Contents

1 Introduction
 1.1 Early history .. 13
 1.1.1 Three streams from the Pythagorean theorem 15
 1.1.2 What is science? ... 16
 1.1.3 What is mathematics? 16
 1.1.4 Early physics as mathematics 18
 1.2 Modern mathematics is born 18
 1.2.1 Science meets mathematics 18
 1.2.2 The Three Pythagorean Streams 24

2 Stream 1: Number Systems .. 27
 2.1 The taxonomy of numbers $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ 28
 2.1.1 Numerical taxonomy 31
 2.1.2 Applications of integers 32
 2.2 Exercises NS-1 .. 36
 2.3 The role of physics in mathematics 39
 2.3.1 The three streams in mathematics 39
 2.3.2 Stream 1: Prime number theorems 40
 2.3.3 Stream 2: Fundamental theorems of algebra 41
 2.3.4 Stream 3: Fundamental theorems of calculus 41
 2.3.5 Other key theorems in mathematics 41
 2.4 Exercises NS-2 .. 43
 2.5 Applications of prime numbers 49
 2.5.1 The Euclidean algorithm (GCD) 51
 2.5.2 Continued fractions 54
 2.5.3 Pythagorean triplets (Euclid's formula) 57
 2.5.4 Pell's equation ... 59
 2.5.5 Fibonacci sequence 61
 2.6 Exercises NS-3 .. 63

3 Stream 2: Algebraic Equations 69
 3.1 Algebra and geometry as physics 69
 3.1.1 The first algebra .. 72
 3.1.2 Finding roots of polynomials 73
 3.1.3 Matrix formulation of the polynomial 80
 3.1.4 Working with polynomials in Matlab/Octave 81
 3.2 Eigenanalysis ... 82
 3.2.1 Eigenvalues of a matrix 83
 3.2.2 Taylor series .. 86
 3.2.3 Analytic functions 90
 3.2.4 Complex analytic functions 91
Contents

3.3 Exercises AE-1 ... 93
3.4 Root classification .. 102
 3.4.1 Convolution of monomials ... 103
 3.4.2 Residue expansions of rational functions 105
3.5 Introduction to Analytic Geometry 106
 3.5.1 Generalized vector product ... 107
 3.5.2 Development of Analytic Geometry 111
 3.5.3 Applications of scalar products 113
 3.5.4 Gaussian Elimination .. 114

Problems 3.6 Exercises AE-2 .. 117

3.7 Transmission (ABCD) matrix composition method 125
 3.7.1 Thévenin transfer impedance 125
 3.7.2 Impedance matrix .. 126
 3.7.3 Power relations and impedance 128
 3.7.4 Ohm’s law and impedances 128
3.8 Signals: Fourier transforms ... 131
3.9 Systems: Laplace transforms .. 135
 3.9.1 System (Network) Postulates 138
 3.9.2 Probability .. 140
3.10 Complex analytic mappings (domain-coloring) 141
 3.10.1 The Riemann sphere .. 143
 3.10.2 Bilinear transformation 145

Problems 3.11 Exercises AE-3 .. 146

4 Stream 3a: Scalar Calculus ... 149
 4.1 Modern mathematics .. 149
 4.2 Fundamental theorems of scalar calculus 151
 4.2.1 The fundamental theorems of complex calculus 152
 4.2.2 Cauchy Riemann conditions 152
 4.3 Exercises DE-1 .. 155

Problems 4.4 Complex analytic Brane admittance 160
 4.4.1 Generalized admittance/impedance 161
 4.4.2 Complex analytic impedance 162
 4.4.3 Branch cuts, Riemann Sheets 166
4.5 Three complex integration theorems 171
 4.5.1 Cauchy’s theorems for integration in the complex plane ... 171
 4.5.2 Three complex integration theorems II, III , IV 172

Problems 4.6 Exercises DE-2 .. 174

Problems 4.7 Inverse Laplace transform 183
 4.7.1 Inverse Laplace transform (t > 0) 183
 4.7.2 Properties of the LT .. 185
 4.7.3 Solving differential equations 186

Problems 4.8 Exercises DE-3 .. 188

5 Stream 3b: Vector Calculus ... 191
 5.1 Properties of Fields and potentials 191
 5.1.1 Gradient ∇, divergence $\nabla \cdot$, curl $\nabla \times$, and Laplacian ∇^2 . 193
 5.1.2 Laplacian operator in N dimensions 197
 5.2 Partial differential equations from physics 202
 5.3 Scalar wave equation .. 205
 5.4 The Webster horn equation (WHEN) 206
 5.4.1 Matrix formulation of WHEN 208
CONTENTS

Problems

<table>
<thead>
<tr>
<th>5.5 Exercises VC-1</th>
<th>5.6 Examples of horns</th>
<th>5.7 Integral definitions of (V), (\nabla \cdot F) and (\nabla \times F)</th>
<th>210</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solution methods</td>
<td>Integral solutions (\psi^\pm(r, \theta)) of the Webster horn equation</td>
<td>Divergence: (\nabla \cdot D = \rho [\text{C/m}^3])</td>
<td>220</td>
</tr>
<tr>
<td>5.6.1</td>
<td>5.7.1 Gradient: (E = -\nabla \phi(x))</td>
<td>Divergence and Gauss’s law</td>
<td>222</td>
</tr>
<tr>
<td></td>
<td>5.7.2 Divergence: (\nabla \cdot D = \rho [\text{C/m}^3])</td>
<td>Integral definition of the curl: (\nabla \times H = C)</td>
<td>223</td>
</tr>
<tr>
<td></td>
<td>5.7.3 Divergence and Gauss’s law</td>
<td>Helmholtz’s decomposition</td>
<td>224</td>
</tr>
<tr>
<td></td>
<td>5.7.4 Integral definition of the curl: (\nabla \times H = C)</td>
<td>Helmholz’s decomposition</td>
<td>225</td>
</tr>
<tr>
<td></td>
<td>5.7.5 Helmholz’s decomposition</td>
<td>5.7.6 Second-order operators: Helmholz’s decomposition</td>
<td>227</td>
</tr>
<tr>
<td></td>
<td>5.8 The unification E&M</td>
<td>5.8.1 Maxwell’s equations</td>
<td>228</td>
</tr>
<tr>
<td>Problems</td>
<td>5.8.2 Derivation of the wave equation</td>
<td>5.9 Potential solutions of Maxwell’s equations</td>
<td>229</td>
</tr>
<tr>
<td>5.11 Exercises VC-2</td>
<td>5.12 Reading List</td>
<td>5.10 (Week 75) Quasi-statics and the Wave equation</td>
<td>231</td>
</tr>
</tbody>
</table>

Appendices

<table>
<thead>
<tr>
<th>A Notation</th>
<th>B Eigenanalysis</th>
<th>C Laplace Transforms</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.1 Number systems</td>
<td>B.1 The eigenvalue matrix (\lambda)</td>
<td>C.1 Properties of the Laplace Transform</td>
</tr>
<tr>
<td>A.1.1 Units</td>
<td>B.1.1 Calculating the eigenvalues (\lambda)</td>
<td>C.1.1 Properties of the Laplace Transform</td>
</tr>
<tr>
<td>A.1.2 Symbols and functions</td>
<td>B.1.2 Calculating the eigenvectors (\mathbf{e})</td>
<td>C.2 Table of Laplace transforms</td>
</tr>
<tr>
<td>A.1.3 Common mathematical symbols</td>
<td>B.2 Pell equation solution example</td>
<td>C.2 Symbolic transforms</td>
</tr>
<tr>
<td>A.2 Matrix algebra of systems</td>
<td>B.2.1 Pell equation eigenvalue-eigenvector analysis</td>
<td>C.3 Symbolic transforms</td>
</tr>
<tr>
<td>A.2.1 Vectors</td>
<td>B.3.1 The (2 \times 2) Transmission matrix</td>
<td>C.3.1 (L^{-1}) (i.e., (\zeta(s) \leftrightarrow \text{Zeta}(s))) of the Riemann function</td>
</tr>
<tr>
<td>A.2.2 Matrices</td>
<td>B.3.2 Special cases having symmetry</td>
<td>260</td>
</tr>
<tr>
<td>A.2.3 (2 \times 2) matrices</td>
<td>B.3.3 Impedance matrix</td>
<td>260</td>
</tr>
</tbody>
</table>

Terminology

- Electricity and magnetism
- Vector
About the book

Science has evolved over thousands of years. It began out of curiosity of how the world around us works and a need to know how to make things work better. From water management to space travel, science is essential for success.

The evolution of science is layered. Early science depended mostly on critical observation; thus the early scientist was considered a philosopher who created a theory. Soon experiments were designed to test these theories. This process was successful when a correct model was established, leading to a new agreed upon understanding. This process typically took years. Thus the key component is the making and testing of models that are designed to quantitatively put the results of experiment in a mathematical framework. Great science is observation and experimentation. Great science is the art of making a model that explains the experimental results. Great science always results in a deeper question, suggesting new experiments. Each generation had its geniuses. One of these was Galileo, who was both a philosopher, experimentalist and the ultimate mathematician.

An understanding of physics requires knowledge of mathematics. The converse is not true. By definition, pure mathematics contains no physics. Yet historically, mathematics has a rich history filled with physical applications. Mathematics was developed by individuals with the intent of making things work. As an engineer, I see these creators of early mathematics as budding engineers. This book is an attempt to tell their story of the development of mathematical physics as viewed by an engineer.

There are two distinct ways to learn mathematics: by learning definitions and relationships, or by associating each mathematical concept with its physical counterpart. Students of physics and engineering learn mathematics on the path to learning physics. Students of pure mathematics are taught via a system of definitions of abstract structures. These students do not learn the origins of the mathematics, which lie largely in physics. These two teaching methods result in very different understandings of the material.

There is a deep common thread between physics and mathematics, which is the chronological development, i.e., the history of mathematics. This is because much of mathematics was developed to solve physical problems. Most early mathematics evolved from attempts to understand the world, with the goal of navigating it. Pure mathematics followed as generalizations of the physical concepts.

For example, around 1638 Galileo stated that, based on his experiments with balls rolling down inclined planes and pendulums, the height of a falling object is given by

\[h(t) = \frac{1}{2} G t^2, \]

where \(t \) is time and \(G \) is a constant. This formula leads to a constant acceleration \(a(t) \) of the object since

\[a(t) = \frac{d^2}{dt^2} h(t) = G \]

is independent of time. It follows that the force on a body is proportional to its acceleration \(a \), defined as \(G \), namely \(F = a \equiv G \). Thus \(G \) must be the object's mass, which must be a constant. It follows that if the object has a constant forward velocity, the object will have a parabolic trajectory. The relative mass may be measured using a balance scale. I believe Galileo understood all this.

Years later, following up on the observations of Galileo's study of pendulums and falling objects, Newton showed that differential equations were necessary to explain gravity and that the force of gravity is proportional to the masses of the two objects over the square of the reciprocal of the distance between them, namely

\[\frac{d^2}{dt^2} r(t) = G \frac{mM}{r^2(t)}. \]
To find \(r(t) \) one must integrate this equation. For the case of an object at height \(h(t) \) above the surface of the earth, \(r(t) = R_e + h(t) \approx R_e \), where \(R_e \) is the radius of the earth. In this case the force is effectively constant since \(h \ll R_e \). Newton's equation says the acceleration is constant,

\[
\frac{d^2 h(t)}{dt^2} = \frac{GM}{R_e^2}.
\]

but different from Galileo's \(G \) (a simple mass). Yet it seems clear that the physics behind Newton's formula for the acceleration \(a(t) \) of two large masses (sun and earth, or earth and moon) and Galileo's physics for balls rolling down inclined planes are the same. The difference is that Newton's proportionality constant is a significant generalization of Galileo's. But other than the constant, which defines the acceleration, the two formulas are the same.

This book is not a typical mathematics book; rather, it is about the relation of math to physics, presented roughly in chronological order via their history. To teach mathematical physics in an orderly way, our treatment requires a step backwards in terms of the mathematics, but a step forward in terms of the physics. Historically speaking, mathematics was created by individuals such as Galileo who, by modern standards, may be viewed as engineers. This book contains the basic information that a well-informed engineer needs to know, as best I can provide.

Let the reader beware that engineering and physics texts do not intend to be rigorous in the mathematical sense. In some sense mathematics cleans up the mess by proving theorems, which frequently start with speculations in physics, and even engineering. The cleanup is a slowidious process. Just because something seems obvious based on the known physical facts does not equate to a fundamental theorem of mathematics.

I feel that while there are similarities between this book and that of Graham et al. (1994), the differences are notable. First, Concrete Mathematics presents an impossibly difficult standard to be measured against. Second, Graham et al. is clearly a math book, brilliantly written and targeted at computer science students. The present volume is not strictly a math book, but a mathematical physics text. I would like to believe that there are similarities in (1) the broad range of topics, (2) the in-depth discussion, and (3) the use of historical context.

Organization: I have revised a notation for Chapter (e.g., §2), Section (§2.1) and Subsection (§1.1.3). This venerable notation provides a convenient, precise and compact notation, which is easily decoded.

As discussed in §1.2.2 and Table 1.1 (p. 24) the book is divided up into three mathematical themes called streams, presented as five chapters: §1 Introduction, §2 Number Systems, §3 Algebra Equations, §4 Scalar Calculus, and §5 Vector Calculus. The philosophy and definition of streams is discussed in §1.2.2.

§2 is important because it introduces two key concepts: the greatest common divisor (GCD) and (CFA). When dealing with simple electrical networks composed of inductors, resistors, and capacitors (Figs. 3.2), or mechanical networks consisting of masses, dashpots and springs (Figs. 1.3.1.1), or their equivalent, pendulums, as used by Galileo in his studies of gravity, the system may be modeled as a Brune impedance (§3.2.2, §4.4.2). Of special importance is the development of ordinary differential equations (§3.4.2, see Eq. 3.4.4) which under special symmetry conditions, called postulates (§3.9.1), characterize Brune impedances (Brune, 1931a).

Using the CFA (§2.5.2), the Brune impedance may be generalized in a way similar to the Taylor series (§3.2.2), as powers of the complex variable \(s = \sigma + j\omega \). This generalization results in the transmission line, which describes wave propagation in horns, dealt with in §4 and §5 (Cauer, 1958; Cauer et al., 1958). This topic is both physically and mathematically interesting (Cauer, 1932).

The material is delivered as numbered sections (e.g., §1.1) spread out over a semester of 15 weeks, 3 lectures per week, with a three-lecture time-out for administrative duties. Eleven problem sets are provided for weekly assignments. Once the assignments are turned in, each student is given the solution.

Many students have rated these assignments as the most important part of the course. There is a built-in interplay between these assignments and the lectures. On many occasions I solved the problems in class, as motivation to come to every class.
Author's personal statement

An expert is someone who has made all possible mistakes in a small field. I don't know if I would be called an expert, but I certainly have made my share of mistakes. I openly state that I love making mistakes because I learn so much from them. One might call that the "expert's corollary."

This book has been written out of my love for the topic of mathematical physics, a topic which provides many insights into a deep understanding of important physical concepts. Over the years I have developed a physical sense of math and a related mathematical sense of physics. While doing my research, I believe that math can be physics and physics math. I have come across what I feel are certain conceptual holes that need filling and sense many deep relationships between math and physics that remain unidentified. While what we presently teach is not wrong, it is missing these relationships. What is lacking is an intuition for how math "works." Good scientists "listen" to their data. In the same way, we need to start listening to the language of mathematics. We need to let mathematics guide us toward our engineering goals.

As summarized in Fig. 1, this marriage of math, engineering, and physics (MEP) will help us make progress in understanding the physical world. We must turn to mathematics and physics when trying to understand the universe. My views follow from a lifelong attempt to understand human communication, i.e., the perception and decoding of human speech sounds. This research arose from my 32 years at Bell Labs in the Acoustics Research Department. There such lifelong pursuits were not only possible; they were openly encouraged. The idea was that if you are successful at something, take it as far as you can, but on the other hand, you should not do something well that's not worth doing. People got fired for the latter. I should have left for a university after a mere 20 years, but the job was just too cushy.

In this text it is my goal to clarify conceptual errors while telling the story of physics and mathematics. My views have been inspired by classic works, as documented in the bibliography. This book

1 https://auditorymodels.org/index.php/Main/Publications
2 MEP is a focused alternative to STEM.
3 I started around December 1970, fresh out of graduate school, and retired on December 5, 2002.
was inspired by my reading of Stillwell (2002) through 21. Somewhere in 22 I switched to the third edition (Stillwell, 2010), at which point I realized I had much more to master. It became clear that by teaching this material to first-year engineers, I could absorb the advanced material at a reasonable pace. This book soon followed.

Summary

This is foremost a math book, but not the typical math book. First, this book is for the engineering-minded, for those who need to understand math to do engineering, to learn how things work. In that sense the book is more about physics and engineering than mathematics. Math skills are essential for making progress in building things, be it pyramids or computers, as clearly shown by the many great civilizations of the Chinese, Egyptians, Mesopotamians, Greeks, and Romans.

Second, this is a book about the math that developed to explain physics, to allow people to engineer complex things. To sail around the world one needs to know how to navigate. This requires a model of the planets and stars. You can only know where you are on earth once you understand where earth is relative to the sun, planets, Milky Way and the distant stars. The answer to such a cosmic question depends strongly on who you ask. Who is qualified to answer such a question? It is best answered by those who study mathematics applied to the physical world. The utility and accuracy of that answer depends critically on the depth of understanding of the physics of the cosmic clock.

The English astronomer Edmond Halley (1656–1742) asked Newton (1643–1727) for the equation that describes the orbit of the planets. Halley was obviously interested in comets. Newton immediately answered "an ellipse." It is said that Halley was stunned by the response (Stillwell, 2010, p. 176), as this was what had been experimentally observed by Kepler (1619), and thus he knew Newton must have some deeper insight. Both were eventually knighted.

When Halley asked Newton to explain how he knew, Newton responded, "I calculated it." But when challenged to show the calculation, Newton was unable to reproduce it. This open challenge eventually led to Newton's grand treatise, Philosophiae Naturalis Principia Mathematica (July 5, 1687). It had a humble beginning, as a letter to Halley, explaining how to calculate the orbits of the planets. To do this Newton needed mathematics, a tool he had mastered. It is widely accepted that James Newton and Gottfried Leibniz invented calculus. But the early record shows that perhaps Bhāskara II (1114–1185 CE) had mastered the art well before Newton.

Third, the main goal of this book is to teach motivated engineers mathematics, in a way that it can be understood, mastered and remembered. How can this impossible goal be achieved? The answer is to fill in the gaps with Who did what, and when? Compared with the math, the historical record is easily mastered.

To be an expert in a field, one must know its history. This includes who the people were, what they did, and the credibility of their story. Do you believe the Pope or Galileo on the roles of the sun and the earth? The observables provided by science are clearly on Galileo's side. Who were those first engineers? They are names we all know: Archimedes, Pythagoras, Leonardo da Vinci, Galileo, Newton, etc. All of these individuals had mastered mathematics. This book presents the tools taught to every engineer. Rather than memorizing complex formulas, make the relations "obvious" by mastering each simple underlying concept.

Fourth, when most educators look at this book, their immediate reactions are: Each lecture is a topic we spend a week on (in our math/physics/engineering class). And you have too much material crammed into one semester. The first sentence is correct; the second is not. Tracking the students who have taken the course, looking at their grades, and interviewing them personally demonstrate that the material presented here is appropriate for one semester.

To write this book I had to master the language of mathematics. I had already mastered the language of engineering, and a good part of physics. One of my secondary goals is to build this scientific Tower.

1http://www-history.mcs.st-and.ac.uk/Projects/Pearce/Chapters/Ch8_5.html
2http://www.istem.illinois.edu/news/jont.allen.html
of Baber, by unifying the terminology and removing the jargon.

Acknowledgments

I would like to acknowledge John Stillwell for his brilliant and constructive historical summary of mathematics, and my close friend and long-time (40 years) colleague Steve Levinson, who somehow drew me into this project, without my even knowing it. Next, my brilliant graduate student Sarah Robinson was constantly at my side, first repairing blunders in my first-draft homeworks, and then grading these and the exams and tutoring the students. Without her, I would never have survived the first semester the material was taught. Her proofreading skills are amazing. Thank you, Sarah, for your infinite help. Without Kevin Pitts this never could have been started, as he provided early funding when the project was a germ of an idea. Matt Ando’s (Math) and Michael Stone’s (Physics) encouragement was psychologically important in helping me think I might actually write a book. Finally, I would like to thank John D’Angelo for his highly critical comments, due to my thousands of silly math questions. When it comes to the heavy lifting, John was always there to provide a brilliant explanation that I could easily translate into engineerese (Mathnerding?) (i.e., engineer language).

My delightful friend Robert Fossum, emeritus professor of mathematics from the University of Illinois, kindly pointed out flawed mathematical terminology. James (Jamie) Hutchinson’s precise use of the English language dramatically raised the bar on my more than occasionally casual writing style. To each of you, thank you!

Finally, I would like to thank my wife Sheau Feng Jeng, aka Patricia Allen, for her unbelievable support and love. She delivered constant peace of mind, without which this project could never have been started, much less finished. Many others (e.g., many students) played important roles, but given their large numbers, sadly they must remain anonymous.

—Joni Allen, Mahomet, IL, May 12, 2019
Chapter 1

Introduction

Much of early mathematics dating before 1600 BCE centered around the love of art and music, due to the sensations of light and sound. Our psychological senses of color and pitch are determined by the frequencies (i.e., wavelengths) of light and sound. The Chinese and later the Pythagoreans are well known for their early contributions to music theory. We are largely ignorant of exactly what the Chinese scholars knew. The best record comes from Euclid, who lived in the 1st century, after Pythagoras. Thus we can only trace the early mathematics back to the Pythagoreans in the 6th century (580–500 BCE), which is centered around the Pythagorean theorem and early music theory.

Pythagoras strongly believed that “all is number,” meaning that every number, and every mathematical and physical concept, could be explained by integral (integer) relationships, mostly based on either ratios or the Pythagorean theorem. It is likely that his belief was based on Chinese mathematics from thousands of years earlier. It is also believed that his ideas about the importance of integers followed from the theory of music. The musical notes (pitches) obey natural integral ratic relationships, based on the octave (a factor of two in frequency). The western 12-tone scale breaks the octave into 12 ratios called semitones. Today this has been rationalized to be the 12th root of 2, which is approximately equal to 18/17 ≈ 1.06 or 0.0833 octaves. This innate sense of frequency ratios comes from the physiology of the auditory organ (the cochlea), which represents a fixed distance along the ear of Corti, the sensory organ of the inner ear.

As acknowledged by Stillwell (2010, p. 16), the Pythagorean view is relevant today:

With the digital computer, digital audio, and digital video coding everything, at least approximately, into sequences of whole numbers, we are closer than ever to a world in which “all is number.”

1.1 Early science and mathematics

While early Asian mathematics has been lost, it clearly defined the course for math for at least several thousand years. The first recorded mathematics were those of the Chinese (5000–1200 BCE) and the Egyptians (3100 BCE). Some of the best early records were left by the people of Mesopotamia (Iraq, 1800 BCE). While the first 5,000 years of math are not well documented, the basic record is clear, as outlined in Fig. 1.1 (p. 15).

Thanks to Euclid, and later Diophantus (c. 250 CE), we have some basic (but vague) understanding of Chinese mathematics. For example, Euclid’s formula (Eq. 2.11, p. 58) provides a method for computing Pythagorean triplets, a formula believed to be due to the Chinese.2

Chinese bells and stringed musical instruments were exquisitely developed with tonal quality, as documented by ancient physical artifacts (Fletcher and Rossing, 2008). In fact this development was so rich that one must ask why the Chinese failed to initiate the industrial revolution. Specifically, why

1See Fig. 2.7, p. 59.
2One might reasonably view Euclid’s role as that of a mathematical messenger.
1.1. EARLY HISTORY

1.1.1 The Pythagorean theorem

Thanks to Euclid’s *Elements* (ca. 300 BCE) we have a historical record, tracing the progress in geometry, as established by the Pythagorean theorem, which states that for any right triangle having sides of lengths \(a, b, c\) \(\in \mathbb{R}\) that are either positive real numbers or more interesting, integers \(c > \max(a, b) \in \mathbb{N}\) such that \(a + b > c\),

\[c^2 = a^2 + b^2. \]

(1.1)

Early integer solutions were likely found by trial and error rather than by an algorithm.

![Timeline](Figure 1.1: Mathematical timeline between 1500 BCE and 1650 CE. The western renaissance is considered to have occurred between the 15th and 17th centuries. However, the Asian “renaissance” was likely well before the 1st century BCE, 1500 BCE. There is significant evidence that a Chinese “treasure ship” visited Italy in 1434, initiating the Italian renaissance (Menzie, 2008). This was not the first encounter between the Italians and the Chinese, as documented in *The travels of Marco Polo* (1300 CE).)

If \(a, b, c\) are lengths, then \(a^2, b^2, c^2\) are each the area of a square. Equation 1.1 says that the area \(a^2\) plus the area \(b^2\) equals the area \(c^2\). Today a simple way to prove this is to compute the magnitude of the complex number \(c = a + bj\), which forces the right angle

\[|c|^2 = (a + bj)(a - bj) = a^2 + b^2. \]

(1.2)

However, complex arithmetic was not an option for the Greek mathematicians, since complex numbers and algebra had yet to be discovered.

Almost 700 years after Euclid’s *Elements*, the Library of Alexandria was destroyed by fire (391 CE), taking with it much of the accumulated Greek knowledge. As a result, one of the best technical records remaining is Euclid’s *Elements*, along with some sparse mathematics due to Archimedes (ca. 300 BCE) on geometrical series, computing the volume of a sphere, the area of the parabola, and elementary hydrostatics. In c. 1572, a copy of Diophantus’s *Arithmetic* was discovered by Bombelli in the Vatican library (Burton, 1985; Stillwell, 2010, p. 51). This book became an inspiration for Galileo, Descartes, Fermat, and Newton.

Early number theory: Well before Pythagoras, the Babylonians (ca. 800 BCE) had tables of triplets of integers \([a, b, c]\) that obey Eq. 1.1, such as \([3, 4, 5]\). However, the triplets from the Babylonians were larger numbers, the largest being \(a = 12709, b = 12496, c = 18541\). A stone tablet (Plimpton-322) dating back to 1800 BCE was found with integers for \([a, c]\). Given such sets of two numbers, which determined a third positive integer \(b = \sqrt{c^2 - a^2}\), this table is more than convincing that the Babylonians were well aware of the *Pythagorean triplets* (PTs), but less convincing that they had access to a formula for PTs (Eq. 2.11, p. 58).

It seems likely that Euclid’s *Elements* was largely the source of the fruitful era due to the Greek mathematician Diophantus (215-285) (Fig. 1.1), who developed the field of *discrete mathematics*, now known as *Diophantine analysis*. The term means that the solution, not the equation, is integer. The work of Diophantus was followed by fundamental change in mathematics, possibly leading to the development of algebra, but at least including the discovery of these discoveries:

1. Positive numbers
2. Quadratic equation (Brahmagupta, 7th CE)
3. Algebra (al-Khwārizmī, 9th CE) and complex arithmetic (Bombelli, 15th CE).

These discoveries overlapped with the European middle ages (aka. dark ages). Although Europe went “dark,” presumably European intellectuals did not stop working during these many centuries.

1.1.2 What is science?

Science is a process to quantify hypotheses to build truths. Today it has evolved from the early Greek philosophers, Plato and Aristotle, to a statistical method to either validate or prove wrong the null hypothesis, using statistical tests. Scientists use the term “null hypothesis” to describe the supposition that there is no difference between the two intervention groups or “no effect” of a treatment on some measured outcome. This measure of the likelihood that an obtained value occurred by chance is called the “p-value,” which when small gives confidence that the null hypothesis is either true (no difference induced by the treatment variables) or false (above chance effect induced by the treatment variables of probability p). While the present standard of scientific truth, it is not iron clad and must be used with caution. For example, not all experimental tests may be reduced to a single binary test. Does the sun rotate around the moon or around the earth? There is no test of this question, as it is nonsense. To even say that the earth rotates around the sun is, in some sense, nonsense because all the planets are involved in the many motions orbital motion.

Yet science works quite well. We have learned many deep secrets regarding the universe over the last 5,000 years.

1.1.3 What is mathematics?

It seems strange when people complain they “can’t learn math,” but then claim to be good at languages. Pre-school students tend to confuse arithmetic with math. One does not need to be good at arithmetic to be good at math (but it doesn’t hurt). Gauss made his career based on numbers, especially primes. Carl Friedrich Gauss (1755-1855), a German mathematician, shaped the field of number theory.

Math is a language, with the symbols taken from various languages not so different from other languages. Today’s mathematics is a written language with an emphasis on symbols and glyphs, biased toward Greek letters, obviously due to the popularity of Euclid’s Elements. The specific evolution of these symbols is interesting (Mazur, 2014). Each symbol is dynamically assigned a meaning appropriate for the problem being described. These symbols are then assembled to make sentences. It is similar to Chinese in that the spoken and written versions are different across dialects. Like Chinese, the sentences may be read out loud in any language (dialect), while the mathematical sentences (like Chinese characters) are universal.

Learning languages is an advanced social skill. However, the social outcomes of learning a language and learning math are very different. Learning a new language is fun because it opens doors to other cultures. Math is different due to the rigor of the grammar (rules of language), along with the way it is taught (e.g., not as a language). A third difference between math and language is that math evolved from physics, with important technical applications.

As with any language, the more mathematics you learn, the easier it is to understand, because mathematics is built from the bottom up. It’s a continuous set of concepts, much like the construction of a house. If you try to learn calculus and differential equations, while skipping simple number theory, the lessons will be more difficult to understand. You will end up memorizing instead of understanding, and as a result you will likely soon forget it. When you truly understand something, it can never be forgotten.

A nice example is the solution to a quadratic equation: If you learn how to complete the square (p. 75), you will never forget the quadratic formula.

It would be interesting to search the archives of the monasteries, where the records were kept, to determine exactly what happened during this religious blackout.

"It looks like Greek to me."
1.1. EARLY HISTORY

Mathematical

The topics need to be learned in order, just as in the case of building the house. You can't build a house if you don't know about screws or cement (plaster). Likewise in mathematics, you will not learn to integrate if you have failed to understand the difference between integers, complex numbers, polynomials, and their roots.

A short list of topics for mathematics are numbers (\(\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{I}, \mathbb{C} \)), algebra, derivatives, anti-derivatives (i.e., integration), differential equations, vectors and the spaces they define, matrices, matrix algebra, eigenvalues and vectors, solutions of systems of equations, matrix differential equations and their eigen solutions. Learning is about understanding, not memorizing.

The rules of mathematics are formally defined by algebra. For example, the sentence \(a = b \) means that the number \(a \) has the same value as the number \(b \). The sentence is spoken as "\(a \) equals \(b \)." The numbers are nouns and the equal sign says they are equivalent, playing the role of a verb, or action symbol. Following the rules of algebra, this sentence may be rewritten as \(a - b = 0 \). Here the symbols for minus and equal indicate two types of actions (verbs).

Sentences can become arbitrarily complex, such as the definition of the integral of a function or a differential equation. But in each case, the mathematical sentence is written down, may be read out loud, has a well-defined meaning, and may be manipulated into equivalent forms following the rules of algebra and calculus. This language of mathematics is powerful, with deep consequences, first known as algorithms, but eventually as theorems.

The writer of an equation should always translate (explicitly summarize the meaning of the expression), so the reader will not miss the main point, as a simple matter of clear writing.

Just as math is a language, so language may be thought of as mathematics. To properly write correct English it is necessary to understand the construction of the sentence. It is important to identify the subject, verb, object, and various types of modifying phrases. Look up the interesting distinction between that and which.\(^5\) Thus, like math, language has rules. Most individuals use what "sounds right," but if you're learning English as a second language, it is necessary to understand the rules, which are arguably easier to master than the foreign speech sounds.

Context can be critical, and the most important context for mathematics is physics. Without a physical problem to solve, there can be no engineering mathematics. People needed to navigate the earth and weigh things. This required an understanding of gravity. Many questions about gravity were deep, such as "Where is the center of the universe?" But church dogma only goes so far. Mathematics, along with a heavy dose of physics, finally answered this huge question. Someone needed to perfect the telescope, and put satellites into space, and view the cosmos. Without mathematics none of this would have happened.

<table>
<thead>
<tr>
<th>1526</th>
<th>1596</th>
<th>1650</th>
<th>1700</th>
<th>1750</th>
<th>1800</th>
<th>1850</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bombelli</td>
<td>Descartes</td>
<td>Johann Bernoulli</td>
<td>Gauss</td>
<td>Fermat</td>
<td>Euler</td>
<td>Cauchy</td>
</tr>
<tr>
<td>Galileo</td>
<td>Daniel Bernoulli</td>
<td>d'Alembert</td>
<td>Newton</td>
<td>Lagrange</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 1.2: Timeline covering the two centuries from 1596CE to 1855CE, covering the development of the modern theories of analytic geometry, calculus, differential equations, and linear algebra. Newton was born about a year after Galileo died and thus was heavily influenced by his many discoveries. The vertical red lines indicate mentor-student relationships. Note the significant overlap between Newton and Johann and his son Daniel Bernoulli, and Euler, a fulcrum point for modern mathematics. Gauss had the advantage of input from Newton, Euler, d'Alembert, and Lagrange. Lagrange had a key role in the development of linear algebra. Lately Cauchy had a significant contemporary influence on Gauss as well. Finally, note that Fig. 1.1 ends with Bombelli while this figure begins with him. He was a mathematician who famously discovered a copy of Diophantus's book in the Vatican library. This was the same book that Fermat wrote in, for which the margin was too small to hold the "proof" of his "last theorem."

\(^5\)https://en.oxforddictionaries.com/usage/that-or-which

\(^6\)Actually this answer is simple: Ask the Pope and he will tell you. (I apologize for this inappropriate joke.)
1.1.4 Early physics as mathematics: Back to Pythagoras

We have established that math is a language. There is a second answer to the question What is mathematics? The answer comes from studying its history, which starts with the earliest record. This chronological view starts, of course, with the study of numbers. First there is the taxonomy of numbers. It took thousands of years to realize that numbers are more than the counting numbers \(\mathbb{N} \), and to create a symbol for nothing (i.e., zero), and to invent negative numbers. With the invention of the abacus, a memory aid for manipulating complex sets of real integers, one could do very detailed calculations. But this required the discovery of algorithms (procedures) to add, subtract, multiply (many adds of the same number) and divide (many subtractions of the same number), such as the Euclidean algorithm for the GCD. Eventually it became clear to the experts (early mathematicians) that there were natural rules to be discovered; thus books (e.g., Euclid's Elements) were written to summarize this knowledge.

The role of mathematics is to summarize algorithms (i.e., sets of rules), and formalize the idea as a theorem. Pythagoras and his followers, the Pythagoreans, believed that there was a fundamental relationship between mathematics and the physical world. The Asian civilizations were the first to capitalize on the relationship between science and mathematics, to use mathematics to design things for profit. This may have been the beginning of capitalizing technology (i.e., engineering), based on the relationship between physics and math. This impacted commerce in many ways, such as map making, tools, implements of war (the wheel, gunpowder), art (music), water transport, sanitation, secure communication, food, etc. Of course, the Chinese were among the first to master many of these technologies.

Why is Eq. 1.1 called a theorem? Theorems require a proof. What exactly needs to be proved? We do not need to prove that \((a, b, c)\) obey this relationship, since this is a condition that is observed. We do not need to prove that \(a^2 + b^2 = c^2\) is the area of a square, as this is the definition of an area. What needs to be proved is that the relation \(a^2 + b^2 = c^2\) holds if and only if the angle between the two shorter sides is \(90^\circ\). The Pythagorean theorem (Eq. 1.1) did not begin with Euclid or Pythagoras; rather they appreciated its importance and documented its proof.

In the end the Pythagoreans, who instilled fear in the neighborhood, were burned out, and murdered, likely the fate of mixing technology with politics:

Whether the complete rule of number (integers) is wise remains to be seen. It is said that when the Pythagoreans tried to extend their influence into politics they met with popular resistance. Pythagoras fled, but he was murdered in nearby Mesopotamia in 497 BCE.

Stillwell (2010, p. 16)

1.2 Modern mathematics is born

Modern mathematics (what we practice today) was born in the 15th and 16th centuries, in the minds of Leonardo da Vinci, Bombelli, Galileo, Descartes, Fermat, and many others (Burton, 1985). Many of these early masters were, like the Pythagoreans, secretive about how they solved problems. This soon changed due to Galileo, Mersenne, Descartes, and Newton, causing mathematics to blossom. The developments during this time may seem hectic and disconnected. But this is a wrong impression. The development was dependent on new technologies, such as the telescope (optics) and more accurate time and frequency measurements, due to Galileo's studies of the pendulum, and a better understanding of the relation \(f \lambda = c \), between frequency \(f \), wavelength \(\lambda \), and the wave speed \(c \).

1.2.1 Science meets mathematics

Galileo: In 1589 Galileo, famously conceptualized an experiment in which he considered two different weights from the Leaning Tower of Pisa, and he suggested that they must take the same time to hit the ground.

Conceptually this is a mathematically sophisticated experiment, driven by a mathematical argument in which he considered the two weights to be connected by an elastic cord (a spring) or ball-rolling...
1.2. MODERN MATHEMATICS IS BORN

Figure 1.3: Depiction of the argument of Galileo (unpublished book of 1638) as to why weight of different masses (i.e., weights) must fall with the same velocity, contrary to what Archimedes had proposed in 250 BCE.

Galileo’s argument from an inclined plane. His studies resulted in the concept of conservation of energy, one of the cornerstones of physical theory since that time.

Being joined with an elastic cord, the masses become one. If the velocity were proportional to the mass, as believed by Archimedes, the sum of the two weights would necessarily fall even faster. This results in a logical fallacy: How can two masses fall faster than either? This also violates the concept of conservation of energy, as the total energy of two masses would be greater than that of the parts. In fact, Galileo’s argument may have been the first time that the principle of conservation of energy was clearly stated.

It seems likely that Galileo was attracted to this model of two masses connected by a spring because he was also interested in planetary motion, which consists of masses (sun, earth, moon), also mutually attracted by gravity (i.e., the spring).

Galileo also performed related experiments on pendulums, where he varied the length \(l \), mass \(m \), and angle \(\theta \) of the swing. By measuring the period (periods/unit time), he was able to formulate precise rules between the variables. This experiment also measured the force exerted by gravity, so the experiments were related, but in very different ways. The pendulum served as the ideal clock, as it needed very little energy to keep it going, due to its very low friction (energy loss).

In a related experiment, Galileo measured the duration of a day by counting the number of swings of the pendulum in 24 hours, measured precisely by the daily period of a star as it crossed the tip of a church steeple. The number of seconds in a day is 24 \(x 60 \times 60 = 86,400 \) = \(2^3 \times 3^2 \times 5 \times 7 \) [s/day]. Since 86,400 is the product of the first three primes, it is highly composite, and thus may be reduced in many equivalent ways. For example, the day can be divided evenly into 2, 3, 5, and 6 parts, and remain exact in terms of the number of seconds that transpire. Factoring the number of days in a year (365 \(\times 24 \times 60 \times 60 \)) is not useful, since it may not be decomposed into many small primes. Galileo extended work on the relationship of wavelength and frequency of a sound wave in musical instruments. On top of these impressive accomplishments, Galileo greatly improved the telescope, which he needed for his observations of the planets.

Many of Galileo’s contributions resulted in new mathematics, leading to Newton’s discovery of the wave equation (c1687), followed 60 years later by its one-dimensional general solution by d’Alembert (c1747).

Mersenne: Marin Mersenne (1588–1648) also contributed to our understanding of the relationship between the wavelength and the dimensions of musical instruments, and is said to be the first to measure the speed of sound. At first Mersenne strongly rejected Galileo’s views, partially due to errors in

3For example, if the year were 364 = \(2^2 \times 7 \times 13 \) days, it would make for shorter years (by 1 day), 13 months per year (e.g., 28 = 2 \(\times 2 \times 7 \) day vacation per year), perfect quarters, and exactly 52 weeks. Every holiday would always fall on the same day, every year it would be a calendar that humans could understand.

6The term **period** refers to the duration in seconds of a periodic function. In example, the period of the moon is 28 days and one year.
Galileo's reports of his results. But once Mersenne saw the significance of Galileo's conclusion, he became Galileo's strongest advocate, helping to spread the word (Palmerino, 1999).

This incident involves an important theorem of nature: is data more like bread or wine? The answer is, it depends on the data. Galileo's original experiments on pendulums and balls falling down slopes were flawed by inaccurate data. This is likely because he didn't have good clocks. But he soon solved that problem and the data became more accurate. We don't know if Mersenne repeated Galileo's experiments and then appreciated his theory, or if he communicated with Galileo. But the final resolution was that the early data were like bread (it rots), but when the experimental method was improved with a better clock, the corrected data was like wine (which improves with age). Galileo claimed that the time for the mass to drop a fixed distance was exactly proportional to the square of the time. This expression, when integrated, lead to \(F = ma \). One follows from the other. If the mass varies, then you get Newton's second law of motion (Eq. 3.2, p. 72).

Mersenne was also a decent mathematician, inventing in 1644 the Mersenne primes, (MP) \(\pi_m \) of the form

\[
\pi_m = 2^{\pi_k} - 1,
\]

where \(\pi_k \) (\(k < m \)) denotes the kth prime (p. 28). As of Dec. 2018, 51 MPs are known.\(^8\) The first MP is \(3 = \pi_2 = 2^\pi_1 - 1 \), and the largest known prime is a MP. Note that \(3^2 = 3^2 \cdot 2^{-1} = 1 \) is the MP of the MP \(\pi_3 \).

Newton: With the closure of Cambridge University due to the plague of 1665, Newton returned home to Woolsthorpe-by-Colsterworth (95 miles north of London), to work by himself for over a year. It was during this solitary time that he did his most creative work.

While Newton (1642–1726) may be best known for his studies on light and gravity, he was the first to predict the speed of sound. However, his theory was in error by \(\sqrt{c_0/c_v} = \sqrt{1.4} = 1.183 \). This famous error would not be resolved for 140 years, awaiting the formulation of thermodynamics and the equipartition theorem by Laplace in 1816 (Britannica, 2004).

Just 11 years prior to Newton's 1687 *Principia*, there was a basic understanding that sound and light traveled at very different speeds, due to the experiments of Ole Rømer (Feynman, 1968; Feynman, Speed of Light, 2019, google online Feynman videos).

Ole Rømer first demonstrated in 1676 that light travels at a finite speed (as opposed to instantaneously) by studying the apparent motion of Jupiter's moon Io. In 1865, James Clerk Maxwell proposed that light was an electromagnetic wave, and therefore traveled at the speed \(c_0 \) appearing in his theory of electromagnetism (Wikipedia: Speed of Light, 2019).

The idea behind Rømer's discovery was that due to the large distance between Earth and Io, there was a difference between the period of the moon when Jupiter was closest to Earth and when it was farthest from Earth. This difference in distance caused a delay or advance in the observed eclipse of Io as it went behind Jupiter, delayed by the difference in time due to the difference in distance. It is like watching a video of a clock, delayed or sped up. When the video is either delayed or slowed down, the time will be inaccurate (it will indicate an earlier time).

Leonardo da Vinci:

Studies of vision and hearing: Since light and sound (music) played such a key role in the development of the early science, it was important to fully understand the mechanism of our perception of light and sound. There are many outstanding examples where physiology impacted mathematics. Leonardo da Vinci (1452–1519) is well known for his early studies of the human body. Exploring our physiological senses requires a scientific understanding of the physical processes of vision and hearing, first

\(^8\) http://mathworld.wolfram.com/MersennePrime.html

*The square root of the ratio of the specific heat capacity at constant pressure \(c_p \) to that at constant volume \(c_v \).
Figure 1.4: Above left: Jacob (1655–1705) and right: Johann (1667–1748) Bernoulli, both painted by their portrait painter brother, Nicolaus. Below left: Leonhard Euler (1707–1783) and right: Jean le Rond d’Alembert (1717–1783). Euler was blind in his right eye, hence the left portrait view.

Author: Is it OK to change to Jacob here—-to match the spelling in the discussion below?

John is the English spelling. I don’t want this changed to John.

en dash
The amazing Bernoulli family: The first individual who seems to have openly recognized the importance of mathematics, enough to actually teach it, was Jacob Bernoulli (1654–1705) (Fig. 1.4). Jacob worked on what is now viewed as the standard package of analytic "circular" (i.e., periodic) functions: \(\sin(x), \cos(x), \exp(x), \log(x) \).\(^{10}\) Eventually the full details were developed (for real variables) by Euler (p. 93).

From Fig. 1.2 (p. 17) we see that Jacob was contemporary with Descartes, Fermat, and Newton. Thus it seems likely that he was strongly influenced by Newton, who in turn was influenced by Descartes (White, 1999); Vile and Wallis; but mostly by Galileo, who died 1 year before Newton was born on Christmas day 1642. Because the calendar was modified during Newton’s lifetime, his birth date is no longer given as Christmas (Stillwell, 2010, p. 175). Jacob Bernoulli, like all successful mathematicians of the day, was largely self-taught. Yet Jacob was in a new category of mathematicians because he was an effective teacher. Jacob taught his sibling Johann (1667–1748), who then taught his sibling Daniel (1700–1783). But most importantly, Johann taught Leonhard Euler (1707–1783), the most prolific (thus influential) of all mathematicians. This teaching resulted in an explosion of new ideas and understanding. It is most significant that all four mathematicians published their methods and findings. Much later, Jacob studied with students of Descartes (Stillwell, 2010, p. 268–9). pp. 268–69).

Leonhard

Euler: Euler’s mathematical talent went far beyond that of the Bernoulli family (Burton, 1985). Another special strength of Euler was the degree to which he published. First he would master a topic, and then he would publish. His papers continued to appear long after his death (Carringer, 2015). It is also somewhat interesting that Leonhard Euler was a contemporary of Mozart (and James Clerk Maxwell and Abraham Lincoln) (Fig. 1.5). (Fig. 1.5).

d’Alembert: Another individual of that time of special note, who also published extensively, was d’Alembert (Fig. 1.4). Some of the most innovative ideas were first proposed by d’Alembert. Unfortunately, and perhaps somewhat unfairly, his rigor was criticized by Euler; and later by Gauss (Stillwell, 2010). But once the tools of mathematics were finally openly published, largely by Euler, mathematics grew exponentially.\(^{13}\)

Carl Friedrich

Gauss: Fig(1.2 (p. 17) shows the timeline of the most famous mathematicians. It was one of the most creative times in mathematics. Gauss was born at the end of Euler’s long and productive life. I suspect that Gauss owed a great debt to Euler; surely he must have been a scholar of Euler. One of Gauss’s most important achievements may have been his contribution to solving the open question about the density of prime numbers and his use of least-squares.\(^{14}\)

Cauchy: Augustin-Louis Cauchy (1760–1848), Fig. 1.2 (p. 17), was the son of a well-to-do family but had the misfortune of being born during the time of of the French revolution, which perhaps started with the Seven Years’ War which began around 1756. Today the French celebrate Bastille Day (July 14, 1789, still Bastille Day (July 14, 1789),

\(^{10}\)The log and tan functions are related by Eq. 4.2, p. 152. \(^{11}\)http://www-history.mcs.st-andrews.ac.uk/Biographies/Newton.html \(^{12}\)It seems clear that Descartes was also a teacher. \(^{13}\)There are at least three useful exponential scales: factors of 2, factors of \(e \approx 2.7 \), and factors of 10. The octave and decibel use factors of 2 (6 [dB]) and 10 (20 [dB]). Information theory uses powers of 2 (1 [bit]), 4 (2 [bits]). Circuit theory uses all three scales. \(^{14}\)http://www-history.mcs.st-andrews.ac.uk/Biographies/Gauss.html
which is viewed as a celebration of the revolution. The French revolution left Cauchy with a lifelong stigma for French politics, that deeply influenced his life. But regardless of his scorn for French politics, he had an unmatched intellect for mathematics. His most obvious achievement was complex analysis, for which he proved many key theorems.

<table>
<thead>
<tr>
<th>1525</th>
<th>1564</th>
<th>1650</th>
<th>1750</th>
<th>1800</th>
<th>1875</th>
<th>1925</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bombelli</td>
<td>Newton</td>
<td>Napoleon</td>
<td>Maxwell</td>
<td>WWI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Descartes</td>
<td>Johann Bernoulli</td>
<td>Cauchy</td>
<td>Hilbert</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mersenne</td>
<td>Huygens</td>
<td>Daniel Bernoulli</td>
<td>Rayleigh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Galileo</td>
<td>Jacob Bernoulli</td>
<td>Gauss</td>
<td>Einstein</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fermat</td>
<td>d'Alembert</td>
<td>Helmholtz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mozart</td>
<td>Lincoln</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 1.5: Timeline for the four centuries from the 16th and 20th CE covering Bombelli to Einstein. As noted in Fig. 1.2, it seems likely that Bombelli's discovery of Diophantus's book Arithmetic in the Vatican library triggered many of the ideas presented by Galileo, Descartes and Fermat, followed by others (i.e., Newton), thus Bombelli's discovery might be considered as a magic moment in mathematics. The vertical red lines indicate mentor-student relationships. For orientation, Mozart and Einstein are indicated along the bottom and Napoleon along the top. Napoleon hired Fourier, Lagrange and Laplace to help with his many bloody military campaigns. Related timelines include (see index): Fig. 1.1 (p. 15) which gives the timeline from 1500 BCE to 1650 CE. Fig. 1.2 (p. 17) presents the period from Descartes to Gauss and Cauchy. Fig. 3.1 (p. 72) presents the 17–20 CE (Newton–Einstein) view from 1640–1958. See Figs. 1.1, 1.2, and 3.1 for additional timelines.

Hermann von Helmholtz: Perhaps starting with the deep work of Hermann von Helmholtz (1821–1894). Fig. 1.5 (p. 23), educated an experienced as a military surgeon, who mastered classical music, acoustics, physiology, vision, hearing (Helmholtz, 1863b), and, most important of all, mathematics. Groth Kirchhoff frequently expanded on Helmholtz's contributions. It is reported that Lord Rayleigh learned German so he could read Helmholtz's great works.

The history during this time is complex. For example, Lord Kelvin wrote a letter to Stokes, suggesting that Stokes try to prove what is today known as "Stokes' theorem." As a result, Stokes posted a reward (the Smith Prize), searching for a facsimile of "Lord Kelvin's theorem," which was finally proved by Hankel (1839–1873). Many new concepts were being proved and appreciated over this productive period. In 1862, Maxwell published his famous equations, followed by a reformulating in modern vector notation by Heaviside, Gibbs, and Hertz. The vertical red lines connect mentor-student relationships. This figure should put the rest of this important work in the early years. Many of these scientists were fully productive to the end of old age. Those that were not died early due to poor health or accidents. Mozart and Beethoven are time anchors, not part of the math timeline.

Lord Kelvin: Lord Kelvin (aka William Thomson) (1824–1907) was one of the first true engineer-scientists, equally acknowledged as a mathematical physicist, well-known for his interdisciplinary research, and knighted by Queen Victoria in 1866. Lord Kelvin coined the term thermodynamics, a science more fully developed by Maxwell (the same Maxwell of electrodynamics).

Lord Rayleigh (aka William Strutt) (1842–1919). Rayleigh (1896) in a classic text, widely read even today by those who study acoustics. In 1904 he received the Nobel Prize in Physics for his invest-

16. Lord Kelvin was one of a half dozen interdisciplinary mathematical physicists, all working about the same time, who made a fundamental change in our scientific understanding. Others include Helmholtz, Stokes, Green, Heaviside, Rayleigh, and Maxwell.

17. Thermodynamics is another case which warrants an analysis along historical lines (Kuhn, 1978).
1.2.2 Three Streams from the Pythagorean theorem

From the outset of his presentation, Stillwell (2010, p. 1) defines "three great streams of mathematical thought: Numbers, Geometry and Infinity" that flow from the Pythagorean theorem, as summarized in Table 1.1. This is a useful concept, based on reasoning not as obvious as one might think. Many factors are in play here. One of these is the strongly held opinion of Pythagoras that all mathematics should be based on integers. The rest are tied up in the long, necessarily complex history of mathematics, as best summarized by the fundamental theorems (Box material; 2.3.1, p. 40), each of which is discussed in detail in a relevant chapter.

Table 1.1 Three streams followed from Pythagorean theorem: number systems, geometry and infinity.

- **The Pythagorean theorem is the mathematical spring which bore the three streams.**
- **Several centuries per stream:** Use Roman type rather than italics.

<table>
<thead>
<tr>
<th>Stream</th>
<th>Approximate Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Numbers</td>
<td>6th century BCE</td>
</tr>
<tr>
<td>6th BCE</td>
<td>N counting numbers, Q rationals, P primes</td>
</tr>
<tr>
<td>2. Geometry</td>
<td>(e.g., lines, circles, spheres, toroids, ...)</td>
</tr>
<tr>
<td>3. Infinity</td>
<td>(∞ → ±inf)</td>
</tr>
<tr>
<td>17-18th CE</td>
<td>Taylor series, functions, calculus (Newton, Leibniz)</td>
</tr>
<tr>
<td>19th CE</td>
<td>R real, C complex</td>
</tr>
<tr>
<td>20th CE</td>
<td>Set theory (20th century CE)</td>
</tr>
</tbody>
</table>

As shown in the insert, Stillwell's concept of three streams, following from the Pythagorean theorem, is the organizing principle behind this book. Broken down by chapter.

The Introduction is a historical survey of pre-college mathematical physics, presented in terms of the three main Pythagorean streams S1-S3, leading to the book's five chapters:

- **S1 Number systems** (p. 27)
- **S2 Algebraic equations** (p. 71)
- **S3 Vectors and matrices** (p. 151)

The third stream is broken into two parts.

S2 Number Systems: Some important ideas from number theory, starting with prime numbers, complex numbers, vectors, and matrices. Four classic number theory problems are discussed: the Euclidean algorithm (GCD), continued fractions (CF), Euclid's formula, Pell's equation, and the Fibonacci difference equation. The general solution of these several problems leads to the concept of the eigenfunction analysis, which is first introduced in Chapter 3.4.

S3 Algebraic Equations: Algebra and its development, as we know it today. The theory of real and complex equations and functions of real and complex variables, Newton's method for finding complex roots of polynomials, poles vs. zeros and the Gauss-Lucas theorem (bounds on the root...
locations of the derivative of a polynomial). Complex impedance $Z(s)$ of complex frequency $s = \sigma + \omega j$ is covered with some care, developing the topic which is needed for engineering mathematics.

While the algebra of real and complex functions is identical, the calculus is fundamentally different. This will lead to the concepts of complex analytic functions, complex Taylor series, and the Cauchy-Riemann conditions. These are fundamental concepts when dealing with impedance functions which describe the linear relations between force and flow in the complex frequency domain (i.e., complex impedance).

§4 **Scalar Calculus** (Stream 3a): Ordinary differential equations and integral theorems of simple physical systems (mass-springs, inductors-capacitors, heat dynamics). Solutions to scalar differential equations having constant coefficients, colorized mappings of complex analytic functions, multivalued functions, Cauchy’s theorems, inverse Laplace transforms.

§5 **Vector Calculus** (Stream 3b): Vector partial differential equations, gradient, divergence and curl differential operators, Stokes’s and Green’s theorems, Maxwell’s equations.
Chapter 2

Stream 1: Number Systems

Number theory (the study of numbers) was a starting point for many key ideas. For example, in Euclid's geometrical constructions the Pythagorean theorem for real \([a, b, c]\) was accepted as true, but the emphasis in the early analysis was on integer constructions, such as Euclid's formula for Pythagorean triplets (Eq. 2.11, Fig. 2.6, p. 58).

As we shall see, the derivation of the formula for Pythagorean triplets is the first of a rich source of mathematical constructions, such as solutions of Pell's equation (p. 59),\(^1\) and the recursive difference equations, such as solutions of the Fibonacci recursion formula \(f_{n+1} = f_n + f_{n-1}\) (p. 61) - which goes back at least to the Chinese (c2000 BCE). These are early pre-limit forms of calculus, best analyzed using an eigenfunction (e.g., eigen matrix) expansion, a geometrical concept from linear algebra, as an orthogonal set of normalized unit-length vectors (Appendix B.3, p. 271).

The first use of zero and \(\infty\): It is hard to imagine that one would not appreciate the concept of zero and negative numbers when using an abacus. It does not take much imagination to go from counting numbers \(\mathbb{N}\) to the set of all integers \(\mathbb{Z}\) including zero. On an abacus, subtraction is obviously the inverse of addition. Subtraction to obtain zero abacus beads is no different than subtraction from zero, giving negative beads. To assume the Romans, who first developed counting sticks, or the Chinese, who then deployed the concept using beads, did not understand negative numbers is impossible.

However, understanding the concept of zero (and negative numbers) is not the same as having a symbolic notation. The Roman number system has no such symbols. The first recorded use of a symbol for zero is said to be by Brahmagupta in 628 CE.\(^2\) However, this is likely wrong, given the notation developed by the Mayan civilization which existed from 2000 BCE to 900 CE.\(^3\) There is speculation that the Mayans cut down so much of the Amazon jungle that it eventually resulted in a global warming anomaly, possibly resulting in their demise.

The definition of \(\infty\) (c628 CE) depends on the concept of subtraction, which formally requires the creation of algebra (c830 CE, Fig. 1.1, p. 15). But apparently it took more than 600 years, i.e., from the time Roman numerals were put into use, without any symbol for zero, to the time when the symbol for zero first documented. Likely this delay is more about the political situation, such as government rulings, than mathematics.

The concept that caused much more difficulty was \(\infty\), first resolved by Riemann in 1851 with the development of the extended plane, which mapped the plane to a sphere (Fig. 3.15, p. 146). His construction made it clear that the point at \(\infty\) is simply another point on the open complex plane, since rotating the sphere (extended plane) moves the point at \(\infty\) to a finite point on the plane, thereby closing

Footnotes can be ganged at the end of chapter.

Footnotes:
1. Heisenberg, an inventor of the matrix algebra form of quantum mechanics, learned mathematics by studying Pell's equation (p. 59).

Combine footnotes 2 and 3 as footnote 2. Now footnote 3 is the yellow highlighted URL above.
CHAPTER 2. STREAM 1: NUMBER SYSTEMS

2.1 The taxonomy of numbers: \(\mathbb{N}, \mathbb{P}, \mathbb{Z}, \mathbb{Q}, \mathbb{F}, \mathbb{I}, \mathbb{R}, \mathbb{C} \)

Once symbols for zero and negative numbers were accepted, progress could be made. To fully understand numbers, a transparent notation was required. First one must differentiate between the different classes (genus) of numbers, providing a notation that defines each of these classes, along with their relationships. It is logical to start with the most basic counting numbers, which we indicate with the double-bold symbol \(\mathbb{N} \). For easy access, double-bold symbols and set-theory symbols, i.e., \{ \}, \cup, \cap, e, \in, \perp \), etc., are summarized in Appendix A, p. 255.

Counting numbers \(\mathbb{N} \): These are known as the "natural numbers" \(\mathbb{N} = \{1, 2, 3, \ldots\} \), denoted by the double-bold symbol \(\mathbb{N} \). For clarity we shall refer to the natural numbers as counting numbers, since natural, which means integer, is vague. The mathematical sentence "2 \(\in \mathbb{N} \)" is read as 2 is a member of the set of counting numbers. The word set is defined as the collection of any objects that share a specific property. Typically the set may be defined either as a sentence, or by example.

Primes \(\mathbb{P} \): A number is prime \((\pi_n \in \mathbb{P}) \) if its only factors are 1 and itself. The set of primes \(\mathbb{P} \) is a subset of the counting numbers \(\mathbb{P} \subset \mathbb{N} \). A somewhat amazing fact, well known to the earliest mathematicians, is that every integer may be written as a unique product of primes. A second key idea is that the density of primes \(\pi_n (N) \sim 1 / \log (N) \), that is, \(\pi_n (N) \) is inversely proportional to the log of \(N \), an observation first quantified by Gauss (Goldstein, 1973). A third is that there is a prime between every integer \(N \geq 2 \) and \(2N \).

We shall use the convenient notation \(\pi_n \) for the prime numbers, indexed by \(n \in \mathbb{N} \). The first 12 primes \(\{n|1 \leq n \leq 12\} = \{\pi_n|2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37\} \). Since \(4 = 2^2 \) and \(6 = 2 \cdot 3 \) may be factored, \(4, 6 \notin \mathbb{P} \) (read as \(4, 6 \) are not in the set of primes). Given this definition, multiples of a prime, i.e., \(2, 3, 4, 5, \ldots \cdot \pi_n \) of any prime \(\pi_n \) cannot be prime. It follows that all primes except 2 must be odd and every integer \(N \) is unique in its prime factorization.

Exercise 2.1 Write out the first 10 to 20 integers in prime-factored form. Solution: \(1, 2, 3, 2^2, 5, 2 \cdot 3, 7, 2^3, 3^2, 2 \cdot 5, 11, 3 \cdot 2^2, 13, 2 \cdot 7, 3 \cdot 5, 2^3, 17, 2 \cdot 3^2, 19, 2^2 \cdot 5 \).

Exercise 2.2 Write integers 2 to 20 in terms of \(\pi_n \). Here is a table to assist you:

<table>
<thead>
<tr>
<th>(n)</th>
<th>(\pi_n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>(\pi_2)</td>
</tr>
<tr>
<td>3</td>
<td>(\pi_3)</td>
</tr>
<tr>
<td>4</td>
<td>(\pi_2^2)</td>
</tr>
<tr>
<td>5</td>
<td>(\pi_5)</td>
</tr>
<tr>
<td>6</td>
<td>(\pi_2 \pi_3)</td>
</tr>
<tr>
<td>7</td>
<td>(\pi_7)</td>
</tr>
<tr>
<td>8</td>
<td>(\pi_2^3)</td>
</tr>
<tr>
<td>9</td>
<td>(\pi_3^2)</td>
</tr>
<tr>
<td>10</td>
<td>(\pi_2 \pi_5)</td>
</tr>
<tr>
<td>11</td>
<td>(\pi_{11})</td>
</tr>
<tr>
<td>12</td>
<td>(\pi_2 \pi_3 \pi_2)</td>
</tr>
<tr>
<td>13</td>
<td>(\pi_{13})</td>
</tr>
<tr>
<td>14</td>
<td>(\pi_2 \pi_7)</td>
</tr>
<tr>
<td>15</td>
<td>(\pi_3 \pi_5)</td>
</tr>
<tr>
<td>16</td>
<td>(\pi_2^4)</td>
</tr>
<tr>
<td>17</td>
<td>(\pi_{17})</td>
</tr>
<tr>
<td>18</td>
<td>(\pi_2 \pi_3 \pi_3)</td>
</tr>
<tr>
<td>19</td>
<td>(\pi_{19})</td>
</tr>
<tr>
<td>20</td>
<td>(\pi_2 \pi_2 \pi_5)</td>
</tr>
</tbody>
</table>

That have coprimes are two relatively prime numbers having no common (i.e., prime) factors. For example, \(21 = 3 \cdot 7 \) and \(10 = 2 \cdot 5 \) are coprime, whereas \(4 = 2^2 \) and \(6 = 2 \cdot 3 \), which have 2 as a common factor, are not. By definition all unique pairs of primes are coprime. We shall use the notation \(m \perp n \) to indicate that \(m, n \) are coprime. The ratio of two coprimes is reduced, as it has no factors to cancel. The ratio of two numbers that are not coprime may always be reduced by canceling the common factors. This is called the reduced form, or an irreducible fraction. When doing numerical work, for computational accuracy it is always beneficial to work with coprimes. Generalizing this idea we could define triple primes as three primes with no common factor, such as \(\{\pi_3, \pi_7, \pi_{11}\} \).

The fundamental theorem of arithmetic states that each integer may be uniquely expressed as a unique product of primes. The prime number theorem estimates the mean density of primes over \(\mathbb{N} \).

Authors: May we use black type rather than blue for the exercise solutions? Is there a reason certain numbers are printed in red? [YES] You may remove the red since I didn't explain.

- The red numbers are primes.
2.1. THE TAXONOMY OF NUMBERS: \(\mathbb{P}, \mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{F}, \mathbb{I}, \mathbb{R}, \mathbb{C} \)

- **Integers \(\mathbb{Z} \):** These include positive and negative counting numbers and zero. Notionally we might indicate this using set notation as \(\mathbb{Z} = -\mathbb{N} \cup \{0\} \cup \mathbb{N}. \) Read this as 'the integers are in the set composed of the negative natural numbers \(-\mathbb{N}\), zero, and \(\mathbb{N}\).'

- **Rational numbers \(\mathbb{Q} \):** These are defined as numbers formed from the ratio of two integers. Given two numbers \(n, d \in \mathbb{N} \), then \(n/d \in \mathbb{Q} \). Since \(d \) may be 1, it follows that the rationals include the counting numbers as a subset. For example, the rational number \(3/1 \in \mathbb{N} \).

The main utility of rational numbers is that they can efficiently approximate any number on the real line, to any precision. For example, the rational approximation \(\pi \approx 22/7 \) has a relative error of \(\approx 0.04\% (p. 56) \).

- **Fractional number \(\mathbb{F} \):** A fractional number \(\mathbb{F} \) is defined as the ratio of signed coprimes. If \(n, d \in \pm \mathbb{F} \), then \(n/d \in \mathbb{F} \). Given this definition, \(\mathbb{F} \subset \mathbb{Q} = \mathbb{Z} \cup \mathbb{F} \). Because of the powerful approximating power of rational numbers, the fractional set \(\mathbb{F} \) has special utility. For example, \(\pi \approx 22/7, 1/\pi \approx 7/22 \) (to 0.04\%, \(e \approx 19/7 \) to 0.15\%, and \(\sqrt{2} \approx 7/5 \) to 1\%).

- **Irrational numbers \(\mathbb{I} \):** Every real number that is not rational is irrational. Irrational numbers include \(\pi, e \), and the square roots of primes. These are decimal numbers that never repeat, thus requiring infinite precision in their representation. Such numbers cannot be represented on a computer, as they would require an infinite number of bits (precision).

 The rationals \(\mathbb{Q} \) and irrationals \(\mathbb{I} \) split the reals \(\mathbb{R} = \mathbb{Q} \cup \mathbb{I} \), so that each is a subset of the reals \(\mathbb{Q} \subset \mathbb{R} \), \(\mathbb{I} \subset \mathbb{R} \). This relation is analogous to that of the integers \(\mathbb{Z} \) and fractions \(\mathbb{F} \), which split the rationals \(\mathbb{Q} = \mathbb{Z} \cup \mathbb{F} \). (Thus each is a subset of the rationals \(\mathbb{Z} \subset \mathbb{Q}, \mathbb{F} \subset \mathbb{Q} \).)

Irrational numbers were famously problematic for the Pythagoreans, who incorrectly theorized that all numbers were rational. Like \(\infty \), irrational numbers required mastering a new and difficult concept before they could even be defined: It was essential to understand the factorization of counting numbers into primes (i.e., the fundamental theorem of arithmetic) before the concept of irrationals could be sorted out. Irrational numbers could only be understood once limits were mastered.

 As discussed on page 55, fractions can approximate any irrational number with arbitrary accuracy. Integers are also important, but for a very different reason. All numerical computing today is done with \(\mathbb{Q} = \mathbb{F} \cup \mathbb{Z} \). Indexing uses integers \(\mathbb{Z} \), while the rest of computing (flow dynamics, differential equations, etc.) is done with fractions \(\mathbb{F} \) (i.e., IEEE/754). Computer scientists are trained on these topics, and computer engineers need to be at least conversant with them.

- **Real numbers \(\mathbb{R} \):** Reals are the union of rational and irrational numbers, namely \(\mathbb{R} = \mathbb{Q} \cup \mathbb{I} = \mathbb{Z} \cup \mathbb{F} \cup \mathbb{I} \). Lengths in Euclidean geometry are reals. Many people assume that \(\text{IEEE 754 floating point numbers (1985)} \) are real (i.e., \(\in \mathbb{R} \)). In fact, they are rational \(\mathbb{Q} = \{\mathbb{F} \cup \mathbb{Z}\} \) approximations to real numbers, designed to have a very large dynamic range. The hallmark of fractional numbers \(\mathbb{F} \) is their power in making highly accurate approximations of any real number.

Using Euclid’s compass and ruler methods, one can make line lengths proportionally shorter or longer, or (approximately) the same. A line may be made be twice as long, or an angle can be bisected. However, the concept of an integer length in Euclid’s geometry was not defined.\(^4\) Nor can one construct an imaginary or complex line, as all lines are assumed to be real lengths. The development of analytic geometry was an analytic extension of Euclid’s simple (but important) geometrical methods.

Real numbers were first fully accepted only after set theory was developed by Cantor (1874). (Stillwell, 2010, p. 461). At first blush, this seems amazing, given how widely accepted real numbers are today. In some sense they were accepted by the Greeks, as lengths of real lines.

\(^4\) As best I know.
CHAPTER 2. STREAM 1: NUMBER SYSTEMS

Complex numbers \(\mathbb{C} \): Complex numbers are best defined as ordered pairs of real numbers. For example, if \(a, b \in \mathbb{R} \) and \(j = -i = \pm \sqrt{-1} \), then \(c = a + bj \in \mathbb{C} \). The word "complex," as used here, does not mean that the numbers are complicated or difficult. They are also known as "imaginary" numbers, but this does not mean the numbers disappear. Complex numbers are quite special in engineering mathematics, as roots of polynomials. The most obvious example is the quadratic formula for the roots of polynomials of degree 2, having coefficients \(\in \mathbb{C} \). All real numbers have a natural order on the real line. Complex numbers do not have a natural order. For example, \(j > 1 \) makes no sense.

Today the common way to write a complex number is using the notation \(z = a + bj \in \mathbb{C} \), where \(a, b \in \mathbb{R} \). Here \(1j = \sqrt{-1} \). We also define \(1j = -j \) to account for the two possible signs of the square root. Accordingly \(1j^2 = 1^2 = -1 \).

Cartesian multiplication of complex numbers follows the basic rules of real algebra, for example, the rules of multiplying two monomials and polynomials. Multiplication of two first-degree polynomials (i.e., monomials) gives

\[
(a + bx)(c + dx) = ac + (ad + bc)x + bdx^2.
\]

If we substitute \(1j \) for \(x \), and use the definition \(1j^2 = -1 \), we obtain the Cartesian product of the two complex numbers:

\[
(a + bj)(c + dj) = ac - bd + (ad + bc)j.
\]

Thus multiplication and division of complex numbers obey the usual rules of algebra.

However, there is a critical extension: Cartesian multiplication only holds when the angles sum to less than \(\pm \pi \), namely, the range of the complex plane. When the angles add to more than \(\pm \pi \), one must use polar coordinates, where the angles add for angles beyond \(\pm \pi \) (Boas, 1987, p. 8). This is particularly striking for the \(LT \) transform of a delay (Table C.3, p. 278).

Complex numbers can be challenging, providing unexpected results. For example, it is not obvious that \(\sqrt{3 + 4j} = \pm (2 + j) \).

Exercise: Verify that \(\sqrt{3 + 4j} = \pm (2 + j) \). Solution: Square the left side gives \(3 + 4j^2 = 3 + 4j \). Squaring the right side gives \((2 + j)^2 = 4 - j^2 + 4j = 3 + 4j \). Thus the two are equal.

An alternative to Cartesian multiplication of complex numbers is to work in polar coordinates. The polar form of complex number \(z = a + bj \) is written in terms of its magnitude \(\rho = \sqrt{a^2 + b^2} \) and angle \(\theta = \angle z = \tan^{-1} z = \arctan(z) \), as

\[
z = \rho e^{j\theta} = \rho (\cos \theta + j \sin \theta).
\]

From the definition of the complex natural log function, we have

\[
\ln z = \ln \rho e^{j\theta} = \ln \rho + \theta j,
\]

which is important, even critical, in engineering calculations. When the angles of two complex numbers are greater than \(\pm \pi \), one must use polar coordinates. It follows that when computing the phase, this is much different than the single- and double-argument \(\angle \theta = \arctan(z) \) function.

The polar representation makes clear the utility of a complex number: Its magnitude scales while its angle \(\Theta \) rotates. The property of scaling and rotating is what makes complex numbers useful in engineering calculations. This is especially obvious when dealing with impedances, which have complex roots with very special properties, as discussed on p. 162.

5 A polynomial \(a + bx \) and a 2-vector \([a, b]^T = \begin{bmatrix} a \\ b \end{bmatrix} \) are also examples of ordered pairs.
2.1. THE TAXONOMY OF NUMBERS: *P, N, Z, Q, F, I, R, C*

Matrix representation: An alternative way to represent complex numbers is in terms of \(2 \times 2\) matrices. This relationship is defined by the mapping from a complex number to a \(2 \times 2\) matrix:

\[
\begin{align*}
 a + bj & \leftrightarrow \begin{bmatrix} a & -b \\ b & a \end{bmatrix}, \\
 1 & \leftrightarrow \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \\
 ij & \leftrightarrow \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \\
 e^{\theta j} & \leftrightarrow \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}.
\end{align*}
\]

The *conjugate* of \(a + bj\) is then defined as \(a - bj \leftrightarrow \begin{bmatrix} a & b \\ -b & a \end{bmatrix}\). By taking the inverse of the \(2 \times 2\) matrix (assuming \(|a + bj| \neq 0\)), one can define the ratio of one complex number by another. Until you try out this representation, it may not seem obvious or even possible.

This representation proves that \(ij\) is not necessary when defining a complex number. What \(ij\) can do is to conceptually simplify the algebra. It is worth your time to become familiar with the matrix representation, to clarify any possible confusions you might have about multiplication and division of complex numbers. This matrix representation can save you time, heartache, and messiness. Once you have learned how to multiply two matrices, it’s a lot simpler than doing the complex algebra. In many cases we will leave the results of our analysis in matrix form, to avoid the algebra altogether. Thus both representations are important. More on this topic may be found on pages 27.

History of complex numbers: It is notable how long it took for complex numbers to be accepted (1851), relative to when they were first introduced by Bombelli (16th century CE). One might have thought that the solution of the quadratic, known to the Chinese, would have settled this question. It seems that complex integers (also known as *Gaussian integers*) were accepted before non-integral complex numbers. Perhaps this was because real numbers \((\mathbb{R})\) were not accepted (i.e., proved to exist, thus mathematically defined) until the development of *real analysis* in the late 19th century, thus setting out a proper definition of the real number (due to the existence of irrational numbers).

Exercise: Using Matlab/Octave, verify that

\[
\frac{a + bj}{c + dj} = \frac{ac + bd + (bc - ad)j}{c^2 + d^2} \leftrightarrow \begin{bmatrix} a & -b \\ b & a \end{bmatrix} \begin{bmatrix} c & -d \\ d & c \end{bmatrix}^{-1} = \begin{bmatrix} a & -b \\ b & a \end{bmatrix} \begin{bmatrix} c & d \\ -d & c \end{bmatrix} \frac{1}{c^2 + d^2}. \tag{2.2}
\]

Solution: The typical way may be using numerical examples. A better solution is to use a symbolic code:

```matlab
syms a b c d A B
A=[a -b; b a];
B=[c -d; d c];
C=A*inv(B);
```

2.1.1 Numerical taxonomy

A simplified taxonomy of numbers is given by the mathematical sentence

\[\pi_k \in \mathbb{P} \subset \mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}.\]

This sentence says:

1. Every prime number \(\pi_k\) is in the set of primes \(\mathbb{P}\),
2. which is a subset of the set of counting numbers \(\mathbb{N}\),
3. which is a subset of the set of integers \(\mathbb{Z} = \mathbb{N} \cup \{0\} \cup \mathbb{N}\),

\[^6\text{Sometimes we let the computer do the final algebra, numerically, as } 2 \times 2 \text{ matrix multiplications.}\]
4. which is a subset of the set of rationals \(\mathbb{Q} \) (ratios of signed counting numbers \(\pm \mathbb{N} \)),

5. which is a subset of the set of reals \(\mathbb{R} \),

6. which is a subset of the set of complex numbers \(\mathbb{C} \).

The rationals \(\mathbb{Q} \) may be further decomposed into the fractionals \(\mathbb{F} \) and the integers \(\mathbb{Z} \) (\(\mathbb{Q} = \mathbb{F} \cup \mathbb{Z} \)), and the reals \(\mathbb{R} \) into the rationals \(\mathbb{Q} \) and the irrationals \(\mathbb{I} \) (\(\mathbb{R} = \mathbb{I} \cup \mathbb{Q} \)). This classification nicely defines all the numbers (scalars) used in engineering and physics.

The taxonomy structure may be summarized with the single compact sentence, starting with the prime numbers \(\pi_k \) and ending with complex numbers \(\mathbb{C} \):

\[
\pi_k \in \mathbb{P} \subset \mathbb{N} \subset \mathbb{Z} \subset (\mathbb{Z} \cup \mathbb{F} = \mathbb{Q}) \subset (\mathbb{Q} \cup \mathbb{I} = \mathbb{R}) \subset \mathbb{C}.
\]

As discussed in Appendix A (p. 255), all numbers may be viewed as complex. Namely, every real number is complex if we take the imaginary part to be zero (Boas, 1987). For example, \(2 \in \mathbb{P} \subset \mathbb{C} \). Likewise, every purely imaginary number (e.g., \(0 + 1j \)) is complex with zero real part.

Finally, note that complex numbers \(\mathbb{C} \), much like vectors, do not have rank order, meaning one complex number cannot be larger or smaller than another. It makes no sense to say that \(j > 1 \) or \(j = 1 \) (Boas, 1987). The real and imaginary parts, and the magnitude and phase, have order. Order seems restricted to \(\mathbb{R} \). If time \(t \) were complex, there could be no yesterday and tomorrow.

2.1.2 Applications of integers

The most relevant question at this point is **"Why are integers important?"** First, we count with them, so we can keep track of "how much." But there is much more to numbers than counting: We use integers for any application where absolute accuracy is essential, such as banking transactions (making change), the precise computing of dates (Stillwell, 2010, p. 70) and locations ("I'll meet you at 34°F and Vine at noon on Jan. 1, 2034"), or building roads or buildings out of bricks (objects built from a unit size).

To navigate we need to know how to predict the tides, the location of the moon and sun, etc. Integers are important precisely because they are precise: Once a month there is a full moon, easily recognizable. The next day it's slightly less than full. If one could represent our position as integers in time and space, we would know exactly where we are at all times. But such an integral representation of our position or time is not possible.

The Pythagoreans claimed that all was integer. From a practical point of view, it seems they were right. Today all computers compute floating point numbers as fractionals. However, in theory they were wrong. The error (difference) is a matter of precision.

Numerical Representations of \(I, \mathbb{R}, \mathbb{C} \):

When doing numerical work, one must consider how we may compute within the set of reals (i.e., which contain irrationals). There can be no irrational number representation on a computer. The international standard of computation, IEEE floating point numbers, is based on rational approximation. The mantissa and the exponent are both integers, having sign and magnitude. The size of each integer depends on the precision of the number being represented. An IEEE floating-point number is rational because it has a binary (integer) mantissa, multiplied by 2 raised to the power of a binary (integer) exponent. For example, \(\pi \approx \pm a \times 2^b \) with \(a, b \in \mathbb{Z} \). In summary, IEEE floating-point rational numbers cannot be irrational, because irrational representations would require an infinite number of bits.

True floating point numbers contain irrational numbers, which must be approximated by fractional numbers. This leads to the concept of fractional representation, which requires the definition of the mantissa, base, and exponent, where both the mantissa and the exponent are signed. Numerical results

\(^7\)One can usefully define \(x = x + 1j \) ct to be complex (\(x, t \in \mathbb{R} \), with \(x \) in meters [m], \(t \) is in seconds [s], and the speed of light \(c \) [m/s].

IEEE 754: http://www.h-schmidt.net/FloatConverter/IEEE754.html

[1] Change sub zero to roman.
must not depend on the base. One could dramatically improve the resolution of the numerical representation by the use of the fundamental theorem of arithmetic. For example, one could factor the exponent into its primes and then represent the number as \(a \cdot 2^{b} \cdot 3^{c} \cdot 5^{d} \cdot \ldots \) (where \(a, b, c, d, \ldots \in \mathbb{Z} \)). Such a representation would improve the resolution of the representation. But even so, the irrational numbers would be approximate. For example, base \(10^{2} \) is natural using this representation since \(10^{5} = 2^{5} \cdot 5^{5} \).

Thus

\[
\pi \cdot 10^{5} \approx 314,159.27 \ldots = 3 \cdot 2^{5}5^{1} + 1 \cdot 2^{1}5^{4} + 4 \cdot 2^{3}5^{3} + \ldots + 9 \cdot 2^{5}5^{0} + 2 \cdot 2^{-5}5^{-1} \ldots
\]

Exercise 2.6: If we work in base \(2^{17} \) and use the approximation \(\pi \approx 22/7 \), then according to the Matlab/Octave `dec2bin()` routine, show that the binary representation of \(\pi_{2} \cdot 2^{17} \) is

\[
\pi_{2} \approx 22/7 = 3 + 1/7 = [3; 7],
\]

where \(\text{int64} \left(\text{fix} \left(2^{17} \cdot 22/7 \right) \right) = 411,940 \) and \(\text{dec2hex} \left(\text{int64} \left(\text{fix} \left(2^{17} \cdot 22/7 \right) \right) \right) = 64,924 \), and where 1 and 0 are multipliers of powers of 2, which are then added together

\[
411,940 = 2^{18} + 2^{17} + 2^{14} + 2^{11} + 2^{8} + 2^{2}.
\]

Computers keep track of the decimal point using the exponent, which in this case is the factor \(2^{17} = 131,072 \). The concept of the decimal point is replaced by an integer, having the desired precision, and a scale factor of any base (radix). This scale factor may be thought of as moving the decimal point to the right (larger number) or left (smaller number). The mantissa "fine-tunes" the value about a scale factor (the exponent). In all cases the number actually used is a positive integer. Negative numbers are represented by an extra sign bit.

Exercise 2.7: Using Matlab/Octave, use base 16 (i.e., hexadecimal) numbers, with \(\pi_{2} = 22/7 \), find

(a) \(\pi_{2} \cdot 10^{6} \) and (b) \(\pi_{2} \cdot 2^{17} \).

Solution: Using the command `dec2hex(fix(22/7*1e5))`, we get `4ebd16`, since

\[
22/7 \times 10^{6} = 314,285.7 \ldots
\]

and `hex2dec('4ebd') = 314285`.

Exercise 2.8: Write out the first 11 primes, base 16. Solution: The Octave/Matlab command `dec2hex()` provides the answer:

<table>
<thead>
<tr>
<th>(n)</th>
<th>dec</th>
<th>(n)</th>
<th>dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>10</td>
<td>0B</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td>17</td>
<td>17</td>
<td>29</td>
<td>29</td>
</tr>
<tr>
<td>19</td>
<td>19</td>
<td>31</td>
<td>31</td>
</tr>
</tbody>
</table>

Example 2.1: \(x = 2^{17} \times 22/7 \), using IEEE754 double precision.\(^{10}\)

\[
x = 411,940,562510 = 2^{54} \times 1198372 = 0,10010,00,110010,010010,010010,010010
\]

Base 10 is the natural-world scale standard simply because we have 10 fingers that we count with.

\(^{10}\)http://www.h-schmidt.net/FloatConverter/IEEE754.html
The exponent is 2^{18} and the mantissa is $4.793,490_{10}$. Here the commas in the binary (0,1) string are to help visualize the quasi-periodic nature of the bit stream. The numbers are stored in a 32-bit format, with 1 bit for sign, 8 bits for the exponent and 23 bits for the mantissa. Perhaps a more instructive number is

$$x = 4.793,490.0$$

$$= 0, 100, 1010, 100, 100, 100, 100, 100, 100, 100, 100, 100_2$$

$$= 0x4a92492416,$$

which has a repeating binary bit pattern of $((100))_3$, broken by the scale factor $0x44$. Even more symmetrical is

$$x = 0x24,924,924_{16}$$

$$= 00, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100_{2}$$

$$= 6.344, 131, 191, 146, 900 \times 10^{-17}.$$
2.1. **THE TAXONOMY OF NUMBERS**: P, N, Z, Q, F, I, R, C

depends on factoring large integers formed from products of primes having thousands of bits.\(^{11}\) The security is based on the relative ease of multiplying large primes, along with the virtual impossibility of factoring their products.

When a computation is easy in one direction but its inverse is impossible, it is called a *trapdoor function*. We shall explore trapdoor functions in Appendix 2. If everyone were to switch from passwords to public-key encryption, the internet would be much more secure.\(^{12}\)

Puzzles:
Another application of integers is imaginative problems that use integers. An example is the classic Chinese *four stone problem*: Find the weight of four stones that can be used with a scale to weigh anything (e.g., salt, gold) between 0, 1, 2, ..., 40 (see Fig. 10.1, p. 124 in Assignment AE 2).

As with the other problems, the answer is not as interesting as the method, since the problem may be easily recast into a related one. This type of problem can be found in airline magazines as amusement on a long flight. This puzzle is best cast as a linear algebra problem, with integer solutions. Again, once you know the trick, it is "easy."\(^{13}\)

\(^{11}\)It would seem that public-key encryption could work by having two numbers with a common prime, and then using the Euclidean algorithm, the greatest common divisor (GCD) could be worked out. One of the integers could be the public key and the second could be the private key.

\(^{12}\)https://fas.org/irp/agency/dod/jason/cyber.pdf

\(^{13}\)Whenever someone tells you something is "easy," you should immediately appreciate that it is very hard, but once you learn a concept, the difficulty evaporates.

Topics of this homework:

Introduction to MATLAB/OCTAVE (see the **Matlab or Octave tutorial** for help).

Deliverable: Report with charts and answers to questions. Hint: Use LaTeX.\(^4\)

Plotting complex quantities in Octave/Matlab

Problem #2.1 Consider the functions \(f(s) = s^2 + 6s + 25 \) and \(g(s) = s^2 + 6s + 5 \).

- **Q 2.1:** Find the zeros of functions \(f(s) \) and \(g(s) \) using the command `roots()`.

- **Q 2.2:** Show the roots of \(f(s) \) as red circles and of \(g(s) \) as blue plus signs.
 The \(x \)-axis should display the real part of each root, and the \(y \)-axis should display the imaginary part. Use `hold on` and `grid on` when plotting the roots.

- **Q 2.3:** Give your figure the title "Complex Roots of \(f(s) \) and \(g(s) \)." Label the \(x \)- and \(y \)-axis "Real Part" and "Imaginary Part." Hint: use `xlabel` and `ylabel`. Type `ylim([-10 10])` and `xlim([-10 10])` to expand the axes.

Problem #2.2 Consider the function \(h(t) = e^{j2\pi ft} \) for \(f = 5 \) and \(t = [0:0.01:2] \).

- **Q 2.2:** Use `subplot` to plot the real and imaginary parts of \(h(t) \).
 Make two graphs in one figure. Label the \(x \)-axes "Time (s)" and the \(y \)-axes "Real Part" and "Imaginary Part." "

- **Q 2.3:** Use `subplot` to plot the magnitude and phase parts of \(h(t) \).
 Use the command `angle` or `unwrap(angle())` to plot the phase. Label the \(x \)-axes "Time (s)" and the \(y \)-axes "Magnitude" and "Phase (radians)."

Prime numbers, infinity, etc. in Octave/Matlab

Problem #2.3 Prime numbers, infinity, etc. and special functions.

- **Q 2.3:** Use the Matlab/Octave function `factor` to find the prime factors of 123, 248, 1767, and 999,999.

- **Q 2.4:** Use the Matlab/Octave function `isprime` to check if 1, 2, 3, and 4 are prime numbers.

What does the function `isprime` return when a number is prime, or not prime? Why?

\(^4\)http://www.overleaf.com
2.2. EXERCISES NS-1

(c) - Q 3.3: Use the Matlab/Octave function primes() to generate prime numbers between 1 and 10^6.
 Save them in a vector x. Plot this result using the command hist(x).

(d) - Q 3.4: Now try [n, bincenters] = hist(x).
 Use length(n) to find the number of bins.

(c) - Q 3.5: Set the number of bins to 100 by using an extra input argument to the function hist. Hint: help hist and doc hist.
 Some font as hist(x).
 Show the resulting figure and give it a title and axes labels, label the axes.

Problem #4. Inf, NaN and logarithms in Octave/Matlab

(a) - Q 4.1: Try 1/0 and 0/0 in the Octave/Matlab command window.
 What are the results? What do these numbers mean in Octave/Matlab?

(b) - Q 4.2: Try log(0), log10(0), and log2(0) in the command window.
 In Matlab/Octave, the natural logarithm \(\ln() \) is computed using the function log. Functions log10 and log2 are computed using log10 and log2.

(c) - Q 4.3: Try log(1) in the command window. What do you expect for log10(1) and log2(1)?

(d) - Q 4.4: Try log(-1) in the command window. What do you expect for log10(-1) and log2(-1)?

(c) - Q 4.5: Show how Matlab/Octave arrives at the above answer because \(-1 = e^{i\pi}\).

(f) - Q 4.6: Try log(exp(j*sqrt(pi))) (i.e., \(\log e^{i\pi} \)) in the command window. What do you expect?

(g) - Q 4.7: What does inverse mean in this context? What is the inverse of \(\ln f(x) \)?

(h) - Q 4.8: What is a decibel? (Look up decibels on the internet.)

Problem #4.5: Very large primes on Intel computers.

Q 5.1: Find the largest prime number that can be stored on an Intel 64-bbit computer, which we call \(\pi_{\text{max}} \).
 Hint: As explained in the Matlab/Octave command help flintmax, the largest positive integer is \(2^{53} \); however, the largest integer that can be factored is \(2^{32} = \sqrt{2^{64}} \). Explain the logic of your answer.
 Hint: help isprime().

Problem #6. Suppose you are interested in primes that are greater than \(\pi_{\text{max}} \). How can you find them on an Intel computer (i.e., one using IEEE floating point)?

Q 6.1: Thus consider a sieve containing only odd numbers, starting from 3 (not 2).
 Hint: Since every prime number greater than 2 is odd, there is no reason to check the even numbers.
 \(n_{\text{odd}} \in \mathbb{N}/2 \) contain all the primes other than 2.
Problem #2.7: The following identity is interesting:

\[
\begin{align*}
1 &= 1^2 \\
1 + 3 &= 2^2 \\
1 + 3 + 5 &= 3^2 \\
1 + 3 + 5 + 7 &= 4^2 \\
1 + 3 + 5 + 7 + 9 &= 5^2 \\
& \quad \vdots \\
\sum_{n=0}^{N-1} 2n + 1 &= N^2.
\end{align*}
\]

Q 2.7: Can you find a proof?

15 This problem came from an exam problem for Math 213, Fall 2016.

AU: Is it OK to delete this footnote? Yes.
2.3 The role of physics in mathematics

Bells, chimes and eigenmodes: Integers naturally arose in art, music, and science. Examples include the relationships between musical notes, the natural eigenmodes (tones) of strings and other musical instruments. These relations were so common that Pythagoras believed that to explain the physical world (the universe), one needed to understand integers. As discussed on p. 71, "all is integer" was a seductive song.

As will be discussed on p. 71, it is best to view the relationship between acoustics, music, and mathematics as historical, since these topics inspired the development of mathematics. Today integers play a key role in quantum mechanics, again based on eigenmodes, but in this case, eigenmodes follow from solutions of the Schrödinger equation, with the roots of the characteristic equation being purely imaginary. If there were a real part (i.e., damping), the modes would not be integers.

As discussed by Salmon (1946, p. 201), Schrödinger's equation follows directly from the Webster horn equation. While Morse (1948, p. 281) (a student of Arnold Sommerfeld) fails to make the direct link, he comes close to the same view when he shows that the real part of the horn resistance goes exactly to zero below a cutoff frequency. He also discusses the trapped modes inside musical instruments due to the horn flaire (p. 268). One may assume Morse read Salmon's paper on horns, since he cites Salmon (Morse, 1948, Footnote 1, p. 271).

Engineers are so accustomed to working with real (or complex) numbers, the distinction between real (i.e., irrational) and fractional numbers is rarely acknowledged. Integers, on the other hand, arise in many contexts. One cannot master programming computers without understanding integer, hexadecimal, octal, and binary representations, since all numbers in a computer are represented in numerical computations in terms of rationals (\(\mathbb{Q} = \mathbb{Z} \cup \mathbb{R}\)).

As discussed on p. 28, the primary reason integers are so important is their absolute precision. Every integer \(n \in \mathbb{Z}\) is unique, and has the indexing property, which is essential for making lists that are ordered, so that one can quickly look things up. The alphabet also has this property (e.g., a book's index).

Because of the integer's absolute precision, the digital computer quickly overtook the analog computer once it was realized that the circuits were fast. From 1946 the first digital computer was thought to be the University of Pennsylvania's ENIAC. We now know that the code-breaking effort in Bletchley Park, England, under the guidance of Alan Turing, created the first digital computer (the Colossus), used to break the WWII German "Enigma" code. Due to the high secrecy of this war effort, the credit was only acknowledged in the 1970s when the project was finally declassified.

There is zero possibility of analog computing displacing digital computing, due to the importance of precision (and speed). But even with binary representation, there is a non-zero probability of errors, for example, on a hard drive, due to physical noise. To deal with this, error correcting codes have been developed, reducing the error by many orders of magnitude. Today error correction is a science, and billions of dollars are invested to increase the density of bits per area, to increasingly larger factors. A few years ago the terabyte drive was unheard of; today it is standard. In a few years petabyte drives will certainly become available. It is hard to comprehend how these will be used by individuals, but they are essential for online (cloud) computing.

2.3.1 The role of mathematics in physics: The three streams of mathematics

Modern mathematics is built on a hierarchical construct of fundamental theorems, as summarized in the boxed material (p. 40). The importance of such theorems cannot be overemphasized. Gauss's and Stokes's laws play a major role in understanding and manipulating Maxwell's equations. Every engineering student needs to fully appreciate the significance of these key theorems. If necessary, memorize them. But that will not do over the long run, as each and every theorem must be fully understood.
Unfortunately most students already know several of these theorems, but perhaps not by name. In such cases, it is a matter of mastering the vocabulary.

The three streams of mathematics:
1. **Number systems:** Stream 1
 - arithmetic
 - prime number
2. **Geometry:** Stream 2
 - algebra
3. **Calculus:** Stream 3 (Flanders, 1973)
 - Leibniz \mathbb{R}^1
 - complex $\mathbb{C} \subset \mathbb{R}^2$
 - vectors $\mathbb{R}^3, \mathbb{R}^n, \mathbb{R}^\infty$
 - Gauss's law (divergence theorem)
 - Stokes's law (curl theorem, or Green's theorem)
 - Vector calculus (Helmholtz's theorem)

These theorems are naturally organized and may be thought of in terms of Stillwell's three streams. For Stream 1 there is the fundamental theorem of arithmetic and the prime number theorem. For Stream 2 there is the fundamental theorem of algebra, while for Stream 3 there are a host of theorems on calculus, ordered by their dimensionality. Some of these theorems seem trivial (e.g., the fundamental theorem of arithmetic). Others are more challenging, such as the fundamental theorem of vector calculus and Green's theorem.

Complexity should not be confused with importance. Each of these theorems, as stated, is fundamental. Taken as a whole, they are a powerful way of summarizing mathematics.

2.3.2 Stream 1: Prime number theorems

There are two easily described fundamental theorems about primes:

1. **The fundamental theorem of arithmetic:** This states that every integer $n \in \mathbb{Z}$ may be uniquely factored into prime numbers. This raises the question of the meaning of factor (split into a product). The product of two integers $m, n \in \mathbb{Z}$ is $mn = \sum m \cdot n = \sum n \cdot m$. For example, $2 \times 3 = 2 + 2 + 2 = 3 + 3$.

2. **The prime number theorem:** One would like to know how many primes there are. That is easy: $|\mathbb{P}| = \infty$ (the size of the set of primes is infinite). A better way of asking this question is What is the average density of primes in the limit as $n \to \infty$? This question was answered, for all practical purposes, by Gauss, who in his free time computed the first three million primes by hand. He discovered that, to a good approximation, the primes are equally likely on a log scale. This is nicely summarized by the limerick:

 Chebyshev said, and I say it again: There is always a prime between n and $2n$.

 This is attributed to the mathematician Pafnuti Chebyshev, which nicely summarizes theorem 3 (Stillwell, 2010, p. 585).

When the ratio of two frequencies (pitches) is 2, the relationship is called an octave. With a slight stretch of terminology, we could say there is at least one prime per octave.

In modern western music the octave is further divided into 12 ratios called semitones equal to $\frac{\sqrt[12]{2}}{}$. Twelve semitones is an octave. In the end, it is a question of the density of primes on a log-log (i.e.,
ratio) scale. One might wonder about the maximum number of primes per octave, as a function of N, or ask for the fractions of an octave in the neighborhood of each prime.

2.3.3 Stream 2: Fundamental theorem of algebra

This theorem states that every polynomial in x of degree N,

$$P_N(x) = \sum_{k=0}^{N} a_k x^k$$ \hspace{1cm} (2.4)

has at least one root (p. 104). When a common root is factored out, the degree of the polynomial is reduced by 1. Applied recursively, a polynomial of degree N has N roots. Note there are $N + 1$ coefficients (i.e., a_0, a_1, \ldots, a_N). If we are only interested in the roots of $P_N(x)$, it is best to define $a_N = 1$, which defines the monic polynomial. If the roots are fractional numbers, this might be possible. However, if the roots are irrational numbers (likely), a perfect factorization is at least unlikely if not impossible.

2.3.4 Stream 3: Fundamental theorems of calculus

In §4.2, §5.7b, and §5.7c, we will deal with each of the theorems for Stream 3, where we consider the several fundamental theorems of integration, starting with Leibniz's formula for integration on the real line (\mathbb{R}), then progressing to complex integration in the complex plane (\mathbb{C}) (Cauchy's theorem), which is required for computing the inverse Laplace transform. Gauss's and Stokes's laws, for \mathbb{R}^2 require closed and open surfaces, respectively. One cannot manipulate Maxwell's equations, fluid flow, or acoustics without understanding these theorems. Any problem that deals with the wave equation in more than one dimension requires an understanding of these theorems. They are the basis of the derivation of the Kirchhoff voltage and current laws.

Finally, we define the four basic vector operations based on the gradient operator differential vector operator, which have been given mnemonic abbreviations (see p. 239):

$$\nabla \equiv \hat{x} \frac{\partial}{\partial x} + \hat{y} \frac{\partial}{\partial y} + \hat{z} \frac{\partial}{\partial z}$$ \hspace{1cm} (2.5)

pronounced as "del" (preferred) or "nabla," which are the gradient $\nabla()$, divergence $\nabla()$, curl $\nabla \times ()$.

Second-order operators such as the scalar Laplacian $\nabla \cdot \nabla() = \nabla^2()$ may be constructed from first-order operators. The most important of these is the vector Laplacian $\nabla^2()$ which is required when working with Maxwell's Wave Equations.

The first three operations are defined in terms of integral operations on a surface in $+2$ or $+3$ dimensions, by taking the limit as that surface, or the volume contained within, goes to zero. These three differential operators are essential to fully understand Maxwell's equations, the crown jewel of mathematical physics. Hence mathematics plays a key role in physics, as does physics in math.

2.3.5 Other key mathematical theorems

In addition to

Besides the widely recognized fundamental theorems for the three streams, there are a number of equally important theorems that have not yet been labeled as "fundamental." The widely recognized Cauchy integral theorem is an excellent example, since it is a stepping stone to Green's theorem and the fundamental theorem of complex calculus. In §4.5 (p. 173) we clarify the contributions of each of these special theorems.

Once these fundamental theorems of integration (Stream 3) have been mastered, the student is ready for the complex frequency domain, which takes us back to Stream 2 and the complex frequency plane ($s = \sigma + \omega j \in \mathbb{C}$). While the Fourier and LT's are taught in mathematics courses, the concept of complex...
2.4 Applications of prime numbers

If someone asked you for a theory of counting numbers, I suspect you would laugh and start counting. It sounds like either a stupid question or a bad joke. Yet integers are a rich topic, so the question is not even slightly dumb. It is somewhat amazing that even birds and bees can count. While I doubt birds and bees can recognize primes, cicadas and other insects only crawl out of the ground in prime number cycles (e.g., 13 or 17 year cycles). If you have ever witnessed such an event (I have), you will never forget it. Somehow they know. Finally, there is an analytic function, first introduced by Euler, based on his analysis of the sieve, now known as the Riemann zeta function (\(\zeta(s)\)), which is complex analytic, with its poles at the logs of the prime numbers. The properties of this function are truly amazing, even fun. Many of the questions and answers about primes go back to at least the early Chinese (700 BCE).

The importance of prime numbers: Each prime perfectly predicts multiples of that prime, but there seems to be no regularity in predicting primes. It follows that prime numbers are the key to the theory of numbers, because of the fundamental theorem of arithmetic (FTA).

Likely the first insight into the counting numbers started with the sieve shown in Fig. 2.2. A sieve answers the question "How can one identify the prime numbers?" The answer comes from looking for irregular patterns in the counting numbers by playing the counting numbers against themselves. A recursive sieve method for finding primes was first devised by the Greek Eratosthenes (O'Neill, 2009).

For example, starting from \(\pi_1 = 2\), one strikes out all even numbers \(2\) but not 2. By definition the multiples are products of the target prime (2 in our example) and every other integer \((n \geq 2)\). In this way all the even numbers are removed in this first iteration. The next remaining integer \((3\) in our example\) is identified as the second prime \(\pi_2\). Then all the multiples of \(\pi_2 = 3\) are removed. The next remaining number is \(\pi_3 = 5\), so all multiples of \(\pi_3 = 5\) are removed (i.e., 10, 15, 25 etc.). This process is repeated until all the numbers of the list have either been canceled or identified as prime.

