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Abstract

Problem statement: In 1680 Newton proposed a algorithm for finding roots of polynomials. His method has since evolved,
but the core concept remains intact. Here we briefly review this evolution, and consider the question of convergence. First, and
most important, does the method always converge? Second, if not, what are the conditions necessary to force it to converge?
Namely here we investigate the conditions for convergence. In the following we assume a monic polynomial of degree N .

Methods: Convergence requires the important concept of the Region of convergence (RoC) for Netwon’s method. Each
starting point on the complex plan must converge to one of the roots of the polynomial because every analytic point on the
complex plan has a region of convergence. We show that on boundaries of the RoC regions, the method becomes hyper-
sensitive to the initial guess. A slight change in the first guess can cross the RoC boundary, causing the itteration to change the
path to a different root. When this happens the change in the step is unpredictable, possibly even chaotic. It is this condition
that is the source of a convergence discontinity possibly leading to chaotic convergence. This behaviour is the topic of this
document.

Findings: Under certain conditions, non-linear (NL) limit-cycles appear, resulting in a reduced rate of convergence to a
root. Since Netwon’s method is inherently a discrete linear recursive method, it is important to determine the source of this
non-linearity. We conclude that the NL effect is due to violations of the Nyquist Sampling theorem, known as aliasing, which
is due to under-sampling near the poles. The conditions and method for uniform convergence are explored. We introduce a
complex step size α = aeφ. The introduction of an adaptively adjusted step-size α ∈ C greatly reduces the nonlinear effects
of aliasing. This method is known as the damped Newton’s method (Galántai, 2000, p. 25).

The N regions of convergence (RoC) are investigated. From the definition of the RoC, these are naturally existing regions
defined for every point so ∈ C. Every starting point in the plane comes from one of the N RoC regions, equal in number to
the degree of the polynomial. Besides reducing a, one can modify the angle φ, redirecting the trajectory away from any RoC
boundary so that it does not cross it. The magnitude of the stepsize a can also be reduced to avoid crossing the boundary. This
can be highly effective, but will naturally slow the convergence.

Conclusions: Colorized plots (Allen, 2020) of the logarithmic derivative are provided to explain when the solution will
result in a limit-cycle. Reducing the step-size seems to result in a more rapid, stable convergence, however this is not proved.
We show that when α = 1, the solution can cross an RoC boundary. In such cases the target root will change, resulting in a
chaotic trajectory. As long as the RoC region remains the same, the iteration will converge. We show that when it approaches
a limit-cycle, the convergence rate must decrease (it takes more steps to converge). This is because limit cycles introduce the
nonlinear process, causing the length of the path to be greater. In the worst case, the path oscillates and the path integral can
become arbitrarily long. If the oscillation causes the RoC region to change, the target root correspondingly must change. In
theory the RoC could change on each iteration, resulting in chaos. Thus it is helpful to delineate these RoC boundaries, to
avoiding NL limit-cycles. We propose using the ratio test to detect the transition to a different RoC.

1 Introduction
Newton’s method (NM) for finding roots of a polynomial PN (s) of degreeN is a venerable mathematical algorithm. However
this view is controversial. NM is openly stated to be unstable,1 in the sense that it can fail to converge to a root (Stewart, 2012,
p. 347). It has properties related to dynamic analysis a mathematical science started by Poincaré.2 We shall show that this
view was premature, and in my view, even wrong. Within 10 years Newton’s method was renamed the Newton-Ralphson
method, first published in 1690. There seems to be no difference, other than the name change.

This question was recently explored in Allen (2020), and no instability or limit-cycles were observed. An explanation is
due. Newton’s method was modified by applying an adaptive step-size α, a widely recognized contemporary technique in the
signal processing literature.

It is shown that when the roots are complex, random jumps and limit-cycles can occur when the iteration is restricted
to real numbers (Allen, 2020). If the initial guess was declared to be complex, and the step-size α was sufficiently small,

1https://en.wikipedia.org/wiki/Newton’s_method#Failure_of_the_method_to_converge_to_the_root
2https://mathinsight.org/newtons_method_refresher
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the itteration would always converged as long as the trajectory stayed within the RoC. Two examples were provided using a
random initial guess, one of which is presented in Fig. 1 (LEFT) (Allen, 2020, Fig. 3.2). The details of the step-size used by
Allen (2020) were not discussed.
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Figure 1: LEFT: This figure is taken from Allen (2020, p. 78). It is a plot of a thousand trajectories for Newton’s method, with a random initial guess,
taken from the complex plane, between [0,5] along the real axis and ±1.5 along the imaginary axis, for a polynomial having N = 5 complex coefficients.
Note the long straight lines that occasionally appear in the figure. RIGHT: This figure shows the poles and zeros of the polynomial having coefficients
[1000 − 1 − 1] for 200 itterations of Newton’s Method, with random starting points. In this case the roots (o) and poles (x) are superimposed on top of the
trajectories of Newton’s method. The step size is α = 0.1 to reduce the NL effect aliasing. Then the trajectory come close to a pole, the step can jump to a
random point in the complex plane. ./Demo-JPD/ DemoJPD2 or NewtonJPD.m or ZvizPoly.m

While most of the curves seem to converge to the roots, there are some small percentage of cases where the trajectory take
huge jumps to random locations in the complex plane. We shall show that these jumps occur when the trajectory approaches
any of the poles of Newton’s method, which are at the roots of P ′N (s) = d

dsPN (s). Near a pole the step can be arbitrarily large,
depending on how close the step comes to the pole. This can happen for carefully designed starting values for the itteration.
We shall show that these poles (roots of P ′(s)) are the source of these divergent points and even the limit cycles.

