 

so tightly by a force f, as in Fig. 202, that the effect of the weight 

of the wire can be neglected in comparison with the stretching force. 

We will limit the problem to small displacements which do not change 

appreciably the tension of the string; this simplifies matters and is, 

after all, the only case of practical im- 

portance. Let the string be plucked 

at one end, so that a transverse pulse 

is sent down it. The expression for f 

the speed of this pulse can be deduced 
most satisfactorily with the aid of the Fic. 202. Transverse wave-pulse 
calculus,‘ but can also be obtained by ™ @ string. The. string may be 

the following method, which is due to Paced under a constant stretch .. Ing force of known magnitude by 
P. G. Tait.2 Let the curve mno in passing one end over a pulley and 
Fig. 203 represent a portion of the hanging a weight from it 
stretched string over which the de- 
formation is being propagated. Let As be an element of the string 

so small that it may be considered as the arc of a circle of radius 7. 
Since the string is assumed to be flexible, the only force of apprecia- 

ble magnitude that is urging the element toward the center C arises 

from the force f in the string, and this may be regarded as a pull 

acting tangentially at each end of the arc As. The sum of the centrip- 

etal components of these two forces is 2 f sin @ =2f-4As/r=f As/r, 

since 6 is small. But since the deformation mmo is propagating itself 
unchanged in character along the string, each element of the string 

must assume in succession the positions occupied at any instant by 

all the other elements. In other words, at the instant which we have 
been considering the configuration asso- 
ciated with the element As isnot moving 

at all in the direction of C, but is instead 

moving into the position of the adjacent: 

element on mno:; that is, it is moving with 

a speed # along the circumference of the 

circle which has r for its radius. Hence 5, 993, Speed of a transverse 
its acceleration is entirely centripetal, wave ina stretched string 
and the force in absolute units needed to 
produce this acceleration is, by Eq. [234], Chap. 14, o- As- v?/r, 

where o is the mass of unit length of the string. But since this force 

is also equal to f As/r, we have finally ¢ - As - v?/r =f As/r, or 

r= Jt [290] 

1See Fig. 207. 2 Dynamics (A. & C. Black, 1895), p. 283. 
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Thus the speed of a transverse wave in a string is a function only of 
the stretching force and the linear density. 

Transverse waves may also be sent along heavy rods, the wave 
traveling as a result of the shear elasticity of the substance of which 
the rod is composed. A consideration of the speed of propagation 
of these waves, however, is beyond the scope of this book, 

188. Waves in Solid Bodies. Because a disturbance will, in gen- 
eral, be transmitted through a solid body by transverse as well as 

RADIO TIME SIGNAL 
9:00:09 AM., BST 

” 

  

Fic, 204, Seismogram showing hotizontal motions of the earth at the Seismological 
Laboratory of the California Institute of Technology and the Carnegie Institution of 
Washington, Pasadena, California, on july 17, 1934. ‘The source ofthe disturbance 

was 4900 kin away. At the time marked P the disturbance began with small longi- 
tudinal vibrations which were followed 6 min 26 sec later by stronger transverse 
vibrations’S. Both ofthese wave mations came chrough the body of the earth. “The 
surface waves L arrived 3 min 30 sec later. This shock was destructive in Panama 

longitudinal waves, the general problem of wave motion in a solid is 
exceedingly complicated, even for the case where the solid is iso- 
tropic as regards elasticity. The problem? first attracted the atten- 
tion of AuGustiIn Louis Caucny and Siméon Denis Porsson, two 
mathematicians of the highest order, because of certain important 
developments in the theory of light which had just been advanced 
by THOMAS YOUNG and by AUGUSTIN JEAN FRESNEL; this occurred 
in 1821, in the same year that NaviER published his formulation of 
  

1A, L. Cauchy, Exercices de Mathématique (1830); S. D. Poisson in Mémoires de 
Académie des Sciences 8 (1829); Rayleigh, The Theory of Sound, Chap. XXII, The 
problem was treated exhaustively by G. G. Stokes, ‘On the Dynamical Theory of 
Diffraction," Transactions of the Cambridge Philosophical Society 9, 1 (1849), also 
Mathematical and Physical Papers (Cambridge University Press, 1883), Vol. II, p, 243.
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the differential equations of elasticity (Chap. 8). We will briefly set 

down some of the chief results, without proof. 

For a large mass of matter of volume modulus of elasticity #, shear 
modulus z, and density p, the speed of the longitudinal wave turns 

out to be ee 

a a=8. [291] 

On the other hand, the purely transverse waves, such as those that 

would be set up by the torsion of a cylinder, travel with the speed 

= ve [292] 

which is always considerably less than that of the longitudinal waves. 

(What do these general expressions reduce to in the case of a fluid?) 

Seismic waves are both transverse and longitudinal. Seismograph records 

(Fig. 204) taken at an observing station some distance from the source of 
an earthquake indicate three distinct sets of waves: (a) longitudinal waves 
which have come directly through the body of the earth with a speed of 

about 8 km - sec™!; (b) transverse waves, also direct, with a speed of about 

4.5 km -sec7!; and (c) large-amplitude surface waves, known as ‘* RAYLEIGH 

waves,” which are analogous to water waves and penetrate to a small depth 
only. Since the speeds of the various types of waves are known, the time 

between their arrivals gives the distance of the disturbance from the station. 

© 

The Equation of a Wave 

Before we proceed with further analysis, it is important to get 

clearly in mind the general characteristics of wave motion. Fig. 205 
should prove helpful for this purpose, and the student’ should also 

review Secs. 173 to 177, which deal with the kinetics of simple vibra- 

tory motion. 

A summary of these important characteristics, in so far as they 

apply to waves in an elastic medium, reveals that 

a. The particles of a medium through which a wave is passing are 
in vibration, and for a simple wave in an elastic medium these motions 

are simple vibratory in type (Sec. 173). 

b. There is a progressive change of phase of the motions of the 
particles as one goes along the wave, but at regular intervals there 

are particles in the same phase; the distance between two such suc- 

cessive particles is called the wavelength x.
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c. Although the particles themselves merely vibrate about their 
positions of equilibrium, they form at any instant a definite con- 
figuration, called the wave-form. This wave-form travels through the 
medium with a speed v that is determined, in the case of an elastic 
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Fic. 205, Morion of the particles of a medium due to the oscillatory motion of a 
piston, The un ubesof Fig. 200 are here replaced by verve lines.) represents 

  

the state of the medium before the piston has hegun to move. (b) represents its state 
when the piston has undergone its greatest displacement to the right and is ready 
to return, a condition which is represented by the double arrow. In the upper line 
of arrows cach arrow represents the direction of displacement of the layer toward 
which it paints. The small arrows below the vertical linea show the directions of 
the motions of the layers, A zero below any line indicates either that the medium 15 
at its equiliberum position or that it is just changing the direction of its motion at 
the end of 1ts path, The succeeding diagrams show the progression of the initial 
covidengation andthe subsequent rarchvetion for the indicated positions-and diree- 
tions of motion of the piston. Obviously a condensation exists, for example, at 
4 in (b), since the layers are there crowded together, and a rarefaction exists at 4 in 

(a), since the layers are there separated 

wave, by the elasticity and density of the medium. The wave travels 
a distance of one wavelength during the time that a single particle 
makes one vibration. 

d, The period T of a wave is the same as the period of vibration 
of any one of the particles, and the frequency v of the wave is equal 
to the number of such vibrations in unit time. 

e. The amplitude of the wave, or maximum displacement of the 
particles, depends upon the intensity of the disturbance which the 
particles are propagating.
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189. Change of Phase along a Wave. Equations of a Simple Elastic 

Wave. We will now consider these characteristics more analytically 
in connection with the transmission of transverse waves. Thus, if all 

the particles in the line XX’, Fig. 206 (a), are connected elastically, 
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Fie. 206. Displacements of the particles in a transverse wave 

and if particle.1 is given a displacement in a direction perpendicular 
to XX’, then this displacement will be communicated successively 
to particles 2, 3, 4, etc. Further, if particle 1 is caused to vibrate 

with sirnple vibratory motion across XX’, then all the particles 2, 3, 

4, etc. will in succession take up this simple vibratory motion across 

XX’; in other words, a transverse wave will travel along XX’. Now, 

it was shown in Sec. 175 that the displacement s of a particle which 
is executing simple vibratory motion is given by the equation 

s= Asin (2+ Cx) =A sin (Eat cx), 

in which A is the amplitude of the vibration, (2 wt/T) + Cz is the phase, 
and the constant C2 is the so-called phase constant, or phase at the 

instant f=0. For our present purposes we shall find it most con- 

venient to agree to reckon times ¢ from some instant when the particle 
is at the center of its path, so that s=0 when t=0. This makes the 

phase constant C2 equal to zero, and the foregoing equation becomes 

s=Asin 22 t. [293] 

Thus the vertical displacement of any particle such as 2 in Fig. 206 (f) | 
at any time ¢ after it has left its position of equilibrium is 

._ 20 
ye= Asin tl. 

The displacement at this instant of another particle such as 3 in 

Fig. 206 (f) is, of course, different. Thus, suppose that this particle
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leaves its equilibrium position /’ units of time after particle 2 has 
left its equilibrium position. The displacement of 3 at the instant 
considered is then obyiously 

yo= Asin 2S". 
  

And similarly the displacement of any particle is represented by an 
expression of the form y = A sin 2 7(t—1')/T, or 

‘ tf y=Asin27 ($ Fs 5) [294] 

where /’/T is called the phase difference between the particle under 
consideration and the reference particle. 

It is evident that the particle for which /’ is equal to T will be in 
a state of motion similar to that of the reference particle 2 and there- 
fore will be the one whose distance from the reference point is a 
wavelength \, While the disturbance is traveling forward this dis- 

tance ) [for example. in Fig, 206 (f) from 2 to 14], the particle 2 makes 
one complete vibration; that is, the wave travels a distance ) in 
time 7, or has a speed v which is given by 

v=}. [295] 

Finally, let us denote by x the distance of any particle under con- 
sideration (for example, 3 in Fig. 206) from the reference particle, 
The phase difference t'/7 in Eq. [294] may then be expressed in 
terms of x and the wavelength \ by means of the evident relation 

fo, 
TX (296) 

Substitution of this expression for the phase difference in Eq. [294] 
gives ; Pry 

yaAsinan(2—$). [297] 

This is the equation of a simple elastic wave of amplitude A, period 
T, and wavelength ), which is traveling in the positive direction 
along the X-axis. An instantaneous “picture” of the wave at any 
given time fy can be obtained by putting ¢ equal to / in this equation 
and plotting y as a function of x; the result obviously will be a sine 
curve that repeats itself in intervals of time T and in intervals of 
space \ [Fig. 206 (f)]. If, on the other hand, we select some particular 
value of %o and watch the motion at this point as time progresses, 
substitution of xo for x in Eq, [297] tells us that the motion will be 
simple vibratory, with initial phase C) = — 2 7x0/).
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EXampLe. Show that the equation for a simple wave may be expressed 

in the alternative form 
x yaa sin 2 (1 -4), [298] 

where » is the speed of the wave. As convenience suggests, either this 
expression or Eq. [297] may be used to express the displacement. 

Although these equations have been derived explicitly for a trans- 
verse wave, they hold equally well for a longitudinal wave, except 
that in the latter case the displacement is parallel to the X-axis. 
Hence the confusion resulting in the diagram for compressional waves 

(Fig. 205) from the fact that the displacements are parallel to the 
direction of wave motion may be obviated by plotting those dis- 
placements vertically. With that convention in mind, Fig. 206 (5), 
(c), (f) may be taken to represent the progression either of a longitu- 

dinal or of a transverse wave. 

190. The General Equation of a Wave. Eqs. [297] and [298] are usu- 
ally referred to as integrated forms of the wave equation because, as we will 

now show, they are merely one solution of a much more general and very 

powerful differential equation, called the wave equation. This equation can 

be deduced by differentiating both members of Eq. [298] twice with respect 
to the time # and also twice with respect to the distance x, and then combin- 
ing the two resulting equations. In performing these differentiations it must 

be kept in mind that y in Eq. [298] is a function of the two independent 
variables ¢ and x, and hence that a differentiation of y with respect to 2, 
say, amounts to allowing? alone to vary while x is temporarily held constant. 
In such a case the derivative is called the partial derivative of y with respect 
to 1, and is denoted by the symbol ! dy/ét. 

Thus, taking the partial derivative of y with respect to 7 in Eq. [298], 

  

  

we have 
Oy 427 yg 2m ()_ B= APT co9 2 (! *). [299] 

Differentiating a second time with respect to 7? gives 

ay _ Am om x a2 7) sin Tr (! *), 

or, in view of Eq. [298], a?y_ A? . 

oT [800} 

  

1 Given y = F(x, 1), then by definition 

Oy _ lim F(x, t+ Ad — F(x, d). 

Gt aso At ; 

oy _ lim F(x + Ax, 1) ~ F(x, D. 

similarly, Ox ax>0 Ax
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In a similar manner, partial differentiation of Eq. [298] twice with re- 

spect to x gives Cy = 14? 

Ox? oy? -T? > 

By eliminating the quantity (— 4 7*y/T?) from Eqs. [800] and [301], we 

have finall 
° Os 52 OY [302] 

ot? Ox?’ 

in which v is the speed of propagation of the wave. This is the differential 
equation of a transverse wave which is traveling along the X-axis and in 

which the particles are vibrating in the y-direction. From either Fig. 207 

or Eq. [290] we know that » = Vf/o. 
It will be noted that the wave equation in differential form does not con- 

tain the sine function which appears in Eq. [298], the equation from which 

it was deduced. In other words, the equation in differential form applies 
not only to sinusoidal waves but also to waves in which the vibrations of 
the particles are other than simple vibratory in nature. Moreover, although 
we have deduced the equation for the case of a certain transverse wave, the 

same line of reasoning might be applied to a longitudinal wave by replacing 
the transverse displacement of the string, here designated by y, by either 

the longitudinal displacement or the pressure variation. Thus we might 

write 2 2 
chan Zt, [303] 

where P represents the variation of the pressure from the normal pressure. 
From these considerations it is easy to see why the differential form of the 

wave equation is so powerful and why it is one of the most frequently in- 
voked equations in all of theoretical physics. 

[301] 

EXAMPLE. Compute the total kinetic and potential energy per unit 
length of a stretched string along which a transverse wave is traveling. 

Solution. The transverse speed of any particle of the string is given by 

Eq. [299], and hence the kinetic energy per unit length is 

_ I oy 1940? 5 2T/, x 
E==0o0 (4) =3 oA 2 C08? (: *). [304] 

The restoring force per unit senath is, in view of Fig. 207, o - 0?y/ol?, and 
this may be written (Eq. [800]) as —oa-47*y/T*; hence the potential 
energy per unit length is ° 

y= —J force distance = J. oy: dy ees 
T? 2 

or vaio arsine 22 at -). [305] 
9° 

The total energy per unit lena i is therefore 

a=] get | coe 2 (¢—2%) 4 sine 22 (7-2 E+V= 5 7 TE [cos T (: =) + sin T (: 5) | 

14247? 

= 304" “Ta 

  

    

  [306]
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The total energy of a string of given density and period, and having a given 

amplitude, is therefore constant. The energy is seen to vary with the square 

of the amplitude, the latter being 

determined by the vigor with which 

the string is plucked. Note that 
the average kinetic and potential 
energies are the same.t 

191. Pitch and Loudness of 

Sound. In the preceding sec- 
tions we have seen that any 

wave motion. possesses, besides 
its speed of propagation, the char- 
acteristics of frequency, ampli- 

tude, and wave-form. Instead 

of the amplitude, it is often 
more useful to speak of the 
intensily of the wave, this being 

measured at any point by the 
amount of energy that passes in 
uni lime through unit area taken 

Y £ 
mS Laz 
{PF Tal 

~~ x 

Fig. 207. Method of deducing the speed 
of a transverse wave in a stretched string 
with the aid of the calculus. An element 
Ax of the string has a vertical acceleration 
0*y/0t® because there is a difference be- 
tween the ycomponents of the two stretch- 
ing forces f acting tangentially at the two 
ends of the elements; this difference is 
fsin o2—f sind =f (sina2—sina))= 
f[é (sin &) /@x] Ax. For small displace- 
ments, sin @& = tan a= Oy/@x (see Appen- 
dix 3), and therefore the difference may 

be written f [0?y/0x2] Ax. By Newcow’s 
second law this force is equal to the 
product of the mass and acceleration of the 
element, namely, 0 - Ax - 0?y/0t?, where 
@ is the linear density. Hence, finally, 

07/08 = [f/o] - [6?y/ex?]. By compar 

agation at the point. In the case “® this equation wit Bat [302], we 
of sound, intensities ordinarily i/o 
are measured in microwatts per square centimeter of the sound wave 
striking an ear or other acoustical receiver. One can show with little 

difficulty (see Sec. 190) that the intensity of any wave is proportional 
both to the square of its amplitude A and to the square of the 
frequency »v. 

In dealing with sound phenomena one must distinguish carefully 
between the foregoing characteristics of the wave motion, which 
are purely physical and objective in nature, and the psychological 
characteristics of the resulting sound as they are perceived through 

the human ear. These psychological characteristics are pitch, loud- 
ness, and quality (Sec. 206), The pitch of a note depends chiefly on 
the frequency of the wave striking the ear,? although recent studies? 
have shown that our judgments of pitch are also affected somewhat 

normally to the direction of prop- 

have v= 

  

1 Compare with Prob. 12, Chap. 14. 

2 Obviously, it is incorrect to say that it depends chiefly on the wavelength; as 

can be seen, for example, from the fact that a tuning fork vibrating with a given fre- 

quency produces a note of the same pitch regardless of whether it is in a cold room 
or a warm one. 

3 For a brief summary of this work, see H. Fletcher, Bell Laboratories Record 18, 

130 (1935).
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by the intensity and form of the incoming wave. For example, the 
note from a tuning fork of frequency 262 vib-sec~}, which corre- 
sponds to middle C on the international musical scale, will decrease 
markedly in pitch when the loudness of the note is doubled, even 
though the frequency of the fork has remained unchanged. 

The loudness of a sound is closely related to the intensity of the 
wave entering the ear; but experiment shows that it increases not as 
the intensity increases, but roughly as the logarithm of the intensity : 
on the average, any given intensity must be increased by about 
26 percent of itself before the ear will record a difference in loudness. 
Moreover, just as pitch is not dependent on frequency alone, so is 
loudness dependent not only on intensity but also on the pitch and 

wave-form. For example, thousands of times as much energy is re- 
quired to produce an audible sound of 30 vib - see~! as would be re- 
quired at 2000 vib-sec~'. In the range 800-1800 vib - sec—! the effect 
of the frequency is not large, however, and here the loudness and in- 
tensity are related ina relatively simple way. There is at the present 
time no theory of hearing that is adequate to explain these and all 
the other complicated auditory phenomena which have been revealed 
by modern experimentation. Suffice it to say, the simple picture of 
the action of the human ear given in many books on elementary 
science is far from being adequate, 

Interference Phenomena 

192. Superposition of Two or More Simple Waves. Interference. 
Our treatment so far has been concerned with simple waves in which 
each particle of the transmitting medium is acted upon by an elastic 
restoring force which varies directly with the displacement. This is 
the kind of wave that is set up in a medium by a vibrating tuning 
fork, or by any other source which vibrates with a single frequency. 
But we shall see eventually that most bodies can vibrate in many 
different ways at the same time. For example, a trained ear can de- 
tect several tones of different frequencies in the note from a large 
bell or from a violin string. Such vibrating bodies consequently set 
up in the surrounding medium a complex wave consisting of simple 
waves of different frequencies and amplitudes which traverse the 
same portion of the medium simultaneously. 

As a result, each particle of the medium is subjected to as 
many forces as there are component simple waves, and since these 
forces are wholly independent of one another, each force will pro-
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duce its own simple vibratory motion. The problem of describing 

a complex wave therefore reduces to one of learning how to add 
the several component displacements that make up the complex 

displacement. 

The simplest case is that of two simple sinusoidal waves of the 

same period and phase but unequal amplitudes A’ and A”, which are 

traveling together along the same line. The displacements y’ and y”’ 
in the two component simple waves are, by Eq. [297], 

yf =A'sin2a (74) 
T 

‘t x . and y' =A" sin 2 (5 7 5): 

hence the resultant displacement y in the complex wave is 

yay ty = AFA sin2 (RF). [807] 

In other words, the resultant wave is a sinusoidal wave of the same 

period and phase, but its amplitude is the sum of the amplitudes of ° 
the component waves (Fig. 208). 

Any modification of amplitude due to the superposition of waves 
is called interference. 

If the component waves differ in phase or in period, the addition 

is most easily accomplished graphically; this is done simply by 

Y| 

A+A" 
ae 

  

    
Fic. 208. Illustrating the addition Fig. 209. Addition of two 
of two simple waves which have simple waves which have the 
the same periods and phases but same period but different phases 
different amplitudes and which are and amplitudes and which are 

traveling in the same direction traveling in the same direction 

adding the ordinates of the sine curves which represent the com- 

ponent simple waves. 
If the components differ in phase and in amplitude but not in 

period, as shown in Fig. 209, the resultant wave is a sinusoidal 

wave with the same period as the components but an intermedi- 
ate phase.
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If the periods of the component waves are different, a wave o. 
the type shown in Fig, 210 is obtained; the resultant wave is not 
sinusoidal in this case. ¥ 

This whole problem of the ad- 
dition of simple waves to form 
complex ones was generalized by 

FourIerR ! in 1822, in a very impor- 
tant mathematical principle known 
as Fourier’s licorem. FOuRTER found 
that any periodic disturbance or 
wave-form of permanent type can 
be represented as a summation of simple vibratory terms of the type 

+, [308] 

where the A’s and the C’s are the amplitudes and phase differences, 
respectively, of the component waves. By means of this theorem a 
complex wave may be analyzed into its components, and ingenious 
methods have been devised for doing this mechanically. Such 
FOURIER analyses have proved to be of great practical value? in 
the design of musical instruments, radios, and alternating-current 
dynamos, 

198. Beats. Fig. 211 represents a case of interference that has 
particular interest in the case of sound waves. Since the two com- 
ponent wave-trains here do 

not have quite the same pe, 4\\VUINMMIVINMUIUNAN 
o ANI 
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Fis. 210, The resultant of two si 
nusoidal waves having different pe- 

riods is not a sinusoidal wave 

y= A, sin (+ C,)+ Agsin (2 6+ Ce) + Aa sin (36+ Cy) + 

  

riod, their phase difference, and 
hence the amplitude of their 
sum, undergoes periodic varia- 
tions at any given point along 
the wave. Thus, suppose that 
ihe waves are compressional 
waves coming from two tuning 
forks of slightly different fre- 
quencies v; and v2 and suppose 

that the ear is placed at some 

Fis. 211. (q) and (b) represent two simple 
waves of slightly different period, and (c) 
is the resultant complex wave formed when 
they traverse the same portion of a medium 

simultancously 

point along the wave. Obviously, if a compression due to one source 
reaches the ear al the same time as a rarefaction from the other 
  

* See Sec, 178. 
+See "D.C. Miller, The Science of Musical Sounds (Macmillan, 1916); also *H. 

Fletcher, Speech and Hearing (Van Nostrand, 1929), which describes the extensive 
work done in this field in the Bell Telephone Laboratories, W, E. Byerly, An Ele- 
mentary Treatise on Fourier’s Series (Ginn, 1893), pp. 63-64, is also recommended.
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source, there will be destructive interference. But since one source is 
vibrating slightly more rapidly than the other, an instant later two 
compressions or two rarefactions will be in coincidence at the ear, 
and there results then a reinforcement or constructive interference. 
These alternations in the intensity of the sound when two tones 

interfere in this way are called beats. The interval between two suc- 

cessive beats is simply the time needed, at a given point, for one of 

the wave-trains to gain 2 7 radians in phase over the other train. 
Hence the number of beats occurring in unit time will be equal to 

v, — ve, the difference in frequency of the two sources. 

As was pointed out by HELMHOLTZ,! the phenomenon of beats is the 

physical basis of dissonance. So long as the number of beats produced by 
sounding two musical notes together is not more than five or six per second, 

the effect is not particularly unpleasant. From this point on, however, the 
beats begin to become indistinguishable as separate beats and pass over into 
a discord. HELMHOLTZ showed that the unpleasantness becomes worst at a 

difference of frequency of about 30 vib-sec71. When the difference isas much 
as 60 vib - sec™, the effect is again harmonious. The fact that the number of 

beats heard per unit time equals the difference of the frequencies of the com- 
ponent vibrations provides a ready method of measuring small differences 

of frequency, and is the principal means employed in tuning such instru- 
ments as the piano, organ, and violin. The superheterodyne radio receiving 
set makes use of beats produced by electric oscillations of different 

frequencies. 

194. Stationary Waves. The phenomenon known as stationary 

waves is the result of the action on the particles of a medium of two 
waves of the same period and amplitude that are traveling in opposite 

directions. Fig. 212 (a2) shows two such oppositely moving trains A 
and B at a particular instant when the crests of A are opposite to the 

troughs of B, and vice versa. The heavy horizontal line shows the 
resultant displacement of the particles at this instant. Obviously 

each one of the particles transmitting the motion is under the action 

of two disturbances that tend to produce equal and opposite dis- 
placements, and as a result the particles suffer no displacement at all. 

In Fig. 212 (@) is shown the situation at a later moment, when each 

of the waves has progressed an eighth of a wavelength; that is, when 
the waves have become displaced a quarter of a wavelength with 

respect to each other. Similarly, when one wave has moved a half- 
wavelength past the other, the resultant is again zero at every point, 

as in Fig. 212 (a). 
  

1 Die Lehre von den Tonempfindungen (1862), tr. by A. J. Ellis under the title 

On the Sensations of Tone (Longmans, Green, ed. 4, 1912), Chap. VIII.
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At the points marked N, N’, N”’, distant from one another by a 
half-wavelength, the resultant displacement is always zero. All such 
points where the interference is such that there is never any motion 
of the particles are called nodes. At points midway between the nodes 
the two component waves are in exactly the same phase; these 

  

  

Fig, 212. Showing the resultant of two oppositely directed similar waves at 
two different moments during their passage 

points are called antinodes or loops, and here there is a maximum of 
motion, At all points between the nodes the particles are in constant 
vibration, but all pass through their positions of equilibrium at the 
same time. There is therefore no phase difference between successive 
particles, and hence the wave is entirely devoid of progressive char- 
acter. It is for this reason that the wave resulting from the super- 
position of two oppositely directed similar wave-trains is called a 
stationary, or standing, wave. It is important to see the distinction 
between a wave that is progressing and ‘ & 
one that is stationary. When, for exam- SeSsSE 
ple, a progressive transverse wave passes 

along a stretched string, no portion of Fic. 213. Stationary transverse 
the string remains stationary ; instead, wave in a stretched string. The 
all the particles move in precisely the avy line shows the position of the string at a given instant. 
same way and to the same extent, but When the segment NN’ is mov- 
not simultaneously, each succeeding  jng up, that between N/ and N’’ 
particle being a little later in its move- is moving down, and vice versa 
ments. If, on the other hand, two simi- 
lar but oppositely directed transverse waves are passing along the 
string, thus forming a stationary wave, the string never moves at 
the nodes and the amplitude of motion is always a maximum at the 
antinodes; between any pair of adjacent nodes the particles move 
up or down together, and on opposite sides of a node the displace- 
ments at any instant are in opposite directions (Fig. 213).
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Similar considerations hold for a standing wave of the longitudinal 

type. As will be evident from Fig. 214, the greatest variations of 

pressure occur in such a wave at the nodes, 
where there is the least motion, whereas the 

smallest pressure variations occur at the anti- 
nodes, where there is the greatest motion. In 

other words, our definitions of nodes. and anti- 

nodes refer to displacements. If we were inter- 
ested in the distribution of pressure along a 
standing longitudinal wave, we might make use 
of the idea of ‘pressure nodes” and ‘pressure 
antinodes.”” A pressure node would then be 

defined as a point where the pressure does not 
change; that is, it is a displacement antinode. 

These ideas about standing waves which we 

have obtained from a study of the diagrams 
may also be developed from a consideration of 

Eq. [297]. Let 
p : t * 

y =A sin2 (4-5) 

represent the equation for the displacement 

given to the successive particles by the one 

component wave-train. The oppositely directed 

component wave-train must be one which at 

some given instant of time, say ‘= 0, imparts 

to the same particles displacements that are 

equal in magnitude but opposite in direction to 

N N’ 

me ee tt eee 

Fig. 214. Graphical 
representation of the 
displacements of the 
particles in a station- 
ary longitudinal wave. 
The particles have just 
begun to return from 
their positions of max- 
imum displacement, 

from the heavy to the 
light line. At the node 
N a condensation is 
forming, and at N’ a 

rarefaction. After half 
a period conditions 
will be reversed. In 
the neighborhood of 
any given antinode, 
however, the particles 
are moving in the same 
direction with approx- 
imately the same speed, 

so that their relative po- 
sitions are only slightly 

changed 

those imparted by the first component [Fig. 212 (@)]. The equation 

y= Asin2a(5+5) [309} 

satisfies this condition and therefore represents the equation of the 

second component wave. The resultant displacement y is therefore - 

yay ty" =Asinda(S <) +4 sin 2 (7+ x): 
T X 

By expansion ! and addition this becomes 

y= (2.4 cos 2m 5) sin 2 mF 
A T 

TTX 

[310] 

  

1 Employing sin (@ + ¢) = sin @ cos @ + cos @ sin ¢.
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In order to be able to interpret this equation, consider first the equa- 
tion for a simple wave, namely 

y=Asin2 (z-%) 

and notice that it consists of two parts: the first part is the amplitude 

Aand the second is a sine function of the time ¢ and a phase difference 

x/. Now in theexpression for » just obtained (Eq. [310]), sin 2 rt/T 

is the sine function of the time. And evidently, since the phase differ- 

ence does not appear in this expression, the particles must all be in 

the same phase of vibration. Similarly, 2.4 cos (2 wx/A) represents 

the amplitude. But since x represents the distance of the particles 

under consideration from the reference particle, it is evident that the 

amplitude varies for successive particles. Also, since cos (2 3x/h) 

is zero when x is an odd multiple of 4/4, it follows that there are 

nodes, or points of zero amplitude, at points differing successively 

by half-wavelengths. Furthermore, the algebraic sign of cos (2 wx/A} 

changes at these same points. Alt these conclusions are in agreement 

with those previously obtained with the aid of the diagrams. 