As the word sieve implies, this process takes a heavy toll on the integers, rapidly pruning the non-primes. In four iterations of the sieve algorithm, all the primes below \(N = 50\) are identified in red. The final set of primes is displayed in step 4 of Fig. 2.2.
2.4. APPLICATIONS OF PRIME NUMBER

1. Write out \(N - 1 \) integers \(n \), starting from 2: \(n \in \{2, 3, \ldots, N\} \) (e.g., \(N = 4 \), \(n \in \{2, 3, 4\} \)). Note that the first element, \(\pi_1 = 2 \), is the first prime. Cross out all multiples of \(\pi_1 \). That is, cross out \(n \cdot \pi_1 = 4, 6, 8, 10, \ldots, 50 \), that is all \(n \) such that \(\mod(n, \pi_1) = 0 \).

2. Let \(k = 2 \) and note that \(\pi_2 = 3 \). Cross out \(n \pi_2 \cdot 3 \cdot (2, 3, 4, 5, 6, 7, \ldots, 45) \) are all \(n \) such that \(\mod(n, \pi_2) = 0 \).

3. Let \(k = 3, \pi_3 = 5 \). Cross out \(n \pi_3 \cdot (25, 35) \) (mod \(n, 5 \)) = 0).

4. Finally let \(k = 4, \pi_4 = 7 \) (mod \(n, 7 \)) = 0). Cross out \(n \pi_4 \) (49). Thus there are 15 primes less than \(N = 50 \): \(\pi_k = 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47 \) (highlighted in red). Above 2, all end in odd numbers, and above 5, all end with 1, 3, 7, 9.

Figure 2.2: Sieve of Eratosthenes for \(N = 50 \).
Once a prime greater than \(N/2 \) has been identified (25 in the example), the recursion stops, since twice that prime is greater than \(N \), the maximum number under consideration. Thus once \(\sqrt{49} \) has been reached, all the primes have been identified (this follows from the fact that the next prime \(\pi_k \) is multiplied by an integer \(n = 1, \ldots, N \).

When using a computer, memory efficiency and speed are the main considerations. There are various schemes for making the sieve more efficient. For example, the recursion \(n \pi_k = (n - 1) \pi_k + \pi_k \) will speed up the process by replacing the multiply with an addition of \(\pi_k \).

Two fundamental theorems of primes: Early theories of numbers revealed two fundamental theorems (there are many more than two, as discussed on pages 39, 42, and 27). The first of these is the fundamental theorem of arithmetic, which says that every integer \(n \in \mathbb{N} \) greater than 1 may be uniquely factored into a product of primes

\[
\prod_{k=1}^{K} \pi_k^{\beta_k}, \quad n = \prod_{k=1}^{K} \pi_k^{\beta_k}, \quad \text{Popular type.} \quad (2.6)
\]

where \(k = 1, \ldots, K \) indexes the integer’s \(K \) prime factors \(\pi_k \in \mathbb{P} \). Typically prime factors appear more than once, for example, \(25 = 5^2 \). To make the notation compact we define the multiplicity \(\beta_k \) of each prime factor \(\pi_k \). For example, \(2312 = 2^3 \cdot 17^2 = \pi_1^3 \pi_2^2 \) (i.e., \(\pi_1 = 2, \beta_1 = 3; \pi_2 = 17, \beta_2 = 2 \)) and \(2313 = 3^2 \cdot 257 = \pi_3^2 \pi_5^3 \) (i.e., \(\pi_3 = 3, \beta_3 = 2; \pi_5 = 257, \beta_5 = 3 \)). Our demonstration of this is empirical, using the Matlab/Octave factor (N) routine, which factors \(N \).\(^{18}\)

What seems amazing is the unique nature of this theorem. Each counting number is uniquely represented as a product of primes. No two integers can share the same factorization. Once you multiply the factors out, the result is unique (\(N \)). Note that it’s easy to multiply integers (e.g., primes), but expensive to factor them. And factoring the product of three primes is significantly more difficult than factoring two.

Factoring is much more expensive than division. This is not due to the higher cost of division over multiplication, which is less than a factor of 2.\(^{19}\) Dividing the product of two primes, given one, is trivial, slightly more expensive that multiplying. Factoring the product of two primes is nearly impossible, as one needs to know what to divide by. Factoring means dividing by some integer and obtaining another integer with remainder zero.

This brings us to the prime number theorem (PNT). The security problem is the reason why these two theorems are so important (1) Every integer has a unique representation as a product of primes, and (2) the density of primes is large (see the discussions on p. 40). Thus security reduces to the “needle in the haystack problem” due to the cost of a search.

Thus one could factor a product of primes \(N = \pi_1 \pi_2 \) by doing \(M \) divisions, where \(M \) is the number of primes less than \(N \). This assumes the list of primes less than \(N \) is known. However, most integers are not a simple product of two primes

But the utility of using prime factorization has to do with their density. If we were simply looking up a few numbers from a short list of primes, it would be easy to factor them. But given that their density is logarithmic (\(\gg 1 \) per octave), factoring becomes at a very high computational cost.

\(<H2>2.4.1 \text{ Greatest common divisor (Euclidean algorithm)}\)</H2>

The Euclidean algorithm is a systematic method to find the largest common integer factor \(k \) between two integers \(n, m \), denoted \(k = \gcd(n, m) \), where \(n, m, k \in \mathbb{N} \) (Graham et al., 1994). For example, \(15 = \gcd(30, 105) \) since, when factored \(30, 105 = (2 \cdot 3 \cdot 5, 7 \cdot 3 \cdot 5) = 3 \cdot 5 \cdot (2, 7) = 15 \cdot (2, 7) \). The Euclidean algorithm was known to the Chinese (i.e., not discovered by Euclid) (Stillwell, 2010, p. 41). Two integers are said to be coprime if their gcd is 1 (i.e., they have no common factor).

\(\text{18}\) If you wish to be a mathematician, you need to learn how to prove theorems. If you’re a physicist, you are happy that someone else has already proved them, so that you can use the result.

\(\text{19}\) https://streamcomputing.eu/blog/2012-07-16/how-expensive-is-an-operation-on-a-cpu/
Examples of the GCD: \(l = \text{gcd}(m, n) \)

- Examples \((m, n, l \in \mathbb{Z})\):
 - \(5 = \text{gcd}(13 - 5, 11 - 5)\). The GCD is the common factor 5.
 - \(\text{gcd}(13 - 10, 11 - 10) = 10 = 2 \cdot 5\) is not prime.
 - \(\text{gcd}(134, 1024) = 2\) since 134 = 2 · 67, 1024 = 2^{10}
 - \(\text{gcd}(\pi_1 \pi_m, \pi_n \pi_n) = \pi_k\)
 - \(l = \text{gcd}(m, n)\) is the part that cancels in the fraction \(m/n \in \mathbb{F}\)
 - \(m/\text{gcd}(m, n) \in \mathbb{Z}\)

- Coprimes \((m \perp n)\) are numbers with no distinct common factors \(l = \text{gcd}(m, n)\).
 - The GCD of two primes is always 1: \(\text{gcd}(13, 11) = 1\), \(\text{gcd}(\pi_1, \pi_2) = 1\) \((m \neq n)\)
 - \(m = 7 \cdot 13, n = 5 \cdot 19 \Rightarrow (7 \cdot 13) \perp (5 \cdot 19)\)
 - If \(m \perp n\) then \(\text{gcd}(m, n) = 1\)
 - If \(\text{gcd}(m, n) = 1\) then \(m \perp n\)

- The GCD may be extended to polynomials \(\text{gcd}(ax^2 + bx + c, \alpha x^2 + \beta x + \gamma)\):
 - \(\text{gcd}(x - 3, x - 5) = x - 3\)
 - \(\text{gcd}(x^2 - 7x + 12, 3x^2 - 8x + 15) = x - 3\)
 - \(\text{gcd}(x^2 - 7x + 12, 3x^2 - 8x + 15) = x - 3\)

The Euclidean algorithm: The algorithm is best explained by a trivial example: Let the two numbers be 6, 9. At each step the smaller number (6) is subtracted from the larger (9) and the smaller number and the difference (the remainder) are saved. This process continues until the two resulting numbers are equal, which is the GCD. For our examples, \(9 - 6 = 3\), leaving the smaller number 6 and the difference 3. Repeating this we get \(6 - 3 = 3\), leaving the smaller number 3 and the difference 3. Since these two numbers are the same, we are done, thus \(3 = \text{gcd}(9, 6)\). We can verify this result by factoring \((9, 6) = 3(3, 2)\). The value may also be numerically verified using the Matlab/Octave GCD command, \(\text{gcd}(6, 9)\), which returns 3.

Author: Is it OK to delete this heading? It repeats the preceding heading.

Consider

Author: What kind of type should "mod" be?

Author: What is the significance of the word "recursive" in the context of the Euclidean algorithm?

Author: It seems that the diagram in Figure 2.3 is not fully clear. Can you provide more details or clarify its purpose?

Figure 2.3: The Euclidean algorithm recursively subtracts \(n\) from \(m\) until the remainder \(m - kn\) is either less than \(n\) or zero. Note that this recursion is the same as \(\text{mod}(m, n)\). Thus the GCD recursively computes \(\text{gcd}(m, n)\) until the remainder \(\text{rem}(m, n)\) is less than \(n\), which is defined as the GCD's turning point. It then swaps \(m, n\) so that \(n < m\). This recursive halts on the GCD. Due to its simplicity this is called the direct method for finding the GCD. For the case depicted here, the value of \(kn\) that renders the remainder \(m - 6n < n\) if one more step were taken beyond the turning point \((k = 7)\), the remainder would become negative. Thus the turning point satisfies the linear relation \(m - an = 0\) with \(a \in \mathbb{R}\).
Direct matrix method: The GCD may be written as a matrix recursion given the starting vector \((m_0, n_0)^T\). The recursion is then

\[
\begin{bmatrix}
m_{k+1} \\
n_{k+1}
\end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} m_k \\
n_k
\end{bmatrix}.
\] (2.7)

This recursion continues until \(m_{k+1} < n_{k+1}\), at which point \(m\) and \(n\) must be swapped. The process is repeated until \(m_k = n_k\), which equals the GCD. We call this the **direct method** (see Fig. 2.3). The direct method is inefficient because it recursively subtracts \(n_k\) many times until the resulting \(m_k\) is less than \(n_k\). It also must test for \(m \leq n\) after each subtraction, and then swap them if \(m_k < n_k\). If they are equal, we are done.

The GCD's **turning point** may be defined using the linear interpolation \(n - \alpha n = 0, \alpha \in \mathbb{R}\), where the solid line cross the abscissa in Fig. 2.3. If, for example, \(l = 6 + 43/97 \approx 6.443298\ldots\), then \(6 = \lfloor m/n \rfloor < n\) and \(\alpha \in \mathbb{R}\). This is nonlinear (truncation) arithmetic, which is a natural property of the GCD. The **floor()** functions finds the **turning point**, where we swap the two numbers, since by definition, \(m > n\). In this example, \(6 = \lfloor l \rfloor\).

Exercise 2.9 Show that

\[
\begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}^n = \begin{bmatrix} 1 & -n \\ 0 & 1 \end{bmatrix}.
\]

Solution: Let \(n = 2\). Note that the recursive multiplication add 1 to the upper right corner.

Why is the GCD important? The utility of the GCD algorithm arises directly from the fundamental difficulty in factoring large integers. Computing the GCD using the Euclidean algorithm, is low cost compared to factoring when finding the coprime factors, which is extremely expensive. The utility surfaces when the two numbers are composed of very large primes.

When two integers have no common factors they are said to be **coprime** and their GCD is 1. The ratio of two integers which are coprime is automatically in **reduced form** (they have no common factors). For example, \(4/2 \in \mathbb{Q}\) is not reduced since \(2 = \gcd(4, 2)\) (with a zero remainder). Canceling out the common factor 2 gives the reduced form \(2/1 \in \mathbb{Q}\). Thus if we wish to form the ratio of two integers, first compute the GCD, then remove it from the two numbers to form the ratio. This assures the rational number is in its reduced form \((\in \mathbb{Q} \text{ rather than } \in \mathbb{Q})\). If the GCD were \(10^5\) digits, it is obvious that any common factor would need to be removed, thus greatly simplifying further computation. This will make a huge difference when using IEEE 754.

The floor function and the GCD are related in an important way, as discussed next.

Indirect matrix method: A much more efficient method uses the **floor()** function, which is called **division with rounding**, or simply the **indirect method**. Specifically the GCD may be written in one step as

\[
\begin{bmatrix} m \\
n \
\end{bmatrix}_{k+1} = \begin{bmatrix} 0 & 1 \\ 1 & -\lfloor m/n \rfloor \end{bmatrix} \begin{bmatrix} m \\
n \
\end{bmatrix}_{k}.
\] (2.8)

This matrix is simply Eq. 2.7 to the power \(\lfloor m/n \rfloor\), followed by swapping the inputs (the smaller must always be on the bottom).

The GCD and multiplication: Multiplication is simply recursive addition, and finding the GCD takes advantage of this fact. For example, \(3 \times 2 = 3 + 3 = 2 + 2 + 2\). Since division is the inverse of multiplication, it must be recursive subtraction.
2.4. APPLICATIONS OF PRIME NUMBER

The GCD and long division: When one learns how to divide a smaller number into a larger one, they must learn how to use the GCD. For example, suppose we wish to compute $6 \div 110$. One starts by finding out how many times 6 goes into 11. Since $6 \times 2 = 12$, which is larger than 11, the answer is 1. We then subtract 6 from 11 to find the remainder 5. This is, of course, the floor function (e.g., $[11/6] = 1$, $[11/5] = 2$).

Example: Start with the two integers [873, 582]. In factored form these are $\pi_{25} \cdot 3^2$, $\pi_{25} \cdot 3 \cdot 2$. Given the factors, we see that the largest common factor is $\pi_{25} \cdot 3 = 291$ ($\pi_{25} = 97$). When we take the ratio of the two numbers this common factor cancels:

$$\frac{873}{582} = \frac{\pi_{25} \cdot 3^2}{\pi_{25} \cdot 3 \cdot 2} = \frac{3}{2} = 1.5.$$

Of course if we divide 582 into 873 we will numerically obtain the answer $1.5 \in \mathbb{F}$.

Exercise: What does it mean to reach the turning point when using the Euclidean algorithm? [Solution: When $m/n - [m/n] < n$, we have reached a turning point. When the remainder is zero (i.e., $m/n - [m/n] = 0$), we have reached the GCD.]

Exercise: Show that in Matlab/Octave `rat(873/582) = 1 + 1/(-2)` gives the wrong answer (`rat(837/582) = 3/2`). Hint: Factor the two numbers and cancel out the gcd. [Solution: Since `factor(873) = 3 \cdot 3 \cdot 97` and `factor(582) = 2 \cdot 3 \cdot 97`, the gcd is $3 \cdot 97$, thus $3/2 = 1 + 1/2$ is the correct answer. But due to rounding methods, it is not $3/2$. As an example, in Matlab/Octave `rat(3/2) = [-1 1]` (2). Matlab's `rat()` command uses rounding rather than the floor function, which explains the difference. When the `rat()` function produces negative numbers, rounding is employed.]

Exercise: Divide 10 into 99, the `floor` function (`floor(99/10)`)) must be used, followed by the `remainder` function (`rem(99, 10)`). [Solution: When we divide a smaller number into a larger one, we must first find the floor followed by the remainder. For example, $99/10 = 9 + 9/10$ has a floor of 9 and a remainder of $9/10$.]

Graphical description of the GCD: The Euclidean algorithm is best viewed graphically. In Fig. 2.3 we show what is happening as one approaches the turning point, at which point the two numbers must be swapped to keep the difference positive, which is addressed by the upper row of Eq. 2.8.

Here Below is a simple Matlab/Octave code to find $l = \gcd(m, n)$ based on the Stillwell (2010) definition.

```
% ~/matlab/gcd.m
function k = gcd(m, n)
    while m > 0
        A=m; B=n;
        m=max(A,B); n=min(A,B); %m>n
        m=m-n;
    endwhile %m=n
    k=A;
```

This program loops until $m = 0$.
Coprimes: When the GCD of two integers is 1, the only common factor is 1. This is of key importance when trying to find common factors between the two integers. When \(1 = \gcd(m, n) \) they are said to be coprime or "relatively prime." Which is frequently written as \(m \perp n \). By definition, the largest common factor of coprimes is 1. But since 1 is not a prime (\(\pi_1 = 2 \)), they have no common primes. It can be shown (Stillwell, 2010, p. 41-42) that when \(a \perp b \), there exist \(m, n \in \mathbb{Z} \) such that

\[
am + bn = \gcd(a, b) = 1.
\]

This equation may be related to the addition of two fractions having coprime numerators \((a \perp b) \). For example,

\[
\frac{a}{m} + \frac{b}{n} = \frac{am + bn}{mn}.
\]

It is not obvious to me that this is simply \(1/ma \).

2.13

Exercise: Show that

\[
\begin{bmatrix}
0 & 1 \\
1 & -[m/n]
\end{bmatrix}
= \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} m/n \end{bmatrix}.
\]

Solution: This uses the result of the exercise from a previous page, times the row swap matrix. Consider this result in terms of an eigenanalysis.

Author: Do you want to indicate which earlier exercise is referred to here? Is the solution complete?
2.5. EXERCISES NS-2

2.8. Problem 2.8 Every integer may be written as a product of primes.

(a) Write the numbers 1,000,000, 1,000,004 and 999,990 in the form \(N = \prod_k \pi_k^{\beta_k} \). (Hint: Use Matlab/Octave to find the prime factors.)

(b) Give a generalized formula for the natural logarithm of a number \(\ln(N) \) in terms of its primes \(\pi_k \) and their multiplicities \(\beta_k \). Express your answer as a sum of terms.

2.9. Problem 2.9 Using the computer

(a) Explain why the following brief Matlab/Octave program returns the prime numbers \(\pi_k \) between 1 and 100.

\[
\begin{align*}
n & = 2:100; \\
k & = \text{isprime}(n); \\
n(k)
\end{align*}
\]

(b) How many primes are there between 2 and \(N = 100 \)?

2.10. Problem 2.10 Prime numbers may be identified using a sieve. (see Fig. 2.2).

(a) By hand, perform the sieve of Eratosthenes for \(n = \frac{1}{2} \ldots 49 \). Circle each prime \(p \), then cross out each number which is a multiple of \(p \).

(b) What is the largest number you need to consider before only primes remain?

(c) Generalize: for \(n = \frac{1}{2} \ldots N \), what is the highest number you need to consider before only the primes remain?
(d) **Q 3.4:** Write each of these numbers as a product of primes: 22, 30, 34, 43, 44, 48, 49.

(e) **Q 3.5:** Find the largest prime \(\pi_k \leq 100? \) **Hint:** Do not use Matlab/Octave other than to check your answer. **Hint:** Write out the numbers starting with 100 and counting backwards: 100, 99, 98, 97, \ldots. Cross off the even numbers, leaving 99, 97, 95, \ldots. Pull out a factor (only 1 is necessary to show that it is not prime).

(f) **Q 3.6:** Find the largest prime \(\pi_k \leq 1000? \) **Hint:** Do not use Matlab/Octave other than to check your answer.

(g) **Q 3.7:** Explain why \(\pi_k^e = e^{-\ln \pi_k} \).

Greatest common divisors

Using the Euclidean algorithm to find the greatest common divisor (GCD; the largest common prime factor) of two numbers. Note this algorithm may be performed using one of two methods:

<table>
<thead>
<tr>
<th>Method</th>
<th>Division</th>
<th>Subtraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>On each iteration</td>
<td>(a_{i+1} = b_i)</td>
<td>(a_{i+1} = \max(a_i, b_i) - \min(a_i, b_i))</td>
</tr>
<tr>
<td>Terminates when</td>
<td>(b = 0) (gcd(=a))</td>
<td>(b = 0) (gcd(=a))</td>
</tr>
</tbody>
</table>

The division method (Eq. 2.1, §2.1.1, Ch. 2) is preferred because the subtraction method is much slower.

Problem #4: Understanding the Euclidean GCD algorithm

(a) **Q 4.1:** Use the Octave/Matlab command `factor` to find the prime factors of \(a = 85 \) and \(b = 15 \).

(b) **Q 4.2:** What is the greatest common prime factor of these two numbers?

(c) **Q 4.3:** By hand, perform the Euclidean algorithm for \(a = 85 \) and \(b = 15 \).

(d) **Q 4.4:** By hand, perform the Euclidean algorithm for \(a = 75 \) and \(b = 25 \). Is the result a prime number?

(e) **Q 4.5:** Consider the first step of the GCD division algorithm when \(a < b \) (e.g., \(a = 25 \) and \(b = 75 \)). What happens to \(a \) and \(b \) in the first step? Does it matter if you begin the algorithm with \(a < b \) or \(b < a \)?
2.5. EXERCISES NS-2

(i) Describe in your own words how the GCD algorithm works. Try the algorithm using numbers which have already been separated into factors (e.g., \(a = 5 \cdot 3 \) and \(b = 7 \cdot 3 \)).

(g) Find the GCD of \(2 \cdot \pi_{25} \) and \(3 \cdot \pi_{25} \).

Problem 2.12 Coprimes

(a) Define the term coprime.

(b) How can the Euclidean algorithm be used to identify coprimes?

(c) Give at least one application of the Euclidean algorithm.

(d) Write a Matlab function, \(x = \text{gcd}(a, b) \), which uses the Euclidean algorithm to find the GCD of any two inputs \(a \) and \(b \). Test your function on the \((a, b) \) combinations from parts (a) and (b). Include a printout (or handwrite) your algorithm to turn in.

Hints and advice:

- Don’t give your variables the same names as Matlab functions! Since \(\text{gcd} \) is an existing Matlab/Octave function, if you use it as a variable or function name, you won’t be able to use \(\text{gcd} \) to check your \(\text{gcd}() \) function. Try clear all to recover from this problem.
- Try using a \(\text{while} \) loop for this exercise (see Matlab documentation for help).
- You may need to make some temporary variables for \(a \) and \(b \) in order to perform the algorithm.

Algebraic generalization of the GCD (Euclidean) algorithm

Problem 2.13

In this problem we are looking for integer solutions \((m, n) \in \mathbb{Z} \) to the equations \(ma + nb = \text{gcd}(a, b) \) and \(ma + nb = 0 \) given positive integers \((a, b) \in \mathbb{Z}^+ \).

Note that this requires that either \(m \) or \(n \) be negative. These solutions may be found using the Euclidean algorithm only if \((a, b) \) are coprime \((a \perp b) \). Note that integer (whole number) polynomial relations such as these are known as Diophantine equations. The above equations are a simplification of such relations.

Example (\(\text{gcd}(2, 3) = 1 \))

For \((a, b) = (2, 3) \), the result is as follows:

\[
\begin{bmatrix}
0 & 1 \\
1 & -2
\end{bmatrix}
\begin{bmatrix}
0 & 1 \\
1 & -1
\end{bmatrix}
= \begin{bmatrix}
1 & 2 \\
3 & -2
\end{bmatrix}
\]

Thus from the above equation we find the solution \((m, n) \) to the integer equation

\(2m + 3n = \text{gcd}(2, 3) = 1 \),

namely \((m, n) = (-1, 1) \) (i.e., \(-2 + 3 = 1\)). There is also a second solution \((3, -2) \) (i.e., \(3 \cdot 2 - 2 \cdot 3 = 0 \)), which represents the terminating condition. Thus these two solutions are a pair and the solution only exists if \((a, b) \) are coprime \((a \perp b) \).

Subtraction method: This method is more complicated than the division algorithm, because at each stage we must check if \(a < b \). Define

\[
\begin{bmatrix}
a_0 \\
b_0
\end{bmatrix}
= \begin{bmatrix}
a \\
b
\end{bmatrix},
\quad
Q = \begin{bmatrix}
1 & -1 \\
0 & 1
\end{bmatrix},
\quad
S = \begin{bmatrix}
0 & 1 \\
1 & 0
\end{bmatrix}
\]

where \(Q \) sets \(a_{i+1} = a_i - b_i \) and \(b_{i+1} = b_i \) assuming \(a_i > b_i \), and \(S \) is a swap matrix which swaps \(a_i \) and \(b_i \) if \(a_i < b_i \). Using these matrices, the algorithm is implemented by assigning

\[
\begin{bmatrix}
a_{i+1} \\
b_{i+1}
\end{bmatrix} = Q \begin{bmatrix}
a_i \\
b_i
\end{bmatrix} \text{ for } a_i > b_i, \quad \begin{bmatrix}
a_{i+1} \\
b_{i+1}
\end{bmatrix} = QS \begin{bmatrix}
a_i \\
b_i
\end{bmatrix} \text{ for } a_i < b_i.
\]

The result of this method is a cascade of \(Q \) and \(S \) matrices. For \((a, b) = (2, 3)\), the result is as follows:

\[
\begin{bmatrix}
1 \\
2
\end{bmatrix} = \begin{bmatrix}
1 & -1 \\
0 & 1
\end{bmatrix} \begin{bmatrix}
1 \\
1
\end{bmatrix} = \begin{bmatrix}
1 & -1 \\
0 & 1
\end{bmatrix} \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix} \begin{bmatrix}
2 \\
3
\end{bmatrix}.
\]

Thus we find two solutions \((m, n)\) to the integer equation \(2m + 3n = \gcd(2, 3) = 1\).

(a) \(-Q 6.12:\) By inspection, find at least one integer pair \((m, n)\) that satisfies \(12m + 15n = 3\).

Using matrix methods for the Euclidean algorithm, find integer pairs \((m, n)\) that satisfy \(12m + 15n = 3\) and \(12m + 15n = 0\). Show your work!!!

(b) \(-Q 6.2:\) Does the equation \(12m + 15n = 1\) have integer solutions for \(n\) and \(m\)? Why, or why not?

Problem #72: Matrix approach:

It can be difficult to keep track of the \(a_i \)'s and \(b_i \)'s when the algorithm has many steps. We need an alternative way to run the Euclidean algorithm using matrix algebra. Matrix methods provide a more transparent approach to the operations on \((a, b)\). Thus the Euclidean algorithm can be classified in terms of standard matrix operations.

- \(-Q 7.1:\) Write out the matrix approach, discussed at the end of \(\S 4.1\) (Eq. 2.8, p. 46).

Continued fractions

Problem #86: Here we explore the continued fraction algorithm (CFA), \(\S 2.5.1\), (p. 55).

In its simplest form the CFA starts with a real number, which we denote as \(\alpha \in \mathbb{R}\). Let us work with an irrational real number, \(\pi \in \mathbb{I}\), as an example because its CFA representation will be infinitely long. We can represent the CFA coefficients \(\alpha\) as a vector of integers \(n_k, k = 1, 2, \ldots, \infty\).

\[
\alpha = [n_1; n_2, n_3, n_4, \ldots]
\]

\[
= n_1 + \cfrac{1}{n_2 + \cfrac{1}{n_3 + \cfrac{1}{n_4 + \cdots}}}
\]

As discussed in \(\S 2.4.1\) (p. 44), the CFA is recursive, with three steps per iteration.

For \(\alpha_1 = \pi, n_1 = 3, r_1 = \pi - 3\) and \(\alpha_2 = 1/r_1\),

\[
\alpha_2 = 1/0.1416 = 7.0625\quad \text{baseline ellipses}
\]

\[
\alpha_1 = n_1 + \cfrac{1}{\alpha_2} = n_1 + \cfrac{1}{n_2 + \cfrac{1}{\alpha_3}} = \cdots
\]

In terms of a Matlab/Octave script,
alpha0 = pi;
K=10;
n=zeros(1,K); alpha=zeros(1,K);
alpha(1)=alpha0;

for k=2:K %k=1 to K
 n(k)=round(alpha(k-1));
 %n(k)=fix(alpha(k-1));
 alpha(k)=1/(alpha(k-1)-n(k));
 %disp([fix(k), round(n(k)), alpha(k)]); pause(1)
end

%Now compair this to matlab's rat() function
rat(alpha0,1e-20)

(a) \textbf{-Q 8.1: By hand (you may use Matlab/Octave as a calculator), find the first three values of } n_k \text{ for } \alpha = e^\pi.

(b) \textbf{-Q 8.2: For part (a), what is the error (remainder) when you truncate the continued fraction after } n_1, \ldots, n_3? \text{ Give the absolute value of the error, and the percentage error relative to the original } \alpha.

(c) \textbf{-Q 8.3: Use the Matlab/Octave program provided to find the first 10 values of } n_k \text{ for } \alpha = e^\pi, \text{ and verify your result using the Matlab/Octave command } \texttt{rat()}. \text{ See Sec. 2.4.1.)}

(d) \textbf{-Q 8.4: Discuss the similarities and differences between the Euclidean algorithm (EA) and CFA.}

(e) \textbf{-Q 8.5: Extra Credit: Show that the CFA is the inverse operation (i.e., the CFA is the GCD, run in reverse) \text{(Hint: see Sec. 2.4.1.)}} \text{ See Sec. 2.4.1.)}

\textbf{Continued fraction algorithm (CFA) (8 pts)}

\textbf{1. (4pts) Expand 23/7 as a continued fraction. Express your answer in bracket notation (e.g., } \pi = [3, 7, 16, \ldots]. \text{ Show your work.} \text{ \textbf{Sol:} } 23/7 = (21 + 2)/7 = 3 + 2/7 = 3 + 1/(6 + 1/2) = 3 + 1/(3 + 1/2). \text{ In bracket notation } 23/7 = [3, 3, 2]. \text{ Matlab gives } \texttt{rat}(23/7) = 3 + 1/(4 + 1/(-2)), \text{ or } [1, 4, -2] \text{ because rounding } 7/2 \text{ can be taken as either } 3+1/2 \text{ or } 4-1/2. \text{ \textbf{remove solution}}

\textbf{2. (2pts) Can } \sqrt{2} \text{ be represented as a finite continued fraction? Why or why not?} \text{ \textbf{Sol: No, because it is irrational.}}

\textbf{3. (2pts) What is the CFA for } \sqrt{2} - 1? \text{ \textbf{Hint: } } \sqrt{2} + 1 = \frac{1}{\sqrt{2} - 1} = [2; 2, 2, 2, \ldots]. \text{ \textbf{Sol:} } 1 + \sqrt{2} = 2 + 1/(2 + 1/(2 + \ldots)) \text{ or } [2; 2, 2, 2, \ldots], \text{ thus } \sqrt{2} - 1 = [2, 2, 2, 2, \ldots] - 2 = 0 + 1/(2 + 1/(2 + 1/(2 + \ldots))).
A. Find the CFA for $1 + \sqrt{3}j$
Sol:
\[
\tau_j(1+\sqrt{3}j) = [2,2,2,2,2,\ldots].
\]

S. Show that
\[
\frac{1}{1-\sqrt{a}} = a^{11} + a^{2} + a^{7} + a^{3} + a^{3} + \sqrt{a} + a^{5} + a^{4} + a^{3} + c^2 + a + 1 = 1 - a^6
\]

syms a,b
b = taylor(1/(1-sqrt(a)))
simplify((1-sqrt(a))*b) = 1-a^6

Use symbolic analysis to show this, then explain. Sol: This is a taylor expansion of I expressed in terms of removable singularities.

NS2 Ends here

Move NS-2 before §2.4 on page 42.
2.5.1 Continued fraction algorithm

As shown in Fig. 2.4, the continued fraction algorithm (CFA) starts from a single real decimal number \(x_0 \in \mathbb{R}^+ \) and recursively expands it as a fraction \(x \in \mathbb{F} \) (Graham et al., 1994). Thus the CFA may be used for forming rational approximations to any real number. For example, \(\pi \approx 22/7 \), and excellent approximations are well known to Chinese mathematicians.

The Euclidean algorithm (i.e., GCD), on the other hand, operates on a pair of integers \(m, n \in \mathbb{N} \) and returns their greatest common divisor \(k \in \mathbb{N} \), such that \(m/k, n/k \in \mathbb{F} \) are coprime, thus reducing the ratio to its irreducible form (i.e., \(m/k \equiv n/k \)). Note this is done without factoring \(m \) and \(n \).

Despite this seemingly irreconcilable difference between the GCD and CFA, the two are closely related; so close that Gauss called the Euclidean algorithm, for finding the GCD, the continued fraction algorithm (CFA) (Stillwell, 2010, p. 48).

At first glance it is not clear why Gauss would be so “confused.” One is forced to assert that Gauss had some deeper insight into this relationship. If so, that insight would be valuable to understand.

Since Eq. 2.8 may be inverted, the process may be reversed, which is closely related to the continued fraction algorithm (CFA) as discussed in Fig. 2.4. This might be the basis behind Gauss’s insight.

Definition of the CFA

1. Start with \(n = 0 \) and the positive input target \(x_0 \in \mathbb{R}^+ \).
2. **Rounding:** Let \(m_n = \lfloor x_n \rfloor \in \mathbb{N} \).
3. The input vector is then \(\begin{bmatrix} m_n, x_n \end{bmatrix}^T \).
4. **Remainder:** \(r_n = x_n - m_n \) \((-0.5 \leq r_n \leq 0.5)\).
5. **Reciprocate:** \(x_{n+1} = \begin{cases} 1/r_n, & n \leftarrow n + 1; \text{ Go to step 2 } \quad r_n \neq 0 \smallskip \cr 0, & \text{ terminates } \quad r_n = 0 \end{cases} \)

Figure 2.4: The CFA of any positive number, \(x_0 \in \mathbb{R}^+ \), is defined in this figure. Numerical values for \(n = 0 \), \(x_0 = \pi, m_0 = 0 \) are given in blue in the far-right. For \(n = 1 \) the input vector is \(\begin{bmatrix} m_1, x_2 \end{bmatrix}^T = [3, 7.0626]^T \). If at any step the remainder is zero, the algorithm terminates (Step 5). Convergence is guaranteed. The recursion may continue to any desired accuracy, and terminates if \(r_n = 0 \). Alternative rounding schemes are given on p. 258.

Notation: Writing out all the fractions can become tedious. For example, expanding \(e = 2.7183 \cdots \) using the Matlab/Octave command \(\text{rat} \left(\exp \left(1 \right) \right) \) gives the approximation

\[
\exp(1) = 3 + 1/(-4 + 1/(2 + 1/(5 + 1/(-2 + 1/(-7))))) \approx -o \left(1.75 \times 10^{-6} \right).
\]

Here we use a compact bracket notation, \(\hat{e} \hat{o} \approx [3; -4, 2, 5, -2, -7] \) where \(o() \) indicates the error of the CFA expansion.

Since entries are negative, we deduce that rounding arithmetic is being used by Matlab/Octave (but this is not documented). Note that the leading integer part \(m_0 \) may be noted by an optional semicolon.

If the steps are carried further, the values of \(m_n \in \mathbb{Z} \) give increasingly more accurate rational approximations.

Unfortunately Matlab/Octave does not support the bracket notation.
CHAPTER 2. STREAM 1: NUMBER SYSTEMS

Example: Let \(x_0 = \pi \approx 3.14159 \ldots \). Thus \(a_0 = 3, r_0 = 0.14159, x_1 = 7.065 \approx 1/r_0 \), and \(a_1 = 7 \). If we were to stop here we would have
\[
\tilde{\pi}_2 = 3 + \frac{1}{7 + 0.0625} = 3 + \frac{1}{7} = \frac{22}{7}. \tag{2.9}
\]
This approximation of \(\tilde{\pi}_2 = 22/7 \) has a relative error of 0.04%.

\[
\frac{22/7 - \pi}{\pi} \approx 4 \times 10^{-4}.
\]

Example: For a second level of approximation we continue by reciprocating the remainder \(1/0.0625 \approx 15.9966 \) which rounds to 16 giving a negative remainder of \(\approx -1/300 \):
\[
\tilde{\pi}_3 \approx 3 + 1/(7 + 1/16) = 3 + 16/(7 \cdot 16 + 1) = 3 + 16/113 = 355/113.
\]
With rounding the remainder is \(-0.0034\), resulting in a much more rapid convergence. If floor rounding is used \((15.9966 = 15 - 0.9966)\), the remainder is positive and close to 1, resulting in a much less accurate rational approximation for the same number of terms. It follows that there can be a dramatic difference depending on the rounding scheme, which, for clarity, should be specified, not inferred.

Rational approximation examples

\[
\begin{align*}
\tilde{\pi}_2 &= \frac{22}{7} = [3; 7] & \approx \tilde{\pi}_2 + o(1.3 \times 10^{-3}) \\
\tilde{\pi}_3 &= \frac{355}{113} = [3; 7, 16] & \approx \tilde{\pi}_3 - o(2.7 \times 10^{-7}) \\
\tilde{\pi}_4 &= \frac{104348}{33215} = [3; 7, 16, -249] & \approx \tilde{\pi}_4 + o(3.3 \times 10^{-10})
\end{align*}
\]

Figure 2.5: The expansion of \(\pi \) to various orders, using the CFA, along with the order of the error of each rational approximation, with rounding. For example, \(\tilde{\pi}_2 = 22/7 \) has an absolute error \((22/7 - \pi)\) of about 0.03%.

2.14 Exercise: Find the CFA using the floor function, to 12th order.
Solution: \(\tilde{\pi}_{12} = [3; 7, 15, 1.29212, 1, 1, 1, 1, 1, 3, 1] \). Octave/Matlab will give a different answer due to the use of rounding rather than floor.

Example: Matlab/Octave's \(\text{rats}([\pi, 1e-20]) \) gives
\[
3 + 1/(7 + 1/(16 + 1/(-294 + 1/(3 + 1/(-4 + 1/(5 + 1/(-15 + 1/(-3))))))))
\]
In bracket notation,
\[
\tilde{\pi}_0 = [3; 7, 16, -294, 3, -4, 5, -15, 03].
\]
Because the sign changes, it is clear that Matlab/Octave use up rounding rather than the floor function.

2.15 Exercise: Based on several examples, which rounding scheme is the most accurate? Explain why.
Solution: Rounding will result in a smaller remainder at each iteration, thus a smaller net error and thus faster convergence. Using the floor truncation will always give positive coefficients, which could have some applications.

When the CFA is applied and the expansion terminates \((r_n = 0)\), the target is rational. When the expansion does not terminate (which is not always easy to determine, as the remainder may be ill-conditioned due to small numerical rounding errors), the number is irrational. Thus, the CFA has important theoretical applications regarding irrational numbers. You may explore this using Matlab's \(\text{rats}([\pi]) \) command.
Besides these five basic rounding schemes, there are two other important $\mathbb{R} \to \mathbb{N}$ functions (i.e., mappings), which will be needed later: \(\text{mod}(x, y) \) and \(\text{rem}(x, y) \) with \(x, y \in \mathbb{R} \). The base-10 numbers may be generated from the counting numbers using $y = \text{mod}(x, 10)$.

2.16

Exercise

(a) Show how to generate a base-10 real number $y \in \mathbb{R}$ from the counting numbers \mathbb{N} using the $y = \text{mod}(n, 10)$ with $n, k \in \mathbb{N}$. \textbf{Solution:} Every time n reaches a multiple of 10, n is reset to 0 and the next digit to the left is increased by 1 by adding 1 to k, generating the digit pair km. Thus the $\text{mod}()$ function forms the underlying theory behind decimal notation.

(b) How would you generate binary numbers (base 2) using the $\text{mod}(x, b)$ function? \textbf{Solution:} Use the same method as in the first example above, but with $b = 2$.

(c) How would you generate hexadecimal numbers (base 16) using the $\text{mod}(x, b)$ function? \textbf{Solution:} Use the same method as in the first example above, but with $b = 16$.

(d) Write out the first 19 numbers in hex notation, starting from zero. \textbf{Solution:} 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, 10, 11, 12. Recall that 10\textsubscript{16} = 16\textsubscript{10}, thus 12\textsubscript{16} = 18\textsubscript{10}, resulting in a total of 19 numbers if we include 0.

\textbf{Symmetry:} A \textit{continued fraction expansion} can have a high degree of "recursive symmetry." For example, the CFA of

\[
R_1 = \frac{1 + \sqrt{5}}{2} = 1 + \frac{1}{1 + \frac{1}{1 + \cdots}} = 1.618033988749895\ldots
\]

Consider $R_1 \equiv 1 + \frac{1}{1 + \frac{1}{1 + \cdots}}$. The sequence does not terminate, proving that $\sqrt{5} \notin \mathbb{Q}$. A related example is $R_2 = 1 + \frac{1}{2 + \frac{1}{2 + \cdots}}$, which gives $R_2 = \frac{\sqrt{2} + 1}{\sqrt{2} - 1}$.

When expanding a target irrational number ($x_0 \in \mathbb{I}$), and the CFA is truncated, the resulting rational fraction approximates the irrational target. For the example above, if we truncate at three coefficients ([1, 1, 1]), we obtain

\[
1 + \frac{1}{1 + \frac{1}{1+0}} = 1 + \frac{1}{2} = 1.5 = \frac{1 + \sqrt{5}}{2} + 0.118\ldots
\]

Truncation after six steps gives

\[
[1, 1, 1, 1, 1, 1] = \frac{13}{8} \approx 1.6250 = \frac{1 + \sqrt{5}}{2} + 0.0070\ldots
\]

Because all the coefficients are 1, this example converges very slowly. When the coefficients are large (i.e., remainder small), the convergence will be faster. The expansion of π is an example of faster convergence.

\textbf{In summary:} Every rational number $m/n \in \mathbb{F}$, with $m > n > 1$, may be uniquely expanded as a continued fraction, with coefficients a_k determined using the CFA. When the target number is irrational ($x_0 \in \mathbb{I}$), the CFA does not terminate; thus, each step produces a more accurate rational approximation, converging in the limit as $n \to \infty$.

Thus the CFA expansion is an algorithm that can, in theory, determine when the target is rational, but with an important caveat: one must determine if the expansion terminates. This may not be obvious. The
fraction $1/3 = 0.3333\ldots$ is an example of such a target, where the CFA terminates yet the fraction repeats. It must be that

$$1/3 = 3 \times 10^{-1} + 3 \times 10^{-2} + 3 \times 10^{-3} + \ldots$$

Here $3/7$. As a second example,

$$1/7 = 0.142857\ldots = 142857 \times 10^{-6} + 142857 \times 10^{-12} + \ldots$$

There are several notations for repeating decimals such as $1/7 = 0.142857\ldots$ and $1/7 = 0.1142857\ldots$. Note that $142857 = 999999/7$. Related identities include $1/11 = 0.090909\ldots$ and $11 \times 0.090909 = 999999$. When the sequence of digits repeats, the sequence is predictable and it must be rational. But it is impossible to be sure that it repeats because the length of the repeat can be arbitrarily long.

One of the many useful things about the procedure is its generalization to the expansion of transmission lines as complex functions of the Laplace complex frequency s. As an example, in Assignment DE-3 (Problem 2 on p. 191), a transmission line is developed in terms of the CFA.

Exercise: Discuss the relationship between the CFA and the transmission line modeling method on page 127. Solution: The solution is detailed in Appendix E (p. 289).

2.5.2 Pythagorean triplets (Euclid's formula)

Euclid's formula is a method for finding three integer lengths $[a, b, c]$ that satisfy Eq. 1.1. It is

![Figure 2.6: Beads on a string form perfect right triangles when the number of unit lengths between beads for each side satisfies Eq. 1.1. For example, when $p = 2, q = 1$, the sides are $[3, 4, 5]$.](image)

This result may be directly verified, since

or

$$p^4 + q^4 + 2[p^2q^2] = p^4 + q^4 - 2[p^2q^2] + 4[p^2q^2].$$

Thus, Eq. 2.11 is easily proved once given. Deriving Euclid's formula is obviously much more difficult, as provided in AE-1. A well-known example is the right triangle depicted in Fig. 2.6, defined by the integer lengths $[3, 4, 5]$ having angles $[0.54, 0.65, \pi/2]$ (rad), which satisfies Eq. 1.1 (p. 45). As quantified by Euclid's formula (Eq. 2.11), there are an infinite number of Pythagorean triplets (PTs). Furthermore, the seemingly simple triangle, having angles of $[30, 60, 90] \in \mathbb{N}$ (deg) (i.e., $[\pi/6, \pi/3, \pi/2] \in \mathbb{I}$ (rad)), has one irrational ($\sqrt{3}$) length ($[1, \sqrt{3}, 2]$).
The set from which the lengths \([a, b, c]\) are drawn was not missed by the early Asians and documented by the Greeks. Any equation whose solution is based on integers is called a Diophantine equation, named after the Greek mathematician Diophantus of Alexandria (c. 250 CE) (Fig. 1.1, p. 15).

A stone tablet having the numbers engraved on it, as shown in Fig. 2.7, was discovered in Mesopotamia from the 19th century [BCE] and cataloged in 1922 by George Plimpton. These numbers are \(a\) and \(c\) pairs from PTs \([a, b, c]\). Given this discovery, it is clear that the Pythagoreans were following those who came long before them. Recently a second similar stone, dating between 350 and 50 [BCE], has been reported, that indicates early calculus on the orbit of Jupiter's moons, the very same moons that in 1687 Rome observed, to show that the speed of light was finite (p. 26).

\[x_n^2 - Ny_n^2 = (x_n - \sqrt{N}y_n)(x_n + \sqrt{N}y_n) = 1, \]

\[21 \]

Taking the Fourier transform of the target number, represented as a sequence, could help to identify an underlying periodic component. The number 1/7 \([1, 4, 2, 8, 5, 7]_{\text{[BCE]}}\) has a 50 [DB] notch at 0.8π [rad] due to its 6-digit periodicity, carried to 15 digits (Matlab/Octave maximum precision), Hamming windowed, and zero padded to 1024 samples.

\[22 \]

\[23 \]

with non-square $N \in \mathbb{N}$ specified and $x, y \in \mathbb{N}$ unknown, has a venerable history in both physics (p. 27) and mathematics. Given its factored form, it is obvious that every solution x_n, y_n has the asymptotic property

$$\frac{x_n}{y_n} \xrightarrow{n \to \infty} \pm \sqrt{N}.$$ \hfill (2.13)

It is believed that Pell's equation is directly related to the Pythagorean theorem, since they are both simple binomials having integer coefficients (Stillwell, 2010, 48), with Pell's equation being the hyperbolic version of Eq. 1.1. For example, with $N = 2$, a solution is $x = 17, y = 12$ (i.e., $17^2 - 2 \cdot 12^2 = 1$).

A 2×2 matrix recursion algorithm, likely due to the Chinese and used by the Pythagoreans to investigate \sqrt{N}, is

$$\begin{bmatrix} x \\ y \end{bmatrix}_{n+1} = \begin{bmatrix} 1 & N \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}_n,$$ \hfill (2.14)

where we indicate the index outside the vectors.

Starting with the trivial solution $[x_0, y_0]^T = [1, 0]^T$ (i.e., $x_0^2 - Ny_0^2 = 1$), additional solutions of Pell's equations are determined, having the property $x_n/y_n \to \sqrt{N} \in \mathbb{Q}$, motivated by the Euclid's formula for Pythagorean triplets (Stillwell, 2010, p. 44).

Note that Eq. 2.14 is a 2×2 linear matrix composition method (see p. 106), since the output of one matrix multiply is the input to the next.

Asian solutions: The first solution of Pell's equation was published by Brahmagupta (668), who independently discovered the equation (Stillwell, 2010, p. 46). Brahmagupta's novel solution also used the composition method, but different from Eq. 2.14. Then in 1150 CE, Bhaskara II independently obtained solutions using Eq. 2.14 (Stillwell, 2010, p. 59). This is the composition method we shall explore here, as summarized in Table B.1, Appendix B, Table B.1.

The best way to see how this recursion results in solutions to Pell's equation is by example. Initializing the recursion with the trivial solution $[x_0, y_0]^T = [1, 0]^T$ gives

$$\begin{bmatrix} x_1 \\ y_1 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} x_2 \\ y_2 \end{bmatrix} = \begin{bmatrix} 3 & 2 \\ 2 & 1 \end{bmatrix}, \begin{bmatrix} x_3 \\ y_3 \end{bmatrix} = \begin{bmatrix} 7 & 5 \\ 5 & 3 \end{bmatrix}, \begin{bmatrix} x_4 \\ y_4 \end{bmatrix} = \begin{bmatrix} 17 & 12 \\ 12 & 9 \end{bmatrix}, \begin{bmatrix} x_5 \\ y_5 \end{bmatrix} = \begin{bmatrix} 41 & 29 \\ 29 & 20 \end{bmatrix}.$$

Thus the recursion results in a modified version of Pell's equation,

$$x_n^2 - 2y_n^2 = (-1)^n,$$ \hfill (2.15)

where only even values of n are solutions. This sign change had no effect on the Pythagoreans' goal, since they only cared about the ratio $y_n/x_n \to \pm \sqrt{2}$.

Modified recursion: The following summarizes the solution (2.15) of Pell's equation for $N = 2$ using a slightly modified linear matrix recursion. To fix the $(-1)^n$ problem, multiplying the 2×2 matrix by
1. Thus, we have:

\[
\begin{bmatrix}
\begin{matrix}
x \\
y
\end{matrix}
\end{bmatrix}
= \begin{bmatrix}
\begin{matrix}
1 & j \\
j & 1
\end{matrix}
\end{bmatrix}^n
= \begin{bmatrix}
\begin{matrix}
1 & 2 \\
1 & 1
\end{matrix}
\end{bmatrix}^n
= \begin{bmatrix}
\begin{matrix}
1 & 2 \\
1 & 1
\end{matrix}
\end{bmatrix}^2
= \begin{bmatrix}
\begin{matrix}
2 \cdot j & 2 \\
2 & 1
\end{matrix}
\end{bmatrix}
= \begin{bmatrix}
\begin{matrix}
1 & 0 \\
1 & j
\end{matrix}
\end{bmatrix}
\]

For \(n = 0, 1, 2, 3, \ldots \) and \(j^2 = -1 \), this gives:

\[j^2 - 2 \cdot j^2 = 1 \]

\[3^2 - 2 \cdot 2^2 = 1 \]

\[(7j)^2 - 2 \cdot (5j)^2 = 1 \]

\[17^2 - 2 \cdot 12^2 = 1 \]

\[(41j)^2 - 2 \cdot (29j)^2 = 1 \]

Solution to Pell’s equation: By multiplying the matrix by \(j \), all the solutions \((x_k, y_k) \in \mathbb{C}\) to Pell’s equation are determined. The \(j \) factor corrects the alternation in sign, so every iteration yields a solution. For \(N = 2, n = 0 \) (the initial solution), \(x_0 = 1, y_0 = 0 \), \(x_1, y_1 = j \), \(x_2, y_2 = [3, 2] \). These are easily checked using this recursion.

For \(N = 3 \), Fig. B.1 (p. 270) shows that every output of this slightly modified matrix recursion gives solutions to Pell’s equation: \([1, 0], [1, 1], [4, 2], [10, 6], \ldots, [76, 44], \ldots \)

At each iteration, the ratio \(x_n/y_n \) approaches \(\sqrt{N} \) with increasing accuracy, coupling it to the CFA, which may also be used to find approximations to \(\sqrt{N} \). The value of \(41/29 \approx \sqrt{2} \), with a relative error of \(<0.03\% \). The solution for \(N = 3 \) is given in Appendix B.2.4 (p. 270).

2.5.4 Fibonacci sequence

Another classic problem, also formulated by the Chinese, was the Fibonacci sequence, generated by the relationship

\[f_{n+1} = f_n + f_{n-1}, \]

Here the next number \(f_{n+1} \in \mathbb{N} \) is the sum of the previous two. If we start from \([0, 1]\), this linear recursion equation leads to the Fibonacci sequence \(f_n = 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, \ldots \). Alternatively, if we define \(y_{n+1} = x_n \), then Eq. 2.16 may be compactly represented by a \(2 \times 2 \) companion matrix recursion (see Fibonacci Exercises in AE-E1):

\[
\begin{bmatrix}
\begin{matrix}
x \\
y
\end{matrix}
\end{bmatrix}
= \begin{bmatrix}
\begin{matrix}
1 & 1 \\
1 & 0
\end{matrix}
\end{bmatrix}
\begin{bmatrix}
\begin{matrix}
x \\
y
\end{matrix}
\end{bmatrix}
\]

which has eigenvalues \((1 \pm \sqrt{5})/2\).

The correspondence of Eqs. 2.16 and 2.17 is easily verified. Starting with \([x, y]^T_0 = [0, 1]^T\), we obtain for the first few steps:

\[
\begin{bmatrix}
1 \\
0
\end{bmatrix},
\begin{bmatrix}
1 & 1 \\
1 & 0
\end{bmatrix},
\begin{bmatrix}
1 & 1 \\
1 & 0
\end{bmatrix},
\begin{bmatrix}
1 & 1 \\
1 & 0
\end{bmatrix},
\begin{bmatrix}
1 & 1 \\
1 & 0
\end{bmatrix},
\begin{bmatrix}
1 & 1 \\
1 & 0
\end{bmatrix},
\begin{bmatrix}
1 & 1 \\
1 & 0
\end{bmatrix},
\begin{bmatrix}
1 & 1 \\
1 & 0
\end{bmatrix},
\begin{bmatrix}
1 & 1 \\
1 & 0
\end{bmatrix},
\begin{bmatrix}
1 & 1 \\
1 & 0
\end{bmatrix}
\)

From the above \(x_n = [0, 1, 1, 2, 3, 5, \ldots] \) is the Fibonacci sequence, since the next \(x_n \) is the sum of the previous two, and the next \(y_n \) is \(x_n \).

Exercise Use the Octave/Matlab command \(\text{compan}(c) \) to find the companion matrix of the polynomial coefficients defined by Eq. 2.16.

Solution: Using the Matlab/Octave code:

\[
c = [1, -1, -1];
C = \text{compan}(c);
\]

\[
C = \begin{bmatrix}
1 & 1 \\
1 & 0
\end{bmatrix}
\]

Author: Is it OK to use Matlab/Octave and Octave/Matlab interchangeably? **Yes.**
Exercise 2.19. Find the eigenvalues of matrix C. Solution: The characteristic equation is

$$\det \begin{bmatrix} 1 - \lambda & 1 \\ 1 & -\lambda \end{bmatrix} = 0$$

or $\lambda^2 - \lambda - 1 = (\lambda - 1/2)^2 - 1/4 - 1 = 0$, which has roots $\lambda_{\pm} = (1 \pm \sqrt{5})/2 \approx \{1.618, -0.618\}$.

The mean-Fibonacci sequence: Suppose that the Fibonacci sequence recursion is replaced by the mean of the last two values, namely let

$$f_{n+1} = \frac{f_n + f_{n-1}}{2}.$$ \hspace{1cm} (2.19)

This seems like a small change. But how does the solution differ? To answer this question it is helpful to look at the corresponding 2×2 matrix.

Exercise 2.20. Find the 2×2 matrix corresponding to Eq. 2.19. The 2×2 matrix may be found using the companion matrix method (p. 81). Solution: Using Matlab/Octave code, we have

```matlab
A=[1, -1/2, -1/2];
C=companion(A);
```

which returns

$$C = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ 2 & 0 \end{bmatrix}.$$ \hspace{1cm} (2.20)

Exercise 2.21. Find the steady state solution for the mean-Fibonacci, starting from $[1, 0]_0$. State the nature of both solutions. Solution: By inspection one steady-state solution is $[1, 1]^T_0$ or $f_n = 1^n$. To find the full solution we need to find the two eigenvalues, defined by

$$\det \begin{bmatrix} 1/2 - \lambda & 1/2 \\ 1 & -\lambda \end{bmatrix} = \lambda^2 - \lambda/2 - 1/2 = (\lambda - 1/4)^2 - (1/4)^2 - 1/2 = 0.$$

Thus $\lambda_{\pm} = (1 \pm \sqrt{3})/4 = \{1, -0.5\}$. Thus the second solution is $(-1/2)^n$, which changes sign at each time step and quickly goes to zero. The full solution is given by $E \Lambda^n E^{-1} [1, 0]^T_0$ (see Appendix B, p. 267).
Relations to digital signal processing: Today we recognize Eq. 2.16 as a discrete difference equation, which is a pre-limit (pre-stream 3) recursive form of a differential equation. The 2×2 matrix form of Eq. 2.16 is an early precursor to 17th and 18th-century developments in linear algebra. Thus the Greeks' recursive solution for the $\sqrt{2}$ and Bhaskara's (Brahmagupta's) solution of Pell's equation are early precursors to discrete-time signal processing as well as to calculus.

There are strong similarities between Pell's equation and the Pythagorean theorem. As we shall see in Appendix 2, Pell's equation is related to the geometry of a hyperbola, just as the Pythagorean equation is related to the geometry of a circle. We shall show, as one might assume, that there is a Euclid's formula for the case of Pell's equations, since these are all conic sections with closely related conic geometry. As we have seen, the solutions involve $\sqrt{-1}$. The derivation is a trivial extension of that for the Euclid's formula for Pythagorean triplets. The early solution of Brahmagupta was not related to this simple formula.
2.6 Exercises NS-3

Topic of this homework: Pythagorean triplets, Pell's equation, Fibonacci sequence
Deliverables: Answers to problems

Pythagorean triplets

Problem 2.16: Euclid's formula for the Pythagorean triplets a, b, c is \[a = p^2 - q^2, \quad b = 2pq, \quad c = p^2 + q^2. \]

(a) -Q 2.1: What condition(s) must hold for p and q such that a, b, and c are always positive and nonzero?

(b) -Q 2.2: Solve for p and q in terms of a, b, and c.

Problem 2.17: The ancient Babylonians (c. 2000 BCE) cryptically recorded (a, c) pairs of numbers on a clay tablet, archeologically denoted Plimpton-322 (see Fig. 2.7).

(a) -Q 2.1: Find p and q for the first five pairs of a and c from the tablet entries. Table 1: First five (a, c) pairs of Plimpton-322:

<table>
<thead>
<tr>
<th>a</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>119</td>
<td>169</td>
</tr>
<tr>
<td>3367</td>
<td>4825</td>
</tr>
<tr>
<td>4601</td>
<td>6649</td>
</tr>
<tr>
<td>12709</td>
<td>18541</td>
</tr>
<tr>
<td>65</td>
<td>97</td>
</tr>
</tbody>
</table>

Find a formula for a in terms of p and q.

(b) -Q 2.2: Based on Euclid's formula, show that c > (a, b).

(c) -Q 2.3: What happens when c = a?

(d) -Q 2.4: Is b + c a perfect square? Discuss.

Pell's equation:

Problem 2.18: Pell's equation is one of the most historic (i.e., important) equations of Greek number theory because it was used to show that \(\sqrt{2} \notin \mathbb{Q} \). We seek integer solutions of

\[x^2 - Ny^2 = 1. \]
As shown in §2.5.2 (p. 59), the solutions x_n, y_n for the case of $N = 2$ are given by the linear 2×2 matrix recursion

\[
\begin{bmatrix}
x_{n+1} \\
y_{n+1}
\end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_n \\
y_n
\end{bmatrix}
\]

with $[x_0, y_0]^T = [1, 0]^T$ and $1_j = \sqrt{-1} = e^{i\pi/2}$. It follows that the general solution to Pell’s equation for $N = 2$ is

\[
\begin{bmatrix} x_n \\
y_n
\end{bmatrix} = (e^{i\pi/2})^n \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_0 \\
y_0
\end{bmatrix}.
\]

To calculate solutions to Pell’s equation using the matrix equation above, we must calculate $A^n = e^{i\pi n/2} \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}$, which becomes tedious for $n > 2$, since it requires $n \times 2 \times 2$ matrix multiplications.

Diagonalization of a matrix ("eigenvalue/eigenvector decomposition"):

As derived in Appendix B, the most efficient way to compute A^n is to **diagonalize** the matrix A, by finding its eigenvalues and eigenvectors.

The eigenvalues λ_k and eigenvectors e_k of a square matrix A are related by

\[
\begin{align*}
A e_k &= \lambda_k e_k, \\
&= (2.21)
\end{align*}
\]

such that multiplying an eigenvector e_k of A by the matrix A is the same as multiplying by a scalar, $\lambda_k \in \mathbb{C}$ (the corresponding eigenvalue). The complete eigenvalue problem may be written as

\[
A E = E \Lambda.
\]

If A is a 2×2 matrix, the matrices E and Λ (of eigenvectors and eigenvalues, respectively) are

\[
E = \begin{bmatrix} e_1 & e_2 \end{bmatrix} \quad \text{and} \quad \Lambda = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}.
\]

Thus, the matrix equation $A E = \begin{bmatrix} A e_1 & A e_2 \end{bmatrix} = \begin{bmatrix} \lambda_1 e_1 & \lambda_2 e_2 \end{bmatrix} = E \Lambda$ contains Eq. 2.21 for each eigenvalue-eigenvector pair.

The **diagonalization** of the matrix A refers to the fact that the matrix of eigenvalues, Λ, has non-zero elements only on the diagonal. The key result is found by post-multiplication of the eigenvalue matrix by E^{-1}, giving

\[
A E E^{-1} = A = E \Lambda E^{-1}.
\]

If we now take powers of A, the n^{th} power of A is

\[
A^n = (E \Lambda E^{-1})^n = E \Lambda E^{-1} \Lambda E^{-1} \cdots E \Lambda E^{-1} = E \Lambda^n E^{-1}.
\]

This is a very powerful result, because the n^{th} power of a diagonal matrix is extremely easy to calculate:

\[
\Lambda^n = \begin{bmatrix} \lambda_1^n & 0 \\ 0 & \lambda_2^n \end{bmatrix}.
\]

Thus, from Eq. 2.21 we can calculate A^n using only two matrix multiplications:

\[
A^n = E \Lambda^n E^{-1}.
\]

24 These concepts may be easily extended to higher dimensions.
Finding the eigenvalues:

The eigenvalues λ_k are determined by Eq. 2.11 by factoring out e_k:

$$Ae_k = \lambda_k e_k$$

$$(A - \lambda_k I)e_k = 0.$$

Matrix $I = [1, 0, 0, 1]^T$ is the identity matrix, having the dimensions of A, with elements δ_{ij} (i.e., diagonal elements $\delta_{11} = 1$ and off-diagonal elements $\delta_{12} = 0$).

The vector e_k is not zero, yet when operated on by $A - \lambda_k I$, the result must be zero. The only way this can happen is if the operator is degenerate (has no solution) that is,$$
\det(A - \lambda I) = \det \begin{bmatrix} (a_{11} - \lambda) & a_{12} \\ a_{21} & (a_{22} - \lambda) \end{bmatrix} = 0.
$$

This means that the two equations have the same roots (the equation is degenerate).

This determinant equation results in a second degree polynomial in λ:

$$(a_{11} - \lambda)(a_{22} - \lambda) - a_{12}a_{21} = 0,$$

the roots of which are the eigenvalues of the matrix A.

Finding the eigenvectors:

An eigenvector e_k can be found for each eigenvalue λ_k from Eq. 2.11:

$$(A - \lambda_k I)e_k = 0.$$

The left side of the above equation becomes a column vector, where each element is an equation in the elements of e_k, set equal to 0 on the right side. These equations are always degenerate since the determinant is zero. Thus the two equations have the same slope.

Solving for the eigenvectors is often confusing, because they have arbitrary magnitudes, $||e_k|| = \sqrt{e^T k e_k} = \sqrt{e^T k 1 + e^T k 2} = d$. From Eq. 2.1, you can only determine the relative magnitudes and signs of the elements of e_k, so you will have to choose a magnitude d. It is common practice to normalize each eigenvector to have unit magnitude ($d = 1$).

(a) - Q 3.1: Find the companion matrix, and thus the matrix A, having the same eigenvalues as Pell's equation.

Hint: Use Matlab's function $[E, Lambda] = eig(A)$ to check your results!

(b) - Q 3.2: Solutions to Pell’s equation were used by the Pythagoreans to explore the value of $\sqrt{2}$. Explain why Pell’s equation is relevant to $\sqrt{2}$.

(c) - Q 3.3: Find the first three values of $(x_n, y_n)^T$ by hand and show that they satisfy Pell’s equation for $N = 2$.

By hand, find the eigenvalues λ_\pm of the 2×2 Pell’s equation matrix

$$A = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}.$$

(d) - Q 3.4: By hand, show that the matrix of eigenvectors, E, is

$$E = \begin{bmatrix} e_+ & e_- \end{bmatrix} = \frac{1}{\sqrt{3}} \begin{bmatrix} -\sqrt{2} & \sqrt{2} \\ 1 & 1 \end{bmatrix}.$$
(c) Q 3.5: Using the eigenvalues and eigenvectors you found for \(A \), verify that

\[
E^{-1}AE = \Lambda \equiv \begin{bmatrix}
\lambda_+ & 0 \\
0 & \lambda_-
\end{bmatrix},
\tag{2.23}
\]

(f) Q 3.6: Now that you have diagonalized \(A \) (Equation 2.23), use your results for \(E \) and \(\Lambda \) to solve for the \(n = 10 \) solution \((x_{10}, y_{10})^T\) to Pell’s equation with \(N = 2 \).

The Fibonacci sequence

The Fibonacci sequence is famous in mathematics and has been observed to play a role in the mathematics of genetics. Let \(x_n \) represent the Fibonacci sequence,

\[
x_{n+1} = x_n + x_{n-1},
\tag{2.25}
\]

where the current input sample \(x_n \) is equal to the sum of the previous two inputs. This is a discrete time recurrence relation. To solve for \(x_n \), we require some initial conditions. In this exercise, let us define \(x_0 = 1 \) and \(x_{10} = 0 \). This leads to the Fibonacci sequence \(\{1, 1, 2, 3, 5, 8, 13, \ldots \} \) for \(n = 0, 1, 2, 3, \ldots \).

Equation 2.5 is equivalent to the 2 \(\times \) 2 matrix equation

\[
\begin{bmatrix}
x_n \\
y_n
\end{bmatrix} = A \begin{bmatrix}
x_{n-1} \\
y_{n-1}
\end{bmatrix}, \quad A = \begin{bmatrix}
1 & 1 \\
1 & 0
\end{bmatrix}.
\tag{2.26}
\]

Problem 2.19 Here we seek the general formula for \(x_n \). Like the Pell’s equation, Eq. 2.5 has a recursive, eigenanalysis solution. To find it we must recast \(x_n \) as a matrix relation, and then proceed as we did for the Pell case.

(a) Q 4.1: By example, show that the Fibonacci sequence \(x_n \) as described above may be generated by

\[
\begin{bmatrix}
x_n \\
y_n
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 0
\end{bmatrix}^n \begin{bmatrix}
x_0 \\
y_0
\end{bmatrix}, \quad \begin{bmatrix}
x_0 \\
y_0
\end{bmatrix} = \begin{bmatrix}
1 \\
0
\end{bmatrix}.
\tag{2.27}
\]

(b) Q 4.2: What is the relationship between \(y_n \) and \(x_n \)?

(c) Q 4.3: Write a Matlab/Octave program to compute \(x_n \) using the matrix equation above. Test your code using the first few values of the sequence. Using your program, what is \(x_{40} \)? Note: Consider using the eigenanalysis of \(\Lambda \), described by Eq. 2.3 (p. 65). 2.23.

(d) Q 4.4: Using the eigenanalysis of the matrix \(\Lambda \) (and a lot of algebra), it is possible to obtain the general formula for the Fibonacci sequence

\[
x_n = \frac{1}{\sqrt{5}} \left(\left(\frac{1 + \sqrt{5}}{2} \right)^{n+1} - \left(\frac{1 - \sqrt{5}}{2} \right)^{n+1} \right).
\tag{2.28}
\]

(e) Q 4.5: What are the eigenvalues \(\lambda_\pm \) of the matrix \(\Lambda \)?

(f) Q 4.6: How is the formula for \(x_n \) related to these eigenvalues? Hint: find the eigenvectors.
CHAPTER 2. STREAM 1: NUMBER SYSTEMS

2.20 Problem #5.2 Replace the Fibonacci sequence with

\[x_n = \frac{x_{n-1} + x_{n-2}}{2}, \]

such that the value \(x_n \) is the average of the previous two values in the sequence.

(a) -Q 5.4: What matrix \(A \) is used to calculate this sequence?

(b) -Q 5.2: Modify your computer program to calculate the new sequence \(x_n \). What happens as \(n \to \infty \)?

(c) -Q 5.3: What are the eigenvalues of your new \(A \)? How do they relate to the behavior of \(x_n \) as \(n \to \infty \)? Hint: you can expect the closed-form expression for \(x_n \) to be similar to Eq. 2.8. 2.28.

(d) -Q 5.4: What matrix \(A \) is used to calculate this sequence?

(e) -Q 5.5: Modify your computer program to calculate the new sequence \(x_n \). What happens as \(n \to \infty \)?

(f) -Q 5.6: What are the eigenvalues of your new \(A \)? How do they relate to the behavior of \(x_n \) as \(n \to \infty \)? Hint: you can expect the closed-form expression for \(x_n \) to be similar to Eq. 2.8. 2.28.

2.21 Problem #6.2 Consider the expression

\[\sum_{1}^{N} f_{n}^2 \rightarrow f_{N} f_{N+1}. \]

- Q 6.1: Find a formula for \(f_n \) that satisfies this relationship. Hint: It only holds for the Fibonacci recursion formula.

CFA as a matrix recursion

2.22 Problem #7.1 The CFA may be written as a matrix recursion. For this we adopt a special notation, unlike other matrix notations, with \(k \in \mathbb{N} \):

\[\begin{bmatrix} n \\ x \end{bmatrix}_{k+1} = \begin{bmatrix} 0 & [x_k] \\ 0 & [x_k \mod y_k] \end{bmatrix} \begin{bmatrix} n \\ x \end{bmatrix}_k. \]

This equation says that \(n_{k+1} = [x_k] \) and \(x_{k+1} = 1/(x_k - \lfloor x_k \rfloor) \). It does not mean that \(n_{k+1} = [x_k] \cdot x_k \), as would be implied by standard matrix notation. The lower equation says that \(y_k = [x_k - \lfloor x_k \rfloor] \) is the remainder, namely \(y_k = [x - k] + r_k \) (Octave/Matlab's \texttt{rem(x,floor(x))} function), also known as \(\mod(x,y) \).

\[\text{found this problem on a worksheet for Math 213 midterm (213 practice.pdf)} \]

\[\text{This notation is highly nonstandard, due to the nonlinear operations. The matrix elements are derived from the vector rather than multiplying them. These calculation may be done with the help of Matlab/Octave.} \]
Q 7.6: Start with $n_0 = 0$, $x_0 \in \mathbb{I}$, $n_1 = \lfloor x_0 \rfloor \in \mathbb{N}$, $r_1 = x - \lfloor x \rfloor \in \mathbb{I}$ and $x_1 = 1/r_1 \in \mathbb{I}$, $r_n \neq 0$. For $k = 1$ this generates on the left the next CFA parameter $n_2 = \lfloor x_1 \rfloor$ and $x_2 = 1/r_2 = 1/(x_0 - \lfloor x_0 \rfloor)$ from n_0 and x_0.

Find $[n, x]_{k+1}$ for $k = 2, 3, 4, 5$.
Chapter 3

Algebraic Equations: Stream 2

3.1 The physics behind nonlinear Algebra (Euclidean geometry)

Stream 2 is geometry, which led to the merging of Euclid’s geometrical methods and the 9th century development of algebra by al-Khwarizmi ([30 CE]) (Fig. 1.1, p. 15). This migration of ideas led Descartes and Fermat to develop analytic geometry (Fig. 1.2, p. 17).

The mathematics up to the time of the Greeks, documented and formalized by Euclid, served students of mathematics for more than two thousand years. Algebra and geometry were at first, independent lines of thought. When merged, the focus returned to the Pythagorean theorem. Algebra generalized the analytic conic section into the complex plane, greatly extending the geometrical approach as taught in Euclid’s Elements. With the introduction of algebra, numbers, rather than lines, could be used to represent geometrical lengths in the complex plane. Thus the appreciation for geometry grew, given the addition of the rigorous analysis using numbers.

History of Mathematics after the 15th Century

Chronological History post 15th century

16th: Bombelli ([1526-1572] and Galileo ([1564-1642] and Kepler ([1571-1633] and Mersenne ([1588-1648])
17th: Huygens ([1629-1695] and Newton ([1642-1727] and Principia ([1687] and Bernoulli ([1654-1705] and Bernoulli ([1667-1748] and Pascal ([1606-1662] and Fermat ([1607-1665] and Descartes ([1596-1648] and Bernoulli ([1667-1748] and Bernoulli ([1667-1748])
18th: Bernoulli ([1700-1782] and Euler ([1707-1783] and d’Alembert ([1717-1783] and Lagrange ([1736-1813] and Laplace ([1749-1827] and Fourier ([1768-1830] and Neumann ([1769-1851] and Gauss ([1777-1855] and Cauchy ([1789-1857])
19th: Helmholtz ([1821-1894] and Kelvin ([1824-1906] and Kirchhoff ([1824-1874] and Riemann ([1826-1866] and Maxwell ([1831-1879] and Rayleigh ([1842-1919] and Heaviside ([1850-1925] and Poincare ([1854-1912] and Hilbert ([1862-1942] and Einstein ([1879-1955] and Fletcher ([1884-1981] and Sommerfeld ([1880-1951] and Brillouin ([1889-1969] and Nyquist ([1889-1976])
20th: Bode ([1905-1982] and Hendrik Wade ([1905-1982]

Physics inspires algebraic mathematics: The Chinese used music, art, and navigation to drive mathematics. Unfortunately, much of their knowledge has been handed down either as artifacts, such as musical bells and tools, or mathematical relationships documented, but not created, by scholars such as Euclid, Archimedes, Diophantus, and perhaps Brahmagupta. With the invention of algebra by al-Khwarizmi ([830 CE]), mathematics became more powerful and blossomed. During the 16th and 17th century, it had become clear that differential equations (DEs), such as the wave equation, can characterize a law of nature at a single point in space and time. This principle was not obvious. A desire to understand motions of objects and planets precipitated many new discoveries. This period, centered around Galileo, Newton, and Euler, is illustrated in Fig. 1.2 (p. 17).

As previously described, the law of gravity was first formulated by Galileo using the concept of conservation of energy, which determines how masses are accelerated when friction is not considered...
Figure 3.1: Timeline of the three centuries from the mid-17th to mid-20th centuries CE, one of the most productive times of all, producing a continuous stream of fundamental theorems, because mathematicians were sharing information. A few of the individuals who played notable roles in this development, in chronological order, include: Galileo, Mercoume, Newton, d’Alembert, Fermat, Huygens, Descartes, Helmholtz, and Kirchhoff. These individuals were some of the first to develop the basic ideas, in various forms, that were then further reworked into the proofs, that today we recognize as the fundamental theorems of mathematics.

and the mass is constant. Kepler investigated the motion of the planets. While Kepler was the first to observe that the orbits of planets are described by ellipses, it seems he underappreciated the significance of his finding, as he continued working on his incorrect epicycle planetary model. Following up on Galileo’s work (Galileo, 1638), Newton (1687) went on to show that there must be a gravitational potential between two masses \(m_1, m_2\) of the form

\[
\phi_{\text{New}}(r(t)) \propto \frac{m_1 m_2}{r(t)},
\]

where \(r = |x_1 - x_2|\) is the Euclidean distance between the two point masses at locations \(x_1\) and \(x_2\).

Using algebra and his calculus, Newton formalized the equation of gravity, forces, and motion (Newton’s three laws), the most important being

\[
f(t) = \frac{d}{dt} M v(t),
\]

and showed that Kepler’s discovery of planetary elliptical motion naturally follows from these laws (see p. 10). With the discovery of Uranus (1781), “Kepler’s theory was ruined” (i.e., proven wrong) (Stillwell, 2010, p. 23).

Possibly the first measurement of the speed of sound, of 1380 (Parisian feet per second), was by Marin Mersenne in 1630. 1 English foot is 1.06575 Paris feet.

Newton and the speed of sound: Once Newton proposed the basic laws of gravity and explained the elliptical motion of the planets, he proposed the first model of the speed of sound.

In 1630 Mersenne showed that the speed of sound was approximately 1000 (feet per hour). This may be done by timing the difference in the time the flash of an explosion, to the time it is heard. For example, if the explosion is 1 mile away, the delay is about 5 seconds. Thus with a simple clock, such as a pendulum, and an explosive, the speed may be accurately measured. If we say the speed of sound is \(c_0\), then the equation for the wavefront would be \(f(x, t) = u(x - c_0 t)\), where function \(u(t) = 0\) for \(t < 0\) and 1 for \(t > 0\). If the wave is traveling in the opposite direction, then the formula would be \(u(x + c_0 t)\). If one also assumes that sound waves add in an independent manner (superposition holds) (Postulate P2, p. 138), then the general solution for the acoustic wave would be

\[
f(x, t) = A u(x - c_0 t) + B u(x + c_0 t),
\]
and for the acoustic wave equation

\[\frac{\partial^2}{\partial x^2} \varrho(x, t) = \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \varrho(x, t), \tag{3.3} \]

one of the most important equations of mathematical physics (see Eq. 4.16, p. 160), 20 years after Newton’s death.

It had been well established, at least by the time of Galileo, that the wavelength \(\lambda \) and frequency \(f \) for a pure tone sound wave obey the relationship

\[f \lambda = \frac{1}{2}. \tag{3.4} \]

Given what we know today, the general solution to the wave equation may be written in terms of a sum over the complex exponentials, famously credited to Euler, as

\[\varrho(x, t) = A e^{2 \pi (ft - x/\lambda)} + B e^{2 \pi (ft + x/\lambda)}, \tag{3.5} \]

where \(t \) is time and \(x \) is position, and \(ft \) and \(x/\lambda \) are dimensionless. This equation only describes the steady-state solution, no onsets or dispersion. Thus this solution must be generalized to include these important effects.

Thus the basics of sound propagation was in Newton’s grasp and finally published in Principia in 1687. The general solution to Newton’s wave equation (i.e., \(p(x, t) = G(t \pm x/c) \), where \(G \) is any function, was first published 60 years later by d’Alembert (c1747) in 1747.

Newton’s value for the speed of sound in air \(c_0 \) was incorrect by the thermodynamic constant \(\sqrt{\gamma} c_0 = \sqrt{\gamma} \lambda c_0 \), a problem that would take 130 years to formulate. What was needed was the adiabatic process (the concept of constant-heat energy). For audio frequencies (0.020 to 20 kHz), the temperature gradients cannot diffuse the distance of a wavelength in one cycle (Tisza, 1966; Pierce, 1981; Boyer and Merzbach, 2011), “trapping” the heat energy in the wave.\(^1\) To repair Newton’s formula for the sound speed it was necessary to define the dynamic stiffness \(s_0 \) of air \(p_0 \frac{\partial s_0}{\partial \rho_0} \), where \(p_0 \) \((\text{nm}^3/\text{m}^3)\) or \(10^5 \) \(\text{Pa} \) is the static stiffness of air. \(1 \text{[Pa]} = 1 \text{[N/m}^2\] \). This required replacing Boyle’s Law \(PV = \text {constant} \) with the adiabatic expansion law \(P V^n = \text {constant} \). But this fix still ignores viscous and thermal losses (Kirchhoff, 1868; Rayleigh, 1896; Mason, 1927; Pierce, 1981).

Today we know that the speed of sound is given by

\[c_s = \sqrt{\frac{\gamma p_0}{\rho_0}} = 343 \frac{\text{m}}{\text{s}}, \]

which is a function of the density \(\rho_0 = 1.129 \text{[kg/m}^3\] \) and the dynamic stiffness \(s_0 \) of air.\(^2\) The speed of sound stated in other units is 434 [ft/s], 1234.8 [km/h], 1.125 [ft/ms], 1125.3 [ft/s], 4.692 [ms].

Newton’s success was important because it quantified the physics behind the speed of sound and demonstrated that momentum \((\text{mms})\), not mass \(m \), was transported by the wave. His concept was correct, and his formulation using algebra and calculus represented a milestone in science, assuming no viscoelastic losses. When including losses, the wave number becomes a complex function of frequency, leading to Eq. D.4 (p. 284).

In periodic structures, again the wave number becomes complex due to diffraction, as commonly observed in optics (e.g., diffraction gratings) and acoustics (creeping surface waves). Thus Eq. 3.4 only holds for the simplest cases, but in general, Eq. 3.6, the complex analytic (dispersive) function, called the propagation vector \(k(x, s) \) (see below), must be considered.

The corresponding discovery for the formula for the speed of light was made 174 years after Principia, by Maxwell (1861). Maxwell’s formulation also required great ingenuity, as it was necessary

\[1 \text{There were other physical enigmas, such as the observation that sound disappears in a vacuum or that a vacuum cannot draw water up a column by more than 34 feet.} \]

\[2 \text{Note:} \quad \gamma = C_p/C_v = 1.4 	ext{ is the ratio of two thermodynamic constants and} \quad p_0 = 10^{5} \text{[Pa]} \text{is the barometric pressure of air.} \]
to hypothesize an experimentally unmeasured term in his equations, to get the mathematics to correctly predict the speed of light.

Although this may be somewhat amazing that to this day we have failed to fully understand gravity significantly better than Newton’s theory. This is too harsh given the famous general relativity (1920) work of Einstein.

Case of dispersive wave propagation: This classic relation \(\lambda f = c \) is deceptively simple, yet confusing, because the *wave number* \(k = 2\pi/\lambda \) becomes a complex function of frequency (has both real and imaginary parts) in dispersive media (e.g., acoustic waves in tubes) when losses are considered (Kirchhoff, 1868; Mason, 1928).

A second important example is the case of electron waves in silicon crystals, where the *wave number* \(k(f) = 2\pi f/c \) is replaced with the complex analytic function of \(s \), called the *propagation vector* \(\kappa(s) \). In this case the wave becomes the eigen-function of the vector (3D) wave equation

\[
p^\pm(x, t) = \Phi_0(s) e^{\pm \kappa(x, s) \cdot x} ,
\]

where \(\kappa(x, s) \) is the vector eigenvalue (Brillouin, 1953). In these more general cases, \(\kappa(x, s) \) must be a vector *complex analytic function* of the Laplace frequency \(s = \sigma + \omega j \) and inverted with the Laplace transform (Brillouin, 1960, with help from Sommerfeld). This is because electron “waves” in the dispersive semiconductor (e.g., silicon) are “causally filtered” in \(x \) dimensions, in magnitude, phase, and direction \(z \). These 3D dispersion relations are known as Brillouin zones.

Silicon is a highly dispersive “wave filter,” forcing the wavelength to be a function of both \(s \) and direction. This view is elegantly explained by Brillouin (1953, Chap. 1) in his historic text. While the most famous examples come from quantum mechanics (Condon and Morse, 1929), modern acoustics contains a rich source of related examples (Morse, 1948; Barenak, 1954; Ramo et al., 1965; Fletcher and Rossing, 2008).

3.1.1 The first algebra

Prior to the invention of algebra, people worked out problems as sentences, using an obtuse description of the problem (Stillwell, 2010, p. 93). Algebra changed this approach, resulting in a compact language of mathematics, where numbers are represented as abstract symbols (e.g., \(x \) and \(a \)). The problem to be solved could be formulated in terms of sums of powers of smaller terms, the most common being powers of some independent variable (i.e., time or frequency). If we set \(a_n = 1 \), then

\[
P_N(z) = z^n + a_{n-1}z^{n-1} + \cdots + a_1z + a_0 = z^n + \sum_{k=0}^{n-1} a_kz^k = \prod_{k=0}^{n-1} (z - z_k)
\]

is called a *monic polynomial*. The coefficient \(a_n \) cannot be zero, or the polynomial would not be of degree \(n \). The resolution is to force \(a_n = 1 \), since this simplifies the expression and does not change the roots.

The key question is: What values of \(z = z_k \) result in \(P_N(z_k) = 0 \)? In other words, what are the roots \(z_k \) of the polynomial? Answering this question consumed thousands of years, with intense efforts by many aspiring mathematicians. In the earliest attempts, it was a competition to evaluate mathematical acumen. Results were held as a secret to the death bed. It would be fair to view this effort as an obsession. Today the roots of any polynomial may be found, to high accuracy, by numerical methods. Finding roots is limited by the numerical limits of the representation, namely by IEEE754 (p. 33). There are also a number of important theorems.

Of particular interest is composing a circle with a line by finding the intersection (root). There was no solution to this problem using geometry. The resolution of this problem is addressed in the assignments below.

3. Gravity waves were first observed experimentally while I was formulating §3-41 (p. 69).

This term is a misnomer, since the wave number is a complex function of the Laplace frequency \(s = \sigma + \omega j \), thus not a number in the common sense. Much worse, \(\kappa(s) = s/\sqrt{c} \) must be complex analytic in \(s \), which an even stronger condition.

The term wave number is so well established, there is no hope for recovery at this point.

Author: Please be more specific than "assignments below."
3.1.2 Finding roots of polynomials

The problem of factoring polynomials has a history more than a millennium in the making. While the quadratic (degree \(N = 2 \)) was solved by the time of the Babylonians (i.e., the earliest recorded history of mathematics), the cubic solution was finally published by Cardano in 1545. The same year, Cardano’s student solved the quartic \((N = 4) \). In 1826 (281 years later) it was proved that the quintic \((N = 5) \) could not be factored by analytic methods.

As a concrete example, we begin with the important but trivial case of the quadratic

\[
P_2(s) = as^2 + bs + c. \tag{3.8}
\]

First note that if \(a = 0 \), the quadratic reduces to the monomial \(P_1(s) = bs + c \). Thus we have the necessary condition that \(a \neq 0 \). The best way to proceed is to divide \(a \) out and work directly with the monic \(\tilde{P}_2(s) = \frac{1}{a}P_2(s) \). In this way we do not need to worry about the \(a = 0 \) exception.

The roots are those values of \(s \) such that \(\tilde{P}_2(s) = 0 \). One of the first results (recorded by the Babylonians, \(c2000 \) BCE) was the factoring of this equation by completing the square:

One may isolate \(s \) by rewriting Eq. 3.8 as

\[
\tilde{P}_2(s) = \frac{1}{a}P_2(s) = (s + b/2a)^2 - (b/2a)^2 + c/a. \tag{3.9}
\]

The factorization may be verified by expanding the squared term and canceling \((b/2a)^2 \):

\[
\tilde{P}_2(s) = [s^2 + (b/a)s + (b/2a)^2] - (b/2a)^2 + c/a.
\]

Setting Eq. 3.9 to zero and solving for the two roots \(s_\pm \) gives the quadratic formula:

\[
s_\pm = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \bigg|_{a=1} = -b/2 \pm \sqrt{(b/2)^2 - c}. \tag{3.10}
\]

Role of the discriminant: This can be further simplified. The term \((b/2)^2 - c \) under the square root is called the discriminant. Nominally in physics and engineering problems, the discriminant is negative, and \(b/2 \ll \sqrt{c} \) may be ignored (the damping is small compared to the resonant frequency), leaving only \(-c \) under the radical. Thus, the most natural way (i.e., corresponding to the most common physical cases) of writing the roots (Eq. 3.10) is

\[
s_\pm \approx -b/2 \pm \sqrt{-c} = -s_0 \pm s_0. \tag{3.11}
\]

This form separates the real and imaginary parts of the solution in a natural way. The term \(s_0 = b/2 \) is called the damping, which accounts for losses in a resonant circuit; while the term \(\sqrt{c} \), for mechanical, acoustical, and electrical networks, is called the resonant frequency. The last approximation ignores the (typically) minor correction \(b/2 \) to the resonant frequency, which in engineering applications is almost always ignored. Knowing that there is a correction is highlighted by this formula, making one aware that the small approximation exists (thus can be ignored).

It is not required that \(a, b, c \in \mathbb{R} > 0 \), but for physical problems of interest, this is almost always true (>99.99% of the time).

This is the case for mechanical and electrical circuits having small damping. Physically \(b > 0 \) is the damping coefficient and \(\sqrt{c} > 0 \) is the resonant frequency. One may then simplify and factor the form as \(s^2 + 2bs + c^2 = (s + b + \sqrt{c})(s + b - \sqrt{c}) \) which makes us aware that the small approximation exists (thus can be ignored)

\[^5\text{This is the case for mechanical and electrical circuits having small damping. Physically } b \text{ is the damping coefficient and } \sqrt{c} \text{ is the resonant frequency. One may then simplify and factor the form as } s^2 + 2bs + c^2 = (s + b + \sqrt{c})(s + b - \sqrt{c}).\]
Summary: The quadratic equation and its solution are ubiquitous in physics and engineering. It seems obvious that instead of memorizing the meaningless quadratic formula (Eq. 3.10), one should learn the physically meaningful solution (Eq. 3.11) obtained via Eq. 3.9 with $a = 1$. Arguably, the factored and normalized form (Eq. 3.9) is easier to remember, as a method (completing the square), rather than as a formula to be memorized.

Additionally, the real $(b/2)$ and imaginary $(\pm i\sqrt{3})$ parts of the two roots have physical significance as the damping and resonant frequency. Equation 3.10 has none (it is useless).

No insight is gained by memorizing the quadratic formula. To the contrary, an important concept is gained by learning how to complete the square, which is typically easier than identifying a, b, c and blindly substituting them into Eq. 3.10. Thus it’s worth learning the alternate solution (Eq. 3.11) since it is more common in practice and requires less algebra to interpret the final answer.

Exercise 3.11 By direct substitution demonstrate that Eq. 3.10 is the solution of Eq. 3.8. Hint: Work with $\hat{P}_3(x)$. Solution: Setting $a = 1$, the quadratic formula may be written

$$s_{\pm} = \frac{-b \pm \sqrt{b^2 - 4c}}{2}.$$

Substituting this into $\hat{P}_3(x)$ gives

$$\hat{P}_3(s_{\pm}) = s_{\pm}^2 + bs_{\pm} + c = -b \pm \sqrt{b^2 - 4c} = \frac{-b \pm \sqrt{b^2 - 4c}}{2} + \frac{b \pm \sqrt{b^2 - 4c}}{2} + \frac{1}{4} \left(b^2 - 2b\sqrt{b^2 - 4c} + (b^2 - 4c) \right) + \frac{1}{4} \left(-2b^2 + 2b\sqrt{b^2 - 4c} \right) + \frac{c}{4}.$$

In third grade I learned the times-table trick for 9:

$$9 \cdot n = (n - 1) \cdot 10 + (10 - n).$$

With this simple rule I did not need to depend on my memory for the 9 times tables. For example: $9 \cdot 7 = (7 - 1) \cdot 10 + (10 - 7) = 60 + 3$ and $9 \cdot 3 = (3 - 1) \cdot 10 + (9 - 3) = 20 + 7$. By expanding the above, one can see why it works: $9n = n10 - 10 + 10 - n = n(10 - 1)$. Note that the two terms $(n - 1)$ and $(10 - n)$ add to 9.

Learning an algorithm is much more powerful than memorization of the 9 times tables. How one thinks about a problem can have a great impact on one's perception.

Newton's method for finding roots of $P_N(s)$: Newton is well known for an approximate but efficient method to find the roots of a polynomial. Consider polynomial s, $P_N(s) \in C^*$.

$$P_N(s) = c_N(s - s_0)^N + c_{N-1}(s - s_0)^{N-1} + \cdots + c_1(s - s_0) + c_0,$$

where we use Taylor's formula (p. 86) to determine the coefficients:

$$c_k = \frac{1}{k!} \frac{d^k}{ds^k} P_N(s) \bigg|_{s = 0}.$$
If our initial guess for the root \(s_1 \) is close to a root \(s_o \) (i.e., \(s_1 - s_0 \) is within the radius of convergence), then \(|(s_1 - s_0)^k| \ll |(s_1 - s_0)| \) for \(k \geq 2 \in \mathbb{N} \). Thus we may truncate \(P_N(s) \) to its linear term \(c_1 \):

\[
P_N(s_1) \approx (s_1 - s_0) \frac{d}{ds} P_N(s) \bigg|_{s_0} + P_N(s_0)
\]

\[
= (s_1 - s_0) P'(s_0) + P_N(s_0),
\]

where \(P'_N(s_0) \) is shorthand for \(dP_N(s_0)/ds \).

Newton's approach (approximation) was to define a recursion such that the next guess \(s_{n+1} \) is closer to the root \(s_0 \) than the previous guess \(s_n \). Replacing \(s_1 \) by \(s_{n+1} \) and \(s_0 \) by \(s_n \) gives

\[
P_N(s_{n+1}) = (s_{n+1} - s_n) P'_N(s_n) + P_N(s_n) \to 0.
\]

Here we assume \(P_N(s_{n+1}) \to 0 \) because \(s_{n+1} \to s_0 \) as \(n \to \infty \).

Solving for \(s_{n+1} \) we get

\[
s_{n+1} = s_n - \frac{P_N(s_n)}{P'_N(s_n)}.
\]

(3.14)

Everything on the right is known; thus \(s_{n+1} \) should converge to the root \(s_0 \) as \(n \to \infty \).

In practice, it takes a few steps to approach the root. In experimental trials (see Fig. 3.2) less than 10 steps gave double-precision floating-point machine accuracy. If any value \(s_n \) is close to a root of \(P'_N \), the recursion fails, giving a large value for \(s_{n+1} \), forcing the method to restart at \(s_{n+1} \), far from the root. In such cases the solution typically converges to a different root. It should not be difficult to detect these large non-convergent steps by monitoring \(|s_{n+1} - s_n| \), which should be monotonic decreasing.

However, if one assumes that the initial guess \(s_1 \in \mathbb{R} \) and then evaluates the polynomial using real arithmetic, the estimate \(s_{n+1} \in \mathbb{R} \). Thus the iteration will not converge if \(s_0 \in \mathbb{C} \).

Roots \(s_0 \in \mathbb{C} \) may be found by a recursion, defining sequence \(s_n \to s_0 \), \(n \in \mathbb{N} \), such that \(P_N(s_n) \to 0 \) as \(n \to \infty \). As shown in Fig. 3.2, solving for \(s_{n+1} \) using Eq. 3.14 always gives one of the roots, due to the analytic behavior of the complex logarithmic derivative \(P'_N / P_N \).

With every step \(s_{n+1} \) is closer to the root, converging to the root in the limit. As it comes closer, the linearity assumption becomes more accurate, resulting in a better approximation and thus a faster convergence.

Equation 3.14 depends on the log-derivative \(d \log P(x)/dx = P'(x)/P(x) \). It follows that even for cases where fractional derivatives of roots are involved (p. 169), Newton's method should converge, since the log-derivative linearizes the equation.\(^6\)

Newton's view: Newton believed that imaginary roots and numbers have no meaning (p. 151); thus he sought only real roots (Stillwell, 2010, p. 119). In this case Newton's relation may be explored as a graph, which puts Newton's method in the realm of analytic geometry.

Example: Given a polynomial \(P_2 = 1 - x^2 \); having roots \(\pm 1 \), use Newton's method to find the roots. For \(P'_2(x) = -2x \), thus Newton's iteration becomes

\[
x_{n+1} = x_n + \frac{1 - x_n^2}{-2x_n}.
\]

From the Gauss-Lucas theorem, for the case of \(N = 2 \), the root of \(P'_2(x) \) is always the average of the roots of \(P_2(x) \).

To start the iteration \((n = 0) \) we need an initial guess for \(x_0 \), which is an "initial random guess" of where a root might be. The only place we may not start is at the roots of \(P_N \).

\(^6\) This seems like a way to understand fractional, even irrational, roots.
For $P_2(x) = 1 - x^2$, we have
\[x_1 = x_0 + \frac{1 - x_0^2}{2x_0} = x_0 + \frac{1}{2}(-x_0 + 1/x_0). \]

Exercise 3.2

Let $P_2(x) = 1 - x^2$. Choose the expansion point as $x_0 = 1/2$. Draw a graph describing the first step of the iteration. **Solution:** Start with an (x, y) coordinate system and put points at $x_0 = (1/2, 0)$ and the vertex of $P_2(x)$; for $x_0 = (0, 1)$ ($P_2(0) = 1$). Then draw $1 - x^2$, along with a line from x_0 to x_1.

Exercise 3.3

2. From the previous exercise, calculate x_1 and x_2. What number is the algorithm approaching? Is it a root of P_2?

Solution: First we must find $P'_2(x) = -2x$. Thus the equation we will iterate is
\[x_{n+1} = x_n + \frac{1 - x_n^2}{2x_n} = \frac{x_n^2 + 1}{2x_n}. \]

By hand, we find
\begin{align*}
x_0 &= 1/2, \\
x_1 &= \frac{(1/2)^2 + 1}{2(1/2)} = \frac{1}{4} + 1 = 5/4 = 1.25, \\
x_2 &= \frac{(5/4)^2 + 1}{2(5/4)} = \frac{25/16 + 1}{10/4} = \frac{41}{40} = 1.025. \\
\end{align*}

These estimates rapidly approach the positive real root $x = 1$. Note that if one starts at the root of $P'(x) = 0$ (i.e., $x = 0$), the first step is indeterminate.

Exercise 3.4

3. Write an Octave/Matlab script to check your answer for part (a).

Solution:
```octave
x=1/2;
for n = 1:3
    x = x+(1-x*x) / (2*x);
end
```

Exercise 3.3
3.1. ALGEBRA AND GEOMETRY AS PHYSICS

(a) For \(n = 4 \), what is the absolute difference between the root and the estimate, \(|x_r - x_4| \)?

Solution: 4.6E-8 (very small!)

(b) What happens if \(x_0 = -1/2 \)?

Solution: The solution converges to the negative root,

\[x = -1. \]

Exercise 3.5

4. Does Newton’s method (Kelley, 2003) work for \(P_3(x) = 1 + x^2 \)? Hint: What are the roots in this case?

Solution: In this case \(P'_3(x) = +2x \) thus the iteration gives

\[x_{n+1} = x_n - \frac{1 + x_n^2}{2x_n}. \]

In this case the roots are \(x_{\pm} = \pm 1 \), namely, purely imaginary. Obviously Newton’s method fails because there is no way for the answer to become complex. If you didn’t believe in complex numbers, your method would fail to converge to the complex roots (i.e., real in \(x \) real out). This is because Octave/Matlab assumes \(x \in \mathbb{R} \) if it is initialized as \(\mathbb{R} \).

Exercise 3.6

5. What if you let \(x_0 = (1 + j)/2 \) for the case of \(P_3(x) = 1 + x^2 \)?

Solution: By starting with a complex initial value, we fix the Real in = Real out problem.

<113>

Basic properties of polynomials

In some sense polynomials such as \(P_N(z) \) are the simplest constructions used in algebra, and a summary of their most basic properties is helpful.

1. The degree of a polynomial is \(n \).

2. Polynomials are single valued, namely, for every \(x \), there is precisely one value for \(P_N(x) \).

3. In mathematical physics and engineering it is common to have real coefficients \(a_n \), but complex coefficients are possible.

4. The coefficients of every polynomial are determined by its Taylor series, namely, Eq. 3.2.2 (p. 86).

5. If the coefficients are real and positive the \(P_N(x) \) is positive and real if \(x \geq 0 \).

6. The fundamental theorem of algebra states that \(P_N(z) \) has exactly \(n \) roots.

7. The roots of polynomials with positive and real coefficients typically have complex roots, namely, if \(P_N(z_k) = 0 \), the \(z_k \in \mathbb{C} \).

8. The region of convergence (RoC) of every polynomial about the expansion point is infinite.

9. The roots of the derivative of a polynomial lie within the convex hull defined by the roots of \(P_N(z) \), as described by the Gauss-Lucas theorem (p. 78).

Exercise 3.7

Find the logarithmic derivative of \(f(x)g(x) \).

Solution: From the definition of the logarithmic derivative and the chain rule for the differentiation of a product, we have

\[
\frac{d}{dx} \ln f(x)g(x) = \frac{d}{dx} \ln f + \frac{d}{dx} \ln g
\]

\[
= \frac{1}{f} \frac{df}{dx} + \frac{1}{g} \frac{dg}{dx}.
\]

Exercise 3.2

If we assume

Example Assume that polynomial \(P_3(s) = (s - a)^2/(s - b)^2 \), then

\[
\ln P_3(s) = 2 \ln(s - a) - \pi \ln(s - b)
\]

and

\[
\frac{d}{ds} \ln P_3(s) = \frac{2}{s - a} - \frac{\pi}{s - b}.
\]
Reduction by the logarithmic derivative to simple poles: As shown by the above trivial example, any polynomial, having zeros of arbitrary degree (i.e., \(\pi \) in the example), may be reduced to the ratio of two polynomials, by taking the logarithmic derivative, since

\[
L_N(s) = \frac{N(s)}{D(s)} = \frac{d}{ds} \ln P_N(s) = \frac{P'_N(s)}{P_N(s)}.
\]

(3.15)

Here the starting polynomial is the denominator \(D(s) = P_N(s) \), while the numerator \(N(s) = P'_N(s) \) is the derivative of \(D(s) \). Thus the logarithmic derivative can play a key role in analysis of complex analytic functions, as it reduces higher-order poles, even those of irrational degree, to simple poles (those of degree 1).

The logarithmic derivative \(L_N(s) \) has a number of special properties:

1. \(L_N(s) \) has simple poles \(s_p \) and zeros \(s_z \).
2. The poles of \(L_N(s) \) are the zeros of \(P'_N(s) \).
3. The zeros of \(L_N(s) \) (i.e., \(P'_N(s_z) = 0 \)) are the zeros of \(P'_N(s) \).
4. \(L_N(s) \) is analytic everywhere other than its poles.
5. Since the zeros of \(P'_N(s) \) are simple (no second-order poles), it is obvious that the zeros of \(L_N(s) \) are always close to the line connecting the two poles. One may easily demonstrate the truth of the statement numerically, and it has been quantified by the **Gauss-Lucas theorem**, which specifies the relationship between the roots of a polynomial and those of its derivative. Specifically, the roots of \(P'_{N-1}(s) \) lie inside the convex hull of the roots of \(P_N \).

To understand the meaning of the convex hull, consider the following construction: If stakes are placed at each of the \(N \) roots of \(P_N(x) \), and a string is then wrapped around the stakes, with all the stakes inside the string, the convex hull is then the closed set inside the string. One can then begin to imagine how the \(N - 1 \) roots of the derivative must evolve with each set inside the convex hull of the previous set. This concept may be recursed to smaller values of \(N \).