We shall show these jumps in convergence are easily detected using the ratio test between two neighboring steps.
In Fig. 1, the five RoC regions are color coded. Each RoC region is associated with one of the roots. For each initial guess

so, the itteration will converge to a root. However this depends on the path not approaching a pole. For each pole there are
initial conditions that will head for one of the N − 1 poles. The initial guess is hypersensitive to this initial guess, and the step
size, as we shall explicitly show. These RoC regions are compact, well defined, (non-overlapping) complex-valued analytic
regions, with each paired with one of the roots of P ′N (s). The poles always lie on the RoC boundaries. These observations are
supported by numerical examples. For now, the theory behind this remains open, at least to the author. But the theory of the
circle centered on the root, is analytic out to the nearest pole. This concept remains in force for these numerical calculations.
The boundaries between each RoC region contains fractial regions which diminish in size as the step size is reduce.

In the literature there are many claims that Newton’s method can develop limit cycles. In our initial numerical results
(Fig. 1) we did not see any limit cycles. However the simplest example is for monic polynomial

P2(s) = s2 − s− 1 = (s− s+)(s− s−)↔ [1,−1,−1],

where s± = (1 ±
√

5)/2. NM also requires P ′(s) = 2s − 1, which has a root at sr = ±1/2. For this very simple case, the
RoC’s are the right and left planes centered on the root of P ′(sp) = 0, where sp = 1/2. NM will limit-cycle as long as the
initial guess is on the line so = 1/2 + b, b ∈ R, which goes through the root of P ′(sr) = 0, sr = 1/2. here NM for this Carefully Verify!

example is

sn+1 = sn −
P2(sn)

P ′(sn)
= sn −

α

2
· s

2
n − sn − 1

sn − 1/2
,

where n ∈ N and |α < 1| is the step size. The initial guess is s1 = so.
It is well know that limit cycles are nonlinear. Newton’s method on the other hand is a linear recursion equation, with poles

and zeros in the complex plane. The the main research question is therefore “How does a linear equation become nonlinear?” proofed to here

We show how the these NL limit-cycles may be easily avoided by removing (linearizing) the NL recursion when it is detected.
The suggested procedure will result in a net convergence speed-up, because the NL limit-cycle adds meandering rambling

NL steps to the recursion. Thus removing the NL behavior must speedup the iteration. Initially these appear to be conflicting
requirments. We hope to convince the reader that there is no conflict, once the behaviour is explained.

2



Veritasium discussion of chaos from the simple recursion3 xn+1 = αxn(1− xn) with α > 1.

1.1 Derivation of Newton’s method
Consider the polynomial PN (s), with s, sr, cn ∈ C and N ∈ N:

PN (s) = cN (s− sr)N + cN−1(s− sr)N−1 + · · ·+ c1(s− sr) + c0, (1.1)

where Taylor’s formula is used to determine the coefficients

ck =
1

k!

dk

dsk
PN (s)

∣∣∣∣
s=sr

. (1.2)

It is both good practice and convenient to take cN = 1, by dividing the polynomial by cN , forming the monic form of the
polynomial. This transformation has no impact on the roots of since 1

cN
PN (sr) = 0. In the following we will assume that

Pn(s) is in monic form (cN = 1).
To derive Newton’s method we note that every root has a neighborhood called the Region of convergence (RoC).
We assume an initial guess sn for n = 0, within the RoC of one of the roots sr where sn ∈ C within the RoC, namely

such that r(s) ≡ |sn − sr| < 1. It follows that powers of rn(s) < r(s) for n ≥ 2, since |s− sr| < 1.
Seting s to this initial guess sn gives

PN (sn+1) ≈ c1(sn+1 − sn) + co. (1.3)

This is possible because the higher order terms k > 1 are smaller than the linear term k = 1.
We now form a recursion sn+1 starting from our initial random guess sn starting from n = 0. Let sr be renamed sn and

sn+1 be our next estimate of sr. Since r < 1, sn+1 converges to the root sr in the RoC. We shall confirm this converges in
the next section, with several of examples.

In summary
PN (sn+1) ≈ c1(sn+1 − sn) + co.

Given that r(sn) < 1, sn → sr as n→∞.
Next replace the two coeficiengs c1, c0 by their definitions Eq. 1.2. As n→∞, PN (sr)→ 0. Next we use the definitions

of c1 and c0.
Since c0 and cn are given by Eq. 1.2, and replacing s with sn+1 and sr by sn gives Newton’s Method.

