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Linear Classication of Neural Manifolds with Correlated Variability
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Understanding how the statistical and geometric properties of neural activity relate to performance
is a key problem in theoretical neuroscience and deep learning. Here, we calculate how correlations
between object representations aect the capacity, a measure of linear separability. We show that
for spherical object manifolds, introducing correlations between centroids eectively pushes the
spheres closer together, while introducing correlations between the axes eectively shrinks their radii,
revealing a duality between correlations and geometry with respect to the problem of classication.
We then apply our results to accurately estimate the capacity of deep network data.

Introduction: Neural networks can learn rich represen-
tations of the world. This capacity for representation
learning is thought to underlie deep learning’s unprece-
dented success across a wide variety of tasks. However,
it is unclear how the geometric and statistical properties
of neural network representations shape network perfor-
mance on common tasks. Recent work addresses this
gap by studying the interaction between articial neu-
ral network representations and performance on classi-
cation and memorization tasks [1–10], with complemen-
tary work in neuroscience studying the interaction be-
tween the structure of biological neural network repre-
sentations and animal behavior [11–14]. Specically, in
[15–17], the authors introduce the manifold shattering
capacity, a measure capturing how easy it is to sepa-
rate random binary partitions of a set of manifolds with
a hyperplane, and express it in terms of the underlying
manifold geometry. In this way, network performance on
a classication task, as measured by the capacity, can be
understood through the geometric structure of the net-
work representations.

Previous works on the manifold capacity have either ig-
nored or coarsely approximated the eects of neural cor-
relations. The best approximation to these eects was re-
ported in [16], where the authors “project out” low-rank
correlation structures in manifold centroids. However,
the authors nd that this approach breaks down when
applied to certain articial network data. Moreover, this
approach does not oer analytical insight into the role of
dierent types of correlations in object classication.

Object representations in articial and biological neu-
ral networks exhibit intricate correlation structures,
which reect important properties of the underlying rep-
resentations [22–25]. Moreover, as the deep learning
community shifts to a self-supervised learning paradigm,
many popular loss functions directly enforce particular
correlation structures between the latent representations
of (possibly augmented) batches of data points [26–29].
These considerations call for a theoretical characteriza-
tion of the relationship between network performance,
representational geometry, and the correlation structure

FIG. 1. (a) Neural manifolds arising from dierent instances
of P = 3 object classes (bird, vase, and cloud [18–21]), with
N = 3 neurons. We parametrize the manifolds in terms of
a centroid uµ

0
, axes uµ

i>0
, and shape vectors Sµ, determining

which linear combinations of the axes lie within the manifold.
(b) Neural manifolds with correlations in their centroids. (c)
Neural manifolds with fully correlated axes. In all three im-
ages, dierent colors correspond to dierent object class man-
ifolds.

of network representations.
In this Letter, we calculate the eects of correlation

structures on the capacity. Our formula for the capac-
ity of correlated manifolds generalizes the results in [15]
by stretching the Euclidean norm appearing in previous
results in the directions of the eigenvectors of the covari-
ance tensor. We analyze this formula in a simple setting,
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showing how geometry and correlations interact to deter-
mine the capacity, and we go on to apply this formula to
accurately estimate the capacity of deep network data.

Problem statement: Consider a set of P manifolds,
Mµ, residing in R

N . These manifolds correspond to dis-
tinct sets of neuronal activation vectors when presented
with dierent types of stimuli—for example, the set of
neural activations for a set of P classes across all possi-
ble class instances in a given layer of an image recognition
network [Fig. 1(a)]. In what follows, we assume that each
manifold resides in an ane subspace of maximal dimen-
sion K < N. That is, for any x ∈ Mµ, we have that
x = uµ

0 +
K

i=1 s
µ
i u

µ
i , where uµ

0 is a manifold center, uµ
i

for 1 ≤ i ≤ K is a set of manifold axes, and s ∈ Sµ are
the coordinates of x with respect to the manifold axes.
We use Sµ ⊂ R

K to denote the set of all possible coordi-
nates in this basis.

We take the manifold center uµ
0 to be the average ac-

tivation of the network layer when presented with a data
point from class µ. The spread of the manifold along
the axes therefore corresponds to the network variability
as we sample dierent stimuli from class µ. Intuitively,
manifolds with large centroid norms far away from one
another with small spreads along their axes will be easier
to classify than large manifolds tightly packed together.

We now turn to the problem of determining the maxi-
mal number of manifolds per dimension, α ≡ P/N , which
are, given some random binary labelings yµ ∈ {−1, 1}
and some underlying distribution on the uµ

i , linearly sep-
arable with high probability at a xed margin κ. In what
follows, we will be specically interested in the thermo-
dynamic limit, N,P → ∞ with P/N = O(1). In other
words, we nd the greatest α such that there exists a
hyperplane with normal w ∈ R

N , ||w||22 = N satisfying
minx∈Mµ yµw, x ≥ κ for each manifold Mµ with prob-
ability 1 in this limit. We dene the manifold capacity
to be this maximal value of α, so that larger capacities
imply a more favorable representational geometry for the
purpose of classication.

Following [2, 15, 30–34], we study this problem by cal-
culating the average log-volume of the space of solutions
in the thermodynamic limit:

logVol = log



S(
√
N)

dNw


µ

Θ



min
x∈Mµ

yµw, x − κ



,

(1)

where S(
√
N) is the sphere of radius

√
N , Θ(·) is the

Heaviside step function, and the average is taken with
respect to the quenched disorder in the labels yµ and the
axes and centroids uµ

i . Viewing the volume as a partition
function, we can see that −N−1 logVol corresponds to a
free energy density, which we assume is self-averaging
[35]. Given a xed set of manifold shapes Sµ, and choos-
ing the axes and centroids to be independent from one

another with uµ
i ∼ N (0, N−1I(N)), the capacity for such

randomly oriented manifolds, αM , is given by [15]

1

αM (κ)
=

1

P



DIT min
V ∈A



i,µ

(V µ
i − T µ

i )
2 , (2)

where DIT =


µ,i dT
µ
i exp[− 1

2 (T
µ
i )

2]/
√
2π is an

isotropic Gaussian measure and A is a convex set of ma-
trices which depends on the geometry of the manifolds,
as reected by their shapes, Sµ:

A ≡


V ∈ R
P×(K+1) : V µ

0 + min
sµ∈Sµ

K


i=1

V µ
i sµi ≥ κ



. (3)

Note the similarity to the constraint in the Θ function
in Eq. (1) . Indeed, the variable V µ

i corresponds to the
inner product of the solution vector w with the ith axis
(or centroid) of the µth manifold, multiplied by the label:
V µ
i ≡ yµw, uµ

i . These are the so-called signed elds of
the solution vector on the uµ

i [15]. In this way, the capac-
ity can be understood as a function of the geometry of the
manifolds as reected in the set Sµ. In the special case
that the manifolds are simply randomly oriented points,
the capacity is given by [30]