6. Newton's method may be expressed in terms of the reciprocal of the logarithmic derivative, since

\[
s_{k+1} = s_k + \frac{1}{L_N(s)},
\]

where \(s_0 \) is called the step size, which is used to control the rate of convergence of the algorithm. If the step size is too large, the root-finding path may jump to a different domain of convergence and thus a different root of \(P_N(s) \).

7. Not surprisingly, given all the special properties, \(L_N(x) \) plays an key role in mathematical physics.

Euler's product formula: Counting may be written as a linear recursion, simply by adding 1 to the previous value, starting from 0. The even numbers may be generated by adding 2, starting from 0. Multiples of 3 may be similarly generated by adding 3 to the previous value, starting from 0. Such recursions are fundamentally related to prime numbers \(\pi_k \in \mathbb{P} \), as first investigated by Euler. This logic is the basis of the sieve (§2.5, p. 49). The basic idea is both simple and important, taking almost everyone by surprise, likely even Euler. It is related on the old idea that the integers may be generated by the geometric series when viewed as a recursion.

Example: Let's look at counting modulo prime numbers. For example, if \(k \in \mathbb{N} \) then

\[
k \cdot \text{mod}(k, 2), \quad k \cdot \text{mod}(k, 3), \quad k \cdot \text{mod}(k, 5)
\]

are all multiples of the primes \(\pi_1 = 2, \pi_2 = 3 \), and \(\pi_3 = 5 \).
Figure 3.3: This feedback network describes a linear discrete-time difference equation with delay \(M \) [8], having an all-pole transfer function. If \(M = 1 \) this circuit acts as an integrator. Since the input is a step function, the output will be \(N_n = n u_n = \{0, 1, 2, 3, \cdots\} \). We see this define the step function \(u_n = 0 \) for \(n < 0 \) and \(u_n = 1 \) for \(n \geq 0 \) and the counting number function \(N_n = 0 \) for \(n < 0 \). The counting numbers may be recursively generated from the recursion

\[
N_{n+1} = N_n - M + u_n
\]

(3.16)

which for \(M = 1 \) gives \(N_n = n \). For \(M = 2 \), \(N_n = 0, 2, 4, \cdots \) are the even numbers.

As was first published by Euler in 1737, one may recursively factor out the leading prime term, resulting in Euler's product formula. Based on the argument given, the discussion of the Steve (p. 49), one may automate the process and create a recursive procedure to identify multiples of the first item on the list, and then remove the multiples of that prime. The lowest number on this list is the next prime. One may then recursively generate all the multiples of this new prime, and remove them from the list. Any numbers that remain are candidates for primes.

The observation that this procedure may be automated with a recursive filter, such as that shown in Fig. 3.3, implies that it may be transformed into the frequency domain and described in terms of its poles, which are related to the primes. For example, the poles of the filter shown in Fig. 3.3 may be determined by taking the \(z \)-transform of the recursion equation and solving for the roots of the resulting polynomial. The recursion equation is the time-domain equivalent to Riemann's zeta function \(\zeta(s) \), which the frequency domain equivalent representation.

3.8 Exercise. Show that \(N_n = n \) follows from the above recursion. Solution: If \(n = -1 \), we have \(N_{-1} = 0 \) and \(u_{-1} = 0 \). For \(n = 0 \) the recursion gives \(N_0 = N_0 + u_0 \), thus \(N_0 = 0 + 1 = 1 \). When \(n = 1 \) we have \(N_1 = N_1 + 1 = 1 + 1 = 2 \). For \(n = 2 \) the recursion gives \(N_2 = N_2 + 1 = 3 \). Continuing the recursion, we find that \(N_n = n \). Today we denote such recursions of this form as digital filters. The state diagram for \(N_n \) is shown in Fig. 3.3.

To start the recursion define \(u_n = 0 \) for \(n < 0 \). Thus \(u_0 = u_{-1} + 1 \). But since \(u_{-1} = 0 \), \(u_0 = 1 \). The counting numbers follow from the recursion. A more understandable notation is the convolution of the step function with itself, namely

\[
t_n u_n = u_n * u_n = \frac{1}{(1 - z)^2}
\]

which says that the counting numbers \(\hat{n} \in \mathbb{N} \) are easily generated by convolution, which corresponds to a second order pole at \(s = 0 \), in the Laplace frequency domain.

3.9 Exercise. Write an Octave/Matlab program that generates removes all the even numbers to generate the odd numbers \(N_n = \{1, 0, 3, 0, 5, 0, 7, 0, 9, \cdots\} \). In the program, note that convolution is mentioned several times on the next few pages but is not described until Sec. 3.4. Is that OK?
CHAPTER 3. STREAM 2: ALGEBRAIC EQUATIONS

Solution:
\[M = 50; \ N = (0 : M - 1); \ u = \text{ones}(1, M); \ u(1) = 0; \]
\[\text{Dec} = [1 1]; \ \text{Num} = [1]; \]
\[n = \text{filter}(\text{Num}, \text{Dec}, u); \]
\[y = n \ast n; \ F = n - y2; \]
which generates \(F = [0, 1, 0, 3, 0, 5, 0, 7, 0, 9, 0, \ldots] \).

An alternative is to use the \(\text{mod} \) \((n, N)\) function:
\[M = 20; \ n = 0 : M; \ k = \text{mod}(n, 2); \ m = (k == 0) .* n; \]
which generates \(m = [0, 1, 0, 3, 0, 5, \ldots] \)

3.10
Exercise
Write a program to recursively down-sample \(N \), by 2:1.

Solution:
\[N = [1 0 3 0 5 0 7 0 9 11 0 13 0 15]; \]
\[M = N(2:2:end); \]
which gives: \(M = [1, 3, 5, 7, 9, 11, 13, 15, \ldots] \).

we For the next step toward a full sieve (Fig. 2.2, p. 49), generate all the multiples of 3 (the second prime) and subtract these from the list. This will either zero out these numbers from the list, or create negative items, which may then be removed. Numbers are negative when the number has already been removed because it has a second factor of that number. For example, 6 is already removed because it is a multiple of 2, thus was removed when removing the multiples of prime number 2.

3.1.3 Matrix formulation of the polynomial

There is a one-to-one relationship between every constant coefficient differential equation, its characteristic polynomial and the equivalent matrix form of that differential equation, defined by the companion matrix. The roots of the monic polynomial are the eigenvalues of the companion matrix \(C_N \) (Horn and Johnson, 1988, p. 147).

3.13 The companion matrix: The \(N \times N \) companion matrix is defined as

\[
C_N = \begin{bmatrix}
0 & -c_0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & \vdots & \ddots & \vdots \\
& \vdots & \ddots & 0 \\
0 & 0 & 1 & -c_{N-2} \\
0 & 0 & 0 & -c_{N-1}
\end{bmatrix}_{N \times N}.
\]
(3.17)

The constants \(c_{N-n} \) are from the monic polynomial of degree \(N \),
\[
P_N(s) = s^N + c_N s^{N-1} + \cdots + c_2 s + c_1 s + c_0
= s^N + \sum_{n=0}^{N-1} c_n s^n,
\]
that has having coefficient vector
\[
c_N = [1, c_{N-1}, c_{N-2}, \ldots, c_0]^T.
\]

Any transformation of a matrix that leaves the eigenvalues invariant (e.g., the transpose) will result in an equivalent definition of \(C_N \). For example, the Octave and Matlab companion matrix function \(\text{companion}(A) \) returns the coefficient vector along the top row. (See p. 80).

Author: Can this idea be expressed in a different way? Can there be a one-to-one relationship among three things?

Author: Note that this variable \(c \) for a vector is in boldface roman type, yet page 81 has \(c \) in lightface italic type (see the \(c \) highlighted in pink). I think the standard convention for vectors may be boldface roman. Throughout, the vector variables are not in a consistent style. Please check on that.
3.1. ALGEBRA AND GEOMETRY AS PHYSICS

3.1.1 Exercise
Show that the eigenvalues of the 3x3 companion matrix are the same as the roots of \(P_3(s) \).

Solution: Expanding the determinant of \(C_3 = sI_3 \) along the rightmost column, we get

\[
P_3(s) = \begin{vmatrix} -s & 0 & -c_0 \\ 1 & -s & -c_1 \\ 0 & 1 & -(c_2 + s) \end{vmatrix} = c_0 + c_1 s + (c_2 + s) s^2 = s^3 + c_2 s^2 + c_1 s + c_0.
\]

Setting this to zero gives the requested result.

3.1.2 Exercise
Find the companion matrix for the Fibonacci sequence defined by the recursion (i.e., difference equation)

\[f_{n+1} = f_n + f_{n-1} \]

and that has

\[(z^2 - z - 1)^2 F(z) = 0 \] which is initialized with \(f_0 = 0 \) for \(n < 0 \) and \(f_0 = 1 \).

Solution: Taking the \(Z \)-transform gives the polynomial \((z^2 - z - 1)F(z) = 0 \) having the coefficient vector \(c = [1, -1, -1] \). Resulting in the Fibonacci companion matrix

\[
C = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}.
\]

The Matlab/Octave companion matrix routine `compan` uses an alternative definition, which has the same eigenvalues (see p. 61).

3.4 Example: Matlab/Octave: A polynomial is represented in Matlab/Octave in terms of its coefficient vector. When the polynomial vector for the poles of a differential equation is

\[c_N = [1, c_{N-1}, c_{N-2}, \ldots, c_0]^T, \]

the coefficient \(c_N = 1 \). This normalization guarantees that the leading term is not zero, and the number of roots (\(N \)) is equal to the degree of the monic polynomial.

3.1.4 Working with polynomials in Matlab/Octave

In Matlab/Octave there are seven related functions you must become familiar with:

1. \(R = \text{roots}(A) \): Vector \(A = [a_N, a_{N-1}, \ldots, a_0] \in \mathbb{C} \) are the complex coefficients of polynomial \(P_N(z) = \sum_{n=0}^{N} a_n z^n \in \mathbb{C} \), where \(N \in \mathbb{N} \) is the degree of the polynomial. It is convenient to force \(a_N = 1 \), corresponding to dividing the polynomial by this value, when it is not 1, guaranteeing it cannot be zero. Further, \(R \) is the vector of roots, \([z_1, z_2, \ldots, z_N] \in \mathbb{C} \) such that \(\text{polyval}(A, z_k) = 0 \).

Example: `roots([1, -1]) = [1, 1]`.

2. \(y = \text{polyval}(A, x) \): This evaluates the polynomial defined by vector \(A \in \mathbb{C}^N \) evaluated at \(x \in \mathbb{C} \), returning vector \(y(x) \in \mathbb{C} \).

Example: `polyval([1, -1], 1) = 0, polyval([1, 1], 3) = 4`.

3. \(P = \text{poly}(R) \): This is the inverse of \(\text{roots}() \), returning a vector of polynomial coefficients \(P \in \mathbb{C}^N \) of the corresponding characteristic polynomial, starting from either a vector of roots \(R \) or a matrix \(A \), for example, defined with the roots on the diagonal. The characteristic polynomial is defined as the determinant of \(|A - \lambda I| = 0 \) having roots \(R \).

Example: `poly([1]) = [1, -1], poly([1, 2]) = [1, -3, 2]`.

Due to IEEE 754 scaling issues, this can give strange results that are numerically correct, but only within the limits of IEEE 754 accuracy.
4. \(R = \text{polyder}(C) \): This routine takes the \(N \) coefficients of polynomial \(C \) and returns the \(N - 1 \) coefficients of the derivative of the polynomial. This is useful when working with Newton's method, where each step is proportional to \(P_N(x)/P_{N-1}(x) \).

Example: \(\text{polyder}([1, 1]) = [1] \)

5. \([K, R] = \text{residue}(N, D)\): Given the ratio of two polynomials \(N, D \), \(\text{residue}(N, D) \) returns vectors \(K, R \) such that

\[
\frac{N(s)}{D(s)} = \sum_{k} \frac{K_k}{s - s_k},
\]

where \(s_k \in \mathbb{C} \) are the roots of the denominator \(D \) polynomial and \(K \in \mathbb{C} \) is a vector of residues, which characterize the roots of the numerator polynomial \(N(s) \). The use of \(\text{residue}(N, D) \) will be discussed on page 171. This is one of the most valuable time-saving routines I know of.

Example: \(\text{residue}(2, [1 \ 0 \ -1]) = [1 \ -1] \)

6. \(C = \text{conv}(A, B) \): Vector \(C \in \mathbb{C}^{N+M-1} \) contains the polynomial coefficients of the convolution of the two vectors of coefficients of polynomials \(A, B \in \mathbb{C}^N \) and \(B \in \mathbb{C}^M \).

Example: \([1, 2, 1] = \text{conv}([1, 1], [1, 1]) \)

7. \([C, R] = \text{deconv}(N, D)\): Vectors \(C, N, D \in \mathbb{C} \). This operation uses long division of polynomials to find \(C(s) = N(s)/D(s) \) with remainder \(R(s) \), where \(N = \text{conv}(D, C) + R \) namely

\[
C = \frac{N}{D} \text{ remainder } R.
\]

By defining we can

Example: Defining the coefficients of two polynomials as \(A = [1, a_1, a_2, a_3] \) and \(B = [1, b_1, b + 2] \), one may find the coefficients of the product from \(C = \text{conv}(A, B) \) and recover \(B \) from \(C \) with \(B = \text{deconv}(C, A) \).

8. \(A = \text{compan}(D) \): Vector \(D = [1, d_{N-1}, d_{N-2}, \ldots, d_0]^T \in \mathbb{C} \) contains the coefficients of the monic polynomial

\[
D(s) = s^N + \sum_{k=1}^{N} d_{N-k} s^k,
\]

and \(A \) is the companion matrix of vector \(D \) (Eq. 3.17, p. 80). The eigenvalues of \(A \) are the roots of monic polynomial \(D(s) \).

Example: \(\text{compan}([1 \ -1 \ -1]) = [1 \ 1; 1 \ 0] \)

3.13

Exercise: Practice the use of Matlab's/Octave's related functions, which manipulate roots, polynomials, and residues: root(), conv(), deconv(), poly(), polyval(), polyder(), residue(), compan() \(\square \)

Solution: \(\square \)

Finally, we use Newton's method and show that the iteration converges to the nearest root. \(\square \)

3.2 Eigenanalysis I: eigenvalues of a matrix

At this point we turn a corner in the discussion to discuss the important topic of eigenanalysis, which starts with the computation of the eigenvalues and their eigenvectors of a matrix. As briefly discussed on page 39, eigenvectors are mathematical generalizations of resonances, or modes, naturally found in physical systems.

\[\text{A Matlab/Octave program that does this may be downloaded from } \text{http://jontalle.web.engr.illinois.edu/ uploads/i13i/Newton3PD.m} \]

Author: Is it OK to alter the Section 3.2 title to match the Table of Contents? **Author:** Page 39 mentions eigenmodes, not eigenvectors. Is that OK? Is that the correct page number? **OK**
3.2. EIGENANALYSIS

When you pluck the string of a violin or guitar, or hammer a bell or tuning fork, there are natural resonances that occur. These are the eigenmodes of the instrument. The frequency of each mode is related to the eigenvalue, which in physical terms is the frequency of the mode. But this idea goes way beyond simple acoustical instruments. Wave-guides and atoms are resonant systems. The resonances of the hydrogen atom are called the Lyman series, a special case of the Rydberg series and Rydberg atom (Bohr, 1954; Gallagher, 2005).

Thus this topic runs deep in both physics and, eventually, mathematics. In some real sense, eigenanalysis was what the Pythagoreans were seeking to understand. This relationship is rarely spoken about in the open literature, but once you see it, it can never be forgotten, as it colors your entire view of all aspects of modern physics.

3.2.1 Eigenvalues of a matrix

The method for finding eigenvalues is best described by an example.\(^8\) Starting from the matrix Eq. 2.20 (p. 62), the eigenvalues are defined by the eigenmatrix equation:

\[
\frac{1}{2} \begin{bmatrix} 1 & 1 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} e_1 \\ e_2 \end{bmatrix} = \lambda \begin{bmatrix} e_1 \\ e_2 \end{bmatrix}
\]

The unknowns here are the eigenvalue \(\lambda\) and the eigenvector \(e = [e_1, e_2]^T\). First, find \(\lambda\) by subtracting the right from the left:

\[
\frac{1}{2} \begin{bmatrix} 1 & 1 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} e_1 \\ e_2 \end{bmatrix} - \lambda \begin{bmatrix} e_1 \\ e_2 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 - 2\lambda & 1 \\ 2 & -2\lambda \end{bmatrix} \begin{bmatrix} e_1 \\ e_2 \end{bmatrix} = 0.
\]

The only way that this equation for \(e\) can have a solution is if the matrix is singular. If it is singular, the determinant of the matrix is zero.

Example The determinant of the above \(2 \times 2\) example is the product of the diagonal elements, minus the product of the off-diagonal elements, which results in the quadratic equation

\[-2\lambda(1 - 2\lambda) - 2 = 4\lambda^2 - 2\lambda - 2 = 0.\]

Completing the square gives

\[(\lambda - 1/4)^2 - (1/4)^2 - 1/2 = 0;\]

thus the roots (i.e., eigenvalues) are \(\lambda_\pm = \frac{1 \pm \sqrt{3}}{4} = \{1, -1/2\}\).

Exercise Expand Eq. 3.21 and recover the quadratic equation.\(^9\) **Solution:**

\[(\lambda - 1/4)^2 - (1/4)^2 - 1/2 = \lambda^2 - \lambda/2 + (1/4)^2 - (1/4)^2 - 1/2 = 0.\]

Thus completing the square is equivalent to the original equation.

Exercise Find the eigenvalues of matrix Eq. 2.12 (p. 59). (Hint: see p. 260) **Solution:** This is a minor variation on the previous example. Briefly, we have

\[
\det \begin{bmatrix} 1 - \lambda & N \\ 1 & 1 - \lambda \end{bmatrix} = (1 - \lambda)^2 - N = 0.
\]

Thus \(\lambda_\pm = 1 \pm \sqrt{N}\).\(^{10}\)

\(^8\) Appendix B (p. 265) is an introduction to the topic of eigenanalysis for \(2 \times 2\) matrices.
Exercise: Starting from \([x_n, y_n]^T = [1, 0]^T\), compute the first \(n\) values of \([x_n, y_n]^T\).

Solution: Here is a Matlab/Octave code for computing \(x_n\):

```matlab
x(1:2,1)=[1;0];
A=[1 1;2 0]/2;
for k=1:10; x(k+1)=A*x(:,k); end
```

which gives the rational \((x_n \in \mathbb{Q})\) sequence: 1, 1/2, 3/4, 5/8, 11/21, 21/43, 43/85, 85/171, 171/341, 341/683, ... \(\) (p. 62)

Exercise: Show that the solution to Eq. 2.19 is not, unlike that of the divergent Fibonacci sequence. Explain what is going on.

Solution: Because the next value is the mean of the last two, the sequence is bounded. To see this one needs to compute the eigenvalues of the matrix Eq. 2.20 (p. 62).

Eigenanalysis: The key to the analysis of such equations is called the **eigenanalysis**, or *modal-analysis* method. These are also known as resonant modes in the physics literature. Eigenmodes describe the naturally occurring "ringing" found in physical wave-dominated boundary value problems. Each mode's eigenvalue quantifies the mode's natural frequency. Complex eigenvalues result in damped modes, which decay in time due to energy losses. Common examples include tuning forks, pendulums, bells, and strings of musical instruments, all of which have a characteristic frequency.

Two modes with the same frequency are said to be degenerate. This is a very special condition, with a high degree of symmetry.

Cauchy's residue theorem (p. 171) is used to find the time-domain response of each frequency-domain complex eigenmode. Thus eigenanalysis and eigenmodes of physics are the same thing (see p. 160), but are described using different notional methods. The "eigen method" is summarized in Appendix B.3. (p. 26).

Taking a simple example of a 2 \(\times\) 2 matrix \(T \in \mathbb{C}\), we start from the definition of the two eigenvalues

\[
TE = \lambda e_{\pm}
\]

we can write this corresponding to two eigenvalues \(\lambda_{\pm} \in \mathbb{C}\) and two \(2 \times 1\) eigenvectors \(e_{\pm} \in \mathbb{C}\).

Example: Assume that \(T\) is the Fibonacci matrix, Eq. 2.17.

The eigenvalues \(\lambda_{\pm}\) may be merged into a 2 \(\times\) 2 diagonal eigenvalue matrix

\[
\Lambda = \begin{bmatrix}
\lambda_+ & 0 \\
0 & \lambda_-
\end{bmatrix}
\]

while the two eigenvectors \(e_+\) and \(e_-\) are merged into a 2 \(\times\) 2 eigenvector matrix

\[
E = [e_+, e_-] = \begin{bmatrix}
e^{+1} & e_1 \\
e^{+2} & e_2
\end{bmatrix}
\]

corresponding to the two eigenvalues. Using matrix notation, this may be compactly written as

\[
TE = E\Lambda.
\]

Note that while \(\lambda_{\pm}\) and \(E_{\pm}\) commute, \(EA \neq \Lambda E\).

From Eq. 3.24 we may obtain two very important forms: (1) the diagonalization of \(T\),

\[
\Lambda = E^{-1}TE,
\]

and (2)

\[
E = \text{not bold in matrix variables}
\]

\(\)

During the discovery or creation of quantum mechanics, two alternatives were developed: Schrödinger's differential equation method and Heisenberg's matrix method. Eventually it was realized the two were equivalent.
3.2. EIGENANALYSIS

2: the eigen-expansion of \(T \),

\[
T = E \Lambda E^{-1},
\]

which is used for computing powers of \(T \) (i.e., \(T^{100} = E^{-1} \Lambda^{100} E \)).

Example: If we take

\[
T = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix},
\]

then the eigenvalues are given by \((1 - \lambda_\pm)(1 + \lambda_\pm) = -1\); thus \(\lambda_\pm = \pm \sqrt{2} \). This method of eigenanalysis is discussed on p. 57 and Appendix B.2 (p. 267).

Exercise: Show that the geometric series formula holds for \(2 \times 2 \) matrices. Starting with the \(2 \times 2 \) identity matrix \(I_2 \) and \(a \in \mathbb{C} \), with \(|a| < 1 \), show that

\[
I_2(l_2 - al_2)^{-1} = I_2 + al_2 + a^2 I_2^2 - a^3 I_2^3 + \cdots.
\]

Solution: Since \(a^k l_2^k = a^k l_2 \), we may multiply both sides by \(l_2 - al_2^2 \) to obtain

\[
I_2 = I_2 + al_2 + a^2 I_2^2 + a^3 I_2^3 + \cdots - al_2(a^2 I_2^2 + a^3 I_2^3 + \cdots)
\]

\[
= [1 + (a^2 + a^3 + \cdots) - (a^2 + a^3 + \cdots)]I_2
\]

\[
= I_2.
\]

This equality requires that the two series converge, which requires that \(|a| < 1 \).

Exercise: Show that when \(T \) is not a square matrix, Eq. 3.22 can be generalized to

\[
T_{m,n} = U_{m,n} \Lambda_{m,n} V_{n,m}^T.
\]

This important generalization of eigenanalysis is called a singular value decomposition (SVD).

Summary: The GCD (Euclidean algorithm), Pell’s equation and the Fibonacci sequence may all be written as compositions of \(2 \times 2 \) matrices. Thus Pell’s equation and the Fibonacci sequence are special cases of the \(2 \times 2 \) matrix composition

\[
\begin{bmatrix} x \\ y \end{bmatrix}_{n+1} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}_n.
\]

This is an important and common thread of these early mathematical findings. This \(2 \times 2 \) linearized matrix recursion plays a special role in physics, mathematics and engineering because one-dimensional system equations are solved using the \(2 \times 2 \) eigenanalysis method. More than several thousand years of mathematical, by-trial and error, set the stage for this breakthrough. But it took even longer to be fully appreciated.

The key idea of the \(2 \times 2 \) matrix solution, widely used in modern engineering, can be traced back to Brahmagupta’s solution of Pell’s equation, for arbitrary \(N \). Brahmagupta’s recursion, identical to that of the Pythagorean’s \(N = 2 \) case (Eq. 2.14), eventually led to the concept of linear algebra, defined by the simultaneous solutions of many linear equations. The recursion by the Pythagorean (6th BC) predated the creation of algebra by al-Khwārizmī (9th CE century), as seen in Fig. 1.1.
3.2.2 Taylor series

An analytic function is one that meets these criteria:

1. may be expanded in a Taylor series:

\[P(x) = \sum_{n=0}^{\infty} c_n (x - x_0)^n \]

(3.27)

2. converges for \(|x - x_0| < 1 \), called the RoC, with coefficients \(c_n \).

region of convergence (RoC)

3. The Taylor series coefficients \(c_n \) are defined by taking derivatives of \(P(x) \) and evaluating them at the expansion point \(x_0 \), namely:

\[c_n = \frac{1}{n!} \frac{d^n}{dx^n} P(x) \bigg|_{x=x_0} \]

(3.28)

4. Although a function \(P(x) \) may be multivalued, the Taylor series is always single-valued.

Properties: The Taylor formula is a prescription for how to uniquely define the coefficients \(c_n \). Without the Taylor series formula, we would have no way of determining \(c_n \). The proof of the Taylor formula is transparent simply by taking successive derivatives of Eq. 3.27 and then evaluating the result at the expansion point. If \(P(x) \) is analytic then this procedure will always work. If \(P(x) \) fails to have a derivative of any order, then the function is not analytic and Eq. 3.27 is not valid for \(P(x) \). For example, if \(P(x) \) has a pole at \(x_0 \), then it is not analytic at that point.

The Taylor series representation of \(P(x) \) has special applications for solving differential equations because:

1. it is single valued,
2. all its derivatives and integrals are uniquely defined,
3. it may be continued into the complex plane by extending \(x \in \mathbb{C} \). Typically this involves expanding the series about a different expansion point.

Analytic continuation: A limitation of the Taylor series expansion is that it is not valid outside of its RoC. One method for avoiding this limitation is to move the expansion point. This is called analytic continuation. However, analytic continuation is a nontrivial operation because it (1) requires manipulating an infinite number of derivatives of \(P(x) \), (2) at the new expansion point \(x_0 \), where (3) \(P(x - x_0) \) may not have derivatives, due to possible singularities. (4) Thus one needs to know where the singularities of \(P(s) \) are in the complex \(s \) plane. Due to these many problems, analytic continuation is rarely used, other than as an important theoretical concept.

Example: The trivial case is the geometric series \(P(x) = 1/(1 - x) \) about the expansion point \(x = 1 \). The function \(P(x) \) is defined everywhere, except at the singular point \(x = 1 \), whereas the geometric series is only valid for \(|x| < 1 \).

Exercise: Verify that \(c_0 \) and \(c_1 \) of Eq. 3.27 follow from Eq. 3.28. Solution: To obtain \(c_0 \), for \(n = 0 \), there is no derivative (\(d^0/dx^0 \) indicates no derivative is taken), so we must simply evaluate \(P(x) \) at \(x = x_0 \) and leave \(c_0 \). To find \(c_1 \), we take one derivative, which results in \(P'(x) = c_1 + 2c_2(x - x_0) + \cdots \) at \(x = x_0 \) leaving \(c_1 \). Each time we take a derivative we reduce the degree of the series by 1, leaving the next constant term.
3.2. EIGENANALYSIS

3.2.1 Exercise: Suppose we truncate the Taylor series expansion to \(N \) terms. What is the name of such functions and what are their properties? Solution: When an infinite series is truncated the resulting function is called an \(N \)th degree polynomial:

\[
P_N(x) = \sum_{n=0}^{N} c_n (x-x_0)^n = c_0 + c_1(x-x_0) + c_2(x-x_0)^2 + \ldots + c_N(x-x_0)^N.
\]

We can find \(c_0 \) by evaluating \(P_N(x) \) at the expansion point \(x_0 \). Since from the above formula \(P_N(x_0) = c_0 \). From the Taylor formula \(c_1 = P'_N(x_0) \).

3.2.2 Exercise: How many roots do \(P_N(x) \) and \(P'_N(x) \) have? Solution: According to the fundamental theorem of algebra \(P_N(x) \) has \(N \) roots, \(P'_N(x) \) has \(N-1 \) roots. The Gauss–Lucas theorem states that the \(N-1 \) roots of \(P'_N(x) \) lie inside the convex hull (p. 78) of the \(N \) roots of \(P_N(x) \).

3.2.3 Exercise: Would it be possible to find the inverse Gauss–Lucas theorem? that states where the roots of the integral of a polynomial might be? Solution: With each integral there is a new degree of freedom that must be accommodated for. Thus this problem is much more difficult. But since there is only an extra degree of freedom, it does not seem impossible. To solve this problem a constraint will be needed.

Role of the Taylor series: The Taylor series plays a key role in the mathematics of differential equations and their solution, as the coefficients of the series uniquely determine the analytic series representation via its derivatives. The implications and limitations of the power series representation are very specific: if the series fails to converge (i.e., outside the RoC), it is essentially meaningless.

A very important fact about the RoC: It is only relevant to the series, not the function being expanded. Typically the function has a pole at the radius of the RoC, where the series fails to converge. However, the function being expanded is valid everywhere other than at the pole. It seems that this point has been poorly explained in many texts. Besides the RoC is the region of divergence (RoD), which is the RoC's complement.

The Taylor series does not need to be infinite to converge to the function it represents, since it obviously works for any polynomial \(P_N(x) \) of degree \(N \). But in the finite case \((N < \infty)\), the RoC is infinite and the series is the function \(P_N(x) \) exactly, everywhere. Of course, \(P_N(x) \) is called a polynomial of degree \(N \). When \(N \to \infty \), the Taylor series is only valid within the RoC, and it is (typically) the representation of the reciprocal of a polynomial.

These properties are both the curse and the blessing of the analytic function. On the positive side, analytic functions are the ideal starting point for solving differential equations, which is exact. However, by Newton and others. Analytic functions are “smooth” since they are infinitely differentiable, with coefficients given by Eq. 3.28. They are single-valued, so there can be no ambiguity in their interpretation. On the negative side, the only represent the function within the RoC (which depends on the expansion point).

Two well-known analytic functions are the geometric series (\(|x| < 1\))

\[
\frac{1}{1-x} = 1 + x + x^2 + x^3 + \ldots = \sum_{n=0}^{\infty} x^n
\]

and exponential series (\(|x| < \infty\))

\[
e^x = 1 + x + \frac{1}{2} x^2 + \frac{1}{3 \cdot 2} x^3 + \frac{1}{4 \cdot 3 \cdot 2} x^4 + \ldots = \sum_{n=0}^{\infty} \frac{1}{n!} x^n.
\]
CHAPTER 3. STREAM 2: ALGEBRAIC EQUATIONS

Exercise 3.24. Relate the Taylor series expressions for Eq. 3.29 to the following functions:

(a) \(F_1(x) = \int_0^x \frac{1}{1-t} \, dt \)

\[F_1(x) = \frac{\ln(1-x)}{1-x} \]

(b) \(F_2(x) = \frac{d}{dx} \frac{1}{1-x} \)

\[F_2(x) = \frac{1}{1-x} \]

(c) \(F_3(x) = \ln \frac{1}{1-x} \)

\[F_3(x) = \ln \frac{1}{1-x} \]

(d) \(F_4(x) = \frac{d}{dx} \ln \frac{1}{1-x} \)

\[F_4(x) = \frac{1}{1-x} \]

Exercise 3.25. Using symbolic manipulation (Matlab, Octave, Mathematica), expand the given function \(F(s) \) in a Taylor series, and find the recurrence relation between the Taylor coefficients \(c_n, c_{n-1}, c_{n-2}, \ldots \). Assume \(a \in \mathbb{C} \) and \(T \in \mathbb{R} \).

Solution: A Google search on “octave symtaylor” is useful to answer this question. The Matlab/Octave code is to expand this in a Taylor series is

\[F(s) = e^{as} \]

\[\text{sym s} \]
\[\text{taylor(exp(s),s,0,'order',10)} \]

Exercise 3.26. Find the coefficients of the following functions by the method of Eq. 3.28, and give the RoC.

(a) \(w(x) = \frac{1}{1-x^2} \)

\[w(x) = \frac{1}{1-x^2} = 1 + x + x^2 + x^3 + \cdots \]

Solution: From a straightforward expansion we know the coefficients are

\[\frac{1}{1-x^2} = 1 + x + x^2 + x^3 + \cdots \]

Working this out using Eq. 3.28 is more work:

\[c_0 = \frac{1}{0!}w_0 = 1; \quad c_1 = \frac{1}{1!}w_1 = \frac{1}{2}; \quad c_2 = \frac{1}{2!}w_2 = \frac{1}{2} \]

However, if we take derivatives of the series expansion it is much easier and we can even figure out the term for \(c_n \):

\[c_0 = 1; \quad c_1 = \frac{d}{dx} \sum (x)^n = f; \quad c_2 = \frac{d^2}{dx^2} \sum (x)^n \bigg|_0 = 2(f)^2 \]

\[c_3 = \frac{d^3}{dx^3} \sum (x)^n \bigg|_0 = (f)^3 = -j; \]

\[\cdots \]

\[c_n = \frac{d^n}{dx^n} f^n = f^n \]

The RoC is \(|x| < 1 \).

(b) \(w(x) = e^{2x} \)

\[w(x) = e^{2x} \]

\[c_n = \frac{1}{n!} \]

The RoC is \(|x| < \infty \). Functions with an \(\infty \) RoC are called entire. Thus \(c_n = \frac{1}{n!} f^n \) and the RoC of \(w(x) \) is \(|x| < \infty \).
3.2. EIGENANALYSIS

Brune impedances: A special family of functions is formed from ratios of two polynomials $Z(s) = N(s)/D(s)$, commonly used to define an impedance $Z(s)$, denoted the Brune impedance. Impedance functions are a very-special class of complex analytic functions because they must have a non-negative real part

$$\Re Z(s) = \Re \frac{N(s)}{D(s)} \geq 0,$$

so as to obey conservation of energy. A physical Brune impedance cannot have a negative resistance (the real part); otherwise, it would act like a power source, violating conservation of energy. Most impedances used in engineering applications are in the class of Brune impedances, defined by the ratio of two polynomials, of degrees m and n,

$$Z_{\text{Brune}}(s) = \frac{P_M(s)}{P_N(s)} = \frac{s^M + a_1 s^{M-1} + \cdots + a_M}{s^N + b_1 s^{N-1} + \cdots + b_N}, \quad (x4)$$

where $M = N \pm 1$ (i.e., $N = M \pm 1$). This fraction of polynomials is sometimes known as a "Padé approximation," with poles and zeros, defined as the complex roots of the two polynomials. The key property of the Brune impedance is that the real part of the impedance is non-negative (positive or zero) in the right s-half plane.

$$\Re Z(s) = \Re \left[R(\sigma, \omega) + j X(\sigma, \omega) \right] = R(\sigma, \omega) \geq 0 \quad \text{for} \quad \Re s = \sigma \geq 0. \quad (3.36)$$

Since $s = \sigma + j \omega$, the complex frequency (s) right half-plane (RHP) corresponds to $\Re s = \sigma \geq 0$, i.e., the real part of the complex frequency is non-negative. This condition defines the class of positive-real functions, also known as the Brune condition, which is frequently written in the abbreviated form

$$\Re Z(\Re s \geq 0) \geq 0. \quad (3.37)$$

As a result of this positive-real constraint, the subset of Brune impedances (those given by Eq. 3.35 and satisfying Eq. 3.36) must be complex analytic in the entire right s-half-plane. This is a powerful constraint that places strict limitations on the locations of both the poles and the zeros of every positive-real Brune impedance.

Exercise: Show that $Z(s) = 1/\sqrt{s}$ is positive-real but not a Brune impedance. **Solution:** Since it may not be written as the ratio of two polynomials, it is not in the Brune impedance class. By writing $Z(s) = |Z(s)| e^{\phi}$ in polar coordinates, since $-\pi/4 \leq \phi \leq \pi/4$ when $|\phi| < \pi/2$, $Z(s)$ satisfies the Brune condition, thus is positive-real.

Determining the region of convergence (RoC): Determining the RoC for a given analytic function is quite important and may not always be obvious. In general, the RoC is a circle whose radius extends from the expansion point out to the nearest pole. Thus when the expansion point is moved, the RoC changes, since the location of the pole is fixed.

Example For the geometric series (Eq. 3.29), the expansion point is $x = 0$, and the RoC is $|x| < 1$, since $1/(1-x)$ has a pole at $x = 1$. We may move the expansion point by a linear transformation, for example, by replacing x with $z + 3$. Then the series becomes $1/((z+3) - 1) = 1/(z+2)$, so the RoC becomes 3 because in the z plane the pole has moved to -2.

Example A second important example is the function $1/(x^2 + 1)$, which has the same RoC as the geometric series, since it may be expressed in terms of its residue expansion (also called its partial fraction expansion)

$$\frac{1}{x^2 + 1} = \frac{1}{(x + i)(x - i)} = \frac{1}{2i} \left(\frac{1}{x - i} - \frac{1}{x + i} \right). \quad (3.38)$$

Each term has an RoC of $|x| < |1_j| = 1$. The amplitude of each pole is called the residue, defined in Eq. 4.36 (p. 17). The residue for the pole at 1_j is $1/2j$.

If we write
The roots must be found by factoring the polynomial (e.g., Newton's method). Once the roots are known, the residues are best found with linear algebra.

In summary, the function $1/(x^2 + 1)$ is the sum of two geometric series, with poles at $\pm i$, which is not initially obvious because the roots are complex and conjugate. Only when factored does it become clear what is going on.

Exercise: Verify the above expression is correct, and show that the residues are $\pm 1/2i$. Multiply and cancel, leaving 1, as required. The RoC is the coefficient on the pole. Thus the residue of the pole at $x = i$ is $1/2$.

Solution: Taking the derivative gives $\pi z^{\pi-1}$, which has a pole at $z = 0$. Applying the formula for the residue (Eq. 4.36, p. 171), we find

$$ e^{-1} = \pi \lim_{z \to 0} z e^{\pi-1} = \pi \lim_{z \to 0} z e^\pi = 0. $$

Thus the residue is zero.

3.2.3 Analytic functions

Any function that has a Taylor series expansion is called an **analytic function**. Within the RoC, the series expansion defines a single-valued function. Polynomials $1/(1 - x)$ and e^x are examples of analytic functions that are real functions of their real argument x.

Every analytic function has a corresponding differential equation, which is determined by the coefficients a_k of the analytic power series. An example is the exponential, which has the property that it is the eigenfunction of the derivative operation

$$ \frac{d}{dx} e^{ax} = ae^{ax}, $$

which may be verified using Eq. 3.30. This relationship is a common definition of the exponential function, which is very special because it is the eigenfunction of the derivative.

The complex analytic power series (i.e., complex analytic functions) may also be integrated term by term, since

$$ \int_a^b f(x)dx = \sum \frac{a_k}{k+1} x^{k+1}. \quad (3.38) $$

Newton took full advantage of this property of the analytic function and used the analytic series (Taylor series) to solve analytic problems, especially for working out integrals, allowing him to solve differential equations. To fully understand the theory of differential equations, one must master single-valued analytic functions and their analytic power series.

Single- vs. multi-valued functions:

Polynomials and their ∞-degree extensions (analytic functions) are single-valued: for each x there is a single value for $P_N(x)$. The roles of the domain and codomain may be swapped to obtain an **inverse function**, with properties that can be very different from those of the function. For example, $y(x) = x^2 + 1$ has the inverse $x = \pm y - 1$, which is double-valued, and complex when $y < 1$. Periodic functions such as $y(x) = \sin(x)$ are even more "exotic" since $x(y) = \arcsin(y)$ has an infinite number of $x(y)$ values for each y. This problem was first addressed in Riemann's 1851 PhD thesis, written while he was working with Gauss.

Exercise: Let $y(x) = \sin(x)$. Then $dy/dx = \cos(x)$. Show that $dx/dy = \pm 1/\sqrt{1 - y^2}$.

Solution: Since $\sin^2 x + \cos^2 x = 1$, it follows that $y^2(x) + (dy/dx)^2 = 1$. Thus $dy/dx = \pm \sqrt{1 - y^2}$.

Taking the reciprocal gives the result result.

To fully understand, Google **implicit function theorem** (D'Angelo, 2017, p. 104).
3.2. EIGENANALYSIS

3.31 Exercise Evaluate the integral

\[I(y) = \int_{y}^{x} \frac{dy}{\sqrt{1 - y^2}}. \]

Solution: From the previous exercise, we know that

\[x(y) = \int_{y}^{x} dx = \int_{y}^{x} \frac{dy}{\sqrt{1 - y^2}}. \]

But since \(y(x) = \sin(x) \) it follows that \(x(y) = \sin^{-1} y = \arcsin(y) \).

3.32 Exercise Find the Taylor series coefficients of \(y = \sin(x) \) and \(x = \sin^{-1}(y) \). Hint: Use symbolic Octave. Note \(\sin^{-1}(y) = \arcsin(y) \).

Solution: \(\text{syms } s; \text{taylor}(\sin(s), 'order', 10); \)

\[\sin(s) = s - s^3/3! + s^5/5! - s^7/7! + \ldots. \]

and \(\text{syms } s; \text{taylor}(\arcsin(s), 'order', 15); \)

\[\arcsin(s) = s + 1/6s^3 + 3/40s^5 + 5/112s^7 + 35/1152s^9 + 63/3840s^{11} + 231/46080s^{13} + \ldots \]

\[= s + 1/6s^3 + 3/40s^5 + 5/112s^7 + 7/280s^9 + 3/16s^{11} + 13/1344s^{13} + \ldots. \]

Note that every complex analytic function may be expanded in a Taylor series, within its RoC. It follows that the inverse is also complex analytic, as demonstrated in this case using symbolic algebra.

3.33 Exercise What is the necessary condition that if \(dy/dx = F(x) \), then \(dx/dy = \frac{1}{F(x)} \) ? Solution: This will be true when \(df(x)/dx = \frac{1}{F(x)} \) is complex analytic because the FTCC defines the antiderivative. In this case \(dy/dx = (dx/dy)^{-1} \) (except at singular points, where it is not analytic).

3.3.4 Complex analytic functions

We are given that

When the argument of an analytic function \(F(x) \) is complex; that is, \(x \in \mathbb{R} \) is replaced by \(s = \sigma + \omega j \in \mathbb{C} \). Recall that \(\mathbb{R} \subset \mathbb{C} \). Thus

\[F(s) = \sum_{n=0}^{\infty} c_n(s - s_0)^n, \]

(3.39)

In this case, with \(c_n \in \mathbb{C} \), that function is said to be a complex analytic.

An important example is where the exponential becomes complex, since

\[e^{st} = e^{(\sigma + \omega j)t} = e^{\sigma t}e^{j\omega t} = e^{\sigma t}[\cos(\omega t) + j \sin(\omega t)]. \]

(3.40)

Taking the real part gives

\[\Re\{e^{st}\} = e^{\sigma t} \cos(\omega t) \]

and \(\Im\{e^{st}\} = e^{\sigma t} \sin(\omega t) \). Once the argument is allowed to be complex, it becomes obvious that the exponential and circular functions are fundamentally related. This exposes the family of entire circular functions [i.e., \(e^z, \sin(z), \cos(z), \tan(z), \cosh(z), \sinh(z) \)] and their inverses [\(\ln(z), \arcsin(z), \arccos(z), \arctan(z), \cosh^{-1}(z), \sinh^{-1}(z) \)], first fully elucidated by Euler (1759) (Stillwell, 2010, p. 315).

Note that because \(\sin(\omega t) \) is periodic, its inverse must be multi-valued. What was needed is some systematic way to account for this multi-valued property. This extension to multi-valued functions is called a branch cut, invented by Riemann in his 1851 PhD Thesis, supervised by Gauss, in the final years of Gauss's life.
The Taylor series of a complex analytic function: However, there is a fundamental problem: we cannot formally define the Taylor series for the coefficients c_k until we have defined the derivative with respect to the complex variable $dF(s)/ds$, with $s \in \mathbb{C}$. Thus simply substituting s for x in an analytic function leaves a major hole in one's understanding of the complex analytic function.

To gain a feeling for the nature of the problem, we make take partial derivatives of a function with respect to t, σ, ω. For example,
\[
\frac{\partial}{\partial t} e^{st} = se^{st},
\]
\[
\omega \frac{\partial}{\partial \sigma} e^{st} = \sigma e^{st},
\]
and
\[
\frac{\partial}{\partial \omega} e^{st} = \omega je^{st}.
\]

It was Cauchy in 1814 (Fig. 3.1, p. 70) who uncovered the much deeper relationships within complex analytic functions (p. 141) by defining differentiation and integration in the complex plane, leading to several fundamental theorems of complex calculus, including the fundamental theorem of complex calculus and Cauchy’s formula. We shall explore these fundamental theorems on p. 151.

There seems to be some disagreement as to the status of multi-valued functions: Are they functions, or is a function strictly single-valued? If so, then we are missing out on a host of interesting possibilities, including all the inverses of nearly every complex analytic function. For example, the inverse of a complex analytic function is a complex analytic function (e.g., e^z and $\log(s)$).

Impact of complex analytic mathematics on physics: It seems likely, if not obvious, that the success of Newton was his ability to describe physics by the use of mathematics. He was inventing new mathematics at the same time he was explaining new physics. The same might be said for Galileo.

It seems likely that Newton was extending the successful techniques and results of Galileo's work on gravity (Galileo, 1638). Galileo died on Jan 8, 1642, and Newton was born Jan 4, 1643, just a year later. Obviously Newton was well aware of Galileo’s great success and naturally would have been influenced by him (see p. 18).

The application of complex analytic functions to physics was dramatic, as may be seen in the six volumes on physics by Arnold Sommerfeld (1868-1951), and from the productivity of his many (36) students (e.g., Debye, Lenz, Ewald, Pauli, Guillemin, Bethe, Heisenberg, Mose, and Seebach, to name a few), notable coworkers (e.g., Leon Brillouin) and others (e.g., John Bardeen), upon whom Sommerfeld had a strong influence. Sommerfeld was famous for training many students who were awarded the Nobel Prize in Physics, yet he never won a Nobel (the prize is not awarded in mathematics). Sommerfeld brought mathematical physics (the merging of physical and experimental principles via mathematics) to a new level with the use of complex integration of analytic functions to solve otherwise difficult problems, thus following the lead of Newton, who used real integration of Taylor series to solve differential equations (Brillouin, 1960, Ch. 3 by Sommerfeld, 1912).
3.3 Exercises AE-1

Problems

Topic of this homework: Fundamental theorem of algebra, polynomials, analytic functions and their inverse, convolution, roots.

Deliverable: Answers to problems

Note: The term "analytic" is used in two different ways: (1) An analytic function is a function that may be expressed as a locally convergent power series; (2) analytic geometry refers to geometry using a coordinate system.

Polynomials and the fundamental theorem of algebra (FTA)

Problem #3.1 A polynomial of degree N is defined as

$$P_N(x) = a_0 + a_1 x + a_2 x^2 + \cdots + a_N x^N.$$

(a) - Q 3.1: How many coefficients a_n does a polynomial of degree N have?

Solution: $N + 1$

(b) - Q 3.2: How many roots does $P_N(x)$ have?

Solution: N

Problem #3.2 The fundamental theorem of algebra (FTA)

(a) - Q 3.2: State and then explain the Fundamental Theorem of Algebra.

Solution: The FTA says that every polynomial has at least one root $x = x_r$.

(b) - Q 3.2: Using the FTA, prove your answer to the question (2) above.

Hint: Apply the FTA to prove how many roots a polynomial $P_N(x)$ of order N has. Solution: When a root is determined, it may be factored out, leaving a new polynomial of degree one less than the first. Specifically,

$$P_{N-1}(x) = \frac{P_N(x)}{x - x_r}.$$

Thus it follows that by a recursive application of this theorem, a polynomial has a number of roots equal to its degree. All the roots must be counted, including repeated and complex roots, and roots at ∞.

Problem #3.3 Consider the polynomial function $P_2(x) = 1 + x^2$ of degree $N = 2$, and the related function $F(x) = 1/P_2(x)$.

(a) - Q 3.3: What are the roots (e.g., zeros) x_{\pm} of $P_2(x)$?

Hint: Complete the square on the polynomial $P_2(x) = 1 + x^2$ of degree 2, and find the roots. Solution: Solving for the roots by setting $P_2(x) = 0$ gives $x_{\pm}^2 = -1$, leading to $x_{\pm} = \pm i$.

Problem #4.4 $F(x)$ may be expressed as $(A, B, x_{\pm} \in \mathbb{C})$

$$F(x) = \frac{A}{x - x_+} + \frac{B}{x - x_-}.$$

Author: Since Eq. 3.1 is also on p. 70 and p. 117, is it OK to put all the equations in this chapter in the same sequence?
where \(x_{\pm} \) are the roots (zeros) of \(P_2(x) \), which become the poles of \(F(x) \); and \(A, B \) are the residues.

The expression for \(F(x) \) is sometimes called a "partial fraction expansion" or "residue expansion," and it appears in many engineering applications.

Q 4.1
(a) Find \(A, B \in \mathbb{C} \) in terms of the roots \(x_{\pm} \) of \(P_2(x) \).

Solution: The fastest (i.e., easiest) way to find the constants \(A, B \) is to cross-multiply:

\[
\frac{1}{1 + x^2} = \frac{A(x - x_+)}{x - x_+} + \frac{B(x - x_-)}{x - x_-} = \frac{(A + B)x - (Ax_+ + Bx_-)}{(x - x_+)(x - x_-)}. \]

Since the numerator must equal 1, \(B = -A \) and \(A = 1/(x_+ - x_-) \).

In summary, in terms of the roots of Eq. 3.41,

\[A = -B = \frac{1}{(x_+ - x_-)} \quad \text{and} \quad F(x) = \frac{1}{1 + x^2} = \frac{1}{2j} \left(\frac{1}{x - j} - \frac{1}{x + j} \right). \]

(b) Verify your answers for \(A, B \) by showing that this expression for \(F(x) \) is indeed equal to \(1/P_2(x) \).

Solution: This is easily verified by cross-multiplying and simplifying. In the numerator the \(x \) terms cancel and Eq. 3.41 is recovered.

Q 4.2
(c) Give the values of the poles and zeros of \(P_2(x) \).

Solution: The zeros are at \(x_{\pm} = \pm j \), and the poles are at \(x_{\mp} = \pm \infty \).

Q 4.3
(d) Give the values of the poles and zeros of \(F(x) = 1/P_2(x) \).

Solution: The poles are at \(x_{\mp} = \pm j \), and the zeros are at \(x_{\pm} = \pm \infty \).

Analytic functions

Overview: Analytic functions are defined by infinite (power) series. The function \(f(x) \) is analytic at any value of \(x = x_0 \) where there exists a convergent power series

\[P(x) = \sum_{n=0}^{\infty} a_n x^n \]

such that \(P(x_0) = f(x_0) \). The local power series for \(f(x) \) near \(x = x_0 \) is often obtained by finding the Taylor series:

\[f(x) \approx f(x_0) + \frac{df}{dx}_{x=x_0} (x - x_0) + \frac{1}{2!} \frac{d^2 f}{dx^2}_{x=x_0} (x - x_0)^2 + \ldots \]

\[= \sum_{n=0}^{\infty} \frac{1}{n!} \frac{d^n f}{dx^n}_{x=x_0} (x - x_0)^n. \]

The point \(x = x_0 \) is called the series expansion point.

When the expansion point is at \(x_0 = 0 \), the series is denoted a MacLaurin series. Two classic examples are the geometric series\(^{10}\) where \(a_n = 1 \),

\[\frac{1}{1 - x} = 1 + x + x^2 + x^3 + \ldots = \sum_{n=0}^{\infty} x^n, \]

\[(32) \]

\[^{10}\] The geometric series is not defined as the function \(1/(1 - x) \); it is defined as the series \(1 + x + x^2 + x^3 + \ldots \), such that the ratio of consecutive terms is \(x \).
and the exponential function where \(a_n = 1/n! \) for \(n \geq 1 \):

\[
e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots = \sum_{n=0}^{\infty} \frac{x^n}{n!}.
\]

The coefficients for both series may be derived from the Taylor formula (or MacLaurin formula, when the expansion point is zero).

Problem 3.5.2 The geometric series

(a) **Q 3.5.1:** What is the region of convergence (RoC) for the power series of \(1/(1-x) \) given above? Why does the power series \(P(x) \) converge to the function value \(f(x) \)? State your answer as a condition on \(x \).

Hint: What happens to the power series when \(x > 1 \)?

Solution: \(|x| < 1 \), because for \(|x| \geq 1 \), the power series diverges to infinity.

(b) **Q 3.5.2:** In terms of the pole, what is the RoC for the geometric series (Eq. 3.2) in Eq. 3.42?

Solution: The nearest pole relative to the expansion point at \(x = 0 \) is at \(x = 1 \), namely the RoC is \(1 \).

(c) **Q 3.5.3:** How does the RoC relate to the location of the pole of \(1/(1-x) \)?

Solution: The pole is at \(x = 1 \), on the border of the RoC. The nearest pole relative to the expansion point at \(x = 0 \) is at \(x = 1 \). Thus the RoC is \(1 \).

(d) **Q 3.5.4:** Where are the zeros, if any, in Eq. 3.42?

Solution: There is a single zero at \(x = \infty \).

(e) **Q 3.5.5:** Assuming \(x \) is in the RoC, prove that the geometric series correctly represents \(1/(1-x) \) by multiplying both sides of Eq. 3.42 by \(1-x \).

Solution:

\[
1 = \frac{1-x}{1-x}
= (1-x)(1+x+x^2+x^3+\cdots)
= (1+x+x^2+x^3+\cdots) - x(1+x+x^2+\cdots)
= (1+x+x^2+x^3+\cdots) - (x+x^2+x^3+\cdots)
= (1+(x-x))+(x^2-x^2)+(x^3-x^3+\cdots)
= 1
\]

The introduction of a removable singularity voids the solution at \(x = 1 \). When we expand the denominator in a series, the relation is good for \(|x| < 1 \) (not for \(x = 1 \)).

we let \(z = 1/x \), the relation becomes

\[
1 = \frac{1-z}{1-z}
\]

which is valid for \(z \neq 1 \), which when expanded the RoC is \(|z| < 1 \), or \(x > 1 \).

Q 3.6: Use the geometric series to study the degree \(N \) polynomial. It is very important to note that all the coefficients of this polynomial are

\[
P_N(x) = 1 + x + x^2 + \cdots + x^N = \sum_{n=0}^{N} x^n.
\]
Q 5.7: Prove that

\[P_N(x) = \frac{1 - x^{N+1}}{1 - x} \]

Solution:

\[P_N(x) = 1 + x + x^2 + \ldots + x^N \]

\[= \sum_{n=0}^{\infty} x^n - \sum_{n=1}^{\infty} x^n \]

\[= \sum_{n=0}^{\infty} x^n - \frac{x^{N+1}}{1-x} \]

\[= \frac{1 - x^{N+1}}{1 - x} \]

Q 5.8: What is the RoC for Eq. 3.4?

Solution: This series converges everywhere (the RoC is the entire plane \(|z| < \infty\)) due to the strong convergence effect of the factorial \((n_n = 1/n!)\) of the coefficients of the series.

Q 5.9: What is the RoC for Eq. 3.4?

Solution: There is no pole, thus the RoC is \(\infty\). The polynomial only has zeros.

Q 5.10: What is the RoC for Eq. 3.4?

Solution: The pole nearest the expansion point is at \(x = 1\). Thus the RoC is 1.

Q 5.11: Evaluate \(P_N(x)\) at \(x = 0\) and \(x = 0.9\) for the case of \(N = 100\), and compare the result to that from Matlab.

Solution: \(P_N(0) = 1\) and \(P_N(0.9) = 1 + \sum_{n=1}^{99} 0.9^n\). According to Matlab, \(P_{100}(0) = 1\) and \(P_{100}(0.9) = 0.999766947410014\), with a difference of \(3.55271 \times 10^{-13}\) (i.e., \(16 \times \text{eps}\)).

% sum the geometric series and P_100(0.9)
clear all; close all; format long
N=100; x=0.9; S=0;
for n=0:N
 S=S+x^n
end
P100=(1-x^n(N+1))/(1-x);
disp(sprintf('S= %g, P100= %g, error= %g, S,P100, S-P100'))

Q 5.12: How many poles does \(P_N(x)\) have? Where are they?

Solution: Since \(P_N(x)\) is defined by Eq. 3.4, there is no poles at \(x = 1\). However, it still has a pole of order \(N\) at \(x = \infty\). To show this, define \(z = 1/x\) and study the zeros.

Q 5.13: How many zeros does \(P_N(x)\) have? State where are they in the complex plane.

Solution: There are zeros at \(x = -\frac{1}{N+1} \sqrt{N+1} = e^{2\pi i/(N+1)}\). Total = \(N + 1\) zeros. However, the zero at 1 is removable because it is on top of the pole at 1. This is referred to as a removable singularity.

Q 5.14: Does Eq. 3.4 have both poles and zeros? Explain.

Solution: Written in this way, every \(N\)th degree polynomial, with \(N\) zeros, has a single pole and \(N + 1\) zeros.
3.3. EXERCISES AE-1

(o) \(\text{Q 5.15: Explain why Eq. 3.4 and 3.5 have different numbers of poles and zeros.} \)

\text{Solution: Eq. 3.5 has } N + 1 \text{, known as the roots of unity, which exactly cancel the pole. Exactly how this happens is very interesting. This is similar to the GCD problem we saw previously, where common factors in a rational number may be removed, but in this case, it is a common root that cancels.} \)

(p) \(\text{Q 5.16: Is the function } 1/(1-x) \text{ analytic outside of the RoC stated in part (a)?} \)

\text{Hint: Can it be represented by a different power series outside this RoC? Solution: Yes, and we can use the geometric series to prove this. Consider } x = 1/r > 1, \text{ meaning } r < 1. \)

\[
\frac{1}{1-x} = \frac{-r}{1-r} = -r \sum_{n=0}^{\infty} r^n = -\sum_{n=1}^{\infty} x^n.
\]

Problem 3.6 The exponential series

(a) \(\text{Q 6.1: What is the region of convergence (RoC) for the exponential series given above (e.g. where does the power series } a_n(x) \text{ converge to the function value } f(x)?} \)

\text{Solution: The exponential is convergent everywhere on the open real line.} \)

(b) \(\text{Q 6.2: Let } x = j \text{ in Eq. 3.4, and write out the series expansion of } e^x \text{ in terms of its real and imaginary parts.} \)

\text{Solution:}

\[
e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + \mathbf{j} - \frac{\mathbf{j}^2}{2!} + \frac{\mathbf{j}^3}{3!} - \frac{\mathbf{j}^4}{4!} + \frac{\mathbf{j}^5}{5!} - \frac{\mathbf{j}^6}{6!} + \ldots
\]

\[
= \left(1 - \frac{\mathbf{j}}{2!} + \frac{\mathbf{j}^2}{4!} - \frac{\mathbf{j}^3}{6!} + \ldots\right) + j\left(\frac{\mathbf{j}^3}{3!} - \frac{\mathbf{j}^5}{5!} + \frac{\mathbf{j}^7}{7!} - \ldots\right)
\]

\[
= \sum_{n=0,2,4,6,\ldots} \frac{(-1)^n}{n!} + \mathbf{j} \sum_{n=1,3,5,\ldots} \frac{(-1)^n}{n!}.
\]

(c) \(\text{Q 6.3: Let } x = j\theta \text{ in Eq. 3.4, and write out the series expansion of } e^x \text{ in terms of its real and imaginary parts. How does your result relate to Euler's identity } (e^{j\theta} = \cos(\theta) + \mathbf{j}\sin(\theta))? \)

\text{Solution:}

\[
e^{j\theta} = \sum_{n=0}^{\infty} \frac{j^n \theta^n}{n!} = 1 + j\theta - \frac{(j\theta)^2}{2!} + \frac{(j\theta)^3}{3!} - \frac{(j\theta)^4}{4!} + \frac{(j\theta)^5}{5!} - \frac{(j\theta)^6}{6!} + \ldots
\]

\[
= \left(1 - \frac{\theta^2}{2!} + \frac{\theta^4}{4!} - \frac{\theta^6}{6!} + \ldots\right) + j\left(\frac{\theta^3}{3!} - \frac{\theta^5}{5!} + \frac{\theta^7}{7!} - \ldots\right)
\]

\[
= \cos(\theta) + j\sin(\theta).
\]
Inverse analytic functions and composition

Overview: It may be surprising, but every analytic function has an inverse function. Starting from the function \(f(x, y) \in \mathbb{C} \)

\[
y(x) = \frac{1}{1-x}
\]

the inverse is

\[
x = y - \frac{1}{y} = 1 - \frac{1}{y}
\]

Problem 1.7: Considering the inverse function described above.

(a) - Q 7.1: Where are the poles and zeros of \(x(y) \)?

Solution: Pole at \(y = 0 \); zero at \(y = 1 \). There are no poles or zeros at \(\infty \) because \(\lim_{y \to \pm \infty} (y-1)/y = 1 \).

(b) - Q 7.2: Where (for what condition on \(y \)) is \(x(y) \) analytic?

Solution: Anywhere but the pole, at \(y = 0 \).

Problem 1.8: Considering the exponential function \(z(x) = e^x \ (x, z \in \mathbb{C}) \).

(a) - Q 8.1: Find the inverse \(x(z) \).

Solution: Taking the natural log (ln) of both sides gives \(x = \ln(z) \). Thus the natural log is the inverse of the exponential.

(b) - Q 8.2: Where are the poles and zeros of \(x(z) \)?

Solution: Pole at \(z = 0 \); zero at \(z = 1 \). There is another pole at \(z = +\infty \) as well.

(c) - Q 8.3: Compose these two functions \((y \circ z)(x) \).

Give the expression for \((y \circ z)(x) = y(z(x)) \).

Solution:

\[
(y \circ z)(x) = \frac{1}{1-e^x}
\]

(d) - Q 8.4: Where are the poles and zeros of \((y \circ z)(x) \)?

Solution: Pole at \(x = 0 \); zero at \(x = 1 \). The pole is at \(x = 0 \) and the zero is at \(x = 1 \).

(c) - Q 8.5: Where (for what condition on \(x \)) is \((y \circ z)(x) \) analytic?

Solution: Everywhere except \(x = 0 \).

It is analytic everywhere except at

Convolution

Multiplying two polynomials, when they are short or simple, is not demanding. However if they have many terms, it can become tedious. For example, multiplying two 10th degree polynomials is not something one would want to do every day.

An alternative is a method called convolution, as described in Sec. 3.4 (p. 102).

Problem 1.9: Convolution of sequences. Practice convolution (by hand!!) using a few simple examples. Show your work!!! Check your solution using Matlab.

(a) - Q 9.1: Convolve the sequence \(\{0 \ 1 \ 1 \ 1 \} \) with itself.

Solution: \(\{0 \ 0 \ 1 \ 2 \ 3 \ 4 \ 3 \ 2 \ 1 \} \).

Author: Is it OK to have problems that use convolution, when it is not described until the next section?
3.3. EXERCISES AE-1

(b) –Q 9.2: Calculate \(\{1, 1\} \ast \{1, 1\} \ast \{1, 1\} \).

Solution:

\[
\{1,1\} \ast \{1,2,1\} = \{1,3,3,1\}
\]

Problem #10.1: Multiplying two polynomials is the same as convolving their coefficients.

\[
f(x) = x^3 + 3x^2 + 3x + 1 \]
\[
g(x) = x^3 + 2x^2 + x + 2
\]

(a) –Q 10.1: In Octave/ Matlab, compute \(h(x) = f(x) \cdot g(x) \) two ways.

Use (a) the commands roots and poly, and (b) the convolution command conv. Confirm that both methods give the same result. \(h(x) = [1, 3, 3, 1] \ast [1, 2, 1, 2] \)

(b) –Q 10.2: What is \(h(x) \)?

Solution: \(h(x) = x^5 + 5x^3 + 10x^4 + 12x^3 + 11x^2 + 7x + 2 \)

Newton's root-finding method

Problem #11. Use Newton's iteration to find the roots of the polynomial

\[
P_5(x) = 1 - x^3.
\]

(a) –Q 11.1: Draw a graph describing the first step of the iteration starting with \(x_0 = (1/2, 0) \).

Solution: Start with an \((x, y)\) coordinate system and put points at \((1/2, 0)\),

(b) –Q 11.2: Calculate \(x_1 \) and \(x_2 \). What number is the algorithm approaching?

Solution: First we must find \(P_5'(x) = -3x^2 \). Thus the equation we must iterate is Eq. 3.14 (p. 75):

\[
x_{n+1} = x_n + \frac{1 - x_n^3}{3x_n^2}.
\]

Given a first guess for the root \(x_0 \), the following are \(x_1 = x_0 + \frac{1 - x_0^3}{3x_0^2} \) and \(x_2 = x_1 + \frac{1 - x_1^3}{3x_1^2} \). Note that if \(x = 0 \) is the root, \(x_1 = x_0 \) and we are done. However, if \(x_0 = 0 \), \(x_1 = \infty \) since \(x_0 = 0 \) is a root of \(P_5(x) \). Thus one must not start at the roots of \(P_5'(x) = 0 \).

(c) –Q 11.3: Here is an Octave/ Matlab script for the \(P_2(x) \) case. Modify it to find \(P_3(x) \):

```matlab
x(1)=1/2; \%x(1)=0.9; \%x(1)=-10
y(1)=x(1);
for n=2:10
    x(n) = x(n-1) + (1-x(n-1)^2)/(2*x(n-1));
    y(n) = (1+y(n-1)^2)/(2*x(n-1));
end
semilogy(abs(x)-1); hold on
semilogy(abs(7)-1,'or'); hold off
```

Solution:

```matlab
x=1/2;
for n = 1:3
    x = x+(1-x*x*x)/(3*x*x);
end
```
CHAPTER 3. STREAM 2: ALGEBRAIC EQUATIONS

(d) \(Q \, \text{H.4:} \) For \(n = 4 \), what is the absolute difference between the root and the estimate, \(|x_r - x_4|\)?
Solution: 4.6E-8 (very small!)

(c) \(Q \, \text{H.5:} \) What happens if \(x_0 = -1/2 \)?
Solution: You converge on the negative root, \(x = -1 \).

(f) \(Q \, \text{H.6:} \) Does Newton's method work for \(P_2(x) = 1 + x^2 \)?
If so, why? Hint: What are the roots in this case?
Solution: Here \(P_2'(x) = +2x \) thus the iteration gives

\[x_{n+1} = x_n - \frac{1 + x_n^2}{2x_n}. \]

In this case the roots are \(x_{\pm} = \pm 1 \), namely purely imaginary. If we start with a real number for \(x_0 \) and use real arithmetic, obviously Newton's method fails because there is no way for the answer to become complex.

(g) \(Q \, \text{H.7:} \) What if we let \(x_0 = (1 + j)/2 \) for the case of \(P_2(x) = 1 + x^2 \)?
Solution: By starting with a complex initial value, we fix the Real in = Real out problem.

Riemann zeta function \(\zeta(s) \)

Definitions and preliminary analysis:
The zeta function \(\zeta(s) \) is defined by the complex analytic power series

\[\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \frac{1}{1^s} + \frac{1}{2^s} + \frac{1}{3^s} + \frac{1}{4^s} + \cdots. \]

This series converges, and thus is valid, only in the region of convergence (ROC) given by \(\Re s = \sigma > 1 \), since there \(|n^{-s}| < 1 \). To determine its formula in other regions of the \(s \) plane, one must extend the series via analytic continuation.

Euler product formula: As was first published by Euler in 1737, one may recursively factor out the leading prime term, resulting in Euler's product formula. Multiplying \(\zeta(s) \) by the factor \(1/2^s \) and subtracting from \(\zeta(s) \), removes all the terms \(1/(2n)^s \) (e.g., \(1/2^s + 1/4^s + 1/6^s + 1/8^s + \cdots \)).

\[\left(1 - \frac{1}{2^s}\right) \zeta(s) = 1 + \frac{1}{3^s} + \frac{1}{5^s} + \frac{1}{7^s} + \frac{1}{9^s} + \frac{1}{11^s} + \frac{1}{13^s} + \cdots, \]

which results in

\[\left(1 - \frac{1}{2^s}\right) \zeta(s) = 1 + \frac{1}{3^s} + \frac{1}{5^s} + \frac{1}{7^s} + \frac{1}{9^s} + \frac{1}{11^s} + \frac{1}{13^s} + \cdots. \]

Problem \#12.

(a) \(Q \, \text{I2.1:} \) What is the ROC for Eq. \(3 \)?
Solution: \(|3^s| > 1 \). This is an example of analytic continuation of the initial series.

\(1\) This is known as Euler's sieve, as distinguished from the Eratosthenes sieve.
3.3. EXERCISES AE-1

(b) \(Q 12.2 \): Repeat this with a lead factor \(\frac{1}{3^s} \) applied to Eq. 3.8.
Solution:
\[
\frac{1}{3^s} \left(1 - \frac{1}{2^s} \right) \zeta(s) = \frac{1}{3^s} + \frac{1}{9^s} + \frac{1}{15^s} + \frac{1}{21^s} + \frac{1}{27^s} + \frac{1}{33^s} + \cdots
\]
Subtracting Eq. 3.8 from Eq. 3.9 cancels the RHS terms of Eq. 3.8
\[
\left(1 - \frac{1}{3^s} \right) \zeta(s) = 1 + \frac{1}{5^s} + \frac{1}{7^s} + \frac{1}{11^s} + \frac{1}{13^s} + \frac{1}{17^s} + \frac{1}{19^s} + \cdots
\]

(c) \(Q 12.3 \): What is the ROC for Eq. 3.9
Solution: \(|5^s| > 1\). Thus we extended the ROC even further.

(d) \(Q 12.4 \): Repeat this process, with all prime scale factors (i.e., \(1/5^s, 1/7^s, \ldots, 1/p_k^s \)), and show that
\[
\zeta(s) = \prod_{\pi_k \in \mathbb{P}} \frac{1}{1-\pi_k^{-s}} = \prod_{\pi_k \in \mathbb{P}} \zeta_k(s)
\]
where \(\pi_p \) represents the \(p \)-th prime.

Solution: The above defines each factor \(\zeta_k(s) \) as the \(k \)-th term of the product. Each recursive step in this construction assures that the lead term, along with all of its multiplicative factors, are subtracted out.

(e) \(Q 12.5 \): Given the product formula, we may identify the poles of \(\zeta_p(s) \) \((p \in \mathbb{Z}) \), which is important for defining the ROC of each factor.
For example, the \(p \)-th factor of Eq. 3.10, expressed as an exponential, is
\[
\zeta_p(s) = \frac{1}{1 - \pi_p^{-s}} = \frac{1}{1 - e^{-\pi_p^{-s}}}
\]
where \(T_p = \ln \pi_p \).

Solution: The factor \(\zeta_p(s) \) has poles at \(s_n(p) \) where \(2\pi j n = s_n T_p \), giving
\[
s_n(p) = \frac{2\pi j n}{\ln \pi_p}
\]
with \(-\infty < n \in \mathbb{C} < \infty\). With each step the ROC is larger, resulting in an analytic function having its ROC approaching \(\infty \). These poles might be viewed as the eigen modes of the zeta function.

(f) \(Q 12.6 \): Plot \(\zeta_p(s) \) using \(\text{viz} \) for \(p = 1 \). Describe what you see.
Solution: \(\zeta_1(s) \) has poles at integral multiples of \(T_1 = \log 2 \), as shown below.

12 Each factor (i.e., \(\zeta_p(s) \)) has poles at \(s_n = j2\pi n/T_p, n \in \mathbb{C} \) (i.e., \(e^{-sT_p} = 1 \)).
3.4 Root classification by convolution

Following the exploration of algebraic relationships by Fermat and Descartes, the first theorem was being formulated by d'Alembert. The idea behind this theorem is that every polynomial of degree N (Eq. 3.7) has at least one root. This may be written as the product of the root and a second polynomial of degree $N-1$. By the recursive application of this concept, it is clear that every polynomial of degree N has N roots. Today this result is known as the fundamental theorem of algebra:

Every polynomial equation $P(z) = 0$ has a solution in the complex numbers. As Descartes observed, a solution $z = a$ implies that $P(z)$ has a factor $z - a$. The quotient

$$Q(z) = \frac{P(z)}{z - a} = \frac{P(z)}{z - a} \left[1 + \frac{z}{a} + \left(\frac{z}{a}\right)^2 + \left(\frac{z}{a}\right)^3 + \cdots \right] \quad (3.4.1)$$

is then a polynomial of one lower degree. ... We can go on to factorize $P(z)$ into n linear factors.

The ultimate expression of this theorem is given by Eq. 3.7 (p. 72), which indirectly states that an nth-degree polynomial has n roots. We shall use the term degree when speaking of polynomials and the term order when speaking of differential equations. A general rule is that order applies to the time domain and degree to the frequency domain, since the Laplace transform of a differential equation, having constant coefficients, of order N, is a polynomial of degree N in Laplace frequency s.

Today this theorem is so widely accepted, we fail to appreciate it. Certainly about the time you learned the quadratic formula, you were prepared to understand the concept of polynomials having roots. The simple quadratic case may be extended to a higher degree polynomial. The Octave/Matlab command roots([1, a2, a1, a0]) provides the roots $[s1, s2, s3]$ of the cubic equation, defined by the coefficient vector $[1, a2, a1, a0]$. The command poly([s1, s2, s3]) returns the coefficient vector. I don't know the largest degree that can be accurately factored by Matlab/Octave, but I'm sure it's well over $N = 10^3$. Today, finding the roots numerically is a solved problem.

Factorization versus convolution: The best way to gain insight into the polynomial factorization problem is through the inverse operation, multiplication of monomials. Given the roots x_k, there is a simple algorithm for computing the coefficients a_k of $P_N(x)$ for any n, no matter how large. This method is called convolution. Convolution is said to be a trap-door function since it is easy, while the inverse, factoring (deconvolution), is hard and analytically intractable for degree $N \geq 5$ (Stillwell, 2010, p. 102).

Author: Could this subheading be deleted? This is just one paragraph of a general introductory discussion.
3.4.1 Convolution of monomials

As outlined by Eq. 3.7, a polynomial has two equivalent descriptions, first as a series with coefficients \(a_n \) and second in terms of its roots \(x_r \). The question is: What is the relationship between the coefficients and the roots? The simple answer is that they are related by convolution.

Let us start with the quadratic equation

\[
(x + a)(x + b) = x^2 + (a + b)x + ab,
\]

where in vector notation \([-a, -b]\) are the roots and \([1, a + b, ab]\) are the coefficients.

To see how the result generalizes, we may work out the coefficients for the cubic (\(N = 3 \)). Multiplying the following three factors gives

\[
(x - 1)(x - 2)(x - 3) = (x^2 - 3x + 2)(x - 3) = x(x^2 - 3x + 2) - 3(x^2 - 3x + 2) = x^3 - 6x^2 + 11x - 6.
\]

When the roots are \([1, 2, 3]\), the coefficients of the polynomial are \([1, -6, 11, -6]\). To verify, substitute the roots into the polynomial and show that they give zero. For example, \(r_1 = 1 \) is a root since \(P_3(1) = 1 - 6 + 11 - 6 = 0 \).

As the degree increases, the algebra becomes more difficult. Imagine trying to work out the coefficients for \(N = 100 \). What is needed is a simple way of finding the coefficients from the roots. Fortunately, convolution keeps track of the bookkeeping, formalizing the procedure, along with Newton’s deconvolution method for finding roots of polynomials (p. 75).

Convolution of two vectors: To get the coefficients by convolution, write the roots as two vectors \([1, a]\) and \([1, b]\). To find the coefficients, we must convolve the vectors, indicated by \([1, a] \ast [1, b]\), where \(\ast \) denotes convolution. Convolution is a recursive operation. The convolution of \([1, a]\) with \([1, b]\) is done as follows: reverse one of the two monomials, padding unused elements with zeros. Next slide one monomial against the other, forming the local scalar product (element-wise multiply and add):

\[
\begin{align*}
&1 \quad 0 \quad 0 \quad a \quad 1 \quad 0 \quad a \quad 1 \quad 0 \quad 0 \quad a \quad 1 \\
&0 \quad 0 \quad 1 \quad b \quad 0 \quad 1 \quad b \quad 0 \quad 1 \quad b \quad 0 \quad 0 \quad 0,
\end{align*}
\]

resulting in coefficients \([- \cdots, 0, 0, 1, a + b, ab, 0, 0, \cdots]\).

By reversing one of the polynomials and then taking successive scalar products, all the terms in the sum of the scalar product correspond to the same power of \(x \). This explains why convolution gives the same answer as the product of the polynomials.

As seen by the above example, the positions of the first monomial coefficients are reversed, and then slid across the second set of coefficients, the scalar product is computed, and the result placed in the output vector. Outside the range shown, all the elements are zero. In summary,

\[
[1, -1] \ast [1, -2] = [1, -1 - 2, 2] = [1, -3, 2].
\]

In general,

\[
[a, b] \ast [c, d] = [ac, bc + ad, bd],
\]

Convolving a third term \([1, -3]\) with \([1, -3, 2]\) gives (Eq. 3.43)

\[
[1, -3] \ast [1, -3, 2] = [1, -3 - 3, 9 + 2, -6] = [1, -6, 11, -6],
\]

which is identical to the cubic example found by the algebraic method.

By convolving one monomial factor at a time, the overlap is always two elements, thus it is never necessary to compute more than two multiplies and an add for each output coefficient. This greatly simplifies the operations (i.e., they are easily done in your head). Thus the final result is more likely to be correct. Comparing this to the algebraic method, convolution has the clear advantage.
Exercise: What are the three nonlinear equations that one would need to solve to find the roots of a cubic?

Solution: From our formula for the convolution of three monomials we may find the nonlinear "deconvolution" relations between the roots \([\alpha, \beta, \gamma]\) and the cubic's coefficients \([a, b, c]\):

\[
(x + a) \ast (x + b) \ast (x + c) = (x + c) \ast (x^2 + (a + b)x + ab)
\]

\[
= x \cdot (x^2 + (a + b)x + ab) + c \cdot (x^2 + (a + b)x + ab)
\]

\[
= x^3 + (a + b + c)x^2 + (ab + ac + cb)x + abc
\]

\[
= [1, a + b + c, ab + ac + cb, abc].
\]

It follows that the nonlinear equations must be

\[
\alpha = a + b + c
\]

\[
\beta = ab + ac + bc
\]

\[
\gamma = abc.
\]

These may be solved by the classic cubic solution, which therefore is a deconvolution problem, also known as long division of polynomials. It follows that the following long division of polynomials must be true:

\[
\frac{x^3 + (a + b + c)x^2 + (ab + ac + bc)x + abc}{x + a} = x^2 + (b + c)x + bc.
\]

The product of a monomial \(P_1(x)\) with a polynomial \(P_N(x)\) gives \(P_{N+1}(x)\): This statement is another way of stating the fundamental theorem of algebra. Each time we convolve a monomial with a polynomial of degree \(N\), we obtain a polynomial of degree \(N + 1\). The convolution of two monomials results in a quadratic (degree 2 polynomial). The convolution of three monomials gives a cubic (degree 3). In general, the degree \(k\) of the product of two polynomials of degree \(n, m\) is the sum of the degrees \((k = n + m)\). For example, if the degrees are each 5 \((n = m = 5)\), then the resulting degree is 10.

While we all know this theorem from high school algebra class, it is important to explicitly identify the fundamental theorem of algebra.

Note that the degree of a polynomial is one less than the length of the vector of coefficients. Since the leading term of the polynomial cannot be zero, else the polynomial would not have degree \(N\), when looking for roots, the coefficient can (and should always) be normalized to 1.

In summary, the product of two polynomials of degree \(m, n\) having \(m\) and \(n\) roots gives a polynomial of degree \(m + n\). This is an analysis process of merging polynomials, by coefficient convolution. Multiplying polynomials is a merging process into a single polynomial.

Composition of polynomials: Convolution is not the only important operation between two polynomials. Another is composition, which may be defined for two functions \(f(z), g(z)\). Then the composition \(c(z) = f(z) \circ g(z) = f(g(z))\). As a specific example, suppose \(f(z) = 1 + z + z^2\) and \(g(z) = e^{2z}\). With these definitions,

\[
f(z) \circ g(z) = 1 + e^{2z} + (e^{2z})^2 = 1 + e^{2z} + e^{4z}.
\]

Note that \(f(z) \circ g(z) \neq g(z) \circ f(z)\).

Exercise 3.35: Find \(g(z) \circ f(z)\).

Solution: \(e^{2f(z)} = e^{2(1+z+z^2)} = e^2e^{(1+z+z^2)} = e^2e^z e^{z^2}\).

\(^{13}\)By working with the negative roots we may avoid an unnecessary and messy alternating sign problem.
3.4.2 Residue expansions of rational functions

As discussed on page 81, there are at least seven important Matlab/Octave routines that are closely related: `conv()`, `deconv()`, `poly()`, `polyder()`, `polyval()`, `residue()`, `root()`. Several of these routines are complementary to each other, or do a similar operation in a slightly different way. Routines `conv()`, `poly()` build polynomials from the roots, while `root()` solves for the roots given the polynomial coefficients. The operation `residue()` converts the ratio of two polynomials and expands it in a partial fraction expansion, with poles and residues.

When lines and planes are defined, the equations are said to be linear in the independent variables. In keeping with this definition of linear, we say that the equations are non-linear when the equations have degree greater than 1 in the independent variables. The term bilinear has a special meaning in that both the domain and codomain are linearly related by lines (or planes). As an example, impedance is defined in frequency as the ratio of the voltage over the current, but it frequently has a representation as the ratio of two polynomials, $N(s)$ and $D(s)$:

$$
Z(s) = \frac{N(s)}{D(s)} = \frac{N}{D} + \sum_{k=0}^{K} \frac{K_k}{s - s_k}.
$$

Here $Z(s)$ is the impedance, and V and I are the voltage and current at the rafficient frequency ω.\(\dagger\)

Such an impedance is typically specified as a rational function, namely the ratio of two polynomials, $P_N(s) = N(s) = \lbrack a_0, a_{n-1}, \ldots, a_n \rbrack$ and $P_K(s) = D(s) = \lbrack b_0, b_{K-1}, \ldots, b_K \rbrack$ of degrees $N, K \in \mathbb{N}$, as functions of complex Laplace frequency $s = \sigma + j\omega$, having simple roots. Most impedances are rational functions, since they may be written as $D(s)V = N(s)I$. Since $D(s)$ and $N(s)$ are both polynomials in s, rational functions are also called bilinear transformations, or in the mathematical literature, Möbius transformation, which comes from a corresponding scalar differential equation of the form

$$
\sum_{k=0}^{K} b_k \frac{d^k}{dt^k} \varepsilon(t) = \sum_{n=0}^{N} a_n \frac{d^n}{dt^n} \varepsilon(t) \Rightarrow I(\omega) \sum_{k=0}^{K} b_k s^k = V(\omega) \sum_{n=0}^{N} a_n s^n.
$$

This construction is also known as the ABCD method in the engineering literature (Eq. 3.66, p. 125). This equation, as well as 3.44, follows from the Laplace transform (see p. 135) of the differential equation (on left), by forming the impedance $Z(s) = V/I = A(s)/B(s)$. This form of the differential equation follows from Kirchhoff's voltage and current laws (KCL, KVL) or from Newton's laws (for the case of mechanics).

The physical properties of an impedance

Based on d'Alembert's observation that the solution to the wave equation is the sum of forward and backward traveling waves, the impedance may be rewritten in terms of forward and backward traveling waves (see p. 160):\(^{18}\)

$$
Z(s) = \frac{V}{I} = \frac{V_+ + V_-}{I_+ - I_-} = \frac{1 + \Gamma(s)}{1 - \Gamma(s)}\dagger
$$

where $r_o = P^+/I^+$ is called the characteristic impedance of the transmission line (e.g., wire) connected to the load impedance $Z(s)$, and $\Gamma(s) = V^-/V_+ = I^-/I_+$ is the reflection coefficient corresponding to $Z(s)$. Any impedance of this type is called a Brune impedance due to its special properties (Brune, 1931a; Van Valkenburg, 1964a). Like $Z(s)$, $\Gamma(s)$ is causal and complex analytic. The impedance and the reflectance function $\Gamma(s)$ must both be complex analytic, since they are related to the bilinear transformation, which assures the mutual complex analytic properties.

Due to the bilinear transformation, the physical properties of $Z(s)$ and $\Gamma(s)$ are very different. Specifically, the real part of the load impedance will be non-negative (\mathcal{R}\{Z(\omega)\} \geq 0), if and only if $Z(s)$ is a linear one, best solved by setting up a linear system of equations in the unknown residues.

\(^{18}\)Note that the relationship between the impedance and the residues K_k is a linear one, best solved by setting up a linear system of equations in the unknown residues.
if \(|\Gamma(s)| \leq 1\). In the time domain, the impedance \(z(t) \leftrightarrow Z(s)\) must have a value of 0 at \(t = 0\). Correspondingly, the time domain reflectance \(\gamma(t) \leftrightarrow \Gamma(s)\) must be zero at \(t = 0\).

This is the basis of conservation of energy, which may be traced back to the properties of the reflectance \(\Gamma(s)\).

3.36

Exercise. Show that if \(\Re\{Z(s)\} \geq 0\) then \(|\Gamma(s)| \leq 1\).

Solution: Taking the real part of Eq. 3.46, which must be \(\geq 0\), we find

\[
\Re\{Z(s)\} = \frac{1 + \Gamma(s)}{2} \frac{1 + \Gamma^*(s)}{1 - \Gamma(s)} = \frac{1 - |\Gamma(s)|^2}{1 + |\Gamma(s)|^2} \geq 0.
\]

Thus \(|\Gamma| \leq 1\).

3.5 Introduction to Analytic Geometry

Analytic geometry came about with the merging of Euclid's geometry with algebra. The combination of Euclid's (323 BCE) geometry and al-Khwarizmi's (830 CE) algebra resulted in a totally new and powerful tool, analytic geometry, independently worked out by Descartes and Fermat (Stillwell, 2010). The addition of matrix algebra during the 18th century enabled analysis in more than three dimensions, which today is one of the most powerful tools used in artificial intelligence, data science and machine learning. The utility and importance of these new tools cannot be overstated. The timeline for this period is provided in Fig. 1.2.

There are many important relationships between Euclidean geometry and 16th century algebra. An attempt at a detailed comparison is summarized in Table 3.1. Important similarities include vectors, their Pythagorean lengths \([a, b, c]\),

\[
c = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2},
\]

or we could have \(c = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}\), and the angles. Euclid's geometry had length and angles, but no concept of coordinates, thus of vectors. One of the main innovations of analytic geometry is that one may compute with real, and soon after, complex numbers.

There are several new concepts that came with the development of analytic geometry:

1. Composition of functions: If \(y = f(x)\) and \(z = g(y)\), then the composition of functions \(f\) and \(g\) is denoted \(z(x) = g(f(x)) = g(f(x))\).

2. Elimination: Given two functions \(f(x, y)\) and \(g(x, y)\), elimination removes either \(x\) or \(y\). This procedure, known to the Chinese, is called Gaussian elimination.

3. Intersection: While one may speak of the intersection of two lines to define a point, or two planes to define a line, this is a special case of elimination when the functions \(f(x, y), g(x, y)\) are linear in their arguments. The term intersection is also an important but very different concept in set theory.

4. Vectors: Analytic geometry provides the concept of a vector (see Appendix A2, p. 257), as a line with length and orientation (i.e., direction). Analytic geometry defines vectors in any number of dimensions as ordered sets of points.

5. Analytic geometry extends the ideas of Euclidean geometry with the introduction of the scalar (dot) product of two vectors \(f \cdot g\), and the vector (cross) product \(f \times g\) (see Eq. 3.5).

What algebra also added to geometry was the ability to compute with complex numbers. For example, the length of a line (Eq. 3.47) was measured in Geometry with a compass; in geometry the length of a line (Eq. 3.58) was measured with a compass.
Table 3.1:

An ad-hoc comparison between Euclidean geometry and analytic geometry. I am uncertain as to the classification of the items in the third column.

<table>
<thead>
<tr>
<th>Euclidean geometry: (\mathbb{R}^3)</th>
<th>Analytic geometry: (\mathbb{R}^n)</th>
<th>Uncertain</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Proof</td>
<td>(a) Numbers</td>
<td>(a) Cross product ((\mathbb{R}^3))</td>
</tr>
<tr>
<td>(b) Line length</td>
<td>(b) Algebra</td>
<td>(b) Recursion</td>
</tr>
<tr>
<td>(c) Line intersection</td>
<td>(c) Power series</td>
<td>(c) Iteration (\in \mathbb{C}) (e.g., Newton's method)</td>
</tr>
<tr>
<td>(d) Point</td>
<td>(d) Analytic functions</td>
<td>(d) Iteration (\in \mathbb{R}^n)</td>
</tr>
<tr>
<td>(e) Projection (e.g., scalar product)</td>
<td>(e) Complex analytic function (e.g., (\sin \theta, \cos \theta, e^{i\theta}, \log z))</td>
<td></td>
</tr>
<tr>
<td>(f) Line direction</td>
<td>(f) Composition</td>
<td></td>
</tr>
<tr>
<td>(g) Vector (sort of)</td>
<td>(g) Elimination</td>
<td></td>
</tr>
<tr>
<td>(h) Conic section</td>
<td>(h) Integration</td>
<td></td>
</tr>
<tr>
<td>(i) Square roots (e.g., spiral of Theodorus)</td>
<td>(i) Derivatives</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(j) Calculus</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(k) Polynomial (\in \mathbb{C})</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(l) Fundamental theorem of Fund.-thm. algebra</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(m) Normed vector spaces</td>
<td></td>
</tr>
</tbody>
</table>

Once algebra was available, the line's Euclidean length could be computed numerically, directly from the coordinates of the two ends, defined by the **3-vector**

\[
e = x\hat{x} + y\hat{y} + z\hat{z} = [x, y, z]^T,
\]

which represents a point at \((x, y, z) \in \mathbb{R}^3 \subset \mathbb{C}^3\) in three dimensions, having **direction** from the origin \((0, 0, 0)\) to \((x, y, z)\). An alternative **matrix notation** is \(e = [x, y, z]^T\), a column vector of three numbers. These two notations are different ways of representing vector \(e\).

By defining the vector, analytic geometry allows Euclidean geometry to become quantitative, beyond the physical drawing of an object (e.g., a sphere, triangle, or line). With analytic geometry, we have the Euclidean concept of a vector, a line having a magnitude (length) and direction, but analytic, defined in terms of physical coordinates (i.e., numbers). The difference between two vectors defines a third vector, a concept already present in Euclidean geometry. For the first time, complex numbers were allowed into geometry (but rarely used before Cauchy and Riemann).

3.5.1 Generalized vector product

As shown in Fig. 3.5, any two vectors \(A, B \in \{\hat{x}, \hat{y}\}\) define a plane. There are two types of vector products: the **scalar product** \(A \cdot B = ||A|| ||B|| \cos \theta \in \mathbb{R}\) and the **vector wedge product** \(A \wedge B = ||A|| ||B|| \sin \theta \in \mathbb{R}\), each a real scalar. As shown in the figure, these two products form a right triangle, thus may be naturally merged, defining the **generalized vector product** \(A \cdot B + jA \wedge B = ||A|| ||B|| e^{i\theta}\).

Author: Should this word be "generalized"?

Scalar product of two vectors: When using algebra, many concepts, obvious with Euclid's geometry, may be made precise. There are many examples of how algebra extends Euclidean geometry, the most

Figure 3.5: Vectors A, B, C are used to define the scalar product $A \cdot B \in \mathbb{R}$, vector wedge product $A \wedge B \in \mathbb{R}$, and triple wedge product $C : (A \wedge B)$. The vector wedge product is the same as the vector cross product except the output is a scalar rather than a vector. As shown in the figure, the scalar dot and vector wedge products complement each other, since one is proportional to the sine of the angle θ between them, and the other to the cosine of θ. The scalar product computes the projection of one vector on the other (the length of the base of the triangle formed by the two vectors), while the vector wedge product $A \wedge B$ computes the area of the parallelogram (Area = base height = $|A \cdot B| L$) formed by the two vectors. Thus $|A \cdot B|^2 + |A \wedge B|^2 = |A|^2 |B|^2$. The scalar triple product $C : (A \wedge B)$ is the volume of the parallelepiped (i.e., prism) defined by the three vectors A, B, C. When all the angles are 90°, the volume becomes a cuboid (p. 81).

Also known as the

basic being the scalar product (also dot product) between vectors $x, y \in \mathbb{R}^3$,

$$x \cdot y = (\alpha x + \beta y + \gamma z) \cdot (\alpha x + \beta y + \gamma z) = \alpha x + \beta y + \gamma z.$$

Scalar products play an important role in vector algebra and calculus (see Appendix A.2, p. 258).

In matrix notation the scalar product is written as (p. 84):

$$x \cdot y = \begin{bmatrix} x \\ y \\ z \end{bmatrix}^T \begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix} = \alpha x + \beta y + \gamma z$$

(see p. 81).

If $\kappa(s) \in \mathbb{C}^3$ is a function of complex function of frequency s, then the scalar product is a complex function of s.

Norm (length) of a vector: The **norm** of a vector (Appendix A.2, p. 258)

$$||v|| = +\sqrt{v \cdot v} \geq 0$$

is defined as the positive square root of the scalar product of the vector with itself. This is a generalization of the length, in any number of dimensions, forcing the sign of the square root to be non-negative. The length is a concept of Euclidean geometry, and it must always be positive and real. A complex (or negative) length is not physically meaningful. More generally, the Euclidean length of a line is given as the norm of the difference between two real vectors $v_1, v_2 \in \mathbb{R}$:

$$||v_1 - v_2||^2 = (v_1 - v_2) \cdot (v_1 - v_2) = (x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2 \geq 0.$$

From this formula we see that the norm of the difference of two vectors is simply a compact expression for the Euclidean length. A zero-length vector, such as is a point, is the result of the fact that

$$||v|| = +\sqrt{v \cdot v}$$

is zero.
3.5. INTRODUCTION TO ANALYTIC GEOMETRY

Integral definition of a scalar product: Up to this point, following Euclid, we have only considered a vector to be a set of elements \(\{x_n\} \in \mathbb{R} \), indexed over \(n \in \mathbb{N} \), or defining a linear vector space with scalar product \(x \cdot y \) with the scalar product defining the norm or length of the vector \(||x|| = \sqrt{x \cdot x} \). Given the scalar product, the norm naturally follows.

Now, at this point an obvious question presents itself: Can we extend our definition of vectors to differentiable functions, i.e., \(f(t) \) and \(g(t) \), indexed over \(t \in \mathbb{R} \), with coefficients labeled by \(t \in \mathbb{R} \) rather than by \(n \in \mathbb{N} \)? Clearly, if the functions are analytic, there is no obvious reason why this should be a problem, since analytic functions may be represented by a convergent series having Taylor coefficients, thus are integrable term by term.

Specifically, under certain conditions, the function \(f(t) \) may be thought of as a vector, defining a normed vector space. This intuitive and somewhat obvious idea is powerful. In this case the scalar product can be defined in terms of the integral

\[
\begin{align*}
f(t) \cdot g(t) &= \int f(t)g(t)dt \\
&= ||f(t)|| ||g(t)|| \cos \theta,
\end{align*}
\]

summed over \(t \in \mathbb{R} \), rather than a sum over \(n \in \mathbb{N} \). It follows that \(f(t) \cdot g(t) = ||f(t)|| ||g(t)|| \sin \theta \).

This definition of the vector scalar product allows for a significant but straightforward generalization of our vector space, which will turn out to be both useful and an important extension of the concept of a normed vector space. In this space we can define the derivative of a norm with respect to \(t \), which is not possible for the case of the discrete case, indexed over \(n \). The distinction introduces the concept of analytic continuity in the index \(t \), which does not exist for the discrete index \(n \in \mathbb{N} \).

Pythagorean theorem and the Schwarz inequality: Regarding Fig. 3.5, suppose we compute the difference between vector \(A \in \mathbb{R} \) and \(\alpha B \in \mathbb{R} \) as \(L = \|A - \alpha B\| \in \mathbb{R} \), where \(\alpha \in \mathbb{R} \) is a scalar that modifies the length of \(B \). We seek the value of \(\alpha \), which we denote as \(\alpha^* \), that minimizes the length of \(L \). From simple geometrical considerations, \(L(\alpha) \) will be minimum when the difference vector is perpendicular to \(B \), as shown in the figure by the dashed line from the tip of \(A \parallel B \).

To show this algebraically, we write the expression for \(L(\alpha) \) and take the derivative with respect to \(\alpha \), and set it to zero, which gives the formula for \(\alpha^* \). The argument does not change, but the algebra greatly simplifies: if we normalize \(A, B \) to be unit vectors \(A = A/||A|| \) and \(b = B/||B|| \), which each have norm \(1 \):

\[
L^2 = (a - \alpha b) \cdot (a - \alpha b) = 1 - 2a \cdot b + \alpha^2.
\]

Thus the length is shortest \(L = L_* \), as shown in Fig. 3.5) when

\[
\frac{d}{d\alpha} L_*^2 = -2a \cdot b + 2\alpha^* = 0.
\]

Solving for \(\alpha^* = a \cdot b \). Since \(L_* > 0 \) \(\alpha \neq b \), Eq. 3.49 becomes

\[
1 - 2|a \cdot b|^2 + |a \cdot b|^2 = 1 - |a \cdot b|^2 > 0.
\]

In conclusion, \(\cos \theta \equiv |a \cdot b| < 1 \). In terms of \(A, B \) this is \(|A \cdot B| < \|A\| \|B\| \cos \theta \), as shown next to \(B \) in Fig. 3.5. Thus the scalar product between two vectors is their direction cosine. Furthermore, since this forms a right triangle, the Pythagorean theorem must hold. The triangle inequality says that the lengths of the two sides must be greater than the hypotenuse. Note that \(\Theta \in \mathbb{R} \notin \mathbb{C} \). This derivation is an abbreviated version of a related discussion on p. 113. Equality cannot be obtained because the Fourier space forms an open set which gives rise to Gibb's ringing (p. 133).

Author: Please check this first long sentence for clarity.

Author: Should the variables for vectors be boldface roman letters rather than boldface italics?

Author: Is it the sum of the lengths of the two sides that must be greater than the length of the hypotenuse?

Author: Note that Gibb's ringing is not defined until p. 133. Is that OK?
Vector cross (\times) and wedge (\wedge) products of two vectors: The vector product (aka, cross-product) $A \times B$ and the exterior product (aka, wedge product) $A \wedge B$ are the second and third types of vector products. As shown in Fig. 3.5,

$$C = A \times B = (a_1\hat{x} + a_2\hat{y} + a_3\hat{z}) \times (b_1\hat{x} + b_2\hat{y} + b_3\hat{z}) = \begin{vmatrix} \hat{x} & \hat{y} & \hat{z} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

is \perp to the plane defined by A and B. The cross product is strictly limited to two input vectors A and $B \in \mathbb{R}^3$ taken from three real dimensions (i.e., \mathbb{R}^3).

The exterior (wedge) product generalizes the cross product, since it may be defined in terms of any two vectors $A, B \in \mathbb{C}^2$ taken from n dimensions (\mathbb{C}^n) with output in \mathbb{C}^1. Thus the cross product is composed of three wedge products.

3.11 Example: If we define $A = 3\hat{x} - 2\hat{y} + 0\hat{z}$ and $B = 1\hat{x} + 1\hat{y} + 0\hat{z}$ then the cross product is

$$A \times B = \begin{vmatrix} \hat{x} & \hat{y} & \hat{z} \\ 3 & -2 & 0 \\ 1 & 1 & 0 \end{vmatrix} = (3j + 2)\hat{z}.$$

Since $a_1 \in \mathbb{C}$, this example violates the common assumption that $A \in \mathbb{R}^3$.

The wedge product $A \wedge B$ takes two vectors and returns a scalar, which is the magnitude of a vector \perp to the plane defined by the two input vectors (see Fig. 3.5). It is defined as

$$A \wedge B = \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \\ a_3 & b_3 \end{vmatrix} = (3j\hat{x} - 2\hat{y}) \wedge (\hat{x} + \hat{y})$$

$$= 3 \cdot \hat{x} \wedge \hat{x} = 0 \wedge 2\hat{y} + 3j\hat{x} \wedge \hat{y} + 2\hat{y} \wedge \hat{x} = (3j + 2)||\hat{x} \wedge \hat{y}||$$

$$= (3j + 2)||\hat{z}|| = 3j + 2,$$

This defines a compact and useful algebra (Hestenes, 2003).

From the above example we see that the absolute value of the wedge product $|a \wedge b| = ||a \times b||$; namely,

$$|(a_2\hat{y} + a_3\hat{z}) \wedge (b_2\hat{y} + b_3\hat{z})| = ||a \times b||.$$

The wedge product is especially useful because it is zero when the two vectors are collinear, namely $\hat{x} \wedge \hat{x} = 0$ and $\hat{x} \wedge \hat{y} = 1$, where \hat{x}, \hat{y} are unit vectors. Since

$$a \cdot b = ||a|| ||b|| \cos \theta \quad \text{and} \quad a \wedge b = ||a|| ||b|| \sin \theta,$$

it follows that

$$a \cdot b + j a \wedge b = ||a|| ||b|| e^{j\theta},$$

which may be viewed as the complex scalar product, with the right-hand side the polar form.

The main advantage of the wedge product is that it is valid in $n \geq 3$ dimensions, since it is defined for any two vectors, in any number of dimensions. Like the cross product, the magnitude of the wedge product is equal to the area of the trapezoid formed by the two vectors.

Scalar triple product: The triple of a third vector C with the vector product $A \times B \in \mathbb{R}$ is

$$C \cdot (A \times B) = \begin{vmatrix} c_1 & c_2 & c_3 \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} \in \mathbb{R}^3,$$

which equals the volume of a parallelepiped.
3.5. INTRODUCTION TO ANALYTIC GEOMETRY

Impact of Analytic Geometry: The most obvious impact of analytic geometry was its detailed analysis of the conic sections using algebra rather than drawings via a compass and ruler. An important example is the composition of the line and circle, a venerable construction, presumably going back to before Diophantus (250 CE). Once algebra was invented, the composition could be done using formulas. With this analysis came complex numbers.