PN (sn+1) ≈ (sn+1 − sn)
dP (s)

ds
+ P (sn).

Letting sn+1 → sr the RHS goes to zero. Thus Newton’s method is

���
��:0

PN (sn+1) ≈ (sn − sr)
dP (s)

ds
+ P (sn).

Thus

(sn − sn+1)
dP (s)

ds
+ P (sn) = 0.

Solving for sn+1 gives

sn+1 = sn −
P (sn)

P ′(sn)
,

where P ′(sn) is P (s)
ds .

If our initial guess for the root s1 is close to a root sr (i.e., s1 − sr is within the RoC),

|(s1 − sr)k| � |(s1 − sr)| (1.4)

for k ≥ 2 ∈ N. In this case we may linearize the equation PN (s1) and solve for s1

PN (s1) ≈ (s1 − sr)
d

ds
PN (s)

∣∣∣∣
sr

+ PN (sr)

= (s1 − sr)P ′N (sr) + PN (sr),

3https://www.youtube.com/watch?v=ovJcsL7vyrk&t=1s
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where P ′N (sr) is shorthand for dPN (sr)/ds. This complex analytic linearization step is the key to Newton’s method. It
will only be true if the difference equation remains linear, which requires the RoC condition Eq. 1.4 to be true.4 That this,
Newton’s method is a linear approximation that depends critically on the RoC condition (Eq. 1.4).

One more key transformation is essential: We next modify this linearized RoC approximation to be a recursion, by
replacing s1 → sn+1 and sr → sn. Newton’s method follows from a recursion where sn+1 is closer to the root sr than
|sn+1/sn| < 1, giving

PN (sn+1) = (sn+1 − sn)P ′N (sn) + PN (sn)→ 0. (1.5)

Assuming linearity, sn → sr, thus PN (sn+1)→ 0. It is clear that this relation only hold under the linearity assumption, since
we started by dropping the higher order terms in the Taylor series expansion.

Solving for sn+1 recovers Newton’s method as the linear difference equation in sn

sn+1 = sn −
1

N

PN (sn)

P ′N (sn)
. (1.6)

It is helpful to denote LN (s) ≡ P (s)/P ′(s) as the step, and its magnitude as the step-size, in terms of two monic
polynomials

LN (sn) =
sNn + cN−1s

N−1
n + · · ·+ c0

sN−1n + N−1
N cN−1s

N−2
n . . .+ 1

N c1
. (1.7)

The poles or zeros of the step are unmodified by the use of monics. and it reduces the step-size by 1/N , which improves
convergence.The roots of P ′(s) (the poles of LN (s)) are invariant to rescaling P and P ′ into monics. Everything on the right
is known; thus when sn is within the RoC, sn+1 will converge to the root sr as n→∞.

Equation 1.6 is the solution to the linear difference equation. It has many variants (Galántai, 2000), the simplest being

sn+1 = sn −
α

N
LN (sn), (1.8)

by introduced a step-size gain |α| < 1 ∈ C, stabilizing the iteration when sn is in the neighborhood of a pole. Near any
pole, the step-size |LN (sn)| will become arbitrary large, introducing non-linearity into the iteration. We shall explore one
way to detect that the trajectory is moving into one of these unstable regions. We shall show that reducing the step size is not The use of Linear Prediction

can find the poles from a
distance given an analytic
function. Better: here we
know the order to predict.

a panacea, and while it helps, it can not solve the core problem of nonlinear limit cycles.
Rational complex analytic functions, such as LN (s), consisting of poles and zeros, which when expanded as partial

fractions, have RoCs that are circles in the complex plane, centered on the poles, with an RoC out to the nearest pole. The
RoC’s of Fig. 1 are obviously quite different. As long as the RoC condition (Eq. 1.4 holds, Newton’s method will converge,
as sn+1 will be closer to the root than sn.

However the RoC condition will fail if the value of sn+1 crosses an RoC boundary, stepping into a different RoC region.
These RoC regions are labeled by different colors in Fig. 1, each of which is centered on one of the five complex roots.

To solve the difference equation we can form the partial fraction expansion (residue expansion) about the N − 1 roots sp
of P ′(sp) = 0, which are the poles of LN (s), and solve for the eigen-vectors, which form the basis for the linear solution of
Eq. 1.6.

To show this let

ds ≡ (sn+1 − sn) = − lim
α→0

α

(
1

N

PN (sn)

P ′N (sn)
,

)
(1.9)

thus
d

ds
LN (s) =

N−1∑
n=1

Rn
s− snp

↔
N−1∑
n=1

Rne
−snp t. (1.10)

Here snp is the nth root of P ′(s) and↔ indicates the inverse Laplace transform.
The inverse Laplace transform of this residue expansion is the solution to this linear difference equation. An alternative is

to seek the inverse z transform, which gives the exact solution to the linear difference equation. In both cases the eigen-values
are the N − 1 roots of P ′(sp) = 0.