1

αpoint(κ)
=

 κ

−∞

dξ√
2π

e−
1

2
ξ2(ξ − κ)2 . (4)

From this formula, we can see that the shape sets Sµ

cause a lower capacity when compared to that of points.
Replica theory for correlated manifolds: Here, we con-

sider the situation where manifold axes and centroids are
correlated with one another. Intuitively, this corresponds
to the fact that dierent classes in a dataset may be
more or less similar to one another in the neural rep-
resentation space. We enforce correlated axes and cen-
troids by assuming that uµ

i , u
ν
j  = Cµ,i

ν,j for some positive

denite covariance tensor Cµ,i
ν,j . This is done by plac-

ing a Gaussian distribution on the centroids and axes:
p(u) ∝ exp



− N
2



µ,ν,i,j,l(C
−1)µ,iν,ju

µ
i,lu

ν
j,l



.
We calculate the capacity for correlated manifolds us-

ing the replica method [35, 36]; the details can be found
in the Supplementary Material (SM) [37]. We nd that
the capacity at a margin κ, denoted by αcor(κ), is

1

αcor(κ)
=

1

P



Dy,CT min
V ∈A

||V − T ||2y,C , (5)

where Dy,CT is the zero-mean Gaussian measure with

covariance tensor yµyνCµ,i
ν,j , and the overline denotes the

remaining average with respect to the labels yµ. Note too
that we have dened the Mahalanobis norm: ||X ||2y,C ≡


µ,ν,i,j y
µyν



C−1
µ,i

ν,j
Xµ

i X
ν
j , which eectively stretches
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FIG. 2. The eect of correlations on the optimization land-
scape for V0. First column: Two manifolds with (a) uncorre-
lated and (c) correlated centroids arising from the activations
of two neurons, n1 and n2. Second column: Level curves for
||V − T ||2y,C , given xed y and Vi>0 for the (b) uncorrelated
and (d) correlated manifolds. Shaded regions correspond to
areas where the constraint is satised—i.e., sections of the
set A in Eq. (3). Clearly, correlations warp the optimization
landscape along the eigenvectors P1, P2 of the centroid covari-
ance matrix with o-diagonal sign ips yµyνCµ,0

ν,0 .

the Frobenius norm along the eigenvectors of the tensor
yµyνCµ,i

ν,j (Fig. 2).

Comparison with other capacity estimators: It is worth
pausing and comparing Eq. (5) to the solution for uncor-
related manifolds in Eq. (2) reported in [15, 16]. From
Eqs. (2) and (5), we can see that axes and centroid corre-
lations distort the norm in the minimization from the Eu-
clidean norm to a random Mahalanobis norm which de-
pends on the covariance tensor C and the random labels
yµ (Fig. 2). As such, we expect that the quality of the
αM estimator from Eq. (2) degrades as the manifold axes
and centroids become more correlated with one another.
We nd that this is the case for both αM and the low-rank
approximation method reported in [16] when applied to
Gaussian point cloud manifolds (Fig. 3). Therefore, the
correlated capacity estimator, αcor, whose numerical im-
plementation we describe in the SM [37], should be used
whenever working with manifolds with strong correla-
tions (see [39]).

The special case of spheres: We now look for an answer
to the problem we were originally interested in: What are
the eects of manifold correlations on the capacity? We
answer this question by analytically solving Eq. (5) in
a simple setting: K-dimensional spheres with homoge-
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FIG. 3. Comparison of three dierent capacity estimators,
including the low-rank approximation of [16], to the numeri-
cally estimated ground truth simulation capacity (blue trian-
gles) described in [40]. The correlation intensity denotes the
magnitude of the o-diagonal correlations—see SM for more
details [37].

neous axis and centroid correlations. More precisely, we
assume that the manifold shape sets Sµ are spheres of
radius 1, and the covariance tensor C is dened by

Cµ,i
ν,j ≡











δi,j [(1− λ)δµ,ν + λ] for i, j > 0

(1 − ψ)δµ,ν + ψ for i, j = 0

0 for i > 0, j = 0 ,

(6)

where 0 ≤ ψ,λ < 1. The average centroid norms
and sphere radii are then respectively controlled by the
scalars r0 and r, so that for all µ and x ∈ Mµ, we have
that x = r0u

µ
0 + r

K

i=1 siu
µ
i , with



i(si)
2 ≤ 1. The

variables λ,ψ respectively determine the degree of cor-
relation between the axes and centroids: As λ,ψ → 1,
the axes and centroids will be fully correlated with one
another, while λ,ψ → 0 implies randomly oriented axes
and centroids [Fig. 4(a)].

Even under these simplifying assumptions, the mini-
mization in Eq. (5) is not directly solvable. As such, we
reframe the problem in terms of a statistical mechan-
ical system with quenched disorder and study the limit
P → ∞. To do this, note that the constraint on the elds

can be rewritten as r0V
µ
0 −r





i>0(V
µ
i )2 ≥ κ, as can be

seen by applying the Karush-Kuhn-Tucker (KKT) con-
ditions [41] to the Lagrangian L(S, η) = r



i>0 V
µ
i Si +

η(||S||2 − 1) (see SM [37]). The capacity can then be
derived by studying the following Gibbs measure:

1

Z
exp



− β

2



i,j,µ,ν

yµyν


C−1
µ,i

ν,j
(V µ

i − T µ
i )(V

ν
j − T ν

j )



×


µ

Θ



r0V
µ
0 − r





i>0

(V µ
i )2 − κ



dV µ , (7)

where Z is the partition function [42]. We can see that
1/αcor(κ) is then given by the average energy in the zero-
temperature limit: [αcor(κ)]

−1 = − 2
P
limβ→∞

∂
∂β

logZ,
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FIG. 4. The capacity for correlated spheres. (a) Visual
demonstration of spherical manifolds with low-rank axis and
centroid correlations. (b) The zero-margin capacity as a func-
tion of only the input ratio r

√

1− λ/(r0
√

1− ψ). Points rep-
resent averages over ve random sphere samplings, and the
solid line represents the theoretical prediction. For each ex-
periment, we x three of the four parameters and vary the
remaining one to obtain a xed value of the ratio.

with the overline denoting the average with respect to
the T and the labels yµ. We calculate the resulting free
energy density using the replica method—see SM for de-
tails [37].