° 

Huygens’s Principle and the Phenomena of Reflection, Refraction, 

and Diffraction of Waves 

195. Some Preliminary Ideas about Reflection and Refraction. 

When a wave arrives at the surface of separation between two differ- 

ent mediums, part of the wave is reflected into the medium in which 

it originally was traveling (Fig. 215) and part is transmitted into the 

new medium. The amount of reflection depends on the relative 

speeds of the wave in the two mediums, none occurring if these speeds 

are equal. 

Thus when sound passes from air to water, less than a thousandth part 
of the energy is transmitted, nearly all of it being reflected, and the same is 
true of sounds produced under water when they reach the surface. On the 
other hand, when sound passes from dry air to air saturated with water 
vapor, or the reverse, practically all of the energy is transmitted. This is 
also the case when the difference between the two mediums is one of tem- 
perature merely. In an auditorium most of the sound heard is reflected 
sound, and for this reason reflection is an important factor in architectural 
acoustics. The phenomenon of reflection ismade use of in deep-sea soundings 
and in so-called echo-prospecting, which includes the various methods of 
determining the depth of mineral deposits below the surface of the earth 
by reflection of sound waves from the boundary between the less dense 
earth and the denser mineral layers.
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Tus intustration, which was taken 

from AtHanastus Kircuer’s Musurgia 

Universalis sive Ars Magna Consont et 

Dissons (Rome, 1650), through the 

courtesy of The Huntington Library, 

San Marino, California, accompanies 

the earliest known account of the cele- 

brated ‘‘bell in a vacuum”’ experiment. 

A glass bulb, shown at the top of the 
woodcut, containing a small bell and 

iron clapper, was cemented to the top 
of a long lead tube closed at the bottom 

by a stopcock. A partial vacuum was 
produced in the glass bulb by filing 
the whole apparatus with water, then 

opening the stopcock and draining off 
some of the water. The iron clapper 

was manipulated from outside the glass 
bulb by means of a loadstone or natural 
magnet. As Professor D. C. Miller re- 

marks in his interesting Anecdotal His- 
tory of the Science of Sound, ‘Perhaps 

this use of a magnet to control a de- 

vice in a vacuum is of more interest 

than the bell experiment, especially 

as the latter was then interpreted as 

showing that the air is not necessary 
to the transmission of sound.” 

The Musurgia. Universalis, a book 

of nearly 1200 pages, copiously illus- 
trated with fine copperplates, wood- 
cuts, and music, is “an encyclopaedia 

of the knowledge of sound of the 17th 
century.” A digest, in English, of 

this elaborate and entertaining work 

will be found inJ. Hawkins’s A General 

History of the Science of Sownd and Prac- 
tice of Music (London, 1853, 1875), 

pp. 635-644. See also D. C. Miller’s 

Anecdotal History of the Science of Sound 

(Macmillan, 1935), pp. 14-18. 

  

      
  

The First “‘Bell in a Vacuum’”’ 

Experiment 
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Tconifmus XV Bl.264 

      One of the Many Fine Copperplates 

in A. Kircuer’s Musurgia Universalis (Rome, 1650). 

It Illustrates Multiple Echoes 

Reproduced through the courtesy of The Huntington Library, San Marino, Californiz
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When any wave passes from one medium into another in which 
its speed is different, its line of propagation changes. Such a change 
in the direction of the transmitted portion ofa wave is called refraction. 

Thus if different layers of the atmosphere are at different temperatures, 

a sound wave passing through them will tend to travel in a curved rather 
than a straight path. When sound waves in one gas are made to pass 

through a lens-shaped bag containing another gas of different density, the 
results are similar to those observed when light is passed through a lens. 

  

        
Fig. 215. Showing two stages of a reflected sound pulse, as revealed by spark 

photography. (Kindness of Professor A. L.. Foley) 

Refraction experiments of this kind have also been made with acoustic 
lenses made of pitch, with rubber vessels containing water, and, in one case, 
with a biconvex lens which consisted of a large balloon containing carbon 

dioxide. 

196. Diffraction. Besides refraction, there is only one other case 
where waves do not travel in straight lines. This is when they pass 

by an obstacle. Waves tend to curl around obstacles; that is, they 
do not form sharp shadows. Thus sound waves can be heard around 
corners and water waves entering a harbor can be seen to spread into 
the region behind a breakwater. Any change of this kind in the 
direction of propagation of waves, not caused by a variation in the 

properties of the medium but due to the bending of the waves about 
obstacles, is called diffraction. The amount of diffraction in any case 
depends on the dimensions of the obstacle compared with the wave- 
length of the waves. A large obstacle, such as a hill, casts a fairly 
sharp sound shadow, whereas a small object, such as a tree, will not 
cast an observable sound shadow unless the frequency of the sound 

is very high. 
197. Rays and Wave-Fronts. In our treatment of wave motion up 

to this point we have found it most convenient to confine our atten-
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tion to the lines along which disturbances are traveling. Such a line 
which marks the direction of propagation of a wave-train may be 
called a ray of wave-energy. 

Consider, now, S in Fig. 216 to be the point source of a wave 
motion in a homogeneous and isotropic medium, that is, a medium 
in which the disturbance is propagated with equal speed in all] di- 
rections. When a disturbance originating at S has just reached a, it 
has also then just reached all other points, such 
as b and ¢, which are at the same distance from 
S. The spherical surface passing through these 
points is called the wave-front of the disturbance. 
In general, the wave-front may be defined as 
the surface passing through adjacent particles 
which are in the same phase of vibration; that 

is, ina wave-front the particles reach their maxi- Fie. 216. A spherical 
mum positive or negative displacements at the wave-front 
same time. 

The form of the wave-front under the conditions just mentioned 
is spherical, but it will be shown later that conditions may arise in 
which it has not this form. In Fig. 199 the photographed sound pulse 
is spherical ; this is because it originated at a point source (the spark) 
in an isotropic medium. In Fig. 215 the sound pulse reflected from 
the plane surface also is seen to be spherical, Moreover, like the 

wave incident on the surface, it is diverging, that is, convex toward 
the direction in which it is traveling. Later we shall see that under 
proper conditions a spherical wave may be converging, that is, con- 
cave toward the direction in which it is traveling, If the source of a 
disturbance is a great distance away, any small portion of the spherical 
wave will be sensibly plane. A wave having a plane wave-front is 

called a plane wave. 
In any isotropic medium the rays, or directions of progression of 

the wave, are always at right angles to the wave-front. Thus in 
Figs. 199 and 216 the rays emanate radially from the source and 

are normal to the spherical wave-front. In the case of a plane 
wave, the raysare evidently parallel. It will be found that a dia- 
gram sometimes conveys clearer ideas when it represents rays, and 

at other times it is clearer when it represents wave-fronts. Which 
method we shall use in any given case is merely a matter of clearness 
and convenience. 

198. Huygens’s Principle. A means of locating the wave-front at 
any time, if its position at some previous time and its speed of propa- 
gation are known, is afforded by an important theorem that was 
enunciated by HuyGEns in connection with certain problems in the 
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theory of light. In his Traité de la Lumiére* (1690), HUYGENS points 
out that ‘‘In considering the propagation of waves, we must remem- 
ber that each particle of the medium through which the wave 
spreads does not communicate its motion only to that neighbor which 
lies in the same straight line drawn from the source of the disturbanc> 
but shares it also with all the particles which 

touch it and resist its motion. Each particle is 
thus to be considered as the center of a wave.” 
In other words, any particle in the wave-front 

of a disturbance may be considered as a point 
source from which is spreading out a spherical *s 

wave. Thus let WW, Fig. 217, be the instanta- 

neous position of a wave-front which has come 
from a disturbance at S. In order to find where 
this wave-front will be after an interval of time 
At, draw spheres of radii »At, where » is the 

speed of the wave, about each point of the wave- 
front WW. The envelope of these spherical 
secondary waves (namely, W’W’) is the required new wave-front.2 

It would appear from HUYGENs’Ss construction that a disturbance 
should be propagated back to its origin as well as forward. In 1826 
FRESNEL? pointed out that this did not happen because of inter- 
ference effects, and later KirncHHOFF ‘+ showed by a mathematical 
analysis that the secondary waves from the individual sources really 
do destroy one another by mutual interference except at the surface 
W'W’. The wave is therefore propagated only in the direction away 
from the origin. . 

Fig. 218 shows how HuyGens’s construction explains the phenome. 
non of diffraction, or the spreading of waves into the region behind an 

obstacle. Diffraction is thus seen to be a universal property of waves 

which must be exhibited by waves of any type in any medium. 
HUYGENS’S principle may also be employed to predict the direc- 

tion and curvature of a wave reflected from a plane surface, such as 

  

Fic. 217. Huycens’s 
principle 

  

1 There is a translation by 5. P. Thompson (Macmillan, 1912). See also The Wave 

Theory of Light, ed. by H. Crew (American Book Co., 1900) and *A Source Book in 
Physics (1935), pp. 283-294. 

2 A more comprehensive and advanced treatment of HuyGENs’s principle will be 

found in P. Drude, The Theory of Optics, tr. by C. R. Mann and R. A. Millikan 

(Longmans, Green, 1902), Part II, Chap. 3. 

3 Mémoire Couronné [Mémoires de Académie des Sciences (1826), Vol. 5]. A por- 

tion of this memoir appears in *A Source Book in Physics (1935), pp. 323-324. 

*’Wiedemann’s Amnalen der Physik 18, 663 (1883); Vorlesungen ilber mathe- 

matische Optik (Leipzig, 1891).
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the reflection photographed in Fig. 215. In Fig. 219, WWW is the 
position the advancing wave from S would have reached at a certain 
instant if it had not encountered the plane surface. Actually, how- 
ever, when it reached 0, which is the nearest point on the reflecting 

   7 
Fre. 218, How Huvcens’s construc- Fig. 219. Method of applying Heycens's 
tion explains diffraction. The wave- principle to ttace the path ofa wave which 
front curls in behind the obstacle strikes a smooth plane surface 

surface to S, 0 became, according to HuyGEns's principle, a center 
of a secondary wave. At immediately succeeding intervals the suc- 
cessive points on the reflecting surface were also reached by the in- 
cident wave-front and in turn became sources of secondary waves. 
These secondary waves emitted by each successive point on the re- 
flecting surface have for their envelope the 
spherical surface WW’ W. It will be noticed 
that the reflected wave appears to come 
from a point behind the reflecting surface. 
Moreover, in the present, case of a plane re- 
flector, this point is as far behind the reflec- 
tor as the source is in front of it, 

If, in Fig. 219, we center our thoughts on 
the rays rather than the wave-fronts, it will 
be evident from the construction that at a Fis. 220. At any point on 
given point on the reflecting surface the in- @" reflector the angle of 
cident ray and the reflected ray make the idence + 18 caual to the 
same angle with the normal to the reflector ® . 
at that point (Fig. 220); in other words, at each point of a reflect- 
ing surface the angle of incidence is equal to the angle of reflection. 

  

‘This law of reflection — namely, that the angle of incidence is equal to 
the angle of reflection — may also be derived from an important principle 

first enunciated by PIERRE de FermAt' and called Fermat's principle of 
  

1 Guores (Gauthier-Villars, 1891-1912). The paper on the refraction of light ap- 
pears in *A Source Book in Physics (1935), pp. 278-280,
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least time. As applied to reflection, FERMAT’S principle is as follows. Con- 
sider that the ray of wave-energy is traveling from a source S to a point S’ 
over the path SOS’, Fig. 220. Evidently SO/v is the time of travel before 
reflection and OS’/v is the time of travel after reflection. Then, according 
to FERMAT, the path of the wave is such that the total time (SO/v + OS'/2) 

is a@ minimum. A simple geometrical proof will show that this will be true 
if the angles of incidence and reflection are equal. 

EXAMPLE. Given that a source of disturbance 0 is at an infinite distance 
from a smooth plane reflector and in a direction which is not normal 

to the reflector, prove by drawing a diagram and applying HUYGENS’S 

principle that the reflected wave will be a plane wave, and that for any 

ray the angle of incidence is equal to the angle of reflection. What 

if the surface is not smooth? 

199. Change of Phase on Reflection. In order to get a more inti- 

mate physical picture of just what happens at a boundary where 

reflection is occurring, let us consider the particular case of a com- 

pressional wave reflected from the end of the rigid tube described in 

Sec. 183. If a compressional pulse is sent down the tube, it progresses 

in a manner which is strictly analogous to that of the direct impact 
of perfectly elastic balls of equal mass (Sec. 65). So long as the pulse 

travels in a medium of uniform density, each layer of particles gives 

up all its motion to the next layer, which is precisely like it, just as 

a moving elastic ball striking a stationary elastic ball of the same 
mass gives up all its motion to the stationary ball and itself comes to 

rest. But if the pulse at some point O, Fig. 221, strikes a denser 

medium than the one in which it is al- : 
ready traveling, the case becomes analo- 

gous to the impact of one ball upon an- 

other that is more massive ; the less dense 
medium adjoining O on the left, instead 
of coming to rest in the impact, reverses 

its motion and starts back. This back- 

ward motion is communicated from layer 
to layer so that a reflected compressional 

pulse travels from O back toward the 
source of the disturbance. Let the long arrows in Fig. 221 represent 

the directions of propagation of the pulse before and after reflection 
and the short ones the respective directions of motions of the parti- 
cles in the pulse. It is evident that the direction of motion of the 
particles with respect to the direction of propagation of the pulse is 

the same in the reflected as in the incident pulse. In other words, a 

pulse of condensation is reflected from a denser medium as a pulse 

of condensation. Another way of stating this is to say that the dis- 

  

  

Fic. 221. Reflection o a longi- 
tudinal pulse from a denser me- 

dium, and its analogue
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placements of the parlicles undergo a change in phase of m radians upon 
reflection from a denser medium. 

But suppose the medium to the right of the interface 0 is Jess dense 
than the one in which the pulse is initially traveling (Fig, 222); then 
the case is analogous to the impact of a 
ball of large mass with one of small mass. 
Until the pulse reaches 0 each layer in 
the tube gives up its motion to the next 
and itself comes to rest. But the layer 
at O, instead of coming to rest after the 
impact, continues to move forward and 
thus produces a rarefaction; that is, @ Fig. 222, Reflection of a longi- 
diminution of pressure at 0. The excess of tudinal pulse from a less dense 
pressure in the layer to the left of 0 then medium, and its analogue 
drives particles toward the right, Thus 
a pulse of rarefaction moves back from the boundary 0. In other 
words, a pulse of condensation is reflected from a rarer medium as a 
pulse of rarefaction. In the pulse approaching O the particles move 
in the direction of propagation of the pulse, whereas in the reflected 
pulse they move in a direction opposite to that of the propagation of 
the pulse (Fig. 222). The displacements of the particles therefore do not 
undergo any change of phase upon reflection from a rarer medium. 

The same process of reasoning shows that a 
rarefaction ts reflected from a denser medium as 
ararefaction, but from a less dense medium as a 
condensation. 

Similar considerations also apply to transverse 
waves. When a transverse pulse is sent along 
a string that is either fastened at one end (Fig. * 
223) or attached to a heavier string, a crest is Ew 223. Roles 

reflected from the boundary as a crest; just as me fa fed ead oP 
in the case of a compressional wave reflected string 
from a denser medium, the displacements of the 
particles are reversed in phase by the reflection. If the end cf the 

string is free or is. attached to a lighter string, a crest sent along the 
string is reflected as a trough without change of phase. 

  

    

  

° 

Sound Phenomena Duc to Reflection 

200. Resonance of Vibrating Air Columns. Partial Tones. When an 
air wave traveling in a pipe reaches the open end, it experiences the 
same sort of reflection as though it passed from a denser to a rarer
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medium. This statement can easily be proved experimentally. It is 

also evident from the theoretical consideration that as soon as the 

wave reaches a point at which lateral expansion is possible, the forward 

movement of the particles is greater than inside the pipe, where 

lateral expansion is not possible. This increased forward movement 

at the open end of the pipe means a rarefaction starting back in the 

pipe. 
Consider now a train of waves of wavelength \ approaching the 

open end of a pipe the other end of which is closed (Fig. 224). In the 
condensations of the advancing wave-train the motions of the par- 

ticles are all in the direction of propagation of the. wave, whereas 
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Fie. 224. Wave-train entering a pipe. The first compression has just reached the 
mouth of the pipe 

in the rarefactions they are in the opposite direction. Suppose the 

pipe to have a length that is exactly one fourth the wavelength, of 

the incident waves. Then the condensation marked c will move into 
the pipe and be reflected at the closed end as a condensation, that is, 

as a motion of the particles now from right to left. It obviously will 

return to the open end at the instant at which the rarefaction marked 

7, which also consists of a motion of the particles from right to left, 

reaches the open end of the pipe. Since the reflected condensation 

which has returned from the closed end now undergoes reflection 

at the open end as a rarefaction, with a consequent motion of the 

particles from right to left, it unites as it starts back along the pipe 

with a rarefaction 7 which is just entering the pipe, and a wave of 

rarefaction of increased amplitude is the result (Sec. 192). This 

wave is reflected at the closed end as a rarefaction (motion from left 
to right) and again at the open end as a condensation (motion from 
left to right), exactly in time to unite with the condensation marked 
c’ as it enters the pipe. Thus by this process of continuous union of 
direct and reflected waves the amplitude of the vibration in the pipe 

becomes larger and larger until it may be hundreds of times as large 
as in the original wave. In fact, there would be no limit to the 
amplitude of the waves traveling up and down the pipe if at each end 

energy were not partially transmitted to the outside air. The pipe 
thus becomes, in a way, the source of sound. Any phenomenon of
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thie kind in which a body is set into vigorous vibration by an agi- 
tation having a period that corresponds to one of the natural periods 
of the body is called resonance. 

If the pipe had been only a trifle longer or shorter than \/4, the 
error in the coincidence of the first reflected condensation ¢ with 
the incoming rarefaction 7 would have been slight. Since, however, the 
reflected waves now must travel, each time they 
traverse the length of the pipe, a distance a little I 
too great or too small, they soon get completely a [ 
out of step with the advancing waves. In this 
condition the direct and reflected waves tend to 
destroy rather than reinforce one another, and no 
resonance is possible. This explains why, when 
the length of the pipe is even just a trifle more or 
less than the right amount, very little resonance t 
occurs. If, however, the pipe is continually length- 
ened, other resonant lengths are obtained. The 
length £=/4 is one that permits c to return to Fw: 225. Method 
the mouth of the pipe exactly in time to unite af ¢ Toot te = - ; : speed 0 of soun 
with r. This length is manifestly the shortest pos- jy air by means of 
sible resonant length. It is clear that the next closed pipe. The 
possible resonant length is one which permits ¢ wavelength of the 
to return exactly in time to unite with 7’. Since 7! incoming: wave Is 
is a distance \ behind r, the second resonant pipe ¢<tsmined by ad. 
length must be one-half wavelength greater than the pone until the 
the first ; that is, L=3(/4). Similarly, it is possi- note of the tuning 
ble to obtain resonance for L=5(A/4), L=7(A/4), fork is strongly re~ 
and soon} that is, when the length L of the pipe forced. Then, by 
is an odd multiple of one fourth of the wavelength Eq. (283), he=vh, ‘ 4 fs where y is the 
) of the train of waves entering the pipe.! Such a |nown frequency of 
pipe of variable length may be employed, for ex- the fork. (See Exp. 
ample, to determine experimentally the speed of — XVa, Part Ill) 
compressional waves in a gas (Fig. 225). 

If, on the other hand, the pipe length is kept constant and the 
wavelength of the incoming waves is varied, it follows at. once that 
a succession of wavelengths \, Az, As, and so on, will be found to 
which the pipe will respond, and that \y=41, \o=4 1/3, etc. 

  

  

‘Experiment shows that the theoretical value for the shortest resonant length, 
namely 4/4, is slightly too large. ‘The discrepancy is explained by the fact that a 
condensation returning to the open end does not reach full freedom of Jateral expan- 
sion until it has passed a short distance beyond the mouth of the tube. RAYLEIGH 
estimated that for a tube of radius R this distance is not far from 0.82 R [Tite Theory 
of Sound, ed. 2 (Macmillan, 1894), Vol. IT, pp. 183, 4871.
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These wavelengths bear the ratios 1: 4: 4, etc. Hence the frequencies 
of incoming waves which are able to produce resonance in a closed 
pipe must bear the ratios 1:3:5:7, and soon. The tone of lowest 
frequency to which a given pipe can respond is called the fundamental 
or first partial tone of the pipe; the tones of higher frequency are 

called its overtones or upper partials. When the frequencies of the 
overtones, as in this case, are integral multiples of the fundamental 

frequency, the overtones are also called harmonics of the fundamental 
tone. 

ExampLe. By employing an analysis similar to that used for the closed 

pipe, show that the phenomenon of resonance can also be obtained 
with a pipe which is open at both ends and that the shortest resonant 
length must be one half the wavelength of the incoming train. Also 
show that such an open pipe should produce resonance when its length 
is any multiple whatever of \/2. 

The fact that a length of an open pipe can indeed always be found 
which will respond just as loudly to a given note as any closed pipe, 

and that this length is twice as great as that of the shortest resonant 

closed pipe, may be taken as a complete experimental demonstration 

of the statement made at the beginning of this section as to the 
nature of the reflection occurring when a wave reaches the open end 

of a pipe. It is left as an exercise for the student to show that the 
tones which will produce resonance in a given open pipe of fixed 

length must bear the frequency ratios 1:2:3:4, etc. We may say, 

then, in summary, that in closed pipes only the odd overtones are 

possible; in open pipes all the overtones, even and odd, are possible. 

In either case, the overtones are harmonics of the fundamental tone. 

201. Natural Periods of Pipes and the Production of Tones by Air Jets. 
Not only will a given pipe, open or closed, intensify trains of waves of 

certain definite wavelengths which present themselves at its mouth, 
but a single pulse entering such a pipe must be returned, by virtue 

of successive reflections at the ends, as a succession of pulses follow- 

ing one another at equal intervals. In other words, a single pulse 
must be given back by the pipe as a musical note, of very rapidly 

diminishing intensity, it is true, but of perfectly definite wavelength. 

Furthermore, this wavelength must be the wavelength of the train 

that is capable of producing the fundamental resonance of the pipe. 
For example, if the pipe is a closed one, then the first time the pulse 
returns to the mouth after reflection at the closed end it will produce 
an outward motion of the particles near the mouth, the next time an 

inward motion, and so on; that is, the pulse must travel four times 

the length of the pipe in the interval between the appearance of two
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successive condensations at the mouth. The length of the pipe is 
thus one fourth of the wavelength of the note given off by it, and this 
is the relation existing in the case of a train of waves that produces 
the fundamental resonance. The pipe is therefore said to have a 
natural period; it is capable of producing a note of wavelength four 

times as great as its own length. 
If the pipe is open instead of closed at the farther end, a single 

condensation entering the mouth a, Fig. 226, will emerge at b first 
as a motion of the particles from left to right. 
The reflected portion will then travel back through =<. 
the tube as a motion of the particles from left to =} H 
right (a rarefaction), which will in turn be reflected ne 
at a, still as a motion from left to right ; and thus, 
after traveling the length of the tube twice, the 
pulse will again emerge at & in its original direc- 
tion (a condensation). Thus in this case the wavelength of the train 
of waves into which the pipe has transformed the single pulse is twice 
the length of the pipe; that is, the note given off by the pipe has, 
as before, the same wavelength as that which will produce the funda- 
mental resonance in the pipe. This tone is, of course, an octave 
higher than the tone given off by a closed pipe of the same length. 

It is this ability of a pipe, open or closed, to pick up irregular pulses 
and transmute them by successive reflections into tones of definite 
frequency that explains the continuous humming in definite pitch 
heard when a tube, a seashell, or any similar sort of cavity is held 
close to the ear. 

In order that a pipe may be made to give forth its fundamental 
note distinctly, however, it is necessary to do more than to start a 
single pulse in at one end; for the energy of this pulse is dissipated 
so rapidly in the successive reflections and transmissions that only 
when the pipe is placed very close to the ear can anything resembling 
a musical note be recognized at all. If, however, a gentle current 
of air is directed continuously against one edge of the pipe, as in 
Fig. 227, the fundamental note can be made, with suitable blowing, 
to come out strongly. In order io understand this action, consider 
first. a pipe closed at the lower end, and suppose that the original 
current of air is so directed as to strike the point @ just inside the 
edge (Fig. 227). A condensation starts down the pipe and is reflected, 
when it reaches the bottom, as a condensation or an upward motion 
of the particles. When this condensation reaches the mouth, it 
pushes the current of air outside of the edge. This starts a rarefaction 
down the pipe which, upon its return to the mouth as a rarefaction, 

draws the current of air inside the edge again. Thus the current is 

Fic. 226. An open 
pipe
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made to move back and forth over the edge, the period of its vibra- 

tion being controlled entirely by the natural period of the pipe; for 

between two instants of emergence of the jet from the pipe a rare- 

faction must travel twice the length of the pipe and then a condensa- 

tion must do the same; in other words, a sound pulse must travel 

four times the length of the pipe. Hence the wavelength of the 

emitted note is the same as that which corresponds to the natural 

period ; that is, it is four times the length of the pipe. The source of 

the musical note is to be found, then, in the vibra- 

tion of the air jet into and out of the end of the ZA 
pipe. The pipe itself may be looked upon as merely _2 a 

a device for enabling the jet to send pulses to the | 

ear with perfect regularity. 

The theory of the open pipe differs only slightly 

from that of the closed. If the jet is directed just 

inside the edge, a condensation starts down the 
pipe, and at the same time, as is indeed also the 

case with the closed pipe, the pressure within 

the upper end of the pipe begins to rise because of 
the influx of air. If the blowing is of just the right 

intensity, this pressure may force the jet outside the 

edge at the instant when the original condensation 
reaches the lower end and starts back — in this case as a rarefaction. 
When this returning rarefaction reaches the mouth, it draws the jet 

inside again. At this instant the rarefaction which started down the 
pipe when the jet first swung outside has just reached the lower end. 
Upon its return to the mouth as a condensation it drives the jet out- 
side again, and thus the jet is alternately forced back and forth over 

the edge, its period being controlled entirely by the natural period of 

the pipe, for it will be seen that between two successive emergences 
of the jet from the mouth of the tube a sound pulse travels down 

the tube and back. If the blowing is not of just the right intensity, 

so that the pressure reaction near the mouth throws the jet out for 

the first time at the instant when the first condensation reaches the 

lower end, then the pulses reflected from the lower end do not reach 

the mouth at the right instants to set up regular vibration of the jet 

over the edge, and consequently no note is produced. 

If, in the case of the open pipe, the violence of the blowing is in- 

creased to just the right amount, the pressure within the top of the 

pipe may be increased so rapidly that the jet is thrown out in one 
half its former period. In this case the reflected pulses will get back 

to the mouth in just the right time to keep the vibration going, but 
the note given forth will be the first overtone of the open pipe, namely 

Fic. 227. Produc- 
tion of a tone by 

an air jet
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the octave of the fundamental (Sec. 200). Similarly, still harder blow- 

ing of just the right intensity will cause the jet to swing out in one 
third its former period, and the returning pulses will then get back 
to the mouth just in time to keep the jet vibrating in the period of 
the second overtone, the frequency of which is three times that of the 
fundamental, etc. Blowing of intermediate intensities will produce 
no notes at all, since the times of return of the reflected pulses are 
then such as to destroy the vibration which is starting, instead of to 

keep it going. 

The production of overtones in closed pipes is precisely similar, save that 
in order to produce the first overtone the blowing must be so hard as to 
cause the jet to swing out of the pipe in one third of 
the time required for the first condensation to travel to 
the bottom and back, for the first overtone of a closed 
pipe has a frequency three times that of the funda- 
mental; the second, five times; etc. (Sec. 200). By 

blowing with varying degrees of violence across either 
open or closed tubes, it is generally easy to produce 
three or four notes of different pitch which are found 
to have precisely the frequencies demanded by the 

foregoing theory. If the pipe is long and narrow, it may 
be quite impossible to produce the fundamental for the 
reason that the jet is forced out by the increased pres- 

sure long before the first pulse returns from the re- 
mote end. 

202. Types of Wind Instruments. The foregoing 
theory explains the action of nearly all wind instru- 
ments, In organ pipes (Fig. 228) the current of 
air is forced through the tube ab into the air 
chest c, thence through the narrow slit de into 
the embouchure, or mouth, of the pipe E, where it F19- 228. An organ 
passes as a narrow jet toward the thin edge or pipe 
lip fg. As a result of small differences in pressure inside and outside 
of the embouchure, the air jet is caused to deviate to one side or the 
other of the lip; it moves back and forth across the lip precisely as 
the jet vibrated across the edge of the pipe in the discussion of Sec. 201. 
Flutes and whistles of all sorts are precisely similar to organ pipes 
in their action, In any of them the air chamber may be either open 
or closed. In flutes it is open; in whistles it is usually closed; in 
organ pipes it is sometimes open and sometimes closed, In organs 
there is a different pipe for every fundamental note, but in flutes a 
single tube is made to produce a whole series of fundamental notes 
either by blowing overtones or by opening holes in the side — an 
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operation equivalent to cutting off the tube at the hole, since a 
reflected wave starts back as soon as a point is reached at which there 

is a greater freedom of expansion than has been met with before. 
In the case of some instruments, like the clarinet, the mouthpiece 

against which the performer blows is almost closed by a reed | 
(Fig. 229) which is clamped at the base and free to 
swing, under the influence of an outside pressure, 
so as to close the opening entirely. When the per- 

former blows upon this mouthpiece, a pulse of con- 
densation enters the tube and at the same time 
the reed closes the opening. This pulse, after reflec- 

tion from the open end of the clarinet as a rarefac- 

tion, and a subsequent reflection at the mouthpiece 

(closed by the reed), also as a rarefaction, is again 
reflected at the open end, but now as a condensa- 

tion; and therefore, after traveling the tube four 

times, the original condensation returns and forces Fis. 229. Mouth- , onc piece of a clarinet 
the reed open, admitting a new pulse. The over- 

tones which may be produced in such an instrument are evidently 
those of a closed pipe. It is evident that the vibration frequency is 
independent of the reed and depends only upon the effective length 

of the clarinet. 
In the trumpet and other brass wind instruments the current of 

air enters a mouthpiece similar to that shown in Fig. 230. The lips 
of the performer act as a double reed. A pulse of 

condensation enters, the lips closing when the reac- 

tion of its pressure equals that of the air in the mouth 
of the performer. This pulse, reflected as a rarefac- 
tion from the open end of the trumpet to the lips, 
reduces the pressure at that point and a new pulse 

enters. The fundamental depends, then, only upon 

the length of the instrument. The overtones are 
produced exactly as in an organ pipe, by blowing 

more suddenly, and to some extent by increasing 

the tension of the lips. The possible overtones are Fic. 230. Mouth- 

those of an open pipe. piece_of a brass 
wind instrument 

203. Natural Periods of Free Rods. A rod sur- 

rounded by air is in every respect analogous to an open pipe, for 

the reflections at the ends are such as occur when a wave passes 

from a denser to a rarer medium. Thus a rod will respond to a train 
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i*E. G. Richardson, The Acoustics of Orchestral Instruments and of the Organ 

(Arnold, 1929), is a good popular and modern account of this subject.
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of waves if it is of such length L that a condensation ¢ incident 
on the rod at A, Fig. 231, will, after reflection at 0, return to A and 
be again reflected as a condensation at the precise instant when the 
condensation c’ reaches A. The length 2 LZ is then the distance that 
a pulse c travels in the rod before the succeeding pulse c’ enters the 
rod. This is, by definition, one ‘ 

‘ wavelength of the note in the rod. | eee | 
a Red 2 If only one single pulse strikes the 

rod, the successive reflections of 4-43 
this pulse at A and 0 will cause a a 
train of waves to be given off 
at each end. Thus the rod will 
emit a musical tone the wavelength of which in the rod is twice the 
length of the rod. The wavelength of this tone in air obviously bears 
the same relation to its wavelength in the rod as the speed of the 
wave in air bears to its speed in the rod. If the rod be clamped in the 
middle, it will respond to and give off precisely the same tone as though 
it were free, for the compression produced by the clamp at the middle 
produces at that point the same sort of reflection as occurs at the 
boundary of a denser medium; hence the clamped rod is equivalent 
to two closed pipes, each of which gives off the same tone as would an 
open pipe (that is, a free rod) of double the length. In order to set 
a rod into longitudinal vibrations of this sort, it is customary, in- 
stead of striking one end, to clamp it in the middle and stroke it 
with a rosined cloth if it is of metal, or with a wet cloth if it is of glass. 