The first two mathematicians to appreciate this mixture of Euclid’s geometry and the new algebra were Fermat and Descartes. Soon Newton contributed to this effort by the addition of physics (e.g., calculations in acoustics, orbits of the planets, and the theory of gravity and light, significant concepts for 1687).

Given these new methods, many new solutions to problems emerged. The complex roots of polynomials continued to appear, without any obvious physical meaning. Complex numbers seem to have been viewed as more of an inconvenience than a problem. Newton’s solution to this dilemma was to simply ignore the “imaginary” cases (Stillwell, 2010, p. 115).

3.5.2 Development of Analytic Geometry

Intersection and Gaussian elimination: The first “algebra” (al-jabr) is credited to al-Khwarizmi (830 CE). Its invention advanced the theory of polynomial equations in one variable, Taylor series, and composition versus intersections of curves. The solution of the quadratic equation had been worked out thousands of years earlier, but with algebra a general solution could be defined. The Chinese had found the way to solve several equations in several unknowns for example, finding the values of the intersection of two circles. With the invention of algebra by al-Khwarizmi, a powerful tool became available to solve more difficult problems.

Composition and Elimination: In algebra there are two contrasting operations on functions: composition and elimination.

Composition: Composition is the merging of functions, by feeding one into the other. If the two functions are \(f \) and \(g \), then their composition is indicated by \(f \circ g \), meaning the function \(y = f(x) \) is substituted into the function \(z = g(y) \), giving \(z = g(f(x)) \).

Composition is not limited to linear equations, even though that is where it is most frequently applied. To compose two functions, one must substitute one equation into the other. That requires solving for that substitution variable, which is not always possible in the case of nonlinear equations. However, many tricks are available that may work around this restriction. For example, if one equation is in \(x^2 \) and the other in \(x^3 \) or \(\sqrt{x} \), it may be possible to multiply the first by \(x \) or square the second. The point is that one of the variables must be isolated so that when it is substituted into the other equation, the variable is removed from the mix.

Example: Let \(y = f(x) = x^2 - 2 \) and \(z = g(y) = y + 1 \). Then

\[
g \circ f = g(f(x)) = (x^2 - 2) + 1 = x^2 - 1.
\]

In general composition does not commute (i.e., \(f \circ g \neq g \circ f \)), as is easily demonstrated. Swapping the order of composition for our example gives

\[
f \circ g = f(g(y)) = (y + 1)^2 - 2 = y^2 + 2y - 1.
\]

Intersection: Complementary to composition is intersection (i.e., decomposition). For example, the intersection of two lines is defined as the point where they meet. This is not to be confused with finding roots. A polynomial of degree \(N \) has \(N \) roots, but the points where two polynomials intersect has
nothing to do with the roots of the polynomials. The intersection is a function (equation) of lower degree, implemented by Gaussian elimination.

Intersection of two lines Unless they are parallel, two lines meet at a point. In terms of linear algebra, this may be written as two linear equations\(^\text{16}\) (on the left), along with the intersection point \([x_1, x_2]^T\) given by the inverse of the \(2 \times 2\) set of equations (on the right)\(^\text{1}\):

\[
\begin{bmatrix}
a & b \\
c & d
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}
=
\begin{bmatrix}
y_1 \\
y_2
\end{bmatrix}
\Rightarrow
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}
= \frac{1}{\Delta}
\begin{bmatrix}
d & -b \\
-c & a
\end{bmatrix}
\begin{bmatrix}
y_1 \\
y_2
\end{bmatrix}.
\]

(3.52)

By substituting the expression for the intersection point \([x_1, x_2]^T\) into the original equation, we see that it satisfies the equations. Thus the equation on the right is the solution to the equation on the left.

Note the structure of the inverse: (1) The diagonal values \((a, d)\) are swapped, (2) the off-diagonal values \((b, c)\) are negated, and (3) the \(2 \times 2\) matrix is divided by the determinant \(\Delta = ad - bc\). If \(\Delta = 0\), there is no solution. When the determinant is zero (\(\Delta = 0\)), the slopes of the two lines are equal, thus the lines are parallel. Only if the slopes differ can there be a unique solution.

Exercise Show that the equation on the right is the solution of the equation on the left. A direct substitution (composition) of the right equation into the left equation, we have

\[
\begin{bmatrix}
a & b \\
c & d
\end{bmatrix}
\begin{bmatrix}
\frac{1}{\Delta} d & -b \\
\frac{1}{\Delta} c & a
\end{bmatrix}
\begin{bmatrix}
y_1 \\
y_2
\end{bmatrix}
= \frac{1}{\Delta}
\begin{bmatrix}
ad - bc & -ab + ab \\
cd - cd & -eb + ad
\end{bmatrix}
\begin{bmatrix}
y_1 \\
y_2
\end{bmatrix}
= \frac{1}{\Delta}
\begin{bmatrix}
\Delta & 0 \\
0 & \Delta
\end{bmatrix}
\begin{bmatrix}
y_1 \\
y_2
\end{bmatrix}.
\]

which gives the identity matrix.

Algebra will give the solution when geometry cannot. When the two curves fail to intersect on the real plane, the solution still exists, but is complex valued. In such cases, geometry, which only considers the real solutions, fails. For example, when the coefficients \([a, b, c, d]\) are complex, the solution exists, but the determinant can be complex. Thus algebra is much more general than geometry. Geometry fails when the solution has a complex intersection.

A system of linear equations \(Ax = y\) has many interpretations, and one should not be biased by the notation. As engineers, we are trained to view \(x\) as the input and \(y\) as the output, in which case then \(y = Ax\) seems natural, much like the functional relation \(y = f(x)\). But what does the linear relation \(x = Ay\) mean when \(x\) is the input? The obvious answer is that \(y = A^{-1}x\). But when working with systems of equations, there are many uses of equations, and we need to become more flexible in our interpretation. For example, \(y = A^2x\) is a useful meaning, and in fact we saw this type of relationship when working with Pell's equation (p. 59) and the Fibonacci sequence (p. 61). As another example, consider

\[
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}
=
\begin{bmatrix}
a_{11}x & a_{1y} \\
a_{2x} & a_{2y}
\end{bmatrix}
\begin{bmatrix}
x \\
y
\end{bmatrix},
\]

which is reminiscent of a three-dimensional surface \(z = f(x, y)\). We shall find that such generalizations are much more than a curiosity.

16When writing the equation \(Ax = y\) in matrix format, the two equations are \(ax_1 + bx_2 = y_1\) and \(dx_1 + ex_2 = y_2\) with unknowns \((x_1, x_2)\), whereas in the original equations \(ay + bx = c\) and \(dy + ex = f\), they were \(y_1, y_2\). Thus in matrix format, the names are changed. The first time you see this scrambling of variables, it can be confusing. The unknowns are \(y\) and \(x\).
3.5.3 Applications of scalar products

Another important example of algebraic expressions in mathematics is Hilbert’s generalization of the Pythagorean theorem (Eq. 1.1), known as the Schwarz inequality, as shown in Fig. 3.6. What is special about this generalization is that it proves that when the vertex is 90°, the Euclidean length of the leg is minimum.

Vectors may be generalized to have infinite dimensions: $\mathbf{U}, \mathbf{V} = [v_1, v_2, \cdots, v_\infty]$. The Euclidean inner product (i.e., scalar product) between two such vectors generalizes the finite-dimensional case

$$\mathbf{U} \cdot \mathbf{V} = \sum_{k=1}^{\infty} u_k v_k.$$

As with the finite case, the norm $||\mathbf{U}|| = \sqrt{\mathbf{U} \cdot \mathbf{U}} = \sqrt{\sum u_k^2}$ is the scalar product of the vector with itself, defining the length of the infinite component vector. Obviously there is an issue of convergence if the norm for the vector is to have a finite length.

It is a somewhat arbitrary requirement that $a, b, c \in \mathbb{R}$ for the Pythagorean theorem (Eq. 1.1). This seems natural enough since the sides are lengths. But, what if they are taken from the complex numbers, as for the lossy vector wave equation, or the lengths of vectors in \mathbb{C}^n? Then the equation generalizes to

$$\mathbf{c} \cdot \mathbf{c} = ||\mathbf{c}||^2 = \sum_{k=1}^{n} |c_k|^2,$$

where $||\mathbf{c}||^2 = (\mathbf{c}, \mathbf{c})$ is the inner (dot) product of a vector $\mathbf{c} \in \mathbb{C}$ with itself. As before, $||\mathbf{c}|| = \sqrt{||\mathbf{c}||^2}$ is the norm of vector \mathbf{c}, akin to a length.

Figure 3.6: The Schwarz inequality is related to the shortest distance (length of a line) between the ends of the two vectors. is $||\mathbf{U}|| = \sqrt{\mathbf{U} \cdot \mathbf{U}}$ as the scalar product of that vector with itself.

Schwarz inequality The Schwarz inequality\(17\) says that the magnitude of the inner product of two vectors is less than or equal to the product of their lengths:

$$|\mathbf{U} \cdot \mathbf{V}| \leq ||\mathbf{U}|| \cdot ||\mathbf{V}||.$$

This may be simplified by normalizing the vectors to have unit length ($\hat{\mathbf{U}} = \mathbf{U}/||\mathbf{U}||, \hat{\mathbf{V}} = \mathbf{V}/||\mathbf{V}||$), in which case $-1 < \mathbf{U} \cdot \mathbf{V} \leq 1$. Another simplification is to define the scalar product in terms of the direction cosine:

$$\cos \theta = |\mathbf{U} \cdot \mathbf{V}| \leq 1.$$

A proof of the Schwarz inequality is as follows: From these definitions we may define the minimum difference between the two vectors as the perpendicular from the end of the first to the intersection with the second. As shown in Fig. 3.6, $\mathbf{U} \perp \mathbf{V}$ may be found by minimizing the length of the vector

\(17\)A simplified derivation is provided on p. 106. We provide a simplified derivation on page 108. Author: Please double check this page reference.
CHAPTER 3. STREAM 2: ALGEBRAIC EQUATIONS

difference:

$$\min_\alpha \| V - \alpha U \|^2 = \| V \|^2 + 2\alpha V \cdot U + \alpha^2 \| U \|^2 > 0$$

$$0 = \partial_\alpha (V - \alpha U) \cdot (V - \alpha U)$$

$$= V \cdot U - \alpha^2 \| U \|^2$$

$$\Rightarrow \alpha^* = V \cdot U / \| U \|^2.$$

The Schwarz inequality follows:

$$I_{\text{min}} = \| V - \alpha^* U \|^2 = \| V \|^2 - \| U \|^2 > 0$$

$$0 \leq |U \cdot V| \leq \| U \| \| V \|.$$

An important example of such a vector space includes the definition of the Fourier transform, where we may set

$$U(\omega) = e^{-i\omega t}, \quad V(\omega) = e^{i\omega t}, \quad U \cdot V = \int_\omega e^{i\omega_t} e^{-i\omega_0} \frac{d\omega}{2\pi} = \delta(\omega - \omega_0).$$

It seems that the Fourier transform is a result that follows from a minimization, unlike the Laplace transform that follows from a causal system. This explains the important differences between the two in terms of their properties (unlike the LT, the FT is not complex analytic). Recall that

$$U \cdot V \wedge V = \| U \| \| V \| e^{i\theta}.$$

We further explore this topic on page 131.

3.5.4 Gaussian Elimination

The method for finding the intersection of equations is based on the recursive elimination of all the variables but one. This method, known as Gaussian elimination (Appendix 5, p. 261), works across a broad range of cases, but may be defined as a systematic algorithm when the equations are linear in the variables (Strang et al., 1993). Rarely do we even attempt to solve problems in several variables of degree greater than 1. But Gaussian elimination may still work in such cases (Stillwell, 2010, p. 90).

In Appendix A.2.3 (p. 204) the inverse of a 2×2 linear system of equations is derived. Even for a 2×2 case, the general solution requires a great deal of algebra. Working out a numeric example of Gaussian elimination is more instructive. For example, suppose we wish to find the intersection of the two equations

$$x - y = 3$$

$$2x + y = 2.$$

This 2×2 system of equations is so simple that you may immediately visualize the solution: By adding the two equations, y is eliminated, leaving $3x = 5$. But doing it this way takes advantage of the specific example, and we need a method for larger systems of equations. We need a generalized (algorithmic) approach. This general approach is called Gaussian elimination.

We start by writing the equations in matrix form (note this is not of the form $Ax = y$).

\[
\begin{bmatrix}
1 & -1 \\
2 & 1 \\
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
\end{bmatrix}
=
\begin{bmatrix}
3 \\
2 \\
\end{bmatrix}.
\]

(3.5.3)
Next, eliminate the lower left term \((2x)\) using a scaled version of the upper left term \((x)\). Specifically, multiply the first equation by \(-2\) and add it to the second equation, replacing the second equation with the result. This gives

\[
\begin{bmatrix}
1 & -1 \\
0 & 3 \\
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
\end{bmatrix}
=
\begin{bmatrix}
3 \\
2 - 3 \\
-2 \\
\end{bmatrix}
=
\begin{bmatrix}
3 \\
-4 \\
\end{bmatrix}
\]

Note that the top equation did not change. Once the matrix is "upper triangular" (zero below the diagonal), you have the solution. Starting from the bottom equation, \(y = -4/3\). Then the upper equation gives \(x = (-4/3) = 3\), or \(x = 3 - 4/3 = 5/3\).

In principle, Gaussian elimination is easy, but if you make a calculation mistake along the way, it is very difficult to find your error. The method requires a lot of mental labor, with a high probability of making a mistake. Thus you do not want to apply this method every time. For example, suppose the elements are complex numbers, or polynomials in some other variable such as frequency. Once the coefficients become more complicated, the seemingly trivial problem becomes corrosive. There is a much better way that is easily verified, which puts all the numerics at the end in a single step.

The above operations may be automated by finding a carefully chosen upper-diagonalize matrix \(G\).

For example, define the Gaussian matrix that removes the element 2 in \(A\):

\[
G = \begin{bmatrix}
1 & 0 \\
\alpha & 1 \\
\end{bmatrix}
\]

Multiplying Eq. 3.5b by \(G\), we find

\[
\begin{bmatrix}
1 & 0 \\
\alpha & 1 \\
\end{bmatrix}
\begin{bmatrix}
1 & -1 \\
2 & 1 \\
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
\end{bmatrix}
=
\begin{bmatrix}
1 & -1 \\
\alpha + 2 & 1 - \alpha \\
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
\end{bmatrix}
=
\begin{bmatrix}
3 \\
3a + 2 \\
\end{bmatrix}
\]

Thus we obtain Eq. 3.5c if we let \(\alpha = -2\) (we choose \(\alpha\) to force the lower left to be zero). At this point we can either back-substitute and obtain the solution, as we did above, or find a matrix \(L\) that finishes the job by removing elements above the diagonal. The key is that the determinant of this matrix is 1.

Exercise: Using \(G\) and \(A\) from the discussion above, show that \(\det(G) = \det(GA) = 3\).

Solution: We wish to show that \(\det(GA) = \det G \cdot \det(A)\). A common notation is to denote \(\det(A) = |A|\). The two sides of the identity are

\[
|A| = \det \begin{bmatrix}
1 & -1 \\
2 & 1 \\
\end{bmatrix} = 1 + 2 = 3, \quad |GA| = \det \begin{bmatrix}
1 & -1 \\
0 & 3 \\
\end{bmatrix} = 3.
\]

Thus \(|G| = 1\). Thus \(|GA| = |G||A| = 3\). ■

Matrix Inverse: In Appendix A.2.3, p. 264, the inverse of a general \(2 \times 2\) matrix takes three steps: (1) swap the diagonal elements, (2) reverse the signs of the off-diagonal elements, and (3) divide by the determinant \(\Delta = ab - cd\). Specifically,

\[
\begin{bmatrix}
a & b \\
c & d \\
\end{bmatrix}^{-1} = \frac{1}{\Delta} \begin{bmatrix}
d & -b \\
-c & a \\
\end{bmatrix}
\]

There are very few things that you must memorize, but the inverse of a \(2 \times 2\) is one of them. It needs to be in your mental toolkit, like the completion of squares (p. 75). completing the square (see p. 75).

While it is difficult to compute the inverse matrix from scratch (Appendix A.3, p. 266), it takes only a few seconds (four dot products) to verify it (steps 1 and 2):

\[
\begin{bmatrix}
a & b \\
c & d \\
\end{bmatrix} \begin{bmatrix}
d & -b \\
-c & a \\
\end{bmatrix} = \begin{bmatrix}
\Delta \\
0 \\
\end{bmatrix}
\]

Author: Please fix this reference.
Thus dividing by the determinant gives the 2×2 identity matrix. A good strategy (don't trust your memory) is to write down the inverse as best you recall and then verify.

3.64 Using the 2×2 matrix inverse on our example (Eq. 3.53), we find

\[
\begin{bmatrix}
x \\
y
\end{bmatrix} = \frac{1}{1+2} \begin{bmatrix}
1 & 1 \\
-2 & 1
\end{bmatrix} \begin{bmatrix}
3 \\
5 \\
\end{bmatrix} = \frac{1}{3} \begin{bmatrix}
5 \\
-6+2
\end{bmatrix} = \begin{bmatrix}
5/3 \\
-4/3
\end{bmatrix}.
\]

(3.59)

If you use this method, you will rarely (never) make a mistake and the solution is easily verified. Either you can check the numbers in the inverse, as was done in Eq. 3.58, or you can substitute the solution back into the original equation.

Augmented matrix: There is one minor notational improvement. Rather than writing the matrix equation as Eq. 3.53 ($Ax = y$) we place the y vector next to the elements of A, to remove the equal sign, which is cumbersome. In this case we write GA_{aug}:

\[
GA_{aug} = \begin{bmatrix}
1 & 0 & 1 & -1 & 3 \\
-2 & 1 & 2 & 1 & 2
\end{bmatrix} = \begin{bmatrix}
1 & -1 & 3 \\
0 & 3 & -4
\end{bmatrix}.
\]
Nonlinear (quadratic) to linear equations

Problem #4, Nonlinear (quadratic) to linear equations

In the following problems we deal with algebraic equations in more than one variable, that are not linear equations. For example, the circle \(x^2 + y^2 = 1 \) is just such an equation. It may be solved for \(y(x) = \pm \sqrt{1 - x^2} \).

Example: If we let \(z = x + y \), \(z = x + y \sqrt{1 - x^2} = e^{iy} \), we obtain the equation for half a circle \(y > 0 \).

The entire circle is described by the magnitude of \(z \) as \(|z|^2 = (x + y)(x - y) = 1 \).

(a) - **Q 1.1:** Given the curve defined by the equation,

\[
x^2 + xy + y^2 = 1,
\]

(b) - **Q 1.2:** Find the function \(y(x) \).

(c) - **Q 1.3:** Using Matlab/Octave, plot \(y(x) \) and describe the graph.

(d) - **Q 1.4:** What is the name of this curve?

(e) - **Q 1.5:** Find the solution (in \(x \), \(p \), and \(q \)) to the following equations:

\[
x + y = p
\]

\[
xy = q.
\]

(f) - **Q 1.6:** Find an equation that is linear in \(y \) starting from equations that are quadratic (second-degree) in the two unknowns \(x \) and \(y \):

\[
x^2 + xy + y^2 = 1
\]

\[
4x^2 + 3xy + 2y^2 = 3.
\]

(g) - **Q 1.7:** Compose the two quadratic equations

\[
x^2 + xy + y^2 = 1
\]

\[
2x^2 + xy = 1
\]

and describe the results.

Author: Note that the chapter's equation number sequence is continued here, rather than having separate sequences in the Problems sections.

Let's change this to AE-2.1

As in AE-1
Gaussian elimination

Problem \(3.14\) Gaussian elimination

(a) \(-Q \, 2.4\): Find the inverse of

\[
A = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}.
\]

(b) \(-Q \, 2.2\): Verify that \(A^{-1}A = AA^{-1} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\).

Problem \(3.15\), Find the solution to the following matrix equation \(Ax = b\) by Gaussian elimination. Show your intermediate steps. You can check your work at each step using Octave/Matlab.

\[
\begin{bmatrix} 1 & 1 & -1 \\ 3 & 1 & 1 \\ 1 & -1 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 8 \\ 9 \end{bmatrix}.
\]

Author: Please spell out GE this first time it is used.

(a) \(-Q \, 3.1\): Show (i.e., verify) that the first GE matrix \(G_1\) that zeros out all entries in the first column, is given by

\[
G_1 = \begin{bmatrix} 1 & 0 & 0 \\ -3 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}.
\]

Identify the elementary row operations that this matrix performs.

(b) \(-Q \, 3.2\): Find a second GE matrix, \(G_2\), to put \(G_1A\) in upper triangular form. Identify the elementary row operations that this matrix performs.

(c) \(-Q \, 3.3\): Find a third GE matrix, \(G_3\), which scales each row so that its leading term is 1. Identify the elementary row operations that this matrix performs.

(d) \(-Q \, 3.4\): Finally, find the last GE matrix, \(G_4\), that subtracts a scaled version of row 3 from row 2, and scaled versions of rows 2 and 3 from row 1, such that you are left with the identity matrix \((G_4G_3G_2G_1A = I)\).

(e) \(-Q \, 3.5\): Solve for \(\{x_1, x_2, x_3\}^T\) using the augmented matrix format \(G_4G_3G_2G_1\{A|b\}\) (where \(\{A|b\}\) is the augmented matrix). Note that if you've performed the preceding steps correctly, \(x = G_4G_3G_2G_1b\).

(f) \(-Q \, 3.6\): Find the pivot matrix \(G\) that rescales the third row of the augmented matrix \(A|b\) by \(1/3\).
Two linear equations

Problem #4: In this exercise, we transition from a general pair of equations

\[f(x, y) = 0 \]
\[g(x, y) = 0 \]

to the important case of **two linear equations**:

\[y = ax + b \]
\[y = \alpha x + \beta. \]

Note that to help keep track of the variables, Roman coefficients \((a, b)\) are used for the first equation and Greek \((\alpha, \beta)\) for the second.

(a) **Q 4.1:** What does it mean, graphically, if these two linear equations have

1. a unique solution,
2. a non-unique solution, or
3. no solution?

(b) **Q 4.2:** Assuming the two equations have a unique solution, find the solution for \(x\) and \(y\).

(c) **Q 4.3:** When will this solution fail to exist (for what conditions on \(a, b, \alpha, \) and \(\beta\))?

(d) **Q 4.4:** Write the equations as a \(2 \times 2\) matrix equation of the form \(Ax = b\), where \(x = \{x, y\}^T\).

(e) **Q 4.5:** Finding the inverse of the \(2 \times 2\) matrix, and solve the matrix equation for \(x\) and \(y\).

(f) **Q 4.6:** Discuss the properties of the determinant of the matrix \((\Delta)\) in terms of the slopes of the two equations \((a, \alpha)\).

Problem #5: The application of linear functional relationships between two variables

We use / two matrices are used to describe 2-port networks, as will be discussed in §3.7. Transmission lines are a great example, where both voltage and current must be tracked as they travel along the line. Figure 3.10 shows an example segment of a transmission line.

Suppose you are given the following pair of linear relationships between the input (source) variables \(V_1\) and \(I_1\) and the output (load) variables \(V_2\) and \(I_2\) of the transmission line:

\[
\begin{bmatrix}
V_1 \\
I_1
\end{bmatrix}
=
\begin{bmatrix}
1 & 1 \\
1 & -1
\end{bmatrix}
\begin{bmatrix}
V_2 \\
I_2
\end{bmatrix}.
\]

(a) **Q 5.1:** Let the output (the load) be \(V_2 = 1\) and \(I_2 = 2\) (i.e., \(V_2/I_2 = 1/2 \{\text{Ω}\}\)). Find the input voltage and current, \(V_1\) and \(I_1\).

(b) **Q 5.2:** Let the input (source) be \(V_1 = 1\) and \(I_1 = 2\). Find the output voltage and current, \(V_2\) and \(I_2\).
CHAPTER 3. STREAM 2: ALGEBRAIC EQUATIONS

Figure 3.17 This figure shows a cell from an LC transmission line. The index 1 is at the input and the index 2 is at the output. This figure is discussed in Problem 3.15 (p. 130).

Linear equations with three unknowns

Problem 9.9 This problem is similar to the previous problem except we consider dimensions. Consider two linear equations in unknowns x, y, z representing planes:

\[\begin{align*}
 a_1x + b_1y + c_1z &= d_1 \\
 a_2x + b_2y + c_2z &= d_2
\end{align*} \]

(a) - Q 6.1: In terms of the geometry (i.e., think graphically), under what conditions do these two linear equations have (i) a unique solution, (ii) a non-unique solution, or (iii) no solution?

(b) - Q 6.2: Do you know what is meant by the slope of a plane? Can you define it?

(c) - Q 6.3: Given n equations in n unknowns, the closest we can come to a unique solution is a line (describing the intersection of the planes) rather than a single point. This line is an equation in $(x, y), (y, z)$, or (x, z). Find a solution in terms of x and y by substituting one equation into the other.

Problem 9.18 Now consider the intersection of the planes at some arbitrary constant height, $z = z_0$.

(a) - Q 7.1: Write the modified plane equations as a 2x2 matrix equation in the form $Ax = b$, where $x = \{x, y\}^T$, and find the unique solution in x and y using matrix operations.

(b) - Q 7.2: Assuming the two equations have a unique solution, find the solution for x and y.

(c) - Q 7.3: When will this solution fail to exist (for what conditions on a_1, a_2, b_1, b_2, etc.)?

(d) - Q 7.4: Now, write the system of equations as a 3x3 matrix equation in x, y, z given the additional equation $z = z_0$ (e.g., put it in the form $Ax = b$ where $x = \{x, y, z\}^T$).

Problem 9.2 The determinant of a 3x3 matrix is given by

\[
\begin{vmatrix}
 a_{11} & a_{12} & a_{13} \\
 a_{21} & a_{22} & a_{23} \\
 a_{31} & a_{32} & a_{33}
\end{vmatrix} = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}
\]
3.6. EXERCISES AE-2

Q 8.1: For the last matrix equation you wrote in the previous part, find the determinant. How is the determinant related to the 2×2 case? Why?

Problem #9: Put the following systems of equations in matrix form, and use Octave/Matlab to find (i) the determinant of the matrix, (ii) the matrix inverse, and (iii) the solution (x, y, z). If it is not possible to complete (ii,iii), state why.

(a) -Q 9.1: Example 1

\[\begin{align*}
 x + 3y + 2z &= 1 \\
 x + 4y + z &= 1 \\
 x + y &= 1
\end{align*} \]

(b) -Q 9.2: Example 2:

\[\begin{align*}
 x + 3y + 2z &= 1 \\
 2x + 6y + 4z &= 1 \\
 x + y &= 1
\end{align*} \]

Integer equations: applications and solutions

Any equation for which we seek only integer solutions is called a Diophantine equation. Problem #10: A practical example of using a Diophantine equation:

"A merchant had a 40-pound weight that broke into 4 pieces. When the pieces were weighed, it was found that each piece was a whole number of pounds and that the four pieces could be used to weigh every integral weight between 1 and 40 pounds. What were the weights of the pieces?"

- Bachet de Béziriac (1623-GE)

Here, weighing is performed using a balance scale having two pans, with weights being put on either pan. Thus, given weights of 1 and 3 pounds, one can weigh a 2-pound weight by putting the 1-pound weight in the same pan with the 2-pound weight, and the 3-pound weight in the other pan. Then the scale will be balanced. A solution to the four weights for Bachet's problem is 1 + 3 + 9 + 27 = 40 pounds.

Q 10.1: Show how the combination of 1-, 3-, 9-, and 27-pound weights may be used to weigh 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, and 40 pounds of milk (or something else, such as flour). Assuming that the milk is in the left pan, provide the position of the weights using a negative sign "-" to indicate the left pan and a positive sign "+" to indicate the right pan. For example, if the left pan has 1 pound
of milk, then 1 pound of milk in the right pan, $^x+1_2$, will balance the scales.

Hint: It is helpful to write the answer in matrix form. Set the vector of values to be weighed equal to a matrix indicating the pan assignments, multiplied by a vector of the weights $[1, 3, 9, 27]^T$. The pan assignments matrix should only contain the values -1 (left pan), +1 (right pan), and 0 (leave out). You can indicate these using $-, +$, and blank spaces.

Ohm’s Law

In general, impedance is defined as the ratio of a force over a flow. For electrical circuits, the voltage is the “force” and the current is the “flow.” Ohm’s law states that the voltage across and the current through a circuit element are related by the impedance of that element (which may be a function of frequency). For resistors, the voltage over the current is called the resistance, and is a constant (e.g., the simplest case, $V/I = R$). For inductors and capacitors, the voltage over the current is a frequency-dependent impedance (e.g., $V/I = Z(s)$, where s is the complex frequency $s \in \mathbb{C}$).

As described in Fig. 3.2 (p. 129), the impedance concept also holds in mechanics and acoustics. In mechanics, the “force” is equal to the mechanical force on an element (e.g., a mass, dashpot, or spring), and the “flow” is the velocity. In acoustics, the “force” is pressure, and the “flow” is the volume velocity or particle velocity of air molecules.

Problem #11: The resistance of an incandescent (filament) lightbulb, measured cold, is about 100 ohms. As it lights up, the resistance of the metal filament increases. Ohm’s law says that the current

$$\frac{V}{I} = R(T)$$

where T is the temperature. In the United States, the voltage is 120 volts (RMS) at 60 [Hz].

- **Q 11.4:** Find the current when the light is first switched on.

Problem #12: The power in Watts is the product of the force and the flow.

- **Q 12.4:** What is the power of the light bulb of this example? in Problem 3.23?

Problem #13: State the impedance $Z(s)$ of each of the following circuit elements:

(a) **Q 13.1:** A resistor with resistance R

(b) **Q 13.2:** An inductor with inductance L

(c) **Q 13.3:** A capacitor with capacitance C

Problem #14: Consider what happens at the triple point of water. As water freezes or thaws, the temperature remains constant at 0 ($^\circ C$). Once all the water is frozen and more heat is removed, the temperature drops below 0 $^\circ C$. As heat is added, water thaws, but the temperature remains at 0 $^\circ C$.

3.6. EXERCISES AE-2

- Q 14.1: Once all the ice is melted, as more heat is added, find the temperature as more heat is added?

Model the triple point using a zener diode, a resistor and a capacitor. A zener diode holds the voltage constant independent of current. For the case of water’s triple point, the voltage represents the temperature of water at the triple point, clamped at 0 [°C]. The current represents the heat flux. The latent heat of water at the triple point is 32 [Cal/gm]. Thus as the temperature rises from below freezing, the water is clamped at 0 once the triple point is reached. Once more, adding more heat flux has no effect on the temperature until all the ice melts. Once melted, the temperature again begins to rise until it hits the boiling point, where it again stays at 100° until all the water has evaporated.

Two-Port Network Analysis

Problem #15: Perform an analysis of electrical two-port networks, shown in Fig. 3.3. This can be a mechanical system if the capacitors are taken to be springs, and inductors taken as mass, as in the suspension of the wheels of a car. In an acoustical circuit, the low-pass filter could be a car muffler. While the physical representations will be different, the equations and the analysis are exactly the same.

Figure 3.3 Left: A low-pass RC electrical filter. The circuit elements R_1, R_2, and C are defined in the problems below. Right: A band-pass acoustical filter. Here, the pressure P is analogous to voltage, and the velocity U is analogous to current. The circuit elements are labeled with their L and C values as integers, to make the algebra simple.

The definition of the ABCD transmission matrix (T) is

\[
\begin{bmatrix}
 V_1 \\
 I_1
\end{bmatrix} = \begin{bmatrix}
 A & B \\
 C & D
\end{bmatrix} \begin{bmatrix}
 V_2 \\
 I_2
\end{bmatrix},
\]

The impedance matrix, where the determinant $\Delta_T = AD - BC$, is given by

\[
\begin{bmatrix}
 V_1 \\
 V_2
\end{bmatrix} = \frac{1}{\Delta_T} \begin{bmatrix}
 A & \Delta_T \\
 1 & D
\end{bmatrix} \begin{bmatrix}
 I_1 \\
 I_2
\end{bmatrix}.
\]

- Q 15.1: Derive the formula for the impedance matrix (Eq. 3.6) given the transmission matrix definition (Eq. 3.5).

Show your work.

Problem #16: Consider a single circuit element with impedance $Z(s)$.

(a) - Q 16.1: What is the ABCD matrix for this element if it is in series?

(b) - Q 16.2: What is the ABCD matrix for this element if it is in shunt?

Problem #17: Find the ABCD matrix for each of the circuits of Figure 3.3.

For each circuit, (i) show the cascade of transmission matrices in terms of the complex frequency $s \in \mathbb{C}$, then (ii) substitute $s = 1j$ and calculate the total transmission matrix at this single frequency.

Change to lightface.
(a) **Q 17.1**: Left circuit (let \(R_1 = R_2 = 10 \text{ k}\Omega \) \((\text{kilo-ohms})\) and \(C = 10 \text{ nF} \) \((\text{nano-farads})\)).

(b) **Q 17.2**: Right circuit (use \(L \) and \(C \) values given in the figure), where the pressure \(P \) is analogous to the voltage \(V \), and the velocity \(U \) is analogous to the current \(I \).

(c) **Q 17.3**: Convert both transmission (ABCD) matrices to impedance matrices using Equation 3.6. Do this for the specific frequency \(s = 1j \) as in the previous part (feel free to use Matlab/Octave for your computation).

(d) **Q 17.4**: Right circuit: Using the previous solution, and Matlab:

Move problem #1 from p212 \((VC=I)\) here.
3.7 Transmission (ABCD) matrix composition method

Matrix composition: Matrix multiplication represents a composition of 2×2 matrices because the input to the second matrix is the output of the first (this follows from the definition of composition: $f(x) \circ g(x) = f(g(x))$). Thus the ABCD matrix is also known as the transmission matrix method, or occasionally the chain matrix. The general expression for the transmission matrix $T(s)$ is

$$
\begin{bmatrix}
V_1 \\
I_1
\end{bmatrix} =
\begin{bmatrix}
A(s) & B(s) \\
C(s) & D(s)
\end{bmatrix}
\begin{bmatrix}
V_2 \\
-I_2
\end{bmatrix}.
$$

The four coefficients $A(s), B(s), C(s), D(s)$ are all complex functions of the Laplace frequency $s = \sigma + j\omega$ (p. 136). Typically they are polynomials in s: $C(s) = s^2 + 1$, for example. A symbolic eigenanalysis of 2×2 matrices may be found in Appendix B.3 (p. 269).

It is a standard convention to always define the current into the node, but since the input current on the left is the same as the output current on the right (I_2), hence the need for the negative sign on I_2 to match the sign convention of current into every node. When using this convention, all the signs will match. All a guess.

We have already used 2×2 matrix composition in representing complex numbers (p. 31) and for computing the gcd (m, n) of $m, n \in \mathbb{N}$ (p. 31). Pell’s equation (p. 31) and the Fibonacci sequence (p. 31). It would appear that 2×2 matrices have high utility.

Definitions of A, B, C, D: By writing out the equations corresponding to Eq. 3.60, it is trivial to show that

$$
A(s) = \left| \begin{array}{c}
V_1 \\
V_2
\end{array} \right|_{I_2=0}, \quad B(s) = -\left| \begin{array}{c}
V_1 \\
I_2
\end{array} \right|_{V_2=0}, \quad C(s) = \left| \begin{array}{c}
I_1 \\
V_2
\end{array} \right|_{I_1=0}, \quad D(s) = -\left| \begin{array}{c}
I_1 \\
I_2
\end{array} \right|_{V_2=0}.
$$

Each equation has a physical interpretation and a corresponding name. Functions A and C are said to be blocked, because the output current I_2 is zero. Functions B and D are said to be short-circuited, because the output voltage V_2 is zero. These two terms (blocked, short-circuited) are electrical-engineering-centric, arbitrary, and fail to generalize to other cases; thus these terms should be avoided.

For example, in a mechanical system blocked would correspond to an output isometric (no length change) velocity of zero. In mechanics the isometric force is defined as the maximum applied force conditioned on zero velocity (aka, the blocked force). Thus the short-circuited force (aka B) would correspond to zero force, which is nonsense. Thus these engineering-centric terms do not gracefully generalize, so better terminology is needed. Muich of this was wired out by Thévenin 1883 (Van Valkenburg, 1964a; Johnson, 2003) and (Kennelly, 1893).

A, D are called voltage (force) and current (velocity) transfer functions, since they are ratios of voltages and currents, whereas B, C are known as the transfer impedance and transfer admittance. For example, the unloaded (blocked) ($I_2 = 0$) output voltage $V_2 = I_1/C$ corresponds to the isometric force in mechanics. In this way each term expresses an output (port 2) in terms of an input (port 1), for a given load condition.

Exercise: Explain why C is given as above.

Solution: Writing out the lower equation gives $I_1 = CV_2 - D I_2$. Setting $I_2 = 0$, we obtain the equation for $C = I_1/V_2|_{I_2=0} = \infty$.

then

Exercise: Can $C = 0$?

Solution: Yes, if $I_2 = 0$ and $I_1 = I_2$, $C = 0$. For $C \neq 0$ there needs to be a finite shunt impedance across V_1, so that $I_1 \neq I_2 = 0$.

3.7.1 Thévenin parameters of a source

An important concept in circuit theory is that of the Thévenin parameters: the open-circuit voltage and the short-circuit current, the ratio of which defines the Thévenin impedance (Johnson, 2003). The open-
circuit voltage is defined as the voltage V_2 when the load current $I_2 = 0$, which was shown in the previous exercise to be $V_2/I_1|_{I_2=0} = 1/C$.

\[\frac{V_{\text{Th{\`e}venin}}}{I_1} \bigg|_{I_2=0} = \frac{1}{C} \quad \text{and} \quad \frac{V_{\text{Th{\`e}venin}}}{V_1} \bigg|_{I_2=0} = \frac{1}{A}. \] (3.62)

needed A more general expression is necessary when the source impedance is finite (neither voltage or current).

\[Z_{\text{Th{\`e}venin}} = \frac{V_2}{I_2} \bigg|_{V_1=0}. \] (3.63)

From the upper equation of Eq. 3.60, with $V_1 = 0$, we obtain $AV_2 = BI_2$, thus

\[Z_{\text{Th{\`e}venin}} = \frac{B}{A}. \] (3.64)

\[\begin{bmatrix} 1 & Z(s) \\ 0 & 1 \end{bmatrix} \quad \text{or} \quad \begin{bmatrix} 1 & 0 \\ Y(s) & 1 \end{bmatrix}. \] (3.65)

Postulate P6 Thus for the case of reciprocal systems (P6, p. 138),

\[\Delta_T = \det \begin{bmatrix} A(s) & B(s) \\ C(s) & D(s) \end{bmatrix} = 1, \] and of

since the determinant of the product of each elemental matrix is 1, the determinant of their product is 1.

An anti-reciprocal system may be synthesized by the use of a gyrator, and for such cases $\Delta_T = -1$.

The eigenvalue and vector equations for a T matrix are summarized in Appendix B (p. 265) and discussed in Appendix B.3 (p. 269). The basic postulates of network theory also apply to the matrix elements $A(s), B(s), C(s), D(s)$, which place restrictions on their functional relationships. For example, property P1 (p. 138) places limits on the poles and/or zeros of each function since the time response must be causal.

\[\begin{equation} \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} = \begin{bmatrix} z_{11} & z_{12} \\ z_{21} & z_{22} \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \end{bmatrix} = \frac{1}{C} \begin{bmatrix} A & \Delta_T \\ C & D \end{bmatrix} \begin{bmatrix} I_1 \\ -I_2 \end{bmatrix}. \end{equation} \] (3.66)

The determinate of the transmission matrix is $\Delta_T = \pm 1$, and if $C = 0$, the impedance matrix does not exist (See p. 138 for details).

Definitions of $z_{11}(s), z_{12}(s), z_{21}(s), z_{22}(s)$: The definitions of the matrix elements are easily read off of the equation as

\[z_{11} \equiv \frac{V_1}{I_1} \bigg|_{I_2=0}, \quad z_{12} \equiv -\frac{V_1}{I_2} \bigg|_{I_1=0}, \quad z_{21} \equiv -\frac{V_2}{I_1} \bigg|_{I_2=0}, \quad z_{22} \equiv -\frac{V_2}{I_2} \bigg|_{I_1=0}. \] (3.66)
These definitions follow trivially from Eq. 3.65 and each element has a physical interpretation. For example, the unloaded \((I_2 = 0, \text{aka blocked or isometric})\) input impedance is \(z_{11}(s) = \mathcal{A}(s)/C(s)\) while the unloaded transfer impedance is \(z_{21}(s) = 1/C(s)\). For reciprocal systems (P6, p. 138) \(z_{12} = z_{21}\) since \(\Delta_T = 1\). For non-reciprocal systems, such as dynamic (aka magnetic) loudspeakers and microphones (Kim and Allen, 2013), \(\Delta_T = -1\); thus \(z_{21} = -z_{12} = 1/C\). Finally \(z_{22}\) is the impedance looking into port 2 with port 1 open/block (\(I_1 = 0\)). The problem with these basic definitions is that their physical interpretation is unclear. This problem may be solved by referring to Fig. 3.9, which is easier to understand than that of Eq. 3.65, as it allows one to quickly visualize the many relationships. Specifically, the circuit of Fig. 3.9 is given by the \(T(s)\) matrix
\[
\begin{bmatrix}
V_1 \\
I_1 \\
\end{bmatrix} = \begin{bmatrix}
1 + z_0 y_b & z_c (1 + z_0 y_b) + z_0 \\
y_b & 1 + y_b z_c
\end{bmatrix} \begin{bmatrix}
V_2 \\
I_2 \\
\end{bmatrix}.
\]
(3.67)

Note it is trivial to invert the \(T(s)\) matrix because \(\Delta_T = 1\).

From the circuit elements defined in Fig. 3.9 (i.e., \(z_0, z_c, y_b\); one may easily compute the impedance matrix element of Eq. 3.65 (i.e., \(z_{11}, z_{12}, z_{21}, z_{22}\)). For example, the impedance matrix element \(z_{11}\), in terms of \(z_0\) and \(y_b\), is easily read off of Fig. 3.9 as the sum of the series and shunt impedances:
\[
z_{11}(s)|_{I_2=0} = z_0 + \frac{1}{y_b} = \frac{\mathcal{A}}{C}.
\]

Given the impedance matrix we may then compute transmission matrix \(T(s)\), namely, from Eq. 3.65,
\[
\frac{1}{C(s)} = z_{21}, \quad \frac{\mathcal{A}(s)}{C(s)} = z_{11}.
\]

![Equivalent circuit for a transmission matrix, which allows one to better visualize the matrix elements in terms of complex impedances \(z_0(s), z_c(s), y_b(s)\), as defined in this figure.](image)

This allows us to understand the Rayleigh reciprocity (P6 (\(B(s) = \pm C(s)\), p. 138)).

\(<143>\) Rayleigh reciprocity: Figure 3.9 is particularly helpful in understanding the Rayleigh reciprocity postulate P6 (\(B(s) = \pm C(s)\), p. 138):
\[
\frac{V_2}{I_1} \bigg|_{I_2=0} = \frac{V_1}{I_2} \bigg|_{I_1=0}.
\]

This says that the output voltage over the input current is symmetric, which is obvious from Fig. 3.9.

The Thévenin voltage \((V_{\text{Thévenin}})\), impedance \(Z_{\text{Thévenin}}\) and reciprocity are naturally explained in terms of Fig. 3.9. This is the normal case of magnetic circuits, such as loudspeakers, where \(y_b\) is represented by a gyraor (Kim and Allen, 2013), or electron spin in quantum mechanics.
3.7.3 Network power relationships

Impedance is a very general concept, closely tied to the definition of power $P(t)$ (and energy). Power is defined as the product of the effort (force) and the flow (current). As described in Fig. 3.2, these concepts are very general, applying to mechanics, electrical circuits, acoustics, thermal circuits, or any other case where conservation of energy applies. Two basic variables are defined, generalized force and generalized flow, also called conjugate variables. The product of the conjugate variables is the power, and the ratio is the impedance. For example, for the case of voltage and current,

$$P(t) = \int v(t)i(t)\,dt, \quad Z(s) = \frac{V(\omega)}{I(\omega)}.$$

Power vs. power series, linear vs. nonlinear Another place where equations of second degree appear in physical applications is in energy and power calculations. The electrical power is given by the product of the voltage $v(t)$ and current $i(t)$ (or in mechanics as the force times the velocity). For example, if we define $P = v(t)i(t)$ to be the power P [watts], then the total energy E [joules] at time t is (Van Valkenburg, 1964a, p. 14)

$$E(t) = \int_0^t v(t)i(t)\,dt.$$

We observe that the power is the rate of change of the total energy:

$$P(t) = \frac{d}{dt}E(t),$$

(reminiscent of the fundamental theorem of calculus [Eq. 4.7, p. 151]).

3.7.4 Ohm's law and impedance

The ratio of voltage over the current is called the impedance which has units of ohms. For example, given a resistor of $R = 10$ ohms,

$$v(t) = R\,i(t).$$

Namely, 1 amp flowing through the resistor would give 10 volts across it. Merging the linear relation due to Ohm's law with the definition of power shows that the instantaneous power in a resistor is quadratic in voltage and current:

$$P(t) = v(t)^2 / R = i(t)^2 R. \tag{3.68}$$

Note that Ohm's law is linear in its relation between voltage and current whereas the power and energy are nonlinear.

Ohm's law generalizes in a very important way, allowing the impedance (e.g., resistance) to be a linear complex analytic function of complex frequency $s = \sigma + \omega j$ (Kennelly, 1893; Brune, 1931a). Impedance is a fundamental concept in many fields of engineering. For example: Newton's second law $F = ma$ obeys Ohm's law, with mechanical impedance $Z(s) = sm$. Hooke's law $F = kx$ for a spring is described by a mechanical impedance $Z(s) = k/s$. In mechanics a "resistor" is called a dashpot and its impedance is a positive-real constant.

Kirchhoff's laws KCL KVL: The laws of electricity and mechanics may be written down using Kirchhoff's current and voltage laws (KCL KVL), which lead to linear systems of equations in the currents and voltages (velocities and forces) of the system under study, with complex coefficients having positive-real parts.

18 In acoustics the pressure is a potential, like voltage. The force per unit area is given by $f = -\nabla p$, thus $F = -\int \nabla p \, dS$. Velocity is analogous to a current. In terms of the velocity potential, the velocity per unit area is $v = -\nabla \phi$.

Points of major confusion are a number of terms that are misused, and overused, in the fields of mathematics, physics and engineering. Some of the most obviously abused terms are linear/nonlinear, energy, power, power series. These have multiple meanings, which can, and are, fundamentally in conflict.

Transfer functions (transfer matrix): The only method that seems to work is to cite the relevant physical application in specific contexts. The most common standard reference is a physical system that has an input \(x(t) \) and an output \(y(t) \). If the system is linear, it may be represented by its impulse response \(h(t) \). In such cases, the system equation is

\[
y(t) = h(t) \ast x(t) \leftrightarrow Y(\omega) = H(s)|_{s=0} X(\omega);
\]

namely, the convolution of the input with the impulse response gives the output. From Fourier analysis, this relation may be written in the real frequency domain as a product of the Laplace transform of the impulse response, evaluated on the \(\pm \omega \) axis and the Fourier transform of the input \(X(\omega) \leftrightarrow x(t) \) and output \(Y(\omega) \leftrightarrow y(t) \).

If the system is nonlinear, then the output is not given by a convolution, and the Fourier and Laplace transforms have no obvious meaning.

The question that must be addressed is why the power is nonlinear, whereas a power series of \(H(s) \) is linear: Both have powers of the underlying variables. This is confusing and rarely, if ever, addressed.

The quick answer is that powers of the Laplace frequency \(s \) correspond to derivatives, which are linear operations, whereas the product of the voltage \(v(t) \) and current \(i(t) \) is nonlinear. The important and interesting question will be addressed on p. 138, in terms of the system postulates of physical systems.

<table>
<thead>
<tr>
<th>Case</th>
<th>Force</th>
<th>Flow</th>
<th>Impedance</th>
<th>units ohms [Ω]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical</td>
<td>voltage (V)</td>
<td>current (I)</td>
<td>(Z = V/I)</td>
<td>[Ω]</td>
</tr>
<tr>
<td>Mechanics</td>
<td>force (F)</td>
<td>velocity (U)</td>
<td>(Z = F/U)</td>
<td>mechanical [Ω]</td>
</tr>
<tr>
<td>Acoustics</td>
<td>pressure (P)</td>
<td>particle velocity (V)</td>
<td>(Z = P/V)</td>
<td>specific [Ω]</td>
</tr>
<tr>
<td>Acoustics</td>
<td>mean pressure ((P))</td>
<td>volume velocity ((V))</td>
<td>(Z = \rho / \rho')</td>
<td>acoustic [Ω]</td>
</tr>
<tr>
<td>Thermal</td>
<td>temperature (T)</td>
<td>heat flux (J)</td>
<td>(Z = T/J)</td>
<td>thermal [Ω]</td>
</tr>
</tbody>
</table>

Ohm’s law: In general, impedance is defined as the ratio of a force over a flow. For electrical circuits (Table 3.2), the voltage is the “force” and the current is the “flow.” Ohm’s law states that the voltage across and the current through a circuit element are linearly related by the impedance of that element (which is typically a complex function of the complex Laplace frequency \(s = \sigma + \omega i \)). For resistors, the voltage over the current is called the resistance and is a constant (e.g. the simplest case \(V/I = R \in \mathbb{R} \)). For inductors and capacitors, the impedance depends on the Laplace frequency \(s \) (e.g. \(V/I = Z(s) \in \mathbb{C} \)).

As discussed in Table 3.2, the impedance concept also holds for mechanics and acoustics. In mechanics, the “force” is the mechanical force on an element (e.g. a mass, dashpot, or spring) and the “flow” is the velocity. In acoustics, the “force density” is pressure, and the “flow” is the volume velocity or particle velocity of air molecules.

In this section we shall derive the method of the linear composition of systems, also known as the ABCD transmission matrix method, or in the mathematical literature, the Möbius (bilinear) transformation. Using the method of matrix composition, a linear system of \(2 \times 2 \) matrices can represent a significant family of networks. By the application of Ohm’s law to the circuit shown in Fig. 3.10, we can model a cascade of such cells, which characterize transmission lines (Campbell, 1903a).
CHAPTER 3. STREAM 2: ALGEBRAIC EQUATIONS

Figure 3.10: A single LC cell of the LC transmission line. Every cell of any transmission line may be modeled by the ABCD method as the product of two matrices. For the example shown here, the inductance L of the coil and the capacitance C of the capacitor are in units of [Henry/m] and [Farad/m], respectively. They are dependent on length Δx [m] that the cell represents. The flows are always defined as into the + node.

Example of the use of the ABCD matrix composition: Figure 3.10 characterizes a network composed of a series inductor (mass) having an impedance $Z_l = sL$, and a shunt capacitor (compliance) having an admittance $Y_c = sC \in \mathbb{C}$. As determined by Ohm's law, each equation describes a linear relation between the current and the voltage. For the inductive impedance, applying Ohm's law gives

$$Z_l(s) = (V_1 - V_2)/I_1,$$

where $Z_l(s) = Ls \in \mathbb{C}$ is the complex impedance of the inductor. For the capacitive impedance, applying Ohm's law gives

$$Y_c(s) = (I_1 + I_2)/V_2,$$

where $Y_c = sC \in \mathbb{C}$ is the complex admittance of the capacitor.

Each of these linear impedance relations may be written in a 2x2 matrix format. The series inductor ($C = 0$) equation gives ($I_1 = -I_2$)

$$\begin{bmatrix} V_1 \\ I_1 \end{bmatrix} = \begin{bmatrix} 1 & Z_l \\ 0 & 1 \end{bmatrix} \begin{bmatrix} V_2 \\ -i_2 \end{bmatrix},$$

while the shunt capacitor ($L = 0$) equation yields ($V_1 = V_2$)

$$\begin{bmatrix} V_1 \\ I_1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ Y_c & 1 \end{bmatrix} \begin{bmatrix} V_2 \\ -i_2 \end{bmatrix}. $$

When the second matrix equation for the shunt admittance (Eq. 3.76) is substituted into the series impedance equation (Eq. 3.69), we find the ABCD matrix ($T_1 \cdot T_2$) for the cell is simply the product of two matrices:

$$\begin{bmatrix} V_1 \\ I_1 \end{bmatrix} = \begin{bmatrix} 1 & Z_l \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ Y_c & 1 \end{bmatrix} \begin{bmatrix} V_2 \\ -i_2 \end{bmatrix} = \begin{bmatrix} 1 + Z_l Y_c & Z_l \\ Y_c & 1 \end{bmatrix} \begin{bmatrix} V_2 \\ -I_2 \end{bmatrix}.$$

Note that the determinant of the matrix $\Delta = AD - BC = 1$. This is not an accident since the determinant of the two matrices is each 1; thus the determinant of their product is 1. Every cascade of series and shunt elements will always have $\Delta = 1$.

For the case of Fig. 3.10, Eq. 3.74 has $\alpha(s) = 1 + s^2LC$, $\beta(s) = sL$, $\gamma(s) = sC$, and $\phi = 1$. This equation characterizes the four possible relations of the cell's input and output voltage and current. For example, the ratio of the output to input voltage, with the output unloaded, is

$$\frac{V_2}{V_1 |_{I_2=0}} = \frac{1}{\alpha(s)} = \frac{1}{1 + Z_l Y_c} = \frac{1}{1 + s^2LC}.$$

This is known as the voltage divider relation α. To derive the current divider relation α, use the lower equation with $V_2 = 0$:

$$\frac{-I_2}{I_1 |_{V_2=0}} = 1.$$
3.8. SIGNALS: FOURIER TRANSFORMS

3.41 Exercise: What happens if the roles of Z and Y are reversed? Solution:

$$
\begin{bmatrix}
V_1 \\
I_1
\end{bmatrix} = \begin{bmatrix}
1 & 0 \\
Y_c & 1
\end{bmatrix} \begin{bmatrix}
1 \\
Z_i
\end{bmatrix} \begin{bmatrix}
V_2 \\
I_2
\end{bmatrix}
= \begin{bmatrix}
1 \\
Y_c
\end{bmatrix} \begin{bmatrix}
1 + Z_i Y_c \\
1
\end{bmatrix} \begin{bmatrix}
V_2 \\
I_2
\end{bmatrix}
\] (3.52)

This simply is the same network reversed in direction.

3.42 Exercise: What happens if the series element is a capacitor and the shunt an inductor? Solution:

$$
\begin{bmatrix}
V_1 \\
I_1
\end{bmatrix} = \begin{bmatrix}
1 & 1/Y_c \\
0 & 1
\end{bmatrix} \begin{bmatrix}
1 \\
1/Z_i
\end{bmatrix} \begin{bmatrix}
V_2 \\
I_2
\end{bmatrix}
= \begin{bmatrix}
1 + 1/Z_i Y_c \\
1/Y_c
\end{bmatrix} \begin{bmatrix}
V_2 \\
I_2
\end{bmatrix}
\] (3.53)

This circuit is a high-pass filter rather than a low-pass.

3.8 Signals: Fourier transforms

Two fundamental transformations in engineering mathematics are the Fourier and the Laplace transforms, which deal with time–frequency analysis (Papoulis, 1962).

Notation: The Fourier transform ($\mathcal{F} T$) takes a time domain signal $f(t) \in \mathbb{R}$ and transforms it to the frequency domain by taking the **scalar product** (aka dot product) of $f(t)$ with the complex time vector $e^{-j\omega t}$:

$$
f(t) \leftrightarrow F(\omega) = \int_{-\infty}^{\infty} f(t) e^{-j\omega t} \, dt \quad \text{and} \quad \tilde{f}(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{j\omega t} \, d\omega
\] (3.54)

where $F(\omega)$ and $e^{-j\omega t} \in \mathbb{C}$ and $\omega, t \in \mathbb{R}$. The scalar product between two vectors results in a scalar (number), as discussed in Appendix A.2 (p. 258).

Definition of the Fourier transform: The forward transform takes $f(t)$ to $F(\omega)$ while the inverse transform takes $F(\omega)$ to $\tilde{f}(t)$. The tilde symbol indicates that, in general, the recovered inverse transform signal can be slightly different from $f(t)$; with examples in Table 3.3. Examples are presented in Table 3.3.

Types of Fourier Transforms: As summarized in Fig. 3.4, each $\mathcal{F} T$ type is determined by its time and frequency symmetries. A time function $f(t)$ may be either **continuous in time**, with $-\infty < t < \infty$, or **discrete in time**, $f_n = f(t_n)$, with $t_n = k T_p$, where T_p is called the Nyquist sample period, or **periodic in time**, $f(t) = f(t + k T_p)$, where T_p is called the period. Here $k, n \in \mathbb{Z}$ and $T_p \in \mathbb{R}$.

A general rule is that if a function is discrete in one domain (time or frequency), it is periodic in the other domain (frequency or time). For example, the discrete time function f_n must have a periodic frequency response, namely $f_n \leftrightarrow F(\omega)T_p$. This is the case of **discrete-time Fourier transform** (DTFT). Alternatively, when the time function is periodic, the frequencies must be discrete, namely,
Table 3.3: Basic (Level I) Fourier transforms. Note that $a > 0 \in \mathbb{R}$ has units [rad/s]. To flag this necessary condition, we use $[a]$ to assure this condition will be met. The other constant $T_n \in \mathbb{R}$ has no restrictions, other than being real. Complex constants may not appear as the argument to a delta function, since complex numbers do not have the order property.

<table>
<thead>
<tr>
<th>$f(t)$ ↔ $F(\omega)$</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\delta(t)$ ↔ $1(\omega) = 1 \forall \omega$</td>
<td>Dirac</td>
</tr>
<tr>
<td>$1(t) = 1 \forall t ± 2\pi \delta(\omega)$</td>
<td>Dirac</td>
</tr>
<tr>
<td>$\text{sgn}(t) = \frac{t}{</td>
<td>t</td>
</tr>
<tr>
<td>$\tilde{u}(t) = \frac{1(t) + \text{sgn}(t)}{2}$</td>
<td>$\pi \delta(\omega) + \frac{1}{j\omega} ≡ \tilde{U}(\omega)$</td>
</tr>
<tr>
<td>$\tilde{\delta}(t - T_n)$ ↔ $e^{-j\omega T_n}$</td>
<td>Dirac</td>
</tr>
<tr>
<td>$\tilde{\delta}(t - T_n) * f(t)$</td>
<td>$F(\omega)e^{-j\omega T_n}$</td>
</tr>
<tr>
<td>$\tilde{u}(t)e^{-j</td>
<td>t</td>
</tr>
<tr>
<td>$\text{rec}(t) = \frac{1}{T_n}[\tilde{u}(t) - \tilde{u}(t - T_n)]$</td>
<td>$\frac{1}{T_n}(1 - e^{-j\omega T_n})$</td>
</tr>
<tr>
<td>$\tilde{u}(t) + \tilde{u}(t) ≡ \delta(\omega)$</td>
<td>Not defined</td>
</tr>
<tr>
<td>$\tilde{u}(t)$</td>
<td>NaN</td>
</tr>
</tbody>
</table>

Table 3.4: Acronyms: FT: Fourier Transform; FS: Fourier Series; DFT: Discrete time Fourier transform; DFT: Discrete Fourier transform (the FFT is a "fast" DFT).

<table>
<thead>
<tr>
<th>FREQUENCY \ TIME</th>
<th>continuous ω</th>
<th>discrete t_k</th>
<th>periodic $((t))_{T_n}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>continuous ω</td>
<td>$F \tau$</td>
<td>DFT (FFT)</td>
<td>FS</td>
</tr>
<tr>
<td>discrete ω_k</td>
<td>τ</td>
<td>DFT (FFT)</td>
<td>FS</td>
</tr>
<tr>
<td>periodic $((t))_{T_k}$</td>
<td>ω_k</td>
<td>DFT (FFT)</td>
<td>DFT (FFT)</td>
</tr>
</tbody>
</table>

$f((t))_{T_n} \leftrightarrow F(\omega_k)$. This is the case of the Fourier series (FS). When both time and frequencies are discrete, both the time and frequencies must be periodic. This is the case of the discrete Fourier transform (DFT). These three cases are summarized in Fig. 3.5.

1. Both time t and frequency ω are real.
2. For the forward transform (time to frequency), the sign of the exponential is negative.
3. The limits on the integrals in both the forward and reverse FTs are $[-\infty, \infty]$.
4. When taking the inverse Fourier transform, the scale factor of $1/2\pi$ is required to cancel the 2π in the differential $d\omega$.
5. The Fourier step function may be defined by the use of superposition of 1 and $\text{sgn}(t) = t/|t|$ as

$$\tilde{u}(t) \equiv \frac{1 + \text{sgn}(t)}{2} = \begin{cases} 1 & t > 0 \\ 1/2 & t = 0 \\ 0 & t < 0 \end{cases}.$$
3.8. SIGNALS: FOURIER TRANSFORMS

Taking the FT of a delayed step function, we get

\[
\hat{u}(t - T_0) = \frac{1}{2} \int_{-\infty}^{\infty} [1 - \text{sgn}(t - T_0)] e^{-j\omega t} dt = \pi \delta(\omega) + e^{-j\omega T_0}.
\]

Thus the FT of the step function has the term \(\pi \delta(\omega)\) due to the 1 in the definition of the Fourier step. This term introduces a serious flaw with the FT of the step function: While it appears to be causal, it is not.

6. The convolution \(\tilde{u}(t) \star \tilde{u}(t)\) is not defined because both \(1 \star 1\) and \(\tilde{\delta}^2(\omega)\) are not defined.

7. The inverse \(\mathcal{F}^{-1}\) has convergence issues whenever there is a discontinuity in the time response. We indicate this with a hat over the reconstructed time response. The error between the target time function and the reconstructed is zero in the root-mean sense, but not point-wise.

Specifically, at the discontinuity point for the Fourier step function \(t = 0\), \(\tilde{u}(t) \neq u(t)\), yet \(\int |\tilde{u}(t) - u(t)|^2 dt = 0\). At the point of the discontinuity the reconstructed function displays Gibbs ringing (it oscillates around the step, hence does not converge at the jump). The \(\mathcal{F}^{-1}\) does not exhibit Gibbs ringing, thus is exact.

8. The FT is not always analytic in \(\omega\), as in this example of the step function. The step function cannot be expanded in a Taylor series about \(\omega = 0\) because \(\tilde{\delta}(\omega)\) is not analytic in \(\omega\).

9. The Fourier \(\delta\) function is denoted \(\tilde{\delta}(t)\) to differentiate it from the Laplace delta function \(\delta(t)\). They differ because the step functions differ, due to the convergence problem.

10. One may define

\[
\tilde{u}(t) = \int_{-\infty}^{t} \tilde{\delta}(t) dt,
\]

and define the somewhat questionable notation

\[
\tilde{\delta}(t) = \frac{d}{dt} \tilde{u}(t),
\]

since the Fourier step function is not analytic.

11. The \(\text{rec}(t)\) function is defined as

\[
\text{rec}(t) = \frac{\tilde{u}(t) - \tilde{u}(t - T_0)}{T_0} = \begin{cases}
0 & t < 0 \\
1/T_0 & 0 < t < T_0 \\
0 & t > T_0
\end{cases}
\]

It follows that \(\tilde{\delta}(t) = \lim_{\delta \to 0} \text{rec}(t)\). Like \(\tilde{\delta}(t)\), the \(\text{rec}(t)\) has unit area.

12. When a function is periodic in one domain \((t, f)\), it must be discrete in the other (Fig. 3.5).

Table 3.5: The general rule is that if a function is discrete in one domain (time or frequency), it is periodic in the other.

<table>
<thead>
<tr>
<th>FREQUENCY \ TIME</th>
<th>continuous t</th>
<th>discrete t</th>
<th>periodic ((t))</th>
<th>((f))</th>
</tr>
</thead>
<tbody>
<tr>
<td>continuous (\omega)</td>
<td>DTFT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>discrete (\omega_k)</td>
<td>DFT (FFT)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>periodic ((\omega))</td>
<td>FS</td>
<td>DTFT</td>
<td>DFT (FFT)</td>
<td></td>
</tr>
</tbody>
</table>
Table 3.6: Summary of key properties of FTs

| FT Properties |
|----------------|------------------|
| \(\frac{d}{dt} v(t) \leftrightarrow j\omega V(\omega) \) | deriv |
| \(f(t) * g(t) \leftrightarrow F(\omega)G(\omega) \) | conv |
| \(f(at) \leftrightarrow \frac{1}{a} F\left(\frac{\omega}{a}\right) \) | scaling |

Author: Please refer to this figure somewhere in the text.

Exercise: Consider the Fourier series scalar (dot) product (Eq. 3.48, p. 108) between “vectors” \(f(t) \) and \(e^{-j\omega_k t} \).

\[
F(\omega_k) = f(t) e^{-j\omega_k t} = \frac{1}{T_0} \int_0^{T_0} f(t) e^{-j\omega_k t} dt,
\]

where \(\omega_k = 2\pi / T_0 \) of \(f(t) \) has period \(T_0 \), i.e., \(f(t) = f(t + nT_0) = e^{j\omega_k t} \) with \(n \in \mathbb{N} \) and \(\omega_k = k\omega_0 \).

What is the value of the Fourier series scalar product? **Solution:** Evaluating the scalar product we find

\[
e^{j\omega_k t} \cdot e^{-j\omega_k t} = \frac{1}{T_0} \int_0^{T_0} e^{j\omega_k n} e^{-j\omega_k t} dt = \begin{cases} 1 & n = k \\ 0 & n \neq k \end{cases}
\]

The two signals (vectors) are orthogonal.

Periodic signals: Besides these two basic types of time–frequency transforms, there are several variants that depend on the symmetry in time and frequency. For example, when the time signal is sampled (discrete in time), the frequency response becomes periodic, leading to the discrete-time Fourier transform (DTFT). When a time response is periodic, the frequency response is sampled (discrete in frequency), leading to the Fourier series. These two symmetries may be simply characterized as periodic in time \(\Rightarrow \) discrete in frequency and periodic in frequency \(\Rightarrow \) discrete in time. When a function is discrete both in time and frequency, it is necessarily periodic in time and frequency, leading to the discrete Fourier transform (DFT). The DFT is typically computed with an algorithm called the fast Fourier transform (FFT), which can dramatically speed up the calculation when the data is a power of 2 in length.

Causal-periodic signals: A special symmetry occurs given functions that are causal and periodic in frequency. The best example is the \(z \)-transform, which are causal (one-sided in time) discrete-time signals. The harmonic series (Eq. 3.29, p. 87) is the \(z \)-transform of the discrete-time step function and is thus, due to symmetry, analytic within the ROC in the complex frequency \(z \) domain.

The double brackets on \(f(t) \) or \(f_0(t) \) indicate that \(f(t) \) is periodic in \(t \) with period \(T_0 \), i.e., \(f(t) = f(t + nT_0) = e^{j\omega_k t} \) for all \(k \in \mathbb{N} \). Averaging over one period and dividing by the \(T_0 \) gives the average value.

\[\text{that is,} \quad \langle f(t) \rangle = \frac{1}{T_0} \int_0^{T_0} f(t) dt. \]

\[\text{that is,} \quad \langle f_0(t) \rangle = \frac{1}{T_0} \int_0^{T_0} f_0(t) dt. \]

\[\text{that is,} \quad \langle f(t) \rangle = \frac{1}{T_0} \int_0^{T_0} f(t) dt. \]

\[\text{that is,} \quad \langle f_0(t) \rangle = \frac{1}{T_0} \int_0^{T_0} f_0(t) dt. \]

\[\text{that is,} \quad \langle f(t) \rangle = \frac{1}{T_0} \int_0^{T_0} f(t) dt. \]

\[\text{that is,} \quad \langle f_0(t) \rangle = \frac{1}{T_0} \int_0^{T_0} f_0(t) dt. \]
3.9. SYSTEMS: LAPLACE TRANSFORMS

Table 3.9: As summarized in this table of scalar products, each of the various types of Fourier transforms differ in their support in time and frequency. The transform types are Fourier Transform, Fourier Series, Discrete-time Fourier Transform, and Fast Fourier transform (last version of the DFT). The support then defines the inner product form. In this way all the various forms of Fourier transforms may be reduced to differences in the scalar product, as dictated by the support of the signals in time and frequency. In the above, \(t_n = nT_s \), \(f_k = k/T_s \) represent discrete time and frequency samples, where \(T_s \) is one sample period. The signal period for the Fourier Series is \(2\pi \). For the DFT the signal period is \(NT \), where \(N \) is the length of the DFT. Typically this is taken to be a power of 2, such as \(N = 1024 \) samples. This is done to improve the speed of the transform. The terms ON stands for orthonormal. This column shows the signals that are used to when taking the transform. The signal is projected onto these vectors by the scalar product. (This table belongs in the book rather than in the assignment.)

<table>
<thead>
<tr>
<th>Name</th>
<th>Domain</th>
<th>Scalar product</th>
<th>Form</th>
<th>ON</th>
</tr>
</thead>
<tbody>
<tr>
<td>FT</td>
<td>(-\infty < t < \infty)</td>
<td>(x(t) \cdot y(t))</td>
<td>(\int_{-\infty}^{\infty} x(t)y(t),dt)</td>
<td>(e^{-j2\pi ft})</td>
</tr>
<tr>
<td>FT</td>
<td>(-\infty < f < \infty)</td>
<td>(X(f) \cdot Y(f))</td>
<td>(\int_{-\infty}^{\infty} X(f)Y(f),df)</td>
<td>(e^{j2\pi ft})</td>
</tr>
<tr>
<td>FS</td>
<td>(0 \leq t \leq T)</td>
<td>(x(t) \cdot y(t))</td>
<td>(\frac{1}{T} \int_{t_0}^{t_0+T} x(t)y(t),dt)</td>
<td>(e^{-j2\pi ft})</td>
</tr>
<tr>
<td>FS</td>
<td>(-\infty < f < \frac{1}{T} \in \mathbb{N} < \infty)</td>
<td>(X_k \cdot Y_k)</td>
<td>(\sum_{k=-\infty}^{\infty} X_kY_k)</td>
<td>(e^{j2\pi ft})</td>
</tr>
<tr>
<td>DTFT</td>
<td>(-\infty < t_n < \infty)</td>
<td>(x_n \cdot y_n)</td>
<td>(\sum_{n=-\infty}^{\infty} x_ny_n)</td>
<td>(e^{-j2\pi f_n\Omega})</td>
</tr>
<tr>
<td>DTFT</td>
<td>(-\pi < \Omega < \pi)</td>
<td>(X(\Omega) \cdot Y(\Omega))</td>
<td>(\int_{-\pi}^{\pi} X(e^{j\Omega})Y(e^{j\Omega}),d\Omega)</td>
<td>(e^{j2\pi f_n\Omega})</td>
</tr>
<tr>
<td>DFT/FFT</td>
<td>(0 \leq t_n = nT_s \leq (N-1)T_s)</td>
<td>(x_ny_n)</td>
<td>(\sum_{n=0}^{N-1} x_ny_n)</td>
<td>(e^{-j2\pi f_n})</td>
</tr>
<tr>
<td>DFT/FFT</td>
<td>(0 \leq f_k = \frac{k}{NT} \leq \frac{(N-1)}{NT})</td>
<td>(X_kY_k)</td>
<td>(\frac{1}{N} \sum_{n=0}^{N-1} X_kY_k)</td>
<td>(e^{j2\pi f_k})</td>
</tr>
</tbody>
</table>

Exercise: Consider the discrete-time \(\mathcal{F}\mathcal{T}\) (DTFT) as a scalar (dot) product (Eq. 3.44), between “vectors” \(f_n = f(t)|_{t_n}\) and \(e^{-j2\pi t_n\Omega}\), where \(t_n = nT_s\) and \(T_s = 1/2f_{max}\) is the sample period.

Solution: The scalar product over \(n \in \mathbb{Z}\) is

\[
F(\omega)|_{2\pi} = f_n \cdot e^{-j2\pi f_n}\omega = \sum_{n=-\infty}^{\infty} f_n e^{-j2\pi f_n\omega}
\]

where \(\omega_0 = 2\pi/T_s\) and \(\omega_k = k\omega_0\) is periodic. \(F(\omega) = F(\omega + k\omega_0)\)

3.9. Systems: Laplace transforms

The Laplace transform takes real causal signals \(f(t)u(t) \in \mathbb{R}\), as a function of real time \(t \in \mathbb{R}\), that are strictly zero for negative time \(f(t) = 0\) for \(t < 0\), and transforms them into complex analytic functions \((F(s) \in \mathbb{C})\) of complex frequency \(s = \sigma + j\omega\). As for the case of Fourier transform, we use the same notation: \(f(t) \leftrightarrow F(s)\).

When a signal is zero for negative time \(f(t < 0) = 0\), it is said to be causal, and the resulting transform \(F(s)\) must be complex analytic over significant regions of the \(s\) plane. For a function of time to be causal, time must be real \((t \in \mathbb{R})\), since if it were complex, it would lose the order property (thus it could not be causal). It is helpful to emphasize the causal nature of \(f(t)u(t)\) to force causality, with the Heaviside step function \(u(t)\).

Any restriction on a function (e.g., real, causal, periodic, positive real part, etc.) is called a symmetry property. There are many forms of symmetry (N-dimensional). The concept of symmetry is very general and widely used in both mathematics and physics, where it is more generally known as group theory. As shown in Fig. 3.3, the two most common \(\mathcal{F}\mathcal{T}\) symmetries are continuous and discrete-time signal. One-sided periodic transforms also exist, such as the system shown in Fig. 3.3 (p. 79).
Definition of the Laplace transform: The forward and inverse Laplace transforms (see box equations). Here \(s = \sigma + j \omega \in \mathbb{C} \) [2πHz] is the complex Laplace frequency in radians and \(t \in \mathbb{R} \) [s] is the time in seconds. Tables of the more common transforms are provided in Appendix C (p. 273).

Forward and inverse Laplace transforms:

\[
F(s) = \int_0^\infty f(t)e^{-st}dt \quad f(t) = \frac{1}{2\pi j} \int_{C-R\infty} F(s)e^{st}ds,
\]

(3.36)

\[
F(s) \leftrightarrow f(t) \quad f(t) \leftrightarrow F(s)
\]

(3.37)

When dealing with engineering problems, it is convenient to separate the signals we use from the systems that process them. We do this by treating signals, such as a music signal, differently from a system, such as a filter. In general, signals may start and end at any time. The concept of causality has no mathematical meaning in signal space. Systems, on the other hand, obey very-rigid rules (to assure that they remain physical). These physical restrictions are described in terms of the network postulates, which are discussed on p. 138. There is a question as to why postulates are needed, and which ones are the best choices. These questions are discussed in his lectures, Feynman (1968, 1970a). The original video is also available online in many places, e.g., via YouTube.

There may be no definitive answers to these questions, but having a set of postulates is a useful way of thinking about physics.

Table 3.8: Laplace transforms are complementary to the class of Fourier transforms \(FT \) due to the fact that the time function must be a causal function. All \(FT \) are complex analytic in the complex frequency \(s = \sigma + j \omega \) domain. As an example, a causal function that is continuous but one-sided in time is the step function \(u(t) \), which has the \(LT \) \(u(t) \leftrightarrow 1/s \). When a function is discrete in time, it has a \(Z \) transform. The discrete-time step function is \(u[n] = u[n] \leftrightarrow 1/(1 - z^{-n}) \). Abbreviations: \(LT \) - Laplace Transform; \(Z \) - transform

<table>
<thead>
<tr>
<th>FREQUENCY \ TIME</th>
<th>continuous (t)</th>
<th>discrete (t[k])</th>
<th>causal-periodic ((t))</th>
</tr>
</thead>
<tbody>
<tr>
<td>continuous (\omega)</td>
<td>(LT)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>discrete (\omega[k])</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>periodic (</td>
<td>z</td>
<td>e^{j\omega})</td>
<td>-</td>
</tr>
</tbody>
</table>

which requires

\[
\int_C = \int_{C_1}^{\infty} + \int_{C_\infty}^{0}
\]

where the path represented by \(C_\infty \) is a semicircle of infinite radius. For a causal, "stable" (e.g., doesn't "blow up" in time) signal, all of the poles of \(F(s) \) must be inside of the Laplace contour, in the left half \(s \)-plane.

Figure 3.1A: Three-element mechanical resonant circuit consisting of a spring, mass and damper (e.g., viscous fluid).

https://www.youtube.com/watch?v=xn2B_IHGy3g
3.9. SYSTEMS: LAPLACE TRANSFORMS

Example: Hooke's law for a spring states that the force \(f(t) \) is proportional to the displacement \(x(t) \), i.e., \(f(t) = Kx(t) \). The formula for a dashpot is \(f(t) = Rv(t) \), and Newton's famous formula for mass is \(f(t) = d[Mv(t)]/dt \), which for a constant \(M \) is \(f(t) = M(dv/dt) \).

The equation of motion for the mechanical oscillator in Fig. 3.14 is given by Newton's second law; the sum of the forces must balance to zero:

\[
M \frac{d^2x(t)}{dt^2} + R \frac{dx(t)}{dt} + Kx(t) = f(t) \leftrightarrow (Ms^2 + Rs + K)X(s) = F(s). \tag{3.76}
\]

These three constants — the mass \(M \), resistance \(R \) and stiffness \(K (\in \mathbb{R} \geq 0) \) — are real and non-negative. The dynamical variables are the driving force \(f(t) \leftrightarrow F(s) \), the position of the mass \(x(t) \leftrightarrow X(s) \) and its velocity \(v(t) \leftrightarrow V(s) \), with \(v(t) = dx(t)/dt \leftrightarrow V(s) = sX(s) \).

Newton's second law (\(q1850 \)) is the mechanical equivalent of Kirchhoff's (\(q1850 \)) voltage law (KVL), which states that the sum of the voltages around a loop must be zero. The gradient of the voltage results in a force on a charge (i.e., \(F = qE \)). The current may be thought of as the "flow" of charge.

Equation 3.78 may be re-expressed in the frequency domain in terms of an impedance (i.e., Ohm's Law), defined as the ratio of the force \(F(s) \) to velocity \(V(s) = sX(s) \), and the sum of three impedances:

\[
Z(s) = \frac{F(s)}{V(s)} = \frac{Ms^2 + Rs + K}{s} = Ms + R + \frac{K}{s}. \tag{3.79}
\]

Example: The divergent series

\[
e^t u(t) = \sum_{n=0}^{\infty} \frac{1}{n!} e^n t^n \leftrightarrow \frac{1}{s-1}
\]

is a valid description of \(e^t u(t) \), with an unstable pole at \(s = 1 \). For values of \(|x - x_0| < 1 \) (\(x \in \mathbb{R} \)), the analytic function \(P'(x) \) is said to have a region of convergence (ROC). For cases where the argument is complex (\(s \in \mathbb{C} \)), this is called the radius of convergence (ROC). We might call the region \(|s-s_0| > 1 \) the region of divergence (ROD) and \(|s-s_0| = 0 \) the singular circle. Typically, the underlying function \(P(s) \), defined by the series, has a pole on the singular circle.

There seems to be a conflict with the time response \(f(t) = e^t u(t) \), which has a divergent series (unstable pole). I'm not sure how to explain this conflict, other than to point out that \(t \in \mathbb{R}^+ \), thus the series expansion of the diverging exponential is real analytic, not complex analytic. \(\text{First, } f(t) \) has a Laplace transform with a pole at \(s = 1 \), in agreement with its unstable nature. \(\text{Second, } \) every analytic function must be single valued. This follows from the fact that each term in Eq. 3.27 is single valued. \(\text{Third, } \) analytic functions are "smooth" since they may be differentiated an infinite number of times and the series still converges.

The key idea that every impedance must be complex analytic and \(\geq 0 \) for \(\sigma > 0 \) was first proposed by Otto Brune in his PhD at MIT, supervised by Ernst A. Guillemin, an MIT electrical engineering professor who played an important role in the development of circuit theory and was a student of Arnold Sommerfeld.\(^{20}\) Other MIT advisers were Norbert Wiener and Vannevar Bush. Brune's primary, but non-MIT adviser was W. Cauer, who was trained in 19th century German mathematics, perhaps under Sommerfeld (Brune, 1931b).

Summary: While the definitions of the FT (\(\mathcal{F} \)) and LT (\(\mathcal{L} \)) transforms may appear similar, they are not. The key difference is that the time response of the Laplace transform is causal, leading to a complex analytic frequency response. The frequency response of the Fourier transform is complex but not complex analytic, since the frequency \(\omega \) is real. Fourier transforms do not have poles.

The concept of symmetry is helpful in understanding the many different types of time-frequency transforms. Two fundamental types of symmetry are causality (\(\mathcal{F} \)) and periodicity.

\(^{20}\) It must be noted that University of Illinois Prof. Mac Van Van Valkenburg was arguably more influential in circuit theory during the same period. Mac's books are certainly more accessible, but perhaps less widely cited.
The Fourier transform f^*T characterizes the steady-state response $x(t)$, while the Laplace transform L^*T characterizes both the transient and steady-state response. Given a causal system force response $F(s) \leftrightarrow f(t)$ with input velocity $V(s) \leftrightarrow v(t)$, the response is

$$f(t) = z(t) * v(t) \iff Z(\omega) = F(s) \bigg|_{s=j\omega} V(\omega),$$

which says that the force is given as the convolution of the mechanical impedance $z(t)$ with the input velocity $v(t)$.

3.9.1 System postulates

Solutions of differential equations, such as the wave equation, are conveniently described in terms of mathematical properties, which we present here in terms of network postulates (see Appendix F, p. 291 for greater detail):

1. **Causality** (non-causal/causal): Causal systems respond when acted upon. All physical systems obey causality. An example of a causal system is an integrator, which has a response of a step function. Filters are also examples of causal systems. Signals represent acausal responses. They do not have a clear beginning or end, such as the sound of the wind or traffic noise. A causal linear system is typically complex analytic and is naturally represented in the complex s plane via Laplace transforms. A nonlinear system may be causal but not complex analytic.

2. **Linearity** (nonlinear): Linear systems obey superposition. Let two signals $x(t)$ and $y(t)$ be the inputs to a linear system, producing outputs $x'(t)$ and $y'(t)$. When the inputs are presented together as $ax(t) + by(t)$ with weights $a, b \in \mathbb{C}$, the output will be $ax'(t) + by'(t)$. If either a or b is zero, the corresponding signal is removed from the output.

3. **Passivity** (active): An active system has a power source, such as a battery, while a passive system has no power source. While you may consider a transistor amplifier to be active, it is only so when connected to a power source. Brune impedances satisfy the **positive-real** condition (Eq. 3.37, p. 89).

4. **Real** (complex) time response: Typically systems are real in, real out. They do not naturally have complex responses (real and imaginary parts). While a Fourier transform takes real inputs and produces complex outputs, this is not an example of a complex time response. \mathcal{F} is a characterization of the input signal, not its Fourier transform.

5. **Time-invariant** (time varying): For a system to be time varying, the output must depend on when the input signal starts or stops. If the output, relative to the input, is independent of the starting time, then the system is said to be **time-invariant**.

6. **Reciprocal** (non- or anti-reciprocal): In many ways this is the most difficult property to understand. It is best characterized by the $ABCD$ matrix (p. 125). If $\Delta_T = 1$, the system is said to be reciprocal. If $\Delta_T = -1$, it is said to be anti-reciprocal. The impedance matrix is reciprocal when $z_{12} = z_{21}$ and anti-reciprocal when $z_{12} = -z_{21}$. Dynamic loudspeakers are anti-reciprocal and must be modeled by a gyrator, which may be thought of as a transformer which swaps the force and flow variables. For example, the input impedance of a gyrator terminated by an inductor is a capacitor. This property is best explained by Fig. 3.9 (p. 127). For an extended discussion on reciprocity, see p. 291.
3.9. SYSTEMS: LAPLACE TRANSFORMS

(P7) **Reversibility** (non-reversible): If swapping the input and output of a system leaves the system invariant, it is said to be reversible. When \(A = D \), the system is reversible. Note the distinction between reversible and reciprocal.

(P8) **Space-invariant** (space-variant): If a system operates independently as a function of where it physically is in space, then it is space-invariant. When the parameters that characterize the system depend on position, it is space-variant.

(P9) **Deterministic** (random): Given the wave equation, along with the boundary conditions, the system's solution may be deterministic, or not, depending on its extent. Consider a radar or sonar wave propagating out into uncharted territory. When the wave hits an object, the reflection can return waves that are not predicted due to unknown objects. This is an example where the boundary condition is not known in advance.

(P10) **Quasi-statics** \((ka < 1)\): Quasi-statics follows the Nyquist sampling theorem for systems that have dimensions that are small compared to the local wavelength (Nyquist, 1924). This assumption fails when the frequency is raised (the wavelength becomes short). Thus this is also known as the long-wavelength approximation. Quasi-statics is typically stated as \(ka < 1 \), where \(k = 2\pi / \lambda = \omega / c \) and \(a \) is the smallest dimension of the system. See \(p. 236 \) for a detailed discussion of the role of quasi-statics in acoustic horn wave propagation.

Postulate (P10) is closely related to the Feynman lecture *The underlying unity of nature*, where Feynman asks (Feynman, 1970c, Ch. 12-7): "Why do we need to treat the fields as smooth?" His answer is related to the wavelength of the probing signal relative to the dimensions of the object being probed. This raises the fundamental question: Are Maxwell's equations a band-limited approximation to reality? Today we have no definite answer to this question.

The following quote seems relevant:

> The Lorentz force formula and Maxwell's equations are two distinct physical laws, yet the two methods yield the same results.

> Why the two results coincide was not known. In other words, the flux rule consists of two physically different laws in classical theories. Interestingly, this problem was also a motivation behind the development of the theory of relativity by Albert Einstein. In 1905, Einstein wrote in the opening paragraph of his first paper on relativity theory, "It is known that Maxwell's electrodynamics, as usually understood at the present time, when applied to moving bodies, leads to asymmetries which do not appear to be inherent in the phenomena." But Einstein's argument moved away from this problem and formulated special theory of relativity, thus the problem was not solved.

Richard Feynman once described this situation in his famous lecture (The Feynman Lectures on Physics, Vol. II, 1964), "we know of no other place in physics where such a simple and accurate general principle requires for its real understanding an analysis in terms of two different phenomena. Usually such a beautiful generalization is found to stem from a single deep underlying principle. ... We have to understand the "rule" as the combined effects of two quite separate phenomena."

Discrete (P11) **Periodic ↔ discrete**: When a function is discrete in one domain (e.g., time or frequency), it is periodic in the other (frequency or time).

Summary discussion of the 11 network postulates: Each postulate has at least two categories. For example, (P1) is either causal, non-causal, or acausal; while (P2) is either linear or non-linear. (P6) and (P9) only apply to two-port *algebraic networks* (those having an input and an output). The others apply to

both 2- and 1-port networks (e.g., an impedance is a 1-port). An important example of a 1-port is the
antireciprocal transmission matrix of a dynamic (EM) loudspeaker (p. 291).

Related forms of these postulates may be found in the network theory literature (Van Valkenburg, 1964ab; Ramo et al., 1965). Postulates (P1–P6) were introduced by Carlin and Giordano (1964) and
(P7–P9) were added by Kim et al. (2016). While linearity (P2), passivity (P3), realism (P4), and time-invariant (P5) are independent, causality (P1) is a consequence of linearity (P2) and passivity (P3) (Carlin and Giordano, 1964, p. 5).

3.9.2 Probability

Many things in life follow rules we don’t understand, thus are unpredictable, yet have structure due to
some underlying poorly understood physics (e.g., quantum mechanics). Unlike mathematicians, engi-
neers are taught to deal with uncertainty in terms of random processes, using probability theory. For
many this starts out as a large set of boring incomprehensible definitions, but once you begin to under-
stand it becomes interesting mathematics. It needs to be in your skin. If you don’t have an intuition for
it, either keep working on it or else find another job. Don’t memorize a bunch of formulas, because that
won’t work over the long run.

Some view probability as combinatorics. This is wrong. It is much more than that. From my
auditory view of speech in noise, probability is about the signal processing of noise and signals (i.e.,
not combinatorics). The goal of probability is to find correlations in observations, such as the relative
frequency of observations in sequential observations of events. Hamming (2004) contains an insightful
discussion on probability.

Definitions:

1. An event is the term to describe an unpredictable outcome (Papoulis and Pillai, 2002).

 Example: Measuring the temperature \(T(x, t) \in \mathbb{R} \) with \(x \in \mathbb{R}^3 \) at time \(t \) [s] is an event.

 Example: Measuring the temperature every hour gives 24 events per day [degrees/hr].

 Example: The single toss of a coin, resulting in \{ H, T \}, is an event.

2. A trial is \(N \) events.

3. An experiment \{ \(M, N \) \} is defined as \(M \) trials of \(N \) events.

4. Number of events: One must always keep track of the number of events so that one can compute the
 mean (i.e., average) and the uncertainty of an observable outcome.

5. The mean of many trials is the average.

6. A random variable \(X \) is defined as the outcome from an experiment. A random variable rarely
 has stated units. For example, flipping

 Example: Flipping a coin \(N = 8 \) times defines the number of trials.

3.46

Exercise: Give the units of coin flips?

\[X \equiv \{ H, H, H, T, H, T, T, T \}_N \]

Solution: The random variable \(\{ H, T \} \) does not have units; it has random outcomes.
3.10. **Complex analytic mappings (domain-coloring)**

One of the most difficult aspects of complex functions of a complex variable is visualizing the mappings from the \(z = x + yj \) to \(w(z) = u + vj \) planes. For example, \(w(z) = \sin(z) \) is trivial,

\[
\sin(yj) = \frac{e^{-y} - e^{y}}{2j} = -j \sinh(y)
\]

is pure imaginary. However, the more general case

\[w(z) = \sin(z) \in \mathbb{C} \]

when \(z = x + yj \) is real (i.e., \(y = 0 \) or \(x = 0 \)) because \(\sin(x) \) is real. Likewise, for the case where \(x = 0 \) is not easily visualized. And when \(u(x, y) \) and \(v(x, y) \) are less well-known functions, \(w(z) \) can be even more difficult to visualize. For example, if \(w(z) = J_0(z) \), then \(u(x, y), v(x, y) \) are the real and imaginary parts of the Bessel function.
A software solution: Fortunately with computer software today, this problem can be solved by adding color to the chart. An Octave/Matlab script `viz.m` has been devised to make the charts shown in Fig. 3.12. Such charts are known as domain-coloring.

Rather than plotting $u(x, y)$ and $v(x, y)$ separately, domain-coloring allows us to display the entire function on one color chart (i.e., colorized plot). For this visualization we see the complex polar form of $w(z) = |w|e^{iz}$, rather than the 2×2 (four-dimensional) Cartesian graph $w(x+y+iy) = u(x,y) + v(x,y)ij$. On the left is the reference condition, the identity mapping ($v = s$), and on the right the origin has been shifted to the right and up by $\sqrt{2}$.

Mathematicians typically use the abstract (i.e., non-physical) notation $w(z)$, where $w = u + vi$ and $z = x + yi$. Engineers typically work in terms of a physical complex impedance $Z(s) = R(s) + jX(s)$; having resistance $R(s)$ and reactance $X(s)$ [ohms] as a function of the complex Laplace radian frequency $s = \sigma + \omega j$ [rad], as used, for example, with the Laplace transform (p. 135).

In Fig. 3.12, we use both notations, with $Z(s) = s$ on the left and $w(z) = z - \sqrt{2}$ on the right, where we show this color code as a 2×2 dimensional domain-coloring graph. Intensity (dark to light) represents the magnitude of the function, while hue (color) represents the phase, where (see Fig. 3.12) red is 0°, sea-green is 135°, blue is 180°, and violet is 90° (or 270°).

The function $w = s = |s|e^{i\theta}$ has a dark spot (zero) at $s = 0$, and becomes brighter away from the origin. On the right is $w(z) = z - \sqrt{2}$, which shifts the zero (dark spot) to $z = \sqrt{2}$. Thus domain-coloring gives the full 2×2 complex analytic function mapping $w(x,y) = u(x,y) + v(x,y)ij$ in colorized polar coordinates.

Visualizing complex functions: The mapping from $z = x + iy$ to $w(z) = u(x,y) + iv(x,y)$ is difficult to visualize because for each point in the domain z, we would like to represent both the magnitude and phase (or real and imaginary parts) of $w(z)$. A good way to visualize these mappings is to use color (hue) to represent the phase and intensity (dark to light) to represent the magnitude.

Example. Figure 3.12 shows a colorized plot of $w(z) = \sin(\pi(z-i)/2)$ resulting from the Matlab/Octave command `viz sin(pi*(z-i)/2)`. The abscissa (horizontal axis) is the real x axis and the ordinate (vertical axis) is the complex iy axis. The graph is offset along the ordinate axis by i1, since the argument $z-i$ causes a shift of the sine function by 1 in the positive imaginary direction. The visible zeros of $w(z)$ appear as dark regions at $(-2, 1), (0, 1), (2, 1)$. As a function of x, $w(x+1)j$ oscillates between red (phase is zero degrees), meaning the function is positive and real, and sea-green (phase is 180°), meaning the function is negative and real.

To use the program, use the syntax `viz <function of z>` (for example, `type viz z.^2`). Note the period between z and z^2. This will render a domain-coloring (aka-colorized) version of the function. Examples you can render with `viz` are given in the comments at the top of the `viz.m` program. A good example for testing is `viz z-sqrt(j)`, which will show a dark spot (zero) at $(1 + 1j)/\sqrt{2} = 0.707(1 + 1j)$.

Along the vertical axis, the displayed function is either $\cosh(y)$ or $\sinh(y)$, depending on the value of x. The intensity becomes lighter as $|w|$ increases.
What is being plotted? The axes are either $s = \sigma$ and ω, or $z = x$ and y. Superimposed on the s-axis is the function $w(s) = u(\sigma, \omega) + v(\sigma, \omega)j$, represented in polar coordinates by the intensity and color of $w(s)$. The density (dark vs. light) displays the magnitude $|w(s)|$, while the color (hue) displays the angle (phase) as a function of s, while the intensity becomes darker as $|w|$ decreases and lighter as $|w(s)|$ increases. The angle $\angle w$ to color mapping is defined by Fig. 3.12. For example, red is 0°, green is 90°, purple is 180°, and blue-green is 270°.

3.15 Example. Additional examples are given in Fig. 3.14 using the notation $w(s) = u(\sigma, \omega) + v(\sigma, \omega)j$, showing the two complex mappings $w = e^s$ (left) and its inverse $s = \log(w)$. The exponential is relatively easy to understand because $w(s) = |e^{\sigma e^{i\omega}}| = e^\sigma$.

Figure 3.14: This domain-color map allows one to visualize complex mappings by the use of intensity (light/dark) to indicate magnitude and color (hue) to indicate angle (phase). The white and black lines are the iso-real and iso-imaginary contours of the mapping. Left: This shows the domain-color map for the complex mapping from the $z = s + \omega j$ plane to the $w(s) = u + vj = e^{s + \omega j}$ plane, which goes to zero as $\sigma \to -\infty$, causing the domain-color map to become dark for $\sigma < -2$. The white and black lines are always perpendicular because e^s is complex analytic everywhere. Right: This shows the principal value of the inverse function $w(\sigma, \omega) + v(\sigma, \omega)j = \log(\sigma + \omega j)$, which has a zero (dark) at $s = 1$, since there are no zeros since the phase $\angle(\omega) = 2\pi n \in \mathbb{Z}$ is not zero. n is called the branch index. See A.4.3 (p. 166) for a discussion of branch cuts and multivalued functions.

The red region is where $\omega = 0$ in which case $w \approx e^\sigma$. As σ becomes large and negative, $w \to 0$; thus the entire field becomes dark on the left. The field is becoming light on the right where $w = e^\sigma \to \infty$.

If we let $\sigma = 0$ and look along the ωj-axis, we see that the function is changing phase, sea-green (90°) at the top and violet (-90°) at the bottom.

In the right panel note the zero for $\log(w) = \log|w| + \omega j$ at $w = 1$. The root of the log function is $\log(w) = 0$, $v = 1$, $\phi = 0$, since $\log(1) = 0$. More generally, the log of $w = |w|e^{i\phi}$ is $s = \log|w| + \phi j$. Thus $s(w)$ can be zero only when the angle of w is zero.

The $\log(w)$ function has a branch cut along the $\phi = 180^\circ$ axis. As one crosses over the cut, the phase goes above 180°, and the plane changes to the next sheet of the log function. The only sheet with a zero is the principal value, as shown. For all others, the log function is either increasing or decreasing monotonically, and there is no zero, as seen for sheet 0 (the one shown in Fig. 3.14).

3.10.1 Riemann sphere: 3-d extension of chord and tangent method

Author: Is it OK to alter this heading to match the Table of Contents?

Once algebra was formulated by Euclid in 830 CE, mathematicians were able to expand beyond the limits set by geometry on the real plane, and the verbose descriptions of each problem in prose (Stillwell, 2010, p. 93). The geometry of Euclid's Elements had paved the way, but after 2000 years, the addition of the language of algebra changed everything. The analytic function was a key development, heavily used by
both Newton and Euler. Also, the investigations of Cauchy made important headway with his work on complex variables. Of special note was integration and differentiation in the complex plane of complex analytic functions, which is the topic of Chapter 3.

It was Riemann, working with Gauss in the final years of Gauss's life, who made the breakthrough with the concept of the *extended complex plane*. This concept was based on the composition of a line with the sphere, similar to the derivation of Euclid's formula for Pythagorean triplets (p. 57). While the importance of the extended complex plane was unforeseen, it changed analytic mathematics forever, along with the physics it supported. It unified and thus simplified many important integrals to the extreme. The basic idea is captured by the *fundamental theorem of complex integral calculus* (Table 4.1, p. 153).

![Diagram of the extended complex plane](image)

Figure 3.16: The left panel shows how the real line may be composed with the circle. Each real x value maps to a corresponding point x' on the unit circle. The point $x \to \infty$ maps to the north pole N. This simple idea may be extended with the composition of the complex plane with the unit sphere, thus mapping the plane onto the sphere. As with the circle, the point on the complex plane $z \to \infty$ maps onto the north pole N. This construction is important because, while the plane is open (does not include $z \to \infty$), the sphere is analytic at the north pole. Thus the sphere defines the closed extended plane. Figure adapted from Stillwell (2010, pp. 299-300).

3.16

The idea is outlined in Fig. 3.16. On the left is a circle and a line. The difference between this case and the derivation of the Pythagorean triplets is that the line starts at the north pole and ends on the real $x \in \mathbb{R}$ axis at point x. At point x', the line cuts through the circle. Thus the mapping from x to x' takes every point on \mathbb{R} to a point on the circle. For example, the point $x = 0$ maps to the south pole (not indicated). To express x' in terms of x one must compose the line and the circle, similar to the composition used in the derivation of Euclid's formula (p. 57). The points on the circle, indicated here by x', require a traditional polar coordinate system, having a unit radius and an angle defined between the radius and a vertical line passing through the north pole. When $x \to \infty$, the point $x' \to N$, known as the *point at infinity*. But this idea goes much further, as shown on the right half of Fig. 3.16.

Here the real tangent line is replaced by a tangent complex plane $z \in \mathbb{C}$, and the complex puncture point $z' \in \mathbb{C}$ in this case on the complex sphere, called the *extended complex plane*. This is a natural extension of the chord/tangent method on the left, but with significant consequences. The main difference between the complex plane z and the extended complex plane, other than the coordinate system, is what happens at the north pole. The point at $|z| = \infty$ is not defined on the plane, whereas on the sphere, the point at the north pole is simply another point, like every other point on the sphere.

Open vs. closed sets: Mathematically the plane is said to be an *open set*, since the limit $z \to \infty$ is not defined, whereas on the sphere, the point z' is a member of a *closed set*, since the north pole is defined. The distinction between open and closed sets is important because the closed set allows the function to be complex analytic at the north pole, which it cannot be on the plane (since the point at infinity is not defined).

The z plane may be replaced with another plane, say the $w = F(z) \in \mathbb{C}$ plane, where w is some

24 Gauss did lecture to Riemann but he was only giving elementary courses and there is no evidence that at this time he recognized Riemann's genius. Then "In 1849 he [Riemann] returned to Göttingen and his Ph.D. thesis, supervised by Gauss, was submitted in 1851." http://www-groups.dcs.st-and.ac.uk/history/Biographies/Riemann.html
function F of $z \in \mathbb{C}$. For the moment we shall limit ourselves to complex analytic functions of z, namely,$w = F(z) = u(x, y) + v(x, y) = \sum_{n=0}^{\infty} c_n z^n$.

In summary, given a point $z = x + yi$ on the open complex plane, we map it to $w = F(z) \in \mathbb{C}$, the complex $w = u + vi$ plane, and from there to the closed extended complex plane $w'(z)$. The point of doing this is that it allows us to allow the function $w'(z)$ to be analytic at the north pole, meaning it can have a convergent Taylor series at the point at infinity $z \to \infty$. Since we have not yet defined $dw(z)/dz$, the concept of a complex Taylor series remains undefined.

3.10.2 Bilinear transformation

In mathematics the bilinear transformation has special importance because it is linear in its action on both the input and output variables. Since we are engineers, we shall stick with the engineering terminology. But if you wish to read about this on the internet, be sure to also search for the mathematical term Möbius transformation.