Under these assumptions, the capacity is given by

1

αcor(κ)
= K

√
q − 1

2
+

 κ̂(q)

−∞

dξ√
2π

e−
1

2
ξ2


ξ − κ̂(q)
2
,

(8)

where q is the scaled squared norm of the signed elds
of an arbitrary sphere, q ≡



i>0(V
µ
i )2/(K(1− λ)), and

κ̂(q) is an eective margin. The values of the q and κ̂(q)
are then xed by the self-consistent equations

√
q = 1 +

r
√
1− λ

r0


K(1− ψ)

 κ̂(q)

−∞

dξ√
2π

e−
1

2
ξ2


ξ − κ̂(q)


,

κ̂(q) =
r


K(1− λ)q + κ

r0
√
1− ψ

. (9)

With our denition of q and κ̂(q) in hand, we can see
that the capacity for correlated spheres is the same as
the capacity of random points given in Eq. (4) with an
eective margin of κ̂(q), plus an extra bias term which
corresponds to additional contributions to the capacity
from the correlations and spread of the spheres.

The above solution gives a direct view into the eects
of correlations on manifold separability. From Eqs. (8)
and (9), we can see that when κ = 0, both q and
the eective margin are fully determined by the ratio
r


(1− λ)/(r0
√
1− ψ) (Fig. 4). Even when κ = 0, the

sphere radii and centroid scalings, r, r0, and the respec-
tive correlations, λ,ψ, only aect the capacity through
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FIG. 5. Comparison of the low-rank approximation (yellow
dashed line) [16], αM (red dotted line) [15], and our αcor

calculation (green solid line) to the ground truth simulation
capacity (blue triangles) [17] on data manifolds arising from
the ResNet50 articial neural network architecture trained
using SimCLR on the ImageNet dataset [26, 43].

the products: r
√
1− λ, r0

√
1− ψ. This implies that in-

creasing the axis or centroid correlations aects the ca-
pacity in the same way as shrinking the spheres or cen-
troid norms does. That is, axis correlations eectively
shrink the sphere radii, while centroid correlations eec-
tively push the manifolds closer to the origin.

These eects are most dramatic when we consider the
limits of fully correlated manifolds. In the fully corre-
lated centroids limit, ψ → 1, we can see that the ca-
pacity falls to 0. Conversely, in the fully correlated axes
limit, λ → 1, we can see that

√
q → 1, so that the capac-

ity grows to the capacity for random points with margin
κ/(r0

√
1− ψ) [30]. This shows that high-dimensional,

fully correlated spheres are as easy to separate as ran-
domly oriented points—see [4, 34] for related results.

Application to deep network manifolds: Having stud-
ied our theoretical predictions in two simple settings,
we now consider the performance of our capacity esti-
mator, αcor, when applied to neural manifolds from a
pretrained SimCLR ResNet50 network on the ImageNet
dataset [26, 43, 44]. We can see from Fig. 5 that the low
rank approximation [16] signicantly overestimates the
capacity in later layers of the network. Note that while
we can numerically estimate the ground truth simulation
capacity here because we use few data points (see SM;
[37]), this is computationally infeasible for larger data
manifolds [16, 40]. Thus, our αcor estimator can be used
to estimate the capacity where other methods fail.

Discussion: In this Letter, we considered the problem
of linearly separating a set of high-dimensional manifolds
whose centroids and axes are correlated with one another.
We rst derived an expression for the capacity of gen-
eral manifolds with arbitrary covariance tensors. After
showing that the resulting expression outperforms previ-
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ous capacity estimators when presented with correlated
manifolds, we turned to the problem of interpreting the
resulting expression for the capacity. To this end, we con-
sidered the problem of linearly separating spheres with
homogeneous correlations along the centroids and axes.
The resulting expression for the capacity closely tracks
the capacity for points with an eective margin deter-
mined by the geometry and correlations of the spheres.
Remarkably, we found that centroid and axis correlations
play the same roles as the distance of the spheres from the
origin and the sphere radii, respectively. These ndings
reveal a duality between representational geometry and
correlations with respect to the problem of classication.

Our work suggests two main subsequent lines of re-
search. First, given the rising popularity and sophis-
tication of geometric analysis methods in neuroscience
[11–13, 15, 16], together with the extensive literature ex-
amining the phenomenology and role of dierent types
of neural correlations [22, 23], we hope to apply the
results from this study to further connect these two
lines of inquiry. One particularly interesting approach
in this direction would be to apply our results to study
the relationship between hierarchical correlation struc-
tures, geometry, and the organization of abstract knowl-
edge, especially in the context of multilabel classication
[12, 45, 46]. Another interesting approach would be to
use Eq. (5) to derive a set of metrics quantifying the ef-
fects of dierent types of neural correlations on the ca-
pacity for arbitrary data manifolds, complementing pre-
existing measures describing the impact of geometry on
the capacity [15, 16].

Second, our results regarding spheres with correlated
axes suggest that self-supervised objectives which pro-
duce positive correlations between manifold axes could
yield latent representations with favorable classication
properties. If we further dene manifold axes using the
translation between an original image and its augmenta-
tion, such an objective could also produce representations
which are disentangled with respect to, for example, color
distortion and rotation [47, 48]. We hope to pursue this
line of research in subsequent work.
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Supplementary Material: Linear Classication of Neural Manifolds

with Correlated Variability

Albert J. Wakhloo, Tamara J. Sussman, SueYeon Chung

1 Capacity for General Manifolds with Arbitrary Correlations

Claim 1. Consider a set of manifolds Mµ ⊂ R
N with µ = 1, . . . , P and with corresponding shape sets Sµ ⊂ R

K .

Suppose the axes and centroids uµ
i ∈ R

N are distributed according to: p(u) ∝ exp


−N
2



µ,ν,i,j,l(C
−1)µ,iν,ju

µ
i,lu

ν
j,l



,

and assign random binary labels yµ ∈ {−1, 1} with equal probability to each manifold. We dene the capacity as

the maximum number of manifolds per input dimension, α ≡ P/N , which admits a solution w ∈ S(
√
N) to the

separation problem, minµ∈NP
1
minx∈Mµ yµw, x ≥ κ with probability 1 for κ ≥ 0 in the thermodynamic limit,

N,P → ∞, P/N = O(1). Under our assumptions on the manifolds Mµ, the capacity converges to:

1

αcor(κ)
=

1

P
Ey



Dy,CT min
V ∈A

||V − T ||2y,C, (1)

where the average is with respect to the i.i.d. labels taking values ±1 with equal probability, the constraint set is:

A ≡


V ∈ R
P×(K+1) : ∀µ ∈ N

P
1 , V µ

0 + min
s∈Sµ



i>0

V µ
i si ≥ κ



, (2)

and the Mahalanobis norm ||X ||y,C is dened by: ||X ||2y,C ≡ 

i,j,ν,µ Xµ
i X

ν
j y

µyν


C−1
µ,i

ν,j
. As in the main text,

we also dene the Gaussian measure Dy,CT as:

Dy,CT = (2π)−P (K+1)/2|G|−1/2 exp



− 1

2



µ,ν,i,j

T µ
i T

ν
j y

µyν


C−1
µ,i

ν,j

 P


µ=1

K


i=0

dT µ
i



, (3)

where |G| is the determinant of the tensor yµyνCµ,i
ν,j , unrolled into a matrix of dimensions P (K+1)×P (K+1).