The foregoing theory suggests an extremely simple and satis- 
factory means of comparing the speeds of sound in two solids. In 
order to find the relative speeds of sound in steel and brass, we have 
only to find the frequencies of two tones produced by stroking steel 
and brass rods of the same length. For with rods of equal length the 
number of pulses communicated to the air in unit time by the travel- 
ing of pulses up and down the rods is obviously proportional to the 
speeds of sound in the two rods. Thus, if 2; and v2 represent these 
speeds in steel and brass respectively, and », and v2 the corresponding 
frequencies produced by the rods of equal length, we have 

  

  

    

  

Fic. 231. Wayertrain incident on the 
end of 4 

4m is Vp [311] 

The frequencies » and v2 can be determined by comparing the 
tones emitted by the rods with those emitted by other vibrating 
bodies of known, variable frequencies, 

204. Nodes and Antinodes in Pipes and Rods. A careful considera- 
tion of the resonance of pipes which are giving off the first or higher
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overtones reveals effects that have thus far been overlooked. For 
example, it was shown that when a closed pipe has its second resonant 
length, a condensation c, Fig. 232, must return to the mouth of the 
pipe at the instant when the rarefaction r’ reaches the mouth; but, 
in this return after reflection, c must somewhere in the pipe collide 
with the advancing condensation 

  

  

ce’. Since c’ is one wavelength be- K— p> 
hind ¢ at the instant of the re- | - , At 0 
flection of c, it is evident that this i O 

n 
  

        

    

- > a 
> ~_ ~ ~ collision must take place just one = 

half-wavelength from the end of Fj¢, 232. Formation of nodes and anti- 
the pipe, namely, at . Such a nodes in a closed pipe 
collision of two oppositely moving 

condensations is entirely analogous to the collision of two oppositely 
moving perfectly elastic balls. These are shown simply to exchange 

motions (Chap. 5), the effect being the same as though each ball 
passed through the other without experiencing any effect whatever 
from it. Thus the waves may be thought of as passing through one 
another, and their mutual effects may be ignored. As a matter of 

fact, of course, it is c’ that returns to the left after the collision and 

unites with 7’ at the mouth, while c is forced back again toward the 
closed end of the pipe. 

One-half period after the collision at n, Fig. 232, of the condensa- 

tions c’ and c (— ~<~) there will occur at ” a collision of the rarefac- 

tions 7’ and r (<«- —»). Thus the particles near » are first pushed 
together by opposing forces, then pulled apart by opposing forces. 
The result is that they do not move at all. The matter close to n 
suffers alternate compression 
and expansion, but the par- u, XS 
ticles at m can never move 7 

—t4_1 

either to left or to right, be- a 

cause they are always being x Bea Se > 
urged in opposite directions. 
by the oppositely moving Ls rrp} x she Ja —4—p — 

waves. In other words, the Fie. 233. Stationary waves in closed pipes 
point # is what we have called 
a node, and the points between the nodes where the disturbances are 
greatest are the antinodes (Sec. 194). If the length of the pipe is 

5(\/4), 7(A\/4), etc., it is evident that there will also be nodes at n’, 

n’', etc., Fig. 233. In other words, in any resonant closed pipe (and 

it is to be remembered that such a pipe is resonant when, and only 

when, its length is an odd number of fourth-wavelengths) the first 
node is distant \/4 from the open end, and the other nodes follow at 
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Fic. 235. Mexve's 

seen to be merely one of the formation in the pipe of stationary 

amplitude. 

is one half-wavelength ; and, since ob . + % tah a 

will collide with 7 in the middle of 

the nodes are at n' and n", Fig, 234, each distant \/4 from an end 

205. Melde’s Experiment and the Production of 

furnished by an experiment devised by F. MELDE! s 

the other end Q carries a weight of magnitude f. 

trains of waves moving in opposite directions 

nodes at distances from O corresponding to exact 

upward-moving train is again reflected at S, the ~ 

experiment 

multiples of \/2 is also established. It is obvious that both of these 
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intervals of \/2, The phenomenon of resonance in a pipe is thus 

waves (Sec. 194) due to the superposition of direct and reflected 
waves of the same period and 

: | 
Tn the case of an open pipe or i | 

a free rod the first resonant length 

a condensation ¢ is reflected as a Fic. 234. Stationary waves in an open 
rarefaction, it is evident that ¢ IEE 

the pipe. Hence an open pipe or rod responding to its fundamental 
has a node in the middle. When it is responding to its first overtone, 

and distant \/2 apart; similarly for the higher 
overtones. i 

Stationary Transverse Waves in Strings. A beau- 
tiful illustration of stationary waves in strings is 

in 1859. One end of a light cord is attached to one 
of the prongs S of a tuning fork (Fig. 235), while 

The waves which start down the cord from the 
vibrating prong are reflected at 0, so that two 

become superimposed upon the cord. This condi- 
tion tends to give rise to stationary waves, with 

multiples of a half-wavelength of the train sent Q 
down the cord from the fork. Since, however, the F 

condition for stationary waves in which the nodes 
are at distances from S corresponding to exact 

conditions can be met, and permanent stationary waves set up in the 
string, only if the length Z of the string is an exact multiple? of \/2. 

  

+ Poggendorfi’s Annalen der Physik und Chemie 109, 198 (1860) ; 111, 513 (1860) ; 
Wiedemann's Annalen der Physik 24, 497 (1885). 

* This statement is only approximately correct, since the end of the fork is not 
exactly at a node, but rather just as near to a node as @ point near some other nocle 
which has the same amplitude of vibration as the fork.
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Instead of varying the length of the string so as to fulfill this con- 

dition, it is customary to vary the wavelength by varying the load f. 

For the wavelength » is connected with the vibration rate v of 
the fork and the speed of propagation » of the train of waves sent 

down the string by the relation » = vX, and the speed # is connected 

with the stretching force f in the string and its mass per unit length o 

by Eq. [290], so that by varying the force f it should be possible to 
find a whole series of values of \ which will give rise to permanent 
stationary waves in the cord. Thus, when L = )/2, the string should 
vibrate in one segment; when Z = 2(/2), it should vibrate in two 

segments; when L=3(A/2), in three segments; etc. (Fig. 236). 

aS 

b 

= 

¢ d 

Fic. 236. Showing four modes of vibration of a stretched string 

  

  

  

        

Since, for an appropriate value of f, sharply defined nodes appear in 

the vibrating string, and since these occur at intervals of 4/2, it is 
possible to make a direct measurement of the length A of the com- 

ponent waves traveling along the string. The speed v of either 
component wave may then be calculated from the relation v= va. 

MELDE’S experiment therefore makes it possible to determine » by 

a method that is entirely independent of the method of Eq. [290]. 

The frequency »v of the fork can best be determined by counting the 

number of beats per unit time when a standard fork of nearly the 

same pitch is sounded simultaneously. 

206. Partial Tones in Strings. Ifa stretched string is plucked in the 

middle, the deformation travels in opposite directions to the two ends 
and is there reflected ; and, since the two reflected portions returning 
to the middle unite in like phases at this point, the net result of the 

propagation of the disturbance back and forth over the string is a 
vibration of the string asa whole in the manner indicated in Fig. 236, a. 

A string vibrating in this way imparts successive condensations and 
rarefactions to the air in which it moves, and these, being trans- 

mitted to the ear, give rise to a tone of a definite pitch, which is 
  

1 For further details see Exp. XV, Part II.
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called the fundamental tone of the string. Since the time elapsing 
between the instant when the string is in the position AcB and the in- 
stant when it assumes the position AdB, Fig, 237, is the time required 
for the deformation to travel over the paths cBd and cAd, it will be 
seen that during the, time of one half- 
vibration of the string the disturbance 
travels on the string a distance exactly 4 B 
equal to the length of the string. Hence 

during the period of one complete vi- a 
bration of the string the disturbance 5, 337, Stretched sting vibra 
travels twice the length of the string. ing as a whole 
Thus we arrive, from a wholly differ- 
ent point of view, at the conclusion of the preceding section; namely, 
that when a string is vibrating as a whole, its length is one half the 
wavelength of the waves which are traveling back and forth over it. 

If the string is clamped in the middle as well as at the ends and 
plucked one fourth of its length from one end, each half vibrates 
precisely as the whole string vibrated in the preceding case; but 
since the speed of propagation is the same as before, while the dis- 
tance between reflections is one half as great, the period of vibration 
of each half of the string must be one half as great as the preceding 
period. Hence the tone communicated to the air is the octave of the 
original tone, and the wavelength of the tone is the length of the 
string. The tone thus produced by the string is called its first over- 
tone. If the string is not clamped in the middle, but is plucked one 
fourth of its length from one end, it still tends to vibrate in two seg- 
ments, but this vibration is superposed upon the vibration of the 
string as a whole, so that the fundamental and the first overtone 
can be heard simultaneously (Fig. 238). 
Similarly, if the string is plucked one 
sixth of its length from one end, it 
tends to vibrate in three segments and 
the second overtone will be heard with Fis. ps Abpesines ofa Slot 
the fundamental. Thus the string is "fundamental snd frst evcrronc 
capable, under suitable conditions, of simultaneously 
vibrating in any number of segments. 
and of giving out a series of tones whose frequencies bear to the fun- 
damental frequency the ratios 2:3:4:5, etc. In general, in the 

  

  

* Practically, of course, the sound thus derived is of small intensity, and in most 
musical instruments the greater magnitude of sound is due to synchronous vibrations 
which the string impresses upon its supports and through them upon sounding boards 
and resonant volumes of air.



15 - 207] Wave Motion and Sound 405 

case of the strings of musical instruments, several of these over- 
tones are produced simultaneously with the fundamental. Which 
ones are present depends chiefly upon where the string is struck or 
bowed.! It is to differences in the number and relative prominence 
of the overtones that differences in the 

qualities or tone colors of different notes 

of the same pitch are assigned. In other 

words, the quality of the tone from a mu- 

sical instrument is determined chiefly by 
the form of the complex wave set up by the 
instrument. Overtone structure is not the 
only factor, however; although no quan- 
titative measurements have been made as  [) 
yet on tone quality, itis known to depend Fig. 239. Transverse waves’ 

somewhat on the intensity and probably in rods 

also on the pitch. To summarize what we 
have said here and in Sec. 191, the psychological characteristics of 

pitch, loudness, and quality, although dependent chiefly on frequency, 

intensity, and overtone structure respectively, actually depend upon 

all three of these physical quantities. 

  

(c) 

  

207. Transverse Waves in Rods. In the case of rods the wave travels 

as the result of the shear elasticity of the substance of which the rod is 
composed (Sec. 187). The forms assumed by vibrating bars may be seen 
from Fig. 239. A bar clamped at the end gives off its funda- 
mental tone when vibrating in the form shown in Fig. 239 (a). 
If struck more sharply and nearer the free end, it may be 
made to give off its first overtone; in this case it vibrates 

in the form shown in Fig. 239 (6); the relations between the 
frequencies of the fundamental and its various overtones are 
hot simple numbers, however, as is the case with pipes or 

strings. Ifthe rod is supported at two points, as in Fig. 239 (c), 

it will vibrate in the form shown in that figure when yielding 
its fundamental tone. The form assumed by the rod when 

yielding its first overtone is shown in Fig. 239 (d). In this case 

also the relation of the frequencies is not simple. If the rod in 

Fig. 239 (c) is bent, it is found that the nodes are brought Fic. 240. A 
closer together. If it has the form of Fig. 240, the nodes will tuning fork 

occur at the points marked NN. The higher overtones are 

then produced with difficulty and are very much less intense than the 

fundamental. A bar bent into this form and supported at P is what we have 
called a tuning fork. Because of the purity of its tone — that is, the absence 

  

  

1For a further discussion of the laws of vibrating musical strings and their ex- 
perimental verification, see Exp. XVC.



Atuoucn private laboratories, owned by individual investigators. or their 
patrons, have existed since the time of Roger Bacow (1214-1294), teaching 

laboratories and laboratory courses of instruction did not come into existence until 
the second half of the nineteenth century, ‘The first laboratory for the systematic in- 
dividual use of students apparently was established at Rensselaer School (now 
Rensselaer Polytechnic Institute), Troy, New York, by Amos Eaton, in 1824, 
although similar laboratories developed quite independently soon afterward at 
the Massachusetts Institute of Technology in this country and at King’s College 
and Oxford University in England, 

In Europe university laboratories developed on the whole much more gradually. 
A few professors, with unusual interest in students, such as Hetwatca Gustav Macnus 
(1802-1870) at Berlin, Parczae Gustav vox Jouty (1810-1884) at Heidelberg, and 
Wacttase Tomson (later Lonp Ketvin) (1824-1907) at Glasgow, permitted and 
encouraged promising students to work in their own private laboratories and to 
assist in their own researches. As the number of students increased, the universities 
began giving financial aid, and university laboratories resulted. 

Tn his own private residence in Berlin [Plate 54], Gustav Macnus founded in 1842, 
and conducted until 1870, the first physical institute established in Germany, if not 
in the world, It gradually evolved into the physical laboratory of the University of 
Berlin, which was opened in 1863." Heumuotrz worked in this laboratory in 1847, 

The first laboratory in England that was built and designed specially for the 
study of experimental physics was the Clarendon Laboratory at Oxford, 1868- 
1872. The famous Cavendish Laboratory at Cambridge, planned by J. Crerk 
Maxwett, was completed in 1874. In the early part of the nineteenth century 
France was the great center for experimental research, but the work was all cartied 
on in private laboratories. A physical laboratory was built in the old Sorbonue in 
1868 and reconstructed in 1894. Excellent laboratories such as that at Zurich, 

Switzerland, followed. For further details see F, Cajori’s ‘' The Evolution of 
Physical Laboratories,"” in A History of Physics (Macmillan, 1929), pp. 387-406. 
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The First German Physical Laboratory 

Photograph kindness of Dr. E. Briiche of the A. E. G. Research Institute, Berlin 

  

Puysics Laporatory of the 

Swiss Federal Institute of Technology, Zurich 

Photograph courtesy of the Swiss Federal Railroads
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of overtones —it has been adopted for use as a convenient standard of 
frequency. Any given fork must, of course, be rated first by some absolute 
method, and then it may be used for comparison with other sources of sound. 

° 

EXPERIMENT XVA. SPEEDS OF COMPRESSIONAL 

WAVES IN SOLIDS AND GASES 

In this experiment Kunpt’s dust-tube method ' is employed to 
determine the speeds of compressional waves in steel and in carbon 
dioxide at the temperature of the room. The speed v, of compressional 
waves in a gas can be determined by enclosing the gas in a closed 
horizontal tube of adjustable length, sending waves from a tuning 
fork or vibrating diaphragm of known frequency » through the gas, 
and adjusting the length of the gas column until resonance is ob- 
tained. The resulting nodes and antinodes formed in the gas column 
(Sec. 204) may be detected by sprinkling a little cork dust or lyco- 
podium powder along the bottom of the tube. No disturbance of 
the dust takes place at the nodes, whereas at the antinodes it gathers 

into ridges. The wavelength \, of the waves in the gas is twice the 
distance between adjacent nodes, and hence the speed of the waves 
in the gas is given by v, = v),, where both y and \, are known. 

A simple extension of this method makes possible also the measure- 
ment of the speed of compressional waves in a sorid. This is accom- 
plished simply by replacing the tuning fork or diaphragm by a rod mn 
of the solid material to be investigated, as in Fig. 241, and setting 
this rod into longitudinal 
vibrations, so that it sends 
compressional waves down Ss oO 
the tube. The wavelength 
X, of the wave in the rod is 
twice the length of the rod (Sec. 203) and hence can be determined. 
Therefore, if v, be the speed of the wave in the rod and » its fre- 
quency, we have v,=v),. Also, if the tube contains air, and », is 
the speed of the waves in air and \, their wavelength, then », = vA. 
By combining the two equations so as to eliminate the unknown 
frequency v, we obtain as the expression for the speed of compres- 
sional waves in the material of the rod 

= doe [312] 

” 

Fic. 241. Kunpr’s apparatus 

  

+ Poggendorff's Annalen der Physik und Chemie 127, 497 (1866); 135, 337, 527 
(1868).
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Let the length of the rod be L and let the observed distance between 
adjacent nodes in the air in the tube be s,; then A,=22L and 

Aa = 2 Sa, and, finally, L 

2 == 04. [313] 
Sa . 

The value of #,, the speed of sound in air at the prevailing tempera- 
ture, can be obtained either from tables or by making the resonance 
experiment described in Part III of the present experiment. 

By similar reasoning, if some other gas is substituted for the air 

in the tube and v, and ), represent the speed and wavelength of the 
same tone in that gas, then v, = v),, or 

ty = es Oa» [314] 
rr 

and Ug = sO [315] 
a 

where s, is the distance between nodes in the gas in question. 

The best way to set a steel rod into longitudinal vibrations is to clamp 
it in the middle and stroke it with a piece of leather or cloth coated with 
rosin. It would seem at first thought as though the slipping of the leather 

along the rod were so irregular that no periodic disturbance could be pro- 
duced. Asa matter of fact, however, the slipping is controlled by the natural 

period of the rod in much the same way as the vibrations of the air at the 
mouth of an organ pipe are controlled by the natural period of the pipe 

(Sec. 201). Thus the first slip starts a pulse down the rod and this pulse, 
because of the reflections at the ends, returns to the starting point at stated 
intervals. Of course the tendency to slip is greatest at the instant of the 
return of the first pulse, so that succeeding slips take place at the instants 
of return of succeeding pulses. Thus the rod gives off loudly the note cor- 

responding to its natural period. 

Part I. Determination of the Speed in Steel. a. First pass a gentle 
stream of air through the glass tube for several minutes in order to 
eliminate traces of carbon dioxide left by previous experimenters. 

Then close the stopcocks and scatter fine cork dust evenly throughout 
the tube. Insert a steel rod in the tube, clamp it at its nodal point, 

and adjust its position so that the light disk S on the end of the rod 

(Fig. 241) does not touch the walls of the glass tube. The other end 
of the tube is closed by a stopper or, in some types of apparatus, by 
a sliding piston. 

b. Move the glass tube back and forth 1 until a maximum of agi- 
  

1 If the end of the tube is closed by a sliding piston, instead of by the stopper O, 

make this adjustment of the length of the air column with this piston rather than by 

moving the tube.
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tation of the cork dust at the antinodes is produced when the steel 
rod mn is stroked with rosined leather. Exert only a slight pressure 
on the rod while stroking it. 

Measure the distance between 0, which is a node, and each of the 
other nodes. Tabulate these distances in a vertical column, with the 
corresponding number of half-wavelengths opposite each one. The 
sum of these distances divided by the sum of the numbers of half- 
wavelengths gives the best value of a half-wavelength in air of the 
note given forth by the steel rod. 

c. Shake up the cork dust, produce a new set of nodes and anti- 
nodes, and obtain another set of readings. 

d. Measure the length LZ of the rod. 
e. Calculate v, from Eq. [313]. Compare this value with that de- 

duced from YOuNG’s modulus and the density by use of Eq. [289]. 

1, Does the temperature have to be taken into consideration in mak- 
ing this comparison? 

Part II, Determination of the Speed in Carbon Dioxide. a. Passa 
gentle current of carbon dioxide through the tube for two or three 
minutes and repeat the foregoing adjustments and measurements. A 
one-hole stopper should be slipped over the rod to seal the tube during 
this part of the experiment. 

b, Read the barometer, 
¢. Calculate the speed of compressional waves in carbon dioxide 

by means of Eq. [315] and compare the result with the value ob- 
tained from the barometric pressure, the density of carbon dioxide, 
and the value of -y (= 1.30), by use of Eq. [285]. 

2. Is there an antinode or a node in the vibrating air column at the 
point S? Discuss with the aid of a diagram. 

3. Calculate the frequency of the note given out by the steel rod. 
4, What would happen if the rod were clamped at a point other than 

its nodal point? 

Part III. Determination of the Speed in Air by the Resonating-Tube 
Method. If tables are not available, or if the instructor so directs, 
determine »,, the speed of sound in air, with the aid of the apparatus 
shown in Fig. 225. 

a. Set a tuning fork of known frequency into vibration by striking 
it with a rubber mallet, and hold it three or four millimeters above 
the mouth of the tube. It is very important always to hold the fork 
in as nearly as possible the same position. Change the level of the 
water in the tube until the note of the fork is strongly reinforced. By 
causing the water to rise and fall rapidly several times in the vicinity
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of the position of reinforcement, the position for maximum resonance 

can be determined fairly accurately. Place a rubber band around the 
tube to mark the level of the water and measure to it from the top 
of the tube. 

b. In a similar manner determine two or three successive rein- 

forcement points. 

ce. If Li, Lz, and Lg represent the first, second, and third measured 

resonant lengths, and if AZ represents the correction that must be 

applied because the reflection at the open end does not take place 
exactly in the plane of the mouth of the tube (Sec. 200), then, in 

view of the theory in Sec. 200, i 

Ly +AL= 

Lat AL=3(%2); 

Is + AL =5("). 

Elimination of AL from the first and second of these equations, and 
also from the first and last, gives 

b-h=%, 

Ig —Iy= Ne. 

From the mean of these two values of ),, the frequency v of the fork, 
which should be found marked upon it, and the equation #. = vrA,, 

calculate the speed of sound in air at the prevailing temperature. 

5. If you have performed Part III, answer the following questions: 
(a) How does your experimentally determined value of », compare with 

the value deduced from the barometer reading, the density of air for the 

existing temperature and pressure, and Eq. [285]? (6) What is the ob- 
jection to the resonating-tube method as a means of making an absolute 

determination of the speed of sound in air? 

° 

OPTIONAL LABORATORY PROBLEMS 

1. Speeds of Compressional Waves in Solids by Kundt’s Method. De- 

termine the speed of compressional waves in, say, glass by the method of 

Exp. XVa. In order to set a glass rod into longitudinal vibration, stroke 

it with a wet cloth. 
2. Relative Speeds of Compressional Waves in Two Solids by a Com-~ 

parison of Their Natural Frequencies. Select two materials (say, brass and 
steel) that are available in the form of rods. The rods should be 3 to 

4m long and must be of the same length. Set them successively into longi-
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tudinal vibration by clamping them in the middle and stroking with rosined 
leather. Determine the frequencies % and vz of the rods by varying the 
length of a small wire of a sonometer (Exp. XVc) until, when plucked trans- 

versely, it produces a tone in tune first with one of the rods, then with the 
other, The length of the sonometer wire can be varied by means of a sliding 

bridge. If £: and Zs are the respective lengths of the wires, and # and vy 
the respective speeds in the two rods, then 

oi 
tw L 

by Eq. [311] and Exp. XVc. Compare your result with the relative value 
obtained by substituting tabular values of Younc’s modulus and the ap- 
propriate densities in Eq. [289]. 

8, Determination of the End Correction for a Resonating Tube, By 

using the technique of Exp, XVa, Part III, determine the first resonance 
length L, but in this case hold the fork at least as far away from the end as 
the radius of the tube. By subtracting this length Z from the true values of 
A,/4, as determined by the method of Exp. XVa, Part III, find the correc- 
tion AL which must be applied to the open end of a pipe to make the first 
resonance length equal to ./4. Express this correction as a fractional 

portion of the radius of the tube. (See page 394, footnote.) 

      

  

  

° 

EXPERIMENT XVB. WAVES IN STRINGS 

In this experiment MELDE’s method (Sec. 205) is employed to 
determine the speeds of transverse waves in a given string when the 
latter is subjected to various stretching forces. 

Part I. Speeds of Transverse Waves for Various Stretching Forces. 
a, Set up an electrically driven tuning fork having a frequency of 

about 80 to 300 vib - sec! and connect it toa single storage cell and a 
rheostat as shown in Fig. 235. To one prong of the fork attach a light 
string (for example, a piece of oiled fishline or linen thread) about 
120 cm in length. To the other end of this string attach a weight- 
hanger. 

b. Set the fork to vibrating and increase the stretching force by 
adding weights to the weight-hanger until the string breaks up into 
some number of vibrating segments. Determine to the nearest gram 
the stretching force f that produces the sharpest nodes.' It is de- 
sirable to use values of f for which there will result not more than 
seven segments. 
  

“IP the force necessary to produce this result is sufficient to stop the vibrations of 
the fork, first try adjusting the rheostat, If this fails, either shorten the string or in- 
crease the number of storage cells; in the latter case it may be necessary to shunt a 
condenser across the interrupter in order to prevent excessive sparking.
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Record the stretching force, the corresponding number of seg- 

ments existing in the string, and the average length of one of these 

segments. 

ce. Vary the stretching force and, in the same manner as in 8, 

determine the weights f corresponding to three or four other wave- 

lengths, say for the string vibrating in 2, 3, 4, etc. segments. It will 

probably be found necessary to make continual adjustments of the 

interrupter, since the proper adjustment depends upon the load on 

tne fork. When through with the apparatus be sure to open the 

electric circuit. 

d. Obtain data for computing the linear density o of the string 

by removing the string, weighing it, and measuring its length L. 
e. Record the frequency v of the fork. If this is not marked on the 

fork, or if the instructor so directs, determine it experimentally by 

the method described in Part II. : 
f. For the case of each of the stretching forces employed in b and 

ce calculate the speed » of the transverse wave in the string by two 
different formulas: by Eq. [290] and by the equation » = vd. Cal- 

culate the mean of each pair of values so obtained. Also compute the 
percentage of deviation of each member of the pair from the mean. 

1. Prove from theoretical considerations that for any particular fork 
and string the frequency of the fork is given by 

a ff, 
*=3LNo 

where » is the number of segments in which the string is vibrating and f 
is the corresponding stretching force. 

2. Show theoretically that the product of the stretching force f and the 
square of the wavelength \ should be a constant, and that this constant 

represents the stretching force when the string is vibrating in one seg- 

ment. What kind of curve should be obtained by plotting corresponding 
values of \? and f? 

8. How well do your experimental results agree with the conclusions 

arrived at theoretically in question 2? 

4, In a stationary wave what is it that is stationary? What moves? 

Of what is # the speed? 

Part II. Frequency of the Tuning Fork by the Method of Beats. 

Select by ear a standard tuning fork of about the same pitch as that 

of the fork of unknown frequency. Standard forks are expensive 
and should be handled with care. Always set such a fork in vibration 

by striking it with a rubber mallet or with a felt-covered piano 

hammer.
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With the two forks vibrating simultaneously, count with a stop 
watch the number of beats for several seconds. Then reduce the 
frequency of the unknown fork by attaching to one of its prongs a 
small piece of soft wax. If this decreases the number of beats, ob- 
viously the unknown fork has been brought nearer the standard 
by weighting it; that is, its natural frequency is larger than that of 
the standard by the number of beats per second first observed 
(Sec. 193). If the number of beats is increased when the wax is 
added, then the unknown fork has the smaller natural frequency ; 
this frequency is that of the standard fork diminished by the num- 
ber of beats per second first observed. 

   

° 

OPTIONAL LABORATORY PROBLEM 

Calibration of Tuning Forks by the Method of Beats, Employ the 

method of Exp. XV, Part II, to calibrate various tuning forks in terms of 
standard forks. 

° 

EXPERIMENT XVc. THE LAWS OF VIBRATING 
STRINGS 

In 1713 Brook TAYLor! showed that the frequency » of the 
fundamental tone emitted by a stretched string is given by the 
formula 

  

[816] 

where L is the length of the string, o is its mass per unit length, and 
J is the stretching force. This equation can easily be derived on the 
basis of the discussion of stationary transverse waves in strings which 
appears in Sec, 205, Most of the laws embodied in Tayior’s equa- 
tion had been discovered experimentally long before, in 1636, by the 
Jesuit MARIN MERSENNE,’ and it is probable that even the ancients, 
particularly PyTHAGorAS (6th century B.c.) and ARISTOTLE, had 
some knowledge of them.* 
  

‘ Abridged Philosophical Transaclions (London, 1749), Vol. 1V, p. 341. See also 
Melhodus Incrementorum Directa & Inversa (London, 1715). 

* Harmonie Universelte (Paris, 1636). An excerpt in English is given in* A Source 
Book in Physics (1935), pp. 115-116, 

4 See *H, Helmholtz, On the Sensations of Tone, tr. by A. J. Ellis (Longmans, Green, 
1895), p.1; also *Lord Rayleigh, The Theory of Sound, ed, 2 (Macmillan, 1894), 
Vol. 1, pp. 181-184.
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The experiments that follow provide tests of the laws contained 
in TAYLOR’S equation. These tests can be made conveniently with 
the aid of a sonometer; this is merely a resonance box upon which 

are stretched several strings whose lengths and stretching forces 

may be varied at will. The sonometer which we shall employ is 

equipped with three strings (Fig. 242). Two of these are of steel, 

  

    

  

Fig. 242. A sonometer 

one with twice the diameter of the other; the third is of brass, of the 
same diameter as the larger steel wire. We will denote the large and 
small steel wires by S and s, respectively, and the brass wire by B. 