When a point on the complex plane $z = x + yi$ is composed with the bilinear transform $(a, b, c, d \in \mathbb{C})$, the result is $w(z) = u(x, y) + v(x, y)j$ (this is related to the Möbius transform, p. 105);

$$w = \frac{az + b}{cz + d}$$

(3.89)

The transformation from $z \to w$ is a cascade of four independent compositions:

1. Translation ($w = z + b$: $a = 1, b \in \mathbb{C}, c = 0, d = 1$)
2. Scaling ($w = |a|z$: $a \in \mathbb{R}, b = 0, c = 0, d = 1$)
3. Rotation ($w = e^{\theta}z$: $a \in \mathbb{C}, b = 0, c = 0, d = |a|$)
4. Inversion ($w = \frac{1}{\bar{z}}$: $a = 0, b = 1, c = 1, d = 0$)

Each of these transformations is a special case of Eq. 3.89, with the inversion the most complicated. I highly recommend a video showing the effect of the bilinear (Möbius) transformation on the plane (Arnold, Douglas and Rogness, Jonathan, 2019).

The bilinear transformation is the most general way to move the expansion point in a complex analytic expansion. For example, starting from the harmonic series, the bilinear transform gives

$$\frac{1}{1-w} = \frac{1}{1 - \frac{az + b}{cz + d}} = \frac{cz + d}{(c - a)z + (d - b)}.$$

The ROC is transformed from $|w| < 1$ to $|(az - b)/(cz - d)| < 1$. An interesting application might be in moving the expansion point until it is on top of the nearest pole, so that the ROC goes to zero. This might be a useful way of finding a pole, for example.

When the extended plane (Riemann sphere) is analytic at $z = \infty$, one may take the derivatives there, defining the Taylor series with the expansion point at ∞. When the bilinear transformation rotates the Riemann sphere, the point at infinity is translated to a finite point on the complex plane, revealing the analytic nature at infinity. A second way to transform the point at infinity is by the bilinear transformation $\zeta = 1/z$, mapping a zero (or pole) at $z = \infty$ to a pole (or zero) at $\zeta = 0$. Thus this construction of the Riemann sphere and the Möbius (bilinear) transformation allows us to understand the point at infinity and treat it like any other point. If you felt that you never understood the meaning of the point at ∞ (likely), this should help.

https://www.youtube.com/watch?v=0z1fIfUUnh04
3.11 Exercises AE-3

Problem 3.30: Fundamental theorem of algebra (FTA)

-Q 1.1: State the fundamental theorem of algebra (FTA).

-Q 2.1: Explain the meaning of $|z_1| > |z_2|$.

-Q 2.2: If $x_1, x_2 \in \mathbb{R}$ (are real numbers), define the meaning of $x_1 > x_2$. Hint: Take the difference.

-Q 2.3: Explain the meaning of $z_1 > z_2$.

-Q 2.4: If time were complex, how might the world be different? (not-graded)

Problem 3.31: Order and complex numbers:

One can always say that $3 > 4$ (namely that real numbers have order). One way to view this is to take the difference and compare to zero, as in $4 - 3 > 0$. Here, we will explore how complex variables may be ordered. Define the complex variable $z = x + iy \in \mathbb{C}$.

(a) -Q 3.1: Find $u(x, y)$ and $v(x, y)$ for $w(z) = 1/z$.

**Problem 3.32: It is sometimes necessary to consider a function $w(z) = u + iv$ in terms of the real functions $u(x, y)$ and $v(x, y)$ (e.g., separate the real and imaginary parts). Similarly, we can consider the inverse $z(w) = x + iy$, where $x(u, v)$ and $y(u, v)$ are real functions.

(b) -Q 4.2: Find $u(x, y)$ and $v(x, y)$ for $w(z) = c^2$ with complex constant $c \in \mathbb{C}$ for the following cases: parts (a)-(c).

(a) -Q 4.1: $c = e$

(b) -Q 4.2: $c = 1$ (recall that $1 = e^{2\pi i k}$ for $k = 0, 1, 2, \ldots$)

(c) -Q 4.3: $c = j$. Hint: $j = e^{\pi i / 2}$.
(d) -Q 4.4: Find $u(x, y)$ for $w(z) = \sqrt{z}$. Hint: Begin with the inverse function $z = w^2$.

(c) -Q 4.5: Convolution of an impedance $z(t)$ and its inverse $y(t)$:
In the frequency domain a Brune impedance is defined as the ratio of numerator polynomial $N(s)$ over a denominator polynomial $D(s)$.

(i) -Q 4.6: Consider a brune impedance defined by the ratio of numerator and denominator polynomials, $Z(s) = N(s)/D(s)$. Since the admittance $Y(s)$ is defined as the reciprocal of the impedance, the product must be 1. If $z(t) \leftrightarrow Z(s)$ and $y(t) \leftrightarrow Y(s)$, it follows that $z(t) * y(t) = \delta(t)$. What property must $n(t) \leftrightarrow N(s)$ and $d(t) \leftrightarrow D(s)$ obey for this to be true?

(g) -Q 4.7: The definition of a "minimum phase function" is that it must have a causal inverse. Show that every impedance is minimum phase.

Möbius transforms and infinity

Problem #5: The bilinear transform:
The bilinear z transform is used in signal processing to design a digital (discrete-time) filter $H(z)$ starting from analog (continuous time) filter design $H(s)$. The goal of the bilinear transform is to take a function of analog frequency ω_a, where $\omega_a \in (-\infty, \infty)$, and map it to a finite digital frequency range, $\omega_d \in [-\pi, \pi]$.

- Q 5.1: Define and discuss the use of the bilinear transform.

The bilinear transform is given by

$$s = \alpha \frac{1-z^{-1}}{1+z^{-1}}$$

where α is a real constant.

Problem #6: You are given the analog low-pass filter $h(t) = e^{-t}u(t)$.
It has a frequency response given by

$$H(s) = \frac{1}{s+1} = \int_{-\infty}^{\infty} h(t)e^{-st} dt.$$

(a) - Q 6.1: Use the bilinear z transform (Eq. 3.1) to find the discrete-time filter $H(z)$.

Hint: Use the Octave/Matlab command help bilinear. Your answer should be a composition of $H(s)$ and Eq. 3.1.

(b) - Q 6.2: Substitute $s = j\omega_a$ and $z = e^{\sigma_d}$ ($\sigma_a, \sigma_d = 0$) into the Eq. 3.1 to determine the relationship between ω_a and ω_d.

Express your final result using a tangent function. Hint: Try to form sine and cosine terms! Recall that $\sin(\omega) = (e^{j\omega} - e^{-j\omega})/2j$ and $\cos(\omega) = (e^{j\omega} + e^{-j\omega})/2$.

(c) - Q 6.3: By hand, draw a graph of the relationship you found in the previous part, $\omega_a = \psi(\omega_d)$. Make sure to specify the behavior of ω_a at $\omega_d = 0, \pm \pi/2, \pm \pi$.

(d) - Q 6.4: Explain how this relationship maps the analog frequency ω_a to $\pm \infty$ to a the digital frequency ω_d.

(e) - Q 6.5: Now consider the complex frequency planes $s = \sigma_a + j\omega_a$ and $z = e^{\sigma_d+j\omega_d}$.
To map $\omega_a = \psi(\omega_d)$, we set $\sigma_a, \sigma_d = 0$. Draw the s and z planes, showing the real parts on the horizontal axes and the imaginary parts on the vertical axes. Mark (e.g., using thick lines) which sets of values are considered when $\sigma_a, \sigma_d = 0$.

(f) - Q 6.6: Geometrically, what is the effect of this Möbius transformation? Consider your drawing in the previous part (e).
Chapter 3: Stream 2: Algebraic Equations

Probability

Problem #7: Basic terminology of experiments

(a) Q 7.1: What is the mean of a trial, and what is the average over all trials?

(b) Q 7.2: What is the expected value of a random variable X?

(c) Q 7.3: What is the standard deviation about the mean?

(d) Q 7.4: What is the definition of information of a random variable?

(e) Q 7.5: What is the entropy of a random variable?

(f) Q 7.6: What is the sampling noise of a random variable?

(g) Q 7.7: How do you combine events? Hint: if the event is the flip of a biased coin, the event is \(H = p, T = 1 - p \), so the event is \(\{ p, 1 - p \} \). To solve the problem, you must find the probabilities of two independent events.

(h) Q 7.8: What does the term independent mean in this context? Give an example.

(i) Q 7.9: Define the term odds.
Chapter 4
Scalar Calculus
Stream 3a: Scalar (Ordinary) Differential Equations

Throughout, words highlighted in yellow should be in roman type.

Stream 3 is

\(\infty \), a concept which typically means unbounded (immeasurably large), but in the case of calculus, \(\infty \) means \textit{infinitesimal} (immeasurably small), since taking a limit requires small numbers. Taking a limit means you may never reach the target, a concept that the Greeks called Zeno’s paradox (Stillwell, 2010, p. 76).

When speaking of the class of ordinary (versus vector) differential equations, the term scalar is preferable, since the term “ordinary” is vague if not a meaningless label. There is a special subset of fundamental theorems for scalar calculus, all of which are about integration, as summarized in Table 4.1 (p. 153), starting with Leibniz’s theorem. These will be discussed below, and more extensively on pages 151, 149 and 149.

Following the integral theorems on scalar calculus are those on vector calculus, which we can write as the fundamental theorem of complex calculus (aka Helmholtz decomposition, Gauss’s law, and Stokes’s theorem). These theorems allow us to connect the differential (point) and macroscopic (integral) relationships. For example, Maxwell’s equations may be written as either vector differential equations, as shown by Heaviside (along with Gibbs and Hertz), or in integral form. It is helpful to place these two forms side by side, to fully appreciate their significance. To understand the differential (microscopic) view, one must understand the integral (macroscopic) view. These are presented in Figs. 5.5 (p. 224) and Fig. 5.6 (p. 225), (see Figs. 5.5 and 5.6 on pp. 224 and 225).

4.1 The beginning of modern mathematics

As outlined in Fig. 1.2 (p. 17), mathematics as we know it today began in the 16th to 18th centuries, arguably starting with Galileo, Descartes, Fermat, Newton, the Bernoulli family, and most importantly, Euler. Galileo was formidable due to his fame, fortune, and his “successful” stance against the powerful Catholic establishment. His creativity in scientific circles was certainly well known due to his many skills and accomplishments. Descartes and Fermat were at the forefront of merging algebra and geometry. While Fermat kept meticulous notebooks, he did not publish and tended to be secretive. Thus Descartes’s contributions were more widely acknowledged, but not necessarily deeper.

Regarding the development of calculus, much was yet to be developed by Newton and Leibniz using term-by-term integration of functions based on Taylor series representation. This was a powerful technique but, as stated earlier, incomplete because the Taylor series can only represent single-valued functions, within the RoC. But more importantly, Newton (and others) failed to recognize (i.e., rejected) the powerful generalization to complex analytic functions. The first major breakthrough was Newton’s publication of Principia (1687), and the second was Riemann (1851), advised by Gauss.

Following Newton’s lead, the secretive and introverted behavior of the typical mathematician dramatically changed with the Bernoulli family (Fig. 3.1, p. 70). The oldest brother Jacob taught his much
younger brother Johann, who then taught his son Daniel. But Johann's star pupil was Euler. Euler first mastered all the tools and then published, with a prolificacy previously unknown.

Euler and the circular functions: The first major task was to understand the family of analytic circular functions e^x, $\sin(x)$, $\cos(x)$, and $\log(x)$, a task begun by the Bernoulli family, but mastered by Euler. Euler sought relations between these many functions, some of which may not be thought of as being related, such as the log and sin functions. The connection that may "easily" be made is through their complex Taylor series representation (Eq. 3.28, p. 86). By the manipulation of the analytic series representations, the relationship between e^x and the $\sin(x)$ and $\cos(x)$, was precisely captured with the equation

$$e^{i\omega} = \cos(\omega) + i\sin(\omega)$$

and its analytic inverse (Greenberg, 1988, p. 1135)

$$\tan^{-1}(z) = \frac{1}{2i} \ln \left(\frac{1 - z}{1 + z} \right) = \frac{i}{2} \ln \left(\frac{1 - z}{1 + z} \right).$$

(4.1)

Exercise 4.1 Starting from Eq. 4.1, derive Eq. 4.2. **Solution:** Let $z(\omega) = \tan(\omega)$, then

$$z(\omega) = \frac{\sin(\omega)}{\cos(\omega)} = \tan(\omega) = \frac{e^{i\omega} - e^{-i\omega}}{e^{i\omega} + e^{-i\omega}} = \frac{e^{2i\omega} - 1}{e^{2i\omega} + 1}.$$

(4.3)

Solving for $e^{2i\omega}$, we get

$$e^{2i\omega} = \frac{z}{1 - z^2}.$$

(4.4)

Taking $\ln()$ of both sides and using the definition of $\omega(\omega)$ gives Eq. 4.2:

$$\omega = \tan^{-1}(\frac{z}{1 - z^2}).$$

The two sides of this equation are shown in Fig. 4.1. These equations are the basis of transmission lines (TL) and the Smith chart. Here $z(\omega)$ is the TL's input impedance and Eq. 4.4 is the reflectance.

![Figure 4.1: Colorized plots of $\omega(z) = \tan^{-1}(z)$ and $\omega(z) = \frac{i}{2} \ln(1 - iz)/(1 + iz)$, verifying they are the same complex analytic function.](image)

Author: Is it OK that this is the only mention of the Smith chart in this text?

Author: Please refer to Fig. 4.1 somewhere in the text.

Although many high school students memorize Euler's relation, it seems unlikely they appreciate the utility of complex analytic functions (Eq. 3.40, p. 91).
4.2. FUNDAMENTAL THEOREMS OF SCALAR CALCULUS

History of complex analytic functions: Newton (1650) famously ignored imaginary numbers and called them imaginary in a disparaging (pejorative) way. Given Newton’s prominence, his view certainly must have keenly attenuated interest in complex algebra, even though it had been previously described by Bombelli in 1526, likely based on his serendipitous finding of Diophantus’s book Arithmetic in the Vatican library.

Euler derived his relationships using real power series (i.e., real analytic functions). While Euler was fluent with $j = \sqrt{-1}$, he did not consider functions to be complex analytic. That concept was first explored by Cauchy almost a century later. The missing link to the concept of complex analytic is the definition of the derivative with respect to the complex argument

$$F'(s) = \frac{dF(s)}{ds},$$

where $s = \sigma + \omega j$, without which the complex analytic Taylor coefficients may not be defined.

Euler did not appreciate the role of complex analytic functions because they were first fully appreciated well after his death (1785) by Augustin-Louis Cauchy (1789–1857), and further extended by Riemann in 1851 (p. 120).

4.2 Fundamental theorems of scalar calculus: It some sense, the story of calculus begins with the fundamental theorem of calculus (FTC), also known generically as Leibniz's formula. The simplest integral is the length of a line $L = \int_a^b dx$. If we label a point on a line as $x = 0$ and wish to measure the distance to any other point x, we form the line integral between the two points. If the line is straight, this integral is simply the Euclidean length given by the difference between the two ends (Eq. 3.5.1, p. 108).

If $F(x) \in \mathbb{R}$ describes a height above the line $x \in \mathbb{R}$, then $f(x)$,

$$f(x) - f(0) = \int_{x=0}^{x} F(x)dx,$$

may be viewed as the antiderivative of $F(x)$. Here x is a dummy variable of integration. Thus the area under $F(x)$ only depends on the area of the region evaluated at the end points. It makes intuitive sense to view $f(x)$ as the antiderivative of $F(x)$.

This property of the area as an integral over an interval, only depending on the end points, has important consequences in physics in terms of conservation of energy, allowing for important generalizations. For example, as long as $x \in \mathbb{R}$, one may let $F(x) \in \mathbb{C}$ with no loss of generality, due to the linear property (P1, p. 138) of the integral, (see p. 138).

If $f(x)$ is analytic (Eq. 3.27, p. 86), then

$$F(x) = \frac{d}{dx} f(x)$$

is an exact real differential. It follows that $F(x)$ is analytic. This is known as the fundamental theorem of (real) calculus (FTC). Thus Eq. 4.7 may be viewed as an exact real differential. This is easily shown by evaluating

$$\frac{d}{dx} f(x) = \lim_{\delta \to 0} \frac{f(x+\delta) - f(x)}{\delta} = F(x),$$

starting from the antiderivative Eq. 4.6. If $f(x)$ is not analytic then the limit may not exist, so this is a necessary condition.

There are many important variations on this very basic theorem (see p. 149). For example, the limits could depend on time. Also when taking Fourier transforms, the integrand depends on both time $t \in \mathbb{R}$ and frequency $\omega \in \mathbb{R}$ via a complex exponential “kernel” function $e^{i \omega t} \in \mathbb{C}$, which is analytic in both t and ω.
4.2.1 The fundamental theorem of complex calculus

The fundamental theorem of complex calculus (FTCC) states (Greenberg, 1988, p. 1197) that for any complex analytic function \(F(s) \in \mathbb{C} \) with \(s = \sigma + \omega j \in \mathbb{C} \),

\[
f(s) - f(s_0) = \int_{s_0}^{s} F(\zeta) d\zeta.
\]

Equations 4.6 and 4.8 differ because the path of the integral is complex. Thus the line integral is over \(s \in \mathbb{C} \) rather than a real integral over \(\chi \in \mathbb{R} \). The fundamental theorem of complex calculus (FTCC) states that the integral only depends on the end points, since

\[
F(s) = \frac{d}{ds} f(s).
\]

Comparing exact differentials, Eq. 4.5 (FTCC) and Eq. 4.7 (FTC), we see that \(f(s) \in \mathbb{C} \) must be complex analytic and have a Taylor series in powers of \(s \in \mathbb{C} \). It follows that \(F(s) \) is also complex analytic.

Complex analytic functions: The definition of a complex analytic function \(F(s) \) of \(s \in \mathbb{C} \) is that the function may be expanded in a Taylor series (Eq. 3.39, p. 91) about an expansion point \(s_0 \in \mathbb{C} \). This definition follows the same logic as the FTC. Thus we need a definition for the coefficients \(c_n \in \mathbb{C} \), which most naturally follow from Taylor's formula

\[
c_n = \frac{1}{n!} \frac{d^n}{ds^n} F(s) \bigg|_{s=s_0}
\]

The requirement that \(F(s) \) have a Taylor series naturally follows by taking derivatives with respect to \(s \) at \(s_0 \). The problem is that both integration and differentiation of functions of complex Laplace frequency \(s = \sigma + \omega j \) have not yet been defined.

Thus the question is: What does it mean to take the derivative of a function \(F(s) \in \mathbb{C} \), \(s = \sigma + \omega j \in \mathbb{C} \), with respect to \(s \), where \(s \) defines a plane rather than a real line? We learned how to form the derivative on the real line. Can the same derivative concept be extended to the complex plane?

The answer is affirmative. The question may be resolved by applying the rules of the real derivative when defining the derivative in the complex plane. However, for the complex case, there is an issue regarding direction. Given any analytic function \(F(s) \), the partial derivative with respect to \(\sigma \) different from the partial derivative with respect to \(\omega j \)? For complex analytic functions, the FTC states that the integral is independent of the path in the \(s \) plane. Based on the chain rule, the derivative must also be independent of direction at \(s_0 \). This directly follows from the FTC. If the integral of a function of a complex variable is to be independent of the path, the derivative of a function with respect to a complex variable must be independent of the direction. This follows from Taylor's formula, Eq. 4.10, for the coefficients of the complex analytic formula.

The Cauchy-Riemann conditions: The FTC defines the area as an integral over a real differential \((dx \in \mathbb{R})\), while the FTCC relates an integral over a complex function \(F(s) \in \mathbb{C} \) along a complex interval (i.e., path) \((ds \in \mathbb{C})\). For the FTC the area under the curve only depends on the end points of the antiderivative \(f(x) \). But what is the meaning of an "area" along a complex path? The Cauchy-Riemann conditions provide the answer.

4.2.2 Cauchy-Riemann conditions

For the integral of \(Z(s) = R(\sigma, \omega) + X(\sigma, \omega) j \), to be independent of the path, the derivative of \(Z(s) \) must be independent of the direction of the derivative. As we show next, this leads to a pair of equations known as the Cauchy-Riemann conditions. This is an important generalization of Eq. 1.1 (p. 15), which goes from real integration \((x \in \mathbb{R})\) to complex integration \((s \in \mathbb{C})\) based on lengths, thus on area.
4.2. FUNDAMENTAL THEOREMS OF SCALAR CALCULUS

Table 4.1: Summary of the fundamental theorems of integral calculus, each of which deals with integration. There are at least two main theorems related to scalar calculus, and three more for vector calculus.

<table>
<thead>
<tr>
<th>Name</th>
<th>Mapping</th>
<th>Page</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leibniz (FTC)</td>
<td>$\mathbb{R}^1 \to \mathbb{R}^0$</td>
<td>151</td>
<td>Area under a real curve</td>
</tr>
<tr>
<td>Cauchy (FTCC)</td>
<td>$\mathbb{C}^1 \to \mathbb{R}^0$</td>
<td>151</td>
<td>Area under a complex curve</td>
</tr>
<tr>
<td>Cauchy’s theorem</td>
<td>$\mathbb{C}^1 \to \mathbb{C}^0$</td>
<td>171</td>
<td>Close integral over analytic region is zero</td>
</tr>
<tr>
<td>Cauchy’s integral formula</td>
<td>$\mathbb{C}^1 \to \mathbb{C}^0$</td>
<td>171</td>
<td>Fundamental theorem of complex integral calculus</td>
</tr>
<tr>
<td>Residue theorem</td>
<td>$\mathbb{C}^1 \to \mathbb{C}^0$</td>
<td>171</td>
<td>Residue integration</td>
</tr>
<tr>
<td>Helmholtz’s theorem</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

To define

$$\frac{d}{ds} Z(s) = \frac{d}{ds} \left[R(\sigma, \omega) + jX(\sigma, \omega) \right],$$

we take partial derivatives of $Z(s)$ with respect to σ and $j\omega$, and equate them:

$$\frac{\partial Z}{\partial \sigma} = \frac{\partial R}{\partial \sigma} + j \frac{\partial X}{\partial \sigma} \quad \text{and} \quad \frac{\partial Z}{\partial j\omega} = \frac{\partial R}{\partial j\omega} + j \frac{\partial X}{\partial j\omega}.$$

This says that a horizontal derivative, with respect to σ, is equivalent to a vertical derivative, with respect to $j\omega$. Taking the real and imaginary parts gives the two equations

$$\text{CR-1:} \quad \frac{\partial R(\sigma, \omega)}{\partial \sigma} = \frac{\partial X(\sigma, \omega)}{\partial j\omega} \quad \text{and} \quad \text{CR-2:} \quad \frac{\partial R(\sigma, \omega)}{\partial j\omega} = -j \frac{\partial X(\sigma, \omega)}{\partial \sigma}, \quad (4.11)$$

known as the Cauchy-Riemann (CR) conditions. The j cancels in CR 1 but introduces a $j^2 = -1$ in CR-2. They may also be written in polar coordinates ($s = re^{\theta}$) as

$$\frac{\partial R}{\partial r} = \frac{1}{r} \frac{\partial X}{\partial \theta} \quad \text{and} \quad \frac{\partial X}{\partial r} = -\frac{1}{r} \frac{\partial R}{\partial \theta}.$$

If you are wondering what would happen if we took a derivative at 45° degrees, then we only need to multiply the function by $e^{\pi/4}$. But doing so will not change the derivative. Thus we may take the derivative in any direction by multiplying by e^{θ}, and the CR conditions will not change.

The CR conditions are necessary conditions that the integral of $Z(s)$, and thus its derivative, be independent of the path, expressed in terms of conditions on the real and imaginary parts of Z. This is a very strong condition on $Z(s)$, which follows assuming that $Z(s)$ may be written as a Taylor series in s:

$$Z(s) = Z_0 + Z_1 s + \frac{1}{2} Z_2 s^2 + \cdots,$$

where $Z_n \in \mathbb{C}$ are complex constants given by the Taylor series formula (Eq. 4.10, p. 152). As with the Taylor series, there is the convergence condition that $|s| < 1$, called the radius of convergence (RoC). This is an important generalization of the region of convergence (RoCC) for real $s = x$.

Every function that may be expressed as a Taylor series in $s - s_o$ about point $s_o \in \mathbb{C}$ is said to be complex analytic at s_o. This series, which must be single-valued, is said to converge within a radius of convergence (RoC). This highly restrictive condition has significant physical consequences. For example, every impedance function $Z(s)$ obeys the CR conditions over large regions of the s plane, including the entire right half-plane (RHP) ($\sigma > 0$). This condition is summarized by the Brune condition $\Re\{Z(\sigma > 0)\} \geq 0$, or alternatively $\arg Z(s) < \angle s$ (Eq. 4.26, p. 163).

When the CR condition is generalized to volume integrals, it is called Green’s theorem, the solution of boundary value problems in engineering and physics (Kusse and Westwig, 2010). For example, page 149 and p. 191 depend heavily on these concepts.

Author: Should this subscript be zero rather than oh?

Z(s) = Z_0 + Z_1 s + \frac{1}{2} Z_2 s^2 + \cdots,
We may merge these equations into a pair of second-order equations by taking a second round of partials. Specifically, eliminating the real part $R(\sigma, \omega)$ of Eq. 4.11 gives

$$\frac{\partial^2 R(\sigma, \omega)}{\partial \sigma \partial \omega} = \frac{\partial^2 X(\sigma, \omega)}{\partial \omega^2} = -\frac{\partial^2 X(\sigma, \omega)}{\partial \sigma^2}, \quad (4.13)$$

which may be written as $\nabla^2 X(\sigma, \omega) = 0$. Eliminating the imaginary part gives

$$\frac{\partial^2 X(\sigma, \omega)}{\partial \sigma \partial \omega} = \frac{\partial^2 R(\sigma, \omega)}{\partial \sigma^2} = -\frac{\partial^2 R(\sigma, \omega)}{\partial \omega^2}, \quad (4.14)$$

which may be written as $\nabla^2 R(\sigma, \omega) = 0$.

In summary, for a function $Z(s)$ to be complex analytic, the derivative dZ/ds must be independent of direction (path), which requires that the real and imaginary parts of the function obey Laplace's equation, i.e.,

$$\nabla^2 R(\sigma, \omega) = 0 \quad \text{and} \quad \nabla^2 X(\sigma, \omega) = 0. \quad (4.15)$$

The CR equations are easy to work with because they are first-order, but the physical intuition is best understood by noting two facts: (1) the derivative of a complex analytic function is independent of its direction, and (2) the real and imaginary parts of the function both obey Laplace's equation. Such relationships are known as harmonic functions.\(^1\)

As we shall see in the next few sections, complex analytic functions must be smooth, since every analytic function may be differentiated an infinite number of times within the RoC. The magnitude must attain its maximum and minimum on the boundary. For example, when you stretch a rubber sheet over a jagged frame, the height of the rubber sheet obeys Laplace's equation. Nowhere can the height of the sheet rise above or below its value at the boundary.

Harmonic functions define conservative fields, which means that energy (like a volume or area) is conserved. The work done in moving a mass from a to b in such a field is conserved. If you return the mass from b back to a, the energy is retrieved and zero net work has been done.

\(^1\)When the function is the ratio of two polynomials, as in the case of the Brune impedance, they are also related to Möbius transformations, also know as harmonic operators.
4.3 Exercises DE-1

Topic of this homework:
Complex numbers and functions (ordering and algebra), \(\text{Complex power series, Fundamental theorem of calculus (real and complex), Cauchy-Riemann conditions, Multivalued functions (branch cuts and Riemann sheets)} \)

Author: Earlier chapters had a line for Deliverables. Should that be included in the Chapter 4 Problems?

Complex Power Series

4.1 Problem #4.1 In each case derive (e.g. using Taylor's formula) the power series of \(w(s) \) about \(s = 0 \) and state the RoC of your series. If the power series doesn't exist, state why! Hint: In some cases, you can derive the series by relating the function to another function for which you already know the power series at \(s = 0 \).

(a) \(-Q \rightarrow \frac{1}{1-s}\)

(b) \(-Q \rightarrow \frac{1}{1-s^2}\)

(c) \(-Q \rightarrow \frac{1}{1-s}^2\)

(d) \(-Q \rightarrow \frac{1}{1+s^2}\). Hint: This series will be very ugly to derive if you try to take the derivatives of \(\frac{1}{1+s^2} \). Using the results of our previous homework, you should represent this function as \(w(s) = -0.5i/(s - i) + 0.5i/(s + i) \).

(e) \(-Q \rightarrow \frac{1}{s}\)

(f) \(-Q \rightarrow \frac{1}{1-|s|^2}\)

4.2 Problem #2.2 Consider the function \(w(s) = \frac{1}{s} \).

(a) \(-Q \rightarrow \text{Expand this function as a power series about } s = 1. \text{ Hint: Let } \frac{1}{s} = \frac{1}{1-1+s} = \frac{1}{1-(1-s)} \).

(b) \(-Q \rightarrow \text{What is the RoC?} \)

(c) \(-Q \rightarrow \text{Expand } w(s) = \frac{1}{s} \text{ as a power series in } s^{-1} = \frac{1}{s} \text{ about } s^{-1} = 1. \)
CHAPTER 4. STREAM 3A: SCALAR CALCULUS

(d) **Q 2.4:** What is the ROC?

(c) **Q 2.5:** What is the residue of the pole?

Problem 4.3 Consider the function \(w(s) = \frac{1}{2 - s} \).

(a) **Q 3.1:** Expand \(w(s) \) as a power series in \(s^{-1} = 1/s \). State the ROC as a condition on \(|s^{-1}| \). Hint: Multiply top and bottom by \(s^{-1} \).

(b) **Q 3.2:** Find the inverse function \(s(w) \). Where are the poles and zeros of \(s(w) \), and where is it analytic?

(c) **Q 3.3:** If \(a = 0.1 \), what is the value of

\[
x = 1 + a + a^2 + a^3 + \ldots
\]

Show your work.

(d) **Q 3.4:** If \(a = 10 \), what is the value of

\[
x = 1 + a + a^2 + a^3 + \ldots
\]

Two fundamental theorems of calculus

Fundamental Theorem of Calculus (Leibniz):

According to the Fundamental Theorem of Calculus (FTC),

\[
F(x) = F(a) + \int_a^x f(\xi) d\xi,
\]

where \(x, a, \xi, F \in \mathbb{R} \). This is an indefinite integral (since the upper limit is unspecified). It follows that

\[
\frac{dF(x)}{dx} = \frac{d}{dx} \int_a^x f(\xi) d\xi = f(x).
\]

This justifies also calling the indefinite integral the antiderivative.

For a closed interval \([a, b]\), the FTC is

\[
\int_a^b f(x) dx = F(b) - F(a);
\]

thus the integral is independent of the path from \(x = a \) to \(x = b \).

Fundamental Theorem of Complex Calculus:

According to the Fundamental Theorem of Complex Calculus (FTCC),

\[
f(z) = f(z_0) + \int_{z_0}^z F(\zeta) d\zeta,
\]

where \(z_0, z, \zeta, F \in \mathbb{C} \). It follows that

\[
\frac{df(z)}{dz} = \frac{d}{dz} \int_{z_0}^z F(\zeta) d\zeta = F(z).
\]
For a closed interval \([s, s_0]\), the FTCC is

\[
\int_{s_0}^{s} f(\zeta) d\zeta = F(s) - F(s_0);
\]

thus the integral is independent of the path from \(x = a\) to \(x = b\).

Problem #4.4

Q 4.1 (1 pts) Eq. 4.16
(a) Consider Equation 4.1.2. What is the condition on \(f(x)\) for which this formula is true?

Q 4.2 (1 pts) Eq. 4.18
(b) Consider Equation 4.3. What is the condition on \(f(z)\) for which this formula is true?

Q 4.3 (3 pts)
(c) Perform the following integrals \((z = x + iy \in \mathbb{C})\):

1. \(I = \int_{0}^{1} z dz\) and \(\int_{1}^{0} \bar{z} \, dz\)
2. \(I = \int_{0}^{1} z dz\), but this time make the path explicit: from \(0\) to \(1\) with \(y = 1\), and then to \(1\) with \(x = \frac{1}{2}\).

Eq. 4.17. \(\checkmark\)

Discuss whether your results agree with Equation 4.22.

Q 4.4 (3 pts)
(d) Perform the following integrals on the closed path \(C\), which we define to be the unit circle. You should substitute \(z = e^{i\theta}\) and \(dz = ie^{i\theta} d\theta\), and integrate from \(-\pi\) to \(\pi\) to go once around the unit circle.

1. \(\int_{C} z dz\) and \(\int_{C} -\bar{z} \, dz\)
2. \(\int_{C} \frac{1}{2} dz\).

Discuss whether your results agree with Equation 4.49.

Cauchy-Riemann Equations

For the following problem, \(i = \sqrt{-1}, s = \sigma + i\omega, \) and \(F(s) = u(\sigma, \omega) + iv(\sigma, \omega)\).

Problem #4.5 According to the Fundamental theorem of complex calculus, the integration of a complex analytic function is independent of the path. It follows that the derivative of \(F(s)\) is defined as

\[
\frac{df}{ds} = \frac{d}{ds} [u(\sigma, \omega) + iv(\sigma, \omega)] .
\]

If the integral is independent of the path, then the derivative must also be independent of direction:

\[
\frac{df}{ds} = \frac{\partial f}{\partial \sigma} = \frac{\partial f}{\partial \omega} .
\]

The Cauchy-Riemann (CR) conditions

\[
\frac{\partial u(\sigma, \omega)}{\partial \sigma} = \frac{\partial v(\sigma, \omega)}{\partial \omega}
\]

and

\[
\frac{\partial u(\sigma, \omega)}{\partial \omega} = -\frac{\partial v(\sigma, \omega)}{\partial \sigma}
\]

may be used to show where Equation 4.6 holds.

Q 5.1 (2 pts) Assuming Equation 4.6 is true, use it to derive the CR equations.
We can

(b) -Q 5.4: Merge the CR equations to show that\(u \) and\(v \) obey Laplace's equation\(\nabla^2 u(\sigma, \omega) = 0 \) and\(\nabla^2 v(\sigma, \omega) = 0 \). One may conclude that the real and imaginary parts of complex analytic functions must obey these conditions.

Problem #6.2 Apply the CR equations to the following functions. State for which values of\(s = \sigma + i\omega \) the CR conditions do or do not hold (e.g., where the function\(F(s) \) is or is not analytic). Hint: Review where CR-1 and CR-2 hold.

(a) -Q 6.4: \(F(s) = e^s \)

(b) -Q 6.4: \(F(s) = 1/s \)

Branch cuts and Riemann sheets

Problem #7.4 Consider the function\(w^2(z) = z \). This function can also be written as\(w(z) = \sqrt{z} \).

Assume Define\(z = re^{i\theta} \) and\(w(z) = \rho e^{i\theta} = \sqrt{re^{i\theta/2}} \).

(a) -Q 7.4: How many Riemann sheets do you need in the domain\((z) \) and the range\((w) \) to fully represent this function as single valued?

(b) -Q 7.4: Indicate (e.g., using a sketch) how the sheet(s) in the domain map to the sheet(s) in the range.

(c) -Q 7.4: Use\(\text{viz. m} \) to plot the positive and negative square roots\(+\sqrt{z} \) and\(-\sqrt{z} \). Describe what you see.

(d) -Q 7.4: Where does\(\text{viz. m} \) place the branch cut for this function?

Problem #7.5 Must it necessarily be in this location?

Problem #8.4 Consider the function\(w(z) = \log(z) \). As before define\(z = re^{i\theta} \) and\(w(z) = \rho e^{i\theta} \).

(a) -Q 8.4: Describe with a sketch and then discuss the branch cut for\(f(z) \).

(b) -Q 8.4: What is the inverse of this function?\(f(z) \)? Does this function have a branch cut (if so, where is it)?

(c) -Q 8.3: Using\(\text{viz. m} \), show that

\[
\tan^{-1}(z) = -\frac{i}{2} \log \frac{1 - z}{1 + z}.
\]

In Fig. 4.1 (p. 150) these two functions are shown to be identical.

(d) -Q 8.4: Algebraically justify Eq. (4.4). Hint: Let\(w(z) = \tan^{-1}(z) \).\(z(w) = \tan w = \sin w / \cos w \); then solve for\(e^{i\omega} \).

Author: Please double check this equation number.
4.3. EXERCISES DE-1

A Cauer synthesis of any Brune impedance

Problem 4.9. One may synthesize (transmission line) from a positive real impedance $Z(s)$ by using the continued fraction method. To obtain the series and shunt impedance values, one may use residue expansion. Here we shall further explore this method. This method will be further explored in DE-3, Fig. 4.3, p. 77.

(a) **Q 9.1**: Starting from the Brune impedance $Z(s) = \frac{1}{s+1}$, find the impedance network as a ladder network.

(b) **Q 9.2**: Use a residue expansion to mimic the CFA floor function (E.5.2, p. 54) for polynomial expansions. Find the residue expansion of $H(s) = s^2/(s + 1)$ and express it as a ladder network.

(c) **Q 9.3**: Discuss how the series impedance $Z(s, x)$ and shunt admittance $Y(s, x)$ determine the wave velocity $v(s, x)$ and the characteristic impedance $z_0(s, x)$ when

1. $Z(s)$ and $Y(s)$ are both independent of x;
2. $Z(s, x)$ and $Y(s, x)$ is independent of x, $Z(s, x)$ depends on x;
3. $Z(s)$ and $Y(s, x)$ is independent of x, $Y(s, x)$ depends on x;
4. $Z(s, x)$ and $Y(s, x)$ both $Y(s, x)$, $Z(s, x)$ depend on x.

This shows that a Cauer synthesis may be implemented with the residue expansion replacing the floor function in the CFA. This seems to solve Brune's network synthesis problem.

Author: Are these conditions worded clearly? Please check.

Author: Is Brune correct?
4.4 Complex analytic Brune admittance

It is rarely stated that the variable that we are integrating over, either \(x \) (space) or \(t \) (time), is real \((x, t \in \mathbb{R})\), since that fact is implicit, due to the physical nature of the formulation of the integral. But this intuition must be refined once complex numbers are included with \(s \in \mathbb{C} \), where \(s = \sigma + \omega j \).

That time and space are real variables is more than an assumption; it is a requirement that follows from the order property. Real numbers have order. For example, if \(t = 0 \) is now (the present), then \(t < 0 \) is the past and \(t > 0 \) is the future. Since time and space are real \((t, x \in \mathbb{R})\), they obey this order property. To have time travel, time and space would need to be complex (they are not), since if the space axis were complex, the order property would be invalid.

Interestingly, it was shown by d'Alembert (1747) that time and space are related by the pure delay due to the wave speed, \(c_0 \). To obtain a solution to the governing wave equation, which d'Alembert first proposed for sound waves, \(x, t \in \mathbb{R} \) may be functionally combined as

\[
\zeta = t \pm x/c_0,
\]

where \(c_0 \in \mathbb{R} \) [m/s] is the wave phase velocity. The d'Alembert solution to the wave equation, describing waves on a string under tension is

\[
\begin{align*}
 u(x, t) &= f(t - x/c_0) + g(t + x/c_0), \\
 &= f(\zeta) + g(\zeta),
\end{align*}
\]

which describes the transverse velocity (or displacement) of two independent waves \(f(\zeta), g(\zeta) \in \mathbb{R} \) on the string, which represent forward and backward traveling waves. For example, starting with a string at rest, if one displaces the left end \(x = 0 \) by a step function \(u(t) \), then that step displacement will propagate to the right as \(u(t - x/c_0) \), arriving at location \(x_0 \) [m] at time \(x_0/c_0 \) [s]. Before this time, the string will not move to the right of the wavefront, \(x_0 \) [m], and after \(t_0 \) [s] it will have a non-zero displacement. Since the wave equation obeys superposition (postulate P2, p. 138), it follows that the "plane-wave" eigenfunction of the wave equation for \(x, k \in \mathbb{R} \) are given by

\[
\psi(\zeta) = \sqrt{\varepsilon_0 \mu_0} \left(\begin{array}{c} e^{ikx} \\
\frac{\sqrt{\varepsilon_0}}{\sqrt{\mu_0}} e^{ikx} \end{array} \right),
\]

where \(|k| = 2\pi/\lambda = \omega/c_0 \) is the wave number, \(\lambda \) is the wavelength, and \(\omega = \sigma + \omega j \) the Laplace frequency.

When propagation dispersion and losses are considered, we must replace the wave number \(k \) with a complex analytic vector wave number \(\kappa(s) = k_\sigma(s) + jk(s) \), which is denoted as either the complex propagation function or the dispersion relation. The vector propagation function is a subtle and significant generalization of the scalar wave number \(k = 2\pi/\lambda \).

Forms of energy loss, which include viscosity and radiation, require \(\kappa(s) \in \mathbb{C} \). Physical examples are acoustic plane waves, electromagnetic wave propagation, antenna theory, and one of the most difficult cases, that of 3D electron wave propagating in crystals (e.g., silicon), where electrons and electromagnetic (EM) waves are in a state of quantum-mechanical equilibrium.

Even if we cannot solve these more difficult problems, we can still appreciate their qualitative solutions. One of the principles that allows us to do this is the causal nature of \(\kappa(s) \). Namely, the \(\mathcal{L}^{-1} \) of \(\kappa(s) \) must be causal, thus Eq. 4.47 must be causal. The group delay then describes the nature of the frequency-dependent causal delay. For example, if the group delay is large at some frequency, then the solutions will have the largest causal delay at that frequency (Brillouin, 1953; Papoulis, 1962). Qualitatively this gives us a deep insight into the solutions, even when we cannot compute the exact solution.

Electrons and photons are simply different EM states, where \(\kappa(x, s) \) describes the crystal's dispersion relations as functions of both frequency and direction, famously known as Brillouin zones. Dispersion is a property of the medium such that the wave velocity is a function of frequency and direction, as in silicon. Highly readable discussions on the history of this topic may be found in Brillouin (1953).
4.4.1 Generalized admittance/impedance

The most elementary examples of Brune admittance and impedance are those made up of resistors, capacitors, and inductors. Such discrete element circuits arise not only in electrical networks but in mechanical, acoustical and thermal networks as well (Table 3.2, p. 129). These lumped element networks can always be represented by ratios of polynomials. This gives them a similar structure, with easily classified properties. Such circuits are called Brune admittances (or impedances). An example of a special structure is that the degrees of the numerator and denominator polynomials cannot differ by more than one. This restriction on the degrees comes about because the real part of the admittance/impedance must be positive.

But there is a much broader class of admittances which come from transmission lines and other physical structures, which we refer to as generalized admittances. An interesting example is an admittance of the form $1/\sqrt{s}$, called a semi-capacitor, or \sqrt{s} called a semi-inductor. Generalized admittance/impedance is not the ratio of two polynomials. As a result, they are more difficult to characterize.

When a generalized admittance $Y(s)$ or its impedance $Z(s) = 1/Y(s)$ is transformed into the time domain, it must have a real and positive surge admittance $\gamma_r \in \mathbb{R}$ or surge impedance $Z_r \in \mathbb{R}$, followed by the residual response $u(t), \zeta(t)$. We define the following notation for the admittance:

$$Y(s) = \gamma_r + \gamma_\delta(s) \leftrightarrow y(t) = \gamma_r \delta(t) + u(t),$$

and impedance:

$$Z(s) = Z_r + Z_\delta(s) \leftrightarrow z(t) = Z_r \delta(t) + \zeta(t).$$

The complexity of the notation is necessary and follows from the fact that $z(t) \leftrightarrow Z(s)$ and $y(t) \leftrightarrow Y(s)$ are positive real and thus minimum phase.

When we are dealing with a transmission line (i.e., wave guides), the generalized admittance is defined as the ratio of the flow over the force. For an electrical system (voltage Φ, current I), the input admittance looking to the right from location x is

$$Y_{in}^+(x > 0, \omega) = \frac{I^+(x, \omega)}{\Phi^+(x, \omega)},$$

and looking to the left is

$$Y_{in}^-(x < 0, \omega) = \frac{I^-(x, \omega)}{\Phi^-(x, \omega)}.$$

These two admittances are typically different.

4.4.2 Generalized reflectance: A function related to the generalized impedance is the reflectance $\Gamma(s)$, defined as the ratio of a reflected wave to waves normalized by the incident wave. For the case of acoustics (pressure P, volume velocity V),

$$Y_{in}(x, s, s) \equiv \frac{\psi'(\omega)}{P'(\omega)} = \frac{\psi' - \psi'}{P' + P'}$$

$$= \frac{\psi' - \psi'}{\psi' + \psi'} = \frac{\psi' - \psi'}{\psi' + \psi'}$$

$$= \frac{\gamma_r^+ - \Gamma(x, s)}{1 + \Gamma(x, s)}$$

When the physical system is continuous at the measurement point x, $\gamma_r^+(x) \equiv \gamma_r^-(x) \in \mathbb{R}$. The reflectance $\Gamma(x, s)$ depends on either the area function, boundary conditions, or both.

There is a direct relationship between a transmission line area function $A(x) \in \mathbb{R}$, its characteristic impedance $\gamma_r(x) \in \mathbb{R}$, and its eigenfunctions. We shall provide specific examples as they arise during the analysis of transmission lines (e.g., Fig. 5.3, p. 207).

Some texts prefer the term immittance to include both admittance and impedance.
A few papers that deal with the relation between $Y_{in}(s)$ and the area function $A(x)$ include Youla (1964), Sondhi and Gopinath (1971), Rasetshwane et al. (2012). However, the general theory of this important and interesting problem is beyond the scope of this text (see "Problem 2" in exercise 4.20, p. 188).

Complex analytic $\Gamma(s)$ and $Y_{in}(s) = Z_{in}^{-1}(s)$

When defining the complex reflectance $\Gamma(s)$, a key assumption has been made: even though $\Gamma(s)$ is defined by the ratio of two functions of real (radian) frequency ω, like the impedance, the reflectance must be causal (postulate P1, p. 138). That $\gamma(t) \mapsto \Gamma(s)$ and $\zeta(t) \leftrightarrow Z_{in}(s) = 1/Y_{in}(s)$ are causal is required by the physics.

4.4.2 Complex analytic impedance

Conservation of energy (or power) is a cornerstone of modern physics. It may have first been considered by Galileo Galilei (1564-1642) and Marin Mersenne (1588-1648). Today the question is not whether it is true, but why. Specifically, what is the physics behind conservation of energy? Surprisingly, the answer is straightforward, based on its definition and the properties of impedance.

Recall that the power is the product of the force and flow, and impedance is their ratio.

The power is given by the product of two variables, sometimes called conjugate variables, the force and the flow. In electrical terms, these are voltage (force) $(v(t) \leftrightarrow V(\omega))$ and current (flow) $(i(t) \leftrightarrow I(\omega))$; thus, the electrical power at any instant of time is

$$P(t) = v(t)i(t).$$

The total energy $E(t)$ is the integral of the power, since $P(t) = dE/dt$. Thus if we start with all the elements at rest (no currents or voltages), then the energy as a function of time is always positive

$$E(t) = \int_0^t P(t) dt \geq 0,$$

and is simply the total energy applied to the network (Van Valkenburg, 1964a, p. 376). Since the voltage and current are related by either an impedance or an admittance, conservation of energy depends on the properties of impedance. From Ohm’s law and P1 (every impedance is causal), we have

$$v(t) = z(t) \ast i(t) = \int_{\tau=0}^t z(\tau)i(t-\tau) d\tau \leftrightarrow V(s) = Z(s)I(s).$$

Example: Let $i(t) = \delta(t)$. Then $|w|^2(\tau) = i(t) \ast i(t) = \delta(\tau)$. Thus

$$I_{xx}(\tau) = \int_{\tau=0}^t z(\tau)|w|^2(\tau) d\tau = \int_{\tau=0}^t z(\tau) \delta(\tau) d\tau = \int_0^t z(\tau) d\tau.$$

The Brune impedance always has the form $z(t) = r_0 \delta(t) + \zeta(t)$. The characteristic impedance (aka surge impedance) may be defined as (Lundberg et al., 2007)

$$r_0 = \int_0^\infty z(t) dt.$$
Mathematically this is called a positive definite operator, since the positive and real resistance is sandwiched between the current, forcing the definiteness.

In conclusion, conservation of energy is totally dependent on the properties of the impedance. Thus one of the most important and obvious applications of complex functions of a complex variable is the impedance function. This seems to be the ultimate example of the FTCC applied to \(z(t) \).

Every impedance must obey conservation of energy (P3): The impedance function \(Z(s) \) has resistance \(R \) and reactance \(X \) as a function of complex frequency \(s = \sigma + j\omega \). From the causality postulate (P1) (p. 251), \(z(t < 0) = 0 \). Every impedance is defined by a Laplace transform pair

\[
z(t) \leftrightarrow Z(s) = R(\sigma, \omega) + jX(\sigma, \omega),
\]

with \(R, X \in \mathbb{R} \).

According to Postulate P3 (p. 138), a system is passive if it does not contain a power source. Drawing power from an impedance violates conservation of energy. This property is also called positive-real, which was defined by Brune (1931a, b, 1931a, b):

\[
\Re\{Z(s \geq 0)\} \geq 0.
\]

Positive-real systems cannot draw more power than is stored in the impedance.\(^5\) The region \(\sigma < 0 \) is called the left half-plane (LHP), and the complementary region \(\sigma > 0 \) is called the right half-plane (RHP). According to the Brune condition the real part of every impedance must be non-negative in the RHP.

It is easy to construct examples of second-order poles or zeros in the RHP such that P3 is violated. Thus P3 implies that the impedance may not have more than simple (first-order) poles and zeros, strictly in the LHP. But there is yet more: These poles and zeros in the LHP must have order, to meet the minimum phase condition. This minimum phase condition is easily stated:

\[
\angle Z(s) < \angle s,
\]

but difficult to prove.\(^6\) There seems to be no proof that second-order poles and zeros (e.g., second-order roots) are not allowed. However, such roots must violate a requirement that the poles and zeros must alternate on the \(\sigma = 0 \) axis, which follows from P3. In the complex plane the concept of “alternate” is not defined (complex numbers cannot be ordered). What has been proved (i.e., Foster’s reactance theorem (Van Valkenburg, 1964a)), is that if the poles are on the real or imaginary axis, they must alternate, leading to simple poles and zeros (Van Valkenburg, 1964a). The restriction on poles is sufficient but not necessary, as \(Z(s) = 1/\sqrt{s} \) is a physically realizable (PR) impedance but is less than a first-degree pole (Kim and Allen, 2013). The corresponding condition in the LHP, and its proof, remains elusive (Van Valkenburg, 1964a).

For example, a series resistor \(R_o \) and capacitor \(C_o \) have an impedance given by (Table C.3, p. 276)

\[
Z(s) = R_o + \frac{1}{sC_o} \leftrightarrow R_o \delta(t) + \frac{1}{C_o} u(t) = z(t),
\]

with constants \(R_o, C_o \in \mathbb{R} > 0 \). In mechanics an impedance composed of a dashpot (damper) and a spring has the same form. A resonant system has an inductor, resistor and a capacitor, with an impedance given by

\[
Z(s) = \frac{zC_o}{1 + sC_o R_o + s^2 C_o M_o} \leftrightarrow C_o \frac{d}{dt} \left(e^{s+\tau} + e^{s-\tau} \right) = z(t),
\]

which is a second-degree polynomial with two complex resonant frequencies \(s_{\pm} \). When \(R_o > 0 \) these roots are in the left half-plane, with \(z(t) \leftrightarrow Z(s) \).

\[^5\]Does this condition hold for the LHP \(\sigma < 0 \)? It does for Eq. 4.38.

\[^6\]As best I know, this is an open problem in network theory (Brune, 1931a; Van Valkenburg, 1964a).
Systems (networks) containing many elements and transmission lines can be much more complicated, yet still have a simple frequency-domain representation. This is the key to understanding how these physical systems work, as will be described next.

Poles and zeros of positive-real functions must be first-degree: The definition of positive-real (PR) functions requires that the poles and zeros of the impedance function be simple (only first degree). Second-degree poles would have a reactive "secular" response of the form \(h(t) = t \sin(\omega t + \phi) u(t) \), and these terms would not average to zero, depending on the phase, as is required of an impedance. As a result, only single-degree poles are possible. Furthermore, when the impedance is the ratio of two polynomials, where the lower-degree polynomial is the derivative of the higher-degree one, then the poles and zeros must alternate. This is a well-known property of the Brune impedance that has never been adequately explained except for very special cases, denoted as Foster's theorem (Van Valkenburg, 1964b, p. 104). I believe that no one has ever reported an impedance having second-degree poles and zeros. That would be a rare impedance. Network analysis books never report second-degree poles and zeros in their impedance functions. Nor has there ever been any guidance as to where the poles and zeros might lie in the left-half s plane. Understanding the exact relationships between pairs of poles and zeros, to assure that the real part of the impedance is real, would resolve this longstanding unsolved problem (Van Valkenburg, 1964b).

Calculus on Complex analytic functions: To solve a differential equation or integrate a function, Newton used the Taylor series to integrate one term at a time. However, he only used [real functions of a real variable] due to the fundamental lack of appreciation of the complex analytic function. This same method is how one finds solutions to scalar differential equations today, but using an approach that makes the solution method less obvious. Rather than working directly with the Taylor series, today we use the complex exponential, since the complex exponential is an eigenfunction of the derivative that has

\[
\frac{d}{dt} e^{st} = se^{st}.
\]

that may be expressed as a Taylor series, having coefficients \(c_n = 1/n! \), in some real sense the modern approach is a compact way of doing what Newton did. Thus every linear constant coefficient differential equation in time may be simply transformed into a polynomial in complex Laplace frequency and \(s \), by looking for solutions of the form \(A(s)e^{st} \). Transforming the differential equation into a polynomial \(A(s) \) in complex frequency. For example,

\[
\frac{d}{dt} f(t) + a f(t) \leftrightarrow (s + a) F(s).
\]

The root of \(A(s) = s + a = 0 \) is the eigenvalue of the differential equation. A powerful tool for understanding the solutions of differential equations, both scalar and vector, is to work in the Laplace frequency domain. The Taylor series has been replaced by \(e^{st} \), transforming Newton's real Taylor series into the complex exponential eigenfunction. In some sense, these are the same method, since

\[
e^{st} = \sum_{n=0}^{\infty} \frac{(st)^n}{n!}, \tag{4.36}
\]

Taking the derivative with respect to time gives

\[
\frac{d}{dt} e^{st} = se^{st} = s \sum_{n=0}^{\infty} \frac{(st)^n}{n!}, \tag{4.37}
\]

which is also complex analytic. Thus if the series for \(F(s) \) is valid (i.e., it converges), then its derivative is also valid. This was a very powerful concept, exploited by Newton for real functions of a real variable, \(S \)Secular terms result from second-degree poles since \(u(t) * u(t) = tu(t) \leftrightarrow 1/s^2 \).
4.4. COMPLEX ANALYTIC FUNCTIONS

and later by Cauchy and Riemann for complex functions of a complex variable. The key question here is: Where does the series fail to converge? This is the main message behind the FTCC (Eq. 4.8).

The FTCC (Eq. 4.6) is formally the same as the FTC (Eq. 4.7) (Leibniz's formula), the key (and significant) difference being that the argument of the integrand \(s \in \mathbb{C} \). Thus this integration is a line integral in the complex plane. One would naturally assume that the value of the integral depends on the path of integration. And it does, but in a subtle way, as quantified by Cauchy's various theorems. If the path stays in the same RoC region, then the integral is independent of that path. If a path includes a different pole, then the integral depends on the path, as quantified by the **Cauchy residue theorem**. The test is to deform the path from the first to the second. If in that deformation the path crosses a pole then the integral will depend on the path. All of this is dependent on the causal nature of the integral.

But, according to the FTCC, it does not. In fact they are clearly distinguishable from the FTC. And the reasoning is the same. If \(F(s) = \frac{df(s)}{ds} \) is complex analytic (i.e., has a power series \(f(s) = \sum_k c_k s^k \), with \(f(s), c_k, s \in \mathbb{C} \)), then it may be integrated, and it is

\[
\text{integral does not depend on the path.}
\]

At first blush, this is sort of amazing. The key is that \(F(s) \) and \(f(s) \) must be complex analytic, which means they are differentiable. This all follows from the Taylor series formula Eq. 4.10 (p. 152) for the coefficients of the complex analytic series. For Eq. 4.8 to hold, the derivatives must be independent of the direction (independent of the path), as discussed on page 52. The concept of a complex analytic function therefore has eminent consequences, in the form of several key theorems on complex integration discovered by Cauchy (1820).

The use of the complex Taylor series generalizes the functions it describes, with unpredictable consequences, as nicely shown by the domain-coloring diagrams presented on p. 41. Cauchy's tools of complex integration were first exploited in physics by Sommerfeld (1952) to explain the onset (e.g., causal) transients in waves, as explained in detail in Brillouin (1960, Chap. 3).

Up to 1910, when Sommerfeld first published his results using complex analytic signals and saddle point integration in the complex plane, there was a poor understanding of the implications of the causal wavefront. It would be reasonable to say that his insights changed our understanding of wave propagation for both light and sound. Sadly this insight has never been fully appreciated, even to this day. If you question this review, please read Brillouin (1960, Chap. 1).

The full power of the complex analytic function was first appreciated by Bernard Riemann (1826-1866) in his University of Göttingen PhD thesis of 1851, under the tutelage of Carl Friedrich Gauss (1777-1855), which drew heavily on the work of Cauchy.

The key definition of a complex analytic function is that it has a Taylor series representation over a region of the complex frequency plane \(s = \sigma + j \omega \) that converges in a **region of convergence** (RoC) about the expansion point, with a radius determined by the nearest pole of the function. A further surprising feature of all analytic functions is that within the RoC, the inverse of that function also has a complex analytic expansion. Thus given \(w(s) \), one may also determine \(s(w) \) to any desired accuracy, critically depending on the RoC. Given the right software (e.g., zViz.n), this relationship may be made precise.

Figure 4.2: Here, we show the mapping for the square root function \(z = \sqrt{x} \), the inverse of \(x = z^2 \). This function has two single-valued sheets of the \(x \) plane corresponding to the two signs of the square root. The best way to view this function is in polar coordinates, with \(x = |x| e^{j\omega} \) and \(z = \sqrt{|x|} e^{j\omega/2} \). Figure from: https://en.wikipedia.org/wiki/Riemann_surface
4.4.3 Multi-valued functions

In the field of mathematics there seems to have been a tug-of-war regarding the basic definition of the concept of a function. The accepted definition today seems to be a single-valued (i.e., complex analytic) mapping from the domain to the codomain (or range). This makes the discussion of multi-valued functions somewhat awkward. In 1851 Riemann (working with Gauss) seems to have resolved this problem for the complex analytic set of multi-valued functions by introducing the geometric concept of single-valued sheets, delineated by branch cuts.

If we assume \(y = \log(z) \). For example, assuming \(z \) is the radius of the circle, solving for \(y(x) \) gives the double-valued function

\[
y(x) = \pm \sqrt{x^2 - x^2}.
\]

The related function \(z = \pm \sqrt{x} \) is shown in Fig. 4.2 as a three-dimensional display in polar coordinates, with \(y(r) \) as the vertical axis, as a function of the angle and radius of \(x \in \mathbb{C} \).

If we accept the modern definition of a function as the mapping from one set to a second, then \(y(x) \) is not a function, or even two functions. For example, what if \(x > z \)? Or worse, what if \(z = 2\pi \) with \(|z| < 1 \)? Riemann’s construction, using branch cuts for multi-valued function, resolves all these difficulties (as best I know).

To proceed, we need definitions and classifications of the various types of complex singularities:

1. Poles of degree 1 are called simple poles. Their amplitude is called the residue (e.g., \(\alpha/s \) has residue \(\alpha \)). Simple poles are special (Eq. 4.35, p. 171); as they play a key role in mathematical physics, since their inverse Laplace transform defines a causal eigenvector function.

2. When the numerator and denominator of a rational function (i.e., ratio of two polynomials) have a common root (i.e., factor), that root is said to be removable.

3. A singularity that is not (+)-removable, (3)-a pole or (3)-a branch point is called essential.

4. A complex analytic function (except for isolated poles) is called meromorphic (Boas, 1987). Meromorphic functions can have any number of poles, even an infinite number. The poles need not be simple.

5. When the first derivative of a function \(Z(s) \) has a simple pole at \(a \), then \(a \) is said to be a branch point of \(Z(s) \). An important example is the logarithmic derivative of \(Z(s) \):

\[
d \ln(s-a) / ds = \alpha / (s-a), \quad \alpha \in \mathbb{I}.
\]

However, the converse does not necessarily hold.

6. I am not clear about the interesting case of an irrational pole (\(\alpha \in \mathbb{F} \)). In some cases (e.g., \(\alpha \in \mathbb{F} \)) this may be simplified via the logarithmic derivative operation, as mentioned above.

More complex topologies are being researched today, and progress is expected to accelerate due to modern computing technology.\(^9\) It is helpful to identify the physical meaning of these more complex surfaces, to guide us in their interpretation and possible applications.\(^9\)

\(^9\) https://www.maths.ox.ac.uk/about-us/departmental-art/theory

4.4. COMPLEX ANALYTIC BRUNE ADMITTANCE

Gauss (1777-1895), as first described in his thesis of 1826. It was these three mathematical and geometrical constructions that provided the deep insight into complex analytic functions, greatly extending the important earlier work of Cauchy (1849) on the calculus of complex analytic functions. For alternative helpful discussion of Riemann sheets and branch cuts, see Boas (1987, §29, pp. 221-225) and (Kusse and Westwig, 2010). Note that this subheading is identical to the Sec. 4.4.3 title. Is that OK?

Multivalued functions: To study the properties of multivalued functions and branch cuts, we look at \(w(s) = \sqrt{s} \) and \(u(s) = \log(s) \), along with their inverse functions \(w(s) = s^2 \) and \(u(s) = e^s \). For uniformity we shall refer to the complex axes \((s = \sigma + \omega)\) and the complex ordinate \((w(s) = u + \omega^2)\). When the complex abscissa and ordinate are swapped, by taking the inverse of a function, multivalued functions are a common consequence. For example, \(f(t) = \sin(t) \) is single-valued, and analytic in \(t \), thus has a Taylor series. The inverse function \(f(t) \) is multivalued.

The best way to explore the complex mapping from the complex planes \(s \rightarrow u(s) \) is to master the single-valued function \(s = u^2(s) \) and its double-valued inverse \(u(s) = \sqrt{s} \).

Figure 4.3 shows the single-valued function \(w(z) = z^2 \) (left), and its inverse \(w(z) = \pm \sqrt{z} \) (right), its inverse, the double-valued mapping of \(s(w) = \pm \sqrt{w} \). Single-valued functions such as \(W(s) = s^2 \) are relatively straightforward. Multivalued functions require the concept of a branch cut, defined in the image \((u(s))\) plane, which is a technique to render the multiple values as single-valued on each of several sheets, defined by the sheet index in the domain \((s)\) plane and delineated by a branch cut (in the \(w \) plane). The sheets are labeled in the domain \((s)\) plane by a sheet index \(k \in \mathbb{Z} \), while branch points and cuts are defined in the image \((w)\) plane (not shown). The range: It is important to understand that the path of every branch cut is not unique and may be moved. However, branch points are unique, and thus not movable.

The multivalued nature of \(w(s) = \sqrt{s} \) is best understood by working with the function in polar coordinates. Let

\[
s_k = r e^{i(\theta + 2\pi k)},
\]

where \(r = |s|, \theta = \angle s, \in \mathbb{R} \) and \(k \in \mathbb{Z} \) is the sheet index.

This concept of analytic inverses becomes important only when the function is multivalued. For example, since \(w(s) = s^2 \) has a period of 2, then \(s(w) = \pm \sqrt{w} \) is multivalued. Riemann dealt with such extensions with the concept of a branch cut with multiple sheets, labeled by a sheet number. Each sheet describes an analytic function (Taylor series) that converges within some ROC, having a radius out to the nearest pole. Thus Riemann's branch cuts and sheets explicitly deal with the need to define unique single-valued inverses of multivalued functions. Since the square root function has two overlapping regions corresponding to the \(\pm \) due to the radical, there must be two connected regions, sort of like mathematical Siamese twins: distinct, yet the same.

Hue: By studying the output of zviz.m (Fig. 3.14, p. 141), one may appreciate domain-coloring. The domain angles \(\angle s \) go from \(-90^\circ < \theta < 90^\circ \), with \(\theta = 0 \) being red and \(\pm 90^\circ \) being green (between yellow and purple). The angle-to-hue map is shown in the left panel of Fig. 4.4. For the \(w(s) = s^2 \), the \(\angle s \) is expanded by 2, since \(\psi = 2\theta \). For \(w(s) = \sqrt{s} \), the \(\angle s \) is compressed by a factor of 2, since \(\psi = \theta/2 \).

![Figure 4.3](image)

This is an example of a multivalued function with branch cuts and sheets. How do we choose the correct one?
Thus the principle angle $k = 0, -180^\circ < \theta < 180^\circ$ maps to half the w plane ($-90^\circ < \psi < 90^\circ$) from purple to yellow, while the $k = 1$ branch maps to $90^\circ < \psi < 270^\circ$. Note how the panel on the right of Fig. 4.3 matches the right half of s (purple = -90°, yellow/green = +90°) while the middle panel above comes from the left side of s (green to purple). The center panel is green at -180° and purple at +180°, which matches the left panel at ±180°, respectively (i.e., $e^{2\pi i/3}$).

Furthermore let

$$w = \rho e^{\psi i} = \sqrt{\rho} e^{\psi/2} e^{\pi i k}, \quad (4.32)$$

where $\rho = |w|, \psi \in [0, \pi) \subseteq \mathbb{R}$. The generic Cartesian coordinates are $s = \sigma + \omega i$ and $w(s) = u(\sigma, \omega) + v(\sigma, \omega) i$. For single-valued functions such as $w(s) = s^2$ (left) there is no branch cut since $\psi = 2\pi$. Note how the red color ($\theta = 0^\circ$) appears twice in this mapping. For multivalued functions a branch cut is required, typically along the negative $v(\sigma, \omega)$ axis (i.e., $\psi = \pi$), but may be freely distorted, as seen by comparing the right panel of Fig. 4.3 with the right panel of Fig. 4.4.

The principle (i.e., first) Riemann sheet of \sqrt{s}, corresponding to $-\pi < \theta < \pi$ (i.e., $k = 0$), is shown in the center of Fig. 4.4. This differs from the neighboring sheet ($k = 1$), shown on the right. Thus $w(s) = \sqrt{s}$ is a multi-valued function of s, having two single-valued sheets.

Moving the branch cut: It is important to understand that the function is analytic on the branch cut, but not at the branch point. One is free to move the branch cut (at will). It does not need to be on a line; it could be cut in almost any connected manner, such as a spiral. The only rule is that it must start and stop at the matching branch points, or at ∞, which must have the same degree.

Figure 4.3 shows the single-valued function $w(z) = s^2$ (left), and Fig. 4.4 (right) its inverse, the double-valued mapping of $s(w) = \pm \sqrt{w}$.

The location of the branch cut may be moved by rotating the z coordinate system of Fig. 4.2. For example, $w(z) = \pm \sqrt{z}$ and $w(z) = \pm z$ have different branch cuts, as may be easily verified using the Matlab/Octave commands $j * z * i * z$ and $z * i * z$, as shown in Fig. 4.4. Since the cut may be moved, every function is analytic on the branch cut. If a Taylor series is formed on the branch cut, it will describe the function on the two different sheets. Thus the complex analytic series (i.e., the Taylor formula, Eq. 4.10) does not depend on the location of a branch cut, as it only describes the function uniquely (as a single-valued function), valid in its local region of convergence.
in
4.4. COMPLEX ANALYTIC BRUNE ADMITTANCE

The second sheet \((k = 1)\) picks up at \(\theta = \pi\) [rads] and continues on to \(\pi + 2\pi = 3\pi\). The first sheet maps the angle of \(w\) (i.e., \(\phi = \zeta w = \theta/2\)) from \(-\pi/2 < \phi < \pi/2\) \((w = \sqrt{\rho e^{i\theta/2}})\). This corresponds to \(u = \Re\{w(s)\} > 0\). The second sheet maps \(\pi/2 < \psi < 3\pi/2\) (i.e., \(90^\circ\) to \(270^\circ\)), which is \(\Re\{w\} = u < 0\). In summary, twice around the \(s\) plane is once around the \(w(s)\) plane because the angle is half due to the \(\sqrt{s}\).

Branch cuts emanate and terminate at branch points, defined as singularities (poles) that can even have fractional degree, as for example \(1/\sqrt{s}\), and terminate at one of the matching roots, which includes the possibility of \(\infty\). For example, suppose that in the neighborhood of the pole, at \(s_0\) the function is

\[
f(s) = \frac{w(s)}{(s - s_0)^k},
\]

where \(w, s, s_0 \in \mathbb{C}\) and \(k \in \mathbb{Q}\). When \(k = 1\), \(s_0 = \sigma_0 + \omega_0 j\) is a \(\text{first degree "simple pole"}^{10}\) having degree 1 in the \(s\) plane, with \(\text{residue } w(s_0)^{11}\). Typically the order and degree are positive integers, but fractional degrees and orders are common in modern engineering applications (Kirchhoff, 1868; Lighthill, 1978).

Here we shall allow both the degree and order to be fractional \((\in \mathbb{F})\). When \(k \in \mathbb{F} \subset \mathbb{R}\), \(k = n/m\) is a real reduced fraction, namely when \(\text{GCD} (n, m) = 1, n \perp m\). This defines the degree of a fractional pole. In such cases there must be two sets of branch cuts of degree \(\alpha \in \mathbb{R}\) and \(m\). For example, if \(k = 1/2\), the singularity (branch cut) is of degree \(1/2\) and there are two Riemann sheets, as shown in Fig. 4.3.

\[\text{Figure 4.5: Colorized plots of two \(z^T\) pairs: Left: } \sqrt{\pi/s} \leftrightarrow u(t)/\sqrt{t}\text{. Right: } \sqrt{s^2 + 1} \leftrightarrow \delta(t) + \frac{1}{t}J_1(t)u(t).\]

Fractional-order Bessel function: An important example is the Bessel function and its Laplace transform \(\mathcal{L}\).

\[
\delta(t) + \frac{1}{t}J_1(t)u(t) \leftrightarrow \sqrt{s^2 + 1},
\]

as shown in Fig. 4.5, which is related to the solution to the wave equation in two-dimensional cylindrical coordinates (Table C.4, p. 277). Bessel functions are the solutions (i.e., eigenfunctions) of guided acoustic waves in round pipes, or surface waves on the earth (seismic waves), or waves on the surface of a pond (Table 5.2, p. 217).

There are a limited number of possibilities for the degree, \(k \in \mathbb{Z}\) or \(k \in \mathbb{F}\). If the degree is drawn from \(\mathbb{R} \not\subset \mathbb{F}\), the pole cannot have a residue. According to the definition of the residue, \(k \in \mathbb{F}\) will not give a residue. But there remains open the possibility of generalizing the concept of the Riemann integral theorem to include \(k \in \mathbb{F}\). One way to do this is to use the \(\text{logarithmic derivative}\) which renders fractional poles to simple poles with fractional residues.

\(^{10}\)This presumes that poles appear in pairs, one of which may be at \(\infty\).

\(^{11}\)We shall refer to the \text{order} of a derivative, or differential equation, and the \text{degree} of a polynomial, as commonly used in engineering applications.

Author: Is "cannot not" correct? (No)
If the singularity has an irrational degree \((k \in \mathbb{I})\), the branch cut has the same "irrational degree." Accordingly there would be an infinite number of Riemann sheets, as in the case of the log function. An example is \(k = \pi\), for which

\[
F(s) = \frac{1}{s^\pi} = e^{-\log(s^\pi)} = e^{\pi \log(s)} = e^{\pi \log(r) e^{-\pi \theta}}.
\]

where the domain is expressed in polar coordinates \(s = re^{\theta}\). When \(k \in \mathbb{F}\) it may be close (e.g., \(k = \pi_{152}/\pi_{153} = \pi_{152}/(\pi_{152} + 2) = 881/883 \approx 0.99883\), or its reciprocal \(\approx 1.0023\). The branch cut could be very subtle (it could even go unnoticed), but it would have a significant impact on the function and its inverse Laplace transform.

Exercise 4.2

Example: Find the poles, zeros, and residues of \(F(s)\).

1. \(F(s) = \frac{d}{ds} \ln \frac{s + e}{s + \pi}\)

 Solution:

 \[
 F(s) = \frac{d}{ds} \ln \left(\frac{s + e}{s + \pi}\right) = \left(\frac{1}{s + e} - \frac{1}{s + \pi}\right).
 \]

 The poles are at \(s_1 = -e\) and \(s_2 = -\pi\) with respective residues of \(\pm 1\).

2. \(F(s) = \frac{d}{ds} \ln \frac{(s + 3)^e}{(s + j)^{\pi}}\)

 Solution:

 \[
 F(s) = \frac{d}{ds} \left(\ln(s + 3) + \pi \ln(s - j)\right) = \frac{e}{s + 3} + \frac{\pi}{s + j}.
 \]

 There is a very important take-home message here regarding the utility of the logarithmic derivative, which "linearizes" the fractional pole.

3. \(F(s) = e^{\pi \ln s}\)

 Solution: Taking the derivative

 \[
 \frac{d}{ds} F(s) = \frac{d}{ds} \ln s^\pi = \pi \frac{d}{ds} \ln s = \pi \frac{s}{s}.
 \]

 Thus we see that \(F'(s)\) has a pole at \(s = 0\) with residue \(\pi\). It follows that \(F(s) = \int F'(s) ds\) has a second-order pole. Thus the residue must be zero.

4. \(F(s) = \pi^{s^{-1}}\)

 Solution: Taking the logarithmic derivative, \(d \ln F(s)/ds = F'(s)/F(s) = -\ln \pi\).

 Thus \(F'(s) = -\ln \pi F'(s) = -\ln \pi s^{-1}\).

Log function: Next we discuss the multivalued nature of the log function. In this case there are an infinite number of Riemann sheets, not well captured by Fig. 3.1\(\text{a}\) (p. 143), which displays only the principal sheet. However, if we look at the formula for the log function, the nature is easily discerned. The abscissa \(s\) may be defined as multivalued since

\[
s_k = re^{2\pi k} e^{\theta j}.
\]

Now we take \(s_k\) and extend the angle of \(s\) by \(2\pi k\), where \(k\) is the sheet index \(\in \mathbb{Z}\). Taking the log:

\[
\log(s) = \log(r) + (\theta + 2\pi k) j.
\]

When \(k = 0\), we have the **principal value** sheet, which is zero when \(s = 1\). For any other value of \(k\), \(w(s) \neq 0\), even when \(r = 1\), since the angle is not zero, except for the \(k = 0\) sheet.
4.5 Three Cauchy integral theorems

4.5.1 Cauchy's theorems for integration in the complex plane

There are three basic definitions related to Cauchy's integral formula. They are closely related and can greatly simplify integration in the complex plane. The choice of names seems unfortunate, if not totally confusing.

1. Cauchy's (integral) theorem (CT-1):

\[\oint_C F(s) ds = 0 \]

(4.30)

if and only if \(F(s) \) is complex analytic inside of a simple closed curve \(C \) (Boas, 1987, p. 45; Stillwell, 2010, p. 319). The FTCC (Eq. 4.8) says that the integral only depends on the end points if \(F(s) \) is complex analytic. By closing the path (contour \(C \)), the end points are the same, thus the integral must be zero as long as \(F(s) \) is complex analytic.

2. Cauchy's integral formula (CT-2):

\[\frac{1}{2\pi i} \oint_{\partial B} \frac{F(s)}{s-s_0} ds = \begin{cases} F(s_0), & s_0 \in B \text{ (inside)} \\ 0, & s_0 \notin B \text{ (outside)} \end{cases} \]

(4.31)

Here \(F(s) \) is required to be analytic everywhere within (and on) the boundary \(B \) of integration (Greenberg, 1988, p. 1200; Boas, 1987, p. 51; Stillwell, 2010, p. 220). When the point \(s_0 \in C \) is within the boundary, the value \(F(s_0) \in C \) is the residue of the pole \(s_0 \) of \(F(s)/(s-s_0) \). When the point \(s_0 \) lies outside the boundary, the integral is zero.

3. The (Cauchy) residue theorem (CT-3): (Greenberg, 1988, p. 1241; Boas, 1987, p. 73)

\[\oint_C F(s) ds = 2\pi i \sum_{k=1}^{K} c_k = \sum_{k=1}^{K} \oint_{\partial B} \frac{F(s)}{s-s_k} ds, \]

(4.32)

where the residues \(c_k \in C \) correspond to the \(k \)-th pole of \(f(s) \) enclosed by the contour \(C \). By the Cauchy's integral formula, the right-most form of the residue theorem is equivalent to the (CT-1).

How to calculate the residue: The case of first-degree poles has special significance because the Brune impedance only allows simple poles and zeros, increasing its utility. The residues for simple poles are \(F(s_k) \), which is complex analytic in the neighborhood of the pole but not at the pole.

Consider the function \(f(s) = F(s)/(s-s_k) \), where we have factored \(f(s) \) to isolate the first-order pole at \(s = s_k \), with \(F(s) \) analytic at \(s_k \). Then the residue of the poles at \(c_k = F(s_k) \). This coefficient is computed by removing the singularity, by placing a zero at the pole frequency, and taking the limit as \(s \to s_k \). Namely,

\[c_k = \lim_{s \to s_k} [(s-s_k)F(s)] \]

(4.33)

When the pole is an \(N \)-th degree, the procedure is much more complicated and requires taking \(N-1 \) order derivatives of \(f(s) \), followed by the limit process (Greenberg, 1988, p. 1242). Higher-degree poles are rarely encountered; thus, it is good to know that this formula exists, but perhaps it is not worth the effort to learn (i.e., memorize) it.

\[^{12} \text{This theorem is the same as a 2D version of Stokes's theorem (Boas, 1987).} \]
4.5.2 Cauchy Integral Formula & Residue Theorem

CT-2 (Eq. 4.39) is an important extension of CT-1 (Eq. 4.31) in that a pole has been explicitly injected into the integrand at $s = s_0$. If the pole location is outside of the curve C, the result of the integral is zero, in keeping with CT-1. When the pole is inside of C, the integrand is no longer complex analytic at the enclosed pole. When this pole is simple, the residue theorem applies. By a manipulation of the contour in CT-2, the pole can be isolated with a circle around the pole, and then taking the limit, the radius may be taken to zero in the limit, isolating the pole.

For the related CT-3 (Eq. 4.38) the same result holds, except it is assumed that there are K simple poles in the function $F(s)$. This requires the repeated application of CT-2, K times, so it represents a minor extension of CT-2. The function $F(s)$ may be written as $f(s)/P_K(s)$, where $f(s)$ is analytic in C and $P_K(s)$ is a polynomial of degree K, with all of its roots $s_k \in C$.

4.42 Non-integral degree singularities: The key point is that this theorem applies when $n \in \mathbb{R}$, including fractions, $n \in \mathbb{Q}$, but for these cases the residue is always zero, since by definition, the residue is the amplitude of the $1/s$ term (Boas, 1987, p. 73). Here are some examples:

Examples:

1. When $n \in \mathbb{R}$ (e.g., $n = 2/3$), the residue of s^n is zero, by definition.

2. The function $1/\sqrt{s}$ has a zero residue (apply the definition of the residue Eq. 4.36).

3. When $n \neq 1 \in \mathbb{Q}$, the residue is, by definition, zero.

4. When $n = 1$, the residue is given by Eq. 4.36.

5. CT-1, 2, 3 are essential when computing the inverse Laplace transform.

Summary and examples: These three theorems, all attributed to Cauchy, collectively are related to the fundamental theorems of calculus. **Because** the names of the three theorems are so similar, they are easily confused. **The general principles are:**

1. In general it makes no sense (nor is there any need) to integrate through a pole, thus the poles (or other singularities) must not lie on C.

2. Theorem CT-1 (Eq. 4.33) follows trivially from the fundamental theorem of complex calculus (Eq. 4.8, p. 152), since if the integral is independent of the path, and the path returns to the starting point, the closed integral must be zero. Thus Eq. 4.33 holds when $F(s)$ is complex analytic within C.

3. Since the real and imaginary parts of every complex analytic function obey Laplace's equation (Eq. 4.15, p. 154), it follows that every closed integral over a Laplace field, i.e., one defined by Laplace's equation, must be zero. In fact, this is the property of a conservative system, corresponding to many physical systems. If a closed box has fixed potentials on the walls, with any distribution whatsoever, and a point charge (i.e., an electron) is placed in the box, then a force equal to $F = qE$ is required to move that charge, and thus work is done. However, if the point is returned to its starting location, the net work done is zero.

4. Work is done in charging a capacitor, and energy is stored. However, when the capacitor is discharged, all of the energy is returned to the load.

5. Soap bubbles and rubber sheets on a wire frame obey Laplace's equation.

6. These are all cases where the fields are Laplacian; thus closed line integrals must be zero. Laplacian fields are commonly observed because they are so basic.
7. We have presented the impedance as the primary example of a complex analytic function. Physically, every impedance has an associated stored energy, and every system having stored energy has an associated impedance. This impedance is usually defined in the frequency s domain as a force over a flow (i.e., voltage over current). The power $P(t)$ is defined as the force times the flow, and the energy $E(t)$ as the time integral of the power:

$$E(t) = \int_{-\infty}^{t} P(t) dt,$$

(4.3R)

which is similar to Eq. 4.6 (p. 151) [see §3.7.3, Eq. 3.68 (p. 128)]. In summary, impedance and power and energy are all fundamentally related.
4.6 Exercises DE-2

Topics of this homework

Integration of complex functions, Cauchy's theorem, integral formula, residue theorem, power series, Riemann sheets and branch cuts, inverse Laplace transforms.

Problem #1: FTCC and integration in the complex plane

Recall that, according to the Fundamental Theorem of Complex Calculus (FTCC),

\[f(z) = f(z_0) + \int_{z_0}^{z} F(\zeta) \, d\zeta, \]

where \(z_0, z, \zeta, F \in \mathbb{C} \). It follows that

\[F(z) = \frac{d}{dz} f(z). \]

Thus Eq. 4.4 is also known as the anti-derivative of \(f(z) \).

(a) -Q 1.1: For a closed interval \(\{a, b\} \), the FTCC can be stated as

\[\int_{a}^{b} F(z) \, dz = f(b) - f(a), \]

meaning that the result of the integral is independent of the path from \(x = a \) to \(x = b \). What condition(s) on the integrand \(f(z) \) is (are) sufficient to assure that Eq. 4.4 holds?

(b) -Q 1.2: For the function \(f(z) = c^z \), where \(c \in \mathbb{C} \) is an arbitrary complex constant, use the Cauchy-Riemann (CR) equations to show that \(f(z) \) is analytic for all \(z \in \mathbb{C} \).

Problem #2: In the following problems, solve the integral

\[I = \int_{C} F(z) \, dz \]

for a given path \(C \). In some cases this might be the definite integral (Eq. 4.4).

Let the function \(F(z) = c^z \), where \(c \in \mathbb{C} \) is given for each problem below. Hint: Can you apply the FTCC?

(a) -Q 2.1: Find the anti-derivative of \(F(z) \).

(b) -Q 2.2: \(c = 1/e = 1/2.7183 \ldots \) where \(C \) is \(\zeta = 0 \rightarrow i \rightarrow z \)

(c) -Q 2.3: \(c = 2 \) where \(C \) is \(\zeta = 0 \rightarrow (1 + i) \rightarrow z \)

(d) -Q 2.4: \(c = i \) where the path \(C \) is an inward spiral described by \(z(t) = 0.99^t e^{2\pi i t} \) for \(t = 0 \rightarrow t_0 \rightarrow \infty \).
4.6. EXERCISES DE-2

(c) \(Q \) Let \(c = e^{i \tau} \), where \(\tau_0 > 0 \) is a real number, and \(C \) is \(z = (1 - i \infty) \rightarrow (1 + i \infty) \). Hint: Do you recognize this integral? If you do not recognize the integral, please do not spend a lot of time trying to solve it via the 'brute force' method.

4.12

Problem 4.12 Cauchy's theorems for integration in the complex plane
There are three basic definitions related to Cauchy's integral formula. They are all related and can greatly simplify integration in the complex plane. When a function depends on a complex variable, we shall use uppercase notation, consistent with the engineering literature for the Laplace transform.

1. Cauchy's (Integral) Theorem (Stillwell p. 319; Boas p. 45)
\[
\oint_C f(z) \, dz = 0
\]
if and only if \(f(z) \) is complex analytic inside of \(C \).

This is related to the Fundamental Theorem of Complex Calculus (FTCC):
\[
f(z) = f(a) + \int_a^z f(z) \, dz,
\]
where \(f(z) \) is the \textit{antiderivative} of \(F(z) \), namely \(F(z) = df/dz \). The FTCC requires \(F(z) \) to be complex analytic for all \(z \in \mathbb{C} \). By closing the path (contour \(C \)), Cauchy's theorem (and the following theorems) allows us to integrate functions that may not be complex analytic for all \(z \in \mathbb{C} \).

2. Cauchy's Integral Formula (Boas p. 51; Stillwell p. 220)
\[
\frac{1}{2\pi i} \oint_C \frac{F(z)}{z - z_0} \, dz = \begin{cases}
F(z_0), & z_0 \in C \text{ (inside)} \\
0, & z_0 \notin C \text{ (outside)}
\end{cases}
\]
Here \(F(z) \) is required to be analytic everywhere within (and on) the contour \(C \). \(F(z_0) \) is called the residue of the pole.

3. (Cauchy's) Residue Theorem (Boas p. 72)
\[
\oint_C f(z) \, dz = 2\pi i \sum_{k=1}^{K} \text{Res}_k,
\]
where \(\text{Res}_k \) are the residues of all poles of \(F(z) \) enclosed by the contour \(C \).

How to calculate the residues: The residues can be rigorously defined as
\[
\text{Res}_k = \lim_{z \to z_k} [(z - z_k) f(z)]
\]
This can be related to \textit{Cauchy's integral formula}. Consider the function \(F(z) = w(z)/(z - z_k) \), where we have factored \(F(z) \) to isolate the first-order pole at \(z = z_k \). If the remaining factor \(w(z) \) is analytic at \(z_k \), then the residue of the pole at \(z = z_k \) is \(w(z_k) \).

(a) \(Q \) Describe the relationships between the three theorems:

1. (1) and (2)

2. (1) and (3)

Items could be run in to the text rather than listed.\(\Box \)

Author: Are (1), (2), and (3) the same as CT-1, CT-2, and CT-3? Would it be clearer to use the latter names?
3. \(f(z) \) and \(f(z) \)

(b) \(-Q 3.24\) Consider the function with poles at \(z = \pm j \),

\[
F(z) = \frac{1}{1 + z^2} = \frac{1}{(z - j)(z + j)}.
\]

Find the residue expansion.

(c) \(-Q 3.25\) Apply Cauchy's theorems to solve the following integrals.
State which theorem(s) you used and show your work.

1. \(\int_C F(z) \, dz \) where \(C \) is a circle centered at \(z = 0 \) with a radius of \(r = \frac{1}{2} \).
2. \(\int_C F(z) \, dz \) where \(C \) is a circle centered at \(z = j \) with a radius of \(r = 1 \).
3. \(\int_C F(z) \, dz \) where \(C \) is a circle centered at \(z = 0 \) with a radius of \(r = 2 \).

Problem 4.13 Integration in the complex plane

In the following questions, you'll be asked to integrate \(F(s) = u(\sigma, \omega) + iv(\sigma, \omega) \) around the contour \(C \) for complex \(s = \sigma + j\omega \),

\[
\int_C F(s) \, ds.
\]

Follow the directions carefully for each question. When asked to state where the function is and is not analytic, you are not required to use the Cauchy-Riemann equations (but you should if you can't answer the question by inspection).

(a) \(-Q 4.1\) \(F(s) = \sin(s) \)

(b) \(-Q 4.2\) Given function \(F(s) = \frac{1}{s} \)

1. State where the function is and is not analytic.
2. Explicitly evaluate the integral when \(C \) is the unit circle, defined as \(s = e^{j \theta}, 0 \leq \theta \leq 2\pi \).
3. Evaluate the same integral using Cauchy's theorem and/or the residue theorem.

(c) \(-Q 4.3\) \(F(s) = \frac{1}{s^2} \)

1. State where the function is and is not analytic.
2. Explicitly evaluate the integral when \(C \) is the unit circle, defined as \(s = e^{j \theta}, 0 \leq \theta \leq 2\pi \).
3. What does your result imply about the residue of the second-order pole at \(s = 0 \)?

(d) \(-Q 4.4\) \(F(s) = e^{at} \)

1. State where the function is and is not analytic.
2. Explicitly evaluate the integral when \(C \) is the square \((\sigma, \omega) = (1, 1) \rightarrow (-1, 1) \rightarrow (-1, -1) \rightarrow (1, -1) \rightarrow (1, 1) \).
3. Evaluate the same integral using Cauchy's theorem and/or the residue theorem.
4.6. EXERCISES DE-2

(c) $\mathbf{Q} \quad 4.5^x \quad F(s) = \frac{1}{s+2}$

1. State where the function is and is not analytic.

2. Let C be the unit circle, defined as $s = e^{i\theta}, \ 0 \leq \theta \leq 2\pi$. Evaluate the integral using Cauchy's theorem and/or the residue theorem.

3. Let C be a circle of radius 3, defined as $s = 3e^{i\theta}, \ 0 \leq \theta \leq 2\pi$. Evaluate the integral using Cauchy's theorem and/or the residue theorem.

(f) $\mathbf{Q} \quad 4.6^x \quad F(s) = \frac{1}{2\pi i (s+4)}$

1. State where the function is and is not analytic.

2. Let C be a circle of radius 3, defined as $s = 3e^{i\theta}, \ 0 \leq \theta \leq 2\pi$. Evaluate the integral using Cauchy's theorem and/or the residue theorem.

3. Let C contain the entire left half s-plane. Evaluate the integral using Cauchy's theorem and/or the residue theorem. Do you recognize this integral?

(g) $\mathbf{Q} \quad 4.7^x \quad F(s) = \pm \frac{1}{\sqrt{s}} (e^{s/2} e^{i\pi/4})$

Author: Earlier in the chapter both left half s-plane and left-hand s-plane are used. Please check \checkmark. Either are OK. They are equivalent.

1. State where the function is and is not analytic.

2. This function is multivalued. How many Riemann sheets do you need in the domain (s) and the range (f) to fully represent this function? Indicate (e.g., using a sketch) how the sheet(s) in the domain map to the sheet(s) in the range.

3. Explicitly evaluate the integral

 $$\int_C \frac{1}{\sqrt{z}} \, dz$$

 when C is the unit circle, defined as $s = e^{i\theta}, \ 0 \leq \theta \leq 2\pi$. Is this contour closed? State why or why not.

4. Explicitly evaluate the integral

 $$\int_C \frac{1}{\sqrt{z}} \, dz$$

 when C is twice around the unit circle, defined as $s = e^{i\theta}, \ 0 \leq \theta \leq 4\pi$. Is this contour closed? State why or why not. Hint: Note that

 $$\sqrt{e^{i(\theta+2\pi)}} = \sqrt{e^{i2\pi}e^{i\theta}} = e^{i\pi} \sqrt{e^{i\theta}} = -1 \sqrt{e^{i\theta}}.$$

5. What does your result imply about the residue of the (twice-around $1/2$ order) pole at $s = 0$?

6. Show that the residue is zero. Hint: apply the definition of the residue.

Problem #5: A two-port network application for the Laplace transform

Recall that the **Laplace transform** $(LT) f(t) \leftrightarrow F(s)^{13}$ of a causal function $f(t)$ is

$$F(s) = \int_0^\infty f(t) e^{-st} \, dt,$$

^{13} Many loosely adhere to the convention that the frequency domain uses upper case (e.g., $F(s)$) while the time domain uses lower case [$f(t)$].
where \(s = \sigma + j\omega \) is complex frequency \(^{14}\) in \([\text{radians}]\) and \(t \) is time in \([\text{seconds}]\). Causal functions and the Laplace transform are particularly useful for describing systems, which have no response until a signal enters the system (e.g., at \(t = 0 \)).

The definition of the inverse Laplace transform \((\mathcal{L}^{-1}T)\) requires integration in the complex plane:

\[
 f(t) = \frac{1}{2\pi j} \int_{\sigma-j\infty}^{\sigma+j\infty} F(s)e^{st}ds = \frac{1}{2\pi j} \int_{C} F(s)e^{st}ds.
\]

The Laplace contour \(C\) actually includes two pieces:

\[
 f(t) = \int_{C} = \int_{C_{0}^{+j\infty}} + \int_{C_{0}^{-j\infty}} \,
\]

where the path represented by \(C_{\infty} \) is a semicircle of infinite radius with \(\sigma \rightarrow -\infty \). It is somewhat tricky to do, but it may be proved that the integral over the contour \(C_{\infty} \) goes to zero. For a causal, "stable" (e.g., doesn't blow up over time) signal, all of the poles of \(F(s) \) must be inside of the Laplace contour in the left half \(s \)-plane.

Transfer functions Linear, time-invariant systems are described by ordinary differential equations. For example, consider the first-order linear differential equation

\[
a_1 \frac{dy(t)}{dt} + a_0 y(t) = b_1 \frac{dx(t)}{dt} + b_0 x(t).
\]

This equation describes the relationship between the input \((x(t))\) and output \((y(t))\) of the system. If we define Laplace transforms \((y(t) \leftrightarrow Y(s)\) and \((x(t) \leftrightarrow X(s)\), then this equation may be written in the frequency domain as

\[
a_1 sY(s) = b_1 sX(s) + b_0 X(s).
\]

The transfer function for this system is defined as

\[
 H(s) = \frac{Y(s)}{X(s)} = \frac{b_1 s + b_0}{a_1 s} = \frac{b_1}{a_1 s} + \frac{b_0}{a_1 s}.
\]

Problem #6-ABC Method

This network is an example of a RC low-pass filter, which acts as a leaky integrator.

\(^{14}\) While radians are useful units for calculations, when providing physical insight in discussions of problem solutions, it is easier to work with Hertz, since frequency in \([\text{Hz}]\) and time in \([\text{s}]\) are more natural units than radians. The same is true of degrees vs. radians. Boué (p. 10) recommends the use of degrees over radians. He gives the example of \(3\pi/\pi\) radians, which is more easily visualized as 108°.
4.6. EXERCISES DE-2

-Q 6. Low-pass RC filter

(a) Use the ABCD method to find the matrix representation of Fig. 4.6.

(b) Assuming that $I_2 = 0$, find the transfer function $H(s) \equiv V_2/V_1$. From the results of the ABCD matrix you determined above, show that

$$H(s) = \frac{1}{1 + R_1 C s}.$$

(c) The transfer function $H(s)$ has one pole. Where is the pole? Find the residue of this pole.

(d) Find $h(t)$, the inverse Laplace transform of $H(s)$.

(e) Assuming that $V_2 = 0$, find $Y_{12}(s) \equiv I_2/V_1$.

(f) Find the input impedance to the right-hand side of the system $Z_{22}(s) = V_2/I_2$ for two cases: $V_4 = 0$ and $V_4 = 0$.

(g) Compute the determinant of the ABCD matrix. Hint: It is always 1.

(h) Compute the derivative of $H(s) = \frac{V_2}{V_1} |_{I_2=0}$.

Problem 4.15 With the help of a computer

In the following problems, we will look at some of the concepts from this homework using Matlab/Octave. We are using the sym function which requires Matlab's/Octave's symbolic math toolbox. Try using the EWS lab's Matlab. Alternative symbolic-math tool such as Wolfram Alpha.15

Example: To find the Taylor series expansion about $s = 0$ of

$$F(s) = -\log(1 - s),$$

first consider the derivative and its Taylor series (about $s = 0$);

$$F'(s) = \frac{1}{1 - s} = \sum_{n=0}^{\infty} s^n.$$

Then, integrate this series term by term;

$$F(s) = -\log(1 - s) = \int F'(s) ds = \sum_{n=0}^{\infty} \frac{s^n}{n}.$$

Alternatively, you may use Matlab/Octave commands:

```matlab
sym s
Taylor(-log(1-s),'order',7)
```

(a) Use Octave's `taylor(-log(1-s))` to 7th order, as in the example above.

1. Try the above Matlab/Octave commands. Give the first 7 terms of the Taylor series (confirm that Matlab/Octave agrees with the formula derived above).

2. What is the inverse Laplace transform of this series? Consider the series term by term.

15http://www.wolframalpha.com/
(b) \(\text{Q 7.2: The function } 1/\sqrt{z} \text{ has a branch point at } z = 0; \text{ thus it is singular there.} \)

1. Can you apply Cauchy’s integral theorem when integrating around the unit circle?

2. Below is a Matlab/Octave code that computes \(\int_0^{2\pi} \frac{dz}{\sqrt{z}} \) using Matlab’s/Octave’s symbolic analysis package:

   ```matlab
   syms z
   I=int(1/sqrt(z))
   J = int(1/sqrt(z),exp(-j*pi),exp(j*pi));
   eval(J)
   ```

 Run this script. What answers do you get for \(I \) and \(J \)?

3. Modify this code to integrate \(f(z) = 1/z^2 \) once around the unit circle. What answers do you get for \(I \) and \(J \)?

(c) \(\text{Q 7.3: Bessel functions can describe waves in a cylindrical geometry.} \)

The Bessel function has a Laplace transform with a branch cut

\[
J_0(t)u(t) \leftrightarrow \frac{1}{\sqrt{1+s^2}}.
\]

Draw a hand sketch showing the nature of the branch cut. Hint: Use `zviz`.

Problem 4.16: Matlab/Octave exercises:

Q 8.1: Comment on the following Matlab/Octave exercises

(a) \(\text{Try the following Matlab/Octave commands, and then comment on your findings.} \)

- \% Take the inverse LT of \(1/\sqrt{(1+s^2)} \)

  ```matlab
  syms s
  T=ilaplace(1/((sqrt((1+s^2)))));
  disp(T);
  ```

- \% Find the Taylor series of the LT

  ```matlab
  T = taylor(laplace(1/(sqrt((1+s^2)))),10); disp(T);
  ```

(b) \(\text{Q 8.2: When did Friedrich Bessel live?} \)

Author: Is it correct that these two questions are part of Problem 4.16?

(c) \(\text{Q 8.3: What did he use Bessel functions for?} \)

(d) \(\text{Q 8.4: Using `zviz` for each of the following functions:} \)

1. Describe the plot generated by `zviz S=Z`.
2. Are the functions defined below legal Brune impedances? \(\text{[i.e., Do they function obey } \Re(Z(\sigma > 0)) \geq 0] \text{?} \)

 \(\text{Hint: Consider the phase (color). Plot `zviz` for a reminder of the colormap.} \)
(i) \(\frac{1}{1 + \sqrt{1 + 2}} \)
(ii) \(\frac{1}{1 - \sqrt{1 - 2}} \)
(iii) \(\frac{1}{1 + \sqrt{1 + 2}} \)

4.17 Problem \#92 Find the \(LT^{-1} \) of one factor of the Riemann zeta function \(\zeta_p(s) \),
where \(\zeta_p(s) \leftrightarrow \zeta_p(t) \) and describe your results in words.

\[\zeta_p(s) = \frac{1}{1 - e^{-\pi T_p t}} = \sum_{k=0}^{\infty} e^{-\pi T_p t}, \]

for which you can look up the \(LT^{-1} \) transform of each term.

4.18 Problem \#10 Inverse transform of products:
The time-domain version of Eq. 4.5.4 (or 5) may be written as the convolution of all the \(z_k(t) \) factors:

\[z(t) \equiv z_2(t) \ast z_3(t) \ast z_4(t) \ast z_7(t) \cdots \ast z_p(t) \cdots, \]

where \(\ast \) represents time convolution.

4.52 Figure 4.7: This feedback network is described by a time-domain difference equation with delay \(T_p \), has an all-pole transfer function \(\zeta_p(s) \equiv \frac{Q(s)}{I(s)} \) given by Eq. 4.49, which physically corresponds to a stub of a transmission line, with the input at one end and the output at the other. To describe the \(\zeta_p(s) \) function we must take \(\alpha = -1 \). A transfer function \(Y(s) = \frac{V(s)}{I(s)} \) that has the same poles as \(\zeta_p(s) \), but with zeros as given by Eq. 4.49, is the input admittance \(Y(s) = I(s)/V(s) \) of the transmission line, defined as the ratio of the Laplace transform of the current \(i(t) \) \(\leftrightarrow I(s) \) over the voltage \(v(t) \leftrightarrow V(s) \).

4.53 Explain what this means in physical terms. Start with two terms (e.g., \(z_1(t) \ast z_2 \)).

Physical interpretation: Such functions may be generated in the time domain as shown in Fig. 4.7 (p. 134), using a feedback delay of \(T_p \) seconds, described by the two equations in the figure with a unity feedback gain \(\alpha = -1 \). Taking the Laplace transform of the system equation we see that the transfer function between the state variable \(q(t) \) and the input \(x(t) \) is given by \(\zeta_p(s) \), which is an all-pole function, since

\[Q(s) = e^{-\pi T_p s} Q(s) + V(s), \]

and \(\zeta_p(s) \equiv \frac{Q(s)}{V(s)} = \frac{1}{1 - e^{-\pi T_p s}}. \]

Closing the feed-forward path gives a second transfer function \(Y(s) = \frac{I(s)}{V(s)} \), namely:

\[Y(s) = \frac{I(s)}{V(s)} = \frac{1 - e^{-\pi T_p s}}{1 + e^{-\pi T_p s}}. \]
If we take $i(t)$ as the current and $v(t)$ as the voltage at the input to the transmission line, then $y_p(t) \leftrightarrow \zeta_p(s)$ represents the input impedance at the input to the line. The poles and zeros of the impedance interleave along the $j\omega$ axis. By a slight modification, $\zeta_p(s)$ may alternatively be written as

$$Y_p(s) = \frac{e^{sT_p/2} + e^{-sT_p/2}}{e^{sT_p/2} - e^{-sT_p/2}} = \frac{j\tan(sT_p/2)}{sT_p}.$$ \hfill (4.53)

Every impedance $Z(s)$ has a corresponding reflectance function given by a Möbius transformation, which may be read off of Eq. 4-9 as

$$\Gamma(s) = \frac{1 + Z(s)}{1 - Z(s)} = e^{-sT_p}.$$ \hfill (4.54)

since impedance is also related to the round-trip delay T_p on the line. The inverse Laplace transform of $\Gamma(s)$ is the round-trip delay T_p on the line

$$\gamma(t) = \delta(t - T_p) \leftrightarrow e^{-sT_p}.$$ \hfill (4.55)

Working in the time domain provides a key insight, as it allows us to parse out the best analytic continuation of the infinity of possible continuations that are not obvious in the frequency domain. Transforming to the time domain is a form of analytic continuation of $\zeta(s)$ that depends on the assumption that $z(t)$ is one-sided in time (causal).
4.7 Inverse Laplace transform ($t < 0$): Cauchy's residue theorem

(Eq. 3.94, p. 136)

The inverse Laplace transform Eq. 3.72 transforms a function of complex frequency $F(s)$ and returns a causal function of time $f(t)$

$$f(t) = F(s).$$

Now we where $f(t) = 0$ for $t < 0$. Examples are provided in Table C.3 (p. 276). We next discuss the details of finding the inverse transform by use of CT-3, and how the causal requirement $f(t < 0) = 0$ comes about.