Derivation: We calculate the log volume of the space of solutions [1]:

Ey,u logZ ≡ Ey,u log



dNwδ(w2 −N)


µ

Θ



min
x∈Mµ

yµw, x − κ



(4)

This is done using the replica method, which relies on the identity: E logZ = limn→0 n
−1(EZn − 1) =

limn→0 n
−1 logEZn . We rst assume that n ∈ N and only later take the limit n → 0 after obtaining an

expression which is analytic in n. Replicating the volume integral n times and rewriting the constraint in terms
of the elds Hµ,a

i gives:

Ey,uZ
n = Ey,u

 n


a=1

dNwaδ(w
2
a −N)



µ



DHµ,a
K


i=0

√
2πδ(Hµ,a

i − yµwT
a u

µ
i ), (5)

where, as in [2], we have absorbed the constraint into the measure DH :

DHµ =

 K


i=0

dHµ
i√
2π



Θ



gSµ(Hµ)− κ



(6)

gSµ(Hµ) = Hµ
0 + min

s∈Sµ



i>0

Hµ
i si (7)

1



Introducing Fourier representations of the delta functions for H gives:





a

dNwaδ(w
2
a −N)





µ



DHµ,a
K


i=0



dĤµ,a
i√
2π



Ey,u exp





µ,a,i

iĤµ,a
i (Hµ,a

i − yµwT
a u

µ
i )



(8)

The average over the exponential term is:

Ey,u exp



−


µ,a,i,l

iĤµ,a
i yµwl

au
µ
i,l



(9)

= Ey






ilµ duµ
il



(2π)NP (K+1)/2|C|N/2
exp



− N

2



µ,i,ν,j,l

uµ
i,lu

ν
j,l



C−1
µ,i

ν,j
− i



µ,a,i,l

Ĥµ,a
i yµwl

au
µ
i,l



(10)

Note that the average over the labels y cannot be performed analytically. As such, the average Ey will not
be written again until the end to avoid clutter. Dening the Cholesky decomposition of C, which satises


τ,k L
µ,i
τ,kL

ν,j
τ,k = Cµ,i

ν,j , we make the change of variables uµ
i,l →



τ,k L
µ,i
τ,ku

τ
k,l. This gives:






ilµ duµ
il



(2π)NP (K+1)/2
exp



− N

2



µ,i,l



uµ
i,l

2 − i


µ,a,i,l,τ,k

Ĥµ,a
i yµwl

aL
µ,i
τ,ku

τ
k,l



(11)

Integrating the u and introducing the overlap matrix Qa,b = N−1
N

l=1 w
l
aw

l
b then yields:



dQ


a



dwaδ(Qa,a − 1)

n


b=1

δ(N−1wT
a wb −Qa,b)

×





µ



DHµ,a
K


i=0



dĤµ,a
i√
2π



exp



− 1

2



a,b,ν,µ,i,j

Qa,bC
µ,i
ν,j Ĥ

µ,a
i Ĥν,b

j yµyν + i


a,µ,i

Ĥµ,a
i Hµ,a

i



(12)

Changing variables: Ĥµ,a
i → yµ



τ,k[L
−1]µ,iτ,kĤ

τ,a
k and Hµ,a

i → yµ


τ,k L
µ,i
τ,kH

τ,a
k gives:



dQ


a



dwaδ(Qa,a − 1)


b

δ(N−1wT
a wb −Qa,b)

×





a



C(y,L)





µ,i

dHµ,a
i








µ,i

dĤµ,a
i√
2π



exp



− 1

2



a,bµ,i

Qa,bĤ
µ,a
i Ĥµ,b

i + i


a,µ,i

Ĥµ,a
i Hµ,a

i



, (13)

where the integral over each matrix H ,a must now be taken over the set:

C(y, L) ≡


H ∈ R
P×(K+1) : ∀µ ∈ N

p
1, min

sµ∈Sµ
yµ



k,τ,i

Hτ
kL

µ,i
τ,ks

µ
i ≥ κ



(14)

Note that we have dened for convenience the additional element: sµ0 = 1, and that the sum is taken over:

0 ≤ k, i ≤ K, and 1 ≤ µ, τ ≤ P . Integrating the Ĥ variables:



dQ


a



dwaδ(Qa,a − 1)


b

δ(N−1wT
a wb −Qa,b)

×





a



C(y,L)





µ,i

dHµ,a
i



exp



− 1

2



a,b,µ,i

Q−1
a,bH

µ,a
i Hµ,b

i − P (K + 1)

2
log detQ



(15)

This is almost identical to the formula for the log volume for manifolds with heterogeneous shapes [2, 3].
The only dierence is that the integration over the H is now constrained to the set C(y, L). As such, we can
proceed just as in the case of uncorrelated manifolds with dierent shapes [2, 3], which we briey describe here.
We integrate over the wa variables by introducing Fourier representations of the delta functions and carrying
out the Gaussian integral over the w. The auxiliary variables introduced through this process can then be

2



integrated by saddle point, leading to a contribution exp


N
2
log detQ + const.



. From here, we assume replica
symmetry: Qa,b = (1− q)δa,b + q and apply a Hubbard-Stratonovich transformation to the o diagonal term in

the summation over Hµ,a
i Hµ,b

i Q−1
a,b to arrive at:






a=b

dQa,b



exp



N − P (K + 1)

2
log detQ



×



DIT




C(y,L)





µ,i

dHµ
i



exp



− 1

2(1− q)
||H −√

qT ||22 +
q

2(1− q)
||T ||22

n

, (16)

where just as in the main text, DIT denotes the isotropic Gaussian measure:


µ,i dT
µ
i exp[− 1

2 (T
µ
i )

2]/
√
2π,

and we have dropped the constant that emerged from the integral over the w. We now apply the identities:
f(x)n

.
= exp[nlog f(x)] and log detQ

.
= n log q + nq/(1 − q), both of which hold as n → 0. This gives the

expression:



dq exp



Nn

2



q

1− q
+



1− α(K + 1)


log(1− q)



+



DIT log



C(y,L)





µ,i

dHµ
i



e−||H−√
qT ||22/(2(1−q))



(17)

We can see that q will concentrate around its saddle point value in the large N,P limit. This value of q is xed
by the stationarity condition:

1

(1− q)2
− 1− α(K + 1)

1− q
− 1

N(1− q)2



DIT



C(y,L)





µ,i

dHµ
i



||H − T ||22e
−||H−√

qT ||22/(2(1−q))



C(y,L)





µ,i

dHµ
i



e−||H−√
qT ||22/(2(1−q))

= 0 (18)