Since the success of the experiment depends largely on developing 
the facility to tune two strings to the same pitch, the student should 
begin by practicing this adjustment. First adjust the tensions of the 
two large wires, S and B, until the pitch of each, when plucked, is 
nearly the same. Then listen for beats and, when they are heard, 

practice adjusting the tension in one of the wires until these beats 
diminish in frequency and finally disappear altogether. 

In testing each of the following four laws, compute the percentage 
of difference between your experimental results and those predicted 

by the law. 
1. If two strings of the same linear density are to have the same 

fundamental frequency, their lengths must be proportional to the square 

roots of the stretching forces. Adjust the stretching force on s to a 
little less than one fourth the maximum spring-balance reading. 

Place a bridge near one end. For purposes of comparison, adjust the 
force on B until it has the same pitch as s. Measure the length of s. 
Then decrease this length to exactly half its previous value and re- 

adjust the force until, by comparison with B, the original pitch is 

restored. 
2. If two strings of the same length are to have the same fundamental 

frequency, the stretching forces must be proportional to their linear 

densities. Restore the original length and. stretching force. Make S 

and B the same length as s by placing bridges under them. Then 
increase the force on S until it has the same pitch as s. Finally 
adjust the force on B until it is in tune with S. 

3. If two wires stretched by forces of equal magnitude are to have the 

same fundamental frequency, their lengths must be inversely propor-
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tional to the square roots of their linear densities. Decrease the 
stretching force on S$ until it is the same as that on s, and then change 
its length until its pitch is the same as that of s. Similarly, adjust 
the force on B to that of the other two wires and then change its 
length until its pitch is the same as that of S. 

4. For a given wire under a constant force the fundamental frequency 
is inversely proportional to the length. With B at its full length, 
adjust s until its pitch is the same as that of B. Then reduce the 
length of B until its pitch is exactly one octave above the original 
pitch; until it is exactly two octaves above the original pitch. 

1. Derive Eq. [316], 
2. Show that each of the foregoing four Iaws is embodied in Eq. [316] 
3. Given a sonometer and one standard tuning fork of known fre- 

quency, explain how you would go about determining the unknown 
fundamental frequency of any other sounding body. 

4, Explain why the sonometer strings are mounted on a resonance box. 

° 

OPTIONAL LABORATORY PROBLEM 

Density of a Solid by an Acoustical Method. Determine the density of 
the steel or brass in a wire by stretching the wire on a sonometer and de- 

termining its frequency with the help of a tuning fork of known frequency. 
Compare the resulting value of the density with that obtained by some 
other, independent method. 

° 

QUESTION SUMMARY 

1. What is meant by wave molion? Give a number of examples of wave 

motions. In what other general way may energy be transferred from one 
point to another? What properties must a medium have in order to transmit 
energy by means of waves? 

2. What is the general expression for the speed of a compressional wave 
in any homogeneous isotropic elastic medium? What form does this ex- 

pression take in the case of isothermal compressional waves in a gas? in 
the case of compressional waves in thin solid rods? 

8. What is sound? What is the general expression for the speed of a 
sound wave in a gas? Why does this expression differ from that for an iso- 
thermal compressional waye in a gas? How does the speed of sound in air 

depend upon the temperature, the pressure, the frequency, and the 
humidity ? 

4, Define wave-lrain; wavelength What is the quantitative relation con- 
necting wavelength, speed, and frequency in any wave motion?



Wave Motion and Sound 415 

5. What is the general expression for the speed of transverse waves in 
stretched wires or cords? for the speed of longitudinal waves in solids? 
of transverse waves in solids? 

6. What is meant by a simple wave motion? What are the most im- 
portant characteristics of simple waves? Give expressions for the displace- 
ment of any particle in a simple wave motion at any time ¢; define carefully 
each term used. Interpret these equations physically. Show how they may 
be used to give (@) an instantaneous “picture” of the wave and (6) an 
instantaneous “picture” of the motion of any particle participating in the 
Wave motion. 

7. Write the general wave equation and explain what each term means 
physically. 

8. How are simple waves compined to form the more complex waves 
usually encountered in nature? What is the result of compounding (a) two 
simple waves of the same period and phase but different amplitudes? 
(b) two simple waves of different phases and amplitudes but the same 
period? (c) two simple waves of different periods? 

9. What is meant by interference? Make use of this concept to explain 
the phenomenon of beats in sound. What relation exists between the num- 
ber of beats produced per second and the frequencies of the interfering 
waves? 

10. What is meant by staitonary waves? How are they produced? De- 

scribe their characteristics and give an equation for the displacement of any 
particle at any time / in a stationary wave. Define node; antinode. 

11. Define a wave-front. What is meant by a plane wave? a spherical 
wave? a diverging wave? a converging wave? State HUYGENS’s principle. 

12. What is meant by the reflection of waves? Under what conditions 
does it take place? By means of HUYGENS’s principle explain what happens 
when a spherical wave is reflected at a plane surface. 

18. Define a ray. By means of rays derive the fundamental laws of 
reflection. 

14, What is meant by diffraction? Use HUYGENS’s principle to explain it. 

15. Discuss the change of phase that takes place on reflection. Make 
use of this in explaining the resonance of vibrating air columns. With 
sound of a given wavelength A, what must be the lengths of a closed pipe 
to obtain resonance? of an open pipe? 

16. What is meant by a fundamental tone? an overtone? To what 

overtones does an open pipe respond? a closed pipe? Explain the produc- 
tion of tones in pipes by means of air jets. 

17. Discuss the formation of nodes and antinodes in tubes, rods, and 

strings, and make use of these considerations to explain overtones. 

18. Upon what physical quantity does the loudness of a sound depend 
chiefly? the pitch? the quality? What are some of the distinctions be- 

tween a noise and a musical tone?
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PROBLEMS 

1. Amacat found that 1 cm? of alcohol at 14° C and 1 A, was decreased 
by 0.000101 cm3 for each atmosphere increase in the pressure to which it 
was subjected. If the density of alcohol at 14°C is 0.795 g - cm~%, what is 

the speed of sound in this medium? Ans. 1.12 x 10% m-secm!, 

2. (a) What physical characteristics must a medium have in order to 
transmit compressional waves very rapidly? (b) Name several substances 
that would appear to satisfy these requirements and then determine 

whether you are correct by consulting tables. (c) Sound travels about 20 
percent faster in “hard” than in “soft” gold. Can you explain this? 

8, When a certain tuning fork is sounded in air at 0° C, the wavelength 
of the compressional waves produced in the air is 130cm. What is the 
period of vibration of the fork? Ans. 0.00393 sec. 

4, 1f the speed of a compressional wave in a gas is 320m- sec~! at 
20°C, what will be the speed at 50°C and twice the pressure? 

alns. 336 m- secu}, 

5. The E string of a violin is 33 cm long and has a mass of 0.125 g. What 

force does it exert when tuned to 640 vib - sec? Ans. 6.9 kgwt. 

6, Find the percentage change in pitch observed by a person standing ata 
railway station from which a locomotive with whistle blowing is receding at 

the constant rate of 30 mi- hr-', This modification in the pitch of a sound 

due to the relative motion of the source of the sound and the observer is 
called the Doppler effect. Ans. 3.9 percent. 

7. The whistle on a certain locomotive has a frequency of 500 vib « sec. 
‘The speed of the train is 40 mi - hr-? and the temperature of the air is 20° C. 
What is the frequency of the sound heard by an observer (a) on the train? 
(b) on the track behind the train? (c) on the track ahead of the train? 

Ans. (a) 500 vib - see-*; (b) 475 vib - sec~?; (c) 528 vib - sec“, 
8, The amplitude, frequency, and speed of a certain simple wave are 

60cm, 0.5 vib-see~', and 1.5m + sec~* respectively. When the displace~ 
ment y of one of the particles is a maximum in the negative direction, what 
is the displacement at a point 1.2 m forward in the direction of travel of 
the wave? Ans. 48cm. 
  

* After Cristian JOHANN Doppler, who applied it to the change in color of stars 
as they approach or recede in the line of sight [Ueber das farbige Licht der Doppelsterne 
und einiger anderer Gestirne des Himmels (Prag, 1842) ; Poggendorfi's Annalen 68, 1 
(1846)]. ‘The first acoustical investigation was that of C, H, D. Buss BALLOT [Pog- 
gendorff’s Annalen 66, 321 (1845)], Itis a familiar phenomenon in these days of high- 
speed traffic, and the student will be able to supply numerous examples. He may be 
interested also to consider what would happen if the source or observer should move 
with speeds greater than that of sound; RAYLEIGH states [The Theory of Sound 
(Macmillan, 1896), Vol. IT, p. 154] that if an observer moves with a speed twice that 
of sound a musical piece will be heard in correct time and tune, but backwards,
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9. Two musicians stationed some distance apart are playing slightly 

out of tune, so that 4 beats per second are noticeable. How fast must a 
person travel from one toward the other in order that no beats shall be 
noticeable? Calculate for notes of 256 and 384 vib - sec~! and at a temper- 
ature of 0° C. Ans. 8.5 ft- sec 1; 5.7 ft - sec}. 

10. How much must an organ pipe whose fundamental tone at 0°C is 
273 vib - sec~! be heated in order that the frequency of the tone may be 

changed by 8 vib - sec—!? Ans. 16° C. 

11. A whistle blown normally with air is blown with hydrogen of density 

0.0692 as compared with air at the same temperature and pressure. What 

change is thus produced ? Ans. Frequency increased 3.8 times. 

12, A brass rod 200 cm long stroked longitudinally is in tune with a 25-cm 
length of a given sonometer wire. A steel rod 300 cm long stroked longi- 
tudinally is in tune with a 26-cm length of the same sonometer wire. Find 

the relative speeds of sound in steel and brass. Ans. 0.=1.4%. 

13. Notes of 225 and 336 vib - sec! are sounded simultaneously. If the 
even overtones only are present in the first note, and both odd and even 
overtones in the second note, how many beats per second will occur, and 

to what overtones will they be due? Ans. 6. 

14. Given two simple waves of the same frequency and amplitude, travel- 

ing in opposite directions in a stretched wire, (a) derive an expression for the 
kinetic and potential energies per unit length of the wire upon which the 

resulting standing wave is formed, and (b) show that the mean total energy 

is the sum of the energies of the component waves taken separately. 

15. When a body is vibrating in a fluid, as in the case of a pendulum 
swinging in air, there always occurs a dissipation of part of the energy into 
heat. In so far as this is due to the viscous resistance of the fluid, the only 
important effect is to cause the amplitude of successive vibrations to de- 
crease. In many cases of such damped vibrations, it is found that this de- 

crease in amplitude takes place in such a way that the ratios of successive 

amplitudes are equal, or Ap/A1 = A1/Ag =--- = Apa/An = ¢, where Ag is the 
original amplitude and A, is the amplitude of the mth vibration. (a) Show 
that A, = Aoe~"°, where e is the base of natural logarithms (e = 2.718) and 
C= log. c. (b) Make a rough sketch of the curve which would be obtained 

by plotting the displacements of the vibrating body as a function of the time. 

° 

7 A 7 X. CLIFFORD, who was a contemporary of Hetmnoxtz, said of him: 

~ “In the first place he began by studying physiology, dissecting the eye and the ear, and 

finding out how they acted, and what was their precise constitution; but he found that it was im- 

possible to study the proper action of the eye and ear without also studying the nature of light 

and sound, which led him to the study of physics. He had already become one of the most accom- 

plished physiologists of this century when he commenced the study of physics, and he is now one 

of the greatest physicists of this century. He then found it was impossible to study physics with- 

out knowing mathematics; and accordingly he took to studying mathematics and he is now one 

of the most accomplished mathematicians of this century.”





PROBLEMS FOR REVIEW 

In learning the sciences examples are of more use than precepts. 

Isaac Newton, Arithmetica Universalis (1707) 

i. A bullet acquires a speed of 185 m - sec~! while traversing a revolver 

barrel 20.5 cm long. Find the average acceleration. 
Ans. 8.34 X 104m -sec7?. 

2. A juggler keeps 5 balls continually in the air, throwing each to a 

height of 10 ft. What is the interval between each throw, and at what 
height are the other balls at the moment when one reaches his hand? 

Ans. 0.32 sec; 6.4 ft, 9.6 ft, 9.6 ft, 6.4 ft. 

3. A stone is dropped from a height of 30m at the same instant that 
another is projected upward from the ground. If they meet halfway up, 
what was the initial speed of the second stone? Ans. 17m-sec71. 

4, An object moves from a point A to a point B with constant accelera- 
tion. Show that at a point midway in time between A and B the instan- 

taneous and average speeds of the particle are equal, whereas at a point 

midway in distance the instantaneous speed is the greater. 

5. Aman traveling with a velocity of 4 mi - hr! east finds that the wind 
seems to blow directly ftom the north; if he doubles his speed, it appears 
to come from the northeast. Find the velocity of the wind relative to the 
ground. Ans. 42 mi - hr-! southeast. 

6. A projectile of mass 900 kg struck an embankment with a speed of 

400 m-sec—1. it penetrated 4.0m. Find the average resistance which the 
embankment offered to its motion. Ans. 1.8 x 10° kewt. 

7%, Two 100-g.masses are connected by a string passing over a light 
frictionless pulley. What mass must be taken from one and added to the 
other so that the system may move 200 ft in 5.0 sec? Ans. 50g. 

8. Two 3-lb masses are connected by a light string hanging over a 

smooth peg. If a third mass of 3 Ib be added to one of them and the system 

be released, by how much is the force on the peg increased? Ans. 2 Ibwt. 

9. Theory and experiment show that the mass of an electron increases 

with its speed v according to the LORENTZ formula m= mo(1 — v?/c?)~3, 

where mo is the mass of the electron when at rest and c= 2.99796 

x 10° cm - sec—1, the speed of light in vacuum. What is the mass of the 

electron when it is moving with a speed that is nine tenths the speed of 

light? with a speed of 25,000 km - sec7!? Ans. 2.3 mo; 1.0034 mo. 

10. What is the gravitational force of attraction in poundals between 

two 1-lb spheres whose centers are 1 ft apart? Is this G? 
. Ans. 1 X 107° poundal. 

419
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11. In the pulley system shown in Fig. 243, nr is 100 g, ms is 200 g, and 
ny is 300. If friction and the masses of the pulleys and cords may be 
neglected, what is the acceleration of ms? Zecsliietpaamanita 

Ans. g/17, down. 
12, A train is traveling along a horizontal track 

at 60 mi-+br-!. Rain, driven by a wind which is in 

the same direction as the motion of the train, falls 
with a velocity of 44 ft-sec~! at 30° from the ver- 
tical. Find the apparent direction of the rain to a 
person on the train. Ans. 60° from the vertical. 

13. A projectile is fired in a vacuum. Derive an 
expression for the range in terms of the muzzle speed 
vo, the angle of elevation @, and the acceleration due 
to gravity g. For a given muzzle speed, what angle 

of elevation gives (a) the maximum range? (b) the 
maximum time of flight? Ans. (a) 45°; (b) 90°. 

14, A shell is fired with a velocity of 9100 m-min-* 

at an elevation of 47°, If the gun is on a cliff 150 m above the sea, calculate 
(a) the time when the shell will strike the water; (8) the horizontal dis- 
tance to the point of impact; (c) the greatest altitude reached. 

Ans. (a) 24sec; (b) 2.5 x 10*m; (c) 6.3 x 10? m. 

15. A pump delivers Ib of liquid per second through an opening in a 
pipe of area A ft? at a height of / ft above the intake. If the density of the 

liquid is pb ft~%, show that the effective horsepower of the pump is 
(\th/550) + (M3/1100 gp2A2). 

16. (a) By taking the mean distance of the earth from 

9.3 x 10? mi, and the average density and radius of the earth as 

and 4.0 x 10% mi respectively, find the kinetic energy possessed by the earth 
because of its orbital motion. (b) If this energy were transformed into heat, 
how much water would it raise from 0° C to 100°C? 

Ans, (a) 2.6 x 10% kg» m?- sec~2; (6) 6.2 x 10? kg. 
17. (a) A5.0-kg weight is projected up a 30° incline with an initial speed 

of 3.0m-sec~!. The coefficient of sliding friction is 0.30. How far up the 

incline will the weight slide before coming to rest? (6) Will it remain at 
rest or start to slide down? Why? Ans. (a) 60cm. 

18, What would be the values of the units of length, mass, and time in a 
system in which the foot-pound-weight was the unit of work, the horsepower 

the unit of power, and the acceleration due to gravity the unit of 
acceleration? Ans. 32/550? ft, 5502/32 Ib, 1/550 sec. 

19. If a 200-Ib man climbs stairs 60 ft high in 2.0 min, what is the average 

rate in watts at which he works against gravity? Ans. 1.4 x 10? watts. 

20, (a) Show that an automobile traveling at 65 mi: hr~! goes nearly 
100 ft in the second while the driver is reaching for the brake. (b) If the 

coefficient of sliding friction of the tires on the road is 0.75, how far will the   

Fic. 243. Problem J]. 
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car travel before stopping? (c) Obtain some actual data on the starting 
and stopping of an automobile, and compute the average acceleration in 

each case. Compute the time lost in 
making a boulevard stop. 

Ans. (b) 2.8 x 10? ft. 

21. In Fig. 244, find the acceleration 
and the force in the cord. Assume that 200g. 

the coefficient of sliding friction is 0.15 

and that the pulley friction is negligible. Fic. 244. Problem 20 
Ans. 4.2 X 10?cm-sec~?2; 1.1 x 105 dynes. 

22. It is found that a certain body slides with constant speed down a 
certain inclined plane when the inclination of the plane is ¢’. Show that 
for an inclination ¢, greater than ¢’, the acceleration of the block has the 

magnitude g sin (¢ — ¢’)/cos ¢’. 

23. For a given value of the horizontal distance s in Fig. 245, what must 

be the value of ¢ for an object to slide down the incline in the shortest time 

(a) without friction? (0) if the coefficient of sliding 

friction is 0.20? Ans. (a) 45°; (6) 51° 

24. An electron is. expelled with a speed of 
2.90 x 10!° cm - sec—! from a radioactive atom which 

has a mass of 3.66 x 10-22 g. Given that the rest 
mass (Prob. 9, p. 419) of anelectronis 8.994 x 10~ 28 g, 

find the speed of recoil of the atom. 
Ans. 2.80 x 105cm-secm.  “\ 

25. A bullet of 20.0 g, moving at a speed of Fic. 245. Problem 23 
300 m - sec}, struck and embedded itself in a bird 

of 5.00 kg which was flying in the same direction as the bullet with a 
speed of 150km-hr-!. Find the speed of the bird the instant after it 

was shot. Ans. 154km-hr-}. 

26. A 20-g rifle bullet is fired into a 4.0-kg block of wood which is sus- 

pended by a cord of length 1.0m. If the block is moved through an angle 
of 20°, what is the speed of the bullet ? Ans. 2.2 X 10? m- sec! 

aad 
  

  

27. A 500-g bird sat on a pole 30 m high. A boy standing 20 m from the 

base of the pole shot the bird with a 10-g bullet which had a speed of 

150 m - sec~? when it struck the bird. Assuming that the bullet lodged in 
the bird, find (a) the distance that the bird rose above the pole and (b) how 

far from the base of the pole it struck the ground. 
Ans. (a) 30cm; (6) 4.5m. 

28. Two balls, of mass 10 g and 5.0 g respectively, collide inelastically. 
Their velocity after impact is 4.0 m - sec—!, at an angle of 30° with the initial 
direction of the 10-g mass. The initial speed of the 10-g mass was 

10m-sec7!. Find the initial velocity of the 5.0-g mass. 
Ans. 11m-sec7! at 148°,
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29. A ball strikes a smooth plane obliquely and rebounds. ‘The velocity 
before itnpact makes an angle @; with the normal to the plane, and after im- 
pact an angle dz. Obtain the expression for the coefficient of restitution. 

Ans. tan pi/tan de. 
30. A ball is dropped on the floor from a height h. The coefficient of 

restitution is e. Find the time and the distance traversed before the ball 

comes to rest. Th lte 1+ 
g l-e 1— 

31. Assuming perfectly elastic impact between the water and the blades, 
compute the efficiency-velocity curve of a Pelton water-wheel. 

82. Diagonals are drawn on a square sheet of cardboard of area /?, and one 
of the resulting triangles is removed. Find the center of mass of the resulting 
piece of cardboard. Ans. 1/9 from center. 

83. Two solid metal cylinders, each of Jength 30 cm and having diame- 

ters of 10 and 5.0 cm respectively, are joined so that their axes are in the 

same straight line. Locate the center of gravity and center of mass of the 
pair if the larger cylinder is made of iron and 

the other of lead, Ans, 6.9 cm from junction, 

34, The trapdoor in Fig. 246 is 6.0 ft wide 

and weighs 70 Ibwt. A load of 40 Ibwt is con- 
centrated 2.0 ft from the hinged edge, Find 40 Tbwt 
the force F which, acting at an angle of 20° Fic, 246. Problem 34 

with the horizontal, is needed to raise the 

door, Ans. 1.4 x 10° Ibwt. 

35, A door 3.0 ft wide and 7.0 ft high weighs 150 Ibwt. If the hinges are 
10 in. from the ends and the weight is carried 

entirely by the upper hinge, what is the total 
force on each of the hinges? 

Ans, 1.6 ¥ 10? Ibwt; 42 Ibwt. 

36, The axle of a wheel carries a load of 
500 kewt (Fig, 247). What horizontal force 
must be applied to the axle to raise the wheel 
over an obstacle 12 cm high, the radius of the 
wheel being 50cm? Ans. 4.3 x 10® kewt. 

37. The carpenter’s square shown in Fig. 248 
is supported on a nail at N. Calculate the angle 
that the larger blade makes with the vertical. 

Ans, 16°. 
88. Two parallel forces, each of magnitude 

35 poundals, act in opposite directions at the Fic, 248. Problem 37 
ends of a bar 2.0 ft long, The bar makes an 
angle of 20° with the direction of the forces, What is the torque of the 
couple about an axis making an angle of 60° with the normal to the plane 
of the couple? Ans. 12 ft - poundal. 

   
eo 

Ans, (= a   3ssh   

    

Fig. 247. Problem 36 

  

80cm
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89. Two uniform planks of the same size and weight are hinged at one end 
(Fig. 249) and stand with their free ends on a smooth floor. They are pre- 

vented from slipping by a rope which is tied to 
each plank at the same distance h above the floor. 

Find the force in the rope and the force at the hinge. ix 

Ans. F,=% Wisin (@/2){lcos (6/2) — Ay}. I I 

40. Two masses, m,.and me, are connected 

rigidly by a rod of length d and negligible mass. fon 

Show that the application of the couple of magni- 
tude fd shown in Fig. 250 will cause the system to Fic. 249. Problem 39 

rotate about its center of mass. 

41. Taking the mass of the earth as 67x 10° =, f 
tons, find the approximate value of the kinetic q m, 

energy of rotation of the earth on its axis. State fl a —| 
all the simplifying assumptions employed in getting 

the result. Ans. 2.9 x 102j. Fie. 250. Problem 40 

42. Show that the linear acceleration of a hoop rolling down a plane of 
inclination ¢ is given by g sin ¢/2. 

  

48. A test made on the flywheel of a certain engine with the help of a 
Prony dynamometer of the type shown in Fig. 251 yielded the following 
data: W, 250 kgwt; reading of spring balance, 250 kgwt when the flywheel 

was at rest and 150 kgwt when its speed was 

110 rev-min~!; diameter of flywheel, 1.50 m. 

Caleulate the brake horsepower of the engine. 
Ans. 11.3 hp. 

44, The shaft of a 30-kw motor carries a gear 

wheel with 42 teeth that meshes into another gear 
wheel having 504 teeth. This second wheel is 
mounted on a shaft 30 cm in diameter and a weight 
is lifted by a rope wound around this shaft. If the 

over-all efficiency is 80 percent, how great a load 

can be lifted when the speed: of the motor is Fic. 251. Form of Prony 
1200 rev - min~1? Ans. 1.6 metric tons. brake devised by Logo 

45. (a) In 1851 FoucauLt hung a long pendu- Kevin. ae max am 
: . _ power which a prime 

lum with a massive bob from a rigid support mover can deliver contimt 

which imposed no tendency on the pendulum to ously, as determined with 

vibrate more easily in one direction than in the uch a device, is called 

other. By setting this pendulum swinging in a the brake horsepower 
carefully marked direction he was able to demon- 
strate the rotation of the earth. Why? () HacrEn in 1910 was able to 
demonstrate quantitatively that the earth is in rotation. A beam was hung 

horizontally from a long wire. Two masses could be moved at the same time 
from the middle to the ends of the beam, or the reverse, symmetrically with 
respect to the axis of rotation. When the masses were displaced, the beam 

suddenly turned quite perceptibly with respect to its surroundings. Explain. 
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46, A closed cubical box of volume V is made from thin sheet metal of 
constant surface density o, Find the moment of inertia of the box about an 
axis passing through its center of mass and perpendicular to. two opposite 
faces. Ans. 5a V4/3. 

47. A 50-g clay ball moving with a speed of 30 m - sec~! in a horizontal 
direction makes inelasti¢ impact with the end of a vertical rectangular bar 
1.0m long and 5.0 cm square which is pivoted at its center of mass. If the 
mass of the bar is 5.0 kg, what angular speed is communicated to it? 

Ans, 1,8 rad - sec. 

48. A homogeneous solid cylinder has wound around it a perfectly flexible 

cord. One end of the cord is fastened to a fixed point and the cylinder is 
allowed to fall. Develop the expression for the acceleration. Ans. a=2g/37. 

49, A hoop and a solid disk start down a hill together. Assuming in each 
case rolling without slipping and neglecting air resistance, find the ratio of 
their speeds at the bottom. Ans. V3/2. 

50. (a) How could you distinguish a gold sphere from a silver sphere if 

they had the same radius, the same weight, and were painted the same color? 
(b) If a hard-boiled egg were in the same basket with some uncooked eggs, 

how would you go about picking it out? (See S. P. Thompson, Life of 
William Thomson, Baron Kelvin of Largs, Vol. 11, p. 740.) 

61. Explain how a spool may be pulled along a level table top by the end 
of the thread which is wound on it (Fig. 81) so that the spool (a) spins 
forward; (b) spins backward; (c) drags without spinning. 

52. If the thickness of a solid cylindrical disk of mass M and radius R 
varies directly as the distance from the axis, what is the expression for the 

moment of inertia about the axis of the cylinder? Ans. 3MR?/5, 

68. A cylindrical vacuum pump has a bore of 10 cm and a stroke of 15 cm. 

The volume left at the end of the stroke is 50 cm*, The intake valve has an 
area of 5.0 cm? and requires a force of 25 gwt to open it. The exit valve has 
an area of 1.0 cm? and requires a force of 15 gwt to open it. What. is the 
minimum pressure that can be reached by the pump? Assume no leakage. 

The pump exhausts against an atmospheric pressure of 75 cm of mercury, 
Ans. 3.5cm. 

54. When a wire of diameter d is stretched, the lateral strain Ad/d bears, 
for a given material, a fixed ratio to the longitudinal strain Al/t, provided 
the latter is small. This ratio is called Poisson's ratio. It can be shown that 

qa BR=2n, 
28 k+n) 

Show that the value of Porsson’s ratio must lie between — 1 and 4, and that 
the three elastic constants Y, , and @ are connected by the equation 
Y=2n(1 +0). 

55. A tube 100 cm long is half filled with mercury. It is then inverted 

in a cistern of mercury. If the barometer reads 760 mm, how high above 

the cistern does the mercury stand in the tube? Ans. 25.2 cm. 
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56. A simple torsion balance (Fig. 252) consists of a 40-cm crossbar hav- 

ing at each end a spherical lead ball of diameter 20 mm, the bar being sus- 
pended by a silver wire 100 cm long and 0.50 mm 
in diameter. Two spherical lead balls, M@ and 

M’, each 30cm in diameter, are brought as 

close as possible to the small balls but on op- 

posite sides, so that their gravitational attrac- m' 

tions tend to turn the bar in the same direction. Q) 
How much is the silver wire twisted ? M 

Ans. 0.008°. Q 

57. The carbon filament in an old-style in- m «1 

candescent lamp quivers continuously when Fi. 252. Diagram of the 
cold, but when the lamp is lighted it can be : 

. : : torsion balance used by 
distorted easily by placing the pole of amagnet Cyyenpsn for measuring the 
near the bulb. What is the effect of tempera- constant of gravitation G 
ture on the elastic constants of carbon? 

58. Show that the potential energy per unit volume of an elastic body 
under hydrostatic pressure is equal to one half of the product of the volume 

modulus and the square of the volume strain. Does a similar expression 
hold for the case of a longitudinal strain? 

59. The elasticity of a certain rubber cord of length / is such that a 

weight W attached to its end produces a longitudinal strain of unit amount. 
Two weights, each of magnitude F, are fastened to the cord, one at an end 
and one in the middle. The cord with the weights is then lifted from the 
ground by its free end. Show that the least amount of work which will lift 
both weights from the ground is 0.5 FI[(7 F/2 W) + 1}. 

60. At what temperature will the centigrade and Fahrenheit thermom- 

eters give readings that are equal numerically but opposite in sign? 
Ans. 11.43° F. 

61. What would be the value of the expansivity of an ideal gas if the 

Fahrenheit degree were used instead of the centigrade degree? 

Ans. 1/491.72 deg7}. 

62. Frame a suitable definition for the surface expansivity of a solid body 
and show that this quantity is approximately twice the linear expansivity. 

63. A steel bridge is 200 ft long at 60° F. If tests show the mean linear 

expansivity of the steel between — 39° and 100°C to be 1.03 x 1075 per 
deg C, how much allowance should be made for the change in length of the 

bridge when the temperature ranges from — 20° to 100° F? = Ans. 1.7 in. 

64. H. L: Fizeau (1819-1896) found that when the temperature is de- 
fined by a gas thermometer, the linear expansion of copper is given by the em- 
pirical formula 1;,=J)(1 + @’t + b’f?), where a’=1.596 x 10-5, 6b’ =1.02 x 1078, 

and J) and J; are the lengths at 0° and 7° Crespectively. If we were to define 
temperatures by means of a copper thermometer in which equal increases in 

length of a copper rod corresponded to equal intervals of temperature, and
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if we still defined 0° and 100° C in the usual way, what temperature would 
the copper thermometer indicate when the gas thermometer indicated 50°C? 

Ans. 485°. 

65. A brass wire of length 80cm and cross-sectional area 3,0 mm? is 

tightly stretched between two cast-iron clamps rigidly fastened to a cast- 
iron bar. How much would the force in the wire change if the whole ap- 

paratus were cooled from 30° to 10° C? Ans. 4.2 kgwt. 