The integrand of the inverse transform is $F(s)e^{st}$ and the limits of integration are $-\sigma_0 + \jmath \omega$. To find the inverse we must close the curve at infinity and specify that the integral at $\omega \rightarrow \infty$. There are two ways to close these limits to the right $\sigma > 0$ (RHP) and to the left $\sigma < 0$ (LHP), but there needs to be some logical reason for this choice. That logic is determined by the sign of t. For the integral to converge, the term e^{st} must go to zero as $\omega \rightarrow \infty$. In terms of the real and imaginary parts of $s = \sigma + \jmath \omega$, the exponential may be rewritten as $e^{\sigma t}e^{\jmath \omega t}$. Note that both t and ω go to ∞. So it is the interaction between these two limits that determines how we pick the closure, RHP vs. LHP.

Case for causality ($t < 0$): Let us first consider negative time, including $t \rightarrow -\infty$. If we were to close the left half-plane ($\sigma < 0$), then the product σt is positive ($\sigma < 0$, $t < 0$, thus $\sigma t > 0$). In this case as $\omega \rightarrow \infty$, the closure integral $|s| \rightarrow \infty$ will diverge. Thus we may not close in the LHP for negative time. If we close in the RHP ($\sigma > 0$) then the product $\sigma t < 0$ and e^{st} will go to zero as $\omega \rightarrow \infty$. This then justifies closing the contour, allowing for the use of the Cauchy theorems.

If $F(s)$ is analytic in the RHP, the FTCC applies, and the resulting $f(t)$ must be zero and the inverse Laplace transform must be causal. This argument holds for any $F(s)$ that is analytic in the RHP ($\sigma > 0$).

Case of unstable poles: An important but subtle point arises: If $F(s)$ has a pole in the RHP, then the above argument still applies if we pick σ_0 to be to the right of the RHP pole. This means that the inverse transform may still be applied to unstable poles (those in the RHP). This explains the need for the σ_0 in the limits. If $F(s)$ has no RHP poles, then $\sigma_0 = 0$ is adequate and this factor may be ignored.

Case for zero time ($t = 0$): When time is zero, the integral does not, in general, converge, leaving $f(t)$ undefined. This is most clear in the case of the step function $u(t) \leftrightarrow 1/s$, where the integral may not be closed because the convergence factor $e^{st} = 1$ is lost for $t = 0$.

The fact that $u(t)$ does not exist at $t = 0$ explains the Gibbs phenomenon in the inverse Fourier transform. At times where a jump occurs, the derivative of the function does not exist, and thus the time response function is not analytic. The Fourier expansion cannot converge at places where the function is not analytic. A low-pass filter may be used to smooth the function, but at the cost of temporal resolution. Forcing the function to be analytic at the discontinuity by smoothing the jumps is an important computational method.

4.7.1 Inverse Laplace transform ($t > 0$)

Case of $t > 0$: Next we investigate the convergence of the integral for positive time $t > 0$. In this case we must close the integral in the LHP ($\sigma < 0$) for convergence, so that $st < 0$ ($\sigma < 0$ and $t > 0$). When there are poles on the $\omega j = 0$ axis, $\sigma_0 > 0$ assures convergence by keeping the on-axis poles inside the contour. At this point CT-3 is relevant. If we restrict ourselves to simple poles (as required for a Brune impedance), the residue theorem may be directly applied.

The most simple example is the step function, for which $F(s) = 1/s$ and thus

$$u(t) = \int_{LHP} \frac{e^{st}}{s} \, ds \leftrightarrow \frac{1}{s}.$$
which is a direct application of the CT-3, Eq. 4.35 (p. 171). The forward transform of $u(t)$ is straightforward, as discussed on p. 135. This is true of most of the elementary forward Laplace transforms. In these cases, causality is built into the integral by its limits. An interesting problem is how to prove that $u(t)$ is not defined at $t = 0$.

![Image of a figure showing colorized plots of $s = \cos(ptz)$ and $s = \text{besselj}(0, ptz)$](image)

Figure 4.8: Left: Colorized plot of $w(z) = \sin(z)$. Right: Colorized plot of $w(z) = J_{0}(az)$. Note the similarity of the two functions. The first Bessel zero is at 2.405, and thus appears at $0.7655 = 2.405/\pi$, about 1.53 times larger than the root of $\sin(\pi z)$ at $1/2$. Other than this minor distortion of the first few roots, the two functions are basically identical. It follows that their τ_{TH} must have similar characteristics, as documented in Table C.4 (p. 277).

The inverse Laplace transform of $F(s) = 1/(s + 1)$ has a residue of 1 at $s = -1$; thus that is the only contribution to the integral. More demanding cases are Laplace transform pairs as shown in Fig. 4.8 (right).

$$\frac{1}{\sqrt{t}} u(t) \leftrightarrow \sqrt{\frac{\pi}{s}} \quad \text{and} \quad J_{0}(t) u(t) \leftrightarrow \frac{1}{\sqrt{s^{2} + 1}}$$

in Table C.4 (p. 277). Many of these are easily proved in the forward direction, but are much more difficult in the inverse direction due to the properties at $t = 0$, unless of course CT-3 is invoked. The last LT pair gives insight into the properties of Bessel functions $J_{0}(z)$ and $H_{0}^{(1)}(z)$, with a branch cut along the negative axis (see Fig. 4.9, p. 165).

The form \sqrt{s} is called a semi-inductor (Kim and Allen, 2013), also known as the skin effect in EM theory. The form $1/\sqrt{s}$ is a semi-capacitor. (Fig. 4.8, left).

Two more examples are given in Fig. 4.9 to show Bessel functions $J_{0}(pz)$ and the Hankel function $H_{0}^{(1)}(pz/2)$ colorized maps. Note how the white and black contour lines are always perpendicular where they cross, just as in the calibration plots for the x and y axes, shown in Fig. 3.12 on p. 144.

Along the z-axis, the $\cos(\pi z)$ is the periodic with a period of π. The dark spots are at the zeros at $\pm \pi/2, \pm 3\pi/2, \ldots$. Off the $z = 0$ axis, the function either goes to zero (black) or ∞ (white). This behavior carries the same π periodicity as it has along the $z = 0$ line. On the right is the Hankel function $H_{0}^{(1)}(pz)$, which is a mixed and distorted version of $\cos(\pi z)$ with the zeros are pushed downward and $e^{\pi z}$. This colorized plot shows that these two functions become the same for $x = Re > 0$. These figures are worthy of careful study to develop an intuition for complex functions of complex variables. On p. 141 we explored related complex mappings in greater detail.

Some open questions: Without the use of CT-3 it is difficult to see how to evaluate the inverse Laplace transform of $1/s$ directly. For example, how does one show that the above integral is zero for negative time (or that it is 1 for positive time)? CT-3 neatly solves this difficult problem by the convergence of the integral for negative and positive time. Clearly the continuity of the integral at $\omega \to \infty$ plays an important role. Perhaps the Riemann sphere plays a role in this that has not yet been explored.
4.7. INVERSE LAPLACE TRANSFORM

Figure 4.9: On the left is the Bessel function \(J_0(\pi z) \), which is similar to \(\cos(\pi z) \), except the zeros are distorted away from \(s = 0 \) by a small amount, due to the cylindrical geometry. On the right is the related Hankel function \(H_0^{(1)}(\pi z/2) \). The Bessel and Hankel functions are solutions to the wave equation in cylindrical coordinates, with closed versus open boundary condition (Morse, 1948). The zeros in the function are the places where the pinned boundary condition is satisfied (where the string is constrained by the boundary). The Hankel function \(H_0^{(1)}(\pi z/2) \) has a branch cut and a complex zero at \(z_0, 12/\pi = -1.5 - 0.1 \), as seen in the plot.

Author: Please spell out LT on its first use. Or should this be in the script highlighted in blue below?

4.7.4 Properties of the LT (e.g., Linearity, convolution, time shift, modulation, etc.)

As shown in the table of Laplace transforms, there are integral (i.e., integration, not integer) relationships, or properties, that are helpful to identify. The first of these is a definition, not a property:

\[f(t) \leftrightarrow F(s). \]

When taking the LT, the time response is given in lower case (e.g., \(f(t) \)) and the frequency domain transform is denoted in upper case (e.g., \(F(s) \)). It is required, but not always explicitly specified, that \(f(t < 0) = 0 \); that is, the time function must be **causal**.

Postulate P1 (p. 138).

Linearity: The most basic property is the linearity (superposition) property of the LT, summarized by P2. Postulate P2 (p. 138).

Convolution property: The product of two LTs in frequency results in convolution in time:

\[
\left[f(t) * g(t) \right] = \int_0^t f(\tau)g(t-\tau)d\tau \leftrightarrow F(s)G(s),
\]

where we use the \(* \) operator as a shorthand for the convolution of two time functions.

A key application of convolution is filtering, which takes many forms. The most basic filter is the **moving average**, the moving sum of data samples, normalized by the number of samples. Such a filter has very poor performance. It also introduces a delay of half the length of the average, which may or may not constitute a problem, depending on the application. Another important example is a low-pass filter that removes high-frequency noise, or a notch filter that removes line noise (i.e., 60Hz in the US, and its 2nd and 3rd harmonics, 120 and 180Hz). Such noise is typically a result of poor grounding and ground loops. It is better to solve the problem at its root than to remove it with a notch filter. Still, filters are very important in engineering.
By taking the LT of the convolution we can derive this relationship:

\[
\int_0^\infty [f(t) * g(t)]e^{-st}dt = \int_0^\infty \int_0^t f(\tau)g(t-\tau)d\tau \ e^{-st}d\tau \\
= \int_0^t f(\tau) \left(\int_0^\infty g(t-\tau)e^{-st}d\tau\right) d\tau \\
= \int_0^t f(\tau) e^{-st} \left(\int_0^\infty g(t) e^{-s\tau'}d\tau'\right) d\tau \\
= G(s) \int_0^t f(\tau) e^{-st}d\tau \\
= G(s)F(s).
\]

We first encountered this relationship on page 103 in the context of multiplying polynomials, which was the same as convolving their coefficients. The parallel should be obvious. In the case of polynomials, the convolution was discrete in the coefficients, and here it is continuous in time. But the relationships are the same.

Time-shift property: When a function is time-shifted by time \(T_0 \), the LT is modified by \(e^{sT_0} \), leading to the property

\[
f(t - T_0) \leftrightarrow e^{-sT_0}F(s).
\]

This is easily shown by applying the definition of the LT to a delayed time function.

Time derivative: The key to the function analysis provided by the LT is the transformation of a time derivative on a time function, that is,

\[
\frac{d}{dt}f(t) \leftrightarrow sf(s).
\]

Here \(s \) is the eigenvalue corresponding to the time derivative of \(e^{st} \). Given the definition of the derivative of \(e^{st} \) with respect to time, this definition seems trivial. Yet that definition was not obvious to Euler. It needed to be extended to the space of complex analytic function \(e^{st} \), which did not happen until at least Riemann (1851).

Given a differential equation of order \(K \), the LT results in a polynomial in \(s \) of degree \(K \). It follows that this LT property is the cornerstone of why the LT is so important to scalar differential equations, as it was to the early analysis of Pell's equation and the Fibonacci sequence, as presented in earlier chapters.

This property was first uncovered by Euler. It is not clear if he fully appreciated its significance, but by the time of his death, it certainly would have been clear to him. Who first coined the terms *eigenvalue* and *eigenfunction*? The word *eigen* is a German word meaning *one*.

Initial and final value theorems: There are many more subtle relations between \(f(t) \) and \(F(s) \) that characterize \(f(0^+) \) and \(f(t \to \infty) \). While these properties can be very important in certain applications, they are beyond the scope of the present treatment. These relate to so-called *initial value theorems*. If the system under investigation has potential energy at \(t = 0 \), then the voltage (velocity) need not be zero for negative time. An example is a charged capacitor or a moving mass. These are important situations, but better explored in a more in-depth treatment.

4.7 Solving differential equations: Method of Frobenius

Many differential equations may be solved by assuming a power series (i.e., Taylor series) solution of the form

\[
y(x) = x^r \sum_{n=0}^{\infty} c_n x^n,
\]

(4.36)
with \(r \in \mathbb{Z} \) and coefficients \(c_n \in \mathbb{C} \). The method of Frobenius is quite general (Greenberg, 1988, p. 193).

Example. When a solution of this form is substituted into the differential equation, a recursion relation in the coefficients results. For example, if the equation is

\[
y''(x) = \lambda^2 y(x),
\]

the recursion is \(c_n = c_{n-1}/n \). The resulting equation is

\[
y(x) = e^{\lambda x} = x^0 \sum_{n=0}^{\infty} \frac{1}{n!} x^n,
\]

or **namely**, \(c_n = 1/n! \); thus \(n c_n = 1/(n - 1)! = c_{n-1} \).

Exercise. Find the recursion relation for \(y(x) = J_\nu(x) \) of order \(\nu \) that satisfies Bessel’s equation

\[
x^2 y''(x) + xy'(x) + (x^2 - \nu^2)y(x) = 0.
\]

of Eq. 4.56

Solution: If we assume a complex analytic solution of the form Eq. 4.38, we find the Bessel recursion relation for coefficients \(c_k \) to be (Greenberg, 1988, p. 231):

\[
c_k = -\frac{1}{k(k + 2 \nu)} c_{k-2}.
\]
4.8 Exercises DE-3

Topics of this homework:

Topic of assignment:

Brune impedance, lattice transmission line analysis.

Brune Impedance

Problem 4.19: Residue form

A Brune impedance is defined as the ratio of the force $F(s)$ over the flow $V(s)$, and may be expressed in residue form as

$$Z(s) = c_0 + \sum_{k=1}^{K} \frac{c_k}{s - s_k} = \frac{N(s)}{D(s)}$$

with

$$D(s) = \prod_{k=1}^{K} (s - s_k) \quad \text{and} \quad c_k = \lim_{s \to s_k} (s - s_k) D(s) = \prod_{n'=1}^{K-1} (s - s_n).$$

The prime on index n' means that $n = k$ is not included in the product.

(a) **Q 4.1-1:** Find the Laplace transform (LT) of a(1) spring, (2) dashpot and (3) mass. Express these in terms of the force $F(s)$ and the velocity $V(s)$, along with the electrical equivalent impedance:

1. Hooke's Law $f(t) = Kx(t)$
2. Dashpot resistance $f(t) = Rv(t)$
3. Newton's Law for mass $f(t) = M \frac{dv(t)}{dt}$

(b) **Q 4.1-2:** Take the Laplace transform (LT) of Eq. 3.78 (p. 137) and find the total impedance $Z(s)$ of the mechanical circuit.

(c) **Q 4.1-3:** What are $N(s)$ and $D(s)$ (see Eq. 4.57)?

(d) **Q 4.1-4:** Assume that $M = R = K = 1$, find the residue form of the admittance $Y(s) = 1/Z(s)$ (e.g. Eq. 4.1) in terms of the roots s_{\pm}.

You may check your answer with the Matlab's residue command. Author: Please spell out CRT. This is the only time it is used.

(e) **Q 4.1-5:** By applying the CRT, find the inverse Laplace transform (LT$^{-1}$). Use the residue form of the expression that you derived in the previous exercise. part (d).

Problem 4.20: Train transmission line

We wish to model the dynamics of a freight train having N such cars, and study the velocity transfer function under various load conditions. As shown in Fig. 4.37, the train model consists of masses connected by springs.
Physical description:

Use the ABCD method (see discussion in Appendix B.3, p. 269) to find the matrix representation of the system of Fig. 4.4. Define the force on the nth train car $f_n(t) \leftrightarrow F_n(\omega)$ and the velocity $v_n(t) \leftrightarrow V_n(\omega)$.

Break the model into cells consisting of three elements: a series inductor representing half the mass $(M/2)$, a shunt capacitor representing the spring $(C = 1/K)$, and another series inductor representing half the mass $(L = M/2)$. Making the model a cascade of symmetric $(n = 2)$ identical cell matrix $T(s)$.

(a) Find the elements of the ABCD matrix T for the single cell that relate the input node 1 to output node 2

(Force, Velocity):

\[
\begin{bmatrix}
F_1 \\
V_1 \\
F_2 \\
V_2 \\
\end{bmatrix} = T \begin{bmatrix}
F_3(\omega) \\
V_3(\omega) \\
\end{bmatrix}
\]

(4.48)

(b) Express each element of $T(s)$ in terms of the complex Nyquist ratio $s/s_c < 1$ ($s = 2\pi j f$, $s_c = 2\pi j f_c$). The Nyquist sampling cutoff frequency f_c is defined in terms of the minimum number of cells (i.e., 2) of length Δ per wavelength. The Nyquist sampling theorem says that there are at least two cars per wavelength (more than two time samples at the highest frequency). From the figure, the distance between cars $\Delta = c_0 T_0$ [m], where

\[
c_0 = \frac{1}{\sqrt{MC}} \quad [\text{m/s}].
\]

The cutoff frequency obeys $f_c \lambda_c = c_0$, where the Nyquist wavelength is $\lambda_c = 2\Delta$. Therefore the Nyquist sampling condition is

\[
\omega < \frac{2\pi f_c}{\lambda_c} = \frac{2\pi c_0}{2\Delta} = \frac{\pi}{\Delta \sqrt{MC}} \quad [\text{Hz}].
\]

(4.49)

(c) Use the property of the Nyquist sampling frequency $(\omega < \omega_c)$ to remove higher-order powers of frequency

\[
1 + \left(\frac{s}{s_c}\right)^2 \approx 1
\]

to determine a band-limited approximation of $T(s)$.

Problem #3

Now consider the cascade of N such $T(s)$ matrices, and perform an eigenanalysis.
1. Find the eigenvalues and eigenvectors of $T(s)$ as functions of s/s_c. Note that the formulas for the eigenvalues, eigenvectors, and eigenmatrix are given above the problem setup.

Problem 4.22
Finally, find the velocity transfer function H.

(a) **Q 4.1:** Assuming that $N = 2$ and that $F_2 = 0$ (two half-mass problem), find the transfer function $H(s) \equiv \frac{V_2}{V_1}$. From the results of the T matrix you determined above, find

$$H_{21}(s) = \frac{V_2}{V_1} \bigg|_{s=0}$$

Express H_{12} in terms of a residue expansion.

(b) **Q 4.2:** Find $h_{21}(t) \leftrightarrow H_{21}(s)$.

(c) **Q 4.3:** What is the input impedance $Z_2 = F_2/V_2$ assuming $F_b = -r_0V_3$?

(d) **Q 4.4:** Simplify the expression for Z_2 assuming

1. $N \to \infty$
2. The characteristic impedance $r_0 = \sqrt{M/C}$, and
3. $F_3 = -r_0V_3$ (i.e., V_3 cancels).

4. Ignore higher-order frequency terms ($|s/s_c| < 1$).

(c) **Q 4.5:** State the ABCD matrix relationship between the first and Nth node in terms of the cell matrix. Write out the transfer function for one cell, H_{21}.

(f) **Q 4.6:** What is the velocity transfer function $H_{N1} = \frac{V_N}{V_1}$?
Chapter 5

Stream 3B:

\[\text{Vector Calculus (Stream 3b)} \]

5.1 Properties of Fields and potentials

Before we can define the vector operations $\nabla(), \nabla \cdot (), \nabla \times ()$, we must define the objects they operate on: **scalar** and **vector fields**. The word *field* has two very different meanings: a mathematical one, which defines an algebraic structure, and a physical one, discussed next.

Ultimately we wish to integrate in \mathbb{R}^3, \mathbb{R}^n and \mathbb{C}^n. Integration is quantified by several fundamental theorems of calculus, each about integration (p. 151-152), (see pp. 151-152).

Scalar fields: We use the term *scalar field* interchangeably with *analytic* in a connected region of the spatial vector $\mathbf{x} = [x, y, z]^T \in \mathbb{R}^3$. In mathematics, functions that are piece-wise differentiable are called *smooth*, which is distinct from *analytic*. Every analytic function may be written as a *single-valued* and infinitely differentiable power series. A smooth function has at least one or more derivatives, but need not be analytic.

Example: The simplest example of a scalar field is the voltage between two very large (think ∞) conducting parallel planes, bias to $V_0 [V]$. In this case the voltage varies linearly (the voltage is complex analytic) between the two plates. For example, one scalar field is

$$\Phi(x, y, z) = V_0 (1 - x) \quad [V], \quad (5.1)$$

is an example of a scalar field. At $x = 0$ the voltage is V_0, and at $x = 1$ the voltage is zero. Between 0 and 1 the voltage varies linearly. Thus $\Phi(x)$ defines a scalar field. The gradient of $\Phi(x)$ is a square pulse

$$\nabla \Phi(x) = -V_0 (u(x) - u(x - 1)).$$

Example: The function $f(t) = tu(t)$ is smooth and has one smooth derivative

$$\frac{d}{dt}tu(t) = u(t) + f\delta(t), \quad \frac{d^2}{dt^2}tu(t) = \frac{d}{dt}u(t) = \delta(t),$$

it but does not have a second derivative at $t = 0$. Thus $tu(t)$ is not analytic at $t = 0$. However, it has a Laplace transform $f(t) \leftrightarrow F(s)$

$$tu(t) = u(t) * u(t) \leftrightarrow \frac{1}{s^2}$$

with a second-order pole at $s = 0$ with amplitude 1. The amplitude of $1/s$ must be zero, since $F(s)$ has no such term. Thus the $L^2 \mathcal{T}$ is analytic everywhere except at its second-order pole. The derivative $df(t)/dt \leftrightarrow sF(s) = 1/s$ has a simple pole, with residue 1.

Example: Next consider $(a, b, c, d \in \mathbb{C})$

$$G(s) = \frac{a + bF(\zeta)}{c + dF(\zeta)} = \frac{as^2 + b}{cs^2 + d},$$

191
which has second-order poles and zeros.

Example: The outward eigenfunction of the lossy scalar wave equation in spherical coordinates (i.e., the **spherical Bessel function**) is

$$
\phi(r, \theta, \phi) = \frac{e^{i \omega t - k \sigma} r}{r},
$$

where \(\rho(r, \theta, \phi) \in C \) is the complex pressure, \(k(\sigma) = (\sigma + \beta_0 \sqrt{\lambda}) / c_0 \in C \) is the complex wave number (Eq. D.1, p. 283), \(c_0 \) is the speed of sound and \(r = \sqrt{x^2 + y^2 + z^2} \in \mathbb{R} \). If we ignore viscous and thermal losses, \(\beta_0 = 0 \) (Mason, 1928).

The pressure, a potential, is the solution to the acoustic wave equation in spherical coordinates. The \(1/r \) term compensates for the increasing area of the spherical wave as it propagates, to maintain constant energy. The area of the wavefront is proportional to \(r^2 \) thus the pressure must be proportional to \(1/r \), so that the integral of the energy \((\propto \rho^2 \times 1/r^2) \) over the area \(\propto r^2 \) remains constant as the wave progresses outward. Note that the gradient of the potential (i.e., pressure) is proportional to the flow (mass flux) of the wave. The power flux is the product of the potential and the flux, and the ratio is the impedance. In the case of acoustics, this ratio is called the **acoustic impedance**, measured in acoustic ohms (see Table 3.2, p. 129).

It is noted that \(\ln \rho(r, s) = st - \kappa(s) r - \ln r \) is analytic everywhere except at \(r = 0 \), but double-valued due to \(\beta_0 \sqrt{\lambda} \), forming a branch cut, as required to fully describe it in the complex \(s \) plane.

To keep the discussion simple, initially we will limit the definition to an **analytic surface** \(S(x) \), as shown in Fig. 5.1, having height \(z(x, y) \in \mathbb{R} \), as a function of \(x, y \in \mathbb{R}^2 \) (a plane):

$$
z(x, y, t) = \phi(x, y, t),
$$

where \(z(x, y, t) \) describes a surface that is analytic in \(x \). Optionally, one may allow the field to be a single-valued function of time \(t \in \mathbb{R} \), since that is the nature of the solutions of the equations we wish to solve.

In Fig. 5.1 we show a surface that has

Figure 5.1: Definition of the unit vector \(\hat{\mathbf{n}} \) defined by the gradient \(\nabla S \).

An **analytic surface** \(S(x) \) is shown in Fig. 5.1, having isoclines (lines on a surface with constant slope).

Vector fields: A **vector field** is composed of three scalar fields. For example, the electric field used in Maxwell's equations, \(\mathbf{E}(x, t) = [E_x, E_y, E_z]^T \) [V/m], has three components, each of which is a scalar field. When the magnetic flux vector \(\mathbf{B}(x) \) is static (P5, p. 138), the potential \(\phi(x) \) [V] uniquely defines \(\mathbf{E}(x, t) \) via the gradient:

$$
\mathbf{E}(x, t) = -\nabla \phi(x, t) \quad \text{[V/m],}
$$

(5.2)

The electric force on a charge \(q \) is \(\mathbf{F} = q \mathbf{E} \) thus \(\mathbf{E} \) is proportional to the force, and when the medium is conductive, the current density (a flow) is \(\mathbf{J} = \sigma \mathbf{E} \) [A/m²]. The ratio of the potential to the flow is an impedance, thus \(\sigma \) is a conductance.

Example: Suppose we are given the vector field in \(\mathbb{R}^3 \)

$$
\mathbf{A}(x) = [\phi(x), \psi(x), \theta(x)]^T \quad \text{[Wb/m],}
$$

where each of the three functions is a scalar field. As an example, \(\mathbf{A}(x) = [x, xy, xyz]^T \) is a legal vector field, having components analytic in \(x \).
5.1. PROPERTIES OF FIELDS AND POTENTIALS

Examples: From Maxwell’s equations, the magnetic flux vector is given by

\[B(x, t) = \nabla \times A(x, t) \quad [\text{Wb/m}^2]. \tag{5.3} \]

We shall see that this is always true because the magnetic charge \(\nabla \cdot B(x, t) \) must be 0, which is always true given in-vacuo conditions.

To verify that a field is a potential, check out the units [V, A, °C]. However, a proper mathematical definition is that the potential must be an analytic function of \(x \) and \(t \), so that one may operate on it with \(\nabla() \) and \(\nabla \times () \). Note that the divergence of a scalar field is not a legal vector operation.

Feynman (1970c, pp. 14-1 to 14-3) provides an extended tutorial on the vector potential, with many examples.

Scalar potentials: The above discussion describes the utility of potentials for defining vector fields (e.g., Eqs. 5.2 and 5.3). The key distinction between a potential and a scalar field is that potentials have units and thus have a physical meaning. Scalar potentials (i.e., voltage \(\phi(x, t) \) [V], temperature \(T(x, t) \) [°C], and pressure \(p(x, t) \) [pascals]) are examples of physical scalar fields. All potentials are composed of scalar fields, but not all scalar fields are potentials.

Examples: The \(\hat{y} \) component of \(E \), \(E_y(x, t) = \hat{y} \cdot E(x, t) \) [V/m], is not a potential. While \(\nabla E_y \) is mathematically defined, as the gradient of one component of a vector field, it has no physical meaning (as best I know).

Vector potentials: Vector potentials, like scalar potentials, are vector fields with physically meaningful units. They are more complicated than scalar potentials because they are composed of three scalar fields. Vector fields are composed of laminar and rotational flow, which are mathematically described by the fundamental theorem of vector calculus, i.e., Helmholtz’s decomposition theorem. One superficial, but helpful comparison is the momentum of a mass, which may be decomposed into its forward (linear) and rotational momentum.

Since we find it useful to analyze problems using potentials (e.g., voltage) and then take the gradient (e.g., voltage difference) to find the flow (electric field \(E(x, t) \)), the same logic and utility apply when using the vector potential to describe the magnetic flux (flow) \(B(x, t) \) (Feynman, 1970d). When operating on a scalar potential, we use a gradient, whereas for the vector potential, we operate with the curl.

And in Eq. 5.2 we assumed that the magnetic flux vector \(B(x) \) was static, thus \(E(x, t) \) is the gradient of the time-dependent voltage \(\phi(x, t) \). However, when the magnetic field is dynamic (not static), Eq. 5.2 is not valid due to magnetic induction. A voltage induced into a loop of wire is proportional to the time-varying flux cutting across that loop of wire. This is known as the Ampere-Maxwell law. In the static case, the induced voltage is zero.

Thus the electric field strength includes both the scalar potential \(\phi(x, t) \) and magnetic flux vector potential \(A(x, t) \) components, while the magnetic field strength only depends on the magnetic potential.

5.1.1 Gradient \(\nabla \), divergence \(\nabla \cdot \), curl \(\nabla \times \), and Laplacian \(\nabla^2 \)

Three key vector differential operators are required for understanding linear partial differential equations, such as the wave and diffusion equations. All of these begin with the \(\nabla \) operator:

\[\nabla = \hat{x} \frac{\partial}{\partial x} + \hat{y} \frac{\partial}{\partial y} + \hat{z} \frac{\partial}{\partial z}. \]

The official name of this operator is nabla. It has three basic uses: (1) the gradient of a scalar field, the divergence of a vector field, and (3) the curl of a vector field. The shorthand notation \(\nabla \phi(x, t) = (\hat{x} \partial_x + \hat{y} \partial_y + \hat{z} \partial_z) \phi(x, t) \) is convenient.

Author: This is the first subheading in this section. Could there be a 5.1.1 heading "Scalar and Vector Fields" after the first paragraph on page 191? Then this would be 5.1.2.
Table 5.1: The three vector operators manipulate scalar and vector fields, as indicated. The gradient converts scalar fields into vector fields. The divergence maps vector fields to scalar fields. The curl maps vector fields to vector fields. Second-order operators (Christoffel, DoG, GoD) are mnemonics defined on p. 228; in Sec. 5.7.6 (p. 227).

<table>
<thead>
<tr>
<th>Name</th>
<th>Input</th>
<th>Output</th>
<th>Operator</th>
<th>Mnemonic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gradient</td>
<td>Scalar</td>
<td>Vector</td>
<td>(\nabla())</td>
<td>grad</td>
</tr>
<tr>
<td>Divergence</td>
<td>Vector</td>
<td>Scalar</td>
<td>(\nabla \cdot ())</td>
<td>div</td>
</tr>
<tr>
<td>Curl</td>
<td>Vector</td>
<td>Vector</td>
<td>(\nabla \times ())</td>
<td>curl</td>
</tr>
<tr>
<td>Laplacian</td>
<td>Scalar</td>
<td>Scalar</td>
<td>(\nabla \cdot \nabla = \nabla^2())</td>
<td>DoG</td>
</tr>
<tr>
<td>Vector Laplacian</td>
<td>Vector</td>
<td>Vector</td>
<td>(\nabla \cdot \nabla = \nabla^2())</td>
<td>GoD</td>
</tr>
</tbody>
</table>

Gradient:

As shown in Fig. 5.1 (p. 192), the gradient transforms a complex scalar field \(\Phi(x, s) \in \mathbb{C}\) into a vector field (\(\mathbb{C}^3\)):

\[
\nabla \Phi(x, s) = \left(\frac{\partial \Phi}{\partial x} \hat{x} + \frac{\partial \Phi}{\partial y} \hat{y} + \frac{\partial \Phi}{\partial z} \hat{z} \right) \Phi(x, s)
\]

\[
= \frac{\partial \Phi}{\partial x} \hat{x} + \frac{\partial \Phi}{\partial y} \hat{y} + \frac{\partial \Phi}{\partial z} \hat{z}.
\]

that gives

The gradient may also be factored into a unit vector \(\hat{n}\), as defined in Fig. 5.1, defining the direction of the gradient, and the gradient’s length \(||\nabla \Phi||\), defined in terms of the norm of the gradient. Thus the gradient of \(\Phi(x)\) may be written in “polar coordinates” as \(\nabla \Phi(x) = ||\nabla \Phi|| \hat{n}\), thus defining the unit vector

\[
\hat{n} = \frac{\nabla(\Phi(x))}{||\nabla \Phi||}.
\]

Example: Consider the paraboloid \(z = 1 - (x^2 + y^2)\) as the potential, with isopotential circles of constant \(z\) that have radius of zero at \(z = 1\) and unit radius at \(z = 0\). The negative gradient

\[
E(x) = -\nabla z(x, y) = 2(x\hat{x} + y\hat{y} + 0\hat{z})
\]

is perpendicular to the circles of constant radius (constant \(z\)) and thus points in the direction of the radius. If one were free-fall skiing this surface, they would be the first one down the hill. Normally skiers try to stay close to the isoclines (not in the direction of the gradient), so they can stay in control. If you ski an isocline, you must walk, since there is no pull due to gravity.

Divergence:

The divergence of a vector field results in a scalar field. For example, the

Example: The divergence of the electric field flux vector \(D(x) \ [C/m^2]\) equals the scalar field charge density \(\rho(x) \ [C/m^3]\):

\[
\nabla \cdot D(x) = \left(\frac{\partial D_x}{\partial x} + \frac{\partial D_y}{\partial y} + \frac{\partial D_z}{\partial z} \right) \cdot D(x) = \frac{\partial D_x}{\partial x} + \frac{\partial D_y}{\partial y} + \frac{\partial D_z}{\partial z} = \rho(x).
\]

(5.4)

Thus the divergence is analogous to the scalar (dot) product (e.g., \(A \cdot B\)) between two vectors.

Example: Recall that the voltage is the line integral of the electric field,

\[
V(a) - V(b) = \int_a^b E(x) \cdot dx = -\int_a^b \nabla V(x) \cdot dx = -\int_a^b \frac{dV}{dx} dx,
\]

(5.5)

which is simply the fundamental theorem of calculus (Sec. 1.51). In a charge-free region, this integral is independent of the path from \(a\) to \(b\), which is the property of a conservative system.
we work Postulate

When working with guided waves (narrow tubes of flux) having rigid walls that block flow, such that the diameter is small compared with the wavelength \(\lambda = c_0 / f \), the divergence simplifies to

\[
\nabla \cdot \mathbf{D}(\mathbf{x}) = \nabla \cdot D_r = \frac{1}{A(r)} \frac{\partial}{\partial r} A(r) D_r(r),
\]

where \(r \) is the distance down the horn (range variable), \(A(r) \) is the area of the isoresponse surface as a function of range \(r \), and \(D_r(r) \) is the radial component of vector \(\mathbf{D} \) as a function of range \(r \). In spherical, cylindrical and rectangular coordinates, Eq. 5.6 provides the correct expression (Table 5.2, p. 217).

Properties of the Divergence

The divergence is a measure of the flux density of the vector field. A vector field is said to be incompressible if the divergence of that field is zero. It is therefore compressible when the divergence is non-zero, e.g., \(\nabla \cdot \mathbf{D}(\mathbf{x}, s) = \rho(\mathbf{x}, s) \).

Examples: Compared to air, water is considered to be incompressible. The stiffness of a fluid (i.e., the bulk modulus) is a measure of its compressibility. At very low frequencies, air may be treated as incompressible (just like water), since as \(s \to 0 \),

\[
- \nabla \cdot \mathbf{u}(\mathbf{x}, s) = \frac{s}{\eta_0 p_0} \mathbf{p}(\mathbf{x}, s) \to 0.
\]

The definition of compressible depends on the wavelength in the medium, so the term must be used with some awareness of the frequencies being used in the analysis. As a rule of thumb, if the wavelength \(\lambda = c_0 / f \) is much larger than the size of the system, the medium may be modeled as an incompressible fluid.

Curl:

The **curl** transforms a complex vector field \(\mathbf{H}(\mathbf{x}, s) \in \mathbb{C}^3 \) \((C(\mathbf{x}, s) \in \mathbb{C}^2) \) \([\text{A/m}^2]\). For example, the

Examples: The curl of the **magnetic intensity** \(\mathbf{H}(\mathbf{x}, s) \) vector in the frequency domain, is equal to the vector **current density** \(\mathbf{C}(\mathbf{x}, s) \):

\[
\nabla \times \mathbf{H}(\mathbf{x}, s) \equiv \left| \begin{array}{ccc} \hat{x} & \hat{y} & \hat{z} \\ \partial_x & \partial_y & \partial_z \\ H_x & H_y & H_z \end{array} \right| = \mathbf{C}(\mathbf{x}, s) \quad [\text{A/m}^2].
\]

The notation \(| \cdot |\) indicates the determinant (Appendix A.2.1, p. 260), \(\partial_x \) is shorthand for \(\partial / \partial x \), and \(\mathbf{H} = [H_x, H_y, H_z]^T \).

Examples: The curl and the divergence are both key when writing out Maxwell's four equations. Without a full understanding of these two differential operators \((\nabla, \nabla \times)\), there is little hope of understanding Maxwell's basic results, the most important equations of mathematical physics and the starting point for Einstein's relativity theories.

In / corresponds to

The curl is a measure of the rotation of a vector field. For the case of water, it would correspond to the angular momentum, such as in a whirlpool, or with air, a tornado. A spinning top is another example, given a spinning solid body. While a gyroscope falls over if not spinning, once spinning, it can stably stand on its pointed tip. These systems are stable due to conservation of angular momentum.

For example, when

classifications

5.60

fundamental theorem of vector calculus (Eq. 5.59, p. 235).
Laplacian:

The Laplacian operator is defined as [Table 5.1] the divergence of the gradient (DoG) \(\nabla^2 \equiv \nabla \cdot \nabla \), or

\[
\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \quad \text{(5.8)}
\]

Starting from a scalar field, the gradient produces a vector, which is then operated on by the divergence to take the output of the gradient back to a scalar field. Thus the Laplacian transforms a scalar field back to a scalar field. We have seen the Laplacian before when we defined complex analytic functions (Eq. 4.15, p. 154). A second form of Laplacian (Table 5.1) is the vector Laplacian \(\nabla^2 \), defined as the divergence of the gradient of a vector field. (Table 5.1), defined as the gradient of the divergence of \(\nabla \cdot \nabla \).

Examples: Taking the divergence of the simple example Eq. 5.1 results in the Laplacian of the voltage,

\[\nabla^2 \Phi(x) = -V_0(\delta(x) - \delta(x - 1)) = 0 \]

for \(0 < x < 1 \). Thus this example obeys Laplace’s equation.

Examples: One of the classic examples of the Laplacian is that of a voltage scalar field \(\Phi(x) \) [V], which results in the electric field vector

\[E(x) = [E_x(x), E_y(x), E_z(x)]^T = -\nabla \Phi(x) \quad \text{[V/m]}. \]

When scaled by the permittivity one obtains the electric flux \(D = \varepsilon_0 E \) [C/m²], the charge density per unit area. Here \(\varepsilon_0 \) [F/m] is the vacuum permittivity, which is \(\approx 8.85 \times 10^{-12} \text{F/m} \).

Taking the divergence of \(D \) results in the charge density \(\rho(x) \) [C/m³] at \(x \):

\[\nabla \cdot D = \nabla^2 \Phi(x) = \rho(x). \]

Thus the Laplacian of the voltage, scaled by \(\varepsilon_0 \), results in the local charge density.

Examples: Another classic example is an acoustic pressure field \(g(x, t) \) [Pa], which defines a vector force density \(f(x, t) = -\nabla g(x, t) \) [N/m²] (Eq. 5.22, p. 205). When this force density [N/m²] is integrated over an area, the net radial force [N] is

\[F_r = -\int \nabla g(x) dx \quad \text{[N]} , \quad \text{(5.9)} \]

An inflated balloon with a static internal pressure of 3 [atm] in an ambient pressure of 1 [atm] (sea level), forms a sphere due to the elastic nature of the rubber, which acts as a stretched spring under tension. The net force on the surface of the balloon is its area times the pressure drop of 2 atm across the surface. Thus the static pressure is

\[g(x) = 3u(r_0 - r) + 1 \quad \text{[Pa]}, \]

where \(u(r) \) is a step function of the radius \(r = ||x|| > 0 \), centered at the center of the balloon, having radius \(r_0 \).

Taking the gradient gives the negative\(^1\) of the radial force density (i.e., perpendicular to the surface of the balloon):

\[-f_r(r) = \nabla g(x) = \frac{\partial}{\partial r} 3u(r_0 - r) + 1 = -2\delta(r_0 - r) \quad \text{[Pa]}. \]

This equation describes a static pressure that is 3 [atm] \((10^5 \text{ Pa}) \) outside the balloon and 3 [atm] inside. The net positive force density is the negative of the gradient of the static pressure.

Finally, taking the divergence of the force produces a double delta function at \(r = r_0 \), namely:

\[\nabla^2 g(x) = -2\delta^{(1)}(r_0 - r) \]

where \(2 \) is the pressure drop across the balloon. If we took the thickness of the rubber \(l \) [m] into account, then \(\nabla^2 g = -2(\delta(r_0) - \delta(r_0 - l)) \).

\(^1\)The force is pointing out, stretching the balloon.
5.1.2 Laplacian operator in N dimensions

In general, it may be shown that in $N = 1, 2, 3$ dimensions (Sommerfeld, 1949, p. 227),
\[\nabla^2 \mathcal{P} \equiv \frac{1}{r^{N-1}} \frac{\partial}{\partial r} \left(r^{N-1} \frac{\partial \mathcal{P}}{\partial r} \right). \tag{5.10} \]

For each value of N, the area $A(r) = A_r r^{N-1}$. This will turn out to be useful when working with the Laplacian in 1, 2, and 3 dimensions. This naturally follows from the Webster Horn Equation (Eq. 5.27, p. 207).

Example: When $N = 3$ (i.e., spherical geometry),
\[\nabla^2_3 \mathcal{P} = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 \frac{\partial \mathcal{P}}{\partial r} \mathcal{P}) \tag{5.11} \]
\[= \frac{1}{r^2} \frac{\partial^2}{\partial r^2} \mathcal{P} + \frac{2}{r} \frac{\partial}{\partial r} \mathcal{P} \tag{5.12} \]
resulting in the general d'Alembert solutions (Eq. 4.10 p. 160) for the spherical wave equation,
\[\mathcal{P}^\pm(r, \theta) = \frac{1}{r} e^{\pm \kappa r}. \]

5.1 the result of Example 5.5 Eqs. 5.11 and 5.12

Exercise: Prove this last result by expanding Eq. 5.11-5.12 using the chain rule. We get
\[\frac{1}{r^2} \frac{\partial}{\partial r} (r^2 \frac{\partial \mathcal{P}}{\partial r} \mathcal{P}) = \frac{1}{r^2} \left(2r + r^2 \frac{\partial}{\partial r} \right) \frac{\partial}{\partial r} \mathcal{P} \]
\[= \frac{2}{r} \nabla r + \nabla_{rr}. \]

Expanding Eq. 5.12 we obtain
\[\frac{1}{r} \frac{\partial}{\partial r} \left(r \nabla \mathcal{P} \right) + \frac{1}{r^2} \frac{\partial}{\partial r} \left(\mathcal{P} + r \nabla \mathcal{P} \right) \]
\[= \left(\frac{2}{r} \nabla r + \nabla_{rr} \right) + \frac{1}{r} \nabla r + \nabla_{rr}. \]

Summary: The radial component of the Laplacian in spherical coordinates (Eq. 5.11), simplifies to
\[\nabla^2_3 \rho(x) = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 \frac{\partial \rho}{\partial r}) = \frac{1}{r} \frac{\partial^2}{\partial r^2} r \rho(x). \]

Since $\nabla^2 = \nabla \cdot \nabla$, it follows that the net force $\mathbf{f}(x) = [F_r, 0, 0]^T$ (Eq. 5.9) in spherical coordinates has a radial component F_r and angular components of zero. Thus the force across a balloon may be approximated by a delta function across the thin sheet of stretched rubber.

Example: The previous example may be extended in an interesting way to the case of a rigid hose, a rigid tube, terminated on the right in an elastic medium (the above example of a balloon), for example an automobile tire. On the far left let's assume there is a pump injecting the fluid into the hose. Consider two different fluids: air and water. Air may be treated as a compressible fluid, whereas water is incompressible. However, such a classification is relative, being determined by the relative compliance of the balloon (i.e., tire) at the relatively rigid pump and hose.
This is a special case of a more general situation: When the fluid is treated as incompressible (rigid), the speed of sound becomes infinite, and the wave equation is not the best describing equation, and the motion is best approximated using Laplace's equation. This is the transition from short to long wavelengths, from wave propagation with delay to quasi-statics, having no apparent delay.

This example may be modeled as either an electrical or mechanical system. If we take the electrical analog, the pump is a current source, injecting charge \(Q \) into the hose, which being rigid cannot expand (has a fixed volume). The hose may be modeled as a resistor and the tire as a capacitor \(C \), which fills with charge as it is delivered via the resistor from the pump. A capacitor obeys the same law as a spring, \(F = K \Delta \), or in electrical terms, \(Q = CV \). Here \(V \) is the voltage, which acts as a force, \(F \); \(Q \) is the charge, which acts like the mass of the fluid. The charge is conserved, just as the mass of the fluid is conserved, meaning they cannot be created or destroyed. The flow of the fluid is called the \textit{flux}, which is the general term for the mass or charge current. The two equations may be rewritten directly in terms of the force \(F \), \(V \) and flow, as an electrical current \(I = dQ/dt \) or mass flux \(J = dM/dt \), giving two impedance relationships:

\[I = dQ/dt \quad \text{[A]} \]

\[J = dM/dt \quad \text{[kg/m²/s]} \]

for the electrical analog and

\[J = \frac{\Delta}{\eta} \quad \text{[kg/m²]} \]

It is common to treat the stiffness of the balloon, which acts as a spring with compliance \(C \) (stiffness \(K = 1/C \)), in which case the equations reduce to the same equation, in terms of an impedance \(Z \), typically defined in the frequency domain as the ratio of the generalized force over the generalized flow

\[Z(s) = \frac{1}{sC} \quad \text{[ohms]} \]

For the case of the mechanical system \(Z_m(s) \equiv F/J \), and for the electrical system \(Z_e(s) \equiv \Phi/I \). It is conventional to use the unit [ohms] when working with any impedance. It is convenient to use a uniform terminology for different physical situations and forms of impedance, greatly simplifying the notation.

While the two systems are very different in their physical realization, they are mathematically equivalent, forming a perfect analog. The formula for the impedance is typically expressed in the Laplace frequency domain, which of course is the \(LT \) of the time variables. In the frequency domain Ohm's law becomes Eq. 5.14 for the case of a spring and Eq. 5.13 for the capacitor.

The final solution of this system is solved in the frequency domain. The impedance seen by the source is the sum of the resistance \(R \) added to the impedance of the load, giving

\[Z = R + \frac{1}{sC} \]

The solution is simply the relation between the force and the flow, as determined by the action of the source on the load \(Z(s) \). The final answer is given in terms of the voltage across the compliance in terms of the voltage \(\Phi \) (or current \(I \)) due to the source. Once the algebra is done, in the frequency domain, the voltage across the compliance \(V_c \) divided by the voltage of the source is given as

\[\frac{V_c}{V_{source}} = \frac{R}{R + 1/sC} \]

Thus the problem reduces to some algebra in the frequency domain. The time-domain response is found by taking the inverse \(LT \), which in this case has a simple pole at \(s_p = 1/RC \). Cauchy's residue theorem (p. 171) gives the final answer, which describes how the voltage across the compliance builds exponentially with time, from zero to the final value. Given the voltage, the current may also be computed as a function of time. This then represents the entire process of either blowing up a balloon, or charging a capacitor, the difference being only the physical notation, as the math is identical.
Note that the differential equation is first-order in time, which in frequency means the impedance has a single pole. This means that the equation for the charging of a capacitor or pumping up a balloon describes a diffusion process. If we had taken the impedance of the mass of the fluid in the hose into account, we would have a lumped-parameter model of the wave equation with a second-order system. This is mathematically the same as the homework assignment (DR 2) about train cars (masses) connected together by springs (Problem 4.20, p. 188).

Example: The voltage

\[\phi(x, t) = e^{-\kappa x} u(t - x/c) \leftrightarrow \frac{1}{s} e^{-\kappa x} \quad [V] \]

(5.15)

is an important case since it represents one of d'Alembert's two solutions (Eq. 4.16, p. 160) of the wave equation (Eq. 3.5, p. 71) as well as an eigenfunction of the gradient operator \(\nabla \). From the definition of the scalar (dot) product of two vectors (Fig. 3.5, p. 108),

\[\kappa \cdot \mathbf{x} = \kappa_x x + \kappa_y y + \kappa_z z = ||\kappa|| \, ||\mathbf{x}|| \cos \theta_{\kappa \mathbf{x}}, \]

where \(||\kappa|| = \sqrt{\kappa_x^2 + \kappa_y^2 + \kappa_z^2} \) and \(||\mathbf{x}|| = \sqrt{x^2 + y^2 + z^2} \) are the lengths of vectors \(\kappa \) and \(\mathbf{x} \), and \(\theta_{\kappa \mathbf{x}} \) is the angle between them. As before, \(s = \sigma + \omega j \) is the Laplace frequency.

We let \(\kappa = [\kappa_x, 0, 0]^T \) so that \(\kappa \cdot \mathbf{x} = \kappa_x x \). We shall soon see that \(||\kappa|| = 2\pi/\lambda \) follows from the basic relationship between a wave's radian frequency \(\omega = 2\pi f \) and its wavelength \(\lambda \):

\[\omega \lambda = c_0. \]

(5.16)

As frequency increases, the wavelength becomes shorter. This key relationship may have been first researched by Galileo (c. 1564), followed by (c. 1627) Mersenne's (Fig. 1.5, p. 23).

Exercise: Show that Eq. 5.15 is an eigenfunction of the gradient operator \(\nabla \).

\[\nabla \phi(x, t) \]

Solution: Taking the gradient of \(\phi(x, t) \) gives

\[\nabla e^{-\kappa x} u(t) = -\nabla \kappa \cdot x e^{-\kappa x} u(t) \]

\[= -\kappa e^{-\kappa x} u(t), \]

or in terms of \(\phi(x, t) \),

\[\nabla \phi(x, t) = -\kappa \phi(x, t) \leftrightarrow -\frac{s}{c} e^{-\kappa x}, \]

Thus \(\phi(x, t) \) is an eigenfunction of \(\nabla \), having the vector eigenvalue \(\kappa \). As before, \(\nabla \phi \) is proportional to the current, since \(\phi \) is a voltage, and the ratio \(k \) (i.e., the eigenvalue) may be thought of as a mass, analogous to the impedance of a mass (or inductor). In general the units provide the physical interpretation of the eigenvalues and their spectra. A famous example is the Rydberg spectrum of the hydrogen atom. ■

5.3 Compute \(\hat{n} \) for \(\phi(x, s) \) as given by Eq. 5.15.

\[\hat{n} = \frac{\kappa}{||\kappa||} \]

represents a unit vector in the \(\kappa \) direction. ■

Exercise: If the sign of \(\kappa \) is negative, what are the eigenvectors and eigenvalues of \(\nabla \phi(x, t) \)?

\[\nabla e^{-\kappa x} u(t) = -\kappa \nabla (x) e^{-\kappa x} u(t) \]

\[= -\kappa e^{-\kappa x} u(t). \]

See http://www-history.mcs.st-and.ac.uk/Photographies/Mersenne.html;

"In the early 1620s, Mersenne listed Galileo among the innovators in natural philosophy whose views should be rejected. However, by the early 1630s, less than a decade later, Mersenne had become one of Galileo's most ardent supporters." (Garber, 2004)

Nothing changes other than the sign of κ. Physically, this means the wave is traveling in the opposite direction, corresponding to the forward and retrograde d'Alembert waves.

Prior to this section, we have only considered the Taylor series in one variable, such as for polynomials $P_N(x), x \in \mathbb{R}$ (Eq. 3.7, p. 72) and $P_N(s), s \in \mathbb{C}$ (Eq. 3.39, p. 91). The generalization from real to complex analytic functions led to the $\mathcal{L} T_1$ and the host of integration theorems (FTCC, Cauchy-I, II, III). What is in store when we generalize from one spatial variable (\mathbb{R}) to three (\mathbb{R}^3)?

Exercise 5.5 Find the velocity $v(t)$ of an electron in a field E. **Solution:** From Newton's 2nd law,

$$-qE = m_e v(t) \quad [\text{Nt}],$$

where m_e is the mass of the electron. Thus we must solve this first-order differential equation to find $v(t)$. This is easily done in the frequency domain $v(t) \leftrightarrow V(\omega)$.

Role of Potentials: Note that the scalar fields (e.g., temperature, pressure, voltage) are all scalar potentials, summarized in Eq. 3.2 (p. 129). In each case the gradient of the potential results in a vector field, just as in the electric case above (Eq. 5.2).

It is important to understand the physical meaning of the gradient of a potential, which is typically a generalized force (electric field, acoustic force density, temperature flux), which in turn generates a flow (current, velocity, heat flux). **The ratio of the gradient over the flow determines the impedance.**

Four examples follow:

1. **Example 1:** The voltage drop across a resistor causes a current to flow, as described by Ohm's law. Taking the difference in voltage between two points is a crude form of gradient when the frequency f [Hz] is low, such that the wavelength is much larger than the distance between the two points. This is the essence of the *quasistatic approximation* (Postulate P10, p. 139).

2. **Example 2:** The gradient of the pressure gives rise to a force density in the fluid medium (air, water, oil, etc.), which causes a flow (volume, velocity vector) in the medium.

3. **Example 3:** The gradient of the temperature also causes a flow of heat, which is proportional to the thermal resistance, given Ohm's law for heat (Feynman, 1970c, p. 3-7).

4. **Example 4:** Nernst potential: When a solution contains charged ions, it is called an electrochemical Nernst potential $N(x, t)$ (Scott, 2002). This electrochemical field is similar to a voltage or temperature field, the gradient of which defines a virtual force on the charged ions.

Thus in the above examples there is a potential, the gradient of which is a force, which when applied to the medium (an impedance) causes a flow (flux or current) proportional to that impedance due to the medium. This is a very general set of concepts, worthy of some thought. In every case there is a force and a flow. The product of the force and flow is a power, while the ratio may be modeled using 2×2 ABCD impedance matrices (Eq. 3.60, p. 125).
5.1. PROPERTIES OF FIELDS AND POTENTIALS

5.6. Exercise: Show that the integral of Eq. 5.2 is an antiderivative. We use the definition of the antiderivative, defined by the FTC (Eq. 4.7, p. 151):

\[\phi(x, t) - \phi(x_0, t) = \int_{x_0}^{x} E(x, t) \cdot dx \]

\[= -\int_{x_0}^{x} \nabla \phi(x, t) \cdot dx \]

\[= -\int_{x_0}^{x} \left(\frac{\partial \phi}{\partial x} + \frac{\partial \phi}{\partial y} + \frac{\partial \phi}{\partial z} \right) (x, y) \cdot dx \]

\[= -\int_{x_0}^{x} \frac{\partial \phi}{\partial x} dx - \int_{x_0}^{y} \frac{\partial \phi}{\partial y} dy - \int_{x_0}^{z} \frac{\partial \phi}{\partial z} dz \]

\[= -\left(\phi(x, t) - \phi(x_0, t) \right) \]

This may be verified by taking the gradient of both sides:

\[\nabla \phi(x, t) - \nabla \phi(x_0, t) = -\nabla \int_{x_0}^{x} E(x, t) \cdot dx = E(x, t). \]

Author: Is the above exercise Exercise 5.6?

If we apply the FTC

Applying the FTC (Eq. 4.7, p. 151), the antiderivative must be \(\phi(x, t) = E_x x + 0 y + 0 z \). This very same point is made by Feynman (1970c, p. 4-1, Eq. 4.28).

Given that the force on a charge is proportional to the gradient of the potential, from the above exercise showing that the integral of the gradient only depends on the end points, the work done in moving a charge only depends on the limits of the integral, which is the definition of a conservative field, but which only holds in the ideal case where \(E \) is determined by Eq. 5.2, i.e., the medium has no friction (i.e., there are no other forces on the charge).

The conservative field: An important question is: "When is a field conservative?" A field is conservative when the work done by the motion is independent of the path of motion. Thus the conservative field is related to the FTC, which states that the integral of the work only depends on the end points.

A more complete answer must await the introduction of the fundamental theorem of vector calculus, discussed in Eq. 5.50, p. 235. A few specific examples provide insight:

1. Examples—The gradient of a scalar potential, such as the voltage (Eq. 5.2), defines the electric field, which drives a current (flow) across a resistor (impedance). When the impedance is infinite, the flow will be zero, leading to zero power dissipation. When the impedance is lossless, the system is conservative.

2. Examples—At audible frequencies the viscosity of air is quite small and thus, for simplicity, it may be taken as zero. However, when the wavelength is small (e.g., at 100 MHz \(\lambda = c_0/\nu = 345/10^5 = 3.45 \text{ mm} \)), the lossless assumption breaks down, resulting in a significant propagation loss. When the viscosity is taken into account, the field is lossy, thus the field is no longer conservative.

3. Examples—If a temperature field is a time-varying constant \(T(x, t) = T_0(t) \), there is no "heat flux," since \(\nabla T_0(t) = 0 \). When there is no heat flux (i.e., flux, or flow), there is no heat power, since the power is the product of the force times the flow.

4. Examples—The force of gravity is given by the gradient of Newton's gravitational potential (Eq. 3.1, p. 70):

\[F = -\nabla r \phi_N(r) = -\frac{1}{r^2}. \]

Historically speaking \(\phi_N(r) \) was the first conservative field, used to explain the elliptic orbits of the planets around the sun. **Galileo's law** says that bodies fall with constant acceleration, giving rise to a
parabolic path and a time of fall proportional to \(t^2 \). This behavior of falling objects directly follows from the Galilean potential:

\[
\phi_G(r) = \frac{1}{r - r_0} \approx -\frac{r_0}{r - r_0} \approx -r_0(1 - r/r_0 + (r/r_0)^2 + \cdots) \approx r_0 - r,
\]

which, given the large radius \(r_0 \) of the earth and the small distance of the object from the surface of the earth \(r - r_0 \), is equal to the distance above the ground. Thus Galileo's law says that the force a falling body sees is constant:

\[
F_G = -\nabla \phi_G(r) = 1.
\]

This can be decorated with constants to account for the actual size of the force of gravity.

Exercise 5.7

Example: Galileo discovered that the height of a falling object is

\[
h(t) = \frac{1}{2} m G_o(t - t_0)^2,
\]

where \(m \) is the object's mass and \(G_o \) is the gravitational constant for the earth at its surface \(r_0 \). Show that \(h(t) \) directly follows from the potential \(G = -r_0 \). This formula holds if you toss a ball into the air or if you drop it from a high place. **Solution:** Given Galileo's potential \(\phi(t) = m G_o(t - r) \), show that the force is constant, thus that \(\dot{r}(t) = m G_o \). Given Galileo's formula for the height \(h(t) \), the velocity is \(\dot{r}(t) = \phi(t) \), and the acceleration is \(\ddot{r}(t) = m G_o \). That is:

Exercise 5.8

Example Find the time that it takes to fall from a distance \(h = L \). Namely, solve \(\dot{r}(t) = L \) for the time the object takes to fall the distance \(L \). **Solution:** Setting \(t_0 = 0 \) gives \(t^2 = 2L/m G_o \). Thus the time to fall is \(t(L) = \sqrt{2L/m G_o} \).

5.2 Partial differential equations and field evolution

There are three main classes of partial differential equations (PDEs): elliptic, parabolic, and hyperbolic, distinguished by the order of the time derivative. These categories seem to have little mathematical utility (the categories appear as labels).

The Laplacian \(\nabla^2 \): In the most important case the space operator is the Laplacian \(\nabla^2 \), the definition of which depends on the dimensionality of the waves that is, the coordinate system being used. We first discussed the Laplacian as a 2D operator on p. 152, when we studied complex analytic functions, and again on p. 193. An expression for \(\nabla^2 \) for 1, 2 and 3 dimensions was provided as Eq. 5.10 (p. 197). In 3D rectangular coordinates it is defined as (see p. 196)

\[
\nabla^2 T(x) = \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \right) T(x).
\]

(5.17)

The Laplacian operator is ubiquitous in mathematical physics, starting with simple complex analytic functions (Laplace's equation) and progressing to Poisson's equation, the diffusion equation, and finally the wave equation. Only the wave equation expresses delay. The diffusion equation "wave" has an instantaneous spread (the effective "wave front" velocity is infinite, yet the wavelength is long; i.e., it's not a traveling wave).

Examples of elliptic, parabolic, and hyperbolic equations are:

1. **Laplace's equation**: The equation

\[
\nabla^2 \Phi(x) = 0
\]

(5.18)

which describes, for example, the voltage inside a closed chamber with various voltages on the walls, or the steady-state temperature within a closed container given a specified temperature distribution on the walls. There is no dynamics to the potential, even when it is changing, since the potential instantaneously follows the potential at the walls.
2. Poisson's equation: In the steady state the diffusion equation degenerates to either Poisson's or Laplace's equation, which are classified as elliptic equations (second-order in space, zero-order in time). Like the diffusion equation, the evolution has a wave velocity that is functionally infinite. An example:

\[\nabla^2 \phi(x, t) = \rho(x, t) \]

which holds for gravitational fields or the voltage around a charge.

3. Fourier diffusion equation: Equation 5.20 describes the evolution of the scalar temperature \(T(x, t) \) (a scalar potential), gradients of solution concentrations (i.e., ink in water) and Brownian motion. Diffusion is first-order in time, which is categorized as parabolic (first-order in time, second-order in space). When these equations are Laplace transformed, diffusion has a single real root, resulting in a real solution (e.g., \(T \in \mathbb{R} \)). There is no wavefront for the case of the diffusion equation. As soon as the source is turned on, the field is non-zero at every point in the bounded container. An example:

\[\nabla^2 T(x, t) = D_o \frac{\partial T(x, t)}{\partial t} + sD_o T(x, s) \]

(5.19)

which describes, for example, the temperature \(T(x, t) \) \(\leftrightarrow T(x, \omega) \), as proposed by Fourier in 1822, or the diffusion of two miscible liquids (Hick, 1855) and Brownian motion (Einstein, 1905). The diffusion equation is not a wave equation, since the temperature wavefront propagates instantaneously. The diffusion equation does a poor job of representing the velocity of molecules bouncing into each other, since such collisions have a mean free path, thus the velocity cannot be infinite.

4. Two types of wave equations:

(a) scalar wave equations: Eq. 3.3 (p. 71) describes the evolution of a scalar potential field, such as pressure \(p(x, t) \) (sound), or the displacement of a string or membrane under tension. The wave equation is second-order in time. When transformed into the frequency domain, the solution has pairs of complex conjugate roots, leading to two real solutions (i.e., \(\phi(x, t) \in \mathbb{R} \)). The wave equation is classified as hyperbolic (second-order in time and space).

(b) vector wave equations: Maxwell's equations describe the propagation of the EM electric field \(E(x, t) \) and magnetic field \(H(x, t) \), as functions of space \(x \) and time \(t \).

Solution evolution: The partial differential equation defines the evolution of the scalar field (pressure \(p(x, t) \) and temperature \(T(x, t) \)) or vector field \((E, D, B, H) \), as functions of space \(x \) and time \(t \). There are two basic categories of field evolution: diffusion and propagation.

1. Diffusion: The simplest and easiest PDE example, easily visualized, is a static (time-invariant) scalar temperature field \(T(x, t) \) [°C]. Just like an impedance or admittance, a field has regions where it is analytic, and for the same reasons, \(T(x, t) \) satisfies Laplace's equation:

\[\nabla^2 T(x, t) = 0. \]

Since there is no current when the field is static, such systems are lossless, and thus are conservative. When \(T(x, t) \) depends on time (is not static), it is described by the diffusion equation:

\[\nabla^2 T(x, t) = \frac{\partial}{\partial t} T(x, t). \]

(5.20)

Postulate [10, p. 138.]
The constant κ is called the thermal conductivity, which depends on the properties of the fluid in the container, with κ being the admittance per unit area. The conductivity is a measure of how the heat gradients induce heat currents $J = \kappa \nabla T$, analogous to Ohm's law for electricity.

Note that if $T(x, \infty)$ reaches a steady-state $J = 0$ as $t \to \infty$, it evolves into a static state; thus $\nabla^2 T = 0$. This depends on what is happening at the boundaries. When the wall temperature of a container is a function of time, then so will the internal temperature continue to change, with a delay that depends on the thermal conductivity κ.

Such a system is analogous to an electrical resistor-capacitor series circuit connected to a battery. For example, the wall temperature (voltage across the battery) represents the potential driving the system. The thermal conductivity κ (the electrical resistor) is likewise analogous. The fluid (the electrical capacitor) is being heated (charged) by the heat (charge) flux. In all cases Ohm's law defines the ratio of the potential (voltage) to the flux (current). How this happens can only be understood once the solution to the equations has been established.

2. **Propagation.** Pressure and electromagnetic waves are described by a scalar potential (pressure) (Eq. 3.3, p. 71) and a vector potential (electromagnets) (Eq. 5.54, p. 231), resulting in scalar and vector wave equations.

All these partial differential equations, scalar and vector wave equations, and the diffusion equation, depend on the Laplacian ∇^2, which we first saw with the Cauchy-Riemann conditions (Eq. 4.15, p. 154).

The vector Taylor series: Next we expand the concept of the Taylor series of one variable to $x \in \mathbb{R}^3$. Just as we generalized the derivative with respect to a real frequency variable $\omega \in \mathbb{R}$ to a complex frequency $s = \sigma + \omega j \in \mathbb{C}$, here we generalize the derivative with respect to $x \in \mathbb{R}^3$ to the vector $x \in \mathbb{R}^3$.

Since the scalar field is analytic in x, it is a perfect place to start. Assuming we have carefully defined the Taylor series (3.28, p. 86) in one and two (Eq. 4.12, p. 153) variables, the Taylor series of $f(x)$ in $x = 0 \in \mathbb{R}^3$ may be defined as

$$f(x + \delta x) = f(x) + \nabla f(x) \cdot \delta x + \frac{1}{2!} \sum_{k=1}^{3} \sum_{l=1}^{3} \frac{\partial^2 f(x)}{\partial x_k \partial x_l} \delta x_k \delta x_l + \text{HOT.}$$

From this definition it is clear that the gradient is the generalization of the second term in the 1D Taylor series expansion.

Summary: For every potential $\phi(x, t)$ there exists a force density $f(x, t) = -\nabla \phi(x, t)$, proportional to the potentials, which drives a generalized flow $u(x, t)$. If the normal component of the force and flow are averaged over a surface, the meanforce and volumeflow (i.e., volume velocity for the acoustic case) are defined. In such cases the impedance is the net force through the surface force over the net flow, and Gauss's law and quasi-statics (P10, p. 139) come into play (Feynman, 1970a). We call this the generalized impedance.

Assuming linearity (3.2, p. 138), the product of the force and flow is the power, and the ratio (force/flow) is an impedance (Fig. 3.2, p. 129). This impedance statement is called either Ohm's law, Kirchhoff's laws, Laplace's laws, or Newton's laws. In the simplest of cases, they are all linearized (proportional) complex relationships between a force and a flow. Very few impedance relationships are inherently linear over a large range of force or current, but for physically useful levels, they can be treated as linear. Nonlinear interactions require a more sophisticated approach, typically involving numerical methods.

In electrical circuits it is common to define a zero potential ground point that all voltages use as the referenced potential. The ground is a useful convention as a simplifying rule, but it obscures the
5.3. SCALAR WAVE EQUATION

Author: Please double check this page reference.

physics and obscures the fact that the voltage is not the force. Rather, the force is the voltage difference, referenced to the ground, which is defined as zero volts. This results in abstracting away (i.e., hiding) the difference in voltage. It seems misleading (more precisely, it is wrong) to state Ohm's law as the voltage over the current, since Ohm's law actually says that the voltage difference (i.e., voltage gradient) over the current defines an impedance (Kennelly, 1893).

When one measures the voltage between two points, it is a crude approximation to the gradient based on the quasi-static approximation (Page 227). The pressure is also a potential, the gradient of which is a force density, which drives the volume velocity (flow).

On Page 227 we introduce the fundamental theorem of vector calculus (aka Helmholtz decomposition theorem), which generalizes Ohm's law to include circulation (e.g., angular momentum, vorticity, and the related magnetic effects). To understand these generalizations in flow, one needs to understand compressible and rotational fields, complex analytic functions, and a lot more history of mathematical physics (Table 5.3, p. 226).

In summary, it is the difference in the potential (i.e., voltage, temperature, pressure) that is proportional to the flux. This can be viewed as a major simplification of the gradient relationship, justified by the quasi-static assumption (p. 139).

The roots of the impedance are related to the eigenmodes of the system equations.

(Postulate P10, also called H1)

5.3. Scalar wave equation (Acoustics)

In this section we discuss the general solution to the wave equation. The wave equation has two forms: scalar waves (acoustics) and vector waves (electromagnetics). These have an important mathematical distinction but a similar solution space, one scalar and the other vector. To understand the differences we start with the scalar wave equation.

The scalar wave equation: A good starting point for understanding PDEs is to explore the scalar wave equation (Eq. 3.3, p. 71). Thus, we shall limit our analysis to acoustics, the classic case of scalar waves. Acoustic wave propagation was first analyzed mathematically by Isaac Newton (electricity had yet to be discovered) in his famous book Principia (1687), in which he first calculated the speed of sound based on the conservation of mass and momentum.

in about 1678

Early history: The study of wave propagation begins at least as early as Huygens (ca. 1678), followed soon after (ca. 1687) by Sir Isaac Newton's calculation of the speed of sound (Pierce, 1981, p. 15). The acoustic variables are the pressure,

\[p(x, t) \leftrightarrow P(x, \omega) \]

and the particle velocity,

\[u(x, t) \leftrightarrow U(x, \omega). \]

To obtain a wave, one must include two basic components: the stiffness of air and its mass. These two equations shall be denoted (1) Newton's 2nd law \((F = ma)\) and (2) Hooke's law \((F = kx)\), respectively. In vector form these equations are (1) Euler's equation (i.e., conservation of momentum density),

\[-\nabla p(x, t) = \rho_0 \frac{\partial}{\partial t} u(x, t) \leftrightarrow \rho_0 s U(x, s) \] \hspace{1cm} (5.22)

is which assumes the time-average density \(\rho_0\) to be independent of time and position \(x\), and (2) the continuity equation (i.e., conservation of mass density),

\[-\nabla \cdot u(x, t) = \frac{1}{\eta_0 P_0} \frac{\partial}{\partial t} p(x, t) \leftrightarrow \frac{s}{\eta_0 P_0} P(x, s) \] \hspace{1cm} (5.23)
Figure 5.2: Experimental setup showing a large pipe on the left terminating the wall containing a small hole with a balloon, shown in green. At time \(t = 0 \) the balloon is punctured and a pressure pulse is released. The baffle on the left represents a semi-\(\infty \) long tube having a large radius compared to the horn input diameter 2a, such that the acoustic admittance looking to the left \(A/p_0c_0 \) with \(A \to \infty \) is very large compared to the horn’s throat admittance (Eq. 4.22, p. 161). At time \(T \) the outbound pressure pulse \(p(r, T) = \delta(t-x/c_0) \) has reached a radius \(r = r_0 \), where \(r = r_0 \) is the location of the source at the throat of the horn and \(r \) is measured from the vertex. At the throat of the horn \(\nabla \cdot \mathbf{v}_s = \mathbf{v}_s \cdot A \).

\[\text{(Pierce, 1981; Morse, 1948, p. 295).} \]

Here \(P_0 = 10^5 \text{ Pa} \) is the barometric pressure, \(\eta_0 P_0 \) is the dynamic (adiabatic) stiffness, with \(\eta_0 = 1.4 \). Combining Eqs. 5.22 and 5.23 (removing \(u(x, t) \)) results in the 3-dimensional (3D) scalar wave pressure equation

\[\nabla^2 p(x, t) = \frac{1}{c_0^2} \frac{\partial^2}{\partial t^2} p(x, t) \leftrightarrow \frac{s^2}{c_0^2} P(x, s) \quad (5.24) \]

with \(c_0 = \sqrt{\eta_0 P_0 / \rho_0} \) being the sound velocity. Because the merged equations describe the pressure, which is a scalar field, this is an example of the scalar wave equation.

Exercise

Show that Eqs. 5.22 and 5.23 can be reduced to Eq. 5.24.

Solution: Taking the divergence of Eq. 5.22 gives

\[-\nabla \cdot \nabla p(x, t) = \rho_0 \frac{\partial}{\partial t} \nabla \cdot u(x, t). \quad (5.25) \]

5.9

The Webster horn equation

There is an important generalization of the problem of lossless plane-wave propagation in 1-dimensional (1D) uniform tubes, known as transmission line theory. As depicted in Fig. 5.2, by allowing the area \(A(r) \) (e.g., for the conical horn \(A(r) = A_0 r/L \)) with \(L = \int [m^2] \) and \(A_0 \leq 4\pi r^2 \) of an acoustical waveguide (aka horn) to vary along the range axis \(r \) (the direction of wave propagation), general solutions to the wave equation may be explored. Classic applications of horns include vocal tract acoustics, loudspeaker design, cochlear mechanics, quantum mechanics (e.g., the hydrogen atom), and wave propagation in periodic media (Brillouin, 1953).

We must be precise when defining the area \(A(x) \): The area is not the cross-sectional area of the horn; rather it is the wavefront (isopressure) area and related to Gauss’ law, since the gradient of the pressure defines the force that drives the mass flow (aka, volume velocity).

For the scalar wave equation (Eq. 5.10, p. 197), the Webster Laplacian is

\[\nabla^2 g(r, t) = \frac{1}{A(r)} \frac{\partial}{\partial r} \left[A(r) \frac{\partial}{\partial r} g(r, t) \right]. \quad (5.26) \]

Postulate

The Webster Laplacian is based on the quasi-static approximation (P10, p. 13), which requires that the frequency lie below the critical value \(f_c = c_0/2a \); namely, that a half wavelength be greater than the horn diameter \(d \) (i.e., \(d < \lambda/2 \)).

For the case of the adult human ear canal, \(d = 7.5 \text{ mm} \) and \(f_c = (343/2 \cdot 7.5) \times 10^{-3} \approx 22.8 \text{ kHz} \).

\(^*\text{This condition may be written several ways, the most common being } ka < 1, \text{ where } k = 2\pi/\lambda \text{ and } a \text{ is the horn radius. This may be expressed in terms of the diameter as } ka < 1, \text{ or } d < \lambda/2 < \lambda/2. \text{ Thus } d < \lambda/2 \text{ may be a more precise metric by the factor } \pi/2 \approx 1.6. \text{ This is called the half-wavelength assumption, a synonym for the quasi-static approximation.}\)
The term on the right of Eq. 5.26, which is identical to Eq. 5.10 (p. 197), is also the Laplacian for thin tubes (e.g., rectangular, spherical, and cylindrical coordinates). Thus the Webster horn “wave” equation is

\[\frac{1}{A(r)} \frac{\partial}{\partial r} \left[A(r) \frac{\partial}{\partial r} g(r, t) \right] = \frac{1}{c_0^2} \frac{\partial^2}{\partial t^2} g(r, t) \leftrightarrow \frac{s^2}{c_0^2} \mathcal{P}(r, s), \tag{5.27} \]

where \(g(r, t) \leftrightarrow \mathcal{P}(r, s) \) is the **acoustic pressure** in Pascals [Pa] (Hanna and Slepian, 1924; Mawardi, 1949; Eissner, 1967; Morse, 1948; Olson (1947, p. 101); Pierce, 1981, p. 360). Extensive experimental analyses for various types of horns (conical, exponential, parabolic) along with a review of horn theory may be found in Goldsmith and Minton (1924). Of special interest is Eissner (1967) due to his history section and long list of relevant articles.

The limits of the Webster horn equation: It is commonly stated that the Webster horn equation (WHEN) is fundamentally limited and thus is an approximation that only applies to frequencies much lower than \(f_c \) (Morse, 1948; Shaw, 1970; Pierce, 1981). However, in all these discussions it is assumed that the area function \(A(r) \) is the horn’s cross-sectional area, not the area of the isobaric wavefront.

In the next section it is shown that this “limitation” may be avoided (subject to the \(f < f_c \) quasi-static limit, p10, p. 139), **making the Webster horn theory an “exact” solution for the lowest-order “plane-wave” eigenfunctions** of Eq. 5.27. The limiting nature of the quasi-static approximation is that it “ignores” higher-order evanescent modes, which are naturally small since, being evanescent modes below their cutoff frequency, the wave number is real, thus they do not propagate (Hahn, 1941; Karal, 1953). This is the same approximation that is required to define an impedance, since every eigenmode has an impedance (Miles, 1948). This method is frequently called a **modal analysis** or eigen analysis. These modes define a **Hilbert vector** space (also an eigen space).

As derived in Appendix G (p. 297), the acoustic variables (eigenfunctions) are redefined on the isobaric wavefront boundary for the **pressure** and the corresponding **volume velocity** (Hanna and Slepian, 1924; Morse, 1948; Pierce, 1981). The resulting acoustic impedance is then the ratio of the pressure over the volume velocity. This approximation is valid up to the frequency where the first cross-mode begins to propagate \(f > f_c \), which may be estimated from the roots of the Bessel eigenfunctions (Morse, 1948). Perhaps it should be noted that these ideas, which come from acoustics, apply equally well to electromagnetics or any other wave phenomena described by eigenfunctions.
Visco-thermal losses: When losses are to be included, \(\kappa(s) = s/c_o \) must be replaced with Eq. D.1 (p. 283). This introduces dispersion in the wavefront due to the very small term \(\beta_0 \sqrt{s} \), which contains a branch cut. When calculating the losses, one must be careful that they are always on the correct sheet. In cases where precise estimates of the wave properties and input impedance are required, this term is critical.

The best known examples of wave propagation are electrical and acoustic transmission lines. Such systems are loosely referred to as the telegraph or telephone equations, referring back to the early days of their discovery (Heaviside, 1892; Campbell, 1903b; Brillouin, 1953; Feynman, 1970a). In acoustics, waveguides are known as horns, such as the horn connected to the first phonographs from around the turn of the century (Webster, 1919). Thus the names reflect the historical development, to a time when the mathematics and the applications were running in close parallel.

5.4.1 Matrix formulation of WHEN

Newton's laws of conservation of momentum (Eq. 5.22) and mass (Eq. 5.23) are modern versions of Newton's starting point for calculating the horn lowest-order plane-wave eigenmode wave speed.

The acoustic equations for the average pressure \(\mathcal{P}(r, \omega) \) and the volume velocity derived in Appendix G, where the pressure and particle velocity equations (Eqs. G.4, G.6) are transformed into a 2 \(\times \) 2 matrix of acoustical variables, average pressure \(\mathcal{P}(r, \omega) \) and volume velocity \(\mathcal{V}(r, \omega) \):

\[
-\frac{d}{dr} \begin{bmatrix} \mathcal{P}(r, \omega) \\ \mathcal{V}(r, \omega) \end{bmatrix} = \begin{bmatrix} 0 & \frac{s \omega}{A(r)} \\ \frac{s A(r)}{\eta_v r P_0} & 0 \end{bmatrix} \begin{bmatrix} \mathcal{P}(r, \omega) \\ \mathcal{V}(r, \omega) \end{bmatrix}. \tag{5.28}
\]

The equations define:

\[
M(r) = \frac{\rho_v}{A(r)} \quad \text{and} \quad C(r) = \frac{A(r)}{\eta_v r P_0} \tag{5.29}
\]

define as the per-unit-length mass and compliance of the horn (Ramo et al., 1965, p. 213). The product of \(\mathcal{P}(r, \omega) \) and \(\mathcal{V}(r, \omega) \) define the acoustic power while their ratio defines the horn admittance admittance \(Y_{\mathcal{P}/\mathcal{V}}(r, s) \), looking in the two directions (Pierce, 1981, p. 37, 41).

To obtain the Webster horn pressure equation Eq. 5.27 from Eq. 5.28, take the partial derivative of the top equation

\[
-\frac{s^2}{\partial r^2} \mathcal{P} = s \frac{\partial M(r)}{\partial r} \mathcal{V} + s M(r) \frac{\partial \mathcal{V}}{\partial r}
\]

and then use the lower equation to remove \(\partial \mathcal{V}/\partial r \):

\[
\frac{\partial}{\partial r^2} \mathcal{P} = s^2 M(r) C(r) \mathcal{V} = \frac{s^2}{c_o^2} \mathcal{P}.
\]

We then use the upper equation a second time to remove \(\mathcal{V}^2 \):

\[
\frac{\partial}{\partial r} \frac{\partial}{\partial r} \mathcal{P} + \frac{1}{A(r)} \frac{\partial A(r)}{\partial r} \frac{\partial}{\partial r} \mathcal{P} = \frac{s^2}{c_o^2} \mathcal{P}(r, s).
\]

By use of the chain rule, equations of this form may be directly integrated, since

\[
\nabla_r \mathcal{P} = \frac{1}{A(r)} \frac{\partial}{\partial r} \left[A(r) \frac{\partial}{\partial r} \mathcal{P}(r, s) \right] = \frac{\partial^2}{\partial r^2} \mathcal{P}(r, s) + \frac{1}{A(r)} \frac{\partial A(r)}{\partial r} \mathcal{P}(r, s).
\]

This is equivalent to integration by parts, with integration factor \(A(r) \). Next we set \(\kappa(s) \equiv s/c_o \), which later will be generalized to include visco-thermal losses (Eq. D.1, p. 283).

Merging Eqs. 5.30 and 5.31 results in the Webster horn equation (WHEN) (Eq. 5.27, p. 203):

\[
\frac{1}{A(r)} \frac{\partial}{\partial r} A(r) \frac{\partial}{\partial r} \mathcal{P}(r, s) = \kappa^2(s) \mathcal{P}(r, s) \leftrightarrow \frac{1}{c_o^2} \frac{\partial^2}{\partial t^2} g(r, t).
\]
that have Equations having this form are known as \textit{Sturm-Liouville equations}.

This important class of ordinary differential equations follows from the use of separation of variables
of the Laplacian in any (i.e., every) separable coordinate system (Morse and Feshbach, 1953, Ch. 5.1,
pp. 494–497). The frequency domain eigen-solutions are denoted \(\Psi_{\pm}(r, s) \); which have a corresponding
volume velocities, denoted \(\Psi^\pm(r, s) \).

\textbf{Summary:} We transformed the 3D acoustic wave equation into acoustic variables (Eq. 5.24, p. 206) in
Appendix G by the application of Gauss’s law, resulting in the 1D \textit{Webster horn equation} (aka \textit{WHEN})
(Eq. 5.27, p. 207), which is a non-singular Sturm-Liouville equation.\(^5\) Thus we demonstrated that
Eqs. 5.24 and 5.28 reduce to Eq. 5.32 in a horn.

\(^5\)The Webster horn equation is closely related to the Schrödinger’s equation (Salmon, 1946).
5.5 Exercises VC-1

Topics of this homework

Vector algebra and fields in \mathbb{R}^3, gradient and scalar Laplacian operators.

Definitions of divergence and curl. Gauss's (divergence) and Stokes (curl) laws.

Schwarz inequality, quadratic forms, system postulates.

Author: A couple earlier chapters include a line for Deliverables here. Do you want to add that?

Vector algebra in \mathbb{R}^3

Definitions of the vector scalar (aka dot) $A \cdot B$, cross $A \times B$, and triple product $A \cdot (B \times C)$ may be found in Appendix A (p. 253), where A, B, C in \mathbb{R}^3 (in \mathbb{C}^3). A fourth "double-cross" (\otimes) vector product is

$$A \times (B \times C) = \alpha_0 B - \beta_0 C,$$

where $\alpha_0 = A \cdot C$ and $\beta_0 = A \cdot B$.

[Note: $A \times (B \times C) \neq (A \times B) \times C$.]

Author: Is "vector scalar" correct?

Yes, but it is confusing. Remove "vector" from the product.

Author: Please refer to this figure somewhere in the text.

![Figure 5.4: Definitions of vectors A, B, C (vectors in \mathbb{R}^3) used in the definition of $A \cdot B, A \times B$, and $A \cdot (B \times C)$. There are two algebraic vector products: the scalar (dot) product $A \cdot B \in \mathbb{R}$ and the vector (cross) product $A \times B \in \mathbb{R}^3$. Note that the result of the dot product is a scalar, while the vector product yields a vector, which is perpendicular to the plane containing A, B. This is Figure 3.5 (p. 108).](image)

5.1 Problem #1 Scalar product $A \cdot B$

(a) **Q 1-1:** If $A = a_x \hat{x} + a_y \hat{y} + a_z \hat{z}$ and $B = b_x \hat{x} + b_y \hat{y} + b_z \hat{z}$, write out the definition of $A \cdot B$.

(b) **Q 1-2:** The dot product is often defined as $|A| |B| \cos(\theta)$, where $|A| = \sqrt{A \cdot A}$ and θ is the angle between A, B. If $|A| = 1$, describe how the dot product relates to the vector B.

5.2 Problem #2 Scalar product $A \times B$

(a) **Q 2-1:** If $A = a_x \hat{x} + a_y \hat{y} + a_z \hat{z}$ and $B = b_x \hat{x} + b_y \hat{y} + b_z \hat{z}$, write out the definition of $A \times B$.

(b) **Q 2-2:**

6 Greenberg p. 694, Eq. 8 (1988, p. 694, Eq. 8)
and (b) - Q 2.2: Show that the cross product is equal to the area of the parallelogram formed by $A \times B$; namely, $||A|| \cdot ||B|| \sin(\theta)$, where $||A|| = \sqrt{A \cdot A}$ and θ is the angle between A and B.

Problem #5.3: Triple product $A \cdot (B \times C)$

Let $A = [a_1, a_2, a_3]^T$, $B = [b_1, b_2, b_3]^T$, $C = [c_1, c_2, c_3]^T$ be three vectors in \mathbb{R}^3.

(a) - Q 3.1: Starting from the definition of the dot and cross product, explain using a diagram to show and/or words, how one shows that $A \cdot (B \times C) = \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix}$

(b) - Q 3.2: Describe why $|A \cdot (B \times C)|$ is the volume of parallelepiped generated by A, B, and C.

(c) - Q 3.3: Explain why three vectors A, B, C are in one plane if and only if the triple product $A \cdot (B \times C) = 0$.

Author: What figure is this?

Problem #5.4: Given two vectors A and B in the \hat{x}, \hat{y} plane (see Fig. 3, with $B = \hat{y}$ (i.e., $||B|| = 1$),

- Q 4.1: Show that A may be split into two orthogonal parts, one in the direction of B and the other perpendicular (\perp) to B. Hint: Express the vector products of A and B (dot and cross) in polar coordinates (Greenberg, 1988).

$$A = (A \cdot \hat{B})\hat{B} + \hat{B} \times (A \times \hat{B}) = A_\parallel + A_\perp.$$

Scalar fields and the ∇ operator

Problem #5.5: Let $T(x, y) = x^2 + y$ be an analytic scalar temperature field in \mathbb{R}^2.

(a) - Q 5.1: Find the gradient of $T(x)$ and make a sketch of T and the gradient.

whether (b) - Q 5.2: Compute $\nabla^2 T(x)$, to determine if $T(x)$ satisfies Laplace's equation.

(c) - Q 5.3: Sketch the iso-temperature contours at $T = -10, 0, 10$ degrees.

(d) - Q 5.4: The heat flux 7 is defined as $\mathbf{J}(x, y) = -\kappa(x, y)\nabla T$, where $\kappa(x, y)$ is a constant denoting thermal conductivity at the point (x, y). Assuming $\kappa = 1$ everywhere (the medium is homogenous), plot the vector $\mathbf{J}(x, y) = -\nabla T$ at $x = 2, y = 1$. Be clear about the origin, direction and length of your result.

7The heat flux is proportional to the change in temperature times the thermal conductivity κ of the medium.
CHAPTER 5. STREAM 3E: VECTOR CALCULUS

(c) \(Q \ 5.5: \) Find the vector \(\perp \) to \(\nabla T(x, y) \); namely tangent to the iso-temperature contours. Hint: Sketch it for one \((x, y)\) point (e.g., \(2, 3\)) and then generalize.

(f) \(Q \ 5.6: \) The thermal resistance \(R_T \) is defined as the potential drop \(\Delta T \) over the magnitude of the heat flux \(|\mathbf{J}| \). At a single point the thermal resistance is

\[
R_T(x, y) = -\frac{\nabla T}{|\mathbf{J}|}.
\]

How is \(R_T(x, y) \) related to the thermal conductivity \(\kappa(x, y) \)?

Problem 5.6: Acoustic wave equation: Note: In the following problem, we will work in the frequency domain.

The basic equations of acoustics in a dimension are

\[
-\frac{\partial}{\partial x} \mathcal{P} = \rho_0 s v' \quad \text{and} \quad -\frac{\partial}{\partial x} v' = \frac{s}{\eta_0 P_o} \mathcal{P}.
\]

Here \(\mathcal{P}(x, \omega) \) is the pressure (in the frequency domain), \(v'(x, \omega) \) is the volume velocity integral of the velocity over the wavefront having area \(A \), \(\rho_0 = \rho + \omega \), \(\rho_0 = 1.2 \) is the specific density of air, \(\eta_0 = 1.4 \), and \(P_o \) is the atmospheric pressure (i.e., \(10^5 \) Pa) (see the handout, Appendix E.2 for details). Note that the pressure field \(\mathcal{P} \) is a scalar (pressure does not have a direction), while the volume velocity field \(v' \) is a vector (velocity has direction).

We can generalize these equations to \(n \) dimensions using the \(\nabla \) operator:

\[
-\nabla \mathcal{P} = \rho_0 s v' \quad \text{and} \quad -\nabla \cdot v' = \frac{s}{\eta_0 P_o} \mathcal{P}.
\]

(a) \(Q \ 6.1: \) Starting from these two basic equations, derive the scalar wave equation in terms of the pressure \(\mathcal{P} \),

\[
\nabla^2 \mathcal{P} = \frac{s^2}{\rho_0} \mathcal{P}.
\]

where \(c_0 \) is a constant representing the speed of sound.

(b) \(Q \ 6.2: \) What is \(c_0 \) in terms of \(\eta_0, \rho_0 \), and \(P_o \)?

(c) \(Q \ 6.3: \) Rewrite the pressure wave equation in the time domain using the time derivative property of the Laplace transform [e.g., \(dx/dt \leftrightarrow sX(s) \)]. For your notation, define the time-domain signal using a lowercase letter, \(p(x, y, z, t) \leftrightarrow \mathcal{P} \).

Vector fields and the \(\nabla \) operator

Vector Algebra

Problem 5.7 Let \(\mathbf{R}(x, y, z) \equiv x(t) \mathbf{X} + y(t) \mathbf{Y} + z(t) \mathbf{Z} \).

and

(a) \(Q \ 7.1: \) If \(a, b, c \) are constants, what is \(\mathbf{R}(x, y, z) \cdot \mathbf{R}(a, b, c) \)?

and

(b) \(Q \ 7.2: \) If \(a, b, c \) are constants, what is \(\frac{d}{dt} (\mathbf{R}(x, y, z) \cdot \mathbf{R}(a, b, c)) \)?
5.5. EXERCISES VC-1

Problem #8. Find the divergence and curl of the following vector fields.

(a) \(-\mathbf{Q} 8.1: \mathbf{v} = \hat{x} + \hat{y} + 2z\)
(b) \(-\mathbf{Q} 8.2: \mathbf{v}(x, y, z) = x\hat{x} + xy\hat{y} + z^2\hat{z}\)
(c) \(-\mathbf{Q} 8.3: \mathbf{v}(x, y, z) = x\hat{x} + xy\hat{y} + \log(z)\hat{z}\)
(d) \(-\mathbf{Q} 8.4: \mathbf{v}(x, y, z) = \nabla(1/x + 1/y + 1/z)\)

and

Vector & scalar field identities

Problem #9. Find the divergence and curl of the following vector fields.

(a) \(-\mathbf{Q} 9.1: \mathbf{v} = \nabla \phi, \text{ where } \phi(x, y) = xe^y\)
(b) \(-\mathbf{Q} 9.2: \mathbf{v} = \nabla \times \mathbf{A}, \text{ where } \mathbf{A} = x\hat{x} + y\hat{y} + z\hat{z}\)
(c) \(-\mathbf{Q} 9.3: \mathbf{v} = \nabla \times \mathbf{A}, \text{ where } \mathbf{A} = y\hat{x} + x^2\hat{y} + z\hat{z}\)
(d) \(-\mathbf{Q} 9.4: \text{ For any differentiable vector field } \mathbf{v}, \text{ write down two vector-calculus identities that are equal to zero.}\)

What is the most general form of a vector field may be expressed in, in terms of scalar \(\Phi\) and vector \(\mathbf{A}\) potentials?

Problem #10. Perform the following calculations. If you can state the answer without doing the calculation, explain why.

(a) \(-\mathbf{Q} 10.1: \text{ Let } \mathbf{v} = \sin(x)\hat{x} + y\hat{y} + z\hat{z}. \text{ Find } \nabla \cdot (\nabla \times \mathbf{v}).\) \(\text{Hint: Look at Eq. 41 on page 83 of the notes. Eq. 1.58, 59.}\)
(b) \(-\mathbf{Q} 10.2: \text{ Let } \mathbf{v} = \sin(x)\hat{x} + y\hat{y} + z\hat{z}. \text{ Find } \nabla \times (\nabla \sqrt{\mathbf{v} \cdot \mathbf{v}}).\)
(c) \(-\mathbf{Q} 10.3: \text{ Let } \mathbf{v}(x, y, z) = \nabla(x + y^2 + \sin(\log(z))). \text{ Find } \nabla \times \mathbf{v}(x, y, z).\)
Integral theorems

Problem # 11: Gauss’ and Stokes’ laws

(a) In a few words, identify the law, define what it means, and explain the following formula.

\[\int_S \hat{n} \cdot \mathbf{v} \, dA = \int_{\partial S} \nabla \cdot \mathbf{v} \, dV. \]

(b) What is the name of this formula?

\[\int_S (\nabla \times \mathbf{V}) \cdot dS = \int_C \mathbf{V} \cdot dR. \]

Give one important application.

(c) Describe a key application of the vector identity

\[\nabla \times (\nabla \times \mathbf{V}) = \nabla (\nabla \cdot \mathbf{V}) - \nabla^2 \mathbf{V}. \]

Schwarz inequality

Problem # 12: Below is a picture of three vectors for an arbitrary value of \(a \) and a specific \(a = a^* \).

(a) Find the value of \(a^* \in \mathbb{R} \) such that the length (norm) of \(\mathbf{E} \) (i.e., \(||\mathbf{E}|| \geq 0 \)) is minimum? Hint: Minimize with respect to \(a \).

\[||\mathbf{E}||^2 = \mathbf{E} \cdot \mathbf{E} = (\mathbf{V} + a \mathbf{U}) \cdot (\mathbf{V} + a \mathbf{U}) \geq 0. \]

(b) Find the formula for \(||\mathbf{E}(a^*)||^2 \geq 0 \). Hint: Substitute \(a^* \) into Eq. 5.3 and show that this results in the Schwarz inequality

\[||\mathbf{U} \cdot \mathbf{V}|| \leq ||\mathbf{U}|| ||\mathbf{V}||. \]

Problem # 13: What is the geometrical meaning of the dot product of two vectors?

(a) Give the formula for the dot product between two vectors. Explain the meaning based on Fig. 12.

\[\sum \nabla \cdot \mathbf{V} \]

(b) Write the formula for the dot product between two vectors \(\mathbf{U} \cdot \mathbf{V} \) in \(\mathbb{R}^n \) in polar form (e.g., assume the angle between the vectors is equal to \(\theta \)).
5.5. EXERCISES VC-I

(d) **Q 13.3:** How is this related to the Pythagorean theorem?

(e) **Q 13.4:** Starting from $||U + V||$, derive the triangle inequality

$$||U + V|| \leq ||U|| + ||V||.$$

Author: Which do you prefer: triangle or tridimensional?

(f) **Q 13.5:** The triangular inequality $||U + V|| \leq ||U|| + ||V||$ is true for A and A-dimensional vectors. Does it hold for n-dimensional vectors?

Quadratic forms

A matrix that has positive eigenvalues is said to be **positive-definite**. The eigenvalues are real if the matrix is symmetric, so this is a necessary condition for the matrix to be positive-definite. This condition is related to conservation of energy, since the power is the voltage times the current. Given an impedance matrix

$$V = ZI,$$

the power P is

$$P = I \cdot V = I \cdot ZI,$$

which must be positive-definite for the system to obey conservation of energy.

Problem #14: For the following problems, consider the 2×2 impedance matrix

$$Z = \begin{bmatrix} 2 & 1 \\ 1 & 4 \end{bmatrix}.$$

(a) **Q 14.1:** Solve for the power $P(i_1, i_2)$ by multiplying out the matrix equation below (which is in quadratic form) ($I \equiv \begin{bmatrix} i_1 \\ i_2 \end{bmatrix}$):

$$P(i_1, i_2) = I^T \begin{bmatrix} 2 & 1 \\ 1 & 4 \end{bmatrix} I.$$

(b) **Q 14.2:** Is the impedance matrix positive-definite? Show your work by finding the eigenvalues of the matrix Z.

(c) **Q 14.3:** Should an impedance matrix always be positive-definite? Explain.

System Classification

Problem #15: Answer the following system classification questions about physical systems in terms of the system postulates.

(a) **Q 15.1:** Provide a brief definition of the following properties: L/NL, linear/ non-linear, TI/TV, time-invariant/time-varying, P/A, passive/active, C/NC, causal/non-causal.

(b) **Q 15.2.** Along the rows of the table, classify the following systems: In terms of a table having 5 columns, labeled with the abbreviations: L/NL, TI/TV, P/A, C/N, Re/Clx:

<table>
<thead>
<tr>
<th>#</th>
<th>Case</th>
<th>Definition</th>
<th>L/NL</th>
<th>TI/TV</th>
<th>P/A</th>
<th>C/N</th>
<th>Re/Clx</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Resistor</td>
<td>(v(t) = r_0 i(t))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Inductor</td>
<td>(v(t) = L \frac{di}{dt})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Switch</td>
<td>(v(t) = \begin{cases} 0 & t < 0 \ V_0 & t \geq 0 \end{cases})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Transistor</td>
<td>(I_{out} = g_{m} (V_{in}))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Emitter</td>
<td>(v(t) = r_0 i(t + 3))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Modulator</td>
<td>(f(t) = e^{2 \pi \tau} g(t))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(c) **Q 15.3.** Using the same classification scheme, characterize the following equations:

<table>
<thead>
<tr>
<th>#</th>
<th>Case</th>
<th>L/NL</th>
<th>TI/TV</th>
<th>P/A</th>
<th>C/N</th>
<th>Re/Clx</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(A(x) \frac{dy(t)}{dx} + D(x)y(x, t) = 0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>(\frac{dy_1(t)}{dt} + \sqrt{t} y(t) = \sin(t))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>(y(t) + y(t) = \sin(t))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>(\frac{dy_2}{dt} + xy(t + 1) + x^2 y = 0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>(\frac{dy_1(t)}{dt} + (t - 1) y^2(t) = ie^t)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 5.2: Table of horns and their properties for \(N = 1, 2, 3 \) dimensions, along with the exponential horn (EXP). In this table the horn's range variable is \(\xi \) [m], having area \(A(\xi) \) \(\text{m}^2 \), diameter \(\xi = \sqrt{A(\xi) / \pi} \) [m]. \(F(r) \) is the coefficient on \(r^2 \), \(\kappa(s) = s / c_0 \), where \(c_0 \) is the speed of sound and \(s = \sigma + i \omega \) is the Laplace frequency. The range variable \(\xi \) may be rendered dimensionless (see Fig. 5.3) if scaled by \(L \) (i.e., \(r \equiv L \xi \)), with \(\xi \) [m] the linear distance along the horn axis from \(r_0 / L \leq \xi \leq 1 \), corresponding to \(r_0 \leq r \leq L \), having area \(A_0(r_0 / L) \leq A_0 \xi^2 \leq 4 \pi L^2 \). The horn's eigenfunctions are \(\varphi^= (\xi, \sigma) \leftrightarrow \varphi^= (\xi, t) \). When \(\pm \) is indicated, the outward solution corresponds to the positive sign. Eigenfunctions \(H^\pm (\xi, s) \) are outgoing and inbound Hankel functions. The last column is the input radiation admittance, normalized by the characteristic admittance \(\gamma_c (r) = A(r) / \rho \omega c_0 \).