Placing ourselves in the regime where we are at capacity requires that the volume of solutions shrinks to a
single point. In this regime, the overlap between dierent solutions, q, concentrates about 1 [1]. Therefore, we
can use the above self-consistency condition to determine the value of α such that exactly one solution to the
separation problem will exist with probability 1 in the thermodynamic limit. To do this, we note that as q → 1,
the dominant terms are those of order (1− q)−2, and the integrals over the H variables can be replaced by their
values at the saddle point. Thus, to leading order in N,P , we can see that:

1

αcorr(κ)
= Ey



DIT min
V ∈C(y,L)

1

P

P


µ

||V µ − T µ||22, (19)

where we have reintroduced the expectation over the labels and have switched from using H to V to match the
main text. As described below, we use this form of the inverse capacity for all numerical calculations. Changing
variables once more: V τ

k → 

η,l[L
−1]τ,kη,l y

ηV η
l , and T τ

k → 

η,l[L
−1]τ,kη,l y

ηT η
l then gives the stated result:

Ey



Dy,CT min
V ∈A

1

P



µ,ν,i,j

(V µ
i − T µ

i )(V
ν
j − T ν

j )


C−1
µ,i

ν,j
yµyν (20)

A =



V ∈ R
P×(K+1) : ∀µ ∈ N

P
1 , V µ

0 + min
s∈Sµ



i>0

V µ
i si ≥ κ



(21)

Dy,CT ≡ (2π)−P (K+1)/2|C|−1/2 exp



− 1

2



µ,ν,i,j

T µ
i T

ν
j y

µyν


C−1
µ,i

ν,j

 P


µ=1

K


i=0

dT µ
i



, (22)

where we have used the fact that the determinant of yµyνCµ,i
ν,j is unaected by the o-diagonal sign ips yµyν to

write the normalizing constant over the T integral as (2π)−P (K+1)/2|C|−1/2. (This can be derived by considering
the matrix integral



(


µ,i dT
µ
i ) exp[− 1

2
yµyνT µ

i T
ν
j (C

−1)µ,iν,j ] and changing variables T µ
i → yµT µ

i .)

3



2 The Capacity for Spheres with Low-Rank Correlations

Claim 2. Consider a set of P spheres of radius r, intrinsic dimension K, and at a distance r0 from the origin,

residing in R
N . Given homogenous axis-axis and centroid-centroid correlations as dened in the main text Eq.

6, the capacity for these spheres is given by:

1

αcorr(κ)
= K

√
q − 1

2
+

 κ̂(q)

−∞

dξ√
2π

e−
1
2
ξ2


ξ − κ̂(q)
2

, (23)

where the scaled squared norm of the signed elds q ≡


i>0(V
µ
i )2/((1− λ)K) and the eective margin κ̂(q) are

xed by the equations:

√
q = 1 +

r
√
1− λ

r0


K(1− ψ)

 κ̂(q)

−∞

dξ√
2π

e−
1
2
ξ2


ξ − κ̂(q)


(24)

κ̂(q) =
r


K(1− λ)q + κ

r0
√
1− ψ

(25)

Derivation: To start with, we rewrite the formula for the inverse capacity given in Supplementary Eq. 1 in
terms of a Gibbs measure [4]:

1

αcor(κ)
= lim

β→∞
lim

P→∞
− 2

P

∂

∂β
ET,y log






µ,i

dV µ
i



exp



− β

2
yµyνΛµ,i

ν,j(V
µ
i − T µ

i )(V
ν
j − T ν

j )



(26)

×


µ

Θ



r0V
µ
0 − κ+ min

s∈Sµ



i>0

V µ
i sir



,

where Λ
µ,i
ν,j is the inverse covariance tensor, (C−1)µ,iν,j . In this form, we can see that the capacity can be derived

from the disorder averaged free energy density, −(βP )−1
ET,y logZ. We calculate this using the replica method

[5, 6]. Here and in the remainder of the calculation, we implicitly sum over all indices in the exponent unless
noted otherwise. That is: exp[f(xa,b)] ≡ exp[



a,b f(xa,b)]. By the Sherman-Morrison formula [7], Λµ,i
ν,j has

entries:

Λ
µ,i
ν,j =



























δij



δµ,ν

1− λ
− λ

(1− λ)(1 + (P − 1)λ)



for i > 0

δµ,ν

1− ψ
− ψ

(1 − ψ)(1 + (P − 1)ψ)
for i = j = 0

0 for i = 0, j = 0

(27)

.
=



























δij



δµ,ν

1− λ
− 1

P (1− λ)



for i > 0

δµ,ν

1− ψ
− 1

P (1 − ψ)
for i = j = 0

0 for i = 0, j = 0 ,

(28)

where
.
= denotes equality to leading order in P . Using the assumption of spherical manifolds allows us to carry

out the constrained minimization in the Θ functions above:

r0V
µ
0 + min

s∈Sµ



i>0

rV µ
i si = r0V

µ
0 − r





i>0



V µ
i

2
(29)

To see this, we apply the KKT conditions to the Lagrangian: L(s, η) = V, s + η(||s||2 − 1) [8]. The KKT
conditions read:

2ηs = −V (30)

η ≥ 0 (31)

||s||2 ≤ 1 (32)

η(||s||2 − 1) = 0 (33)

4



For all non-zero V, we must therefore have η > 0, from which it follows that s = −V/||V || at the minimum,
establishing the identity in Eq. (29). Using this simplication and replicating the partition function above n
times then gives:

ET,yZ
n = ET,y






µ,i,a

dV µ
a,i



exp



− β

2
yµyνΛµ,i

ν,j(V
µ
a,i − T µ

i )(V
ν
a,j − T ν

j )





a,µ

Θ



V µ
a,0 −

r

r0
||V µ

a,i>0||−
κ

r 0



,

(34)

where we have used ||Vi>0|| to denote the norm of the last K components of V µ
a . That is, ||V µ

a,i>0|| ≡




i>0



V µ
a,i

2
. The expectation over T is:



dP×(K+1)T exp



− 1 + βn

2
T µ
i T

ν
j y

µyνΛµ,i
ν,j + βT µ

i y
µ
Λ

µ,i
ν,jy

νV ν
a,j −

1

2
log det yyT ◦ Λ− P (K + 1)

2
log 2π



(35)

= exp



β2

2(1 + βn)
V µ
a,iV

ν
b,jy

µyνΛµ,i
ν,j −

P (K + 1)

2
log(1 + nβ)



(36)

Here we have slightly abused notation to write: (yyT ◦ Λ)µ,iν,j = yµyνΛµ,i
ν,j . Note that the replicas Va are now

coupled after integrating out the quenched disorder T. Reinserting this back into the integral and expanding
the terms log(1 + nβ), Λ, and 1/2(1 + βn) to rst order in the n → 0 and P → ∞ limits:

ET,yZ
n .
= Ey






µ,a



i>0

dV µ
a,i



exp



−


i>0

β

2(1− λ)





V µ
a,i

2 − 1

P





µ

yµV µ
a,i

2

(37)

+
β2

2(1− λ)



V µ
a,iV

µ
b,i −

1

P





a,µ

yµV µ
a,i

2

− βP (K + 1)n

2



×






µ,a

dV µ
a,0



exp



− β

2(1− ψ)





V µ
a,0

2 − 1

P





µ

yµV µ
a,i

2

+
β2

2(1− ψ)



V µ
a,iV

µ
b,i −

1

P





a,µ

yµV µ
a,0

2


a,µ

Θ



V µ
a,0 −

r

r0
||Vi>0||−

κ

r 0



Note that we freely ignore constants which do not aect the nal result. The important points here are: (1)
the only interaction between manifolds happens through the mean,



µ y
µV µ

a,i, and (2) the only interactions

between the replicas happens through the quadratic interaction terms, V µ
a,iV

µ
b,i. These considerations motivate

the following substitutions, which we enforce using delta functions:

Qµ
a,b =

1

K



i>0

V µ
a,iV

µ
b,i (38)

Fa,i =
1

P



µ

yµV µ
a,i (39)

In this way, equation (37) becomes:

Ey






a≤b

dQa,b



exp



− Kβ

2(1− λ)



Qµ
a,a − βQµ

a,b



− P (K + 1)βn

2
+ logS



Q


+ logU


Q




, (40)

where we have dened for convenience Qa,b ≡ Qb,a, and U and S are the remaining integrals over the V µ
a,i and

the F :

S(Q) ≡






a,i>0

dFa,i



exp



β

2(1− λ)



PF 2
a,i − βP





a

Fa,i

2






a,µ



i>0

dV µ
a,i



(41)

×





µ



a≤b

δ



Qµ
a,b −K−1



i>0

V µ
a,iV

µ
b,i





i,a

δ



Fa,i − P−1


µ

yµV µ
a,i



(42)

5



U(Q) ≡






a

Fa,0



exp



β

2(1− ψ)



PF 2
a,0 − βP





a

Fa,0

2

(43)

×






a,µ

dV µ
a,0





i

δ



Fa,0 − P−1


µ

yµV µ
a,0





a,µ

Θ



V µ
a,0 −R



Qa,a − κr−1
0



× exp



− β

2(1− ψ)



V µ
a,0

2
+

β2

2(1− ψ)
V µ
a,0V

µ
b,0



(44)

Note that we have dened R ≡
√
Kr/r0.

In order to evaluate U(Q) and S(Q) in closed form, we now make the replica symmetric ansatz:

Qµ
a,b = δa,b(q0 − q1) + q1 (45)

Note that unlike typical assumptions of replica symmetric ansatz [5, 6], we have to assume symmetry across
all manifolds: Qµ = Q. This assumption is motivated by the fact that the interactions between all manifolds
are symmetric. Under this assumption, the function S(Q) can be estimated by saddle point as described in
lemma 3. In this way we obtain in the n → 0 limit:



dq0dq1 exp



− nPKβ

2(1− λ)



q0 − β(q0 − q1)


− P (K + 1)βn

2
+

1

2
PK log detQ+ logEyU



Q




, (46)

where in the n → 0 limit we have that:

log detQ = n log(q0 − q1) + n
q1

q0 − q1
(47)

In lemma 4, we evaluate the EyU(Q) by saddle point. Plugging this result into the integral gives:



dq0dq1 exp



PKn

2



− β

1− λ



q0 − β(q0 − q1)


− β + log(q0 − q1) +
q1

q0 − q1



(48)

+ nP



Dψξ logH





β

1− ψ



R
√
q0 +

κ

r 0
− ξ





,

where, as below, we have used H to denote the unnormalized Gaussian tail function: H(x) ≡
∞
x

dt exp(−t2/2)
and Dψξ to denote the zero-mean Gaussian measure with variance 1− ψ. Pulling out the P, n factors, we can
see that the replicated partition can be written as:

ET,yZ
n .
=



dq0dq1e
nPV(q0,q1) (49)

If we estimate the remaining integral by saddle point in the large P limit, we can use the identity logZ =
limn→0 n

−1 logZn to arrive at:

1

P
ET,y logZ

.
= extr

q0,q1
V(q0, q1) (50)

We therefore have to solve ∇V (q0, q1) = 0. Just as in lemma 4 we can use the expansion of H(
√
βx) as β → ∞

given in equation 71 to see that:

∂q0



Dψξ logH





β

1− ψ



R
√
q0 + κr−1

0 − ξ




= − R
√
β

2


q0(1− ψ)



Dψξ

exp



− β(R
√
q0+κr−1

0
−ξ)2

2(1−ψ)



H





β
1−ψ



R
√
q0 + κr−1

0 − ξ




.
= − Rβ

2(1− ψ)
√
q0

 R
√
q0+κr−1

0

−∞
Dψξ(R

√
q0 − κr−1

0 − ξ) (51)
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Using this expansion, the function V admits two dierent pairs of saddle points. The meaningful solution is
given by:

q1 = q0 −
1

β



q0(1− λ) +O(β−2) (52)

√
q0 =

√
1− λ+

r(1 − λ)

r0


K(1− ψ)

 0

−∞

dξ√
2π

e
− 1

2



ξ+
r
√

Kq0+κ

r0

√
1−ψ

2

ξ (53)

Denoting the solutions to the above equations as q∗0 , q
∗
1 , the inverse capacity is then given by

−2
∂

∂β
V(q∗0 , q

∗
1) = K





q∗0
1− λ

− 1

2

+

 0

−∞

dξ√
2π

e
− 1

2



ξ+
r
√

Kq∗
0
+κ

r0

√
1−ψ



2

ξ2, (54)

where again we have used the same expansion of H to evaluate the partial derivative with respect to β. From
here, changing q0 → q0(1− λ) then gives the stated result.

Lemma 3. Under the replica symmetric ansatz and as β, P → ∞ and n → 0, the function S(Q) is asymptotic

to:

exp



1

2
PK log detQ+ const.



, (55)

where const. denotes terms which do not depend on β or Q.