66. What would be the value of the expansivity of an ideal gas if the 
original volume were measured at 100° C instead of at 0° C? 

Ans, 0.00268 deg-. 

67. A cubical block of steel 30 cm on an edge is floating on mercury. Find 

how far the block will sink when the temperature rises from 15° to 75° C. 

Ans. 2mm. 
68. A certain mercurial barometer, equipped with a brass scale known to 

be correct at 15°C, read 735.75 mm at a time when the temperature was 
30°C. Reduce this reading to zero; that is, calculate what the reading 

would be if the temperature were 0° C. Ans. 731.59 mm, 

69. It is found that a column of mercury at the steam point and 67.5 cm 
high balances a column of mercury at the ice point and 66.5.cm high 

(Fig. 99). (a) Find the mean expansivity of mercury between 0° and 
100°C. (b) Given that the density of mercury at 0°C is 13.6 ¢-cm-%, 

find its density at 100°C. Ams. (a) 1.5 x 10-4 deg-!; (6) 13.4 g-cm-3, 

70. The variation in the density of water with temperature is given 
by the equation c= po(l+al+ bt +cl3), where @=5.293 x 10-5, 
b= — 6.5322 x 10-5, c=1.445 x 10-8. Find the temperature at which 

the density of water is a maximum. Ans. 4.12°C. 

71. Explain atmospheric pressure from the point of view of kinetic theory. 
Why is the pressure greatest at points near the earth’s surface? 

72. Show that the pressure exerted by the wind upon avsurface placed at 

right angles to its direction of motion is pv? dyne - cm~?, provided the wind 
loses all of its speed » upon impact. What is the difference between wind 
pressure and ordinary gas pressure? 

78. The value of the coefficient of viscosity of air at 19.2° C is 1.828 x 
10-*g-em-!-sec-!; calculate the equivalent value expressed in fps units. 

Ans, 1.228 x 10-8 Ib - ft“! - see—", 

74, One gram of nitrous oxide was introduced into an evacuated spherical 
bulb of radius 10cm, Find the pressure exerted by the gas on the walls of 
the bulb when the temperature was 30° C. Ans. 10 cm of mercury. 

75. Find the increase in the root-mean-square speed of the molecules of 
hydrogen when the temperature of the gas is raised from 0° to 12°C, 

Ans. 330 cm « sec, 
76. Is the existence of atoms and molecules a hypothesis or a fact? How 

about the existence of the sun? the stars? Define each of the following 
terms: fact; hypothesis; postulate; axiom; theory, 
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77. Show that if the pressure exerted by a gas were the result of repulsions 
between its molecules, the repulsive force would have to vary inversely with 
the distance in order for BOYLE’s law to hold. 

78. Show that if the force between gas molecules were inversely propor- 
tional to the distance, the effect of the distant parts of the medium on the 

molecule would be greater than that of the neighboring parts, and conse- 
quently the pressure would depend not only on the density of the gas but 
on the form and dimensions of the containing vessel. 

79. Neglecting air resistance and the presence of any other astronomical 

bodies, find with what speed a shot would have to be fired vertically upward 

from the earth’s surface so that it never would return. 

Ans. v= V2 Rg, where R is the earth’s radius. 

80. Show that the expressions that were found in Prob. 3, Chap. 11, for 
the critical constants can also be obtained by finding dP/dV and d?P/dV? 
from the VAN DER WAALS equation, and setting both equal to zero. Why do 

these operations yield the expressions for the critical constants? 

81. Take as a new unit of temperature the value of T,, as a new unit of 
pressure the value of P,, and as a new unit of volume the critical volume V.. 

(a) Transform the VAN DER WAALS equation to this new system of units. 

(b) What is the remarkable characteristic of this so-called reduced equation 
of state of VAN DER WAALS, and how do you interpret it? , 

Ans. (a) (7: + 7) (3Vi-1)=87:. 
1 

82. What is the hygrometric state of the atmosphere on a day when the 

temperature is 18° C and the dew point is 12°C? Ans. += 67.7 percent. 

83. The volume of unit mass of a substance is termed its specific volume. 

By the standard specific volume of a substance is meant its specific volume 

if it were an ideal gas under standard conditions of temperature and pres- 
sure. What is the standard specific volume of a substance that has a 
molecular weight of 40? Ans. 5.6 X 10? cm? - g7}, 

84. JAEGER and STEINWEHR found that the specific heat of water in joules 
per gram per degree at temperature f° C is given by c; = 4.2048 — 0.001768 t 
+ 0.00002645 #2. What error would result from assuming that the specific 
heat of water at 25° C is the same as its mean specific heat over the range 

0° to 50° C? Ans. 0.13 percent. 

85. Given that the mean atomic thermal capacity of copper in the range 

0° to 40°C is 24.5 joules per gram atomic weight per degree, how much 

energy is required to raise the temperature of 250g of copper from 10° 

to 20° C? Ans. 226 cal. 

86. The mean specific heat of a substance between the temperatures f, 

and f2 is sometimes defined as the ratio of the quantity of heat required to 
raise a given mass of the substance from f; to fg to that required to produce a 

similar rise in temperature of an equal mass of water. (a) Is this definition 

equivalent to that of Eq. [186], Chap. 12? (6) Under what conditions will 
the two definitions yield quantities that have the same numerical value?
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87. What would be the apparent specific heat of a gas that is expanding 
isothermally owing to the application of heat? 

88. (a) Find a general expression for the slopes of the curves PV? = con- 
stant. (b) Prove that for an ideal gas the ratio of the slope of an adiabatic 
curve on the PV-diagram to that of an isotherm is equal to the ratio + of 
the specific heats. (c) Find the ratio of the adiabatic volume modulus of 
elasticity to the isothermal modulus. 

89, (a) Does the heat of vaporization of a liquid increase or decrease with 

increasing temperature? (b) What is its value at the critical temperature? 

90. Laboratory tests made with a bomb calorimeter show that the heat of 
combustion of a certain grade of coal is 13,000 B.t-u. per pound. If electrical 
energy can be purchased for 4 ct/kw + hr, what should be the price of the coal 
in order for the cost of heating a house by the coal and by electricity to be the 
same? In the case of the coal make an allowance of 50 percent for the heat 
that goes up the chimney and for other losses. ‘Ans. $152 per ton. 

91. A 50-kg block of ice fell 30 m. Assuming that the transformation of 
mechanical energy into heat is complete and given that the heat of fusion of 
ice is 79.6 calis - g~!, find how much ice was melted by the heat generated in 

  

the impact with the ground. Ans, 44g. 

92, Calculate the total energy of linear motion of all the molecules in 1 
mole of ideal gas at 30°C. Ans. 9X 10° cal, 

93. A given quantity of air is found to have a pressure P,, volume V, and 
temperature 7;. After the oxygen has been removed, the remaining nitrogen 
is found to have a pressure Ps, volume V, and temperature Tz. Express the 
ratio of the number of moles of nitrogen to the number of moles of oxygen in 
this sample in terms of the given pressures and temperatures. 

Ans. P3T1/(P1T2— P2T1). 

94. Two bulbs containing air are joined by a small tube. The volume of 
one bulb is three times that of the other, and the initial temperature of each 
is 273.2° K. Neglecting the expansion of the bulbs, find to what temperature 
the larger bulb must. be raised in order to double the pressure of the air. 

Ans. 819.6° K. 

95. VIOLLE found that the quantity of heat Q required to raise 1 g of 
platinum from 0° to 1° C is given by the formula @ = 0.0317 ¢ + 0.000006 12. 
Find the temperature of a Bunsen flame if a platinum ball of mass 20g 
dropped from the flame into 377 g of water at 0° C raised the temperature of 
the water 2°. Ans. 1x 108°C. 

96. A piece of ice of mass 50 g is dropped into a brass calorimeter of mass 
150 g which contains 800 g of water at 27°C. Calculate the final temperature. 

Ans, 21°C. 
97. Aluminum in finely divided form and of mass 53.8 gis heated to 98.3°C 

and dropped into 76.2 g of water at 18.6° C contained in a copper calorimeter 
vessel, The final temperature of the mixture is 27.4°C. The mass of the 
calorimeter vessel is 123 g and the combined thermal capacity of the ther~
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mometer and the metal stirrer is 6.5 cal -deg-1. The cooling correction is 

found to be negligibly small. Calculate the mean specific heat of aluminum 

for the temperature range employed. Ans. 0.217 cal - g71-deg-. 

98. FOURIER and many others have shown that for a thin slab of any 
material with parallel faces, one of which is at a higher temperature than the 

other, the rate of conduction of heat through the wall is directly proportional 
to the area of the surface and to the temperature gradient. For ordinary 

window glass, the proportionality constant, called the thermal conductivity, 
is found to be 0.0020 cgs unit. How much coal (Prob. 90) must be burned 
per day to compensate for the loss of heat by conduction through a window- 
pane of area 1.5 m? and thickness 3 mm when the outer surface is at 2° C and 

the inner surface at 23° C? Ans. 110 Ib, if heater is 50 percent efficient. 

99. The introduction of 5.0 g of a certain substance at 100°C into a 
BUNSEN ice calorimeter causes the end of the column of mercury to move 
18.5 mm. Given that the mean diameter of the capillary tube is 1.1 mm and 

that the increase in volume of 1 g of water in freezing is 0.0905 cm, what is 
the specific heat of the substance? Ans. 0.031 cal - g-1- deg71. 

100. In a steam calorimeter which is equipped with only one bulb, the 

bulb is made of copper, weighs 50 gwt, and has a volume of 11. Nitrogen at 
a pressure of 2 A, is placed in the bulb. If the initial temperature of the 
chamber is 10°C, how much steam will be condensed on the bulb when 

steam at 100°C and 1 A, is admitted to the chamber ? Ans. 0.87 g. 

101. If the density of ice is 0.917 g-cm~3 and that of sea water is 
1.03 g-cm73, what fraction of the total volume of an iceberg is above 
water ? Ans. 0.11. 

102. Show that if the density p of a body is known roughly, the formula 
for the weight of the body in vacuum takes the approximately correct form 

W= [1+ ea(—=-) |- 
P pw 

103. Find the correction for reducing to weight in vacuum the weight of a 
quantity of water weighed with brass weights. In the calibration of glass- 

ware by means of water, is it imperative to make the reduction to vacuum? 
Ans. 1 mg per g. 

104. The specific gravity of a substance is defined as the ratio of the 
mass of a certain volume of the substance to the mass of a like volume of 
some standard substance. In the case of solids and liquids, the standard 

usually employed is water at 4° C. (a) The density of mercury at 20° Cis 
13.5462 g-cm—?; what is its specific gravity at this temperature? (b) Cal- 

culate the density of mercury in fps units. 

Ans. (a) 13.5463; (b) 845.64 Ib - ft—3. 

105. A 10.00-g weight placed upon a block of wood weighing 30.00 gwt 

sinks the block to a certain point in water. In a given salt solution, 15.00 gwt 
must be placed on the block to sink it to the same point. Find the specific 

gravity of the solution. Ans. 1.125.



430 Mechanics + Molecular Physics + Heat » Sound 

106. (a) When a film of water exists between two glass plates, as in 
Fig. 253, it is difficult to draw the plates apart by applying forces normal 

to their surfaces. Explain. Show that the plates 
will be pressed together by a force equal to deme 
(2 Ao cos o/d) + Co sina, where a is the angle of Fig. 253, Filmof water 
contact, A isthe area of the film between the plates, ~ between glass plates 
dis the thickness of the film, and C is its circumfer- 

ence. (b) A drop of water weighing 0.1 gwt is introduced between two clean 
pieces of plate glass. With what force will the plates be pressed together 
when they are 0.0001 em apart? Ans. 2 tons of force. 

107. (a) What will be the pressure in an air bubble which is at the bottom 
of a vessel 15 in. deep, if the diameter of the bubble is 0.040 in. and the 
barometric pressure is 28 in. of mercury? (b) What will the volume of the 
air in the bubble become when it rises to the surface and mixes with the out- 
side air? Ans. (a) 29 in. of mercury; (b) 3.5.x 10-5 ins 

108, Two soap bubbles of unequal 

size are blown separately on the ends 
of a branched tube which is provided 
with stopcocks (Fig. 254). Connec- 

tion with the external atmosphere 
is then cut off and the two bubbles 
are put into communication, Ex- Fic. 254. Problem 108 
plain what happens. 

109. A solid dam is so built that its cross section is a right triangle hav- 

ing a 3-m base and a 4-m altitude (Fig. 255). If the water comes to the 
top of the dam, on the vertical side, find the least 
density which the material composing the dam may 

dave if the dam is to be a stable structure. 

Ans, 0,89 g-em~3, 

110. A drop of mercury is placed betweer tyro plane 
slabs of glass which are pressed together until the 

mercury forms a circular disk 9.5 cm in diameter and ee 
1.0 x 107% cm in thickness. Given that the angle of con- Fic. 255. Cross 

tact between clean mercury and glass is 145° and that _ section of a 
the coefficient of surface tension of mercury at 18° C is 

520 dyne -cm~', calculute the force exerted by the mercury on the upper 

slab of glass. Ans. 6.0 x 107 dynes. 

111. How much work would one have to do in order to sink a hollow 

cubical block 1.0 m3 in volume and weighing 50 kgwt to the bottom of a 

pond of water 2.0 m deep? Ans. 1.4 x 108 kgwt +m. 

112. A battery jar 10 cm in diameter and 12 cm in height is half full of 

mercury and half full of water, Find the total force against the side walls. 
‘Ans. 9.4 % 10° gwt. 

118. A horizontal water main 36in, in diameter contains 27 in. of 

water. Find the force on the valve that closes the main, Ams. 357 Ibwt. 
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114. A brass weight of density 8.4 g-cm~? is dropped into a tank of 

water 8.0m deep. Neglecting friction, find how long it takes the weight to 
reach the bottom. Ans. 1.4 sec. 

115. In Prob. 13, Chap. 13, suppose that a horizontal tube containing a 
constriction is attached to the orifice and that the cross-sectional area of 

the constriction is equal to one fourth that of the remainder of the tube. 
What must be the height of the water in the tank in order that the water 
in the constriction may be on the point of boiling when the temperature is 

20° C and the atmospheric pressure is 1 A,? Ans. - 67.3 cm. 

116. The coefficient of viscosity of water at 15° C is 0.011 g-cm~?-sec—1, 
Water at this temperature is escaping from the bottom ofa tank containing 

40 cm of water through a horizontal capillary tube 15 cm long and 0.4 mm 
in diameter. Calculate the speed of flow with the help of POIsEUILLE’s 
formula. Ans. 12cm-sec71. 

117. (a) Show that if the resistance of the air, f’, be taken into account, 

the equation of motion of a falling body may be written in the form 

m du/dt = mg —f’. (b) Experiment shows that for low speeds the resistance 
f’ which the air offers to a falling body is proportional to the speed ». Thus, 

letting f’ = kmv, where k is a constant, show that v; = (g/k) + [vo — (g/k)Je~*, 
where 2) is the speed at the time ¢ = 0 and ¢ is the base of natural logarithms. 

(c) Show that as time increases the speed approaches asymptotically the 
limiting value g/k. (d) A body falls 110m from rest in 5sec. Assuming 

the air resistance to be proportional to the speed, find the limiting speed 
which the body approaches asymptotically. 

118. (a) Show by dimensional reasoning that if the resistance f’ experi- 
enced by a sphere falling through a fluid is proportional to the first power 

of the speed », then f’ = Anrv, where & is a dimensionless constant, 7 is the 
coefficient of viscosity of the fluid, and 7 is the radius of the sphere. An 
exact analysis first given by STOKES (Mathematical and Physical Papers, 
Vol. III, p. 59) shows that f’=6 ay7rv. What is the expression for f’ when 

it is proportional to v2? (b) By taking into account the weight of the sphere, 
the buoyant force of the fluid, and the fluid resistance, show that the “‘ter- 
minal speed” of a sphere of radius 7 and density p falling through a fluid 

of density p’ and coefficient of viscosity 7 is 2 gr?(9 — p’)/9 n. (¢) Show that 
the “terminal speed’’ of a rain drop 0.001 cm in radius is 1.28 cm - sec7!. 

119. Suggest a method for determining the acceleration due to gravity 

with a good analytical balance. Estimate the accuracy you might expect 

to attain. 

120. A particle of mass m is executing simple vibratory motion. 

(a) Show that the kinetic energy of the particle at any time ¢ is 
mA%w? sin? wi/2. (b) Show that the potential energy of the particle at any 
time t is mA2w? cos? wi/2. (c) Show that the total energy of the particle is 
constant, and proportional to the squares of both the amplitude and the 
frequency. (d) What is the expression for the kinetic energy for the moment 

when the particle is at its position of equilibrium?
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121. The period and angular amplitude of the balance wheel of a certain 
watch are 0.40 sec and 30° respectively, (a) Find the angular acceleration 
of the wheel at the instant when its angular displacement is zero. (b) If the 
moment of inertia of the wheel is 1 cgs unit, what is the accelerating torque 
at the instant when the wheel is at rest? Ans. (b) 130 dyne-cm. 

122, Show that the number of vibrations lost in a day by an ideal pen- 
dulum when its length changes from / to a slightly greater length, 1+ Al, 
is vAl/21, where v is the number of vibrations 
completed in 24 hours with length 7. 

123. A certain rigid pendulum oscillating about 

a horizontal axis is observed to make 100 complete 
vibrations in 75 sec. Find its period when the axis 

is inclined 45° to the horizontal (Fig. 256). 

Ans, 0.89880. yg, 256. Problem 123 
124. An ideal pendulum is constructed by sup- 

porting a small metal sphere by means of a very thin steel wire. At a cer- 
tain temperature the pendulum beats seconds; that is, the period is 2.0 sec. 
How many vibrations would be lost in 24 hours if the temperature were to 
rise through 10°C? Assume the mean linear expansivity of the steel to be 
1.0 x 10-5 deg-". Ans. 2.2 vib. 

125. (a) Prove, as did Newton, that for an ideal pendulum vibrating 
with a small amplitude, the period varies directly as the square root of the 
product of the length of the pendulum and mass of the bob, and inversely 
as the square root of the weight of the bob. (6) By means of hollow pendu- 
lums filled with various materials, NewTon demonstrated that pendulums 
of the same length at the same place had periods which were equal within 
the narrow limits of error of the measurements. Show that this confirmed, 
to much greater accuracy, the result which might have been inferred from 
GALILEO’s experiment with falling bodies, that in a given locality the masses 
of bodies are proportional to their weights, and that the ratio of mass to 
weight is independent of the chemical composition of bodies. 

126, A skater describes a circle of radius 10 m with a speed of 5m « sec}. 
What must be his angle of inclination from the vertical in order that he 
may be in equilibrium? Ans, 14°. 

127. It is found that a force of 10 gwt elongates a certain elastic cord 
50mm. A 15-g mass is suspended from one end of the cord and is set to vi- 
brating in a vertical line by pulling down on it and releasing it. How far 
should the suspended mass be pulled down in order that on reaching the 
highest point of its vibration it may not exert any force upon the cord? 

Ans. 7.5 cm. 

128. Explain why it is that the pans of a balance affect the motion of the 
beam as if their masses were concentrated on their supporting knife-edges. 

129. A particle describes a simple vibratory motion of period 7 and am- 
plitude A. How long does it take the particle to move a distance A/2 from 
its position of equilibrium ? Ans. 7/12. 
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130. A horizontal wire 1 m in length is clamped at both ends and set into 

vibration in a vertical plane with an amplitude at the mid-point of 4mm. 
What is the shortest period it can have if a rider placed at the mid-point 
is at no instant to lose contact with the wire? Ans. 0.1 sec. 

131. Prove, as did NEWTON (Principia, Bk. II, Prop. XLIV), that if 
water in a U-tube is displaced it will oscillate with a period which is the same 

as that of a simple pendulum of length equal to one half the length of the 
water in the U-tube. 

132. A cubical block 20 cm on a side is suspended by two cords each of 
length 15 cm, as shown in Fig. 191. Find the period of vibration (a) when 
the motion is parallel to the plane of the figure and (6) when it is perpen- 
dicular to the plane of the figure. Ans. (a) 0.78 sec; (b) 1.1 sec. 

183. (a) By differentiating Eq. [271], Chap. 14, with respect to d and 
equating the result to zero, prove that the minimum period of vibration of a 
pendulum is obtained when the distance d of the axis of suspension from 

the center of mass is V/,/M. (b) For what position of the axis of suspension 
does the period have its maximum value, and what information does this 

give you concerning the nature of the curves in Fig. 189? 

134. A circular disk is free to swing about a chord which is fixed in a hori- 
zontal position. Find the length of the equivalent simple pendulum and 
prove that this is least and equal to the radius of the disk when the chord 
is one side of an inscribed equilateral triangle. 

135. A thin wire is bent in the form of a half-circle of radius R. It is set 
oscillating in its own plane about an axis perpendicular to its plane, and pass- 
ing through the mid-point of the wire. Find (a) the length of the equivalent 
simple pendulum and (0) the radius of gyration about the axis from which 
it is swung. Ans. (a)2R; (b) 0.85 R
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APPENDIXES 

1. Significant Figures and Notations by Powers of Ten 

The idea of significant figures provides a useful method of indicat- 
ing the accuracy of a numerical result and at the same time of mini- 
mizing the labor of computations. A significant figure is a digit that 

is believed to be nearer the actual value than any other. Zeros are 

significant if any other digits precede them in the number, otherwise 
not. Thus there are three significant figures in 204, 3.40, 100, 4.00, 

and 0.00540. If, in measuring the length of an object with a meas- 

uring rod capable of being read to a tenth of a millimeter, the result 
is two meters, thirty-four centimeters, and no millimeters, this is to 

be recorded either as 2.3400 m, 234.00 cm, or 2340.0 mm, but not 

as 2.34 m, 234 cm, or 2340 mm. 

If it is desired to indicate that a value lies between 2400 and 2600, 
and therefore has two significant figures, one obviously cannot write 

this as 2500, for 2500 has four significant figures and indicates that 
the value lies between 2499.5 and 2500.5. To avoid this ambiguity, 

2500 should be written as 2.5 x 10% when it has only two significant 
figures, or as 2.50 x 108 if it has three. 

Much unnecessary work of calculation can be avoided by employ- 

ing the following rules for dropping meaningless or nonsignificant 

figures : 

a. In casting off nonsignificant figures, if the value of the rejected figures 

is greater than a half unit in the last place retained, increase the last digit 

retained by 1; if it is less than half, leave this digit unchanged ; if it equals 

half a unit, increase the digit by 1 half the time only — for example, when 

the last retained digit is odd. 

b. In sums and differences drop every digit that falls under a nonsignificant 

digit in any of the quantities to be added or subtracted. Thus, the sum of 

216.526, 16.5, and 2.054 is 235.1, not 235.080. 

c. In products or quotients retain the number of significant figures that 

appear in the least accurately known quantity involved. Thus the product 

of 314.428 and 11.0 is 3.46’ x 103, not 3458.7080. 

d. In computing with logarithms, when any of the quantities which are to 

be multiplied or divided can be trusted no closer than 0.01 percent, use a 

five-place table; if no closer than 0.1 percent, use a four-place table; if no 

closer than 1 percent, use a slide rule. 

e. Where angles are involved, distances expressed to 2, 3, 4, or 5 significant 

figures call for angles expressed to the nearest 30 min, 5min, 1 min, or 

0.1 min, respectively, and vice versa. 
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In writing a number as a power of 10, the number is written as 

the product of two factors: the first factor contains as many digits 
as there are significant figures, the decimal point always being made 
to appear at the right of the first digit; the second factor is a power 
of 10. Thus the statement that the speed of light in vacuum is 
2.99796 x 10'" cm. sec-! implies that this speed has been deter- 
mined to six significant figures, 

° 

2. Precision. of Measurement 

A physical measurement is of little value unless its degree of ac- 
curacy is known. Errors are always present, and in accurate work 
means must be devised for reducing them as much as is necessary 
for the purpose at hand and for estimating the probable amount of 
the uncorrected error. A knowledge of the errors involved in various 

rements also often saves an experimenter considerable time, 
‘s, when a result is to be calculated from several measured quan- 

, it often happens that some of the measured quantities need 
to be measured with great precision, whereas the determination of 
the other measured quantities beyond a certain easily attained ac- 
curacy would be wasted effort. For example, if a measured quantity 
has to be raised to the nth power in a given formula, the percentage 
error in the measured quantity introduces an error m times as great 
in the calculated result ; consequently, this particular quantity would 
have to be measured with relatively great precision, whereas other 
quantities appearing in the formula to powers lower than » would 
not need to be measured so accurately. Again, it can be shown that 
if the desired accuracy of a measurement requires that more than 
about ten trials or repeated observations be made, it is better to 
improve the apparatus itself than to perform this additional labor. 
‘This follows from the fact that the accuracy of a result increases only 
with the square root of the number of observations, so that the labor 
involved grows much faster than the accuracy obtained. 

inaccuracies in measurements may be due to delerminate errors, 

which can be discovered and eliminated, and to indeterminate errors, 
which usually can be estimated. Determinate errors are constant in 
amount and may be due to imperfections in measuring instruments, 
to faulty methods, or to bias in the observer. Indeterminate errors 
are of two kinds: (a) errors whose existence is unsuspected and 
therefore obviously not subject to estimation; (b) errors which are 
known as accidental errors, whose magnitudes can be estimated by 
methods based on the laws of probability. 
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Accidental errors are the irregular discrepancies between succes- 
sive measurements that always occur when a measurement is re- 

peated with greai care. Suppose, for example, that an ordinary meter 

stick is used to measure the length of a table. If one were content 

to get the length to the nearest centimeter, he could easily get the 

same result every time the measurement is repeated; but if he uses 

great care to get the result to the nearest tenth of a millimeter, a 

slightly different result will be obtained every time the measurement 

is repeated. Experience shows that in a long series of independent, 

equally trustworthy observations most of the accidental errors will 

be of small magnitude, and only a very few will be large. Moreover, 

positive and negative errors are equally probable. It follows from 
this last that if one takes the artihmetic mean of a large number of 

readings, the error in the final result should tend to average out. 

The amount by which an individual observation in a series differs 

from the arithmetic mean is called the res¢dual of the observation. For 

example, suppose that eleven measurements of the length of a certain 

object, made with a meter stick and expressed in centimeters, are 

25.06 25.15 25.08 25.10 25.09 25.05 25.12 25.12 25.11 25.09 25.04 

The arithmetic mean of the series is 25.09 cm, and the residuals, 

arranged in order of magnitude without regard to algebraic sign, are 

0.0 0.0 0.1 0.1 0.2 03 03 03 04 0.5 0.6 

The middle residual, 0.8, may be taken as a criterion of the accuracy 

of the measurements, for, as far as this series may be taken as repre- 

sentative, there is as much likelihood that the error of any individual 
measurement will be less than 0.3 as there is that it will be greater. 

This criterion is called the probable error of a single observation. It is 
the quantity which when added to and subtracted from the mean 

gives limiting values such that, if a single measurement of the same 

kind is made, it is as likely to lie outside of the limits, on either the 

positive or the negative side, as it is to lie between them. In the 
theory of errors it is shown that the probable error ¢ of a single obser- 
vation in a series of m observations is given by 

e= 40.6745, febtne be fret, 
n—I 

in which 7, etc. are the successive residuals. In practice the probable 
error is always computed from this formula rather than by the illus- 
trative method which we have used. 

If a series of x measurements is repeated, it is an even chance that 
the mean of this second series will differ from the mean of the first
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series by more or less than e/-Vx, and this quantity is therefore called 
the probable error of the mean. 

It is to be emphasized that the probable error indicates nothing 
whatever with regard to constant errors, which may be very large. 
It only indicates the agreement of observations among themselves 
as regards the accidental errors. 

Suggested references on the theory of errors: G. C. Comstock, Method of Least 
Squares (Ginn, 1890), pp. 1-4; M. Merriman, Method of Least Squares (Wiley, 1901), 
pp, 1-18; H. M. Goodwin, Precision of Measurements and Graphical Methods 
(McGraw-Hill, 1913). 

° 

3. Common Approximations 

In order to avoid laborious computations, approximation formulas 
should be used wherever possible. Whenever an approximation sug- 
gests itself, however, the error introduced by using it should be in- 
vestigated and the approximation not made unless this error is small 
enough to leave unaffected any figure that otherwise could be trusted 
in the result. 

  

  

True value | Approximate value| When applicable | Approximate error 

lta+a ...| lta a small ~a* 
U+a1+)..] 1+0+6 aand 6 small ~ ab 
(lea 2... | Lemay a small = 4 mimi = 1)a 
Mab oe nie HMa+b) bnearly equal toa | + (6—a)3/8.a 
sing. =... a radians asmall +08/6 
cosa... 1 a small +a%/2 
tma, ss... a radians asmall —at/2 
tana... ...| sina a small -a/       

  

* For example, when a = 0,1, the error is 1 percent; when a =0.01, the error is 
0,01 percent. 

+m may be either a positive or a negative integer or a fraction. 

° 

4. The Micrometer Caliper 

To make a measurement with the micrometer caliper (Fig. 257), 
place the object between the jaws and turn up the milled head until, 
with light pressure between thumb and finger, the head slips through 
the fingers instead of rotating farther. Never crowd the screw. 
Without removing the object read upon the scales the separation of 
the jaws to 0.001 mm. In the usual type of metric instrument,
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graduations on the fixed scale are in millimeters and on the movable 

scale in hundredths of a millimeter. The pitch of the screw is ordinar- 

ily 0.5mm; care must 

therefore be taken to note 

whether the reading is, for 
example, 5.068 or 4.568, 

since the reading on the 
movable scale is the same 

in both cases. 
Remove the object and 

close the jaws, being care- 
ful to use the same pressure as before, and take the zero reading. 
Correct the first reading for this zero error of the instrument. 

Take great care always to exercise the same pressure on the milled 

head. In some types of instrument the head is equipped with a 

ratchet designed to slip as soon as a certain pressure is exceeded; in 

this case the ratchet should be caused to slip always the same number 
of notches. 

  

Fic. 257. A micrometer caliper 

° |. 

5. The Vermer Scale 

The vernier, named after PIERRE VERNIER, who gave it its present 

form in 1631, is an auxiliary sliding scale which enables the observer 

to increase the accuracy of his 
  

    
estimation of a fractional por- 0 1 2 

tion of the smailest division of Lotrobeb bees 

the main scale. Usually ver- JETT LTT YY 

niers are so ruled that n divi- O50       

sions on the vernier correspond Fira. 258. The vernier. The reading is 1.48 
to n—1 of the main-scale divi- 

sions, and the smallest indication thereby given is 1/n-of a division. 