<table>
<thead>
<tr>
<th>(N)</th>
<th>Name</th>
<th>(r)</th>
<th>(A_0)</th>
<th>(F(r))</th>
<th>(\varphi^+ (r, s))</th>
<th>(\psi^+ (t, \sigma))</th>
<th>(\gamma_c^\pm (r, \sigma))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1D</td>
<td>uniform</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>(e^\mp \kappa(s) r)</td>
<td>(\delta(t))</td>
<td>(1)</td>
</tr>
<tr>
<td>2D</td>
<td>parabolic</td>
<td>(r / r_0)</td>
<td>(r / r_0)</td>
<td>1 (/ r)</td>
<td>(H^\mp (s) r)</td>
<td>(1)</td>
<td>(\mp \rho \omega c_0 L)</td>
</tr>
<tr>
<td>3D</td>
<td>conical</td>
<td>(c_0 r)</td>
<td>(c_0 r)</td>
<td>2 (/ r)</td>
<td>(\kappa(s) r)</td>
<td>(\delta(t) \pm \omega a(t))</td>
<td>(1 \pm c_0 / \sigma r_0)</td>
</tr>
<tr>
<td>EXP</td>
<td>exponential</td>
<td>(e^{\pm r})</td>
<td>(e^{\pm r})</td>
<td>2 (/ r)</td>
<td>(e^{\pm \kappa(s) r})</td>
<td>(e^{\pm \mu r})</td>
<td>(e^{\pm \kappa(s) r})</td>
</tr>
</tbody>
</table>

5.6 Three examples of finite length horns

Summary of four classic horns: Figure 5.3 (p. 207) is taken from the classic book of Olson (1947, p. 101), showing the radiation impedance \(Z_{rad} (r, \omega) \) for five horns. Table 5.2 (p. 217) summarizes the properties of four of these: the uniform (cylindrical) \(A(r) = A_0 \), parabolic \(A(r) = A_o r^2 \), conical (spherical) \(A(r) = A_o r^2 \), and the exponential \(A(r) = A_o e^{2mr} \), three of which are discussed next.

5.6.1 The uniform horn

The 4D wave equation \(A(r) = A_o \) is

\[
\frac{d^2}{dr^2} P = \kappa^2(s) P,
\]

where we set \(\kappa^2(s) = s^2 / c_o^2 \), which later will be generalized to include visco-thermal losses (Eq. A1, p. 283).

4.23 Solution: The two eigenfunctions of this equation are the two d'Alembert waves (Eq. 4-H6, p. 160):

\[
\varphi(x, t) = \alpha e^{-\kappa(s)x} - \beta e^\kappa(s)(x-L)/c,
\]

where \(\kappa(s) = s / c_o = \omega / c \) is denoted the propagation function (also wave evolution function, propagation constant, and wave number) and \(\alpha \) and \(\beta \) are the amplitudes of the two waves.

Note that for the uniform lossless horn \(c_0 / \omega = 2 \pi / \lambda \). It is convenient to normalize \(P_0^+ = 1 \) and \(P_L = 1 \), as was done for the general case.

The characteristic admittance \(\gamma_c^+ (x) \) (Eq. G.9) is independent of direction. The signs must be physically chosen, with the velocity \(\psi^\pm \) into the port, to assure that \(\gamma_c > 0 \).

Applying the boundary conditions: The general solution in terms of the eigenvector matrix, evaluated at \(x = L \), is

\[
\begin{bmatrix}
\varphi(x) \\
\psi(x)
\end{bmatrix}_L =
\begin{bmatrix}
e^{-\kappa x} & e^\kappa(x-L) \\
\gamma_c e^{-\kappa x} & -\gamma_c e^\kappa(x-L)
\end{bmatrix}_L
\begin{bmatrix}
\alpha \\
\beta
\end{bmatrix}_L,
\]

\[
\begin{bmatrix}
\alpha \\
\beta
\end{bmatrix}_L =
\begin{bmatrix}
-1 & -\gamma_c e^{-\kappa L} \\
\gamma_c e^{-\kappa L} & 1
\end{bmatrix}_L
\begin{bmatrix}
\varphi \\
\psi
\end{bmatrix}_L.
\]

The boundary conditions at \(x = 0, L, \kappa = s / c_0 \) and \(\gamma_c = 1 / 2 L = A_o / \rho \omega c_0 \).

5.34 Solving Eq. 5.34 for \(\alpha \) and \(\beta \) with determinant \(\Delta = -2 \gamma_c e^{-\kappa L} \), we get

\[
\alpha_L = \frac{-1}{2 \gamma_c e^{-\kappa L}} \begin{bmatrix}
\gamma_c e^{-\kappa L} & -1 \\
-\gamma_c e^{-\kappa L} & e^{-\kappa L}
\end{bmatrix}_L
\begin{bmatrix}
\varphi \\
\psi
\end{bmatrix}_L = \frac{1}{2 L} \begin{bmatrix}
e^{\kappa L} & -2 e^{\kappa L} \\
-\gamma_c e^{-\kappa L} & 1
\end{bmatrix}_L
\begin{bmatrix}
\varphi \\
\psi
\end{bmatrix}_L.
\]
In the final step we swapped all the signs, including on \(\mathbf{q} \), and moved \(Z_r = 1/\gamma_r \) inside the matrix.

We may uniquely determine these two weights given the pressure and velocity at the boundary \(x = L \), which is typically determined by the load impedance \(\mathbf{P}_L / \mathbf{V}_L \).

The weights may now be substituted back into Eq. 5.33 to determine the pressure and velocity amplitudes at any point \(0 \leq x \leq L \):

\[
\begin{bmatrix}
\mathbf{P} \\
\mathbf{V}
\end{bmatrix}
= \frac{1}{2} \begin{bmatrix}
e^{-\kappa x} & -e^{-(x-L)} \\
\gamma_r e^{-\kappa x} & -\gamma_r e^{-(x-L)}
\end{bmatrix}
\begin{bmatrix}
e^{\kappa L} & 1 \\
1 & Z
\end{bmatrix}
\begin{bmatrix}
\mathbf{P} \\
\mathbf{V}
\end{bmatrix}
\bigg|_L
\]

(5.33)

Setting \(x = 0 \) and multiplying these out gives the final transmission matrix:

\[
\begin{bmatrix}
\mathbf{P} \\
\mathbf{V}
\end{bmatrix}
= \frac{1}{2} \begin{bmatrix}
e^{\kappa L} + e^{-\kappa L} & Z_r (e^{\kappa L} - e^{-\kappa L}) \\
\gamma_r (e^{\kappa L} - e^{-\kappa L}) & e^{\kappa L} + e^{-\kappa L}
\end{bmatrix}
\begin{bmatrix}
\mathbf{P} \\
\mathbf{V}
\end{bmatrix}
\bigg|_L
\]

(5.34)

Note that the diagonal terms are \(\cosh \kappa L \) and, off-diagonal terms are \(\sinh \kappa L \).

Applying the last boundary condition, we evaluate Eq. 5.34 to obtain the ABCD matrix at the input \((x = 0) \) (Pipes, 1958),

\[
\begin{bmatrix}
\mathbf{P} \\
\mathbf{V}
\end{bmatrix}
= \begin{bmatrix}
cosh \kappa L & Z_r \sinh \kappa L \\
\gamma_r \sinh \kappa L & \cosh \kappa L
\end{bmatrix}
\begin{bmatrix}
\mathbf{P} \\
\mathbf{V}
\end{bmatrix}
\bigg|_L
\]

(5.35)

and Note that the determinant is 1, thus the system is reciprocal.

Exercise Evaluate this expression in terms of the load impedance.

Solution: Since \(Z_{\text{load}} = -\mathbf{P}_L / \mathbf{V}_L \), we have

\[
\begin{bmatrix}
\mathbf{P} \\
\mathbf{V}
\end{bmatrix}
= \begin{bmatrix}
Z_{\text{load}} \cosh \kappa L - Z_r \sinh \kappa L \\
Z_{\text{load}} \gamma_r \sinh \kappa L - \cosh \kappa L
\end{bmatrix}
\begin{bmatrix}
\mathbf{P} \\
\mathbf{V}
\end{bmatrix}
\bigg|_L
\]

(5.36)

Impedance matrix: Expressing Eq. 5.36 as an impedance matrix gives (algebra required)

\[
\begin{bmatrix}
\mathbf{P} \\
\mathbf{V}
\end{bmatrix}
= \frac{Z_r}{\sinh(\kappa L)} \begin{bmatrix}
cosh(\kappa L) & 1 \\
1 & \cosh(\kappa L)
\end{bmatrix}
\begin{bmatrix}
\mathbf{P} \\
\mathbf{V}
\end{bmatrix}
\bigg|_L
\]

Author: Note the subscript oh here but zero in Eq. 5.39. Please check.

(5.37)

Exercise Write out the short-circuit (\(\mathbf{V}_L = 0 \)) input impedance \(Z_{\text{in}}(s) \) for the uniform horn.

Solution:

\[
Z_{\text{in}}(s) = \frac{P_L(s)}{V_L(s)} = Z_r \frac{\cosh \kappa L}{\sinh \kappa L} = Z_r \tanh \kappa L \bigg|_{V_L = 0}
\]

(5.38)

Input admittance \(Y_{\text{in}} \): Given the input admittance of the horn, it is possible to determine if it is uniform, without further analysis. Namely, if the horn is uniform and infinite in length, the input admittance at \(x = 0 \) is

\[
Y_{\text{in}}(x = 0, s) = \frac{\mathbf{q}(0, \omega)}{\mathbf{P}(0, \omega)} = \gamma_r,
\]

for \(\alpha = 1 \) and \(\beta = 0 \). That is, for an infinite uniform horn, there are no reflections.

When the horn is terminated with a fixed impedance \(Z_r \) at \(x = L \), one may substitute pressure and velocity measurements into Eq. 5.34 to find \(\alpha \) and \(\beta \), and given these, one may calculate the pressure reflectance at \(x = L \) (Eq. 3.46, p. 105),

\[
\Gamma_L(s) = \frac{\beta}{\alpha} = \frac{\mathbf{P}(L, \omega) - Z_r \mathbf{V}(L, \omega)}{\mathbf{P}(L, \omega) + Z_r \mathbf{V}(L, \omega)} = \frac{Z_L - Z_r}{Z_L + Z_r}
\]

given sufficiently accurate measurements of the throat pressure \(\mathbf{P}(0, \omega) \), velocity \(\mathbf{V}(0, \omega) \), and the characteristic impedance of the input \(Z_r = p_0 c/A(0) \).
5.6. 3 EXAMPLES OF HORNS

Conical horn

Using the conical horn area $A(r) \propto r^2$ in Eq. 5.27, p. 207 (or Eq. 5.28, p. 208) results in the spherical wave equation

$$P_{rr}(r, \omega) + \frac{2}{r} P_r(r, \omega) = \kappa^2 P(r, \omega),$$

where $\kappa(s) \equiv s^2/c_0^2$.

Radiation admittance for the conical horn: The conical horn's acoustic input admittance $Y_{in}(r, s)$ at any location r is found by dividing Eq. G.4 (p. 297) by $P(r, s)$:

$$Y_{in}^\pm(r, s) = \frac{V^\pm}{P^\pm} = -\frac{A(r)}{8\rho_0} \frac{d}{dr} \ln P^\pm(r, s)$$

$$= \gamma'_0(r) \left[1 \pm \frac{c_0}{s} \right] \Rightarrow \frac{A(r)}{\rho_0 c_0} \left(\delta(t - r/c_0) \pm \frac{c_0}{r} u(t - r/c_0) \right).$$

Note how the pressure pulse is delayed by r/c_0 due to $e^{-\kappa(s)r}$ as it travels down the horn. As the area of the horn increases, the pressure decreases as $1/r = 1/\sqrt{A(r)}$. This results in the uniform backflow $\epsilon'(t)/r$ due to conservation of mass and the characteristic admittance $\gamma'(r)$ variation with r.

Exponential horn: If we define the area as $A(r) = e^{2mr}$, the eigenfunctions of the horn are

$$P^\pm(r, \omega) = e^{-mr} e^{\pm j\sqrt{\omega^2 - \omega_c^2} r/c},$$

which may be shown by the substitution of $P^\pm(r, \omega)$ into Eq. 5.27 (p. 207), with $A(r) = e^{2mr}$.

This case is of special interest because the radiation impedance is purely reactive below the horn's cutoff frequency ($\omega < \omega_c = mc_0$), as may be seen from curves 3 and 4 of Fig. 5.3 (p. 207). As a result, no energy can radiate from an open horn for $\omega < \omega_c$ because

$$\kappa(s) = -m \pm \frac{1}{c_0} \sqrt{\omega^2 - \omega_c^2}$$

is purely real (this is the case of non-propagating evanescent waves).

If we use Eq. 4.29, using Eq. 4.22 (p. 161) the input admittance is

$$Y_{in}^\pm(x, s) = -\frac{A(x)}{8\rho_0} \left(m \pm \sqrt{m^2 + \kappa'^2} \right) x,$$

that has Kleiner (2013) gives an equivalent expression for $Y_{in}(x, \omega)$ having area $S(x) = e^{mx}$

$$Y_{in}(x, \omega) = \frac{S(x)}{j \rho_0 \omega} \left[\frac{m}{2} + j \frac{\sqrt{4\omega^2 - (mc)^2}}{2c} \right],$$

and impedance

$$Z_{in}(r, \omega) = \frac{\rho c S_T}{j \omega} \left[\frac{\omega_c}{\omega} + \sqrt{1 - \left(\frac{\omega_c}{\omega} \right)^2} \right],$$

where $\omega_c(r)$ is the cutoff frequency.

We can use expansions of $A(r)$ in a Fourier-like exponential series along with superposition to find the general solution for an arbitrary analytic $A(r)$.

\[\square \]
CHAPTER 5. STREAM-RELATIVE VECTOR CALCULUS

5.6.1 Solution methods

Two distinct mathematical techniques are used to describe physical systems: partial differential equations (PDEs) and lumped parameter models (i.e., quasistatic) (Ramo et al., 1965). We shall describe both these methods for the case of the scalar wave equation.

1. Separable coordinate systems: Classically PDEs are solved by separation of variables. Morse (1948, p. 296) shows this method is limited to a few coordinate systems, such as rectangular, cylindrical, and spherical coordinates. Even a slight deviation from separable specific coordinate systems represents a major barrier toward further analysis and understanding, blocking insight into more general cases. Separable coordinate systems have a high degree of symmetry. Note that the solution of the wave equation is not tied to a specific coordinate system.

2. Sturm-Liouville methods and eigenvectors: When the coordinate system is separable, the resulting PDEs are always Sturm-Liouville equations, an important special class of differential equations. Sturm-Liouville equations are solved by finding their eigenfunctions. Webster horn theory (Webster, 1919; Morse, 1948; Pierce, 1981) is a generalized Sturm-Liouville equation, which adds physics in the form of the horn’s area function.

The Webster equation sidesteps the seriously limiting problem of separation of variables, by making it possible to use the alternative quasistatic solution by ignoring high-frequency higher order evanescent modes. This is essentially a 1-dimensional lowpass approximation of the wave equation.

Although mathematics provides rigor, while physics provides understanding. While both are important, it is the physical applications that make a theory useful.

3. Lumped-element method: As previously described on p. 125, a system may be represented in terms of lumped elements, such as electrical inductors, capacitors, and resistors, or their mechanical counterparts, masses, springs, and dashpots. Such systems are represented by 2×2 transmission matrices in the s (i.e., Laplace) domain (transmission problem, Exercises DE3, p. 77).

When the system of lumped element networks contains only resistors and capacitors, or resistors and inductors, the system does not support waves, and is related to the diffusion equation in its solution. Depending on the elements in the system of equations, there can be an overlap between a diffusion process and scalar waves, represented as transmission lines, both modeled as lumped networks of 2×2 matrices (Eq. 3.60, p. 125) (Campbell, 1922; Brillouin, 1953; Ramo et al., 1965). Quasistatic methods provide band-limited solutions below a critical frequency f_c (where a half wavelength approaches the element spacing) for a much wider class of geometries by avoiding higher-order, high-frequency cross-modes. Examples are given in Fig. 3-10 (p. 130) and DE3, Problem 4 (p. 77).

When the wavelength is longer than the physical distance between the elements, the approximation is mathematically equivalent to a transmission line. As the frequency increases, the wavelength becomes equal to $\lambda = \frac{c_0}{2\pi f}$, the quasistatic (lumped element) model breaks down. This is under the control of the modeling process, as elements must be added to represent higher frequencies (shorter wavelengths). If the nature of the solution at high frequencies ($f > f_c$) is desired, one must add more sections, thereby increasing f_c. For many (perhaps most) problems, lumped elements are easy to use, and accurate (Brillouin, 1953; Ramo et al., 1965) as long as you don't violate the upper frequency limit.

5.6.2 Eigenfunction solutions $q^{\pm}(r, t)$ of the Webster horn equation

Because the wave equation (Eq. 5.24) is 2nd order in time, there are two causal independent eigenfunction solutions of the homogeneous (i.e., undriven) Webster horn equation: an outbound (right-traveling) $q^+(r, t)$ and an inbound (left-traveling) $q^-(r, t)$ wave. These causal eigen-solutions may be
Laplace-transformed into the frequency domain:
\[\mathcal{F}_r(r, t) \leftrightarrow \mathcal{P}_r(r, s) = \int_0^\infty \mathcal{F}_r(r, t)e^{-st}dt. \]

They may be normalized so that \(\mathcal{P}_r(r_o, s) = 1 \), where \(r_o \) is the source excitation reference point.

Every eigenfunction depends on an area function \(A(r) \) (Eq. 5.27, p. 207). In theory, one should be possible to find the other. This is known as the inverse problem, which is generally believed to be an unsolved problem. For example, given the eigenvalues \(\lambda_k \), how does one determine the corresponding area function \(A(r) \)?

Because the characteristic impedance \(\gamma_e(r) \) of the wave in the horn changes with location, there must be local reflections due to these area variations. Thus there are fundamental relationships between the area change \(dA(r)/dr \), the horn's eigenfunctions \(\mathcal{P}_r(r, s) \), eigenmodes, and input impedance.

Complex vs. real frequency: We shall continue to maintain the distinction that functions of \(\omega \) are Fourier transforms and causal functions of Laplace frequency \(s \) correspond to Laplace transforms, which are necessarily complex analytic in \(s \) in the right half-plane (RHP) region of convergence (RoC). This distinction is critical since we typically describe impedance \(Z(s) \), and admittance \(Y(s) \), as complex analytic functions in \(s \) in terms of their poles and zeros. The eigenfunctions \(\mathcal{P}_r(r, s) \) of Eq. 5.27 are also causal complex analytic functions of \(s \).

Plane-wave eigenfunction solutions: Huygens (1690), three years after Newton's publication of Principia, was the first to gain insight into wave propagation, today known as "Huygens's principle." While his concept showed a deep insight, we now know it was seriously flawed, as it ignored the backward traveling wave (Miller, 1991). In 1747 d'Alembert published the first correct solution for the plane-wave scalar wave equation
\[g(x, t) = f(t - x/c_o) + g(t + x/c_o), \quad (5.4a) \]
where \(f(\cdot) \) and \(g(\cdot) \) are general functions of their argument. Why this is the solution may be easily shown by use of the chain rule, by taking partials with respect to \(x \) and \(t \).

In terms of the physics, d'Alembert's general solution describes two arbitrary waveforms \(f(\cdot), g(\cdot) \) traveling at a speed \(c_o \), one forward and one reversed. Thus his solution is quite easily visualized.

Exercise 5.12 By the use of the chain rule, prove that d'Alembert's formula satisfies the 1D wave equation.

Solution: Taking a derivative with respect to \(t \) and \(r \) gives
\[\partial_t g(r, t) = -c_o f'(r - c_o t) + c_o g'(r + c_o t), \]
and a second derivative gives
\[\partial_{tt} g(r, t) = c_o^2 f''(r - c_o t) + c_o^2 g''(r + c_o t). \]

From these last two equations we have the 1D wave equation
\[\partial_{rr} g(r, t) = \frac{1}{c_o^2} \partial_t^2 g(r, t), \]
which has solutions, Eq. 5.4a, and

**Example: Assuming \(f(\cdot), g(\cdot) \) are \(\delta(\cdot) \), find the Laplace transform of the solution corresponding to the uniform horn \(A(x) = 1 \).

Solution: Using Table C.3 (p. 276) of Laplace transforms on Eq. 5.4a gives
\[g(x, t) = \delta(t - x/c_o) + \delta(t + x/c_o) \leftrightarrow e^{-\beta x/c_o} + e^{\beta x/c_o}, \quad (5.4a) \]
Note that the delay \(T_o = \pm x/c_o \) depends on the range \(x \).
Three-dimensional \textbf{3D d'Alembert spherical eigenfunctions:} The d'Alembert solution generalizes to spherical waves by changing the area function of Eq. 5.27 to $A(r) = A_0 r^2$ (see Eq. 5.10, p. 197 and Table 5.2, p. 217). The wave equation then becomes

$$\nabla^2 \phi(r, t) = \frac{1}{r} \frac{\partial^2}{\partial r^2} \phi(r, t) = \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \phi(r, t).$$

Multiplying by r results in the general spherical (3D) d'Alembert wave equation solution

$$\phi(r, t) = f(t - r/c) + g(t + r/c),$$

for arbitrary waveforms $f(\cdot)$ and $g(\cdot)$. These are the eigenfunctions for the spherical scalar wave equation.

\section{5.7 \textbf{Integral forms of $\nabla(\cdot)$, $\nabla \cdot (\cdot)$, and $\nabla \times (\cdot)$}}

The \textbf{vector wave equation} describes the evolution of a vector field, such as Maxwell's electric field vector $E(x; t)$. When these fields are restricted to a one-dimensional domain they are known as \textbf{guided waves} constrained by \textbf{wave guides}.

These equations use three differential vector operators: the \textbf{gradient}, \textbf{divergence}, and the \textbf{curl}. There are two forms of definitions for each of these three operators: differential and integral. The integral form provides a more intuitive view of the operator, which in the limit converges to the differential form. Following a discussion of the gradient, divergence, and curl integral operators, these two forms are discussed.

In addition there are three fundamental vector theorems: \textbf{Gauss's law} (divergence theorem), \textbf{Stokes's law} (curl theorem) and \textbf{Helmholtz's decomposition theorem}. Without the use of these very fundamental vector calculus theorems, Maxwell's equations cannot be understood.

\subsection{5.7.1 \textbf{Gradient: $E = -\nabla \phi(x)$}}

As shown in Fig. 5.1 (p. 192) the gradient maps $\mathbb{R}^3 \rightarrow \mathbb{R}^3$. The gradient is defined as the unit-normal \hat{n} weighted by the potential $\phi(x)$ averaged over a closed surface Σ.

$$\nabla \phi(x) = \lim_{S \rightarrow 0} \left\{ \frac{\int_{\Sigma} \phi(x) \hat{n} \, dS}{V/m} \right\}$$

and having area S and volume V, centered at x (Greenberg, 1988, p. 773). Here \hat{n} is a dimensionless unit vector, perpendicular to the surface Σ.

$$\hat{n} = \frac{\nabla \phi}{||\nabla \phi||}.$$

The dimensions of Eq. 5.46 are in the units of the potential times the area, divided by the volume, as needed for a gradient (e.g., [V/m]). The units \textbf{are potential-dependent}. If ϕ were temperature, the units would be [deg/m].

\section{5.14 \textbf{Exercise}}

\textbf{Solution:} The units depend on ϕ per unit length. If ϕ is voltage, then the gradient has units of [V/m]. Under the limit $d|S|/||S||$ must have units of m^{-1}.

The natural way to define the surface and volume is to place the surface on the isopotential surfaces, forming either a cube or pillow-shaped volume. As the volume $|S|$ goes to zero, so must the area $|S|$. One must avoid \textbf{irregular volumes} where the area is finite as the volume goes to zero (Greenberg, 1988, footnote p. 762).

For further see \cite{Greenberg1988, Greenberg1988a, Greenberg1988b, Greenberg1988c}
A well-known example is the potential
\[\phi(x, y, z) = \frac{Q}{\epsilon_0 \sqrt{x^2 + y^2 + z^2}} = \frac{Q}{\epsilon_0 R} \quad [\text{V}] \]
around a point charge \(Q \) [SI units of Coulombs]. The constant \(\epsilon_0 \) is the \textit{permittivity} [F/m²]. A second well-known example is the acoustic pressure potential around an oscillating sphere, which has the same form (Table 5.2, p. 217).

How does this work? To better understand what Eq. 5.46 means, consider a three-dimensional Taylor series expansion of the potential in \(x \) about the limit point \(x_o \):
\[\phi(x) \approx \phi(x_o) + \nabla \phi(x_o) \cdot (x - x_o) + \text{HOT}. \]

We could define the gradient using this relationship as
\[\nabla \phi(x_o) = \lim_{x \to x_o} \frac{\phi(x) - \phi(x_o)}{x - x_o}. \]

For this definition to apply, \(x \) must approach \(x_o \) along \(\hat{n} \). To compute the \textit{higher order terms} (HOT), we need the \textit{Hessian} matrix.⁹

The natural way to define a surface \(|S| \) is to take the flux of the reference potential (HOT) along the integral path. The gradient is in the direction of maximum change in the potential, thus perpendicular to the isopotential contours. The secret to the integral definition is taking the limit. As the volume \(|S| \) shrinks to zero, the HOT terms are small, and the integral reduces to the first-order term in the Taylor expansion since the constant term integrates to zero. Such a construction was used in the proof of the Webster horn equation (G. p. 297; Fig. G.1, p. 298).

The problem with Eq. 5.46 is that it is recursive since \(\vec{n} \) is based on the gradient and is the kernel of the integral. Thus the integral definition of the gradient is based on the gradient itself. Equation 5.46 is actually a statement of the \textit{mean value theorem} for the gradient.

5.7.2 Divergence: \(\nabla \cdot D = \rho [C/m^3] \)

As briefly summarized by Eq. 5.4 on p. 194, the definition of the divergence at \(x = [x, y, z]^T \) is
\[\nabla \cdot D(x, t) \equiv [\partial_x, \partial_y, \partial_z] \cdot D(x, t) = \left[\frac{\partial D_x}{\partial x} + \frac{\partial D_y}{\partial y} + \frac{\partial D_z}{\partial z} \right] (x, t) = \rho(x, t), \]
which maps \(\mathbb{R}^3 \to \mathbb{R}^1 \).

5.7.3 Divergence and Gauss’s law

Like the gradient, the divergence of a vector field may be defined as the surface integral of a \textit{compressible} vector field, as a limit as the volume enclosed by the surface goes to zero. As for the case of the gradient, for this definition to make sense, the surface \(S \) must be closed, defining volume \(V' \). The difference is that the surface integral is over the normal component of the vector field being operated on (Greenberg, 1988, p. 762-763).

\[\nabla \cdot D = \lim_{V' \to S} \left\{ \int_{S} \frac{D \cdot \hat{n}}{q'} dS \right\} = \rho_{\text{env}}(x, y, z), \quad [C/m^3] \quad (5.47) \]

As with the case of the gradient, we have defined the surface as \(S \), its area as \(S \), and the volume within as \(V' \). It is a necessary condition that as the area \(S \) goes to zero, so does the volume \(V' \).

As before, \(\hat{n} \) is a unit vector normal to the surface \(S \), which depends on the gradient. The limit, as the volume and surface simultaneously go to zero, defines the total flux across the surface. Thus the surface integral is a measure of the total flux \(D \) to the surface. It is helpful to compare this formula with that for the gradient, Eq. 5.46.

⁹ \(H_{i,j} = \partial^2 \phi / \partial x_i \partial x_j \), which will exist if the potential is analytic in \(x \) at \(x_o \).
CHAPTER 5. STREAM 3B: VECTOR CALCULUS

\[\nabla \cdot \mathbf{D} = \lim_{\mathbf{S} \rightarrow 0} \left\{ \frac{\iint_{S} \hat{n} \cdot \mathbf{D} \, dS}{v'} \right\} \quad [\text{C/m}^3] \]

\[Q_{\text{enc}} = \iiint_{V} \nabla \cdot \mathbf{D} \, dv = \iiint_{V} \rho_{\text{enc}} \, dv \quad [\text{C}] \]

Author: Should these equations be in the theory, or are they regular text? See Fig. 5.6 too.

Gauss's law: The above definitions resulted in Gauss's law, a major breakthrough in vector calculus. As summarized by Feynman (1970c, p. 13-2):

The current leaving the closed surface \(S \) equals the rate of the charge leaving that volume \(V \), defined by that surface.

For the electrical case this is equivalent to the observation that the total flux across the surface is equal to the net charge enclosed by the surface. Since the volume integral over charge density \(\rho(x, y, z) \) is total charge enclosed \(Q_{\text{enc}} \):

\[Q_{\text{enc}} = \iiint_{V} \nabla \cdot \mathbf{D} \, dv = \iint_{S} \mathbf{D} \cdot \hat{n} \, dS \quad [\text{C}] \]

(5.48)

When the surface integral over the normal component of \(\mathbf{D}(x) \) is zero, the total charge is zero. If there is only positive (or negative) charge inside the surface, \(\nabla \cdot \mathbf{D} = \rho(x) = 0 \) charge density must also be zero.

Taking the derivative with respect to time gives the total current normal to the surface:

\[\mathbf{I}_{\text{enc}} = \iint_{S} \mathbf{D} \cdot \hat{n} \, dS = \dot{Q}_{\text{enc}} = \iiint_{V} \rho_{\text{enc}} \, dv \quad [\text{A}] \]

(5.49)

Of course to define a volume, the surface must be closed, a necessary condition for Gauss's law. This reduces to a common-sense summary that can be grasped intuitively.

\[\text{5.7.4 Integral definition of the curl: } \nabla \times \mathbf{H} = \mathbf{C} \]

As briefly summarized on page 195, the differential definition of the curl maps \(\mathbb{R}^3 \rightarrow \mathbb{R}^3 \). The curl of the magnetic field strength \(\mathbf{H}(x) \) is the current density \(\mathbf{C} = \sigma \mathbf{E} + \mathbf{D} \):

\[\nabla \times \mathbf{H} = \begin{vmatrix} \hat{x} & \hat{y} & \hat{z} \\ \partial_z & \partial_y & \partial_x \\ H_z & H_y & H_x \end{vmatrix} = \mathbf{C} \quad [\text{A/m}^2] \]

Like \(\nabla \cdot \mathbf{D} \), \(\nabla \times \mathbf{H} \) may be written in integral form, allowing for the physical interpretation of its meaning:

Curl and Stokes's law: As in the case of the gradient and divergence, the curl also may be written in integral form, allowing for the physical interpretation of its meaning:

The surface integral definition of \(\nabla \times \mathbf{H} = \mathbf{C} \quad [\text{A/m}^2] \), where the current density \(\mathbf{C} \) is \(\perp \) to the rotation plane of \(\mathbf{H} \).
5.7. INTEGRAL DEFINITIONS OF $\nabla()$, $\nabla \cdot ()$ AND $\nabla \times ()$

![Diagram of a tangent plane and a surface with an integral expression for the curl](image)

\[
\nabla \times H \equiv \lim_{\mathcal{B}, S \to 0} \left\{ \frac{\iint_S \hat{n} \times H \ dS}{S} \right\} \quad [A/m^2]
\]

\[
I_{\text{enc}} = \iint_S (\nabla \times H) \cdot \hat{n} \ dS = \oint_{\mathcal{B}} H \cdot dl \quad [A]
\]

Figure 5.6: The integral definition of the curl is related to that of the divergence (Eq. 5.47) as an integration over the tangent to the surface, except: (1) the curl is defined as the cross product $\hat{n} \times H \ [A/m^2]$ of \hat{n} with the current density H, and (2) the surface is open, leaving a boundary \mathcal{B} along the open edge. As with the divergence, which leads to Gauss's law, this definition leads to a second fundamental theorem of vector calculus: Stokes's law (also The curl theorem).

Stokes's law states that the open surface integral over the normal component of the curl of the magnetic field strength $(\hat{n} \cdot \nabla \times H \ [A/m^2])$ is equal to the line integral $\oint_{\mathcal{B}} H \cdot dl$ along the boundary \mathcal{B}. As summarized in Fig. 5.6, Stokes's law is

\[
I_{\text{enc}} = \iint_S (\nabla \times H) \cdot \hat{n} \ dS \quad \{A\}
\]

\[
= \iiint_S C \cdot \hat{n} \ dS
\]

\[
= \oint_{\mathcal{B}} H \cdot dl \quad [A].
\]

That is, namely,

The line integral of H along the open surface's boundary \mathcal{B} is equal to the total current enclosed I_{enc}.

In many texts the normalization (denominator under the integral) is a volume V (e.g., Greenberg, 1988, p. 778, 823-34). However, because the surface is open, this volume does not exist (when defining a volume the surface must be closed). The definition must hold even in the limit when the curved surface S degenerates to a plane, with the boundary \mathcal{B} enclosing S. In this limit there is no volume.

To resolve this problem, we have taken the normalization to be the surface S. Note that in the limit $\mathcal{B} \to 0$, the limiting definition is independent of any curvature, since the integral is over the normal component of H (i.e., $\hat{n} \cdot H(x, y)$). The net flux is independent of the curvature of S as $\mathcal{B} \to 0$.

Summary: Since integration is a linear process (sums of smaller elements), one may tile (tesselate) the surface, breaking it up into smaller surfaces and their boundaries, the sum of which is equal to the integral over the original boundary. This is an important concept which leads to the proof of Stokes's law.

Table 5.1 (p. 194) provides a description of the three basic integration theorems along with their mapping domains. The integral formulations of Gauss's and Stokes's laws use $\hat{n} \cdot D$ and $H \times \hat{n}$ in the integrands. The key distinction between the two laws naturally follows from the properties of the scalar $(A \cdot B)$ and vector $(A \times B)$ products, as discussed in Fig. 3.5 (p. 108). To fully appreciate the differences between Gauss's and Stokes's laws, these two types of vector products must be mastered.

Paraphrasing Feynman (1970c, 2-12, p. 3-12), we have:

1. $\Phi_2 = \Phi_1 + \oint_{\mathcal{B}} \nabla \Phi \cdot dS$
2. $\oint_{\mathcal{B}} D \cdot \hat{n} \ dS = \oint_{\mathcal{B}} \nabla \cdot D \ dv$
3. $\oint_{\mathcal{B}} E \cdot dl = \oint_{\mathcal{B}} (\nabla \times E) \cdot \hat{n} \ dS$

We define en dash. pp. 778, 823-24 we define

1. en dash. we define

1. en dash. we define
5.7.5 Helmholtz's decomposition theorem

We must now rethink everything defined above, in terms of the two types of vector fields that decompose every analytic vector field (Table 5.3). The **irrotational field** is defined as one that is "curl free." An **incompressible field** is one that is "divergence free." According to Helmholtz's decomposition, every analytic vector field may be decomposed into independent rotational and compressible components (Helmholtz, 1978). Another name for Helmholtz decomposition is the **fundamental theorem of vector calculus** (FTVC); Gauss's and Stokes's theorems, along with Helmholtz's decomposition, form the three key fundamental theorems of vector calculus. Portraits of Helmholtz and Kirchhoff are provided in Fig. 5.8.

Table 5.3: The four possible classifications of scalar and vector potential fields: rotational/irrotational and compressible/incompressible. Rotational fields are generated by the vector potential (e.g., $A(x, t)$), while compressible fields are generated by the scalar potentials (e.g., voltage $\phi(x, t)$, velocity ψ, pressure $\rho(x, t)$, or temperature $T(x, t)$).

<table>
<thead>
<tr>
<th>Field:</th>
<th>Compressible</th>
<th>Incompressible</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\nabla \cdot v \neq 0$</td>
<td>$v = \nabla \phi + \nabla \times \mathbf{A}$</td>
<td>$\nabla \cdot v = 0$</td>
</tr>
<tr>
<td>Rotational</td>
<td>Vector wave Eq. (EM)</td>
<td>Lubrication theory</td>
</tr>
<tr>
<td>$\nabla \times v \neq 0$</td>
<td>$\nabla^2 \phi = 0$</td>
<td>Boundary layers</td>
</tr>
<tr>
<td>Conservative</td>
<td>Acoustics</td>
<td>Statics</td>
</tr>
<tr>
<td>$\nabla \times v = 0$</td>
<td>$\nabla^2 \phi(x, t) = \frac{1}{\rho} \frac{\partial \rho(x, t)}{\partial t}$</td>
<td>Laplace's Eq. ($\rho \rightarrow \infty$)</td>
</tr>
</tbody>
</table>

A **magnetic solenoidal field** is a uniform flux field $\mathbf{B}_s(x)$ that is generated by a solenoidal coil, and to an excellent approximation, is uniform inside the coil, making it similar to that of a permanent magnet. As a result, the divergence of a solenoidal field is zero, making it **incompressible** ($\nabla = 0$) and **rotational** ($\nabla \times \neq 0$).

You should approximately know this term, since it is widely used, but suggest the preferred terms are **incompressible** and **rotational**. Strictly speaking, the term "solenoidal field" only applies to a magnetic field produced by a solenoid, making the term specific to that case.

Figure 5.7: A solenoid is a uniform coil of wire. When a current is passed through the wire, a uniform magnetic field intensity H is created. From a properties point of view, this coil is indistinguishable from a permanent bar magnet having north and south poles. Depending on the direction of the current, one end of a finite solenoidal coil is the north pole of the magnet, and the other end is the south pole. The uniform field inside the coil is called solenoidal, a confusing synonym for rotational. (Figure from Wikipedia.)

Helmholtz's decomposition of a differentiable vector field: This theorem is easily stated (and proved), but less easily appreciated (Heras, 2016). A physical description facilitates. **Every vector field may be split into two independent parts: dilation and rotation.** We have seen this same idea appear in vector algebra, where the scalar and cross-products of two vectors are perpendicular (Fig. 3.5, p. 108).

For example, think of linear versus angular momentum, which are independent in that they represent different ways of delivering kinetic energy via different modalities (degrees of freedom). Linear and rotational motions are a common theme in physics, rooted in geometry. Thus it seems a natural extension to split a vector field into independent dilation and rotational parts. For the case of fluid mechanics, these modalities can couple through friction due to viscosity.

A fluid with mass and momentum can be moving along a path and independently be rotating. These independent modes of motion correspond to different types (modes) of kinetic energy, such as translational, compressional, and rotational. Each eigenmode of vibration can be viewed as a DoF.

The theorems are integral relations, the laws physical relationships which follow from the theorems.
5.7. INTEGRAL DEFINITIONS OF \(\nabla()\), \(\nabla \cdot ()\) AND \(\nabla \times ()\)

Helmholtz's decomposition theorem (aka FTVC) quantifies these degrees of freedom. Second-order vector identities \(\nabla \cdot \nabla \times () = 0\) and \(\nabla \times \nabla () = 0\) may be used to verify the FTVC. The role of the FTVC is especially powerful when applied to Maxwell's Eqns.

The four categories of linear fluid flow: The following is a summary of the four cases for fluid flow, as summarized in Fig. 5.3.

1.1 Compressible, rotational fluid (general case): \(\nabla \phi \neq 0\), \(\nabla \times \psi
eq 0\). This is the case of wave propagation in a medium where viscosity cannot be ignored, as in the case of acoustics close to the boundaries, where viscosity contributes to losses (Batchelor, 1967).

1.2 Incompressible, rotational fluid (Lubrication theory): \(\nabla = \nabla \times \psi \neq 0\), \(\nabla \cdot \psi = 0\), \(\nabla^2 \phi = 0\). In this case, the flow is dominated by the walls, while viscosity and heat transfer introduce shear. This is typical of lubrication theory and solenoidal fields.

2.1 Compressible, irrotational fluid (acoustics): \(\nabla = \nabla \phi\), \(\nabla \times \psi = 0\). Here losses (viscosity and thermal diffusion) are small (assumed to be zero). One may define a velocity potential \(\psi\), the gradient of which gives the air particle velocity; thus \(\nabla = -\nabla \phi\). Thus for an irrotational fluid, \(\nabla \times \psi = 0\) (Greenberg, 1988, p. 826). This is the case of the conservative field, where \(\int \mathbf{v} \cdot d\mathbf{R} = 0\), only depends on the end points, and \(\int \mathbf{v} \cdot d\mathbf{R} = 0\). When a fluid may be treated as having no viscosity, it is typically assumed to be irrotational, since it is the viscosity that introduces the shear (Greenberg, 1988, p. 814). A fluid's angular velocity is \(\Omega = \frac{1}{2} \nabla \times \psi = 0\); thus irrotational fluids have zero angular velocity (\(\Omega = 0\)).

2.2 Incompressible, irrotational fluid (statics): \(\nabla \cdot \psi = 0\) and \(\nabla \times \psi = 0\), thus \(\psi = \psi(\phi)\) and \(\nabla^2 \phi = 0\). An example of such a case is water in a small space at low frequencies, where the wavelength is long compared to the size of the container; the fluid may be treated as incompressible. When \(\nabla \times \psi = 0\), the effects of viscosity may be ignored, as it is the viscosity that creates the shear leading to rotation. This is the case of modeling the cochlea, where losses are ignored and the quasi-static limit is justified.

In summary, each of the cases is an approximation that best applies in the low frequency limit. This is why solid-state quasistatic, meaning low, but not zero frequency, where the wavelength is large compared to the dimensions (e.g., diameter), is applicable to Table 5.13.

Table 5.4: The variables of Maxwell's equations have names (e.g., \(E\), \(M\)) and units (in square brackets [S.I. units]). The units are necessary to obtain a full understanding of each of the four variables and their corresponding equations. For example, \(E\) has units \([\text{V/m}]\). By integrating \(E\) from \(x = a\), \(b\), one obtains the voltage difference between the two points. The speed of light in vacuo is \(c = 3 \times 10^8\) \(= 1/\sqrt{\varepsilon_0 \mu_0}\) [m/s], and the characteristic resistance of light, \(r_c = 377 = \sqrt{\mu_0 / \varepsilon_0}\) [\(\Omega\)] (i.e., ohms).

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Name</th>
<th>Units</th>
<th>Maxwell's Eqns.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E)</td>
<td>EF</td>
<td>[V/m]</td>
<td>(\nabla E = -\partial_t B)</td>
</tr>
<tr>
<td>(D = \varepsilon_0 E)</td>
<td>ED</td>
<td>[C/m²]</td>
<td>(\nabla \cdot D = \rho)</td>
</tr>
<tr>
<td>(H)</td>
<td>MF</td>
<td>[A/m]</td>
<td>(\nabla \times H = J + \partial_t D)</td>
</tr>
<tr>
<td>(B = \mu_0 H)</td>
<td>MI</td>
<td>[WB/m²]</td>
<td>(\nabla \cdot B = 0)</td>
</tr>
</tbody>
</table>

5.7.6 Second-order operators: Terminology

In addition to the above first-order vector derivatives, second-order combinations exist, the most important being the scalar Laplacian \(\nabla \cdot \nabla () = \nabla^2 ()\) (Table 5.1, p. 194; §§5.1.2, p. 197).

There are six second-order combinations of \(\nabla\), enough that it is helpful to have a memory aid:

1. DoG: Divergence of the gradient (the *scalar Laplacian*, \(\nabla \cdot \nabla = \nabla^2\))
2. GoD: the vector Laplacian \(\nabla^2 \) also called \(\nabla^2 \) divergence (aka \(\text{little-god} \) \(\nabla \nabla \cdot = \nabla^2 \))
3. gOd: Gradient of the Divergence (aka \(\text{little-god} \)) \(\nabla \nabla \cdot = \nabla^2 \)
4. DoC: Divergence of the curl \(\nabla \cdot \nabla \times = 0 \)
5. CoG: \(\nabla \times \nabla \cdot = 0 \)
6. CoC: \(\nabla \times \nabla \times = 0 \)

\[\nabla \times \nabla \cdot A = \nabla^2 A - \nabla^2 A, \]

which makes them useful in proving the fundamental theorem of vector calculus. [E.g., Helmholtz's decomposition theorem (Eq. 5.59, p. 235)]

A third special vector identity CoC is

It operates on vector fields and is useful for defining the important vector Laplacian GoD as the difference between \(\text{little-god} \) (gOd) and CoC (i.e., GoD = gOd - CoC):

\[\nabla^2 (\phi) = \nabla^2 (\phi) - \nabla \times \nabla \times (\phi). \]

The role of gOd \((\nabla^2) \) is commonly ignored because it is zero for the magnetic wave equation due to there being no magnetic charge \(\nabla \cdot B(x, t) = 0 \), thus \(\nabla^2 B(x, t) \equiv 0 \). However, for the electric vector wave equation it plays a role

\[\nabla^2 \phi(x, t) = - \nabla E(x, t) = - \frac{1}{\varepsilon_0} \nabla^2 D(x, t) = - \frac{1}{\varepsilon_0} \nabla \rho(x, t), \]

or since \(\nabla \cdot D = \rho \)

\[\nabla^2 D(x, t) = \nabla \nabla \cdot D = - \nabla \rho(x, t). \]

When the charge density is inhomogeneous, such as the case of a plasma \((\text{e.g., the sun}) \), this term will play an important role as a source term in the electric wave equation. This case needs to be further explored via some physical examples.

5.15 We use \(\nabla \times \nabla \cdot A \) to explore this relationship.

Exercise: Show that GoD and gOd differ.

Solution: Use CoC on \(A(x, t) \).

Discussion: It is helpful to split these six identities into two groups: the \textit{utility operators} GoD, gOd, and the \textit{Identity operators} CoC (Eq. 5.54), DoC (Eq. 5.50), and CoC (Eq. 5.51). It is helpful to view these two groups as playing fundamentally different roles.

When using second-order differential operators, one must be careful with the order of operations, which can be subtle. Most of this is common sense. For example, do not operate on a scalar field with \(\nabla \times \), and do not operate on a vector field with \(\nabla \). GoD acts on each vector component \(\nabla^2 A = \nabla^2 A_x \mathbf{i} + \nabla^2 A_y \mathbf{j} + \nabla^2 A_z \mathbf{k} \), which is very different from the action of gOd.

\[\text{5.8 The unification of electricity and magnetism} \]

Once you have mastered the three basic vector operations, you are ready to appreciate Maxwell's equations. Like the vector operations, these equations may be written in integral or differential form. An important difference is that with Maxwell's equations, we are dealing with well-defined physical quantities. The scalar and vector fields take on meaning and units. Thus, to understand these important equations, one must master both the names and units of the four fields \(E, H, B, D, \) as described in Table 5.4.

\[\text{This operation defines a dyadic tensor, the generalization of a vector.} \]
5.8. THE UNIFICATION E&M

Figure 5.8: Left: von Helmholtz portrait (taken from Helmholtz, 1978). Right: Gustav Kirchhoff. Together they were the first to account for viscous (Helmholtz, 1858, 1878, 1869b) and thermal (Kirchhoff, 1874, 1869) losses in the acoustic propagation of airborne sound, as first experimentally verified by Mason (1928b, p. 235). (1928, p. 235).

Field strengths \(\mathbf{E}, \mathbf{H} \): As summarized by Eqs. 5.5, there are two field strengths: the electric \(\mathbf{E} \) with units of \(\text{[V/m]} \) and the magnetic \(\mathbf{H} \) having units of \(\text{[A/m]} \). The ratio \(\frac{|\mathbf{E}|}{|\mathbf{H}|} = \sqrt{\frac{\mu_0}{\epsilon_0}} = 377 \text{[ohms]} \) for in-vacuo plane waves \((\mu_0, \epsilon_0) \).

To understand the meaning of \(\mathbf{E} \), if two conducting plates are placed 1 \([\text{m}]\) apart, with 1 \([\text{V}]\) across them, the electric field is \(\mathbf{E} = 1 \text{[V/m]} \). If a charge (i.e., an electron) is placed in an electric field, it feels a force \(\mathbf{f} = q \mathbf{E} \), where \(q \) is the magnitude of the charge [C].

To understand the meaning of \(\mathbf{H} \), consider the solenoid made of wire, as shown in Fig. 5.7, which carries a current of 1 \([\text{A}]\). The magnetic field \(\mathbf{H} \) inside such a solenoid is uniform and is pointed along the long axis, with a direction that depends on the polarity of the applied voltage (i.e., direction of the current in the wire).

Flux: Flux is a flow, such as the mass flux of water flowing in a pipe \([\text{kg/s}]\) driven by a force (pressure drop) across the ends of the pipe, or the heat flux in a thermal conductor having a temperature drop across it (i.e., a window or a wall). The flux is the same as the flow, be it charge, mass, or heat (Table 3.2, p. 129). In Maxwell’s equations there are also two fluxes: the electric flux \(\mathbf{D} \) and the magnetic flux \(\mathbf{B} \). The flux density units for \(\mathbf{D} \) are \([\text{A/m}^2]\) (flux in \([\text{A}]) and the magnetic flux \(\mathbf{B} \) is measured in webers \([\text{Wb}]/[\text{A/m}^2]) or [tesla] (henry-amps/area) \([\text{H-A/m}^2])\).

Maxwell’s equations (ME) consist of two curl equations (Eqs. 5.5) operating on the field strengths \(\mathbf{E} \) and \(\mathbf{H} \), and two divergence equations operating of the field fluxes \(\mathbf{D} \) and \(\mathbf{M} \). In matrix format, ME are

\[
\nabla \times \begin{bmatrix} E(x, t) \\ H(x, t) \end{bmatrix} = \partial_t \begin{bmatrix} -B(x, t) \\ D(x, t) \end{bmatrix} = \begin{bmatrix} 0 & -\mu_0 \\ \epsilon_0 & 0 \end{bmatrix} \partial_t \begin{bmatrix} E(x, t) \\ H(x, t) \end{bmatrix}
\]

When the medium is conducting, \(\partial_t \mathbf{D} \) must be replaced by \(\mathbf{C} \partial_t \mathbf{E} + \partial_t \mathbf{D} = (\sigma_0 + s \epsilon_0) \mathbf{E}(x, \omega) \), where \(\sigma_0 + s \epsilon_0 \) is an admittance density \([\Omega/\text{m}^2])\.

Author: Do you want to keep the red type? No. This was for my personal use, back to black.
There are also two auxiliary equations:

\[
\nabla \cdot \begin{bmatrix} D \\ B \end{bmatrix} = -\partial_t \begin{bmatrix} \rho(x) \\ 0 \end{bmatrix},
\]

that expresses the conservation of charge, while the lower states, there is no magnetic charge. When expressed in integral form, Gauss's law follows from the curl equations and Gauss's law from the divergence equations.

5.7 Example. When a static current is flowing in a wire in the \(\hat{z} \) direction, the magnetic flux is determined by Stokes's theorem (Fig. 5.6c, p. 5.6). Thus, just outside of the wire we have

\[
\mathcal{E}_{\text{enc}} = \oint_S (\nabla \times \mathbf{H}) \cdot \hat{n} \, dS = \oint_{\mathcal{B}} \mathbf{H} \cdot d\mathbf{l} = [\mathcal{L}],
\]

For this simple geometry, the current in a wire is related to \(\mathbf{H}(x, t) \) by

\[
\mathcal{I}_{\text{enc}} = \oint_{\mathcal{B}} \mathbf{H} \cdot d\mathbf{l} = H_0 2\pi r. \quad \text{Verify with Faraday.}
\]

Here \(H_0 \) is perpendicular to both the radius \(r \) and the direction of the current \(\hat{z} \). Thus

\[
H_0 = \frac{\mathcal{I}_{\text{enc}}}{2\pi r},
\]

so that \(\mathbf{H} \) and \(\mathbf{B} = \mu_0 \mathbf{H} \) drop off as the reciprocal of the radius \(r \).

5.16 Exercise. Explain how Stokes's theorem may be applied to \(\nabla \times \mathbf{E} = -\partial \mathbf{B} / \partial t \), and explain what it means.

Hint: This is the identical argument given above for the current in a wire, but for the electric case.

Solution: Integrating the left side of equation EE over an open surface results in a voltage (emf) induced in the loop closing the boundary of the surface

\[
\phi_{\text{induced}} = \oint_S (\nabla \times \mathbf{E}) \cdot \hat{n} \, dS = \oint_{\mathcal{B}} \mathbf{E} \cdot d\mathbf{l} \quad [\text{V}].
\]

The emf (electromagnetic force) is the same as the Thévenin source voltage induced by the rate of change of the flux. Integrating the Eq. 5.8.1 over the same open surface \(S \) results in the source of the induced voltage \(\phi_{\text{induced}} \), which is proportional to the rate of change of the flux [weber/s]:

\[
\phi_{\text{induced}} = -\frac{\partial}{\partial t} \iint_S \mathbf{B} \cdot \hat{n} \, dA = L \dot{\psi} \quad [\text{Wb/s}] \text{ or } [\text{V}].
\]

where \(L \) is the inductance of the wire. The area integral on the left is in [Wb/m²], resulting in the total flux crossing normal to the surface \(\psi \) [Wb]. Thus the rate of change of the total flux [Wb/s] is a voltage [V].

If we apply Gauss's theorem to the divergence equations, we find the total flux crossing the closed surface.

5.17 Exercise. Apply Gauss's theorem to equation ED and explain what it means in physical terms.

Solution: The area of the normal component of \(\mathbf{D} \) is equal to the volume integral over the charge density \(\rho \). Gauss's theorem says that the total charge within the volume \(V \) found by integrating the charge density \(\rho(x) \) over the volume \(V \), is equal to the normal component of the flux \(\mathbf{D} \) through the surface \(S \):

\[
Q_{\text{enc}} = \iiint_V \nabla \cdot \mathbf{D} \, dV = \iint_S \mathbf{D} \cdot \hat{n} \, dA.
\]

When equal amounts of positive and negative charge exist within the volume, the integral will be zero. ■
Summary: Maxwell’s four equations relate the field strengths to the flux densities. There are two types of variables: field strengths \((E, H) \) and flux densities \((D, B) \). There are two classes: electric \((E, D) \) and magnetic \((H, B) \). One might naturally view this as a \(2 \times 2 \) matrix, with rows being electric and magnetic strengths, and columns being electric and magnetic flux densities, defining a total of four variables (see boxed table).

<table>
<thead>
<tr>
<th>Field strength</th>
<th>Flux density</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electric</td>
<td>(E) [V/m]</td>
</tr>
<tr>
<td>Magnetic</td>
<td>(H) [A/m]</td>
</tr>
</tbody>
</table>

Applying Stokes’s “curl” theorem to the forces induces a Thévenin voltage (emf) or Norton current source. Applying Gauss’s “divergence” theorem to the flows gives the total charge enclosed. The magnetic charge is zero \((\nabla \cdot B = 0) \) because magnetic monopoles do not exist. However, magnetic dipoles that do exist, as in the example of the electron which contains a magnetic dipole.

5.8.2 Derivation of the vector wave equation

Next we provide the derivation of the vector wave equation starting from Maxwell’s equations (Eq. 5.52), which is reminiscent of the derivation of the Webster horn equation (Eq. 5.3, p. 205). Working in the frequency domain, and taking the curl of both sides, gives

\[
\nabla \times \nabla \times \left[\begin{array}{c} E \\ H \end{array} \right] = \left[\begin{array}{cc} 0 & -s\mu_0 \\ s\varepsilon_0 & 0 \end{array} \right] \nabla \times \left[\begin{array}{c} E \\ H \end{array} \right]
\]

\[
= \frac{s^2}{\varepsilon_0} \left[\begin{array}{c} E \\ H \end{array} \right]
\]

(5.52)

Using the CoC identity \(\nabla \times \nabla \times (\cdot) = \nabla^2 (\cdot) - \nabla^2 (\cdot) \) (Eq. 5.31, p. 228) gives

\[
\nabla^2 \left[\begin{array}{c} E \\ H \end{array} \right] - \nabla^2 \left[\begin{array}{c} E \\ H \end{array} \right] = \frac{s^2}{\varepsilon_0} \left[\begin{array}{c} E \\ H \end{array} \right]
\]

or finally Maxwell’s vector wave equation

\[
\nabla^2 \left[\begin{array}{c} E \\ H \end{array} \right] - \frac{s^2}{\varepsilon_0} \left[\begin{array}{c} E \\ H \end{array} \right] = \nabla \left[\begin{array}{c} \frac{1}{\varepsilon_0} \nabla \cdot D \\ \frac{1}{\mu_0} \nabla \cdot B \end{array} \right] = \nabla \left[\begin{array}{c} \nabla \rho(x, s) \\ 0 \end{array} \right]
\]

(5.54)

with the electric excitation term \(\nabla \rho(x, s) \). Note that if \(\mu \) and \(\varepsilon \) depended on \(x \), the terms on the right would not be zero. In deep outer space with its black holes and plasmas everywhere (e.g., inside the sun), this seems possible, even likely.

Recall the d’Alembert solutions of the scalar wave equation (Eq. 4.16, p. 169)

\[
E(x, t) = f(x - ct) + g(x + ct),
\]

and where \(f, g \) are arbitrary vector fields. This result applies to the vector case, since it represents three identical, yet independent, scalar wave equations in the three dimensions.
<H3> Poynting's vector: </H3> The EM power flux density \(\mathcal{P} \) [W/m\(^2\)] is perpendicular to \(E \) and \(B \), denoted as

\[
\mathcal{P} = \frac{1}{\mu_0} E \times B = E \times H \quad [\text{W/m}^2, \text{Wb/m}^2].
\]

The corresponding EM momentum flux density \(\mathcal{M} \) is

\[
\mathcal{M} = \varepsilon_0 E \times B = D \times B \quad [\text{C/m}^2 \cdot \text{Wb/m}^2].
\]

Since the speed of light is \(c_0 = 1/\sqrt{\mu_0 \varepsilon_0} \), divided by the momentum flux density:12

\[
\mathcal{P} = \frac{c_0^2}{\varepsilon_0} \mathcal{M} \quad [\text{W/m}^2],
\]

which is clearly related to the Einstein energy-mass equivalence formula \(E = mc_0^2 \).3

\textbf{Examples:} The power emitted by the sun is about 1360 [W/m\(^2\)] with a radiative intensity of \(4 \times 10^{-6} \text{ W/m}^2 \) or \(1 \text{ btu}/	ext{hr} \cdot 	ext{ft}^2 \) (Fitzpatrick, 2008). By way of comparison, the threshold audible acoustic pressure at the human ear at 1 KHz is 20 \(\mu \text{Pa} \). Also:

The lasers used in Inertial Confinement Fusion (e.g., the NOVA experiment in Lawrence Livermore National Laboratory) typically have energy fluxes of \(10^{16} \) [W/m\(^2\)]. This translates to a radiation pressure of about \(10^8 \mu \text{N/m}^2 \) (Fitzpatrick, 2008, p. 291).

\textbf{Electrical impedance seen by an electron:} Up to now we have only considered the Brune impedance, which is a special case with no branch points or branch cuts. We can define impedance for the case of diffusion, as in the case of the diffusion of heat. There is also the diffusion of electrical and magnetic fields at the surface of a conductor, where the resistance of the conductor dominates the dielectric properties, which is called the electrical skin effect, where the conduction currents are dominated by the conductivity of the metal rather than the displacement currents. In such cases, the impedance is proportional to \(\sqrt{s} \), implying that it has a branch cut. Still, in this case, the real part of the impedance must be positive in the right \(s \) half-plane, the required condition of all impedances, such that postulate P3 is satisfied (p. 138). The same effect is observed in acoustics (Appendix D).

\textbf{Example:} When we deal with Maxwell's equations the force is defined by the \textbf{Lorentz force},

\[
f = qE + qv \times B = qE + C \times B,
\]

which is the force on a charge (e.g., electron) due to the electric \(E \) and magnetic \(B \) fields. The magnetic field plays a role when the charge has a velocity \(v \). When a charge is moving with velocity \(v \), it may be viewed as a current \(C = qv \) (see discussion on p. 394, p. 139).

The complex admittance density is

\[
Y(s) = \frac{\sigma_0 + s\varepsilon_0}{(j\omega)^2} [\text{S/m}^2].
\]

(Feynman, 1970c, p. 13-1). Here \(\sigma_0 \) is the electrical conductivity and \(\varepsilon_0 \) is the electrical permittivity. Since \(\omega \varepsilon_0 \ll \sigma_0 \), this reduces to the resistance of the wire per unit length.12

12For copper \(\omega \ll \omega_c \approx \sigma_0/\varepsilon_0 \approx 6 \times 10^7/9 \times 10^{-12} \approx 6.66 \times 10^{10} \text{ rad/s} \) or \(f_c = 10^{15} \text{ Hz} \). This corresponds to a wavelength of \(\lambda_c \approx c_0/f_c = 0.30 \text{ nm} \). For comparison, the Bohr radius (hydrogen) is \(0.53 \text{ pm} \) (5.66 times smaller) and the Lorentz radius (of the electron) is estimated to be \(2.8 \times 10^{-15} \text{ m} \) (2.8 femto meters).
5.9 Potential solutions of Maxwell’s equations

The primary purpose for using potentials is for generating solutions to Maxwell’s equations. For example, extending Eq. 5.2 (p. 192), Maxwell’s equations may be expressed in terms of scalar and vector potentials. These relations are \(\Phi = \epsilon_0 \frac{\partial A}{\partial t} \) [V/m] \(\nabla \times A(x, t) + \frac{\partial D(x, t)}{\partial t} \) [A/m].

We have extended \(H(x, t) \) to include the electric potential term \(D(x, t) = \epsilon(x) \epsilon_0 E(x, t) = -\epsilon(x) \nabla \phi(x, t) \).

Normally taken to be zero, because taking the \(\nabla \times H \) would naturally remove any electrical potential term due to \(\nabla \times \Phi = 0 \).

When the permittivity \(\epsilon_0(x) \) is both inhomogeneous and time dependent, \(\nabla \cdot E = -\nabla \Phi - \nabla \cdot A = \rho(x, t)/\epsilon_0(x, t) \).

The extension makes the potential solutions symmetric so that \(E \) and \(H \) each have electrical and magnetic excitation.

5.18 Exercise: Explain why some dependence of \(\phi(x, t) \) does not appear in Eq. 5.56, but does in 5.55.

Solution: For \(H(x, t) \) to depend on \(\phi(x, t) \), the term must appear through the electric strength, \(E(x, t) = -\nabla \Phi(x, t) \). But then \(\nabla \times H(x, t) \) would mean applying \(\nabla \times \Phi = 0 \) to the right side of the equation. Since this term would be zero, it is assumed to be zero; thus \(H(x, t) \) is only dependent on \(A(x, t) \) to fill out the symmetry, we have added \(\partial D(x, t) \) to Eq. 5.56, to see what might happen in the general case.

Use of Helmholtz theorem on potential solutions: The generalized solution to Maxwell’s equations (Eqs. 5.55 and 5.56), pp. 233-233 have been expressed in terms of EM potentials \(\phi(x) \) and \(A(x) \) and Helmholtz’s theorem. These are “solutions” to Maxwell’s equations expressed in terms of the potentials \(\phi(x, s) \) and \(A(x, s) \), as determined at the boundaries (Sommerfeld, 1952, p. 146). These relations are invariant to certain functions added to each potential, as shown below. They are equivalent to Maxwell’s equations following the application of \(\nabla \times \nabla \times \).

Next we show that the potential equations (Eqs. 5.55, 5.56, p. 233) are consistent with Maxwell’s equations (Eq. 5.52 p. 239).

ME for \(E(x, t) \): Taking the curl of Eq. 5.55, applying CoG-H, and using Eq. 5.56 \(\nabla \times E = -\nabla \times \nabla \Phi - \nabla \cdot \frac{\partial A}{\partial t} \).

\[\nabla \times E = -\nabla \times \nabla \Phi - \nabla \cdot \frac{\partial A}{\partial t} \]

\[\frac{\partial B}{\partial t} \]

\[13 \text{ "in vacuo" } \epsilon_0 = 8.85 \times 10^{-12} \text{ F/m}^2 \text{ is the capacitance, and } \mu_0 \text{ is the electric compliance-density of light. The related magnetic mass-density is the permeability } \mu_0 = 4\pi \times 10^{-7} \text{ H/m} \text{ having an inductive impedance of } \sigma \mu_0 \text{ (} \Omega \text{.m). It is helpful to think of } \epsilon_0 \text{ as an capacitance per unit area and } \mu_0 \text{ as a inductance per unit area (consistent with their units). The speed of light is } c = 1/\sqrt{\epsilon_0 \mu_0} = 3 \times 10^8 \text{ m/s}. \]
5.53 | recovers Maxwell's equation for \(E(x)\) (Eq. 5.52, p. 229).

Taking the \(\operatorname{Div}\) of 5.56 and applying \(\operatorname{DoC}(\mathbf{J})\) gives Eq. 5.53 (p. 230) for \(B(x)\):

\[
\nabla \cdot B(x) = \nabla \cdot \nabla \times A(x) = 0.
\]

\(<113>\)

ME for \(H(x,t)\): To recover Maxwell's equation for \(H(x)\) (Eq. 5.52, \(\nabla \times H = \mathbf{C}\)) from the potential equation Eq. 5.56, we take the \(\operatorname{Curl}\) and use \(B = \varepsilon_0 H\) (Table 5.4, p. 227):

\[
\nabla \times B(x) = \mu_0 \nabla \times H(x) \\
= \nabla \times \nabla \times A(x) \\
= \nabla^2 A(x,t) - \nabla^2 A(x,t) \\
= \nabla \cdot \nabla \times A(x,t) - \mu_0 \frac{\partial^2}{\partial t^2} A(x,t) \\
= -\frac{1}{\varepsilon_0} (\dot{A} + \nabla \Phi) + \mu_0 \mathbf{J}.
\]

This last equation may be split into two independent equations by the use of Helmholtz theorem:

\[
\nabla^2 A - \frac{1}{c_0^2} \dot{A} = -\mu_0 J \quad \text{and} \quad \nabla \cdot A + \frac{1}{c_0^2} \Phi = 0.
\]

\(<113>\) **Author:** Should the bold \(J\) be italics?

\(<113>\) **Author:** Which is *This equation*?

\(<113>\) **Author:** Should there be units here?

\(\text{Eqs. 5.53 and 5.54}\)

\(<113>\) **Author:** Should there be a multiplication sign before \(10^7\)?

\(<113>\) **Author:** Would it help to add a space here? \(10^{-7}\)

\(<113>\) **Author:** Should there be

\(<113>\) **Author:** I am really confused. Could you explain what results \((J = \sigma E)\)?

\(<113>\) **Solution:** The divergence of the curl is zero (\(\operatorname{DoC}(\mathbf{J})\)).

\[
\nabla \cdot \nabla \times H(x,t) = \nabla \cdot J(x,t) + \frac{\partial}{\partial t} \rho(x,t) = 0,
\]

\(\text{(5.58)}\)

\(<113>\) **Author:** This line is still part of the exercise solution.

\(<113>\) **Author:** This line is still part of the exercise solution.

\(<113>\) **Author:** I am really confused. Could you explain what results \((J = \sigma E)\)?

\(<113>\) **Solution:** The divergence of the curl is zero (\(\operatorname{DoC}(\mathbf{J})\)).

\[
\nabla \cdot \nabla \times H(x,t) = \nabla \cdot J(x,t) + \frac{\partial}{\partial t} \rho(x,t) = 0,
\]

\(\text{(5.58)}\)

\(<113>\) **Author:** This line is still part of the exercise solution.

\(<113>\) **Author:** This line is still part of the exercise solution.
Helmholtz's decomposition theorem: Helmholtz's decomposition is expressed as the linear sum of a scalar potential \(\phi(x, y, z) \) (think voltage) and a vector potential (think magnetic vector potential). Specifically,

\[
E(x, s) = -\nabla \phi(x, s) + \nabla \times A(x, s),
\]

(5.59)

where \(\phi \) is the scalar and \(A \) is the vector potential, both as a function of the Laplace frequency \(s \). Of course, this decomposition is general (not limited to the electromagnetic case). It applies to linear fluid vector fields, which include most liquids and air. When the rotational and dilation become coupled, this relation must break down.\(^{14}\)

To show how this relationship splits the vector fields \(E \) into its two parts, we need DoC and CoG, the two key vector identities that are always zero for analytic fields: the curl of the gradient (CoG),

\[
\nabla \times \nabla \phi(x) = 0,
\]

(5.60)

and the divergence of the curl (DoC),

\[
\nabla \cdot (\nabla \times A) = 0.
\]

(5.61)

These identities are easily verified by working out a few specific examples, based on the definitions of the three operators, gradient, divergence, and curl, or in terms of the operator's integral definitions, defined on p. 522. The identities have a physical meaning, as stated above: every vector field may be split into its translational and rotational parts. If \(E \) is the electric field [V/m], \(\phi \) is the voltage and \(A \) is the induced rotational part, induced by a current.

By applying these two identities to Helmholtz's decomposition, we can better appreciate the theorem's significance. It is a form of proof actually, once you have satisfied yourself that the vector identities are true. In fact, one can work backward using a physical argument, that rotational momentum (rotational energy) is independent of the translational momentum. Once these forces are made clear, the vector operations all take on a very well-defined meaning, and the mathematical constructions, centered around Helmholtz's theorem, begin to provide some common-sense meaning. One could conclude that the physics is simply related to the geometry via the scalar and vector product.

Specifically, if we take the divergence of Eq. 5.59, and use the DoC, then

\[
\nabla \cdot E = \nabla \cdot \left(\nabla \phi - \nabla \times A \right) = -\nabla \cdot \nabla \phi = -\nabla^2 \phi,
\]

since the DoG zeros the vector potential \(A(x, y, z) \). If instead we use the CoG, then

\[
\nabla \times E = \nabla \times \left(\nabla \phi - \nabla \times A \right) = \nabla \times \nabla \times A = \nabla (\nabla \cdot A) - \nabla^2 A,
\]

since the CoG zeros the scalar field \(\phi(x, y, z) \). The last expression requires GoD.

5.10 The Quasi-static approximation

A fundamental question that is begging for an answer, that I have not yet seen asked, is

\[\text{What is the mathematical description of quantum mechanics?}\]

To answer the question, we have three responses:

- First, this question must have an answer, as quantum mechanics (QM) is a highly mathematical subject. Second, we have seen that QM is related to the Webster Horn equation, thus may be defined through its Sturm-Liouville equation parameters, specifically, the area function \(A(x) \). Third, QM systems are nearly lossless. If there were zero loss, we would not be able to observe them. Yet we can see the tell-tale radiation signature, such as the Rydberg series, for the case of the Hydrogen atom. For all practical

\(^{14}\)The nonlinear Navier-Stokes equation is an example.

\(^{15}\)Helmholtz was the first person to apply mathematics in modeling the eye and the ear (Helmholtz, 1863a).
purposes, they can be considered to be lossless. It is likely that in their ideal unperturbed state, there is zero loss.

To characterize a lossless system, such as the Hydrogen atom, as a Sturm-Liouville system, we need an area function that is exponential. In this case, the propagation function \(k(s) \) has no real part, and the electromagnetic energy is trapped inside the area function (i.e., exponential horn). In this case, \(k(s) \) has a cutoff frequency, below which the waves are trapped. The wave velocity in such cases is highly dispersive, giving rise to an accumulation point of the eigen frequencies.

There are a number of assumptions and approximations that result in special cases, many of which are classic. These manipulations are typically done at the differential equation level, by making assumptions that change the basic equations that are to be solved. These approximations are distinct from assumptions made while solving a specific problem.

Here are a few important examples:

1. \textit{In-vacuo} waves (free-space scalar wave equation)
2. Expressing the vector wave equation in terms of scalar and vector potentials
3. Quasistatics
 a. \textit{scalar} wave equation
 b. Kirchhoff's low-frequency lumped approximation (LRC networks)
 c. Transmission line equations (telephone and telegraph equations)
 d. Huygens made one in about 1640 (see Application 5.4)

Quasistatics and its implications: Quasistatics (Postulate P10, p. 139) is an approximation used to reduce a partial differential equation to a scalar (one-dimensional) equation (Somerfeld, 1952); that is, quasistatics is a way of reducing a three-dimensional problem to a one-dimensional problem. So that it is not misapplied, it is important to understand the nature of this approximation, which goes to the heart of transmission line theory. The quasistatic approximation states that the wavelength is greater than the dimensions of the object (e.g., \(\lambda \gg \Delta \)). The best known examples are Kirchhoff's current and voltage laws (KCL and KVL) almost follow from Maxwell's equations given the quasistatic approximation (Ramo et al., 1965). These laws, based on Ohm's law, state that the sum of the currents at a node must be zero (KCL) and the sum of the voltages around a loop must be zero (KVL).

These well-known laws are the analog of Newton's laws of mechanics. The sum of the forces at a point is the analog of the sum of the loop voltages. Voltage \(\phi \) is the force potential, since the electric field \(E = -\nabla \phi \). The sum of the currents is the analog of the vector sum of velocities (mass) at a point, which is zero.

The acoustic wave equation describes how the scalar field pressure \(p(x, t) \) and the vector force density potential \(f(x, t) = -\nabla p(x, t) \) propagate in three dimensions. The net force is the integral of the pressure gradient over an area. If the wave propagation is restricted to a pipe (e.g., organ pipe) or to a string (e.g., a guitar or lute), the transverse directions may be ignored, due to the quasi-static approximation. What needs to be modeled by the equations is the wave propagation along the pipe (string). Thus we may approximate the restricted three-dimensional wave by a one-dimensional wave.

However, if we wish to be more precise about this reduction in geometry (\(\mathbb{R}^2 \rightarrow \mathbb{R} \)), we need to consider the quasistatic approximation, as it makes assumptions about what is happening in the other directions, and quantifies the effect (\(\lambda \gg \Delta \)). Taking the case of wave propagation in a tube, say the ear canal, there is the main wave direction, down the tube. But there is also wave propagation in the transverse direction, perpendicular to the direction of propagation. As shown in Table F.1 (p. 296), the key statement of the quasistatic approximation is that the wavelength in the transverse direction is much smaller than the aperture of the pipe.

Watch It is essential to watch this magical video by Carl Sagan about Einstein's views on the speed of light: https://www.youtube.com/watch?v=_p5lA0-r5A8.
larger than the radius of the pipe. This is equivalent to saying that the radial wave

The pressure \(\rho(x, t) \) is a potential, thus its gradient is a force density \(\mathbf{f}(x, t) = -\nabla \rho(x, t) \). This equation tells us how the pressure wave evolves as it propagates down the horn. Any curvature in the pressure wave front induces stresses, which lead to changes (strains) in the local wave velocity in the directions of the force density. The main force is driving the wave front forward (down the horn), but there are radial (transverse) forces as well, which tend to rapidly go to zero.

For example, if the tube has a change in area (or curvature), the local forces will create radial flow, which is immediately reflected by the walls due to the small distance to the walls, causing the forces to average out. After traveling a few diameters, these forces will come to equilibrium and the wave will trend towards a plane wave (as satisfy Laplace's equation if the distortions of the tube are severe). The internal stress caused by this change in area will quickly equilibrate.

There is a very important caveat, however: only at low frequencies, such that \(ka < 1 \), can the plane wave mode dominate. At higher frequencies (\(ka \gtrsim 1 \)), where the wavelength is small compared to the diameter, the distance traveled between reflections is much greater than a few diameters. Fortunately the frequencies where this happens are so high that they play no role in frequencies that we care about in the ear canal. This effect results from cross modes, which are radial and angular standing waves.

Such modes exist in the ear canal above 20 kHz. However, they are much more obvious on the eardrum, where the sound wave speed is much slower than that in air (Parent and Allen, 2010; Allen, 2014). Because of the slower speed, the eardrum has low-frequency cross modes, and these may be seen in the ear canal pressure, and are easily observable in ear canal impedance measurements. Yet they seem to have a negligible effect on our ability to hear sound with high fidelity. The point here is that the cross modes are present, but we call upon the quasi-static approximation as a justification for ignoring them, to get closer to the first-order physics.

5.10.1 Quasi-statics and Quantum Mechanics

It is important to understand the meaning of Planck's constant \(\hbar \), which appears in the relations of both photons (light "particles") and electrons (mass particles). If we could obtain a handle on what exactly Planck's constant means, we might have a better understanding of quantum mechanics and physics in general. By cataloging the dispersion relations (the relation between the wavelength \(\lambda(\nu) \) and the frequency \(\nu \)) between electrons and photons, this may be attainable.

Basic relations from quantum mechanics for photons and electrons include:

1. **Photons (massless, velocity = \(c \))**

 a. \(c = \lambda \nu \): The speed of light \(c \) is the product of its wavelength \(\lambda \) times its frequency \(\nu \). This relationship is only for monochromatic (single frequency) light.

 b. \(c = \sqrt{\frac{\hbar e}{m_c}} = 3 \times 10^8 \text{ m/s} \)

 c. \(r_0 = \sqrt{\frac{\mu_0}{\epsilon_0}} |E|/|H| = 377 \) (ohms)

 is defined as the magnitude of the ratio of the electric \(E \) and magnetic \(H \) field of a plane wave \(\text{in vacuo} \).
d. \(E = h \nu \): the photon energy is given by Planck’s constant
\[h \approx 6.623 \times 10^{-34} \text{ J s} \]
times the frequency (i.e., bandwidth) of the photon.

2. Electrons (mass = \(m_e \), velocity \(V = 0 \))

 a. (a) \(E_e = m_e c^2 \approx 0.91 \cdot 10^{-30} \cdot 0.3^2 \cdot 10^{12} = 8.14 \times 10^{-20} \text{ J} \) is the electron rest energy (velocity \(V = 0 \)) of every electron of mass \(m_e = 9.1 \times 10^{-31} \text{ kg} \), where \(c \) is the speed of light.

 b. (b) \(p = \hbar / \lambda \): The momentum \(p \) of an electron is given by Planck’s constant \(\hbar \) divided by the wavelength of an electron \(\lambda \). It follows that the bandwidth of the photon is given by
\[\nu_e = \frac{E_e}{\hbar} \]
and the wavelength of an electron is
\[\lambda_e = \frac{\hbar}{p_e} \]

One might reason that QM obeys the quasi-static (long wavelength) approximation. If we compare the velocity of the electron \(V \) to the speed of light \(c \), then we see that
\[c_o = E / p \gg V = E / p = m V^2 / m V \]

Models of the electron: It is helpful to consider the physics of the electron, a negatively charged particle that is frequently treated as a single point in space. If the size were truly zero, there could be no magnetic moment (spin). The accepted size of the electron is known as the Lorentz radius, \(R = 2.8 \times 10^{-15} \text{ m} \). One could summarize the Lorentz radius as follows: *There are many unsolved problems in physics*. More specifically, at dimensions of the Lorentz radius, what exactly is the structure of the electron?

Ignoring these difficulties, if one integrates the charge density of the electron over the Lorentz radius and places the total charge at a single point, then one may make a grossly oversimplified model of the electron. For example, the electric displacement \(D = \epsilon_0 E \) (flux density) around a point charge is
\[D = -\epsilon_0 \nabla \phi(R) = -Q \nabla \left(\frac{1}{R} \right) = -Q \delta(R) \left[\text{C/m}^2 \right] \]

This is a formula taught in many classic texts, but one should remember how crude a model of an electron it is. But it does describe the electric flux in an easily remembered form. However, computationally, it is less nice due to the delta function. The main limitation of this model is that the electron has a magnetic dipole moment (aka, spin), which a simple point charge model does not capture. When placed in a magnetic field, the magnetic dipole, the electron will align itself with the field.

We can apply a similar analysis to the gravitational potential. At the surface of the earth we are so far from the center of the earth that the potential appears to be linear because the height is a tiny fraction of the radius of the earth.

5.10.2 Conjecture on photon energy

Photons are seen as quantized because they are commonly generated by atoms, which freely radiate photons (light particles) having the difference in two energy (quantum, or eigenstates) levels. The relation \(E = h \nu \) does not inherently depend on \(\nu \) being a fixed frequency. Planck’s constant \(h \) is the EM energy density over frequency, and \(E(\nu_o) \) is the integral over frequency:
\[E(\nu_o) = h \int_{-\nu_o}^{\nu_o} d\nu = 2h\nu_o. \]
5.10. (WEEK 15) QUASI-STATICS AND THE WAVE EQUATION

When the photon is generated by an atom, \(\nu_0 \) is quantized by the energy level difference that corresponds to the frequency (energy level difference) of the photon jump.\(^{17}\)

Summary: Mathematics began as a simple way of keeping track of how many things there were. But eventually physics and mathematics cleverly and mysteriously evolved to become tools to help us navigate our environments, both locally and globally. (1) To solve daily problems such as food, water, and waste management. (2) Understand the solar system and the stars. (3) Defend ourselves using tools of war, such as the hydrogen bomb. All powerful ideas have both bright and dark sides.

Based on the historical record of the abacus, one can infer that people precisely understood the concepts of counting, addition, subtraction, multiplication (recursive addition), and division (recursive subtraction with a fractional remainder). There is evidence that the abacus, a simple counting tool formalizing the addition of very large numbers, was introduced by the Romans to the Chinese, who used it for trade.

However, this working knowledge of arithmetic did not show up in written number systems. The Roman numerals were not useful for doing calculations done on the abacus. Only the final answer could be expressed in terms of the Roman numeral system.

According to the known written record, the number zero had no written symbol until the time of Brahmagupta (628 CE). One should not assume the concept of zero was not understood simply because there was no symbol for it in the roman numeral system. Negative numbers and zero would have been obvious when using the abacus. Numbers between the integers would naturally be represented as fractional numbers (\(\mathbb{F} \)), since any irrational number (\(\mathbb{Q} \)) may be approximated with arbitrary accuracy using fractional (\(\mathbb{F} \)) numbers.

Mathematics is the science of formalizing a repetitive method into a set of rules (an algorithm), and then generalizing it as much as possible. Generalizing the multiplication and division algorithms to different types of numbers becomes increasingly more interesting as we move from integers to rational numbers, irrational numbers, real and complex numbers, and, ultimately, vectors and matrices. How do you multiply two vectors, or multiply and divide one matrix by another? Is it subtraction as in the case of two numbers? Multiplying and dividing polynomials (by long division) generalizes these operations even further. Linear algebra is a further important generalization, fallout from the fundamental theorem of algebra, and essential for solving the generalizations of the number systems.

Many of the concepts about numbers naturally evolved from music, where the length of a string (along with its tension) determined the pitch (Stillwell, 2010, pp. 11, 16, 153, 261). Cutting the string’s length by half increases the frequency by a factor of 2. One fourth of the length increases the frequency by a factor of 4. One octave is a factor of 2 and two octaves a factor of 4, while a half octave is \(\sqrt{2} \). The musical scale was soon factored into rational parts. This scale almost worked, but did not generalize (sometimes known as the Pythagorean comma (Apel, 2003), resulting in today’s well-tempered scale, which is based on 12 equal geometric steps along one octave, or 1/12 octave (\(\sqrt[12]{2} \approx 1.05946 \approx 18/17 = 1 + 1/17 \)).

But the concept of a factor was clear. Every number may be written as either a sum or a product (i.e., a repetitive sum). This led the early mathematicians to the concept of a prime number, which is based on a unique factoring of every integer. At this same time (c. 5000 BCE), the solution of a second-degree polynomial was understood, which led to a generalization of factoring, since the polynomial, a sum of terms, may be written in factored form. If you think about this a bit, it is an amazing idea that needed to be discovered. This concept led to an important string of theorems on factoring polynomials and how to numerically describe physical quantities. Newton was one of the first to master these tools with his proof that the orbits of the planets are ellipses, not circles. This led him to expanding functions in terms of their derivatives and power series. Could these sums be factored? The solution to this problem led to calculus.

\(^{17}\)There is no better example of this than the properties of very large Rydberg atoms, as beautifully articulated by MIT professor of physics Daniel Kleppner [https://www.youtube.com/watch?v=eGIWFEhMho].
So mathematics, a product of the human mind, is a highly successful attempt to explain the physical world. All aspects of our lives were and are impacted by these tools. Mathematical knowledge is power. It allows one to think about complex problems in increasingly sophisticated ways. Does mathematics have a dark side? Perhaps no more than language itself. An equation is a mathematical sentence expressing deep knowledge. Witness $E = mc^2$ and $\nabla^2 \psi = \phi$.

\sqrt{}
5.11. Exercises VC-2

Topics of this homework:

Maxwell's equations (ME) and variables (E, D, B, H). Compressible and rotational properties of vector fields. Fundamental theorem of vector calculus (Helmholtz Theorem). Riemann zeta function. Wave equation.

No italic text in problems except for variables.

Author: The Riemann zeta function is not included in these problems. Please check.

Notation: The following notation is used in this assignment:

1. $s = \sigma + j\omega$ is the **Laplace frequency**, as used in the Laplace transform.

2. A Laplace transform pair are indicated by the symbol \leftrightarrow, e.g., $f(t) \leftrightarrow F(s)$.

3. π_k is the k^{th} prime, i.e., $\pi_k \in \mathbb{P}$, e.g., $\pi_k = [2, 3, 5, 7, 11, 13, \ldots]$ for $k = 1, 6$.

Partial differential equations (PDEs): Wave equation

Problem 5.16

Solve the wave equation in one dimension by defining $\xi = t - x/c$.

Q 1.1: Show that d'Alembert's solution, $g(x,t) = f(t - x/c) + g(t + x/c)$, is a solution to the acoustic pressure wave equation, in 1 dimension,

$$\frac{\partial^2 g(x,t)}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 g(x,t)}{\partial t^2},$$

where $f(\xi)$ and $g(\xi)$ are arbitrary functions.

Solving **Problem 5.17** Solution to the wave equation in spherical coordinates (i.e., 3 dimensions),

(a) **Q 2.1:** Write out the wave equation in spherical coordinates $g(r, \theta, \phi, t)$. Only consider and the radial term r (i.e., dependence on angles θ, ϕ is assumed to be zero). Hint: The form of the Laplacian as a function of the number of dimensions is given in the last appendix on Transmission lines and Acoustic Horns. Alternatively, look it up on the internet or in a calculus book.

(b) **Q 2.2:** Show that the following is true:

$$\nabla_r^2 g(r) \equiv \frac{1}{r^2} \frac{\partial}{\partial r} r^2 \frac{\partial}{\partial r} g(r) = \frac{1}{r^2} \frac{\partial^2}{\partial r^2} r g(r).$$

Hint: Expand both sides of the equation.
Use the results from Eq. 5.4 to show that the solution to the spherical wave equation is

\[\nabla^2_\mathbf{r} g(r, t) = \frac{1}{c^2} \frac{\partial^2}{\partial t^2} g(r, t) \]

\[g(r, t) = \frac{f(t-r/c)}{r} + \frac{g(t+r/c)}{r} \]

\[\text{(5.3)} \]

When \(f(\xi) = \sin(\xi) \) and \(g(\xi) = e^{\xi} u(\xi) \) for \(\xi \) is the step-function (Eq. 5.4), write down the solutions to the spherical wave equations.

Sketch this last case for several times (e.g., 0, \(\pi, 2\pi \), seconds), and describe the behavior of the pressure \(g(x, t) \) as a function of time \(t \) and radius \(r \).

What happens when the inbound wave reaches the center at \(r = 0 \)?

Helmholtz Formula

Every differentiable vector field may be written as the sum of a scalar potential \(\phi \) and a vector potential \(\mathbf{w} \). This relationship is best known as the Fundamental theorem of vector calculus (Helmholtz formula)

\[\mathbf{v} = -\nabla \phi + \nabla \times \mathbf{w} \]

\[\text{(5.6)} \]

where \(\phi \) is the scalar potential and \(\mathbf{w} \) is the vector potential. This formula seems to be a natural extension of the algebraic relation \(\mathbf{A} \cdot \mathbf{B} \leq \mathbf{A} \times \mathbf{B} \), once \(\mathbf{A} \cdot \mathbf{B} = ||\mathbf{A}||||\mathbf{B}|| \cos(\theta) \) and \(\mathbf{A} \times \mathbf{B} = ||\mathbf{A}|| ||\mathbf{B}|| \sin(\theta) \) as developed in the notes (Fig. A.4). Thus these orthogonal components have magnitude 1 when we take the norm, due to Euler's identity \((\cos^2(\theta) + \sin^2(\theta)) = 1 \).

As described in Table 5.1 (p. 194), Helmholtz formula separates a vector field (i.e., \(\mathbf{v}(x) \)) into compressible and rotational parts:

1. The rotational (e.g., angular) part is defined by the vector potential \(\mathbf{w} \), requiring \(\nabla \times \mathbf{w} \neq 0 \).
2. The compressible (e.g., radial) part is defined by the scalar potential \(\phi \), requiring \(\nabla \cdot \mathbf{w} = 0 \).

The definitions and generating potential functions of irrotational (conservative) and incompressible (solenoidal) fields naturally follow from two key vector identities:

\[\nabla \cdot (\nabla \times \mathbf{w}) = 0 \]

\[\nabla \times (\nabla \phi) = 0 \]

\[\text{(5.7)} \]

\[\text{(5.8)} \]
Problem #18: Define the following:

(a) $\mathbf{\nabla} \cdot \mathbf{A}$ a conservative vector field
(b) $\mathbf{\nabla} \times \mathbf{A}$ an irrotational vector field
(c) $\mathbf{\nabla} \cdot \mathbf{A}$ an incompressible vector field
(d) $\mathbf{\nabla} \times \mathbf{A}$ a solenoidal vector field
(e) $\mathbf{\nabla} \cdot \mathbf{A}$ When is a conservative field irrotational?
(f) $\mathbf{\nabla} \times \mathbf{A}$ When is an incompressible field irrotational?

Problem #42: For each of the following, (i) compute $\mathbf{\nabla} \cdot \mathbf{v}$, (ii) compute $\mathbf{\nabla} \times \mathbf{v}$, (iii) classify the vector field (e.g., conservative, irrotational, incompressible, etc.).

(a) $\mathbf{\nabla} \cdot \mathbf{v}(x, y, z) = -\nabla(3yx^3 + y \log(xy))$

(b) $\mathbf{\nabla} \times \mathbf{v}(x, y, z) = xy\mathbf{x} - z\mathbf{y} + f(z)\mathbf{z}$

(c) $\mathbf{\nabla} \times (x\mathbf{x} - z\mathbf{y})$

Maxwell's Equations

The variables have the following names and defining equations (Table 5.4, p. 227):

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Equation</th>
<th>Name</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>$\mathbf{\nabla} \times \mathbf{E} = -\mathbf{B}$</td>
<td>Electric Field strength</td>
<td>[Volts/m]</td>
</tr>
<tr>
<td>$D = \varepsilon_0 E$</td>
<td>$\mathbf{\nabla} \cdot \mathbf{D} = \rho$</td>
<td>Electric Displacement (flux density)</td>
<td>[Coul/m²]</td>
</tr>
<tr>
<td>H</td>
<td>$\mathbf{\nabla} \times \mathbf{H} = \mathbf{J} + \mathbf{D}$</td>
<td>Magnetic Field strength</td>
<td>[Amps/m]</td>
</tr>
<tr>
<td>$B = \mu_0 H$</td>
<td>$\mathbf{\nabla} \cdot \mathbf{B} = 0$</td>
<td>Magnetic Induction (flux density)</td>
<td>[Webers/m²]</td>
</tr>
</tbody>
</table>

Note that $\mathbf{J} = \sigma \mathbf{E}$ is the current density (which has units of [Amps/m²]). Furthermore, the speed of light in vacuo is $c_0 = 3 \times 10^8$ m/s, and the characteristic resistance of light $r_0 = 377 = \sqrt{\mu_0 / \varepsilon_0}$ [Ω (i.e., ohms)].

Speed of light

Problem #50: The speed of light in vacuo is $c_0 = 1 / \sqrt{\mu_0 \varepsilon_0} \approx 3 \times 10^8 \text{ m/s}$. The characteristic resistance in vacuo is $r_0 = \sqrt{\mu_0 / \varepsilon_0} \approx 377 \Omega$. Used $\frac{1}{3}$ instead.
(a) *Q 5.1*: Find a formula for the in-vacuo permittivity ε_0 and permeability in terms of c_0 and μ_0. Based on your formula, what are the numeric values of ε_0 and μ_0?

(b) *Q 5.2*: In a few words, identify the law, define what it means, and explain the following formula:

$$\int_S \hat{n} \cdot \mathbf{v} \, dA = \int_V \nabla \cdot \mathbf{v} \, dV.$$

Application of ME Maxwell's equations

Problem #6: The electric Maxwell equation is $\nabla \times \mathbf{E} = -\mathbf{B}$, where \mathbf{E} is the electric field strength and \mathbf{B} is the time rate of change of the magnetic induction field, or simply the magnetic flux density. Consider this equation integrated over a two-dimensional surface S, where \hat{n} is a unit vector normal to the surface (you may also find it useful to define the closed path C around the surface):

$$\int_S |\nabla \times \mathbf{E}| \cdot \hat{n} dS = -\frac{\partial}{\partial t} \int_S \mathbf{B} \cdot \hat{n} dS.$$

(a) *Q 6.1*: Apply Stokes' theorem to the left-hand side of the equation.

(b) *Q 6.2*: Consider the right-hand side of the equation. How is it related to the magnetic flux Ψ through the surface S?

(c) *Q 6.3*: Assume the right-hand side of the equation is zero. Can you relate your answer to part (a) to one of Kirchhoff's laws?

Problem #7: The magnetic Maxwell equation is $\nabla \times \mathbf{H} = \mathbf{C} \equiv \mathbf{J} + \mathbf{D}$, where \mathbf{H} is the magnetic field strength, $\mathbf{J} = \sigma \mathbf{E}$ is the conductive (resistive) current density, and the displacement current \mathbf{D} is the time rate of change of the electric flux density \mathbf{D}. Here we defined a new variable \mathbf{C} as the total current density.

Q 7.1: First consider the equation over a two-dimensional surface S:

$$\int_S |\nabla \times \mathbf{H}| \cdot \hat{n} dS = \int_S |\mathbf{J} + \mathbf{D}| \cdot \hat{n} dS = \int_S \mathbf{C} \cdot \hat{n} dS.$$

Then apply Stokes' theorem to the left-hand side of this equation. In a sentence or two, explain the meaning of the resulting equation. Hint: What is the right-hand side of the equation?

Consider the next problem.

Problem #8: Now consider this equation in three dimensions. Take the divergence of both sides, and integrate over a volume V (closed surface S):

$$\iiint_V \nabla \cdot |\nabla \times \mathbf{H}| \, dV = \iiint_V \nabla \cdot \mathbf{C} \, dV.$$

Q 8.1: What happens to the left-hand side of this equation? Hint: Can you apply a vector identity?

Apply the divergence theorem (sometimes known as Gauss's theorem) to the right-hand side of the equation, and interpret your result. Hint: Can you relate your result to one of Kirchhoff's laws?
Second-order differentials

Problem #9. In this section we ask questions about second-order vector differentials.

(a) -Q 9.1: If \(\mathbf{v}(x, y, z) = \nabla \phi(x, y, z) \), then what is \(\nabla \cdot \mathbf{v}(x, y, z) \)?

(b) -Q 9.2: Evaluate \(\nabla^2 \phi \) and \(\nabla \times \nabla \phi \) for \(\phi(x, y) = xe^y \).

(c) -Q 9.3: Evaluate \(\nabla \cdot (\nabla \times \mathbf{v}) \) and \(\nabla \times (\nabla \times \mathbf{v}) \) for \(\mathbf{v} = x\hat{x} + y\hat{y} + z\hat{z} \).

(d) -Q 9.4: When \(\mathbf{V}(x, y, z) = \nabla (1/x + 1/y + 1/z) \), what is \(\nabla \times \mathbf{V}(x, y, z) \)?

Author: Should the first two sentences be part (a) of Problem 5.25, or are they just an introduction to the problems that follow?

Capacitor analysis

Problem #10. Find the solution to the Laplace equation between two infinite parallel plates separated by a distance \(d \). Assume that the left plate at \(x = 0 \) is at a voltage of \(V(0) = 0 \) and the right plate at \(x = d \) is at a voltage of \(V_d \).\footnote{We study plates that are infinite because this means the electric field lines will be perpendicular to the plates, running directly from one plate to the other. However, we will solve for per-unit-area characteristics of the capacitor.}

(a) -Q 10.1: Write down Laplace’s equation in one dimension for \(V(x) \).

(b) -Q 10.2: Write down the general solution to your differential equation for \(V(x) \).

(c) -Q 10.3: Apply the boundary conditions \(V(0) = 0 \) and \(V(d) = V_d \) to solve for the constants in your equation from the previous part (b).

(d) -Q 10.4: Find the charge density per unit area (\(\sigma = q/A \), where \(q \) is charge and \(A \) is area) on the surface of each plate. Hint: \(\mathbf{E} = -\nabla V \), and Gauss’s Law states that \(\int_S \mathbf{D} \cdot d\mathbf{S} = Q_{\text{enclosed}} \).

(c) -Q 10.5: Determine the per-unit-area capacitance \(C \) of the system.

Webster Horn Equation

Problem #11. Horns provide an important generalization of the solution of the \(\nabla^2 \) wave equation in regions where the properties (i.e., area of the tube) vary along the axis of wave propagation. Classic applications of horns are vocal tract acoustics, loudspeaker design, cochlear mechanics, any case having wave propagation.

- Q 11.1: Write out the formula for the Webster horn equation, and explain the variables.
Further

5.12 Reading List

The above concepts come straight from mathematical physics as developed in the 17th-19th centuries. Much of this was first developed in acoustics by Helmholtz, Stokes, and Rayleigh, following in Green's footsteps, as described by Lord Rayleigh (1896). When it comes to fully appreciating Green's theorem and reciprocity, I have found Rayleigh (1896) to be a key reference. If you wish to repeat my reading experience, start with Brillouin (1953, 1960), followed by Sommerfeld (1952) and Pipes (1958).

Second-tier reading includes many items: Morse (1948), Sommerfeld (1949), Morse and Feshbach (1953), Ramo et al. (1965), Feynman (1970a, b), Boas (1987). A third tier might include Helmholtz (1863a), Fry (1928), Lamb (1932), Bode (1945), Montgomery et al. (1948), Beranek (1954), Fagen (1975), Lighthill (1978), Hunt (1952), Olson (1947). Other physics writings include the impressive series of mathematical physics books by stalwart authors J.C. Slater, and Landau and Lifshitz.50

You must enter, at a level that allows you understand. Successful reading of these books critically depends on what you already know, after rudimentary (high school) level math has been mastered. Read in the order that helps you best understand the material.

50 https://www.amazon.com/Mechanics-Third-Course-Theoretical-Physics/dp/0750628960
Appendix A

Notation

A.1 Number systems

In this appendix we define the number systems that are used in this book. The notation used in this book is defined in this appendix so that it may be quickly accessed. Where the definition is sketchy, page numbers are provided where these concepts are fully explained, along with many other important and useful definitions. For example, a discussion of \mathbb{N} may be found on page 28.

Math symbols such as \mathbb{N} may be found at the top of the Index, since they are difficult to alphabetize.

A.1.1 Units

Strangely, or not, classical mathematics, as taught today in schools, does not seem to acknowledge the concept of physical units. Units seem to have been abstracted away. This makes mathematics distinct from physics, where almost everything has units. Presumably this makes mathematics more general (i.e., abstract). But for the engineering mind, this is not ideal, or worse, as it necessarily means that important physical meaning, by design, has been surgically removed. We shall use SI units whenever possible, which means this book is not a typical book on mathematics. Spatial coordinates are quoted in meters [m] and time in seconds [s]. Angles in degrees have no units, whereas radians have units of inverse-seconds [s⁻¹]. A complete list of SI units may be found at https://physics.nist.gov/ and Graham, et al. (1994) for a discussion of basic math notation.

A.1.2 Symbols and functions

We use \ln as the log function base e, \log as base 2, and π_k to indicate the kth prime (e.g., $\pi_1 = 2$, $\pi_2 = 3$).

When working with Fourier \mathcal{F} and Laplace \mathcal{L} transforms, lowercase symbols are in the time domain while uppercase indicates the frequency domain, as $f(t) \leftrightarrow F(\omega)$. An important exception is Maxwell's equations because they are so widely used as uppercase bold letters (e.g., $E(\mathbf{x}, \omega)$). It would seem logical to change this to $e(\mathbf{x}, t) \leftrightarrow E(\mathbf{x}, \omega)$ to conform.

A.1.3 Common mathematical symbols

There are many predefined symbols in mathematics, too many to summarize here. We shall only use a small subset, defined here.

- A set is a collection of objects that have a common property, defined by braces. For example, if set $P = \{a, b, c\}$ such that $a^2 + b^2 = c^2$, then members of P obey the Pythagorean theorem. Thus we could say that $\{1, 1, \sqrt{2}\} \in P$.

- Number sets: $\mathbb{N}, \mathbb{P}, \mathbb{Z}, \mathbb{Q}, \mathbb{F}, \mathbb{I}, \mathbb{R}, \mathbb{C}$ are briefly discussed below, and in greater detail in 3.2.1 (pp. 28–30).

https://en.wikipedia.org/wiki/List_of_mathematical_symbols_by_subject#Definition_symbols
• One can define sets of sets and subsets of sets, and this is prone (in my experience) to error. For example, what is the difference between the number 0 and the null set $\emptyset = \{0\}$? Is $0 \in \emptyset$? Ask a mathematician. This seems a lacklustre construction in the world of engineering.

• A vector is a column n-tuple. For example, $\begin{bmatrix} 3 \\ 5 \end{bmatrix}^T = \begin{bmatrix} 3 \\ 5 \end{bmatrix}$.

• The symbol \perp is used in different ways to indicate two things are perpendicular, orthogonal, or in disjoint sets. In set theory, $A \perp B$ is equivalent to $A \cap B = \emptyset$. If two vectors \mathbf{E}, \mathbf{H} are perpendicular $\mathbf{E} \perp \mathbf{H}$, then their inner product $\mathbf{E} \cdot \mathbf{H} = 0$ is zero. One must infer the meaning of \perp from its context.

Table A.1: List of all uppercase and lowercase Greek letters used in the text.