To complete the proof of the failure to converge, one may take the inverse Z transform of Eq. 1.10. Under certain
conditions, as α → 1 the imaginary poles can become real, at which point they are no longer conjugate pairs. When
this happens, the pole pair split and one pole goes to 0 and the other to∞. This is the condition which results in an unstable
limit cycle (Allen and Sondhi, 1979, Sec. V, p. 126).

4Given some basic algebra, Eq. 1.4 is equivalent to | sn
sr
| < 1, which follows from the triangle inequality for Hilbert vectors sr−sn and sr−sn+1 within

the RoC (Allen, 2020, p. 130). This needs to be verified, not simply stated. Specifically, is ||s/sn|| < ||sn/sn−1||? For example, is sn+1 − 2sn + sn−1

“small”? Cite Mathematical physics, Balakrishnan (2020), page 508, Eq. 22.32, on the Ratio test for the RoC of any analytic function. This is exactly what
I’m trying to say. But it needs to be tested numerically for verification.
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Figure 2: A colorized plot (Allen, 2020, p. 168) of LN (s) for P5(s) = s5 − s − 1. This is a blow-up of Fig. 1 (RIGHT) showing the region in the
upper half plane, showing the 3 poles and three zeros, in a colorized plot format, as discussed by Allen (2020). The magnitude of LN (s) is represented by
the brightness and the phase ∠(LN (s)) is represent by the color (hue). Thus the dark regions are zeros (roots of Pn(s)) and the white regions are poles
of LN (s) (roots of P ′(s)). Two trajectories of Newton’s method are shown, as the black circles and red squares. The starting value for both cases is
so = 1 + 0.75. The black circles are for to α = 0.1 while the red squares are for α = 0.5. It is clear that the limit cycle depends on the step-size α, and
becomes nonlinear when α = 1, leading to a NL limit cycle. With the smaller step-size α = 0.1, the recursion remains complex analytic, thus is linear,
and converges to root #3 (−0.765 + 0.3525). The vertical white lines are at -1, 0 ,1 and the horizontal lines are at 0, 1. The polynomial coefficients are
P5(s) = [1, 0, 0, 0,−1,−1] with roots [1.167, 0.181 ± 1.084], −0.765 ∓ 0.3525. The roots of P ′v(s) = [5, 0, 0, 0,−1] are ±0.669, and ±0.669.
/NewtonsMethod/Demo-Jared/ZvizDemo.m

1.2 Numerical examples of Newton’s method
Examples of failures of Newtons Method: Example 1 from the citation5 looks at the case of f(x) = x3 − x + 1 as an
example where Newton’s method appears to fail. In this example has two imaginary roots 0.662 ± 0.5633, and a real root
-1.325.

The initial guess was assumed to be 1. Since the initial guess has no imaginary part, the recursion proceeds using real
arithmetic. As a result the itteration cannot converge to the one of the two complex roots, close to the starting point of x0 = 1.
Due to the restriction that the computation must be real, it is forced to the real line where it limit cycles between 1.155 and
0.694, for a 13 step nonlinear limit cycle, Step 13 it breaks free of the limit cycle because it enters the RoC of the real root. On
the 14 sample the itteration jumps to -0.74249, within the RoC of the real root, at which point the sequence converges within
a few step to the real root at xr = −1.3247.

The 13 limit cycle itterations were wasted computations.
If I start the itteration with an imaginary component at 1 + je− 6, the itteration converged to the imaginary root at 0.122

in 13 steps.
If x = , the solution converges in 3 steps to the upper complex root x3(3) = 0.639379 + 0.509792
Example 5 from6 thus sr = ln 2 ≈ 61/88 ≈ 0.69318. looks at f(x) = ex − 1, where x ∈ R, The exact solution is

xo = ln(2) = 0.69315.
Applying Newton’s method gives

xn+1 = xn −
exn − 2

exn
= sn − (1− 2e−sn).

Since ex is entire, there are no converence issues. Starting from x=1, after three steps it converges to within 4 decimal places.
If x is taken to be complex, the imaginary part quickly decays to zero and depending on the starting condition, approaches

one of the infinite number of solutions, within four steps.
For example, the region corresponding to the root near (2.2−0.3) has an interesting long narrow “RoC stream,” converging

to the lower-right quadrant, last seen at (4.5 − 1). There is a second narrow neighboring related parallel (green) stream just
north of the red stream, last seen at (4.5 − 0.9). While this may seem obvious, even expected, I am not aware of any
discussion of this obviously important distortion of the RoC’s, bound to Newton’s method. Presently there is no way to
predict the remapping of the RoC regions, due to the normalization by P ′(s). However methods for doing so seem within
reach using straight-forward modern analysis methods of the RoC boundaries.