For example, in Fig. 258 nine divisions of the main scale correspond 

to ten on the vernier, and 

the smallest indication is 
one tenth of a division of 
the main scale. To make 

a reading, observe the left- 

hand division on the main 
scale that is nearest to 
the zero mark on the ver- 
nier. (In Fig. 258 this is 1.4cm.) Then observe the mark on the 
vernier that lies in the same straight line as some mark on the main 

  

Fie. 259. Caliper equipped with vernier
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scale. (In Fig. 258 this happens to be the eighth line.) This gives 
the fractional portion of the smallest scale division which must be 
added to the main-scale reading. (Thus, in Fig. 258 the complete 
reading is 1.48 cm.) 

° 

6. The Mercurial Barometer 

The mercurial barometer is the most reliable instrument for the 
™measurement of atmospheric pressure. In reading it, take the follow- 
ing steps in order : 

a. Read the temperature. 

b. Adjust the level of the mercury in the cistern of the barometer by 

turning the screw at the bottom until the mercury surface just touches the 
tip of the ivory pointer in the cistern; this is best done by observing when 
the image of the pointer formed by the mercury surface appears just to touch 

the pointer itself. 
c. Gently tap the upper part of the barometer tube to free the mercury 

surface from the wall of the tube and then adjust the vernier by means of 
the thumbscrew at the side until, on looking through the slit in the barometer 

case, the upper part of the mercury meniscus is seen to be just tangent to the 
line joining the sharp edges at the front and back of the vernier. 

d. Read the main scale and vernier. 

e. Employ Tables G, H, and I, Appendix 13, to correct the observed 
barometric height for a capillary depression and to reduce the observed 

height to 0° C and g,, when such corrections and reductions are necessary. 

° 

7. Centers of Mass by Integration 

In most cases the location of the center of mass must be accom- 
plished by imagining the body divided into small elements and per- 
forming an infinite summation or integration. The element of mass 
Am is p AV, where pis the density and AV is the element of volume; 
hence Eqs. [70], Chap. 6, take the form 

poxav" Sever _fozav 

7 oa * oar * fray 

where f p dV is the mass M of the body and the integrals are taken 
over the whole body. 

Case 1. Straight rod of length l, the density of which varies as the 

nth power of the distance from one end. Let x be the distance of any 
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mass element Am from the end of zero density; then p = kx”, and 

hence n+251 
flkerd + 

_ %  |In+2|_n+1 I 

f kerdx anth yp on 2” 
° n+1lo 

If 2=0, % =1/2. If n=1, x, =21/3; this result could also be 

applied to the area of a triangle or to the surface of a cone or pyramid 

(why ?). Ifm=2, x. =31/4; this result could be applied to the case 

of a solid cone or pyramid (why ?). 
Case 2. Circular arc (Fig. 260). 

f" rcos o(prde) rf" cosbdd seine _ - = ot = = radius - 

f. prdd [de “ 

For a semicircle, a= 7/2; hence x,= 21/7 = 0.6366 1. 

ate |. 
SN 

  

  

  

chord . 
  

Xe = 

we: 

  

Fic. 260. Circular arc Fic. 261. Segment of Fig. 262. Sector 
a circle of a circle 

Case 3. Segment of a circle (Fig. 261). 

2 sin’ @ 
X= 51 ———————: 

3 a—cosasina 

Case 4. Sector of a circle (Fig. 262). 

x= 2, sin a 
“3 a 

For a semicircular plate, x, = 47/3 7. 

  

o 

8. Moments of Inertia 

Case 1. Thin ring, or a cylinder with thin walls, about an axis 

through the center and normal to the circular section. 

— {"%,2 = 2 i=f[ r2dm = MR?. 

Case 2. Thin circular ring about any diameter. a. I, = I, 

= 4 Up+Iy) =4h 2m (x? +9?) = § Um? = 5 MR’; thus, in general, 

L+h=l.
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b. This result can also be obtained by integration as follows 
(Fig. 263). Let o be the mass per unit length; then 

= ["dm=2]" R? sin? = 3 (sin? 1= [r2dm = 2" R? sin? 0oRdO=2 oR* (sin? 040 
=2oR{[—} cos @sin 0+ 4 6], 
=oR3 MR’, 

  

since 2 7Ro= M. 
Case 3. Solid disk or cylinder about an axis 

through the center and normal to the circular 

section, a. The cylinder may be regarded as 
made of a series of concentric cylinders of 
radii 7, thickness dr, and length L; then 

of" sum = fre. =9 ee 1H [Mrdm= ("1.2 ardrLp=2 ele fear 
A 

=2nbp = =5 MR, 

  

Fic. 263. Thin circular 
ring, 

since M—=7R*Lp. {> 

b. By a more general method (Fig. 264), LA 

=f" rd =f" [ir rddarep 
. a ae m Rt 2s 
=Laf I; a L 

  

1 
= The 1 gp. 3 Fic, 264. Solid circular 

cylinder rotating about 
Case 4. Solid disk about any diameter. its longitudinal axis 

  a. 1. = Ty = Ee + Ty) = $ Dmx? + 9°) =h Dr? = 4 MRI=LRL. 

b. By integration, 

te Ry sy _ Rk =f" 7 sin? 07 dO drp =p Apr IR, 

  

Case 5, Thin rod or wire about an axis normal to the length, at one 

end. If di be an element of length, distant / from the axis, and o be 
the mass per unit length, 

r= "Po dl= 

  

Case 6. Thin rod or wire about an axis normal to the length, 
through the center. 

L    
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The student should check this result by changing it to that of the 

preceding case by means of Lagrange’s transfer theorem. 

Case 7. Rectangular bar of length L, width a, and thickness b, 

about an axis parallel to b through the center of mass (Fig. 265). 

L a 
L 

2 (2 
z a 

r=fi Ji (x? + y?\dx dy bp = po fe (0+5) dx 

_ pbal ah (12 +a?) = * M(L2-+ 22). 

Case 8. Solid sphere about any diameter. a. Obtain the expression 
for a thin spherical shell about any diameter and then regard. the 

solid sphere as made up.of a series of concentric shells. 

  

  

      

  

  

Yo ey 
P - 
i[ ° . 
po 

Fic. 265. Rectangular bar Fie. 266. Solid sphere 

b. Employing polar coordinates (Fig. 266), 

dm=rsin ¢ d@-1dq@- dr- p, 

and therefore 

B23 (Ry. 
1=8[° [? [resin® @- sin 6 dd dd dr p 

Q 0 Q 

RS = 7m 

=8 0% [* [*sint o ae a0 
0 0 

= Ra Zein —47pR° =8p—5 sin odd= 5   2 
3 

c. Employing Cartesian coordinates, 

R pV/Ro ge (iV R22 2 

=[f . f 72% 2 4 y2)dx dy dz- p= % MR’. 
Q 0 0 

Case 9. General rule. The moment of inertia about any axis of 

symmetry is given by 

sum of squares of perpendicular semi-axes | 

T=M 3,4, or 5 
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where the denominator is to be 3, 4, or 5 according as the body is 
rectangular, elliptical (including circular), or ellipsoidal (including 
spherical). 

Case 10. Solid circular cylinder about an axis perpendicular to the 

axis of symmetry, through the center, If the radius of the cylinder 
is R and its length is L, 

=u(#,2). I u(& +F ) 

  

° 

9. The Micrometer Microscope 

The saw-toothed index seen in the field of view of the micrometer 
microscope (Fig. 267) is intended to facilitate the counting of whole 
turns of the micrometer screw without removing the eye from the 
eyepiece. The graduated disk on the 
micrometer screw is usually held in posi- 
tion by a friction washer to permit setting 
it to a proper position. When the moy- 
ing cross hair coincides with one of the 
notches, this disk should be at the zero 

ion. In using the microscope, proceed Fie. 267. Field of view of 
as follow: micrometer microscope 

    

   

a. By sliding the eyepiece only, bring the cross hairs into good focus. 
Then bring the object into focus by moving the whole microscope tube. The 

test of a good focus is the absence of parallax, that is, no relative motion of 
the cross hairs and the image when the eye is moved sideways. 

b, To measure a length, make a number of settings of the movable cross 
hair first on one end and then on the other, and read the position for each 
setting, Thus determine the required length in terms of the number of turns 
and fractions of a turn of the micrometer screw. To avoid errors due to lost 

motion, the final motion of the screw in making settings should always be in 
the same direction. 

c. Observe on a standard scale the number of turns and fractions of a turn 
that correspond to 1mm. 

° 

10. Standardization of a Thermometer 

Thermometer readings must in general be corrected (a) for the 
errors of the instrument itself and (b) for the length of the exposed 
thread of mercury. If the first correction is to be made accurately,
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the thermometer should be compared with a standard thermometer ; 

a method for making this comparison is suggested in the optional 
laboratory problem accompanying Exp. IXa. Ifit is not practicable 

to compare the thermome- 

ter with a standard ther- 

mometer, the corrections 
may be obtained with a 

moderate degree of accu- 

racy by observing the cor- 
rections at the steam point 
and the ice point, and in- 
terpolating between these 
two points for the correc- 
tions at other temperatures 

(Fig. 268). 

+2° 
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Fic. 268. This correction curve for a certain 
centigrade thermometer was made from the 
following data: when in ice the thermometer 
read — 1.7°; when immersed to the top of 
the thread in a steam bath of temperature 99.1°, 
it read 99.8°. The corrections for readings of 
—1.7° and 99.8° are therefore 4+-1.7° and 

— 0.7° respectively 
The correction for the 

exposed thread (see Prob. 15, Chap. 9) is obtained by adding to the 
observed temperature the quantity 0.00016(¢— #’)/, in which 0.00016 
is the apparent expansivity of mercury in glass [0.000181 (mercury) 

— 0.000025 (glass)], fis the observed temperature corrected according 
to (a), f is the mean temperature of the exposed stem as obtained 
from a second thermometer whose bulb hangs near the middle of this 
stem, and /is the length in degrees of the exposed thread of mercury. 

For further details concerning the standardization of thermometers see E. Griffiths, 

Methods of Measuring Temperature (Griffin, 1918), Chap. II, or C. W. Waidner and 

H. C. Dickinson, Bulletin of the Bureau of Standards 3, 663 (1907). 

5 

11. Greek Letters Used as Symbols 

a Alpha uw Mu 

8 Beta vy Nu 

y Gamma aw Pi 

6 Delta p Rho 
A Delta (capital) o Sigma 
e Epsilon > Sigma (capital) 

ny Eta 7 Tau 
@ Theta @ Phi 
x Kappa y Psi 

A Lambda w Omega
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12, Symbols Used in This Textbook 

(See also Appendix 13, Tables K and N) 

  

linear acceleration 
a= linear acceleration, mag- 

nitude of 

a, b=van der Waals constants 

A. = standard atmosphere 

B = barometric pressure 

c = specific heat 

Cy =specific heat at constant 

pressure 
¢ = specific heat at constant 

volume 

C=a constant 

e= coefficient of restitution ; 
base of the system of 

natural logarithms 
E= kinetic energy 

f, F= forces 

J, F = force, magnitudes of 

g=acceleration due to grav- 

ity 

£o = acceleration due to grav- 

ity, at sea level 
& = acceleration due to grav- 

ity, standard 

G = gravitational constant. 
H = angular momentum 

h, H = vertical distances 
= moment of inertia 

J =Joule’s equivalent 

      

k=volume modulus of elas- 
ticity; 

radius of gyration 

ko = Boltzmann constant 
"K=degrees Kelvin (absolute 

centigrade scale) 

Z=Iength; 
fractional loss of kinetic 

energy in impact 

L= torque 

L= torque, magnitude of 

L,= constant of torsion, or 
torque per unit twist 

[£]= dimension of length 
m, M = mass 

[M] = dimension of mass 
n=unit vector normal to 

the path 

n= shear modulus of elas- 
ticity 

no = Loschmidt number 
No = Avogadro number 
N =normal force ; 

number of moles 

  

=momentum 

p= momentum, magnitude 

of 

P= power; 
pressure 

Q= quantity of heat 

specific humidity 
= position vector 

7 =relative humidity ; 
radius 

R= linear impulse 
R=linear impulse, magni- 

tude of; 

gas constant per mole; 
radius 

gas constant per gram 

® = angular impulse 
s= linear displacement 
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s = distance ; 

length of arc 

S = capillary constant 

i= time elapsed ; 

temperature 

T = absolute temperature; 

period of an oscillation 

To = ice point, absolute scale 

[T] = dimension of time 

u, U = linear speeds 

v = linear velocity 

v, V = linear speeds 

V = total volume; 

volume per mole; 

potential energy 

W = weight; 

work 

x, y, 2 = rectangular coordinates 

Y= Young’s modulus of 

elasticity 

a, 8, y = direction angles (angles 

between a line and 

the X-, Y-, Z-axes) 

a = angular acceleration 

a = angular acceleration, 

magnitude of ; 

volume expansivity ; 

angle of contact 

G=pressure coefficient of 

expansion 

y =ratio c,/e, of specific 

heats 

6, A= small increase in -- - 

7 = coefficient of viscosity 

6 =angular displacement 

6=anegle; 

angular distance 

[@] = dimension of tempera- 

ture 

\'= linear expansivity ; 

mean free path of a gas 

molecule ; 

wavelength 

w= coefficient of friction ; 

coefficient of diffusion 

py = frequency 

p = density ; 

absolute humidity 

o = surface density ; 

linear density ; 

coefficient of surface 

tension ; 

Poisson ratio 

x =the sum of all terms 

such as---+ 

+=unit vector along the 

tangent to the path 

7 = time interval; 

dew point 

¢, = angles 

= angular velocity 

w = angular speed 

0/0x = partial derivative with 

respect to x, all other 

variables being kept 

constant
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TABLE E - Density and Pressure of Saturated Water Vapor 

Showing the pressure P (mm of mercury) and the density p (g -cm-#) of aqueous vapor saturated at temperature !°C.; or showing the boiling point / of water and density p of steam corresponding to an outside pressure P, 
  

    

    

                          

ve | Pp e ep] Pe Pp e| Pp ° 

10] 21) 22x10 21 | 187] 183x10-*]) 984) 717.6 
—9] 23] 23 22 | 198] 19.4 98.6] 722.8 
—8|25| 26 23 | 21.1] 206 98.8] 728.0] ... 
-7)27| 28 24 | 22.4) 218 99 | 733.2] 579x 10-6 
—6/29| 30 25 | 23.8] 23.0 992) 738.5| . 
-5| 32] 33 26 | 25.2) 244 99.4 
-4) 34] 35 27 | 268] 258 99.6 
-3/ 37] 38 28 | 284) 272 99.8 
—2] 40] 41 29 | 30.1] 28.8 100 
=1) 43) 45 30 | 31.9] 304 100.2 

oO} 46] 48 35 | 42.2) 39.6 100.4 
1] 49] 52 40 | 55.4] 51.1 100.6 
2] 53) 56 45 | 72.0! 65.6 100.8 
3] 57] 59 50 | 92.6) 33.2 101 
4/61] 64 55 {118.2 104.6 102 
5/65| 68 60 [149.6 130.5 103 
6] 70] 73 65 [187.8] 161.5 104 
7/75| 78 70 |233.9| 198.4 105 | 906.0) 705 
8] 80] 83 7 {289.3 | 242.1 uo | 1074 | 827 
9] 386] 88 80 [355.4 | 293.8 120 | 1489 | 1122 

io) 92) 94 85. 433.7) 354.1 130 | 2025 | 1498 
11} 99} 10.0 90 [526.0] 424.1 440 | 2709 | 1968 
12/105 10.7 91 [546.3] 439.5, 150 | 3568 | 2550 
13/112] 113 92 |567.2| 455.2 170 | 5936 | 4127 
uw |120| 121 93. |588.8| 471.3 190 | 9404 | 6390 
15 |128| 128 94 f611.1| 487.8 195 10480 | 7090 
16/136) 13.6 95 |634.1| 505 196 |10700 | 7230 
17/145 | 145 96 |657.8| 523 197 |10940 | 7380 
1815.5 | 15.4 97 |6g2.2| 541 198 {11170 | 7530 
19 }16.5| 16.3 98 |707.3| 560 199 |11410 | 7690 
20 |176 | 17.3 98.2 |712.4]... 200 |11650 | 7840 
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TABLE F.- Approximate Values of Moduluses of Elasticity (dyne - cm-?) 
  

  

    

Substance Volume modulus, | Shear modulus, | Young’s modulus, 

k n Y 

Aluminum. ..... 7.5 X 10% 3.2 x 104 7.0 x 1012 

Brass. ....... 11 3.5 9.0 

Copper. ...... 13. 4.2 12. 

Glass... . 0... 4.5 2.4 6.0 

Tron (drawn) 16. 8.0 20. 

Iron (cast) . 2... 9.6 5.3 9.0 

Mercury ...... 2.6 tee o 

Phosphor bronze. . . tee 4.3 

Quartz fiber 2.8 . 

Silver 2... 10 2.6 7.5 

Stel... 2... 18. 8.2 20. 

Water... . 2... 0.22 ee wee         

TABLE G- Reduction of Barometer Reading to 0° C 

The corrections represent the number of millimeters to be subtracted from read- 

ings observed on a mercurial barometer equipped with a brass scale. 
  

  

  

          

Observed reading (mm) 

ee 700 710 720 730 740 750 760 770 

10 1.14 1.16 1,17 1.19 1.21 1,22 1.24 1.26 

a 1.26 1.27 1.29 1.31 1.33 1.35 1.36 1.38 

12 1.37 1.39 1.41 1.43 1.45 1.47 1.49 1.51 

13 1.48 1.50 1.53 1.55 1.57 1.59 1.61 1.63 

14 1.60 1.62 1.64 1.67 1.69 1.71 1.73 1.76 

15 171 1.74 1.76 1.78 1.81 1.83 1.86 1.88 

16 1.82 1.85 1.88 1.90 1.93 1.96 1.98 2.01 

17 1.94 1.97 1.99 2.02 2.05 2.08 2.10 2.13 

18 2.05 2.08 2.11 2.14 2.17 2.20 2.23 2.26 

19 2.17 2.20 2.23 2.26 2.29 2.32 2.35 2.38 

20 2.28 2.31 2.34 2.38 2.41 2.44 2.47 2.51 

21 2.39 2.43 2.46 2.50 2.53 2.56 2.60 2.63 

22 2.51 2.54 2.58 2.61 2.65 2.69 2.72 2.76 

23 2.62 2.66 2.69 2.73 2.77 2.81 2.84 2.88 

24 2.73 2.77 2.81 2.85 2.89 2.93 2.97 3.01 

25 2.85 2.89 2.93 2.97 3.01 3.05 3.09 3.138           
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TABLE H - Capillary Depression of Mercury in Glass (mm) 

  

Diameter Height of the meniscus (mm) 
of tube 
(mm) | o4 | o6 | 08 10 | 12 | 14 | 16 1.8 
  

  
4 0.83 | 122 | 154 | 198 | 237 | ... 
5 0.47 0.65 0.86 1.19 145 1.80 waly 
6 0.27 O41 0.56 0.78 0.98 121 143 
7 0.18 0.28 0.40 0.53, 0.67 0.82 0.97 1.13 
8 
9 

  

0.20 0.29 0.38 0.46 0.56 0.65 027 
0.15 0.21 0.28 0.33 0.40 0.46 0,52 

10 0.15 0.20 0.25 0.29 0.33 0.37 
u 0.10 0.14 0.18 0.21 0.24 0.27 
2 0.07 | 010 | 013 | 015 | O18 | 0.19 
13 0.04 0.07 0.10 0.12 0.13 0.14           

TABLE IA - Reduction of Barometer to g al Sea Level 

Correction to be subtracted (mm) 

  

  

  

Altitude, Observed reading (mm) 
H 

(meters) | 500 550 | 600 650 700 750 800 
500 wre ce “ O11 0.12 0.13 

1000 0.18 | 0.19 | 020 22 2 
1500 26 28 30 33 
2000 34 38 41 
2500 43 47   

  

      

TABLE Is - Reduction of Barometer to g at Latitude 45° 

The correction is in millimeters; subtract for latitudes less than 45°; add for 
latitudes greater than 45°. 

  

  

Observed reading (mm) 
Latitude 

680 700 720 740 760 780 

ase 657] 1.16 1.20 123 127 1.30 1.33 
30° 60? | 0.91 0.94 0.96 0.98 1.01 1.04 
ase? | 0.62 0.64 0.66 0.67 0.69 O71 
40° 50°} 0.31 0.32 0.33 0.34 0.35 0.36        
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TABLE J- Volume and Linear Expansivities (per deg C) 

Volume Expansivily, a 

Alcohol . . 1.012 x 10-* || Glass . 25x 10-8 || Mercury . 18.18 x 10-5 

Linear Expansivity, ® 

Aluminum . 2.3 x 10-5 jj Iron, cast. 1.05 x 10-5 Quartz . 0,057 x 10-5 

Brass . 18 Iron, soft . 1.2 Silver. . . 1.9 

Copper . 7 Lead . 29 Steel . _ Li 

Gold. . . . 14 Platinum . 0.9 Zinc . 26     
  

TABLE K - Probable Values of Some Important Physical Constants 

Selected from R. T. Birge, ‘‘Probable Values of the General Physical Constants,” 

Reviews of Modern Physics 1, 1 (1929). 

  

Gravitational constant 

Liter. 2... ee 

Volume of ideal gas 

(0° C, As) 
Atomic weights 

Standard atmosphere. 

Ice point (absolute 

scale) 

Joule’s equivalent 

Planck constant . . . 

Acceleration due to 

gravity, standard 

Maximum density of 

water ...... 

Density of oxygen gas 

(°c, Ass) 2. 2 we 

Factor converting oxy- 

gen (0°C, Ass) to 
jdeal gas ..... 

Density of nitrogen 

(0° C, Ass} 
Factor converting ni- 

trogen (0° C, Aas) to 

ideal gas 

Density of mercury 

cor C, A,) 
Avogadro number . . 

Gas constant per mole 

Boitzmann constant 

Mass of hydrogen atom 

Number of atoms per 

gram of hydrogen 

Loschmidt number . .     

G = (6.664 + 0.002) x 10-8 dyne- cm?- g-? 

1 = 1000.027 + 0.001 cm3 

V, = (22.4141 + 0.0008) x 1.03 cm3- mole! 

H = 1.00777 + 0.00002 N = 14.0083 + 0.0008 
He = 4.0022 + 0.0004 O = 16.0000 
C = 12.003 + 0.001 Ag = 107.880 + 0.001 
A, = (1.013249 + 0.000003) x 108 dyne - cm-? 

To = 273.18 + 0.03° K 
Jis = 4.1852 + 0.0006 j- calis—! 
h = (6.547 + 0.008) x 10-27 erg - sec 

gs = 980.665 cm - sec? 

0.999973 + 0.000001 g- cm-3 

1.428965 + 0.000030 g- 1-1 

1.000927 + 0.000030 

1.25046 + 0.000045 g - I-t 

1.00043 + 0.00002 

13.59509 + 0.00003 g-cm-3 - 
No = (6.06436 + 0.006) x 1023 mole 
R= V,A./To = (8.31360 + 0.0010) x 107 erg- deg—! - mole-1 

= 1.98643 + 0.0004 calis - deg! - mole" 

ko = R/No = (1.37080 + 0.0014) x 10-16 erg - deg 
My = H/No = (1.66179 + 0.0017) x 10-24 g 

1/My = (6.01761 + 0.006) x 10%3 gt 
no = No/Va = (2.70580 + 0.003) x 109 em-3(0° C, 1 A,)   
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TABLE L» Specific Heats (cal - g~1 - deg-+) 
  

      

  

Alcohol, ethyl . . Orc | 0.548 
40° 0.648 

Aluminum. . . nen o 0.208 
100° 0.225 

Bae hs die wt o 0.089 
Copper . . 0°-300° | 0.0915 + 2.4 x 10-82 
Glass, thermometer . . . | 19°-100° | 0.199 
Glass, crown. . . . . . | 10°-50" 0.161 
Gold... 2... * o° 0.0302 

18° 0,0312 
100° 0.0814 

SB alent fetes} odode 3 or 0.487 
Jron 0"-400° | 0.1060 + 9.6 x 10-54 
Lead 0°-300° | 0.0295 +2 x 10-51 
Mercury 0° 0.0335, 

15° 0.0333 
30° 0.0332, 

100° 0.0327 
Nickel yoo yn 4 0°-300° | 0.1020 + 1.18 x 10 ¢—6 x 10-8/# 
Platinum PES 0°-1625° | 0.03162 +-6.17 x 10-*/ + 2.33 x 10-1072 
Quartz 2... . .. | 12-100" | 0,188 
Silver, yp pened O°-4100° | 0.0556 + 8 x 10-8 
Tin . BEE wnt O*-200° | 0,0525 + 5.2 x 10-5¢ 
Wedd = sx se ie se mo : 20° 0,327 
TI) reitnitniias 0°-300° | 0.0913 +4,4 x 10-57 
  

TABLE M : Coefficients of Surface Tension of Liquids in Contact with Air 
(dyne-cm, or erg cm-4) 
      Alcohol, ethyl, 15°C... . 22.7 || Mercury, 20°C “ 520. 

2°C .... 22.3 || Water, 15°C. . $ BA 
FEC ex 21.8 wc... 72.7 

Ether, 20°C Far TRS. FOG cimsni -| 719 
  

TABLE N - Important Numbers and Conversion Factors 

  

7=3.1416 7? = 9.8696 1/r =0,31831 log 7 = 0.49715 
Base of the anal system of logarithms, ¢ = 2.7183 

lin, =2.54 cm 1m =39,37 in, 

                

kg =2.2 1b 1oz=28.35 g 
1 x (micron) = 10-* m Imp =10-*m 

(Angstrom unit)   
Weight of 1 ft of wate:    



  

  

                          

Appendixes 477 

TABLE O - Four-Place Logarithms 

° I 2 3 4 5 6 7 8 9 123 456 789 

10 | 0000} 0043 | 0086 | 0 28} 0701 0212} 0253} 0294] 03341037414 8 12117 21 25] 29 33 37 

11 | 0424} 0453 | 0492| 0531 | 0569 | 0607 | 0645 | 0682} 0719} 0755] 4 8 11/15 19 23] 26 30 34 
12 | 0792 | 0828 | 0864) 0&9 | 0934 | 096g | 1904 1038] 1072| 1106] 3 7 10}14 17 21} 24 28 31 
13 | 1139]1173|1206 | 1239| 1271 | 1303 | 133511367 | 1399|1430|3 6 10/13 16 19] 23 26 29 

14 | 1461 | 1492} 1523) 1553 | 1584) 1614) 1644/1673) 1703/173213 6 gi12 15 18| 21 24 27], 
15 [ 1761} 1790/1818] 1847 | 1875 | 1903 | 1931/1959] 1987| 201413 6 8/11 14 17| 20 22 25 
16 | 2041 | 2068 | 2095 | 2122| 2148 | 2175 | 220% | 2227| 2253] 2279/3 5 8)11 13 16|18 21 24 

17 | 2304) 2330| 2355 | 2380] 2405 | 2430] 2455} 2480| 2504] 2529/25 7/10 12 15/17 20 22 
18 | 2553) 2577 | 2601 | 2625 | 2648) 2672| 2695| 2718! 27422765125 7| 9 1214/16 19 21 
18 | 2788) 2810| 2833 | 2856| 2878 | 2900| 2923 | 2945! 29671 298912 4 7| 9 11 13/16 18 20 

20 | 3010} 3032] 3054 | 3075 | 3096 | 3118/3139] 3160) 3181] 3201/2 4 6| 811 13/15 17 19 

21 | 3222) 3243 | 3263 | 3284} 3304 | 3324 | 3345 | 3365 | 3385 | 3404/2 4 6) 810 12/14 16 18 
22 | 3424 | 3444/3464) 3483 | 3502 | 3522/3541] 35601 3579135982 4 6| 8 1012; 14 15 17 
23 | 3617 | 3636 | 3655 | 3674 | 3692 | 3711) 3720/3747 | 3766|3784}2 4 6| 7 9 1r/13 15 17 

24 | 3802 | 3820} 3838) 3856) 3874 | 3892| 39091 3927 |3945/3962/2 4 5, 7 9 Ir} 1214 16 
25 | 3979 | 3997 | 4014] 4031 | 4048 | 4065 | 4082] 4099 | 4116/ 4133/23 5| 7 9 I0}12 14 15 
26 | 4150) 4166 | 4183 | 4200/ 4216 | 4232 | 4249 | 4265 | 4281) 4298/2 3 5| 7 8 1o| 11 13 15 

27 | 4314] 4330 | 4346) 4362) 4378 | 4393 | 44091 4425|4440/ 4456/23 5; 6 8 ol rr 13 14 
28 | 4472 | 4487 | 4502) 4518] 4533 | 4548) 45641 457914594) 4609/23 5) 6 8 girIr 12 14 
29 | 4624 | 4639 | 4654} 4669 | 4683 (46981 4713/4728} 4742|4757|1 3 41 6 7 9| 1012 13 

30 | 4771 | 4786 | 4800/ 4814 | 4829 | 4843 | 4857) 4871 | 4886} 4900/1 3 4) 6 7 9} 1011 13 

31 | 49141 4928 | 4942/4955] 4969 |4983| 4997 | Sot] 5024|5038)1 3 4) 6 7 8) ro 11 12 
32 | 5051 | 5065 | 5079] 5092] 5105 | 5119} 5132] 5145)5159/5172{13 4] 5 7 8) g Ir 12 
33 | 5185 | 5198] 5211 | 52241 5237 | 52501 5203|5276|5289/5302/13 41 5 6 8] gro12 

34 | 5315 | 5328] 5340] 5353 | 5366 | 537815391} 5403 | 5416|5428|/r 3 4] 5 6 8| g torr 
35 | 5441 | 5453 |5405| 5478) 5490 | 5502/5514] 5527/5539 5551/1 2 4/5 6 7) QIOTT 
36 | 5563/5575| 5587) 5599] 50Tr | 562315635] 5647 | 5658/5670/1 2 4] 5 6 7) Brox 

87 | 5682; 5694| 5705 | 571715729 | 5749] 5752} 5793 /5775|5786{1 2 3] 5 6 7) 8 g10 
38 | 5798) 5809 | 5821 | 5832/ 5843 | 5855 | 5866/5877 | 5888|5809}1 2 3; 5 6 7) 8 giro 
39 | sort} 59221 5933 | 5944 | 5955 | 5906 | 5977} 5988) 5999/6010}1 2 3] 4 5 7| 8 9 To 
40 | 602 | 6031 | 6042 | 6053 | 6064 | 6075 | 6085 |6096| 6107/6117) 2 3) 4 5 6] 8 g Io] 