Derivation: Introducing Fourier representations of the delta functions in equation 42 gives:






µ,a≤b

dQ̂µ
a,b








i>0,a

dFa,idF̂a,i



exp



i

2
K



a≤b

Qa,bQ̂
µ
a,b +



a,i

β

2(1− λ)



PF 2
a,i − βP





a

Fa,i

2

× exp



iPFa,iF̂a,i








a,µ



i>0

dV µ
a,i



exp



− i

2



a≤b

Q̂µ
a,bV

µ
a,iV

µ
b,i − iyµF̂a,iV

µ
a,i



(56)

It is convenient to now rewrite the ordered sum over a ≤ b indices as an unordered sum over all pairings (a, b).
As above, we dene Qb,a ≡ Qa,b and Q̂b,a ≡ Qa,b for a > b. If we further change Q̂a,b → 2Q̂a,b for all a = b, we
can eliminate the unordered sums as desired, leaving:






µ,a≤b

dQ̂µ
a,b








i>0,a

dFa,idF̂a,i



exp



i

2
KQa,bQ̂

µ
a,b +

β

2(1− λ)



PF 2
a,i − βP





a

Fa,i

2

× exp



iPFa,iF̂a,i








a,µ



i>0

dV µ
a,i



exp



− i

2
Q̂µ

a,bV
µ
a,iV

µ
b,i − iyµF̂a,iV

µ
a,i



, (57)

where as usual we neglect constants which do not depend on either the variables of integration or β, as they
will not aect the nal result. The integrals over the V followed by the F̂ variables are now both standard
Gaussian integrals. They yield:






µ,a≤b

dQ̂µ
a,b





a



i>0

dFa,i



exp



i

2
KQa,bQ̂

µ
a,b −

K

2



µ

log det Q̂µ − 1

2
log det





µ



Q̂µ
−1



−P 2

2
Fa,iFb,i





µ

(Q̂µ)−1

−1

a,b

+
β

2(1− λ)



PF 2
a,i − βP





a

Fa,i

2

(58)

The remaining Gaussian integral over the F produces a term which is subleading in P . Therefore, the leading
order in the remaining integral over the Q̂ is simply the rst two terms in the exponent. If we now invoke the
replica symmetric ansatz on the conjugate variables: Q̂µ = Q̂, we are left with:






a≤b

Q̂a,b



exp



i

2
PKQa,bQ̂a,b −

PK

2
log det Q̂



(59)

Estimating this integral by saddle point then gives the desired result.
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Lemma 4. Under the replica symmetric ansatz, as β, P → ∞ and n → 0, the function U(Q) is asymptotic to:

U(Q)
.
= exp



nP



Dψξ logH





β

1− ψ



R
√
q0 +

κ

r0
− ξ





+
1

2
βPn+ const.



, (60)

where, as above, const. denotes terms which do not depend on β or Q, and H is the unnormalized Gaussian tail

function:

H(x) ≡
 ∞

x

dse−s2/2 (61)

We also use Dψξ to denote the Gaussian measure:

Dψξ ≡ dξe−ξ2/2(1−ψ)



2π(1− ψ)
(62)

Derivation: Introducing Fourier representations of the delta functions in equation (44):

Ey






a

dFa,0dF̂a



µ

dV µ
a,0



exp



− β

2(1− ψ)



V µ
a,0

2
+

β2

2(1− ψ)





a

V µ
a,0

2


a,µ

Θ



V µ
a,0 −R

√
q0 −

κ

r0



× exp



Pβ

2(1− ψ)



F 2
a,i −





a

Fa,i

2

− iβ

1− ψ
F̂a



PFa,0 − yµV µ
a,0



+O(log β)



(63)

Note that the terms O(log β) will have no eect on our nal answer, so we ignore them. If we now make the
additional replica symmetric assumption: F̂a = F̂ , Fa = F and introduce a Hubbard-Stratonovich transform on
each of the terms (



a V
µ
a,0)

2, we have:



dFdF̂ exp



Pβn

2(1− ψ)
F 2 − iPnβ

1− ψ
FF̂ +O(n2)





µ

Eyµ



Dψξµ (64)

×




dV µ
0 exp



− β

2(1− ψ)



V µ
0

2
+

β

1− ψ
V µ
0 (ξµ + iF̂ yµ)



Θ



V µ
0 −R

√
q0 −

κ

r0

n

(65)

We can factorize the integral across the µ-index and absorb the Θ function into the limits of integration of the
V0 variables to obtain:



dFdF̂




DψξEy


 ∞

R
√
q0+κ

dV0 exp



− β

2(1− ψ)



V0 − ξ − iF̂ y)2 +
β

2(1− ψ)
(ξ + iF̂ y)2

nP

× exp



− iPnβFF̂

1− ψ
+

Pβn

2(1− ψ)
F 2



(66)

Using the identity Exf(x)
n .
= enEx log f(x), which is valid in the n → 0 limit, we obtain, after changing variables

V → V + ξ + iF̂ y:



dFdF̂ exp



nPEy



Dψξ log


 ∞

R
√
q−ξ−iF̂ y

e−βV 2
0 /2(1−ψ)



+ nPEy



Dψξ
β

2(1− ψ)
(ξ + iF̂ y)2



(67)

× exp



− iPnβFF̂

1− ψ
+

Pβn

2(1− ψ)
F 2



(68)

Carrying out the expectations over the terms (ξ + iF̂ y)2 and changing V →


(1− ψ)/βV then gives:



dFdF̂ exp



nPEy



Dψξ logH





β

1− ψ



R
√
q0 + κr−1

0 − ξ − iF̂ y




+
1

2
βPn− nPβ

2(1− ψ)
F̂ 2 − iPnβFF̂

1− ψ
+

Pβn

2(1− ψ)
F 2 +O(nP log β)



(69)
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We are now ready to estimate this integral by saddle point. To do so, we start by noting that the partial
derivative with respect to F̂ of the average over the logH term is:



β

1− ψ
Ey



Dψξ

yi exp



− β
2(1−ψ)



R
√
q0 + κr−1

0 − ξ − iF̂ y
2


H





β
1−ψ



R
√
q0 + κr−1

0 − ξ − iF̂ yµ


 (70)

In the β → ∞ limit, we can use the expansion:

H(


βx)
.
=







e−βx2/2√
βx

x > 0
√
2π x < 0

(71)

Invoking this expansion, the expression simplies to:

iβ

1− ψ
Ey

 0

−∞

dξe−(ξ+R
√
q0+κr−1

0
−iF̂ y)2/2(1−ψ)



2π(1− ψ)
ξy (72)

The saddle points over the F, F̂ variables then satisfy the self-consistent equations:

F = iF̂ (73)

−iF − F̂ + iEy

 0

−∞

dξe−(ξ+R
√
q0+κr−1

0
−iF̂ y)2/2(1−ψ)



2π(1− ψ)
ξy = 0, (74)

which have the solution F̂ = F = 0. Replacing equation (69) with its value at the saddle point, we can see that
the function EyU(Q) can be stated as:

exp



nP



Dψξ logH





β

1− ψ



R
√
q0 + κr−1

0 − ξ




+
1

2
βPn



, (75)

which is what we wanted to show.
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Algorithm 1 Capacity Estimation for Correlated Data (αcor)

Input: nt : Number of Monte Carlo draws. G : Data array of shape P ×N ×M containing M samples of P
distinct manifolds, in an ambient dimension of N .
Output: α : Capacity estimate.