Determining the RoCs for Eq. 1.7 is difficult, since the function LN (sn) has poles, confounding the locations of the RoC
regions. Based on Fig. 1, they are complicated. If sn approaches one of these the poles, the update can become arbitrarily

5https://ece.uwaterloo.ca/˜dwharder/NumericalAnalysis/10RootFinding/newton/complete.html Note: The example given in the above re-
view is obtained using Newton’s method for P2(x) = x2 + 2, but they obtain the wrong answer for the root xr =

√
2 because they used real arithmetic. It uses the program

Demo-MathInsight/NewtonExp1.m
6https://www.quantamagazine.org/how-mathematicians-make-sense-of-chaos-20220302/
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Figure 3: Four colorized plots showing regions of convergence (RoC) as a function of the step size, as stated in the title of each figure. The fractial regions
reside on the RoC boundaries. The size of this fractial boundry dependents on the step size with a step size of 1 resulting in a very large fractal region.
Reducing the step size to 1/2 dramatically reduces the fractial regions, by much more that 2. Reducing the step size to 1/10 causes them to almost disappear,
except for the small region at 0.5 + 0. In the RoC, two trajectories are shown. For the Stepsize of 1, the limit cycle can be seen for both the red and
black trajectories. For step sizes less that 1/2, the limit cycles are gone. As the trajectories approach the pole, labled as the red X, the trajectory heads for
the blue root at −0.76 + .352. Limit cycles are wasted steps, easily fixed by reducing the step size. Given a smaller step size, the fractial regions shrink,
but never disappear. A simple solution for avoiding the limit cycles is to detect when the boundary has crossed, then backing up to the previous itterate,
and reducing the stepsize, and then continue the itteration from that previous point. Detecting the onset of limit cycles near a pole is easy, because the path
reverses (oscillates).
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large, depending on how close sn is to the pole. If the step-size LN (sn) is within the RoC, this does not seem occur. When
the value of sn+1 falls outside the RoC there can be an arbitrary increase in step-size. Normally this will not happen, since
when sn approaches a pole, since sn+1 is naturally “pushed” away from the pole, may be seen in Fig. 2. Here step is

LN (s) = −1

5

s5 − s− 1

s4 − 1/5
. (1.11)

Limit-cycles can occur if the initial (starting) condition s0 is close to an RoC boundary, or even worse, on top of (i.e., very
close to) a root of P ′(s) (a pole sp of LN (s)). The natural convergence factor 1/N in Eq. 1.8 can improve the convergence,
but it will not remove the problem if the trajectory comes close to a pole. This is the case of these “rare” (seeming-random)
circumstance, which depend on so and α.

While both trajectories start at so, the influenced by the two poles at ±0.669, is much greater for the larger step size (red
squares). The smaller step-size (black-circles) result in a linearized trajectory, which drifts smoothly away from both poles,
eventually converging on the zero of LN at −0.766 + 0.352. The large step-size (red square) trajectory jumps erratically
over the pole at −0.766 + 0.35j, resulting in a nonlinear limit-cycle oscillation. When α = N (not shown) there is an
even larger limit-cycle. The coefficients of P5(s) are cn = [1, 0, 0, 0,−1,−1] having its five roots at {1.1673, 0.18123 ±
1.08395,−0.76588 ± 0.35247}. The roots four for P ′(s) are 4

√
0.2(±1, ± ) where 0.668744 = 0.2. The Octave code is

available from the author. I think this is
now fixed: ck the
trajectory labeling. Some-
thing is wrong here. Color
the middle (or last) red.
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 1+0.25j

  <---   1+0.102 j

 1+ 0.4j

  <--- 1.2+6.95e-11 j

 1+0.95j

  <---0.016+0.817 j

 1+0.99j
  <---0.18+ 1.08 j  1+ 1.1j

  <---0.19+0.953 j

 1+0.69j

  <----0.76+0.352 j

 1+0.92j

  <----0.48+0.289 j

 1+0.93j

  <---0.081+0.361 j

 1+0.65j

  <----0.76+-0.352 j

 1+0.63j

  <----0.23+-0.492 j

 1+0.63j

  <---0.47+-0.791 j

 1+0.63j

  <---0.44+-0.67 j

 1+0.63j

  <---0.25+-0.983 j

 1+0.63j

  <---0.66+-1.06 j

 1+0.63j

  <--- 1.1+-1.06 j

 1+0.63j

  <--- 1.3+-0.968 j

 1+0.62j

  <--- 1.5+-0.806 j

Figure 4: This numerical experiment for polynomial coefficients [1, 0, 0, 0,−1,−1] (the same as shown on the right panel of Fig. 1) reveals the inner
workings of Newton’s method. Seventeen different starting values (so) have been carefully chosen, to find the RoCs associated with each so. All the
starting values are of the form so = 1 + β, where each β and the converged root are indexed in Table 1. The root index is indexed goes from 1 to 5,
counting counter clockwise from the root #1 at 1.2. The scattering angle is determined by the residue of the scattering pole. Each curve is labeled twice,
once at the starting point and once at another point somewhere along the trajectory. The most interesting case is for starting points between 1 + 0.62 and
1 + 0.5999 which converge to dramatically different RoCs due to squarly hitting the positive real pole 0 + .6 having initial values 1 +  0.6 ± 0.001.
/NewtonsMethod/Demo-Jared/Demo-Jarde.m