41 | 6128} 6138 | 6149 |6160| 6170 | 6180} 6191 | 6201 |6212/6222/1 2 3) 4 5 6] 7 8 9 
42 | 6232/6243 16253 | 6263 | 6274 |6284!6294} 6304] 6314/6325|12 3] 4 5 6 7 8 9 

43 /6335 16345 |6355 | 6365 | 6375 |6385 | 6395/6405 |6415/642511 2 3, 4 5 6) 7 8 9 

44 16435 | 6444/6454 | 6464| 6474 |6484 | 6493650316513 /6522/1 2 31 4 5 6] 7 8 9 
45 | 6532/6542 | 6551) 6561 | 6571 |6580/6590| 6599 |6609/6618}1 2 3) 4 5 6) 7 8 9 

46 | 6628 | 6637 | 6646 | 6656 | 6665 | 6675 | 6684|6693}6702/671211 2 31 4 5 6| 7 7 8 

47 | 6721 | 6730] 6730| 6749 | 6758 | 6767 | 6776 | 6785 |6794|6803)1 2 3] 4 5 5; 6 7 8 
48 | 6812} 6821 | 68301 6839 | 6848] 6857 | 6866 | 6875 |6884/6893/1 2 31 4 4 5) 5 7 8 
49 | 6902] 6gz1 | 6920] 6928 | 6937 | 69461 6955|696416972/698r11 2 3} 4 4 5, 6 7 8 

50 | 6990] 6998 | 7007} 7016 | 7024 | 7033 | 7042| 7050] 7059|7067)T 2 31 3 4 5, 6 7 8 

51 | 7076} 70841 7093 | 7x01 | 7r10| 7118! 71.26} 7135|7143|7152|T 2 3| 3 4 5) 6 7 8 
52 | 7160} 7168 | 7177| 7185 | 7193 | 7202|7210| 7218 7226|7235|1 2 2| 3 4 5) 6 7 7 
58 ) 7243) 7251] 7259) 7267| 7275 | 7284] 7292| 7300| 7308| 7316/1 2 2,3 4 5) 6 6 7 

54 | 7324] 7332) 7340/7348] 7356! 7364 | 7372|7380| 7388] 7396} 2 2) 3 4 5) 6 6 7        
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TABLE O - Four-Place Logarithms (Continued) 

  

  

e|r{2]a]4]s] 6] 7] 3] o |ras 
  

7443 | 745" | 7459| 7466) 74741 2 2 

7520] 7528| 7536] 7543] 7351|1 2 2 
7597 | 7604} 7612 | 7619) 7627/1 2 2 
7672 | 7679| 7686 | 7694| 7701} 1 x 2 

‘7748 | 7752 | 7762] 7767 | 7774/1 7 2 
7818 | 7825 | 7832| 7830 | 7846|1 «2 
7889 | 7896 | 7903] 7910) 7917| 1 x 2 

7959] 7966 | 7973 | 7980| 7987|1 x 2 
8028 | Boss | 8o4r | Bog8 | Boss 
8096 | 8102| Sro9 | 8116] 8r22] 1 x > 
8162 8169| 8176] 8182) 8189] 1 + 
8228 | 8235| S2qr | 8248] 8254 
8293 | 8299 | 8306 | 8312| 8310 
8357 | 8363 | 8370 | 8376 | 8382 

8420 | 8426 | 8432| 8439| 84q5| 1 7 
‘8482 | 8488 | 8494 | 8500) 8500 
8543 | 8549 | 8555 | 856x | 8567 
8603 | R609 | 8615 | 8621 | 8627/1 x 2 
8663 | 8660| 8675 | 868: | 8686 
87a2 | 8727] 8733 | 8730 | 8745 
8779 | 878s| 879r | 8797] 8802] 1 x 2 
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          8837 B8sq | 8859] 1 x 2 

8893 104 | Bora] Soxs| 1 x 2 
8049 8965 | So7z)x x 2 

9004 9020] 9025 |r x 
9058 9074] 9079] 1 x 
gure 9128 9133/1 1 2 
ot6s 9180/9186]: 2 2 
9217 92ga| 9238) 1 a 2 
9269 9284] 9289|1 1 2 
9320 9335 9340|1 1 2 
9370 9385 | 9390] 1 1 2 
9420 9435 | 9440/0 1 1 

5 | 9469. 9484 | 9489/0 x 1 

gst8 9533] 9338] rr 
9566 9581] 9586]0 1 x 
gery 028] 9633/0 1 1 

9661 9675| 9680/0 x 
9708 9722| 9727/01 ¥ 
9754 9768) 0773/0 1 5 

9800 9814 | 9818/0 x x 

9845 9859 | 9863]o x x 
9890 9903| 9908/0 x 
9934 | 9939] 9943 | 9048 | 0952/0 1 + 

9978 | 9983 | 9987 | 999 | 9996] 0 x x                 r
n
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TABLE P - Trigonometric Functions 

479 

  

  

    

Angle Sine Cosine Tangent Cotangent Angle 

Nat. Log. Nat. Log. Nat. Log. Nat. Log. 

0°00’ 0.0000 eo) I.0000 90,0000 0.0000 ee) ee) ee) 90° 00’ 
Io 0029) 7.4637 T.0000 0000 0029 )—-7.4637 343-77 2.5363 50 
20 .0058 7648 1.0000 e000 -0058 7648 171.89 2352 40 
30 0087 9408 1.0000 0000 -0087 = 7.9409 II4.59 2.0591 30 
40 or16 = 8.0658 0.9909 0000 -OTr6 8.0658 85.940 1.9342 20 
50 OI45 1627 -9999 0.0000 «O14, 1627 68.750 8373 Io 

1° 00’ 0.017§ 8.2419 | 0.9998 9.99909 | 0.0175 8.2419 57-290 1.7581 89° 00’ 
Io 0204 3088 -9998 9999 .0204 3089 49.104 6gr1r 50 
20 20233 3668 -9997 9999 -0233 3669 42.964. 6331 40 
30 0262 4179 -9997 9999 -0262 4181 38.188 5819 30 
40 0291 4637 -9996 9998 0291 4638 34.368 5362 20 
50 0320 5050 +9995 9998 +0320 5053 | 31-242 4947 xo 

2° 00’ 0.0349 © 8.5428 | 0.9994 9.9907 | 90-0349 «8.543 28.636 1.4569 88° 00’ 
Io 0378 5776 +9993 9997 -0378 5779 26.432 4221 5° 
20 0407 6097 -9992 9996 +0407 6Ior 24.542 3899 40 

30 0436 6397 “9990 9996 +0437 6401 22.904 3599 30 
40 .0465 6677 -9989 9995 .0466 6682 21.470 3318 20 
5° +0494 6940 -9988 9905 +0495 6945 20.206 3055 10 

3° 00’ 0.0523 8.7188 0.9986 9.9994 0.0524 = 8.7194 19.081 1.2806 87°00 
10 +0552 7423 +9985 9993 +9553 7429 318.075 2571 50 
20 0581 7045 -9983 9993 -0582 7052 17-169 2348 40 
30 -0610 7857 -9981 9992 -0612 7865 16.350 2135 30 
40 .0640 8059 -9980 9991 .O641 8067 15.605 1933 20 
5o -0669 8251 -9978 9990 -0670 8261 14.924 1739 10 

4° 00° 0.0698 8.8436 0.9976 9.9989 0.0699 © 8.8446 I4.30E = 1.3554 86° 00 
Io 0727 8613 9974 9989 +0729 8624 13-727 1370 5° 
20 -0756 8783 -997I 9988 0758 8795 13-197 1205 40 
3° .0785 8946 -9969 9987 -0787 8960 12.706 1040 30 
4o .0814. gIo04 -9967 9986 -0816 g118 12.251 0882 20 
59 -0843 9256 -9964 9985 .0846 9272 11.826 0728 Io 

5° 00’ 0.0872 8.9403 0.9962 9.9983 0.0875 8.9420 II.430 1.0580 85° 00’ 
10 sOgor 9545 -9959 9982 0904 9563 II.059 0437 50 
20 -0929 9082 -9957 998i 20934, Q70L 10.712 0299 40 
30 .0958 9816 -9954 9980 -0963 9836 10.385 o164 30 
40 .0987 8.9045 -O95I 9979 .0g92 8.9966 10.078 1.0034 20 
ga .I0I6 9.0070 -9948 9977 -I1022 9.0093 9.7882 0.9907 Io 

6° 00’ ©1045 9.0192 0.9045 9.9976 O.105I 9.0216 9.5144 0.9784 84° 00’ 
ro 1074 O3rL +9942 9975 -1080 0336 9-2553 9664 50 
20 -II03 0426 -9939 9973 -IIIO 0453 9.0098 9547 40 
30 +1132 0539 -9936 9972 +1139 0567 8.7769 9433 30 
40 «II61 0648 +9932 9o7I -T16g 0678 8.5555 9322 20 
50 -1Igo O755 -9929 9969 +1198 0786 8.3450 9214 Io 

7° 00° 0.1219 = -g.0859 9.9925 9.9968 0.1228 = -9. 0891 8.1443 0.9109 83° 00’ 
ro -1248 og6r -9922 9966 -1257 0995 7.95390 goos 50 
20 +1276 1060 -9918 9964, -1287 1096 72-7794 8g04 40 
30 -1305 1157 -9014 9963 +1317 1194 7.5958 8806 30 
40 1334 1252 -9OIT 9961 -1346 1291 7.4287 8709 20 
50 -1363 1345 +9907 9959 -1376 1385 7.2687 8615 ro 

8°00’ 0.1392 9.4436 | 9.9903 9.9958 | 09-1405 9.1478 7.1154 0.8522 82° 00’ 
Io -1421 1525 -9899 9956 +1435 1569 6.9682 8431 5O 
20 +1449 1612 -9894 9054 -1465 1658 6.8269 8342 40 

30 -1478 1697 -9890 9952 -1495 1745 6.6912 8255 30 
40 -I507 1781 -9886 9950 »1524 1831 6.5606 8169 20 
5° 1536 1863 9881 9948 “1554 IOIS 6.4348 8085 Io 

9°00’ 0.1564 9.1943 0.9877 9.9946 0.1584 9.1997 6.3138 0.8003 81°00’ 
Io «1503 2022 -9872 9044 -1614 2078 6.1970 7922 50 
20 «1622 2100 9868 9942 -1644 2158 6.0844 7842 40 
30 «1650 2176 -9863 9940 »1673 2236 5-9758 7704 30 
40 -1679 2251 .9858 9938 1703 2313 5.8708 7687 20 
50 -1708 2324 9853 9936 +1733 2389 5.7694, 701 Io 

10° 00’ 0.1736 9.2397 | 0.9848 9.9034 | 0.1763 9.2463 5.6713 9.7537 80° 00’ 
10 -1765 2468 -9843 9931 +1793 2530 5.5764 7464 50 
20 +1794 2538 -9838 9929 +1823 2609 5.4845 7391 40 
30 «1822 2606 -9833 0027 -1853 2680 5-3055 7320 30 
40 -1851 2674 -9827 9924 .1883 2750 5.3093 7250 20 
50 .1880 2740 -9822 9922 sIQI4 2819 5.2257 7382 Io 

11° 00’ 0.1908 = 9.2806 0.9816 9.9919 0.1944 9.2887 51446 0.7113 79° 00° 
11° 10° 0.1937 9.2870 o.g81k 9.9917 9.1974 9.2053 5.0658 0.7047 78° 50! 

Nat. Log. Nat. Log. Nat. Log. Nat. Log. 

Angle Cosine Sine Cotangent Tangent Angle                 
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TABLE P - Trigonometric Functions (Continued) 

Angle Sine Cosine Tangent Cotangent | Angle 

Nat. Log. Log. | Nat. Log. | Nat, Log. 
ait 20" | ouo6s 9.2034 gots | 0.2004 9.3020 | 4.0894 0.6080 | 78° yo" 

3 | 1008” 2007 gor | 2055 1308s | 4.gis2 15 3° 
ao | f20r 3058 goo | 2065 “314g | fase ogy So 
so | ‘0st 3rry goer | ‘2005 3ar2 | 7729 67 19 

1200" | 0.2079 9.3179 v.90 | 0.2126 9.3975 
yo | “ares 7388 ‘got | 31863530 
xo | 2136 98 
30 
o 
50 

13°00" 
19 
ae we 
30 

16°00" 

30 
io 
50 

15° 00" 
10 
30 
fo 
0 

18°00" 

39 
fo 
so 

7"00' 
20 
° 
a 
50 

18°00" 

30 
io 
50 2.9319 

19°00" 2.9042 
fa aByo8 
3° 28339 
a 2.7080 
50 3 27s 

20°00' | os429  o-ssae 9.9730 2.7471 ro | cauaB S375 725 ayaa 
2a | MTs S400 oat abate 

5 9735 2.674 
ont Dost 
9796 2.0379 
oa702 2.6055 
3897 25836 

sf 25605 
9687 21538 9682 asi72 
v7 aa06e 

9.9672 24751 
‘9667 Bsa5a5 66r 24342 
09.9630 agg? 
Log. Nat. 

Sine Cotangent Tangent   
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TABLE P - Trigonometric Functions (Continued) 

Angle Sine Cosine Tangent Cotangent Angle 

Nat. Log. Nat. Log. Nat. Log. Nat. Log. 

22° 407 0.3854 9.58590 0.9228 9.9651 0.4176 9.6208 2.3945 0.3792 67° 20° 
50 3881 5889 -9216 9646 -4210 6243 2.3750 3757 Io 

23° 00° 0.3907 9.5919 0.9205 9.9640 0.4245 9.6279 2.3559 0.3721 67° 60’ 

ro +3934 5948 -9194 9635 +4279 6314 2.3309 3686 50 
20 ~390I 5978 .9182 9629 4314 6348 2.3183 3652 40 
30 ~3987 6007 -QI7E 9624 -4348 6383 2.2998 3617 30 
40 -4014, 6036 -OL5S9 9618 -4383 6417 2.2817 3583 20 
50 ~4041 6065 -Q147 9613 «4417 6452 2.2637 3548 ro 

24° 00’ 0.4067 9.6093 0.9135 9.9607 0.4452 9.6486 2.2460 0.3514 66° 00" 
Io -4094 6121 -QI24, 9602 4487 6520 2.2286 3480 50 
20 -4120 6149 -QIL2 9596 4522 6553 2.2113 3447 40 

30 4147 6177 +9100 9590 4557 6587 2.1943 3413 30 
40 4173 6205 -9088 9584 -4592 6620 2.1775 3380 20 
50 -4200 6232 -9075, 9579 -4628 6654 2.1609 3346 10 

25° 00’ 0.4226 9.6259 0.9063 9.9573 0.4663 9.6687 2.1445 0.3313 65° 00’ 
10 +4253 6286 -QO5I 9567 -4699 6720 2.1283 3280 50 
20 -4279 6313 -9038 9561 4734 6752 2.1123 3248 40 

30 +4305 6340 -9026 9555 +4770 6785 2.0965 3215 30 
40 -4331 6366 -9O13 9549 -4806 6817 2.0809 3183 20 
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TaBLe P - Trigonometric Functions (Continued ) 
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Absolute expansion of mercury, 186. 
Absolute humidity, 249, 256. 
Absolute temperature, 181. 
Absolute thermodynamic scale, 180. 
Absolute units of force, 36. 
Absolute zero, 181 ff. 
Absorption of gas, 221. 
Absorption hygrometer, 250. 
Accademia del Cimento, 172 ff., 444, 

[P26]. 
Acceleration, angular, 129 ff., 148, 340. 
Acceleration, linear: 18 ff., 113, 330 ff.; 

centripetal, 331, 333; constant, 20 ff., 
28, 336; normal, 331; numerical value 
and time unit, 27; in plane, 356; 
tangential, 331, 130; varying, 330 ff., 

5 
Acceleration due to gravity, 6, 357; 

determination of, 23, 255, 343 ff., 352; 
standard, 7 

Acceleration-time curve, 21, 25. 
Acoustics, see Sound. 
Action, constant of, 273, 475 
Action and reaction, 40, 31, i 34, [P17]. 
Active layer, 304. 
Addition, of simple waves, 381 ff.; of 

vectors, see Vector. 
Adhesion, 308. 
Adiabatic process, 275; in demagneti- 

zation, 183; in determining Y, 287, 
369; equations of, 276; in sound 
waves, 368. 

Adsorption of gases, 221. 
Air, coefficient of viscosity, 225; critical 

temperature, 236; density, 161, 471; 
diameter of molecules, 819; pressure 
coefficient, 189; speed of sound in, 
368, 394, 408. 

Air thermometer, 177. 
Allotropic crystal forms, 278. 
Amorphous solid, 277. 
Amplitude, 337; and period of pendu- 

Jum, 342, 355; of waves, 374-382. 
Analogues, rotational, 134, 34]; of 

waves, 39] ff., 401 
Analytical balance, 162, 166. 
Andrews’s experiments, 235 ff., [P34]. 
Angle, of contact, 308; direction, 55 ff.; 

of incidence and reflection, 390; of 
. repose, 81. 
Angstrom unit, 476, [P32]. 
Angular acceleration, 129 ff., 148, 340. 
Angular displacement, 130, 341. 
Angular impulse, 134. 
Angular momentum, 133, 142, 
Angular motion, 8, 128 ff 

Angular position, or phase, 129. 
Angular simple vibratory motion, 340. 
Angular speed, 129, 333. 
Angular velocity, 131. 
Anisotropic solids, expansion of,-188. 
Antinodes, or loops, 384 ff., 400, 406. 
Approximations, common, 460. 
Archimedes’ principle, 297 ff. 
Arithmetic-mean speed, 208 ff., 212. 
Aspirator, 317. 
Associative law for vector addition, 12. 
Atmospheric pressure, 301, [P11]; 

standard, 155. 
Atom, 198, [P32]. 
Atomic theory, Dalton’s, 199, [P31]; 

Greek, 198; and specific heats, 273; 
tests of, 200 ff. 

Atomic thermal capacity, 273 ff. 
Atomic weight, 201 ff., 475.° 
Atwood machine, 45, 
Automobile transmission, 83. 
Averaging of data, 26, 167, 348. 
Avogadro number, 209, 819. 
Avogadro’s law, 183, 202 ff. 
Axis, fixed, 130, 141, 148; 

of inertia, 132, 135 ff.; 
137 ff.; of torque, 115 ff. 

of moment 
movable, 

Balance, principle and use of, 33, 48, 
122, 162, 166; sensitivity, 124, 126, 
164, 165; specific gravity, 319, 299; 
torsion, 43, 345, 425. 

Ballistic pendulum, 98. 
Balloons, [P27], [P28]. 
Bar, 155. 
Barometer, effect of g on reading, 255, 

474; finding altitude with, 301; use 
of, 462, 473 ff. 

Beats, 382, 411, 412. 
“Bell in vacuum” experiment, [P50]. 
Bernoulli’s theorem, 315 ff. 
Bifilar suspension, > 99, 102, [P26]. 
Block and tackle, 8 
Boiling eee and boiling point, 

247 ff.; determination of g from, 255; 
effect of pressure on, 247, 246, 253. 

Boltzmann constant, 210, 475. 
Bomb calorimeter, 281. 
Boyle’s law, 156, 150 ff., 233 ff., 237. 
Brake, Prony, 86, 423 
Brake horsepower, 423. 
British thermal unit, 263. 
Brownian movement, 211, 242. 
Bulk modulus, 155 ff., 276, 365 ff., 373. 
Buoyancy of fluids, 297 ff. 
Bureau ef Standards, United States, 69. 
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Calculus, 14 ff.;. integration, 136, 462; 
partial derivative, 377; second deriva: 
tive, 19; use in derivations, 336 ff, 
377 ff, 

Calibration af capillary tube, 228; of 
tuning forks, 412, 

Caliper, micrometer, 460;, vernier, 461. 
Caloric’ theory, 262 ff., 277 
Calorimetry, 278 ff. ; cba of state, 

282 ff.; ‘continuous flow, 281, 289; 
cooling, 281, 292; mixtures, 279, 299 ; 
thermometric, 278 ff. 

Calory, 263, 
Ganillary constant, 206, 313, 

illary phenomena, 302-315, 820, 
Se lary tube, calibration of, 228; flow 

in, 285ff.; ‘rise and depression in, 
305 ff., 302, $20, 474; viscometer, 225. 
Carbon ‘dioxide, isot! 

speed of sound in, 408: 

    

  

sublimation, 

Cartesian coordinates, 9 
Cavendish laboratory, (Psa, (Pah 
Center, of gravity, 18 fl.: of mass, 
TOS. 11S 42. of exliation, Baa; 
of suspension, 344, 

Centigrade system, 174 fi. 
Centimeter-gram-weight, 
Centripetal acceleration, ‘Sh 333. 
Centripetal force, 332 tf., 
Ces system of units, 37, "eB, 6, 253, 

ge of state, 2941, 2A fa 276 fh 
Oaisimeity 2 
Charles and GayeLuscac, law of, 8. 
Chemical combination, laws of, 200 
‘Chemical hygrometer, 259, 261 
Circle of reference, 339, 
Circular motion, 332 ff. 
Clapeyron-Clausius equation, 245, 255, 
Clock, pendulum, 341, [P26], [P48]. 
Coefhicient, of diffusion, 219; of friction, 

80; of increase of pressure, 176, 
179 ff., 189; of restitution, or’ resili- 
ence, $3, 100; of surface tension, 311, 
313, 476; of ‘viscosity, 216, 225, 328, 
See’ also’ Expansivity, Modulus of 
elasticity. 

Cohesion, 308. 
Coincidences, method of, 358, 343, 951. 
Collision, see Impact, 
Combining mass, 201. 
Commutative law for vector addition, 

12, 131, 
Comparator, 188, 
Complex wave, 380 ff 
Component of vector, 11,.54f 60, 110, 

  

‘Compound, or physical, pendulum, 341, 
343 ff 

Compressibility, 155. 
pressional waves, 363 ff. 

Compressive stress, 153. 
Condensation, wave-pulse of, 366. 
Conduction of heat, 429; in calorimeter, 
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279; and mean free path, 215; pres- 
sure pange based pp 221, 

Conical pendulum, 334, 
Conservation of energy, for conservative 

systems, 74, Fy Principle of, 76 ff. 
tests of, 75 ff. 294, [P12], [P13] 
thermodynamics, 181, 267, 284, 

Conservation of momentum, angular, 
15 142; linear, 90ff., 45, 98, 101, 

    

(Conservative forces and systems, 74 
Constants: of action, 273; Avogadro, 

209, 319; Boltzmann, 210; capillary, 
306, 313; critical, 236,244, 260 
elastic, see Elastic moduluses ;' force, 
335, $49; gas, 183; of sravitation, 
43, 425, [P7); Loschmidt, 209, 232 
phase, 375; tables of physical, 470. 
476; ‘of torsion, 160, 188, 361; uni- 

143,184 van der Waals, 241, 260, 
Continuity of states: gas-liquid, 234 ff, 

DL hquid-solid, 277 
Contiiuous-flow calorimeter, 281, 289. 
Convection of heat, 27 
Converging wave, 388. 
Conversion factors, 476, 
Cooling, calorimetry by, 281, 292; cor- 

xection, in calorimetry, 279M. £08; 
curve for, in crystalline substances, 
278; by evaporation, 242; by expan- 
sion, 275; Newton's law of, 280, 

Coordinates, gas, 179; polar, 129; rec- 
tangular, 9; spherical, 465. 

Counterpoise, 161. 
Couple, 121, 
Crane, laboratory model, 6 
Ceitial point and Gitcal eohstants, 236, 

    

Catical pressure, temperature, and vol- 
ume, 236, 260, 

Critical speed of uid, 2 15. 
Cryogenic laboratory, Leiden, 

Crystalline solid, 274, 277 
Curvature of surface, 305; and molecular 
Byesure, 304; and vapor pressure, 

  

[P29], 

Dalton’s atomic theory, 199, [P31]. 
Dalian law of mere pressures, 208, 

Damping, of balance, 163; of vibrations, 
417; of waves, 362. 

Degradation of energy, 285. 
Degree, of elasticity, 154; of tempera- 

tare, 174 fF, 
Degrees of freedom, and specific heats, 

270 ff,, 274; of waves, 370. 
Density, 49,°156, 470i; and atomic 

weight, 202 ff.; linear, 372. 
Density determinations, acousticmethod, 

414; by balancing columns, 328; of 
gases and vapors, 161, 222, 243, 249, 
251, 256, 470 ff.; by hydrometer, 319; 
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by hydrostatic weighing, 298, 318; of 
liquids, 298, 318, 328, 470ff.; of 
solids, 49, 298, 414, 470. 

Density gradient, 219. 
Depressed zero, 192. 
Derivative, see Calculus. 
Derived units, 52. 
Dew point, 249; hygrometer, 250, 256. 
Diatomic gas, thermal capacity, 269 ff. 
Diffraction of waves, 387, 389. 
Diffusion of gases, 218; Graham’s law 

of, 208. 
Dilatometer, 186, 192. 
Dimensional formulas, 52, 196. 
Direction angles, 55 ff. 

Displacement, angular, 130, 341; 
10, 112, 335ff.; linear, 
374 ff., 381 ff. ; nodes, 385. 

Distance, 16. 
Distance-time curve, 15. 
Diverging wave, 388. 
Doppler effect, 416. 
Double weighing, 123, 166. 
“Dry ice,” 248. 
Dynamics, of fluids, 315 ff.; of particles, 

31 ff., 44 ff, 90 ff., 113, 332 ff.; of 
rigid bodies, 132- 142, 143, 341; of 
system of particles, 113. 

Dyne defined, 37. 
Dyne-centimeter, see Erg. 

Earthquakes, 372. 
Echoes, [P51]. 
Echo-prospecting, 386. 
Efficiency, 81; of automobile transmis- 

sion, 82; of heat engines, 285, 180; of 
pulleys, 81; of water motor, 85. 

Elastic impact, 92 ff., 100, 101, [P15], 

linear, 
in waves, 

[P1 
Elastic limit, 153, 168 
Elastic moduluses, 153 ff, 160, 166, 168, 

169, 351, 365 ff., 424, 473. 
Elastic vibrations, 334, 349. 
Elastic waves, 362 ff. 
Elasticity, 150 ff.; degree of, 154; of 

gases, 156 ff., 204, 276; Hooke’s law 
of, 153 ff., [P25]; perfect, 151; of 
shape, 157 ff., 166, 351; and simple 
vibratory motion, 334, 349; of size, 
154 ff., 169, 276, 367ff., 373; of 
stretch, 151 ff., 168. 

Embouchure, 398. 
End corrections, 325, 394, 410. 
Energy, 70 ff. ; and change of state, 276; 

conservation of, 75 ff., 181, 267, 284; 
degradation of, 285; equipartition of, 
210, 270 ff.; intensity of, 379; in- 
ternal and external, 239, 264, 267 ff., 
276; kinetic, 70ff., 95, 132, 209; 
molecular, 209, 239 ff., 270 ff.; poten- 
tial, 73; quantum theory of, "973 ff., 
218; radiant, 279; surface, 312; of 

vibrations, IP ff., 358; wave, 360 ff., 
378 ff. See also Work. 
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Engines, early types, [P11]; efficiency 
of heat, 285, 180. 

Entropy, 286. 
E6tvoés balance, 345. 
Equation, Clapeyron-Clausius, 245, 255; 

of motion, 36 ff., 133, 332 ff., 340; of 
state for fluids, 236 ff., 241 ff., 260, 
427: of state for ideal gases, 179 ff.; 
of state, reduced, 427; Taylor’s, 412; 
of wave, 375-379. 

Equilibrium, of fluid, 299 ff. ; 
122; of particle, 58 ff.; of rigid body, 
117 ff., 114, 122, 133; in thermody- 
namics, 181; of vapor-liquid and 
solid, 242, 248 ff. 

Equipartition of energy, 210 ff., 270 ff. 
Equivalence, principle of: chemical, 

200; mechanical, 43. 
Erg defined, 66. 
Errors and precision of measurement, 

458 ff. 
Evaporation, 242-—248. 
Expansion, adiabatic, 275, 287, 369; 

free, 238 ff. ; isothermal, 156 ff, 233 ff, 
244; linear, 187 ff., 194; thermal, 
177 ff, 184 ff. 

Expansivity, 178, 475; of gas, 177 ff.; 
of glass, 198; of liquids and solids, 
184-188, 194: of volatile liquid, 192. 

Exponential notation, 6, 457 ff., 128. 
Exposed stem of thermometer, 466. 

neutral, 

Falling body, acceleration of, 6f., 23, 
255, 343 ff., 357; in air, 317, , 431; 
airplane bomb, 5, 15, 22; eauntions for, 
21 ff.; Galileo’s experiments, 4, 31. 

Fermat's principle, 390 
Fiducial mark, 175, 189. 
Field of force, gravitational, 119. 
Film, liquid, 309 ff., 314. 
Fixed points, thermometric, 173. 
Florentine Academy, 172 ff., 444, [P26]. 
Flow of fluid, 315 ff., 323: in tubes, 

225 ff. 
Fluid, 159; equations of state, 236 ff., 

24) ff, 260, 427; flow, 225 ff., 315 ff. ; 
statics, 297 ff., 302 ff., 318; viscosity, 
215 ff., 225, 317, 323. 

Foot-pound-weight, 66. 
Force, 35 ff., 31 ff., 45, 46; action and 

reaction, 39, 31, [P17]; centripetal, 
332 ff., 346; components, 55, 60, 332; 
conservative, 74; constant of system, 
335, 349; of gravity, 42 ff.; hydro- 
static, 297 ff. ; impulse of, 72, 93; 
surface, 311 ff.; table, 60; torque of, 
115 ff., 133 ff., 341: units, 36. 

Forces, addition of, 54, 60; in equilib- 
rium, 58 ff., 118; external and in- 
ternal, 113; impulsive, 97; inde- 
pendence of, 37, 53; intermolecular, 
237 ff., 214, 204, 303, 311; polygon of, 
58. 

Fore pump, 220.
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Fourier’s theorem, 382, 334. 
Fps system of units, 37, 263. 
Frame of reference, 8, 18; for Newton's 

laws, 35 ff. 
Free energy of surface, $12. 
Free expansion of gas, 238 ff. 
Free vector, 121. 
French Academy of Sciences, [P47]. 
Frequency, 332; by method of beats, 

411,412; of molecular vibrations, 273 ; 
and pitch, 379; of wave, 374; and 
wave intensity, ‘379. 

Friction, 79 fi.; ‘coefficient of, 80; in 
water motor, 87; worl: gaint, it, 73 Mh., 
[P12], [P13], See also V. nie, 

Fundamental tone, 395 ff.,.404 ((, 412. 
‘undamental units, 52, 196, 

Fusion, heat of, 277. 