1: L, S ← GetShapesAndCholesky(G)
2: α−1 ← ZerosArray(nt)
3: for i from 1 to nt do

4: y ← Bernoulli⊗P (0.5)
5: T ← Normal⊗P×M+1(0, 1)

6: α−1[i] ← minV ∈C(y,L)
1
P

P
µ ||V µ − T µ||2

7: end for

8: return 1/mean(α−1)

Algorithm 2 GetShapesAndCholesky

Input: G : Data array of shape P ×N ×M containing M samples of P distinct manifolds, in an ambient
dimension of N .
Output: L : Cholesky decomposition of the correlation tensor, reshaped into a P (M + 1)× P (M + 1) matrix.
S : An array of shape P ×M ×M containing data points in their axis coordinates.

1: Ax, S ← ZerosArray(P,N,M + 1),ZerosArray(P,M,M)
2: for µ from 1 to P do

3: c ← M−1
M

i=1 G[µ, :, i] ⊲ Get this manifold’s centroid
4: for i from 1 to M do

5: G[µ, :, i] ← G[µ, :, i]− c ⊲ Center each sample
6: end for

7: Ax[µ, :, 0] ← c ⊲ Assign centroid to leading dimension
8: Ax[µ, :, 1 :], S[µ] ← QR(G[µ]) ⊲ Assign axes to the next m dimensions, and get the manifold points in

the manifold axis coordinates, Sµ

9: end for

10: Ax ← reshape(Ax, (P ∗ (M + 1), N))
11: if Rank(Ax) < P ∗ (M + 1) then
12: C ← AxAxT + ǫI ⊲ Perturb the diagonal by a small ǫ to make C positive denite (we set ǫ = 0.001).
13: L ← Cholesky(C)
14: else

15: Q,LT ← QR(Ax) ⊲ When full rank, use the QR decomposition to get L.
16: end if

17: return L, S
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3 Numerical Implementation of the Capacity Estimator:

In this section, we describe how we estimate the capacity for arbitrary data manifolds. While there are several
ways to parameterize the data manifolds in terms of axes and shape sets, we use the QR decomposition of
the matrices containing the (centered) manifold data points to obtain a set of orthogonal axes vectors (Q),
together with the coordinates of each manifold point in this orthogonal basis (R), as described in steps 1-8 of
Algorithm 2. The shape sets Sµ are then simply taken to be the manifold points in this basis. With respect
to the quadratic minimization in Eqs (1) and (76) with linear constraint sets enforcing separability in Eqs. (2)
and (77), this choice is equivalent to taking the shape sets to be the convex hull of all manifold points [8]. With
these denitions in hand, the correlation tensor C can then simply be taken to be the empirical covariance
tensor, Cµ,i

ν,j = uµ
i , u

ν
j .

The direct estimation of Supplementary Eq. (1) using the data manifolds parameterized as described
above is a dicult problem. The main diculty comes from the inversion of large correlation tensors, which
is a highly numerically unstable operation. We sidestep this diculty by changing variables: (V − T )µi →


τ,k y
µLµ,i

τ,k(V − T )τk. Here L is the Cholesky factorization of the correlation tensor, C, which satises


τ,k L
µ,i
τ,kL

ν,j
τ,k = Cµ,i

ν,j . This change of variables gives the representation:

1

αcor(κ)
=



DIT min
V ∈C(y,L)

1

P

P


µ

||V µ − T µ||2 (76)

C(y, L) =



V ∈ R
P×(K+1) : min

sµ∈Sµ
yµ



k,τ,i

V τ
k Lµ,i

τ,ks
µ
i ≥ κ



, (77)

where we have dened sµ0 ≡ 1 for convenience. We can see that estimating Eq. (76) with Monte Carlo draws
of y, T now only requires calculating the Cholesky factorization of the covariance. Even when N is very large,
this step can safely be done using the QR decomposition of the matrix containing manifold axes and centroids
(Algorithm 2, line 15). Note, however, that this step requires that the correlation tensor be full rank, which
may not always be the case (e.g., when N < MP ). Therefore, when the covariance tensor is not full rank, we
add a small perturbation to the diagonal of the correlation tensor and calculate the Cholesky factor directly
(Algorithm 2, lines 11-14; see also [9]).

Once we have the Cholesky factorization of the covariance, we minimize the integrand of (76) using
standard convex optimization routines. In this way, we can accurately estimate the capacity for arbitrary data
manifolds by following the pseudocode in Algorithms (1) and (2).

4 Gaussian Point Cloud Simulation

For these simulations, we used P = 80 point cloud manifolds, each made up of the convex hulls of 40 random
vectors in R

3800, and we averaged results over 5 runs. These vectors were the sum of two Gaussian vectors: a
manifold centroid uµ

0 , and a sample-specic vector, xµ
j . Each manifold was then dened as Mµ = conv{uµ

0 +xµ
j :

j ∈ N
40
1 }. The sample vectors and centroids were each drawn from zero-mean multivariate Gaussian distributions

with block covariance matrices with the strength of the o-diagonal terms of both matrices being uniformly
scaled from trial to trial (see Supplementary Fig. 1 above for an example). That is, given an intensity γ, we

enforced uµ
0 , u

ν
0 = γCµ,ν

cent for µ = ν, while each of the sample vectors satised xµ
j , x

ν
i  = γCµ,ν

samp for µ = ν.

The average norms, ||uµ
0 ||

2 and ||xµ
i ||

2 (i.e., the diagonal elements of C) were respectively xed to 25 and 1.
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Figure 1: Example of the block covariance matrices for the sample-specic vectors (top row) and centroids
(bottom row) at low intensity (left column) and high intensity (right column).
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5 ResNet50 Analyses

We generated object manifolds from the ResNet 50 architecture trained with SimCLR [10, 11] using a similar
procedure as in [3]. On each of the ve experimental runs, we rst randomly selected P = 70 ImageNet classes
and chose 45 samples per class. We then extracted the activations from a sub-sample of 13 out of the 49 ReLU
layers in the network, as well as the nal average pooling operation. As described in [11], these ReLU layers
are the result of applying the rectied linear non-linearity ReLU(x) = max{0, x} elementwise to the outputs of
convolutional layers. The layer width of the nal average pooling layer was 2,048, while the layer widths of the
ReLU layers ranged from 25,088 to 802,816. Given the size of these layers we projected the activations of the raw
input and the ReLU layers onto N = 8, 000 vectors sampled randomly from the unit sphere in order to conserve
memory as in [3]. We then applied the low rank approximation from [3], the simulation capacity algorithm from
[12], and our αcor estimator to the projected manifolds. Note that we perform the random projection before
performing any of the steps described in Supplementary Section 3. Code reproducing all analyses may be found
in [9].
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