1.2.1 Source of the limit-cycles

Based on the results of Fig. 2, it is clear that the NL limit-cycles are dependent on the step size, and are significantly reduced
for a smaller step-size (α = 0.1). However by taking a different value of so, the limit-cycle problem will return, once the
trajectory is comes closer to the pole, which is controlled by so. This effect is shown in considerable detail in Fig. 4. The
value to so will need to be finely tuned, and the trajectory will intercept the pole, resulting in a new NL limit-cycle.
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The Gauss-Lucas theorem7 (Allen, 2020) come into play at this point. This theorem says that the convex hull of the
roots of a polynomial bound the roots of its derivative,. This important theorem, seems highly relevant to the convergence of
Newton’s method (Galántai, 2000). This publication has 75 highly relevant citations, many on the problem address here, but
apparently none solving it.. I will argue that the key to avoiding the troublesome limit-cycles, is to detect them. This seems
easily implemented.

The following quote may be found on (Galántai, 2000, p. 39):

The possibility that a small change in so can cause a drastic change in convergence indicates the nasty nature of the
convergence problem. The set of divergence points of the Newton method is best described for real polynomials.

As demonstrated in Fig. 4, it is clear that we agree on Galántai’s first point. The second remains open.
One difference in opinion is that it should be trivial to detect these arbitrary large non-analytic jumps sn+1−sn, thus once

detected, a strategy can be developed to avoid the problem, say by slightly moving so to change the trajectory, or by making
the step-size α smaller, say by a factor of 2. As long as the step size is small enough, the trajectory will converge because
LN (s) is everywhere complex analytic except at the poles.

One method that seems useful is to use Newton’s method to find the poles of P ′N (s). In this case the poles will be zeros,
since we are looking for the roots of P ′N (sr) = 0. In this case the poles will be the roots of P ′′N (sr) = 0. As higher
derivatives are taken, the largest root or roots, can drop out, since the roots of the derivative are also inside the convex hull
of the polynomial we are studying. Each time we take a derivative, the convex hull will shrink. It may be interesting to look
at some numerical examples graphically to see the family of nested convex hulls. This could be especially important when
the roots lie on a line, such as the famous Wilkinson example having real roots from 1 to 20, or even more interesting, the
roots of the Riemann zeta function, where the roots seem to lie on a line.This case is more complicated, because there are an
infinite number of zeros. However the roots of ζ ′(s) must lie between the roots of ζ(s). Likewise, the roots of ζ ′′(s) would lie
between the roots of ζ ′(s). If this logic proves to be correct, it provides some important topological structure for these roots.

Examples of such iterations, for hundreds of random initial conditions, are shown in Fig. 1. This figure clearly delineate
the five RoC regions (not discussed in Allen (2020)). Also not discussed are cases where the initial conditions lead to an
instability in the iteration.8

For example in Fig. 1, the red “stream” corresponding to the root near (2.2 − 0.3) has an interesting long narrow “RoC-
stream,” converging from the lower-right quadrant, first seen at (4.5 − 1). There is a second neighboring parallel (green)
RoC-stream just north of the red stream, last seen at (4.5−0.9). While this may seem obvious, even expected, I am not aware
of any discussion of this obviously important distortion of the RoC regions, bound to Newton’s method. Presently there is no
way to predict the conformal remapping of the RoC regions due to the normalization by P ′(s). Methods for doing so seem
within reach using straight-forward modern analysis techniques of the RoC boundaries, as will be explored in Sec. 2.

1.3 Addition of a step-size
If we modify Eq. 1.6 by introducing the step-size α < 1, we obtain Eq. 1.7.

sn+1 = sn −
α

N
LN (sn). (1.12)

The poles and zeros of the update LN (s) remain the same. The effect of the reduced step-size is to force the trajectory to be
more sensitive to the influence of the poles, rather than stepping over them. The smaller step-size stabilizes (i.e., eliminates)
the nonlinear limit-cycles.

When the initial value for the iteration so is close to the cross-over of two RoCs, sn → sn+1 can cross over an RoC
boundary, radically changing the limit point (root it converges to). The likelihood of this depends critically on α. A limit
cycle can happen when sn comes close to one of the poles of LN (sn). At a pole, the value of LN can become arbitrary large,
causing the unmodified (α = 1) update LN = sn+1 − sn to fail to satisfy the required RoC convergence condition (Eq. 1.4).

This is effect is best show with an example, using the same trajectory, but with a second smaller step-size. The convergence
factor α is not necessary when the initial estimate of the pole does not lead to a limit-cycle. It is easy to detect limit-cycles
because they are nonlinear (and for some reason, tend to be real).

One popular strategy for detecting the pole is to look at the magnitude of the step. If ŝn+1 becomes large, the assumption
that the RoC condition fails and the step is reverted back to sn and the step-size is reduced by α < 1, to reduce the probability
of a limit-cycle. This then repeated until the RoC condition (|sn| > |ŝn+1|), avoiding the limit cycle.