  

     

    

Galileo's experiments on motion, 4.31 
Galileo’s principle of inert 

Galileo's problem, 151, [P23}. 
Galileo's thermoscope, 173, [P2]. 
Gas, 236; absorption and. adsorption, 

221; change of PV with P, 233: 
density, 161, 203, 222, 470 ff. elas” 
ticity, 156 ff." 204, 276; expansion, 
156 ff., 177 ff., 233M, 238, 275 ft, 
287; flow, 225, 317; heating value of 
illuminating, 289; ‘and liquid state 
continuous, 234 11, 241; mixed with 
vapor, 244; pressure coefficient, 176, 
47 H, 180, specific, heat, 268 
281, 283, 987; speed of sound in, 
SW7'ML., $94, 406; ‘viscosity, 216, 225, 
[P33].” See’ also’ Gas, ideal; Kinetic 
theory of gases. 

Gas, ideal, 156, 206; and actual gases, 
283 fl,, 287; adiabatic expansion, 275, 
368; Constants, 183 [1.; diffusion, 208, 

quation of state, 179. ex- 
pansivity and pressure _coefticient, 

179 f1.; isothermal elasticity, 157, 
367 ff; ratio of specific heats, 271, 
287; “speed of sound in, : 
thermal “capacities, 269; "'visoosity, 
alta See also Kinetic theory of 

Gas coordinates, 179, 
Gas thermometers, 175-180, 189, 
Gauge pressure, 254. 
Gay-Lussae’s law, 178, 
Geocentric theory, 41. 
Gradient, density, 219; velocity, 216, 
Graham's law of diffusion, 208. 
Gram of mass, 33. 
Gram weight, '37, 
Gravitation, constant of, 43, 425, [P7), 

inside earth, 52; law of, 40 ff., 52, 357. 
Gravitational ‘field, 11 
Gravitational and inertial mass, 43, 
Gravitational units of force, 37, 
Gravity, center of, 8 ff. See also 

Acceleration due to gravity. 
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Gross heating value of illuminating gas, 
289, 

Gyroscope, 139, 146, [P21]. 

Harmonics, 395. 
Heat: caloric theory, 262 ff, 277; cal: 

orimetry, 278 t1., 289, 202; capacity, 
264 ff, ; of combustion, 281, 289; con- 
duction, 429, 279, 215, 221; entropy 
oe 286; of fusion and sublimation, 

j Mechanical equivalent of. 75, 267, 
34 [P13]; molecular, 265, 
specific, 264 ff, 287, 278 ff., 292, 476: 
transfer of, 279, 215, 221, 429; oi 
transformation, or “latent,” 276 ff." 
units, 263; of vaporization, 277. 
ae } and work, 75ff., [P12], 

Heat eahied 285, [P11]. 
Heating’ value of luminating gas, 

    

Pietipcantri theory, 41. 
Heli temperature, 236; ex. 

nsi 1 239; liquid and solid, 182.     
  

Helium thermometer, 176. 
Homogeneous: eat body. 151, 363, 
Hooke’s law, 153 ff. 
Horsepower, brake, Sab and effi-    81s 
Humidity, absolute and relative, 249, 

208, 259; specific, 290 
Huygens principle, 288 Er 
Hydraulic press, 801 f, 
Hydrodynamics, 315-317; 

fluids, 317, 328. 
Hydrogen, critical temperature, 236 

expansion, 239; liguid and solid, ie 
thermal capacity, 271 

Hydrogen theenaeter, 175 
Hydrometer, constant-weight, 319. 
Hydrostatic paradox, 301, [P42]. 
Hydrostatic pressure, 115, 299 ff. 
Hydrostatic weighing, 208, $18, 
Hydrostaties, 297-315, 
Hysrometry, 240 8" 956, 269, 261, 

[P26}. 
Hygroscope, 250. 

of viscous 

     

Ice, vapor-pressure curve, 248, 
Jee calorimeter, 283, 
Ice point, 173, 192. 
Ideal engine, 285. 
Tdeal gas, sce Gas, ideal. 
Ideal mechanical advantage, 83 ff. 
Teal pendulum, + "SI, “B08, 955, 
Impact; direct, 92. 94; clastic, 92, 

100, i01, (P15), (Pr ic, 9211    
103; molecular, 203° 313, 237 

gblique,’ 95; perfectly elastic, 96, 
Implicit method of problem-solving, 28
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Impulse, of force, 72, 93; of torque, 
134 

Impulsive forces, 97. 
Inclined plane, Galileo’s experiments, 5, 

32; Stevin on, [P8]. 
Indicated horsepower, 81. 
Indicator diagram, 67. 
Inertia, and mass, 33, 44; moment of, 

135-137, 132 ff., 128, 148, 351, 352; 
principle of, 32, 35. 

Inertial mass, 43 ff., 33, 48. 
Inertial system, 36. 
Instantaneous acceleration, 19 ff., 

330. 
Instantaneous speed, 14, 129. 
Instantaneous time: rate of change of 
momentum, 34, 1 

Instantaneous velocity, 17, 
Integration, see Calculus. 
Intensity of wave energy, 379, 404; and 

loudness, 380. 
Interfacial tensions, 312. 
Interference phenomena, 380-386, 389. 
Interferometer for linear expansivity, 

188. 
Intermolecular forces, 237 ff., 214, 204, 

303, 311. 
Internal energy, 239, 264, 267 ff., 276. 
Internal forces, 113. 
International temperature scale, 176. 
Inversion temperature, 239. 
Ionization pressure gauge, 221. 
Ionization and vapor pressure, 246. 
Isobaric curve, 260. 
Isochronous vibrations, 338. 
Isometric curve, 260. 
Isothermal elasticity of gas, 157, 367 ff. 
Isothermal expansion, 156 ff., 233 ff., 

244, : 
Tsotherms, for fluid, 235 ff., 244; for gas, 

233 ff., 
Isotropic Ren body, 151, 363, 388, 
Isotropic solid, expansion of, 188. 
Isotropic strain, 154. 

129, 

Joule, unit, 66. 
Joule-Kelvin experiment, 238, 180. 
Joute’s equivalent, 75, 267, 294, [P13]. 
Junkers calorimeter, 281, 289. 

Kelvin temperature scale, 181. 
Kepler’s laws, 41. 
Kilogram, standard, 33. 
Kilowatt-hour, 69. 
Kinematics, 3; of particle, 8 ff., 330 ff.; 

of rotation, 128 ff., 340. 
Kinetic energy, 70 ff.; loss in impact, 

95; of molecules, 209, 270 ff.; of rota- 
tion, 182; of vibration, 272, 358; of 
waves, 378. 

Kinetic theory of gases, 204-219, 236- 
240; and specific heats, 269 ff.; for 
very low pressures, 219. See also 
Molecular, Molecules. 
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Kinetic theory of liquids, 241 ff. 
Kinetics, 93, 342. 
Knudsen absolute manometer, 222. 
Kundt dust tube, 406, 409. 

Laboratories: Cavendish, [P30], [P33]; 
early, [P54]; Leiden, [P29], [P30]; 
Royal Institution, [P36], [P371; 
Zurich, [P54]. 

Lagrange’ s transfer theorem for parallel 
axes, 137. 

“Latent heat,” 277. 
Law, associative, 12; Avogadro’s, 183, 

202 ff.; Boyle’s, 156, 150 ff., 233 ff., 
237; of Charles and Gay-Lussac, 178; 
commutative, 12, 131; of cooling, 
280; of definite proportions, 200;. of 
diffusion, 208, 218; Dulong and 
Petit’s, 273 ff.; of equipartition of 
energy, 210ff., 270; of gravitation, 
40 ff., 52,357; Hooke’s, 153 ff:, [P25]; 
Jurin’s, 307; Maxwell-Boltzmann, 
211 ff.; of multiple proportions, 201; 
Neumann’s, 266; parallelogram, 12, 
[P9], [P10]; of partial pressures, 208, 
245; Poiseuille’s, 226; of reflection, 
390; Stokes’s, 431, 317; see also Laws, 
Principle 

Laws, of chemical combination, 200 ff. ; 
of constant acceleration, 20ff., 336; 
of equilibrium of fluids, 299 ff.; of 
ideal gases, 179, 183; of planetary 
motion, 41; of sliding friction, 79 ff. ; 
of thermodynamics, 267, 181, 284, 
384 ff.; of vibrating strings, 412. 

Laws of motion, Newton’s: 35 ff., 31, 
46, [P14]; corollary I, 53; corollary 
TII, 90; implications of, 35-40, 68; 
rotational analogues .of, 133 ff. ; scho- 
lium to third law, 68, 114, 

Lever, 118, [P20], [P19]; arm, 115. 
Linear acceleration, 18 ff., 330 ff. 
Linear density, 372. 
Linear displacement, 10, 112, 335 ff. 
Linear expansion, 187 ff., 194, 475. 
Linear momentum, 33 ff., 71. 
Linear motion, 8 ff. 
Linear speed, 13 ff., 20 ff., 336 ff. 
Linear velocity, 16 ff, 56, 112. 
Liquefaction of gases, 182, 234, 239. 
Liquid, continuous with gas and solid 

states, 234 ff., 241, 277 ff.; density, 
298, 318, 328, 470 ff. ; evaporation, 
242-248; expansion, 184 ff., 192, 475; 
films, 309 ff., 314; flow, 315ff., 
225 ff.; kinetic theory, 241 ff.; spe- 
cific heats, 266, 280, 282, 292, 476; 
statics, 300ff.; superheated, 244; 
surface tension, 310 ff., 320, 321, 
476; undercooled, 277; vapor pres- 
in 245; viscosity, 828. See also 

Liquid air, 239, 318. 
Logarithms, table of. 477-478.
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Longitudinal strain and stress, 152. 
Longitudinal waye, 370. 
Loschmidt number, 209, 232, 475, 
Loudness of sound, 380, 

Machines, £2: ficiency, and. mechani. 
cal advantage of, 811f,; lever, 118, 
(P20), (Pi: pulleys, 81; wheel and 
axle, 1M, 

Manoineter, 85, 254; 
Mass’ $201, 49M: center of, 109%, 

119, 462; combining, 201; dynamical 
measure ‘of, 44, 48; “avitational and 
inertial, 43; units, 33, 37; variation 
with speed, 34, 419. 

Maxwell- Bofeemama distribution, 211. 
McLeod 170, 221 
Mean calory, W368 
‘Mean free path, 213 ff. 
Mean solar second, 29. 
‘Mean specific heat, 267. 
Mean-square speed, 207. 
Mechanical advantage, 82-84. 
Mechanical equivalent of heat, 75, 267, 

294, [PL 
Mechanics, 
Mel 50. 

® experiment, 402, 410. 
point, 277 ff, 

Meniseue 238, 306 1 
Mercury barometer, 462, 
Mercury thermometer, 174, 177, 192, 

low-pressure, 170, 

  

  

    

basic concepts of, 72, 

   

‘Mercury-vapor pump, 220. 
Method, of balancing columns, 328; of 

beats, 411, 412; of coincidences, 353, 
3, 851; of continuous flow,’ 281, 

; of cooling, 281, 292; Kundt's 
dlust-tube, 408, 409; of mixtures, 279, 

Micrometer caliper, 460, 
Micrometer microscope, 468. 
Micron, 232, 476, 
Mixing ratio, or water-vapor content, 

Mixtures, of gases, 208; method of, 279, 
292; of vapors and gases, 244, 

Model, of hydrogen molecule, 271; of 
ideal gas, 206. 

Modes of vibration, 403. 
Modulus of elasticity, 154, 473; rela- 

tions between moduluses, 160, 424; 
shear, 158, 166, 351, 373; volume, 

365 ff., “37: 

    

155 ff. 276, ‘Young's, 
151 ff., 160, 168, 370, 

Mohr-Westphal balance, 299, 918, 

  

Molaz thermal capacity, 265, 269 ff. 

Molecular attraction, sphere of, 240, 246, 

Molecular constants, 209 ff, 
Miclecsiet forces, 237 ff., 214, 204, 303, 
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Molecular heats, 265, ee 
Molecular pressure, 303 ff 
Mylar theory, | 202 ff., ao, 241, 

Molecular weight, 203, 222, 369, 
Molecular, see also Molecules. 
Molecules, 202; collisions, 206, 213, 28% 

degrees of freedom, 270 ff,; diameter 
215, 819; diffusion, 208, 218; of ideal 
gases, 206; mean free paths, 213 ff.; 
speeds, 206-213, 229; volumes, 236, 
See also Molecular. 

Moment, of force, see Torque; of mo- 
mentum, 133, 142. 

Moment of inertia, 195-137, 192 ff, 
128, 143, 351, 382; calculation of, 
135, 463 ff.; about parallel axes, 1373 
and radius of gyration, 136; variable, 
188, 143. 

Moments, principle of, 114 ff, 
‘Momentum, angular, iss, 1 
Momentum, linear: conser- 

vation of, 90 ff., 45, Me iol, 103; and 
kinetic energy, 71. 

Monatomic substance, 203, 269. 
Most probable speed, 212. 
Motion, accelerated, 1S i, 23, 129 ff. 

143, 330/ff.; angular, 8," 128 ff: 
cular, 332 ff. ; of eee tes ff 
of free body, 137 M1.; cop 

* finear, 8 fl; of loaded spring” 
349; periodic and vibratory, 332 
349; perpetual, 211, 285; of planets, 
40 ff., 357; of project, 2; quantity 

ff, 340; of 

  

    

  

    

  

    
Musical instruments, 398, 405, 
Musical note, 367; ‘from pipes, 395 f1.; 

from rods, 400; quality of, 405, 

National Bureau of Standards, 43. 
Net heating value of illuminating gas, 

Neumann's Jaw for thermal capacities, 

Neutral equilibrium, 122. 
Newt constant of gravitation, 43, 

Newton's law, of cooling, 280; of gravi- 
tation, 40 fl., 52, 357; of restitution, 
4, 100, Ste aiso Laws of motion, 

wton’s, 
Nowes 384 fi, 400 fi., 406. 
Noise, 
Nonconservative force, 74. 
Nonlocalized vector, 121. 
Normal acceleration, 331, 

Standard acceleration, 
See also 

Organ pipes, 398. 
Orthogonal projection, 55, 
Oscillation, 334; center of, 344. 

vertones, or upper partials, 305~405,
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Parallelogram law, 12, [P9], [P10]. 
Partial pressures, 208, 5. 
Partial tones, 395 405, 
Particle, 9; dynamics of, 31 ff., 44 ff., 

90 ff., 113, 332 ff.; kinematics of, 8 ff., 
330 ff.; in law of gravitation, 42; 
statics of, 58 ff. 

Pascal’s hydrostatic principle, 301. 
Pendulum, ballistic, 98; conical, 334; 

Foucault, 423; (compensated) grid. 
jron, 197; ideal, 343-345, 352, 355, 
[P26]; Kater’s, 345; physical, 341, 
343 ff. ; reversible, 343 ff. ; torsion, 341, 
350. 

Perfect, see Ideal. 
Perfectly elastic body, 151. 
Perfectly elastic impacts, 96, 206. 
Period, 332, 41; of pendulums, 341 ff., 
a of pipes, etc., 395-404; of wave, 

Periodic motion, 332-345, 349. 
“Permanent” gas, 235. 
Perpetual motion, 211, 285. 
Phase, 129; change on reflection, 391 ff. ; 

constant, 375; difference in wave, 
375 ff.; of periodic motions, 333, 
338 ff. 

Physical constants, tables of, 470-476. 
Physical, or compound, pendulum, 341, 

343 ff. 
Pipes, closed and open, 393-402. 
Pirani-Hale pressure gauge, 221. 
Pitch of sound, 379ff.; and Doppler 

effect, 416. 
Planck. constant, 475, 273. 
Plane wave, 388. 
Planetary motions, 40 ff., 357. 
Poiseuille’s formula, 226. 
Poisson’s ratio, 424: 
Polar coordinates, 129. 
Polyatomic gases, 271. 
Polygon of forces, 58. 
Porous-plug experiment, 238, 180. 
Position, 7; angular, 129. 

Potential energy, 73; in vibratory mo- 
tion, 272, 274, 358; in wave, 378. 

Pound of mass, 33. 
Pound weight, 37. 
Poundal, 37. 
Power, 69. 
Precession of gyroscope, 139. 
Pressure, 155; atmospheric, 301, [P11]; 

coefficient of, 176, 179 ff., 189; criti- 
cal, 236, 260; due to curved surface, 
304, 312 ff.; effect on melting point, 
296; and elastic modulus, 157, 276; 
in flowing liquid, 316; in gas, 156, 
175 ff., 206; gauges for, 85, 170, 221, 
254; hydrostatic, 155, 299 ff.; kinetic- 
theory interpretation of, 206 ff.; mo- 
lecular, 303 ff., 312 ff.; nodes, 385; 
partial, 208, 245 ; in sound waves, 
361, 378, 385; standard, 155; vapor, 
243-249, 472. 
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Primary inertial system, 36. 
Principia, 35, 42, 53, 65, 90 ff., 365. 
Principle, of ‘Archimedes, 297 ff. : of 

chemical equivalence, 300; of con- 
servation of energy, 76 ff.; "of conser- 
vation of momentum, 90 ff., 45, 98, 
101, 108, 133, 142 ; of equivalence,, 43; 
Fermat’s, 390; Huygens’ s, 388 ff.; 
of independence of forces, 37, 53; of 
inertia, 32, 35; of least time, 390 : of 
moments, 114 ff.; of transmissibility 
of pressure, 302; of work, 68, 78, 
114 ff., 364. See also Law, Laws, 
Theorem. 

Probable error, 459. 
Problems, on center of mass, 462; on 

conservation of energy, 78; on New- 
ton’s second law, 38; on rotation, 
141; solution of, 28, 111; on statics, 
119; on surface tension, 314. 

Progressive wave, 384. 
Projectile, path of, 22. 
Prony brake, 86, 423. 
Psychrometer, 250, 258. 
Ptolemaic theory, 41. 
Pulleys, efficiency of, 81. 
Pumps, vacuum, 220, [P24]. 

Quality of tone, 405. 
Quantity, of heat, 263; of motion, 33. 
Quantum theory, 273 ff, 218. 
Quasi-isotropic solids, 188. 

Radiant energy from calorimeter, 279. 
Radiometer effect and Knudsen gauge, 

Radius of gyration, 136. 
Rarefaction, wave-pulse of, 366. 
Ratio of specific heats, 269 ff., 287, 369. 
Ray of wave energy, 388 
Rayleigh waves, 373. 
Reaction, 40, 31. 
Recalescence of iron, 278. 
Rectangular- coordinate system, 9; vec- 

tor components in, 54 ff. 
Rectilinear motion, 17, 20 ff. 
Reduced equation of state, 427. 
Reflection of waves, 386: 391; change of 

phase on, 391 ff.; and ‘Huygens’ 's prin- 
ciple, 389 ff. ; law of, 390; sound 
phenomena due to, 392 ff., [P51]. 

Refraction of waves, 387. 
Regelation, 296. 
Reichsanstalt, 187. 
Relative humidity, 249, 256, 259. 
Residual of an observation, 459, 
Resilience, 169; coefficient of, 93, 100. 
Resolution of vector into components, 

54 ff. 
Resonance, 394, 392 ff., 401 ff., 408, 410. 
Resting point of balance, 163. 
Restitution, coefficient of, 93, 100. 
Resultant, or vector sum, 1]. 
Reversible pendulum, 343 ff.
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Riefler clock, [P45]. 
Rifle bullets, speed of, 98, 105. 
Right-handed coordinate system, 9. 
Right-handed-screw rule, 131. 
Rigid body, 8, 150; dynamics of, 132- 

142, 148,’ 341; kinematics of, 112 ff., 
te 131; statics of, 113-121, 122, 

Rigidity, 157-160, 166 861, 373. 
Ripples, 2 
Root-mean-square speed, 208-212. 
Rotation, 8; dynamics of, 132-142, 143, 

341; of earth, 423; kinematics of 
128131, 410;" statics of, 114-121, 
122, 1835, and torque, 115 ff 

Rotational inertia, 135. 
Royal Institution of Great Britain, [P36], 

(P37). 

  

Saturated vapor, 242-246, 251, 253; 
pressure of, 243-249, 472 ;’ of solutions 
and solids,’ 246 ft. 

Scalar diagrams, 15, 21, 24. 
Scalar quantities, 16, 13, 17, 66, 71 
Scientific method, 3 ff," 44, 52, 64, 77, 

108,128, 197, 219, (Pi, [Pa]. 
Second, méan ¢olar, 29. 
Secondary waves, 389. 
Seismic waves, 373; seismogram, 372. 
Sensitivity of’ balance, 124, 126, 164, 

165. 
Shear elasticity, 157-160, 166, 861, 373. 

Shearing strain ‘and stress, 158. 
Significant figures, 457. 
Simple harmonic motion, 334. 
Simple vibratory motion, 334 ff., 340, 

849, 958; addition of, 38] f1.; an 
lar, '340;' and circle of reference, 3 
in waves, 373 fi. 

Simple waves, 373, 381. 
Sinusoidal wave, 878, 381. 
Sliding, or kinetic, friction, 79 ff. 
Soap fiims, 310, 314. 
Solar system, 40 ff., 357. 
Solid, 159; amorphous and crystalline, 

277 tt, 274; continuous. with liquid 
state, 277 ff; density, 49, 298, 414, 
470;" evaporation, 248; ‘expansion, 
Webi 187 fh 198, 475; melting 

277M 206; specific. eats, 
280, 476; speed of sound 

873, 363 f1., 309ff., 400, 406, 409; 
aor ressue, 248; waves in, 363, 

Solution’ wapor pressures of, 246. 
Sonometer, 412. 

  

    

    

ments, 398, 405; overtones, 395~405 ; 
Pitch, 379 ff. ; i guality 405; reflection, 
Boot, [P51]! from strings, 403 ff, 412. 
See also Wave-form etc, Waves, 
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Spark photography, 361, 387, 
Specific avy: B19, 429, 
Spgribc heat, 264, 267, 476; at constant 

V and at constant P, 267 ff., 287, 369; 
determination of, 279 ff.” 292; of 
gases, 26817. 281, 283, 287: of 
liquids, 266, 282, 292; of solids, 273 £f,, 
280; ‘variations with temperature, 
266, 272 ff. See aie Thermal capacity. 

Specific humidity, 
Specific volume, ba 427, 
Speed, angular, 129, 333; of bullet, 98, 
apo critical, 225, 315; linear, 13 ff., 

, 336 ff; molecilar, 206-213, 
220," terminal, 431; of ‘waves and 
sound, 362-373, 379, 394, 400, 402, 
408, 409, 410, [P48], [P49], See also 
Velocity. 

‘Speed-ratio of machine, 54. 
‘Speed-time curve, 16, 21, 24, 
‘Sphere of molecular attraction, 240, 246, 

303. 
Spherical coordinates, 465. 

‘Spherical were, 88, 
Spiral spring, 

‘Standard aealeration due to gravity, 7. 
Standard atmosphere, 155. 
Standard kilos 
Standard specie ¥ ‘chime, 427, 
Stegecoatiem of thermometer, 466, 

  

    

standing wave, see Stationary wave. 
States, of aggregation, 234, 241 ff., 
276 ff,, 282 fi.; allotropic, 278; most. 
probable, 21    

Statics, of fluid, 297 ff., 302 ff., 318; of 
particle, 58 ff.; of rigid body, 113-121, 
122, 133, 

Sea ours wave, 383 ff., 401 ff., 406, 

seatetical mechanics, 213, 286. 
Statistics in kinetic theory, 211 ff. 
Steady flow, 315 ff., 328, 225. 
Steam calorimeter, "283, 
Steam point, 
Stokes’s law, it 317, 
Strain, elastic, 151-158. 

Stretch, or Young's 's, modulus, 153. 
String, vibrating: 402 ff,, 412; speed of 

wave in, 370 ff,, 379, 403, 410. 
Structure of matter, 198 ff. 
Sublimation, 248; heat of, 277. 
Sublimation’ point, 248. 
Sum 2, 57. 
Superheated liquid, 244. 
Supersaturated vapor, 244 
Surface curvature, 305. 
Surface energy, 312 
Surface films, 309 
Surface tension, “b10-s1s, 920, 9, 

Symbols used in this book, 468, 467.
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Tangential acceleration, 331, 130. 
Tangential force, 332 
Taylor’s equation for strings, 412. 
Temperature, 172 ff.; absolute, 181, 

180; boiling, 247; critical, 236, 260; 
expansion with, 177 ff., 184 ff.; and 
heat, 264; of inversion, 239; in 
kinetic theory, 209; low, 182; trans- 
formation, 278. 

Temperature scales, 173 ff., 176 ff., 
180 ff. 

Tensile stress, 153. 
Tensor, 135. 
Terminal speed, 431. 
Theorem: Bernoulli’s, 315 ff. ; Fourier’s, 

382, 334; of parallel axes, 137. 
Thermal, see Expansion, Expansivity, 

Heat. 
Thermal capacity, 264, 267; atomic, 

273 ff.; of body and substance, 264; 
molar, 265, 269 ff. See also Specific 
heat. 

Thermodynamics, 181; first law, 267, 
181, 284; second law, 284 ff.; tem- 
perature scale, 180. 

Thermometer, early, 173, [P2], [P26]; 
gas, 175-180, 189; mercury, 174, 177, 
192; standardization of, and correc- 
tion for exposed stem, 466, 192. See 
also Temperature, Thermometric. 

Thermometric calorimetry, 278 ff. 
Thermometric fixed points, 173. 
Thermometric property and substance, 

Thermoscope, 173, [P2]. 
Time, measurement of, 29, 341, [P26], 

[P45]; principle of least, 390. 
Torque, 115-118, 133 ff., 341; 

of, 184; per unit twist, 160. 
Torsion, constant of, 160, 168, 351; of 

tubes and rods, 159 ff., 166, 351. 
Torsion balance, 43, 345, 425. 
Torsion pendulum, 341, 350. 
Trajectory of bomb, 22. 
Transformation temperatures, 278. 
Translatory motion, 8 ff., 112, 330 ff.; 

dynamics of, 31 ff., 44 ff., 90 ff., 113, 
138, 332 ff.; statics of, 58 ff., 114. 

Transverse wave, 370-384, 402-406, 410. 
Trigonometric tables, 479-482. 
Trinity College, Cambridge, [P5]. 
Triple point, 248; diagram for water, 

Tobe ‘of flow, 315. 
Tuning fork, 405; 

4 12, 
Turbulent flow, 315. 

Ultimate strength, 153. 
Undercooled liquid, 277. 
Undercooled vapor, 244, 
Uniform acceleration, 20 ff., 28, 336. 
Uniform gravitational field, 119. 
Unit vector, 330. 

impulse 

frequency of, 411, 
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Units, abbreviations, 6; Angstrom, 476, 
[P32]; cgs and fps, 37; conversion 
factors, 37; force, 36; fundamental‘ 
and derived, 52, 196; heat, 263; 
mass, 33, 37; power, 69; 
work, 66, 69. 

Universal constants, 43, 184. 

Vacuum, 219 ff. ; 
in, 298. 

Vacuum pressure gauges, 221, 170. 
Vacuum pumps, 220, [P24]. 
Van der Waals equation, 241, 244, 260, 

427, [P35]. 
Vapor, 263; density, 222, 243, 249, 251, 

time, 29; 

sound in, [P50]; weight 

256, 472; pressure, 243-249, 472; 
saturated, 242 ff., 251, 253; wunder- 
cooled, 244. 

Vaporization, heat of, 277, 279, 284. 
Vector quantities, 10, 16, 19, 34 ff., 117, 

130, 140, 330 ff. 
Vectors, 10 ff.; addition, 11 ff., 18, 53- 

57, 131, 60, [P9], [P10]; angular 
quantities as, 117, 130, 140; com- 
ponents, 11, 54 ff., 60, 110, 331 ff., 
130; multiplied by scalar, 17, 18; 
nonlocalized, or free, 121; subtrac- 
tion, 13; unit, 330. 

Velocity, angular, 131; linear, 16-18, 
56, 112. See also Speed. 

Velocity gradient, 216. 
Venturi meter, 317. 
Vernier caliper and scale, 461. 
Vibrations, 334; atomic, 272, 274; 

damped, 417, 1638, 362; isochronous, 
338; period of, 332; of strings, 402 ff., 
412. See also Simple vibratory motion, 
Waves. 

Vis viva, 71. 
Viscosity, 215 ff., 225, 828; and falling 

bodies, 317, 431, 6; and fluid flow, 
317; kinetic theory of, 216 ff.; pres- 
sure gauge, 221; variation with P and 
T, 218, 826, [P33]. 

Volume, specific, 289, 427. 
Volume elasticity, 154 ff., 

367 ff., . 
Volume stress, 155. 
Volume strain, 154. 

**Warmetod,”’ 286. 
Water, compressibility, 155, 365; den- 

sity, 470, 472; heat of vaporization, 
279, 284; specific heat, 263, 266; 
speed of sound in, 365, [P48], [P49]; 
surface tension, 320; triple point, 

169, 276, 

Water motor, 85, 87. 
Water vapor, 244, 251, 258, 472. 
Water-vapor content, hygrometric, 250. 
Watt, unit, 69. 
Wave-form, 374, 405. 
Wave-front, 388. 
Wavelength, 367, 373, 376 ; and pitch, 379.
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Wave-pulse, ago 363, 371. 
Wave-train, 360, 366. 
Waves, 360 ff.; addition of, 381 ff.; 

amplitude, an 382; characteristics, 
373; diffraction and_refraction, 387, 
389; energy, 361, equation, 
375, S77; frequency, 374; in homoge- 
neous isotropic medium, 363 ff,; Huy- 

principle, 388 ff.; interference, 
peta, 37d; 

    

Pas,” [Pasn: stationary, 
;_ transverse, 

"i. 
883. 401 ff. 406, 
370-384, 402 ff., 410; ‘vaten 362, See 
also Sound, Wave- form, etc, 
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Weighing, double, 128, 166; hydrostatic, 
298, 318, See also Bala 

Weight: $1, 298, 357, ‘atomic, 201 ff 
9; and mass, 32, 39, 43; molecular, 

203,'222, 369; in vacuum, '298. 
Wet-and-dry-bulb hygrometer, 250, 258. 
Wetting of soids by ea 308, 

heel and sale, at 
Work, 65-79, 

Fest, fo‘ (PL, ier "on liquid 
surfses, 310-313;" positive and nega- 

tive, 68; principle, 68, 78, 114 ff., 364. 
See also Energy. 

  

Yield point, elastic, 153. 
Young's modulus, 151 ff., 160, 168, 370, 

Zero, absolute, 181 ff.; depressed, 192,
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