Based on our existing numerical results, the addition of the convergence factor α seems unnecessary when the the initial
value is well within the RoC, as required by Eq. 1.4. The main question is when (and why) the limit-cycles are created

7https://en.wikipedia.org/wiki/Gauss-Lucas_theorem
8http://jontalle.web.engr.illinois.edu/MISC/NewtonRoots.22/
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Table 1: Table showing the imaginary part of s0 = 1 + β, along with the RoC target root index number.

β root
0.25, 0.4 #1
0.95, 0.99, 1.1 #2
0.69, 0.92, 0.93 #3
0.65, 0.632 #4
0.63, 0.631 #5

with Newton’s method. This question is at least partial explored in the example of Fig. 2. As long as the RoC condition is
maintained, each step will progress closer to a root, and in the limit, as n→∞,

PN (sn)

P ′N (sn)
→ 0, (1.13)

since sn → sr as n→∞.

1.4 A numerical example
To study the convergence and limit-cycles it is helpful to use numerical methods and look at specific starting points, such that
the trajectory approaches a pole (root of P ′n(s)).

Note that if sn is at a root, the numerator term PN (sn) → 0, thus and the update goes to zero (sn+1 → sn → sr). This
property can be useful in detecting the stopping condition. Note that sn cannot be near a pole (which cannot be near the zeros,
as required by the Gauss-Lucas theorem).

In practice, once near a root, it takes only a few steps to converge. In experimental trials (see Fig. 2) fewer than 10 steps
can give double-precision floating-point machine accuracy. If any value sn is close to a root of P ′N , the recursion fails, giving
a large random value for LN , forcing the method to restart at some random point far from the roots. In such cases the solution
typically converges to a different root (RoC). It should not be difficult to detect these large non-convergent steps by monitoring
|sn+1 − sn|, which must always be monotonically decreasing.

Figure 2 shows two paths with the same initial condition but different step-sizes. The utility of the reduced step-size is
clear from Fig. 2.

Starting at so = 0.7 + 1.5, the path develops into a NL limit-cycle near the second pole at −0.766 + 0.352. It is a
combination of the large steps and the proximity to the negative real pole that results in the nonlinear limit-cycle. On the 10
step it comes out of the limit cycle and after a 10 more steps, it has converged to the root at −0.766 + 0.352. When the
step-size α is reduced from 0.5 to 0.1, as the path approaches the positive pole, it moves away, avoid the limit-cycle. With
steps sizes of 0.2, 0.3 it becomes captured by the pole. It still converges, but much more slowly as the NL becomes greater.
With the step-size of 0.9 (not shown), the trajectory is similar to that of 0.5, but after 5 steps it is in well within the RoC of
the zero at −.8− .3. After 20 steps, the error is less than 1%. The convergence time may be a crude quantitative measure of
the NL. The spectral properties or smoothness of the trajectory may be more appropriate. The red-squares is an example of a
smooth analytic trajectory while the red-squares is chaotic. This behavior would show up in a time-series analysis.

If one assumes that the initial guess is real (so ∈ R) Octave/Matlab evaluates the polynomial using real arithmetic, forcing
the estimate sn+1 ∈ R (Allen, 2020). Thus the iteration cannot converge when sr ∈ C.

Roots sr ∈ C may be found by a recursion that defines a sequence sn → sr ∈ C, n ∈ N, such that PN (sn) → 0 as
n→∞. As shown in Fig. 2, solving for sn+1 using Eq. 1.6 always gives one of the roots, due to the analytic behavior of the
complex logarithmic derivative P ′N/PN = d log(Pn(s).

With every step, sn+1 is closer to the root, finally converging to the root in the limit. As it comes closer, the linearity
assumption becomes more accurate, resulting in a better approximation and thus a faster convergence.

Equation 1.6 depends on the log-derivative d logP (x)/dx = P ′(x)/P (x). It follows that even for cases where frac-
tional derivatives of roots are involved (Allen, 2020, p. 197, #5); Newton’s method should converge, since the log-derivative
linearizes the equation.9

2 A proof of convergence

We define a monic polynomial PN (s) = sN +
∑0
n=N−1 cns

n (i.e, cN = 1) having roots rk ∈ C, such that PN (rk) = 0

where s = σ + ω is called the Laplace frequency. We also define the step-size α = |α|e∠α (see Eq. 1.6) where a ≤ 1, and
9This seems like a way to understand fractional, or even irrational, roots.
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φ = ∠α and 0 ≤ φ ≤ 2π.
Here we present the hypothesis we wish to prove true, and outline a proof, which can be verified numerically, but only

within the limits of the computers numerical accuracy, Thus we have only proved the hypothesis for rational roots rk ∈ Q.
However we believe it to be true within these numerical limits (rational roots) (rk ∈ F ≡ n/m), where n,m ∈ N,

Pn(s) = ΠN
k=1(s− rk) and PN (rk) = 0. We seek a generalization for irrational roots rk ∈ I.

Theorem 1
Given a monic polynomial PN (s) we apply Newton’s method (Eq. 1.6) starting with n = 0

sn+1 = sn −
α

N
LN (sn) (2.1)

n = n+ 1,

and an arbitrary starting point so ∈ C, including the point at s = ∞. We shall prove that every s0 lines within a unique
Region of convergence (RoC). There are N of these regions, one for each root rk.

After the first step we have s1 = s0 − 1
NLN (s0). If |s1/s0| < 1 we have satisfy the RoC assumption built into Newton’s

method, thus we have moved closer to the root rk associated with so. Thus s1 is in the same RoC as so. In this case we must
repeat this calculation for n > 1, and at each step verify that the RoC condition (sn+1/sn < 1) holds.

If the RoC condition fails for n, we must repeating Eq.2.1, restarting from sn, the last point inside the RoC. We have two
options at this point:

1. reduce the step size a, and repeat Eq. 2.1

2. change φ = ∠α leaving a = 1.

A third more aggressive option is to vary both a and φ such that | αNLn(sn)| ≈ 1. The locus of such points identifies the
RoC boundary between that containing s0 and a neighboring RoC region. As the angle phi = ∠α is varied, the RoC condition
with vary from greater than 1 at φ = 0, because in this direction the RoC condition failed, to less than 1 when phi > 0.
This appears to be a variant on the conjugate-gradient method for Newton’s Method. It seems likely, but presently untested,
that the best approach is to vary φ to minimize sn+1/sn, and then step in that direction. Such an approach should give a
faster convergence because the RoC condition will be smaller. This approach eliminates the need to make a < 1, thus further
increasing the convergence rate.

Our claim is, that by changing the angle of the step size, we will find a range of angles that optimize the RoC condition
(find the smallest ratio with respect to φ).

Moving in the direction that sn+1/sn ≈ 1 delineates the RoC boundary. The prediction is, that by moving in the direction
where RoC is 1, will trace out the RoC boundary region. Crossing the boundary and starting with sn+1, Eq. 2.1 should
converge to a different root.

Numerically this is easily demonstrated, providing an empirical proof of our hypothesis (theorem).
The RoC regions may be seen in Fig. 1 as the different colored regions. The long dashed lines indicate when the trajectory

jumped from on RoC to another due to coming under the influence of a pole of LN (s) (zero of P ′(s)).

3 Summary
We don’t understand many observations in science (math and physics), which with some analysis, can eventually be explained.
It is the reductionist method in science that explains the success of the scientific method. This might be viewed as a form of
evolution: success begets more success, while failure eventually dies off, perhaps slowly.

The process of systematically exploring these seemingly tiny discrepancy, almost always leads to new knowledge. Seeking
out these idiosyncratic inconsistencies and trying to explain them is at the heart of the scientific method. When a problem is
longstanding and considered fundamental, its resolution can even lead to a paradigm shift. Not surprisingly such deep insights
are rarely welcomed by the scientific community, rather they are viewed with great skepticism. This can be good when if
doesn’t go on for 50 years.

The problem of finding roots using Newton’s method is an excellent example. It is a case that can be explained only after
careful thought and iterative analysis. I feel we are either close to that understanding, or it has been explained clearly enough
that the debate can be stopped, and final conclusions may be reached. However, realize that there is no “final.”

Limit cycles do exist in Newton’s method, but in my view, they are due to under-sampling the complex plane. This is an
example of aliasing, in the Nyquist sense. An under-sampled process becomes nonlinear when the “high frequencies” alias
into the “base-band” frequencies. This nonlinear effect is easily removed by increasing the sampling rate above the Nyquist
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sampling frequency, defined as twice the highest frequency in the signal. While that concept is not clear in the context of
Newton’s method, it can explain limit-cycles, and slightly (2x-3x) increasing the computation, by decreasing the step-size α,
the aliasing may be brought under control, and the problem becomes linear and well behaved. The onset of aliasing is easily
detected. This leads to a well know method in signal processing called the adaptive step-size, which has been successfully
applied in many engineering problems. It is, I believe, well understood and characterized in terms of aliasing (Allen and
Sondhi, 1979, Sec. V, p. 126).
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5 Some ideas
Treat LN (s) as a transfer function and expand it in a residue expansion (partial fraction). Then once the roots R are known,
find the polynomial coefficients C, and then build the Eigen-matrix (companion matrix) M .

The method is:

1. Use Netwon’s method to find the vector of roots R

2. Find the vector of polynomial coefficients C = poly(R)

3. Compute the eigen-matrix from C: M = compan(C)

4. Finally find the eigenvectors [E,L] = eig(M)

5. Verify that diag(L) == RNewton (Roots as determined by Newton method), in case there is numerical error.

The eigenvectors span the space defined by Ln(s) = 0. Any solution of the characteristic polynomial (either the denominator
or numerator polynomials) spans the space of the roots.

Summary: Given M , find the eigen functions E using eig(C), where C=poly(R) are the polynomial coefficients,
R = [r1, r2, · · · ] is the complex root vector, [E, L]=poly(C) and R=diag(L).
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