<table>
<thead>
<tr>
<th>Uppercase</th>
<th>Lowercase</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>α</td>
</tr>
<tr>
<td>B</td>
<td>β</td>
</tr>
<tr>
<td>G</td>
<td>γ</td>
</tr>
<tr>
<td>D</td>
<td>δ</td>
</tr>
<tr>
<td>E</td>
<td>ϵ</td>
</tr>
<tr>
<td>Z</td>
<td>ζ</td>
</tr>
<tr>
<td>H</td>
<td>η</td>
</tr>
<tr>
<td>T</td>
<td>θ</td>
</tr>
<tr>
<td>I</td>
<td>i</td>
</tr>
<tr>
<td>A</td>
<td>λ</td>
</tr>
<tr>
<td>M</td>
<td>μ</td>
</tr>
<tr>
<td>N</td>
<td>ν</td>
</tr>
<tr>
<td>O</td>
<td>ξ</td>
</tr>
<tr>
<td>Q</td>
<td>\omicron</td>
</tr>
<tr>
<td>P</td>
<td>π</td>
</tr>
<tr>
<td>S</td>
<td>σ</td>
</tr>
<tr>
<td>T</td>
<td>τ</td>
</tr>
<tr>
<td>Y</td>
<td>υ</td>
</tr>
<tr>
<td>F</td>
<td>ϕ</td>
</tr>
<tr>
<td>X</td>
<td>χ</td>
</tr>
<tr>
<td>W</td>
<td>ω</td>
</tr>
</tbody>
</table>

Frequently Greek letters, as provided in Fig. A.1, are associated in engineering and physics with a specific physical meaning. For example, ω [rad] is the radians frequency $2\pi f$; ρ [kg/m3] is commonly the density. α, ψ are commonly used to indicate angles of a triangle, and $\zeta(s)$ is the Riemann zeta function. Many of these are so well established, it makes no sense to define new terms, so we will adopt these common terms (and define them).

Likely you do not know all of these Greek letters, commonly used in mathematics. Some of them are pronounced in strange ways. The symbol ξ is pronounced “six”; ζ is “zeta”; β is “beta,” and χ is “chic” (rhymes with chic and sky). I will assume you know how to pronounce the others, which are more phonetic in English. One advantage of learning \LaTeX, the powerful open-source math-oriented word-processing system used to write this book, is that math symbols are included, making them easy to learn.

Double-Bold notation lists the double-bold symbols along with the page numbers where they are discussed. Table A.2 indicates the symbol followed by a page number indication where it is discussed, and the genus (class) of the number type. For example, $\mathbb{N} > 0$ indicates the infinite set of counting numbers $\{1, 2, 3, \ldots\}$, not including zero. Starting from any counting number, you set the next one by adding 1. Counting numbers are sometimes called the natural or cardinal numbers.

We say that a number is in the set with the notation $3 \in \mathbb{N} \subseteq \mathbb{R}$, which is read as “3 is in the set of counting numbers, which in turn is in the set of real numbers,” or in vernacular language “3 is a real counting number.”

Prime numbers ($\mathbb{P} \subseteq \mathbb{N}$) are taken from the counting numbers but do not include 1.
A.1. NUMBER SYSTEMS

Table A.2: Double-bold notation for the types of numbers. (§) is a page number. Symbol with an exponent denote the dimensionality. Thus \mathbb{R}^2 represents the real plane. An exponent of 0 denotes point, e.g., $1 \in \mathbb{C}$. It is reasonable to consider negative primes to be primes.

<table>
<thead>
<tr>
<th>Symbol (p#)</th>
<th>Genus</th>
<th>Examples</th>
<th>Counter Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>N (28)</td>
<td>Counting</td>
<td>$1, 2, 3, 5, 10^{20}$</td>
<td>$-5, 0, \pi, -10.3, 5j$</td>
</tr>
<tr>
<td>P (28)</td>
<td>Prime</td>
<td>$2, 3, 17, 199, 23933$</td>
<td>$0, 1, 4, 3^2, 12$</td>
</tr>
<tr>
<td>Z (29)</td>
<td>Integer</td>
<td>$-1, 0, 17, 5j, -10^{20}$</td>
<td>$1/2, 3, \sqrt{3}$</td>
</tr>
<tr>
<td>Q (29)</td>
<td>Rational</td>
<td>$2/1, 3/2, 1.5, 1.14$</td>
<td>$\sqrt{2}, 3^{1/2}, \pi$</td>
</tr>
<tr>
<td>F (29)</td>
<td>Fractional</td>
<td>$1/2, 7/22$</td>
<td>$1/\sqrt{2}$</td>
</tr>
<tr>
<td>I (29)</td>
<td>Irrational</td>
<td>$\sqrt[3]{2}, 3^{-1/3}, \pi,e$</td>
<td>Vectors</td>
</tr>
<tr>
<td>R (29)</td>
<td>Real</td>
<td>$\sqrt[3]{2}, 3^{-1/3}, \pi$</td>
<td>Vectors</td>
</tr>
<tr>
<td>C (30)</td>
<td>Complex</td>
<td>$1, \sqrt{2}j, 3^{-1/3}, 5j$</td>
<td>Complex integers</td>
</tr>
<tr>
<td>G</td>
<td>Gaussian integers</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The signed integers \mathbb{Z} include 0 and negative integers. Rational numbers \mathbb{Q} are historically defined to include \mathbb{Z}, a somewhat inconvenient definition, since the more interesting class are the *fractional numbers* \mathbb{F}, a subset of rational numbers $\mathbb{Q} \subseteq \mathbb{P}$ that exclude the integers (i.e., $\mathbb{F} \not\subseteq \mathbb{Z}$). This is a useful definition because the rational numbers $\mathbb{Q} = \mathbb{Z} \cup \mathbb{F}$ are formed from the union of integers and fractional numbers.

The rationals may be defined, using set notation (a very sloppy notation with an incomprehensible syntax), as

$$\mathbb{Q} = \{p/q : p \neq 0 \land p, q \in \mathbb{Z}\},$$

which may be read as "the set of all p/q such that $p \neq 0$ and $p, q \in \mathbb{Z}$.

Author: Since $\{\ldots\}$ is given below the equation, should the ellipsis points be in the equation? 10b

Author: The remainder of this appendix is still under the subheading A.1.3 Common Mathematical Symbols, but the topics have changed. Please add another subheading as appropriate.

Classification of numbers: From the above definitions there exists a natural hierarchical structure of numbers:

$$\mathbb{P} \subset \mathbb{N}, \quad \mathbb{Z} : \{N, 0, -N\}, \quad \mathbb{F} \subseteq \mathbb{Z}, \quad \mathbb{Q} : \mathbb{Z} \cup \mathbb{F}, \quad \mathbb{R} : \mathbb{Q} \cup \mathbb{C}.$$

1. The primes are a subset of the counting numbers: $\mathbb{P} \subset \mathbb{N}$.
2. The signed integers \mathbb{Z} are composed of $\pm N$ and 0; thus $\mathbb{N} \subset \mathbb{Z}$.
3. The fractional \mathbb{F} do not include the signed integers \mathbb{Z}.
4. The rationals $\mathbb{Q} = \mathbb{Z} \cup \mathbb{F}$ are the union of the signed integers and fractional numbers.
5. Irrational numbers \mathbb{I} have the special property $\mathbb{I} \perp \mathbb{Q}$.
6. The reals $\mathbb{R} : \mathbb{Q}, \mathbb{I}$ are the union of rational and irrational numbers.
7. Real \mathbb{R} may be defined as a subset of those complex numbers \mathbb{C} having zero imaginary part.
Rounding schemes

In Matlab/Octave there are five different rounding schemes (i.e., mappings): round(x), fix(x), floor(x), ceil(x), and roundb(x), with input $x \in \mathbb{R}$ and output $k \in \mathbb{N}$. For example, $3 = \lceil \pi \rceil = \lfloor e \rfloor = 2.7183$ rounds to the nearest integer, whereas $3 = \text{floor}(\pi)$ rounds down while $3 = \text{ceil}(e) = \lceil e \rceil$ rounds up. Rounding schemes are used for quantizing a number and generating a remainder. For example, $y = \text{rem}(x)$ is equivalent to $y = x - \lfloor x \rfloor$. Note $\text{round}(\pi) = \lceil \pi \rceil$ introduces negative remainders in the remainder when ever a number rounds up ($\pi = \lceil \pi \rceil - 0.8541$).

(See. 2.5.2, p. 54) The continued fraction algorithm (CFA) is a recursive rounding scheme, operating on the reciprocal of the remainder. For example,

$$\exp(1) = 3 + 1/(-4 + 1/(2 + 1/(5 + 1/(-2 + 1/(-7)))) + o(1.75 \times 10^{-6})) = [3; -4, 2, 5, -2, -7] + o(1.75 \times 10^{-6}).$$

The expression in brackets is a notation for the CFA integer coefficients. The Octave/Matlab function $	ext{rat}(x)$ has output $\in \mathbb{N}_0$ and $\text{rats}(x)$ with output $\in \mathbb{Q}$.

Periodic functions

The Fourier series tells us that periodic functions are discrete in frequency, with frequencies given by $\{m/T \}$, where T is the sample period ($T_{\text{sample}} = 1/2f_{\text{max}}$ and $f_{\text{max}} = 1/(4T_{\text{FFT}})$).

This concept is captured by the Fourier series, which is a frequency expansion of a periodic function. This concept is quite general. Periodic in frequency implies discrete in time. Periodic and discrete in time requires periodic and discrete in frequency (the case of the DFT). The modulo function $x = \text{mod}(x, m)$ is periodic with period m ($x \mod m \in [0, m)$).

A periodic function may be conveniently indicated using double-parentheses notation. This is sometimes known as modular arithmetic. For example,

$$f((t)T = f(t) = f(t \pm kT)$$

is periodic on $t, T \in \mathbb{R}$ with a period of T and $k \in \mathbb{Z}$. This notation is useful when dealing with Fourier series of periodic functions such as $\sin(\theta)$, where $\sin(\theta) = \sin((\theta)2\pi) = \text{mod}(\sin(\theta), 2\pi)$.

When a discrete-valued (e.g., time $t \in \mathbb{N}$) sequence is periodic with period $N \in \mathbb{Z}$, we use square brackets

$$f[[n]]_N = f[n] = f[n \pm kN]$$

is with $k \in \mathbb{Z}$. This notation will be used with discrete-time signals that are periodic, such as the case of the DFT.

It is common for fractions to repeat. For example, $1/7 = \{0.142857\}$, where the double brackets indicate this number repeats. That is, $1/7 = 0.142857, 142857, 142857, 142857, \ldots$.

Differential equations vs. polynomials

A polynomial has degree N defined by the largest power. A quadratic equation is degree 2, and a cubic has degree 3. We shall indicate a polynomial by the notation

$$P_N(z) = z^N + a_{N-1}z^{N-1} + \cdots + a_0.$$

does it is a good practice to normalize the polynomial so that $a_N = 1$. This will not change the roots, defined by Eq. 3.7 (p. 72). The coefficient on z^{N-1} is always the sum of the roots z_n ($a_{N-1} = \sum_n z_n$), and a_0 is always their product ($a_0 = \prod_n z_n$).

Differential equations have order (polynomials have degree). If a second-order differential equation is Laplace transformed (Lee. 3.9, p. 135), one is left with a degree 2 polynomial. For example,
Example:

\[
\frac{d^2}{dt^2} y(t) + b \frac{d}{dt} y(t) + cy(t) = a \left(\frac{d}{dt} x(t) + \beta x(t) \right) \quad \leftrightarrow \\
(s^2 + bs + c) Y(s) = \alpha (s + \beta) X(s) \quad \leftrightarrow \\
Y(s) / X(s) = \frac{s + \beta}{s^2 + bs + c} \equiv H(s) \leftrightarrow h(t).
\]

We know that using the same argument as for polynomials, the lead coefficient must always be 1. The coefficient \(\alpha \in \mathbb{R}\) is called the gain. The complex variable \(s\) is the Laplace frequency.

to the ratio of the output \(Y(s)\) over the input \(X(s)\) is called the system transfer function \(H(s)\). When \(H(s)\) is the ratio of two polynomials in \(s\), the transfer function is said to be bilinear, since it is linear in both the input and output. The roots of the numerator are called the zeros and those of the denominator, the poles. The inverse Laplace transform of the transfer function is called the system impulse response, which describes the system's output signal \(y(t)\) for any given input signal \(x(t)\), via convolution \(\text{i.e.}, y(t) = h(t) * x(t)\).

\[<H1>\]

A.2 Matrix algebra: Systems

\[<H2>\]

A.2.1 Vectors

Vectors are vectors as columns of ordered sets of scalars \(\in \mathbb{C}\). When we write them out in text, we typically use row notation, with the transpose symbol:

\[
[a, b, c]^T = \begin{bmatrix} a \\ b \\ c \end{bmatrix}.
\]

Transposition is used strictly to save space on the page. The notation for conjugate transpose is \(\dagger\) for example,

\[
\begin{bmatrix} a \\ b \\ c \end{bmatrix}^\dagger = \begin{bmatrix} a^* & b^* & c^* \end{bmatrix}.
\]

the three components.

\[<H3>\]

Row vs. column vectors: With rare exceptions, vectors are columns, denoted column-major. To avoid confusion, it is a good rule to make your mental default column-major, in keeping with most signal-processing (vectorized) software. Column vectors are the unstate default of Matlab/Octave, only revealed when matrix operations are performed. The need for the column (or row) major is revealed as a consequence of efficiency when accessing long sequences of numbers from computer memory. For example, when forming the sum of many numbers using the Matlab/Octave command \(\text{sum(A)}\), where \(A\) is a matrix, by default Matlab/Octave operates on the columns, returning a row vector of column sums. Specifically,

\[
\text{sum} \begin{bmatrix} 1 \\ 3 \\ 4 \end{bmatrix} = [4, 6].
\]

If the data were stored in row-major order, the answer would have been the column vector \[\begin{bmatrix} 3 \\ 7 \end{bmatrix}\].

3https://en.wikipedia.org/wiki/Row_and_column-major_order

4In contrast, reading words in English in row-major order, words written in English are
Scalar products: A scalar product (also called a dot product) is defined to “weight” vector elements before summing them, resulting in a scalar. The transpose of a vector (a row vector) is typically used as a scale factor (i.e., weights) on the elements of a vector. For example,

\[
\begin{bmatrix}
1 \\
2 \\
-1
\end{bmatrix} \cdot \begin{bmatrix}
1 \\
2 \\
3
\end{bmatrix} = \begin{bmatrix}
1^T \\
2 \\
-1
\end{bmatrix} \begin{bmatrix}
1 \\
2 \\
1
\end{bmatrix} = 1 + 2 - 3 = 2.
\]

A more interesting example is

\[
\begin{bmatrix}
1 \\
2 \\
4
\end{bmatrix} \cdot \begin{bmatrix}
1 \\
2 \\
4
\end{bmatrix} = \begin{bmatrix}
1^T \\
1 \\
1
\end{bmatrix} \begin{bmatrix}
1 \\
2 \\
4 \\
4
\end{bmatrix} = 1 + 2 + 4s + 4s^3.
\]

Polar scalar vector product: The vector scalar product in polar coordinates is (Fig. 3.5, p. 108)

\[
B \cdot C = \|B\| \|C\| \cos \theta \in \mathbb{R},
\]

where \(\cos \theta \in \mathbb{R}\) is called the direction-cosine between \(B\) and \(C\).

Polar wedge vector product: The vector wedge product in polar coordinates is (Fig. 3.5, p. 108)

\[
B \wedge C = j\|B\|\|C\| \sin \theta \in \mathbb{R},
\]

where \(\sin \theta \in \mathbb{R}\) is therefore the direction-sine between \(B\) and \(C\).

Complex polar vector product: From these two polar definitions and \(e^{j\theta} = \cos \theta + j \sin \theta\), we have

\[
B \cdot C + jB \wedge C = \|B\|\|C\| e^{j\theta}.
\]

Hence

\[
|B \cdot C|^2 + |B \wedge C|^2 = \|B\|^2 \|C\|^2 \cos^2 \theta + \|B\|^2 \|C\|^2 \sin^2 \theta = \|B\|^2 \|C\|^2.
\]

This relation holds true in any vector space, of any number of dimensions, containing vectors \(B\) and \(C\) (Hayes, 1991).

Norm of a vector: The norm of a vector is the scalar product of the vector with itself,

\[
\|A\| = \sqrt{A \cdot A} \geq 0,
\]

which forms the Euclidean length of the vector.

Euclidean distance between two points in \(\mathbb{R}^3\): The scalar product of the difference between two vectors \((A - B) \cdot (A - B)\) is the Euclidean distance between the points they define.

\[
\|A - B\| = \sqrt{(a_1 - b_1)^2 + (a_2 - b_2)^2 + (a_3 - b_3)^2}.
\]

Triangle inequality The triangle inequality is

\[
\|A + B\| = \sqrt{(a_1 + b_1)^2 + (a_2 + b_2)^2 + (a_3 + b_3)^2} \leq \|A\| + \|B\|.
\]

In terms of a right triangle, this says the sum of the lengths of the two sides is greater than the length of the hypotenuse, and equal when the triangle degenerates into a line.
A.2. MATRIX ALGEBRA OF SYSTEMS

Vector product: The vector product (also cross product) \(\mathbf{A} \times \mathbf{B} = \| \mathbf{A} \| \| \mathbf{B} \| \sin \theta \) is defined between the two vectors \(\mathbf{A} \) and \(\mathbf{B} \). In Cartesian coordinates,

\[
A \times B = \det \begin{bmatrix}
 \hat{x} & \hat{y} & \hat{z} \\
 a_1 & a_2 & a_3 \\
 b_1 & b_2 & b_3
\end{bmatrix}.
\]

The triple product: This is defined between three vectors as

\[
A \cdot (B \times C) = \det \begin{bmatrix}
 a_1 & a_2 & a_3 \\
 b_1 & b_2 & b_3 \\
 c_1 & c_2 & c_3
\end{bmatrix}.
\]

It may be written also in Fig. 5.1. This may be indicated without the use of parentheses, since there can be no other meaningful interpretation. However, for clarity, parentheses should be used. The triple product is the volume of the parallelepiped (3D crystal shape) outlined by the three vectors, shown in Fig. 5.1 (p. 35).

Dialects of vector notation: Physical fields are, by definition, functions of space \(x \) \([m]\) and, in the most general case, time \(t \) \([s]\). When Laplace transformed, the fields become functions of space and complex frequency \(\omega \) \((e.g., E(x, t) \leftrightarrow \mathcal{E}(x, \omega))\). As before, there are several equivalent vector notations.

For example,

\[
E(x, t) = \begin{bmatrix}
 E_x(x, t) \\
 E_y(x, t) \\
 E_z(x, t)
\end{bmatrix} = \begin{bmatrix}
 E_x \\
 E_y \\
 E_z
\end{bmatrix} \mathcal{E}(x, \omega) \leftrightarrow \begin{bmatrix}
 E_x \hat{x} + E_y \hat{y} + E_z \hat{z}
\end{bmatrix}
\]

Note the three notations for vectors: bold font, element-wise columns, element-wise transposed rows, and dyadic format. These are all shorthand notations for expressing the vector. Such usage is similar to a dialect in a language.

Complex elements: When the elements are complex \((\in \mathbb{C})\), the transpose is defined as the complex conjugate of the elements. In such complex cases the transpose conjugate may be denoted with \(\mathbf{A}^T \) rather than \(\mathbf{A}^\dagger \):

\[
\begin{bmatrix}
 -2j \\
 3j \\
 1
\end{bmatrix}^\dagger = \begin{bmatrix}
 2j & -3j & 1
\end{bmatrix} \in \mathbb{C}.
\]

For this case, when the elements are complex, the dot product is a real number:

\[
\mathbf{a} \cdot \mathbf{b} = \mathbf{a}^\dagger \mathbf{b} = \begin{bmatrix}
 a_1^\dagger & a_2^\dagger & a_3^\dagger
\end{bmatrix} \begin{bmatrix}
 b_1 \\
 b_2 \\
 b_3
\end{bmatrix} = a_1^\dagger b_1 + a_2^\dagger b_2 + a_3^\dagger b_3 \in \mathbb{R}.
\]

Norm of a vector: The dot product of a vector with itself is called the norm of \(\mathbf{a} \),

\[
\| \mathbf{a} \| = \sqrt{\mathbf{a}^\dagger \mathbf{a}} \geq 0,
\]

which is always nonnegative.

Such a construction is useful when \(\mathbf{a} \) and \(\mathbf{b} \) are related by an impedance matrix

\[
V(s) = Z(s)I(s)
\]

and we wish to compute the power. For example, the impedance of a mass is \(ms \) and a capacitor is \(1/C \). When given a system of equations (a mechanical or electrical circuit), one may define an impedance matrix.
Complex power: In this special case, the complex power $\mathcal{P}(s) \in \mathbb{R}(s)$ is defined in the complex frequency domain (s) as

$$\mathcal{P}(s) = \mathbf{I}^H(s) \mathbf{V}(s) = \mathbf{I}^H(s) \mathbf{Z}(s) \mathbf{I}(s) \leftrightarrow \mathcal{P}(t)$$

The real part of the complex power must be positive. The imaginary part corresponds to available stored energy.

The case of three dimensions is special, allowing definitions that are not easily defined in more than three dimensions. A vector in \mathbb{R}^3 labels the point having the coordinates of that vector.

A.2.2 Matrices

When working with matrices, the role of the weights and vectors can change, depending on the context. A useful way to view a matrix is as a set of column vectors, weighted by the elements of the column vector of weights multiplied from the right. For example:

$$\begin{bmatrix}
a_{11} & a_{12} & a_{13} & \cdots & a_{1M} \\
a_{21} & a_{22} & a_{23} & \cdots & a_{2M} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{N1} & a_{N2} & a_{N3} & \cdots & a_{NM}
\end{bmatrix} \begin{bmatrix}
w_1 \\
w_2 \\
\vdots \\
w_M
\end{bmatrix} = w_1 \begin{bmatrix}
a_{11} \\
a_{21} \\
\vdots \\
a_{N1}
\end{bmatrix} + w_2 \begin{bmatrix}
a_{12} \\
a_{22} \\
\vdots \\
a_{N2}
\end{bmatrix} + \cdots + w_M \begin{bmatrix}
a_{1M} \\
a_{2M} \\
\vdots \\
a_{NM}
\end{bmatrix},$$

where the weights are $[w_1, w_2, \ldots, w_M]^T$. Alternatively, the matrix is a set of row vectors of weights, each of which is applied to the column vector on the right ($(w_1, w_2, \ldots, w_M)^T$).

The determinant of a matrix is denoted either as $\det A$ or simply $|A|$ (as in the absolute value). The inverse of a square matrix is A^{-1}. If $|A| = 0$, the inverse does not exist. $AA^{-1} = A^{-1}A$.

Matlab/Octave's rotation convention for a row vector is $[a, b, c]$ and a column vector is $[a; b; c]$. A prime on a vector takes the complex conjugate transpose. To suppress the conjugation, place a period before the prime. The colon notation converts the array into a column vector. A tacit notation in Matlab is that vectors are columns and the index to a vector is a row vector. Matlab defines the notation $1:4$ as the "row vector" $[1, 2, 3, 4]$, which is unfortunately as it leads users to assume that the default vector is a row. This can lead to serious confusion later, as Matlab's default vector is a column. I have not found the above convention explicitly stated, and it took me years to figure this out for myself.

When writing a complex number we adopt j to indicate $\sqrt{-1}$. Matlab/Octave allows either $1i$ or \jmath.

Units are SI; angles in degrees [deg] unless otherwise noted. The units for π are always in radians [rad], i.e., $\sin(\pi)$, $e^{j\pi} = \exp(j\pi)$.

A.2.3 2×2 matrices

Matrix Definition:

1. **Scalar:** A number, e.g., $a, b, c, a, b, c \in \{\mathbb{Z}, \mathbb{Q}, \mathbb{I}, \mathbb{R}, \mathbb{C}\}$.

2. **Vector:** A quantity having direction as well as magnitude, often denoted by a bold-face letter with an arrow, \mathbf{x}. In matrix notation, this is typically represented as a single row $[x_1, x_2, x_3, \ldots]$, or a single column $[x_1, x_2, x_3, \ldots]^T$, where T indicates the transpose. In this class we will typically use column vectors. The vector may also be written out using unit vector notation to indicate direction, for example, $x_1 \mathbf{x} + x_2 \mathbf{y} + x_3 \mathbf{z} = [x_1, x_2, x_3]^T$, where \mathbf{x}, \mathbf{y}, \mathbf{z} are unit vectors in the x, y, z Cartesian directions (here the vector's subscript 3×1 indicates its dimensions). The type of notation used may depend on the engineering problem you are solving.
A.2. MATRIX ALGEBRA OF SYSTEMS

3. Matrix: A = \[a_{ij}, \ldots, a_{NM}\] \(N \times M\) can be a non-square matrix if the number of elements in each of the vectors (N) is not equal to the number of vectors (M). When \(M = N\), the matrix is square. It may be inverted if its determinant \(|A| = \prod \lambda_k \neq 0\) (where \(\lambda_k\) are the eigenvalues).

We shall only work with 2 \(\times\) 2 and 3 \(\times\) 3 square matrices throughout this course.

4. Linear system of equations: \(Ax = b\), where \(x\) and \(b\) are vectors and matrix \(A\) is a square.

(a) Inverse: The solution of this system of equations may be found by finding the inverse \(x = A^{-1}b\).

(b) Equivalence: If two systems of equations \(A_0x = b_0\) and \(A_1x = b_1\) have the same solution (i.e., \(x = A_0^{-1}b_0 = A_1^{-1}b_1\)), they are said to be equivalent.

(c) Augmented matrix: The first type of augmented matrix is defined by combining the matrix with the right-hand side. For example, given the linear system of equations of the form \(Ax = y\),

\[
\begin{bmatrix}
 a & b \\
 c & d \\
\end{bmatrix}
\begin{bmatrix}
 x_1 \\
 x_2 \\
\end{bmatrix}
=
\begin{bmatrix}
 y_1 \\
 y_2 \\
\end{bmatrix},
\]

the augmented matrix is

\[
[A|y] =
\begin{bmatrix}
 a & b & y_1 \\
 c & d & y_2 \\
\end{bmatrix}.
\]

A second type of augmented matrix may be used for finding the inverse of a matrix (rather than solving a specific instance of linear equations \(Ax = b\)). In this case the augmented matrix is

\[
[A|I] =
\begin{bmatrix}
 a & b & 1 & 0 \\
 c & d & 0 & 1 \\
\end{bmatrix}.
\]

Performing Gaussian elimination on this matrix until the left side becomes the identity matrix yields \(A^{-1}\). This is because multiplying both sides by \(A^{-1}\) gives \(A^{-1}A|A^{-1}I = I|A^{-1}\).

5. Permutation matrix \((P)\): A matrix that is equivalent to the identity matrix, but with scrambled rows (or columns). Such a matrix has the properties \(det(P) = \pm 1\) and \(P^2 = I\). For the 2 \(\times\) 2 case, there is only one permutation matrix:

\[
P =
\begin{bmatrix}
 0 & 1 \\
 1 & 0 \\
\end{bmatrix}
\]

\[
P^2 =
\begin{bmatrix}
 0 & 1 \\
 1 & 0 \\
\end{bmatrix}
\begin{bmatrix}
 0 & 1 \\
 1 & 0 \\
\end{bmatrix} =
\begin{bmatrix}
 1 & 0 \\
 0 & 1 \\
\end{bmatrix}.
\]

A permutation matrix \(P\) swaps rows or columns of the matrix it operates on. For example, in the 2 \(\times\) 2 case, pre-multiplication swaps the rows,

\[
PA =
\begin{bmatrix}
 0 & 1 \\
 1 & 0 \\
\end{bmatrix}
\begin{bmatrix}
 a & b \\
 \alpha & \beta \\
\end{bmatrix} =
\begin{bmatrix}
 \alpha & \beta \\
 a & b \\
\end{bmatrix},
\]

whereas post-multiplication swaps the columns,

\[
AP =
\begin{bmatrix}
 a & b \\
 \alpha & \beta \\
\end{bmatrix}
\begin{bmatrix}
 0 & 1 \\
 1 & 0 \\
\end{bmatrix} =
\begin{bmatrix}
 b & a \\
 \beta & \alpha \\
\end{bmatrix}.
\]

For the 3 \(\times\) 3 case there are 3 \(\cdot\) 2 = 6 such matrices, including the original 3 \(\times\) 3 identity matrix (swap a row with the other 2, then swap the remaining two rows).
6. **Gaussian elimination** (GE) operations G_i: There are three types of elementary row operations, which may be performed without fundamentally altering a system of equations (e.g., the resulting system of equations is equivalent). These operations are (1) swap rows (e.g., using a permutation matrix), (2) scale rows, or (3) perform addition/subtraction of two scaled rows. All such operations can be performed using matrices.

For lack of a better term, we'll describe these as **Gaussian elimination** or GE matrices. We will categorize any matrix that performs only elementary row operations (but any number of them) as a GE matrix. Therefore, a cascade of GE matrices is also a GE matrix.

Consider the GE matrix

$$G = \begin{bmatrix} 1 & 0 \\ 1 & -1 \end{bmatrix}.$$

(a) This pre-multiplication scales and subtracts row (1) from (2) and returns it to row (2):

$$GA = \begin{bmatrix} 1 & 0 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} a & b \\ \alpha & \beta \end{bmatrix} = \begin{bmatrix} a - \alpha & b - \beta \\ a - \alpha & b - \beta \end{bmatrix}.$$

The shorthand for this Gaussian elimination operation is $(1) \leftarrow (1)$ and $(2) \leftarrow (1) - (2)$.

(b) Post-multiplication adds and scales columns:

$$AG = \begin{bmatrix} a & b \\ \alpha & \beta \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} a - b & b \\ \alpha - \beta & \beta \end{bmatrix}.$$

Here the second column is subtracted from the first and placed in the first. The second column is untouched. **This operation is not a Gaussian elimination.** Therefore, to put Gaussian elimination operations in matrix form, we form a cascade of pre-multiply matrices.

Here $\det(G) = 1$, $G^2 = I$, which won't always be true if we scale by a number greater than 1. For instance, if $G = \begin{bmatrix} 1 & 0 \\ m & 1 \end{bmatrix}$ (scale and add), then we have $\det(G) = 1$, $G^n = \begin{bmatrix} 1 & 0 \\ n \cdot m & 1 \end{bmatrix}$.

Exercise: Find the solution to the following 2×3 matrix equation $Ax = b$ by Gaussian elimination. Show your intermediate steps. You can check your work at each step using Matlab.

$$\begin{bmatrix} 1 & 1 & -1 \\ 3 & 1 & 1 \\ 1 & -1 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 9 \\ 8 \end{bmatrix}.$$

(a) Show (i.e., verify) that the first GE matrix G_1, which zeros out all entries in the first column, is given by

$$G_1 = \begin{bmatrix} 1 & 0 & 0 \\ -3 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}.$$

Identify the elementary row operations that this matrix performs. **Solution:** We operate with the GE matrix on A.

$$G_1[A|b] = \begin{bmatrix} 1 & 0 & 0 \\ -3 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & -1 \\ 1 & 1 & 1 \\ 1 & 1 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 1 & -1 \\ 1 & -2 & 4 \\ 0 & -2 & 7 \end{bmatrix}.$$

The term "elementary matrix" may also be used to refer to a matrix that performs an elementary row operation. Typically, each elementary matrix differs from the identity matrix by one single row operation. A cascade of elementary matrices could be used to perform Gaussian elimination.
A.2. MATRIX ALGEBRA OF SYSTEMS

The second row of G_1 scales the first row by -3 and adds it to the second row:

\[(2) \leftarrow -3(1) + (2).\]

The third row of G_1^T scales the first row by -1 and adds it to the third row:

\[(3) \leftarrow -(1) + (3).\]

(b) Find a second GE matrix, G_2, to put G_1A in upper triangular form. Identify the elementary row operations that this matrix performs. Solution:

\[
G_2 = \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -1 & 1
\end{bmatrix},
\]

or $(2) \leftarrow -(2) + (3)$. Thus we have

\[
G_2G_1[A|b] = \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -1 & 1
\end{bmatrix} \begin{bmatrix}
1 & 0 & 0 \\
1 & 1 & -1 \\
0 & 1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 & -1 \\
0 & -2 & 4 \\
0 & 0 & 1
\end{bmatrix}.
\]

(c) Find a third GE matrix, G_3, which scales each row so that its leading term is 1. Identify the elementary row operations that this matrix performs. Solution:

\[
G_3 = \begin{bmatrix}
1 & 0 & 0 \\
0 & -1/2 & 0 \\
0 & 0 & 1
\end{bmatrix},
\]

which scales the second row by -1/2. Thus we have

\[
G_3G_2G_1[A|b] = \begin{bmatrix}
1 & 0 & 0 \\
0 & -1/2 & 0 \\
0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
1 & 1 & -1 \\
0 & -2 & 4 \\
0 & 0 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 & -1 \\
0 & 1 & -2 \\
0 & 0 & 1
\end{bmatrix}.
\]

(d) Finally, find the last GE matrix, G_4, that subtracts a scaled version of row 3 from row 2, and scaled versions of rows 2 and 3 from row 1, such that you are left with the identity matrix ($G_4G_3G_2G_1A = I$). Solution:

\[
G_4 = \begin{bmatrix}
1 & -1 & -1 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{bmatrix}.
\]

Thus we have

\[
G_4G_3G_2G_1[A|b] = \begin{bmatrix}
1 & -1 & -1 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
1 & 1 & -1 \\
0 & 1 & -2 \\
0 & 0 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}.
\]

(c) 5: Solve for $[x_1, x_2, x_3]^T$ using the augmented matrix format $G_4G_3G_2G_1[A|b]$, where $[A|b]$ is the augmented matrix. Note that if you've performed the preceding steps correctly, $x = G_4G_3G_2G_1b$. Solution: From the preceding problems, we see that $[x_1, x_2, x_3]^T = [3, -1, 1]^T$. \[\]

\[\]

\[\]

\[\]
Inverse of the 2×2 matrix

We shall now apply Gaussian elimination to find the solution $[x_1, x_2]$ for the 2×2 matrix equation $Ax = y$ (Eq. 3.52, left). We assume to know $[a, b, c, d]$ and $[y_1, y_2]$. We wish to show that the intersection (solution) is given by the equation on the right.

Here we wish to prove that the left equation (i) has an inverse given by the right equation (ii):

$$
\begin{bmatrix}
a & b \\
c & d
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}
=
\begin{bmatrix}
y_1 \\
y_2
\end{bmatrix}
\quad (i)
$$

$$
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}
= \frac{1}{\Delta}
\begin{bmatrix}
d & -b \\
-c & a
\end{bmatrix}
\begin{bmatrix}
y_1 \\
y_2
\end{bmatrix}
\quad (ii).
$$

How to take the inverse as

1. Swap the diagonal,
2. change the signs of the off diagonal, and
3. divide by Δ.

Derivation of the inverse of a 2×2 matrix

1. Step 1: To derive (ii) starting from (i), normalize the first column to 1:

$$
\begin{bmatrix}
1 & b/a \\
0 & 1
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}
=
\begin{bmatrix}
y_1 \\
0
\end{bmatrix}.
$$

2. Step 2: Subtract row (1) from row (2): (2) ← (2) − (1):

$$
\begin{bmatrix}
1 & b/a \\
0 & d/c
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}
=
\begin{bmatrix}
y_1 \\
0
\end{bmatrix}.
$$

3. Step 3: Multiply row (2) by ca and express result in terms of the determinate $\Delta = ad - bc$:

$$
\begin{bmatrix}
1 & b/a \\
0 & \Delta/c
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}
=
\begin{bmatrix}
y_1 \\
\Delta/c
\end{bmatrix}.
$$

4. Step 4: Solve row (2) for x_2: $x_2 = \frac{-c}{\Delta} y_1 + \frac{a}{\Delta} y_2$.

5. Step 5: Solve row (1) for x_1:

$$
x_1 = \frac{1}{a} y_1 - \frac{b}{a} x_2 = \frac{1}{a} \left(\frac{b}{a} + \frac{c}{a} \right) + \frac{1}{\Delta} \left(\frac{d}{a} - \frac{b}{a} \right) y_1 - \frac{b}{a} \frac{y_2}{\Delta}.
$$

Rewriting in matrix format in terms of $\Delta = ad - bc$ gives:

$$
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}
= \frac{1}{\Delta}
\begin{bmatrix}
d & -b \\
-c & a
\end{bmatrix}
\begin{bmatrix}
y_1 \\
y_2
\end{bmatrix} = \frac{1}{\Delta}
\begin{bmatrix}
\Delta + bc & -b \\
-c & a
\end{bmatrix}
\begin{bmatrix}
y_1 \\
y_2
\end{bmatrix},
$$

since $d = (\Delta + bc)/a$.

Summary: This is a lot of messy algebra, so this is why it is essential you memorize the final result:

1) Swap diagonal,
2) change off-diagonal signs,
3) normalize by Δ.

(1) swap the
Appendix B

Eigenanalysis

Eigenanalysis is ubiquitous in engineering applications. It is useful in solving differential and difference equations, data-science applications, numerical approximation and computing, and linear algebra applications. Typically one must take a course in linear algebra to become knowledgeable in the inner workings of this method. In this appendix we intend to provide sufficient basics to allow one to read the text.

B.1 The eigenvalue matrix (Λ)

Given a 2 × 2 matrix A, the related matrix eigenvalue equation is

\[\Lambda E = E \Lambda \]

(B.1)

Pre-multiplying by \(E^{-1} \) diagonalizes A, resulting in the eigenvalue matrix

\[\Lambda = E^{-1}AE \]

(B.2)

\[\begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} \]

(B.3)

Post-multiplying by \(E^{-1} \) recovers A:

\[A = E \Lambda E^{-1} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \]

(B.4)

Matrix product formula:

The last equation is the entire point of the eigenvector analysis, since it shows that any power of A may be computed from powers of the eigenvalues. Specifically,

\[A^n = E \Lambda^n E^{-1} \]

(B.5)

For example, \(A^2 = AA = E \Lambda (E^{-1}E) \Lambda E^{-1} = E \Lambda^2 E^{-1} \).

Equations B.1, B.3, and B.4 are the key to eigenvector analysis; and you need to memorize them.

We'll use them repeatedly throughout this course.

Showing that \(A - \lambda I_2 \) is singular:

If we restrict Eq. B.1 to a single eigenvector (one of \(e_\pm \)) along with the corresponding eigenvalue \(\lambda_\pm \), we obtain a matrix equation:

\[Ae_\pm = \lambda_\pm e_\pm \]
Note the swap in the order of E_\pm and λ_\pm. Since λ_\pm is a scalar, this is legal (and critically important), since this allows us to factor out e_\pm:

$$\begin{equation}
(A - \lambda_\pm I_2)e_\pm = 0. \tag{B.6}
\end{equation}$$

The matrix $A - \lambda_\pm I_2$ must be singular because when it operates on e_\pm, having nonzero norm, it must be zero.

It follows that its determinant (i.e., $|A - \lambda_\pm I_2| = 0$) must be zero. This equation uniquely determines the eigenvalues λ_\pm.

B.1.1 Calculating the eigenvalues λ_\pm

The eigenvalues λ_\pm of A may be determined from $|A - \lambda_\pm I_2| = 0$. As an example, we let A be Pell's equation (Eq. 2.14, p. 59). In this case, the eigenvalues may be found from

$$\begin{vmatrix}
1 - \lambda_\pm & N \\
1 & 1 - \lambda_\pm
\end{vmatrix} = (1 - \lambda_\pm)^2 - N = 0;$$

thus $\lambda_\pm = (1 \pm \sqrt{N})$.\footnote{It is a convention to order the eigenvalues from largest to smallest.}

B.1.2 Calculating the eigenvectors e_\pm

Once the eigenvalues have been determined, they are substituted into Eq. B.6, which determines the eigenvectors $E = [e_+|e_-]$ by solving

$$\begin{equation}
\begin{bmatrix}
1 - \lambda_\pm & 2 \\
1 & 1 - \lambda_\pm
\end{bmatrix}
\begin{bmatrix}
e_+ \\
e_-
\end{bmatrix} = 0, \tag{B.7}
\end{equation}$$

where $1 - \lambda_\pm = 1 - (1 \pm \sqrt{N}) = \mp \sqrt{N}$, thus the Pell equation eigenvalues are

$$\lambda_\pm = 1 \pm \sqrt{N}.$$

Recall that Eq. B.6 is singular because we are using an eigenvalue, and each eigenvector is pointing in a unique direction (this is why it is singular). You might expect that this equation has no solution. In some sense you would be correct. When we solve for e_\pm, the two equations defined by Eq. B.6 are \textit{collinear} (the two equations describe parallel lines so their wedge product is zero). This follows from the fact that there is only one eigenvector for each eigenvalue.

Expecting trouble, yet proceeding to solve for $e_+ = [e_1^+|e_2^+]^T$ with eigenvalue $+\sqrt{N}$

$$\begin{bmatrix}
\sqrt{N} & N \\
1 & \sqrt{N}
\end{bmatrix}
\begin{bmatrix}
e_1^+ \\
e_2^+
\end{bmatrix} = 0.$$

If we divide the top row by \sqrt{N}, the two rows are identical, since the matrix must be singular. Thus this matrix equation gives two identical equations. This is the price of an overspecified equation (the singular matrix is degenerate).

We can determine each eigenvector's direction, but not their magnitudes.

Following the same procedure for $\lambda_- = -\sqrt{N}$, the equation for $e_-|is$

$$\begin{bmatrix}
-\sqrt{N} & N \\
1 & -\sqrt{N}
\end{bmatrix}
\begin{bmatrix}
e_1^- \\
e_2^-
\end{bmatrix} = 0.$$

As before, this matrix is singular. Here $e_1^- = -\sqrt{N}e_2^-$, thus the eigenvector is $e^- = e_1^- [\sqrt{N}.1]^T$, where e is a normalization constant.

Thus the unnormalized eigenvector matrix is

$$E = \begin{bmatrix}
e_1^+ & e_2^+ \\
e_1^- & e_2^-
\end{bmatrix} = \begin{bmatrix}
\sqrt{N} & -\sqrt{N} \\
1 & 1
\end{bmatrix}.$$
Normalisation of the eigenvectors:

The constant c may be determined by normalising the eigenvectors to have unit length. Since we cannot determine the length, we set it to 1. In some sense the degeneracy is resolved by this normalisation:

$$\left(\pm \sqrt{N}\right)^2 + 1^2 = N + 1 = 1/c^2.$$

Thus the normalisation factor to force each eigenvector to have length 1 is $c = 1/\sqrt{N+1}$.

B.2 Pell equation solution example

In Sec. 2.5.4 (p. 59) we showed that the solution $[x_n^T, y_n^T]$ to Pell's equation is given by powers of the Pell matrix A. For $N = 2$, in Sec. 2.5.4 we found the explicit formula for $[x_n^T, y_n^T]^T$, based on powers of the Pell matrix

$$A = 1_j \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}.$$

(B.8)

This recursive solution to Pell's equation (Eq. 2.12) is Eq. 2.14 (p. 59). Thus we need powers of A^{-1}, that is A^n, which gives an explicit expression for $[x_n^T, y_n^T]^T$. By the diagonalization of A, its powers are simply the powers of its eigenvalues.

From Matlab/Octave with $N = 2$ the eigenvalues of Eq. B.8 are $\lambda_\pm \approx [2.4142, -0.4142]$ (i.e., $\lambda_+ = 1_j(1 + \sqrt{2})$). The solution for $N = 3$ is provided in Appendix B.2.1 (p. 263).

Once the matrix has been diagonalized, one may compute powers of that matrix as powers of the eigenvalues. This results in the general solution given by

$$\begin{bmatrix} x_n \\ y_n \end{bmatrix} = 1_j^n A^n \begin{bmatrix} 1 \\ 0 \end{bmatrix} = 1_j^n E \Lambda^n E^{-1} \begin{bmatrix} 1 \\ 0 \end{bmatrix}.$$

The eigenvalue matrix D is diagonal with the eigenvalues sorted, largest first. The Matlab/Octave command $[E, D]$ = eig(A) is helpful to find D and E given any A. As we saw above,

$$\Lambda = 1_j \begin{bmatrix} 1 + \sqrt{2} & 0 \\ 0 & 1 - \sqrt{2} \end{bmatrix} \approx \begin{bmatrix} 2.414 & 0 \\ 0 & -0.414 \end{bmatrix}.$$

B.2.1 Pell equation eigenvalue-eigenvector analysis

Here we show how to compute the eigenvalues and eigenvectors for the 2x2 Pell matrix for $N = 2$,

$$A = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}.$$

The Matlab/Octave command $[E, D]$ = eig(A) returns the eigenvector matrix E,

$$E = [e_+^T, e_-^T] = \frac{1}{\sqrt{3}} \begin{bmatrix} \sqrt{2} \\ 1 \\ -\sqrt{2} \\ 1 \end{bmatrix} = \begin{bmatrix} 0.8165 & -0.8165 \\ 0.5774 & 0.5774 \end{bmatrix}$$

and the eigenvalue matrix Λ (Matlab/Octave's D),

$$\Lambda = \begin{bmatrix} \lambda_+ & 0 \\ 0 & \lambda_- \end{bmatrix} = \begin{bmatrix} 1 + \sqrt{2} & 0 \\ 0 & 1 - \sqrt{2} \end{bmatrix} \approx \begin{bmatrix} 2.4142 & 0 \\ 0 & -0.4142 \end{bmatrix}.$$

The factor $\sqrt{3}$ on E normalizes each eigenvector to 1 (i.e., Matlab/Octave's command norm([sqrt(2), 1]) gives $\sqrt{3}$).

Next in the following discussion, we show how to determine E and D (i.e., Λ) given A.
Pell’s equation for $N=3$

Table B.1: Summary of the solution of Pell’s equation due to the Pythagoreans using matrix recursion, for the case of $N=3$. The integer solutions are shown on the right. Note that $x_n/y_n \to \sqrt{3}$, in agreement with the Euclidean algorithm. The Matlab/Octave program for generating this data is PELLSC13.m. It seems likely that the powers of β_0 could be absorbed in the starting solution, and then be removed from the recursion.

Pell’s Equation for $N = 3$

Case of $N = 3$ & $[x_0, y_0]^T = [1, 0]^T$, $\beta_0 = j/\sqrt{2}$

Note: $x_n^2 - 3y_n^2 = 1$, $x_n/y_n \to \sqrt{3}$

$$
\begin{bmatrix}
x_1 \\
y_1 \\
x_2 \\
y_2 \\
x_3 \\
y_3 \\
x_4 \\
y_4 \\
x_5 \\
y_5
\end{bmatrix} = \beta_0
\begin{bmatrix}
1 & 3 & 1 \\
1 & 1 & 0
\end{bmatrix}
\begin{bmatrix}
1 \\
0
\end{bmatrix}
\begin{bmatrix}
(1.3)^2 - 3(1.3)^2 = 1 \\
1.3
\end{bmatrix}
\begin{bmatrix}
10 & 6 \\
4 & 2
\end{bmatrix}
\begin{bmatrix}
1 & 3 & 10 \\
1 & 1 & 6
\end{bmatrix}
\begin{bmatrix}
28.3^2 - 3(13.3)^2 = 1 \\
13.3
\end{bmatrix}
\begin{bmatrix}
76.3^2 - 3(13.3)^2 = 1
\end{bmatrix}
$$

Fig.: We can find $\beta_0 = j/\sqrt{2}$. Perhaps try other trivial solutions such as $[-1, 0]^T$ and $[\pm j, 0]^T$ to provide clues to the proper value of β_0 for cases where $N > 3$.²

Example B.1:

- Exercise: I suggest that you verify $EA \neq A\Lambda$ and $AE = \Lambda A$ with Matlab/Octave. Here is the Matlab/Octave program which does this:

```matlab
A = [1 2; 1 1]; %define the matrix
[E, D] = eig(A); %compute the eigenvector and eigenvalue matrices
A+E-E+D %this should be \approx 0$, within numerical error.
E+D-D+E %this is not zero
```

Summary:

Thus far, we have shown that for the case of Pell’s matrix with $N = 2$, the normalized eigenmatrix and its inverse is

$$
E = [e_+ , e_-] = \frac{1}{\sqrt{3}} \begin{bmatrix} \sqrt{2} & -\sqrt{2} \\ 1 & 1 \end{bmatrix} \quad E^{-1} = \frac{\sqrt{6}}{4} \begin{bmatrix} 1 & \sqrt{2} \\ -1 & \sqrt{2} \end{bmatrix}
$$

and the eigenmatrix is

$$
\Lambda = \begin{bmatrix} \Lambda_+ & 0 \\ 0 & \Lambda_- \end{bmatrix} = \begin{bmatrix} 1 + \sqrt{2} & 0 \\ 0 & 1 - \sqrt{2} \end{bmatrix}.
$$

Note that when working with numeric data it is not necessary to normalize E. For example, the form of $e_+ = [1 \pm \Lambda_+ , 1]^T$ is very simple and easy to work with. Once normalized, it becomes ($N = 2$)

$$
[\sqrt{2}/\sqrt{3}, 1/\sqrt{3}]^T = [0.8165, 0.57735]^T,
$$

which obscures its natural simplicity. The normalization buys little in terms of function.

²My student Kehan found the general formula for β_0.

APPENDIX B. EIGENANALYSIS
B.3. Symbolic analysis of $TE = EA$

Exercise: Verify that $\Lambda = E^{-1}AE$.

Solution: We shall work with the unnormalized eigenmatrix cE, where $c = \sqrt{\frac{2}{3}} + 1 = \sqrt{3}$. To compute the inverse of cE, (1) swap the diagonal values, (2) change the sign of the off-diagonals, and (3) divide by the determinant Δ^2.

$$ (cE)^{-1} = \frac{1}{2c\sqrt{3}} \begin{bmatrix} 1 & \sqrt{2} \\ -1 & \sqrt{2} \end{bmatrix} = \frac{1}{2c} \begin{bmatrix} 0.707 & 1 \\ -0.707 & 1 \end{bmatrix}. $$

We wish to show that $\Lambda = E^{-1}AE$:

$$ \begin{bmatrix} 0.707 & 1 \\ -0.707 & 1 \end{bmatrix} \begin{bmatrix} 2 & \sqrt{2} \\ 0 & -\sqrt{2} \end{bmatrix} = \begin{bmatrix} 1 + \sqrt{2} & 0 \\ 0 & 1 - \sqrt{2} \end{bmatrix}, $$

which is best verified with Matlab.

Exercise: Verify that $A = EA(E)^{-1}$.

Solution: We wish to show that

$$ \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} \sqrt{2} & -\sqrt{2} \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 + \sqrt{2} & 0 \\ 0 & 1 - \sqrt{2} \end{bmatrix} \frac{\sqrt{2}}{2} \begin{bmatrix} 1 & \sqrt{2} \\ -1 & \sqrt{2} \end{bmatrix}. $$

All the above solutions have been verified with Octave.

Eigenmatrix diagonalization is helpful in generating solutions for finding the solutions of Pell's and Fibonacci's equations using transmission matrices.

Example: If the matrix corresponds to a transmission line, the eigenvalues have units of seconds [s]:

$$ \begin{bmatrix} V^+ \\ V^- \end{bmatrix}_n = \begin{bmatrix} e^{-sT_o} & 0 \\ 0 & e^{sT_o} \end{bmatrix} \begin{bmatrix} V^+ \\ V^- \end{bmatrix}_{n+1}. $$

(B.9)

In the time domain the traveling wave $v_n^+(t - (n+1)T_o) = v_n^+(t - nT_o)$ is delayed by T_o. Two applications of the matrix delay the signal by $2T_o$.

B.3 Symbolic analysis of $TE = EA$

B.3.1 The 2×2 Transmission matrix T

Here we assume

$$ T = \begin{bmatrix} A & B \\ C & D \end{bmatrix} $$

with $\Delta_T = 1$.

The eigenvectors e_\pm of T are

$$ e_\pm = \left(\frac{1}{\sqrt{c}} \left((A - D) \mp \sqrt{(A - D)^2 + 4BC} \right), 1 \right). $$

(B.10)

The eigenvalues are

$$ \lambda_\pm = \frac{1}{2} \left((A + D) \mp \sqrt{(A - D)^2 + 4BC} \right). $$

(B.11)

The term under the radical (i.e., the discriminant) may be rewritten in terms of the determinant of T (i.e., $\Delta_T = AD - BC$), since

$$ (A - D)^2 - (A + D)^2 = -4AD. $$

The for the ABCD matrix the expression under the radical becomes

$$ (A - D)^2 + 4BC = A^2 + D^2 - 4AD + 4BC = \Delta_T. $$

Note that λ_\pm are not always real.
Rewriting the eigenvectors and eigenvalues in terms of Δ_T, we find
\begin{equation}
\mathbf{e}_T = \left(\frac{1}{2} \left[\frac{1}{\Delta_T} (\Lambda + \sqrt{\Delta_T}) \right] \right),
\end{equation}
and
\begin{equation}
\mathbf{v}_T = \frac{1}{2} \left[\frac{1}{\Delta_T} (\Lambda + \sqrt{\Delta_T}) \right].
\end{equation}

B.3.2 Special cases having symmetry

For the case of the ABCD matrix, the eigenvalues depend on reciprocity, since $\Delta_T = 1$ if $T(s)$ is reciprocal, and $\Delta_T = -1$ if it is anti-reciprocal. Thus it is helpful to display the eigenfunctions and eigenvalues in terms of Δ_T so this distinction is explicit.

Reversible systems:

When $\mathbf{A} = \mathbf{D}$,
\begin{equation}
\mathbf{E} = \begin{bmatrix}
-\frac{\sqrt{\mathbf{B}}}{1} & +\frac{\sqrt{\mathbf{B}}}{1}
\end{bmatrix},
\end{equation}
\begin{equation}
\mathbf{\Lambda} = \begin{bmatrix}
\mathbf{A} - \sqrt{\mathbf{B}} & 0 \\
0 & \mathbf{A} + \sqrt{\mathbf{B}}
\end{bmatrix},
\end{equation}
the transmission matrix is said to be reversible, and the properties greatly simplify.

Reciprocal systems

When the matrix is symmetric ($\mathbf{B} = \mathbf{C}$), the corresponding system is said to be reciprocal. Most physical systems are reciprocal. The determinant of the transmission matrix of a reciprocal network $\Delta_T = \mathbf{A}D - \mathbf{B}C = 1$. For example, electrical networks composed of inductors, capacitors, and resistors are always reciprocal. It follows that the complex impedance matrix is symmetric (Van Valkenburg, 1964a).

Magnetic systems such as dynamic loudspeakers are anti-reciprocal and correspondingly $\Delta_T = -1$. The impedance matrix of a loudspeaker is skew symmetric (Kim and Allen, 2013). All impedance matrices are either symmetric or anti-symmetric, depending on whether they are reciprocal (LRC networks) or anti-reciprocal (magnetic networks). These systems have complex eigenvalues with negative real parts, corresponding to lossy systems. In some sense, all of this follows from conservation of energy, but the precise general case is waiting for enlightenment. The impedance matrix is never Hermitian. It is easily proved that Hermitian matrices have real eigenvalues, which correspond to lossless networks. Any physical system of equations that has any type of loss cannot be Hermitian.

In summary, given a reciprocal system, the T matrix has $\Delta_T = 1$, and the corresponding impedance matrix is symmetric (not Hermitian).

B.3.3 Impedance matrix

As previously discussed in §3.7 (p. 125), the T matrix corresponding to an impedance matrix is
\begin{equation}
\begin{bmatrix}
V_1 \\
V_2
\end{bmatrix} = Z(s) \begin{bmatrix}
I_1 \\
I_2
\end{bmatrix} = \frac{1}{\mathbf{C}} \begin{bmatrix}
\mathbf{A} & \Delta_T \\
-\mathbf{A} & \mathbf{D}
\end{bmatrix} \begin{bmatrix}
I_1 \\
I_2
\end{bmatrix}.
\end{equation}

Reciprocal systems have skew-symmetric impedance matrices, namely $z_{12} = -z_{21}$ (i.e., $\Delta_T = 1$). This condition is best understood using the T form of the impedance matrix, as shown in Fig. 3.9 (p. 127). When the system is both reversible $\mathbf{A} = \mathbf{D}$ and reciprocal, the impedance matrix simplifies to
\begin{equation}
Z(s) = \frac{1}{\mathbf{C}} \begin{bmatrix}
\mathbf{A} & 1 \\
1 & \mathbf{A}
\end{bmatrix}.
\end{equation}
Appendix C

Laplace Transforms

The definition of the \(LT \) may be found in §3.6.

C.1 Properties of the Laplace Transform

1. Time \(t \in \mathbb{R} \) and \(\text{Laplace frequency} \) \(\sigma + \omega j \in \mathbb{C} \).

2. Given a \(LT \) pair \(f(t) \leftrightarrow F(s) \), in the engineering literature, the lower-case \([f(t)] \) and causal \(f(t < 0) = 0 \) and the \textit{frequency domain} is upper-case \(F(s) \). Maxwell's venerable equations are the unfortunate exception to this otherwise universal rule.

3. The target time function \(f(t < 0) = 0 \) (i.e., it must be causal). The time limits are \(0^- < t < \infty \). Thus the integral must start from slightly below \(t = 0 \) to integrate over a delta function at \(t = 0 \). For example, if \(f(t) = \delta(t) \), the integral must include both sides of the impulse. If you wish to include non-causal functions such as \(\delta(t + 1) \), it is necessary to extend the lower time limit. In such cases, simply set the lower limit of the integral to \(-\infty \) and let the integrand \(f(t) \) determine the limits.

4. When taking the forward transform \((t \rightarrow s) \), the sign of the exponential is negative. This is necessary to assure that the integral converges when the integrand \(f(t) \rightarrow \infty \) as \(t \rightarrow \infty \). For example, if \(f(t) = e^t u(t) \) (i.e., without the negative \(\sigma \) exponent), the integral does not converge.

5. The limits on the integrals of the reverse LTs are \([\sigma - \infty, \sigma + \infty] \in \mathbb{C} \). These limits are further discussed in §4.7.2 (p. 185).

6. When taking the inverse Laplace transform, the normalization factor of \(1/2\pi j \) is required to cancel the \(2\pi j \) in the differential \(ds \) of the integral.

7. The frequencies for the LT must be complex, and in general \(F(s) \) is complex analytic for \(\sigma > \sigma_0 \).

8. To take the inverse Laplace transform, we must learn how to integrate in the complex \(s \) plane. This will be explained in §4.3.4.7.2 (p. 171) (85).

9. The Laplace step function is defined as

\[
 u(t) = \begin{cases}
 1 & \text{if } t > 0 \\
 \text{NaN} & \text{if } t = 0 \\
 0 & \text{if } t < 0
 \end{cases}
\]

Alternatively, one could define \(\delta(t) = du(t)/dt \).
10. It is easily shown that \(u(t) \leftrightarrow 1/s \) by direct integration.

\[
F(s) = \int_0^\infty u(t) e^{-st} \, dt = -e^{-st} \bigg|_0^\infty = \frac{1}{s}.
\]

With the LT step \((u(t))\) there is no Gibbs ringing effect.

11. The Laplace transform of a Brune impedance takes the form of a ratio of two polynomials. In such cases, the roots of the numerator polynomial are called the zeros while the roots of the denominator polynomial are called the poles. For example, the LT of \(u(t) \leftrightarrow 1/s \) has a pole at \(s = 0 \), which represents integration, since

\[
u(t) \ast f(t) = \int_{-\infty}^{\infty} f(\tau) d\tau \leftrightarrow \frac{F(s)}{s}.
\]

12. The LT is quite different from the FT in terms of its analytic properties. For example, the step function \(u(t) \leftrightarrow 1/s \) is complex analytic everywhere, except at \(s = 0 \). The FT of \(1 \leftrightarrow 2\pi \delta(\omega) \) is not analytic anywhere.

The \(\text{related step function} (\alpha \in \mathbb{R}) \)

\[
u(at) \leftrightarrow \frac{1}{a} \int_{-\infty}^{\infty} u(\tau) e^{-s\tau} d\tau = \frac{1}{a} \int_{-\infty}^{\infty} u(\tau) e^{-(s/a)\tau} d\tau = \frac{1}{|a|} \frac{1}{s} = \pm \frac{1}{s},
\]

where we have made the change of variables \(\tau = at \). The only effect that \(a \) has on \(u(at) \) is the sign of \(t \), since \(u(t) = u(2t) \). However, \(u(-t) \neq u(t) \), since \(u(t) \cdot u(-t) = 0 \), and \(u(t) + u(-t) = 1 \), except at \(t = 0 \), where it is not defined.

\[\text{see Sec. 3.93, p. 136}\]

Once complex integration in the complex plane has been defined (§14.2.2, p. 152), we can justify the definition of the inverse LT (Eq. 3.76).\(^1\)

\[\text{https://en.wikipedia.org/wiki/Laplace_transform#Table_of_selected_Laplace_transforms}\]
C.2 Tables of Laplace transforms

Table C.1: Functional relationships between Laplace transforms.

<table>
<thead>
<tr>
<th>LT functional properties</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(t) \times g(t) = \int_{t=0}^{t} f(t-\tau)g(\tau)d\tau \leftrightarrow F(s)G(s))</td>
<td>convolution</td>
</tr>
<tr>
<td>(u(t) \times f(t) = \int_{0}^{t} f(t)dt \leftrightarrow \frac{F(s)}{s})</td>
<td>convolution</td>
</tr>
<tr>
<td>(f(at)u(at) \leftrightarrow \frac{1}{a}F\left(\frac{s}{a}\right))</td>
<td>scaling (a \in \mathbb{R} \neq 0)</td>
</tr>
<tr>
<td>(f(t)e^{-at}u(t) \leftrightarrow F(s+a))</td>
<td>damped</td>
</tr>
<tr>
<td>(f(t-T)e^{-a(t-T)}u(t-T) \leftrightarrow e^{-sT}F(s+a))</td>
<td>damped and delayed</td>
</tr>
<tr>
<td>(f(-t)u(-t) \leftrightarrow F(-s))</td>
<td>reverse time</td>
</tr>
<tr>
<td>(f(-t)e^{-at}u(-t) \leftrightarrow F(a-s))</td>
<td>time-reversed and damped</td>
</tr>
<tr>
<td>(\frac{df(t)}{dt} = \delta'(t) \times f(t) \leftrightarrow sF(s))</td>
<td>deriv</td>
</tr>
<tr>
<td>(\frac{\sin(t)}{t}u(t) \leftrightarrow \tan^{-1}(1/s))</td>
<td>half sync</td>
</tr>
</tbody>
</table>

C.3 Symbolic transforms

Octave/Matlab allows one to find LT symbolic forms. Below are some examples that are known to work with Octave version 4.2 and Matlab R2015a.

Table C.2: Symbolic relationships between Laplace transforms. \(K_3 \) is a constant.

<table>
<thead>
<tr>
<th>syms</th>
<th>command</th>
<th>result</th>
</tr>
</thead>
<tbody>
<tr>
<td>syms t s p</td>
<td>laplace((t^{p-1}))</td>
<td>(\Gamma(p)s^{-p})</td>
</tr>
<tr>
<td>syms s</td>
<td>ilaplace(gamma(s))</td>
<td>(e^{e^{-s}})</td>
</tr>
<tr>
<td>syms s \ t \ a</td>
<td>ilaplace(exp(-a*s)*s,t)</td>
<td>Heaviside(t-a)</td>
</tr>
<tr>
<td>syms Gamma \ s \ t</td>
<td>taylor(Gamma,s,t)</td>
<td>(\frac{1}{s} - \gamma + s\left(\frac{\zeta}{2} + \frac{\zeta^2}{12}\right) + s^2\left(\frac{\zeta}{6}polygamma(2,1) - \frac{\zeta^2}{12} - \frac{\zeta^3}{6}\right) + s^3K_3 + \cdots)</td>
</tr>
</tbody>
</table>
Table C.3: Laplace transforms of \(f(t), \delta(t), u(t), \text{rect}(t), T_0 \), \(\forall \, p, e, \in \mathbb{R} \) and \(F(s), G(s), s, a \in \mathbb{C} \). Given a Laplace transform (LT) pair \(f(t) \leftrightarrow F(s) \), the frequency domain will always be uppercase \([e.g., F(s)]\) and the time domain lowercase \([f(t)]\) and causal \(f(t < 0) = 0\). An extended table of transforms is given in Table C.4 on page 274.

<table>
<thead>
<tr>
<th>(f(t) \leftrightarrow F(s))</th>
<th>(t \in \mathbb{R}; s, F(s) \in \mathbb{C})</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\delta(t) \leftrightarrow 1)</td>
<td>(t \in \mathbb{R}; s, F(s) \in \mathbb{C})</td>
<td>Dirac</td>
</tr>
<tr>
<td>(\delta([a]t) \leftrightarrow \frac{1}{</td>
<td>a</td>
<td>})</td>
</tr>
<tr>
<td>(\delta(t - T_0) \leftrightarrow e^{-sT_0})</td>
<td></td>
<td>delayed Dirac</td>
</tr>
<tr>
<td>(\delta(t - T_0) \star f(t) \leftrightarrow F(s)e^{-sT_0})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\sum_{n=0}^{\infty} \delta(t - nT_0) = \frac{1}{1 - e^{-sT_0}} + \frac{1}{e^{-sT_0}} = \sum_{n=0}^{\infty} e^{-snT_0})</td>
<td></td>
<td>one-sided impulse train</td>
</tr>
<tr>
<td>(u(t) \leftrightarrow \frac{1}{s})</td>
<td></td>
<td>step</td>
</tr>
<tr>
<td>(u(-t) \leftrightarrow -\frac{1}{s})</td>
<td></td>
<td>anti-causal step</td>
</tr>
<tr>
<td>(u(at) \leftrightarrow \frac{1}{a})</td>
<td>(a \neq 0 \in \mathbb{R})</td>
<td>dilated or reversed step</td>
</tr>
<tr>
<td>(e^{-at}u(t) \leftrightarrow \frac{1}{s + a})</td>
<td>(a > 0 \in \mathbb{R})</td>
<td>damped step</td>
</tr>
<tr>
<td>(\cos(at)u(t) \leftrightarrow \frac{1}{2} \left(\frac{1}{s-a} + \frac{1}{s+a} \right))</td>
<td>(a \in \mathbb{R})</td>
<td>(\cos)</td>
</tr>
<tr>
<td>(\sin(at)u(t) \leftrightarrow \frac{1}{2} \left(\frac{1}{s-a} - \frac{1}{s+a} \right))</td>
<td>(a \in \mathbb{C})</td>
<td>(\sin)</td>
</tr>
<tr>
<td>(u(t - T_0) \leftrightarrow \frac{1}{e^{-sT_0}})</td>
<td>(T_0 > 0 \in \mathbb{R})</td>
<td>time delay</td>
</tr>
<tr>
<td>(\text{rect}(t) = \frac{1}{T_0} [u(t) - u(t - T_0)] \leftrightarrow \frac{1}{T_0} (1 - e^{-sT_0}))</td>
<td></td>
<td>rect-pulse</td>
</tr>
<tr>
<td>(u(t) + u(t) = tu(t) \leftrightarrow 1/s^2)</td>
<td></td>
<td>ramp</td>
</tr>
<tr>
<td>(u(t) + u(t) * u(t) = \frac{1}{2}^2 u(t) \leftrightarrow 1/s^3)</td>
<td></td>
<td>double ramp</td>
</tr>
<tr>
<td>(\frac{1}{\sqrt{\pi}} u(t) \leftrightarrow \sqrt{\frac{s}{\pi}})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Gamma(p + 1))</td>
<td>(s^{p+1})</td>
<td>(\mathbb{R})</td>
</tr>
<tr>
<td>(J_n(\omega_0) u(t) \leftrightarrow \left(\frac{\sqrt{\omega^2 + \omega_0^2} - s}{\omega_0 \sqrt{\omega^2 + \omega_0^2}} \right)^n)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Author: Why is damped in quotation marks? **Remove quotes**
Table C.4

The following table provides an extended table of Laplace transforms. J_0, K_1 are Bessel functions of the first and second kind.

<table>
<thead>
<tr>
<th>$f(t)$</th>
<th>$F(s)$</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\delta(at)$</td>
<td>$\frac{1}{a}$</td>
<td>$a \neq 0$; time-scaled Dirac</td>
</tr>
<tr>
<td>$\delta(t + T_0)$</td>
<td>e^{iT_0}</td>
<td>negative delay</td>
</tr>
<tr>
<td>$u(at)$</td>
<td>$\frac{a}{s}$</td>
<td>$a \neq 0$; dilate</td>
</tr>
<tr>
<td>$u(-t)$</td>
<td>$-\frac{1}{s}$</td>
<td>anticausal step</td>
</tr>
<tr>
<td>$e^{\alpha t}u(-t)$</td>
<td>$\frac{1}{-s + \alpha}$</td>
<td>anticausal damped step</td>
</tr>
</tbody>
</table>

$$\frac{d^{1/2}}{dt^{1/2}} f(t) u(t) \leftrightarrow \sqrt{s} F(s)$$

$$\frac{d^{1/2}}{dt^{1/2}} u(t) \leftrightarrow \sqrt{s}$$

$$\frac{d}{dt} \frac{1}{\sqrt{\pi t}} u(t) \leftrightarrow \frac{s}{\sqrt{s}} = \sqrt{s}$$

$$\frac{1}{\sqrt{\pi t}} u(t) \leftrightarrow \frac{1}{\sqrt{s}}$$

$$\text{erfc}(\alpha \sqrt{t}) \leftrightarrow \frac{1}{s} e^{-2\alpha \sqrt{s}}$$

(Morse-Feshbach-II, p. 1582) $\alpha > 0$: erfc

$J_0(at) u(t) \leftrightarrow \frac{1}{\sqrt{s^2 + a^2}}$

$J_1(t) u(t)/t \leftrightarrow \sqrt{s^2 + 1} - s$

$J_1(t) u(t)/t + 2u(t) \leftrightarrow \sqrt{s^2 + 1} + s = e^{\sinh^{-1}(s)}$

$\delta(t) + J_1(t) u(t)/t \leftrightarrow \sqrt{s^2 + 1}$

$I_0(t) u(t) \leftrightarrow 1/\sqrt{s^2 - 1}$

$u(t)/\sqrt{t} \leftrightarrow e^\sqrt{\frac{\pi}{s}} \text{erfc}(\sqrt{s})$

$\sqrt{t} u(t) \star \sqrt{1 + tu(t)} \leftrightarrow e^{s/2} K_1(s/2)/2s$

$J_1(t) u(t)/t \leftrightarrow \sqrt{s^2 + 1} - s$
C.3.1 LT^{-1} of the Riemann zeta function

Consider the case where T is the "sample period" at which data is taken (every T seconds). For example if $T = 22.7 = 1/44100$ seconds then the data is sampled at 44100 kHz. This is how a CD player works with high quality music. Thus the unit-time delay operator z^{-1} as is

$$\delta(t-T) \leftrightarrow e^{-st}.$$

we deal with.

However, when dealing with the Euler and Riemann zeta function, the only sampling rate that physically makes sense, is $T = 1$ [s] (i.e., $n \in \mathbb{N}$). In this case, the samples of interest are $\mod (n, \pi)$.

The zeta function

The zeta function depends explicitly on the primes, which makes it very important. In 1737 Euler proposed the real-valued function $\zeta(x) \in \mathbb{R}$ and $x \in \mathbb{R}_{+}$ to prove that the number of primes is infinite (Goldstein, 1973). Euler's definition of $\zeta(x) \in \mathbb{R}$ is given by the power series,$$
\zeta(x) = \sum_{n=1}^{\infty} \frac{1}{n^x} \quad \text{for } x > 1 \in \mathbb{R}. \tag{C.1}
$$

This series converges for $x > 0$, since $R = n^{-x} < 1$, $n > 1 \in \mathbb{N}$.

In 1860 Riemann extended the zeta function into the complex plane, resulting in $\zeta(s)$, defined by the complex analytic power series, identical to the Euler formula, except $x \in \mathbb{R}$ has been replaced by $s \in \mathbb{C}$:

$$\zeta(s) = \frac{1}{1^s} + \frac{1}{2^s} + \frac{1}{3^s} + \frac{1}{4^s} + \cdots = \sum_{n=1}^{\infty} \frac{1}{n^s} = \sum_{n=1}^{\infty} n^{-s} \quad \text{for } \Re(s) = \sigma > 1. \tag{C.2}
$$

This formula converges for $\Re(s) > 1$ (Goldstein, 1973). To determine the formula in other regions of the s plane one must extend the series via analytic continuation. As it turns out, Euler's formulation provided detailed information about the structure of primes, going far beyond his original goal.

Euler product formula

As was first published by Euler in 1737, one may recursively factor out the leading prime term, resulting in Euler's product formula. Euler's procedure is an algebraic implementation of the sieve of Eratosthenes (§2.5, p. 49 and §5.1, page 191).

Multiplying $\zeta(s)$ by the factor $1/2^s1/3^s$ and subtracting from $\zeta(s)$ removes all the even terms $\propto 1/(2n)^s$ (e.g., $1/2^5 + 1/4^s + 1/6^5 + 1/8^s + \cdots$):

$$\left(1 - \frac{1}{2^s}\right) \zeta(s) = 1 + \frac{1}{2^s} + \frac{1}{3^s} + \frac{1}{4^s} + \frac{1}{5^s} + \cdots - \left(\frac{1}{2^5} + \frac{1}{4^s} + \frac{1}{6^5} + \frac{1}{8^s} + \frac{1}{10^5} + \cdots\right), \tag{C.3}
$$

which results in

$$(1 - 2^{-s}) \zeta(s) = 1 + \frac{1}{3^s} + \frac{1}{5^s} + \frac{1}{7^s} + \frac{1}{9^s} + \frac{1}{11^s} + \frac{1}{13^s} + \cdots. \tag{C.4}
$$

Repeating this with a lead factor $1/3^s$ applied to Eq. C.4 gives

$$\frac{1}{3^s} (1 - 2^{-s}) \zeta(s) = \frac{1}{3^s} + \frac{1}{5^s} + \frac{1}{7^s} + \frac{1}{10^5} + \frac{1}{13^s} + \frac{1}{15^s} + \frac{1}{21^s} + \frac{1}{27^s} + \frac{1}{33^s} + \cdots. \tag{C.5}
$$

Subtracting Eq. C.5 from Eq. C.4 cancels the RHS terms of Eq. C.4, giving

$$(1 - 3^{-s}) (1 - 2^{-s}) \zeta(s) = 1 + \frac{1}{5^s} + \frac{1}{7^s} + \frac{1}{11^s} + \frac{1}{13^s} + \frac{1}{17^s} + \frac{1}{19^s} + \cdots. \tag{C.6}
$$

Sanity check: For example, let $n = 2$ and $x > 0$. Then $R = 2^{-x} < 1$, where $\epsilon \equiv \lim x \to 0^+$. Taking the log gives $\log R = -\epsilon \log 2 = -\epsilon < 0$. Since $\log R < 0$, $R < 1$.

This is known as Euler's sieve, as distinguished from the Eratosthenes sieve.
C.3 SYMMETRIC TRANSFORMS

Further repeating this process with prime scale factors (i.e., $1/\pi^5, 1/\pi^7, \cdots, 1/\pi_k, \cdots$) removes all the terms on the RHS but 1, which results in the Euler's analytic product formula ($s = x \in \mathbb{R}$ and $s \in \mathbb{C}$):

$$
\zeta(s) = \frac{1}{1 - 2^{-s}} \cdot \frac{1}{1 - 3^{-s}} \cdot \frac{1}{1 - 5^{-s}} \cdot \frac{1}{1 - 7^{-s}} \cdots \\
= \prod_{k \in \mathbb{P}} \frac{1}{1 - \frac{s}{\pi_k}} \\
= \prod_{\pi_k \in \mathbb{P}} \zeta_k(s),
$$

(C.6)

where π_k represents the kth prime and

$$
\zeta_k(s) = \frac{1}{1 - \frac{s}{\pi_k}}
$$

(C.7)

defines each prime factor. Each recursive step in this construction assures that the lead term, along with all of its multiplicative factors, are subtracted out, just as with the cancellations with the sieve of Eratosthenes. It is instructive to compare each iteration with that of the sieve (Fig. 2.2, p. 49).

The kth term of the complex analytic Riemann product formula may be re-expressed as

$$
|\pi_k^{-s_k}| = |e^{-s_k T_k}| < 1,
$$

where $T_k = \ln \pi_k$. This relation defines the ROC of ζ_k as $\sigma_k < \ln \pi_k$. It would seem that since $1/\pi_k < 1$ for all $k \in \mathbb{N}$, the Taylor series of $\zeta_k(x)$ is entire except at its poles. Note that the ROC of a Taylor series in powers of π_k^{-s} increases with k.

Exercise: Work out the ROC for $k = 2$. **Solution:** Tocode

Exercise: Show how to construct Zeta2(t) ⇔ $\zeta_2(s)$ by working in the time domain. The basic rules of building a sieve is to sum the integers

$$
S_1 = \sum_{n=1}^{\infty} n 2^{n-1} = 1 \cdot 2^0 + 2 \cdot 2^1 + 3 \cdot 2^2 + \cdots
$$

while the sieve for the kth prime π_k is

$$
S_k = \sum_{n=1}^{\infty} n \pi_k^{n-1} = 1 \cdot \pi_k^0 + \pi_k \cdot 2^1 + \pi_k \cdot 2^2 + \cdots
$$

This sum may be written in terms of the convolution with the step function u_k, since

$$
u_k \ast u_k = n u_k = 0 \cdot u_0 + 1 \cdot u_1 + \cdots + n u_n + \cdots
$$

Here $u_k = 1 = \sum_{n=0}^{\infty} \delta_k$ for $k \geq 0$ and zero for $k < 0$, and $\delta_k = 1$, and 0 for $k \neq 0$.

Poles of $\zeta_k(s)$

Riemann proposed that Euler's zeta function $\zeta(s) \in \mathbb{C}$ have a complex argument first actually explored by Chebyshev in 1850 (Bombieri, 2000), extending $\zeta(s)$ into the complex plane $s \in \mathbb{C}$, making it a complex analytic function.

Given that $\zeta(s)$ is a complex analytic function, one might naturally wonder if $\zeta(s)$ has an inverse Laplace transform. There seems to be very little written on this topic (Hill, 2007). We shall explore this question further here.
Figure C.1: Plot of $w(s) = \frac{1}{1-e^{-sT_p}}$. Here $w(s)$ has poles where $e^{-sT_p} = 1$, namely where $\omega_n = 2\pi n$, as seen in the colorized map ($s = \sigma + j\omega$) is the Laplace frequency [rad].

We can then identify the poles of $\zeta_k(s)$ ($p \in \mathbb{N}$), which are required to determining the RoC. For example, the p^{th} factor of Eq. C.6, expressed as an exponential, is

$$\zeta_k(s) \equiv \frac{1}{1 - \frac{s}{\pi_k}} = \frac{1}{1 - e^{-sT_k}} = \sum_{k=0}^{\infty} e^{-kT_k},$$

(C.8)

and where $T_k \equiv \ln \pi_k$. Thus $\zeta_k(s)$ has poles at $-sT_k = 2\pi n j$ (when $e^{-sT_p} = 1$); thus

$$\omega_n = \frac{2\pi T_p}{T_k}.$$

Figure C.1 is a plot with $-\infty < n < \mathbb{Z} < \infty$. These poles are the eigenmodes of the zeta function. A domain-colorized plot of this function is provided in Fig. C.1. It is clear that the RoC of ζ_k is > 0. It would be helpful to determine why $\zeta(s)$ is such a more restrictive RoC than each of its factors.

Figure C.2: This feedback network is described by a time-domain difference equation with delay $T_p = \ln \pi_k$ has an all-pole transfer function, given by Eq. C.11. Physically this delay corresponds to a delay of T_p [s].

Inverse Laplace transform

The inverse Laplace transform of Eq. C.8 is an infinite series of delays of delay T_p (Table C.3, p. 276)\footnote{Here we use a shorthand double-parentheses notation $f(t)_T \equiv \sum_{k=0}^{\infty} f(t-kT)$ to define the one-sided infinite sum.}

$$Z_p^{(T)}(t) = \delta(t)T_p \equiv \sum_{k=0}^{\infty} \delta(t-kT) \leftrightarrow \frac{1}{1 - e^{-sT_p}}.$$ (C.9)
Inverse transform of Product of factors

The time-domain version of Eq. (6.6) may be written as the convolution of all the $Z_k^{\alpha}(t)$ factors:

$$Z^{\alpha}(t) = Z_2^{\alpha}(t) \ast Z_3^{\alpha}(t) \ast Z_5^{\alpha}(t) \ast \cdots \ast Z_p^{\alpha}(t) \ast \cdots,$$

where \ast represents time convolution (Table C.1, p. 275).

Physical Interpretation

Such functions may be generated in the time domain as shown in Fig. C.2, using a feedback delay of T_p [s] as described by the equation in the figure, with a unity feedback gain $\alpha = 1$.

$$Z^{\alpha}(t) = Z^{\alpha}(t - T_p) + \delta(t).$$

Taking the Laplace transform of the system equation, we see that the transfer function between the state variable $q(t)$ and the input $x(t)$ is given by $Z_p^{\alpha}(t)$. Taking the LT, we see that $\zeta(s)$ is an all-pole function,

$$\zeta_p(s) = e^{-sT_p} \zeta_p(s) + 1(t)$$

or $\zeta_p(s) = \frac{1}{1 - e^{-sT_p}}$. (C.11)

Discussion: In terms of the physics, these transmission line equations are telling us that $\zeta(s)$ may be decomposed into an infinite cascade of transmission lines (Eq. 10), each having a unique delay given by $T_k = \ln \pi_k \pi_e \in \mathbb{R}$, the log of the primes. The input admittance of this cascade may be interpreted as an analytic continuation of $\zeta(s)$ which defines the eigenmodes of that cascaded impedance function.

Working in the time domain provides a key insight, as it allows us to determine the analytic continuation of the infinity of possible continuations, which are not obvious in the frequency domain. Transforming the time domain is a form of analytic continuation of $\zeta(s)$, that depends on the assumption that $Z^{\alpha}(t)$ is one-sided in time (causal).

Additional relations: Some important relations provided by both Euler and Riemann (1859) are needed when studying $\zeta(s)$.

With the goal of generalizing this result, Euler extended the definition with the functional equation

$$\zeta(s) = 2^s \pi^{s-1} \sin \left(\frac{\pi s}{2} \right) \Gamma(1-s) \zeta(1-s).$$

(C.12)

This seems closely related to Riemann's line reversal symmetry properties (Bombieri, 2000),

$$\pi^{-s/2} \Gamma \left(\frac{s}{2} \right) \zeta(s) = \pi^{-1-s/2} \Gamma \left(\frac{1-s}{2} \right) \zeta(1-s).$$

This equation is of the form $F \left(\frac{s}{2} \right) \zeta(s) = F \left(\frac{1-s}{2} \right) \zeta(1-s)$, where $F(s) = \Gamma(s) / \pi^s$.

As shown in Table C.1, the LT^{-1} of $f(-t) \leftrightarrow F(-s)$ is simply a time-reversal. This leads to a causal and anti-causal function that are symmetric about $\Re \{s\} = 1/2$ (Riemann, 1859). It seems likely this is an important insight into the Euler's functional equation.

Riemann (1859, page 2) provides an alternate integral definition of $\zeta(s)$ based on the complex contour integration.

$$2 \sin(\pi s) \Gamma(s-1) \zeta(s) = \int_{y = -\infty}^{\infty} \frac{(\gamma y)^{s-1}}{e^{\gamma y} - 1} \text{d}y.$$

Given the $\zeta_k(s)$, it seems important to look at the inverse LT of $\zeta_k(1-s) \rightarrow \zeta_k(1-s)$ to gain insight into the analytically extended $\zeta(s)$.

We can verify Riemann's use of γ, which is taken to be real rather than complex. This could be more natural (i.e., modern Laplace transformation notation) if $\gamma \rightarrow \gamma \rightarrow \gamma$.

\[\text{Author: OK to delete the period?} \]
Integral definition of the complex Gamma function $\Gamma(s)$: The definition of the complex analytic Gamma function (p. 275)

\[
\Gamma(s + 1) = s\Gamma(s) = \int_0^\infty \xi^s e^\xi d\xi.
\]

which is a generalization of the real integer factorial function $n!$:

\[
\xi(t) = \int_{-\infty}^{\infty} \Gamma(s + 1) e^{\xi t} \frac{ds}{2\pi i}.
\]

What is the ROC of $\zeta(s)$? It is commonly stated that Euler’s and thus Riemann’s product formula is only valid for $R_s > 1$; however, this does not seem to be actually proved (I could be missing this proof). Here I will argue that the product formula is entire except at the poles, namely, that the formula is valid everywhere other than at the poles.

The argument goes as follows: Starting from the product formula (Eq. C.6 (p. 279)), form the logarithmic derivative and study the poles and residues:

\[
D(s) = \frac{d}{ds} \ln \prod_k \frac{1}{1 - e^{-s T_k}}
\]

\[
= - \sum_k \frac{1}{1 - e^{-s T_k}} \frac{d}{ds} \ln (1 - e^{-s T_k})
\]

\[
= - \sum_k \frac{T_k e^{-s T_k}}{1 - e^{-s T_k}} \leftrightarrow \sum_{k=1}^{\infty} \sum_{n=1}^{\infty} \delta(t - n T_k).
\]

Here $T_k = \ln \pi_k$, as previously defined, and \leftrightarrow denotes the inverse Laplace transform, transforming $D(s) \leftrightarrow d(t)$ into the time domain. Note that $d(t)$ is a causal function, composed of an infinite number of delta functions (i.e., time delays), as outlined by Fig. C.2 (p. 280).

Zeros of $\zeta(s)$ We are still left with the most important question of all: Where are the zeros of $\zeta(s)$? Equation C.11 has no zeros; it is an all-pole system. The cascade of many such systems is also all-pole. As I see it, the issue is what is the actual formula for $\zeta(s)$?
Appendix D

Visco-thermal losses

D.1 Adiabatic approximation at low frequencies

At very low frequencies, the adiabatic approximation must break down. Above this frequency, viscous and thermal damping in air can become significant. In acoustics these two effects are typically ignored, by assuming that wave propagation is irrotational, thus is described by the scalar wave equation. However, this is an approximation.

As first explained by Kirchhoff (1868), following Helmholtz (1858), these two loss mechanisms are related, but to understand why is somewhat complicated, due to both the history and the mathematics. The full theory was first worked out by Kirchhoff (1868, 1974). Both forms of damping are due to two different but coupled diffusion effects: first from viscous effects, due to shear at the container walls, and second from thermal effects, due to small deviations from adiabatic expansion (Kirchhoff, 1868, 1974).

I believe ultimately Einstein was eventually involved as a result of his studies on Brownian motion (Einstein, 1905). Newton’s early development understandably ignored viscous and thermal losses, which can be significant in a thin region called the boundary layer; at acoustic frequencies when the radius of the container (i.e., the horn) becomes less than the viscous boundary layer (e.g., much less than 1 mm), as first described in Helmholtz (1858, 1863b, 1978). Helmholtz’s analysis (Helmholtz, 1863b) was soon extended to include thermal losses by Kirchhoff (1868, 1974, English translation), as succinctly summarized by Lord Rayleigh (1896), and then experimentally verified by Warren P. Mason (Mason, 1927, 1928).

The mathematical nature of damping is that the propagation function \(\kappa(s) \) (i.e., complex wave number) is extended to

\[
\kappa(s) = \frac{s + \beta_0 \sqrt{s}}{c_0}.
\]

(D.1)

where the forwarded \(P_- \) and backward \(P_+ \) pressure waves propagate as

\[
P_\pm(s, z) = e^{-\kappa(s)z} e^{\mp \kappa(s)iz}
\]

(D.2)

with \(\bar{\kappa}(s) \) the complex conjugate of \(\kappa(s) \), and \(\Re \kappa(s) > 0 \). The term \(\beta_0 \sqrt{s} \) accounts both the real and imaginary parts of \(\kappa(s) \). The real part is a frequency-dependent loss and the imaginary part introduces a frequency-dependent speed of sound (Mason, 1928).

D.1.1 Lossy wave-guide propagation

In the case of lossy wave propagation, the losses are due to viscous and thermal damping. The formulation of viscous loss in air transmission was first worked out by Helmholtz (1863a), and then extended

\{See Ch. 3 of https://www.ks.ku.edu/Services/Class/PHYS468/

Figure D.1: The figure, taken from Mason (1928), compares the Helmholtz-Kirchhoff theory for \(\kappa(s) \) to Mason's 1928 experimental results. The ratio of two powers (\(P_1 \) and \(P_2 \)) are plotted immediately below Fig. 4, and as indicated in the label: "10log_{10} P_1/P_2 for 1 [cm] of tube length." This is a plot of the transmission power ratio in [dB/cm].

by Kirchhoff (1868), to include thermal damping (Rayleigh, 1896, Vol. II, p. 319). These losses are explained by a modified complex propagation function \(\kappa(s) \) (Eq. D.1). Following his review of these theories, Crandall (1926, Appendix A) noted that the "Helmholtz-Kirchhoff" theory had never been experimentally verified. Acting on this suggestion, Mason (1928) set out to experimentally verify their theory.

Mason’s specification of the propagation function

Mason’s results are reproduced herein in Fig. D.1 as the solid lines for tubes of fixed radius between 3.7 and 8.5 [mm] having a power reflectance given by

\[
|\Gamma_L(f)|^2 = \left|e^{-\kappa(f)L}\right|^2 \text{ [dB/cm].} \quad (D.3)
\]

The complex propagation function cited by Rayleigh (1896) is (Mason, 1928, Eq. 2)

\[
\kappa(\omega) = \frac{P_i\eta_0\sqrt{\omega}}{2c_0S\sqrt{2\pi\rho_0}} + \frac{i\omega}{c_0} \left\{1 + \frac{P_i\eta_0}{2S\sqrt{2\omega\rho_0}}\right\} \quad (D.4)
\]

and the characteristic impedance is

\[
z_0(\omega) = \sqrt{\frac{P_0\gamma\rho_0}{1 + \frac{P_0\gamma'}{2S\sqrt{2\omega\rho_0}} - \frac{J\gamma'}{2S\sqrt{2\omega\rho_0}}}}, \quad (D.5)
\]

where \(S \) is the tube area and \(P \) is its perimeter. Mason specified physical constants for air to be \(\eta_0 = 1.4 \) (ratio of specific heats), \(\rho_0 = 1.2 \text{ kg/m}^2 \text{ [density]}, c_0 = \sqrt{P_0\eta_0/\rho_0} = 341.5 \text{ m/s} \) (sound speed), \(R_0 = 8.2 \times 10^{-2} \text{ Pa [atmospheric pressure]}, \eta_0 = 18.6 \times 10^{-6} \text{ Pa-s} \) (viscosity). Based on these values, \(\eta_0 \) is defined as the composite thermodynamic constant (Mason, 1928):

\[
\eta_0 = \sqrt{\frac{\gamma P_0}{1 + \sqrt{5/2} \left(\eta_0^{1/2} - \eta_0^{-1/2}\right)}}
\]

\[
= \sqrt{18.6 \times 10^{-3}} \left[1 + \sqrt{5/2} \left(\sqrt{1.4} - 1/\sqrt{1.4}\right)\right]
\]

\[
= 6.618 \times 10^{-3}.
\]
D.1.2 Impact of viscous and thermal losses

Assuming air at 23.5°C, \(c_0 = \sqrt{\gamma_0} = 344 \text{ m/s} \) is the speed of sound, \(\gamma_0 = c_p/c_v = 1.4 \) is the ratio of specific heats, \(\mu_0 = 18.5 \times 10^{-6} \) [Pa·s] is the viscosity, \(\rho_0 \approx 1.2 \text{ kg/m}^3 \) is the density, \(P_0 = 10^{-5} \text{ Pa(f)} \) (1 atm).

Equation D.4 and the measured data are compared in Fig. D.1, reproduced from Mason’s Fig. 4, which shows that the wave speed drops from 344 m/s at 2.5 kHz to 330 m/s at 0.4 kHz, a 1.5% reduction in the wave speed. At 1 MHz, the loss is 1 [dB/m] for a 7.5 mm tube. Note that the loss and the speed of sound vary inversely with the radius. As the radius approaches the boundary layer thickness, i.e., the radial distance such that the loss is \(e^{-\frac{1}{2}} \), the effect of the damping dominates the propagation.

With some significant algebra, Eq. D.4 may be greatly simplified to Eq. D.1.\(^3\) Numerically,

\[
\beta_0 = \frac{P}{2S} \frac{\eta_0}{\sqrt{\rho_0}} = \frac{P}{2S} 6.0415 \times 10^{-3}.
\]

For the case of a cylindrical waveguide, the radius is \(R = 2S/P \). Thus

\[
\beta_0 = \frac{\rho_0}{R} \frac{\eta_0}{\sqrt{\rho_0}} = \frac{1}{R} 6.0415 \times 10^{-3}.
\]

Here \(n = P \eta_0/2S \sqrt{\rho_0} \) is a thermodynamic constant, \(P \) is the perimeter of the tube, and \(S \) the area (Mason, 1928).

For a coaxial tube having radius \(R = 2S/P \), \(\beta_0 = \eta_0 P/R \). To get a feeling for the magnitude of \(\beta_0 \), consider a 7.5 mm tube (i.e., the average diameter of the adult ear canal). Then \(\eta_0 = 6.0180 \times 10^{-5} \) and \(\beta_0 = 1611.4 \). Using these conditions, the wave number cutoff frequency is 1611.4/2\(\pi \) = 0.4131 Hz. At 1 kHz, the ratio of the loss over the propagation is \(\beta_0 / \sqrt{\rho_0} = 1.6011 / \sqrt{2\pi} 10^3 \approx 2\% \). At 100 Hz, this is a 6.4% effect.\(^4\)

\(<H3>\) Cut-off frequency \(\omega_0 \) The frequency where the lossless part equals the lossy part is defined as \(\kappa(\omega_0) = 0 \), namely \(\omega_0 + \beta_0 \sqrt{\rho_0} = 0 \).

Solving for \(\omega_0 \) gives the real and negative pole frequency of the system:

\[\omega_0 = -\beta_0 \sqrt{\rho_0} = -6.0415 \times 10^{-3} / R. \]

To get a feeling for the magnitude of \(\omega_0 \), let \(R = 0.75/2 \text{ cm} \) (i.e., the average radius of the adult ear canal). Then

\[\omega_0 = 6.0415 \times 10^{-3} / 3.75 \times 10^{-2} \approx 1.6. \]

We conclude that the losses are insignificant in the audio range since for the case of the human ear canal, \(\rho_0 = 0.401 \text{ Hz} \).

Note how the propagation function has a Helmholtz-Kirchhoff correction for both the real and imaginary parts. This means that both the speed of sound and the damping are dependent on frequency, proportional to \(\sqrt{\rho_0/\rho_0} \). Note also that the smaller the radius, the greater the damping.

\(<H3>\) Summary: The Helmholtz-Kirchhoff theory of viscous and thermal losses results in a frequency-dependent speed of sound in a tube, having a frequency dependence proportional to \(1/\sqrt{\rho_0} \) (Mason, 1928, Eq. 4). This corresponds to a 2% change in the sound velocity over the decade from 0.22 kHz (Mason, 1928, Fig. 5), in agreement with experiment.

\(^3\)The real and imaginary parts of this expression with \(s = i\omega \) give Eq. D.1.\(^4\).

\(^4\) [home/jba/Mimosa/2C-FindLengths.16/doc.2-c_calib.14/r/MasonKappa.m]

\[^{5}\) [home/jba/Mimosa/2C-FindLengths.16/doc.2-c_calib.14/r/MasonKappa.m]
Appendix E

Number theory applications

E.1 Division with rounding method

We would like to show that the GCD for \(m, n, k \in \mathbb{N} \) (Eq. 2.7, p. 51) may be written in matrix form:

\[
\begin{pmatrix}
 m \\
 n
\end{pmatrix}_{k+1} =
\begin{pmatrix}
 0 & 1 \\
 -\left\lfloor \frac{m}{n} \right\rfloor & 1
\end{pmatrix}
\begin{pmatrix}
 m \\
 n
\end{pmatrix}_k
\]

(E.1)

This represents \(\gcd(m, n) \) for \(m > n \).

This starts with \(k = 0, m_0 = a, n_0 = b \). With this method there is no need to test \(n_i < m_i \), as it is built into the procedure. The method uses the floor function \(\lfloor x \rfloor \), which finds the integer part of \(x \) (\(\lfloor x \rfloor \) rounds toward \(-\infty\)). Following each step we will see that the value \(n_{k+1} < m_{k+1} \). The method terminates when \(n_{k+1} = 0 \) with \(\gcd(a, b) = m_{k+1} \).

Below is a one-line vectorized code that is much more efficient than the direct matrix method of §E (p. 287):

```matlab
function n=gcd2(a,b)
M=[abs(a);sbs(b)]; %Save (a,b) in array M(2,1)

% done when M(1) = 0
while M(1) ~= 0
    disp(sprintf('%d=%g', M(2), M(1) , M(2) ));
    M=[M(2) - M(1) * floor(M(2) / M(1) ) ; M(1) ]; %automatically sorted
end

n=M(2); %GCD is M(2)
```

With a minor extension in the test for “end,” this code can be made to work with irrational inputs (e.g., \((\pi, \pi))\).

This method calculates the number of times \(n < m \) must subtract from \(m \) using the floor function. This operation is the same as the mod function. Specifically,

\[
n_{k+1} = m_k - \left\lfloor \frac{m}{n} \right\rfloor n_k
\]

(E.2)

so that the output is the definition of the remainder of modular arithmetic. This would have been obvious to anyone using an abacus, which explains why it was discovered so early.

Note that the next value of \(n \) (\(M(1) \)) is always less than \(n \) (\(M(2) \)) and must remain greater or equal to zero. This one-line vector operation is then repeated until the remainder \((M(1)) \) is 0. The gcd is then

\[https://en.wikipedia.org/wiki/Modulo_operation\]
For such systems there are only two degrees of freedom, \(\mathcal{A} \) and \(\mathcal{C} \). As discussed previously in §3.7 (p. 125), each of these has a physical meaning: \(1/\mathcal{A} \) is the Thévenin source voltage given a voltage drive, and \(\mathcal{B}/\mathcal{A} \) is the Thévenin impedance (§3.62, p. 126).

Impedance is not Hermitian: By definition, when a system is Hermitian, its matrix is conjugate symmetric,

\[Z(s) = Z^*(s), \]

a stronger condition than reciprocal, but not the symmetry of the Brune impedance matrix. A reciprocal Brune impedance is symmetric (not Hermitian).
We use $n(M(2))$. When using irrational numbers, this still works except the error is never exactly zero due to IEEE 754 rounding. Thus the criterion must be that the error is within some small factor times the smallest number (which in Matlab is the number \(\text{eps} = 2.220446049250313 \times 10^{-16}\), as defined in the IEEE 754 standard).

This, without factoring the two numbers, Eq. E.2 recursively finds the gcd. Perhaps this is best seen with some examples.

The GCD is an important and venerable method, useful in engineering and mathematics, but, as best I know, is not typically taught in the traditional engineering curriculum.

GCD applied to polynomials: An interesting generalization is work with polynomials rather than numbers, and apply the Euclidean algorithm.

The GCD may be generalized in several significant ways. For example what is the GCD of two polynomials? To answer this question one must factor the two polynomials to identify common roots.

E.2 Derivation of the CFA matrix

We can define the CFA with the following starting from the basic definitions of the floor and remainder formulas. Starting from a decimal number x, we split it into the decimal and remainder parts.

Starting with $n = 0$ and $x_0 = x \in \mathbb{R}$, the integer part is

$$m_0 = \lfloor x \rfloor \in \mathbb{N}$$

and the remainder is

$$r_0 = x - m_0.$$

Corresponding to the CFA, the next target x_1 is for $n = 1$ is

$$x_1 = r_0^{-1}$$

and the integer part is $m_1 = \lfloor x_1 \rfloor$. As in the case of $n = 0$, the integer part is

$$m_1 = \lfloor x_1 \rfloor$$

and the remainder is

$$r_1 = x_1 - m_1.$$

The recursion for $n = 2$ is similar.

To better appreciate what is happening it is helpful to write these recursion in a matrix format. Rewriting the case of $n = 1$ and using the remainder formula for the ratio of two numbers $p \geq q \in \mathbb{N}$ with $q \neq 0$, we have

$$\begin{bmatrix} p \\ q \end{bmatrix} = \begin{bmatrix} u_0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} r_0 \\ r_1 \end{bmatrix}.$$

From the remainder formula, $u_1 = \lfloor p/q \rfloor$.

Continuing with $n = 2$:

$$\begin{bmatrix} r_0 \\ r_1 \end{bmatrix} = \begin{bmatrix} u_2 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} r_1 \\ r_2 \end{bmatrix},$$

where $u_2 = \lfloor r_1/r_2 \rfloor$.

Continuing with $n = 3$:

$$\begin{bmatrix} r_1 \\ r_2 \end{bmatrix} = \begin{bmatrix} u_3 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} r_2 \\ r_3 \end{bmatrix}.$$

\[2\] The method presented here was developed by Yiming Zhang as a student project in 2019.
where $u_2 = \lfloor r_1 / r_2 \rfloor$.
For arbitrary n we find
\[
\begin{bmatrix}
 r_{n-2} \\
 r_{n-1}
\end{bmatrix} =
\begin{bmatrix}
 u_n & 1 \\
 1 & 0
\end{bmatrix}
\begin{bmatrix}
 r_{n-1} \\
 r_n
\end{bmatrix},
\] \hspace*{1cm} \text{(E.3)}

where $u_n = \lfloor r_{n-1} / r_n \rfloor$.

This terminates when $r_n = 0$ in the above step when

We let

Example: Let $p, q = 355, 113$, which are coprime and set $n = 1$. Then Eq. E.3 becomes
\[
\begin{bmatrix}
 355 \\
 113
\end{bmatrix} =
\begin{bmatrix}
 3 & 1 \\
 1 & 0
\end{bmatrix}
\begin{bmatrix}
 r_0 \\
 r_1
\end{bmatrix},
\]

since $u_1 = \lfloor \frac{355}{113} \rfloor = 3$. Solving for the RHS gives $[r_0; r_1] = [113; 16]$ ($355 = 113 \cdot 3 + 16$). To find $[r_0; r_1]$, take the inverse:
\[
\begin{bmatrix}
 r_0 \\
 r_1
\end{bmatrix} =
\begin{bmatrix}
 0 & 1 \\
 1 & -3
\end{bmatrix}
\begin{bmatrix}
 355 \\
 113
\end{bmatrix},
\]

For $n = 2$, with the right-hand side from the previous step,
\[
\begin{bmatrix}
 113 \\
 16
\end{bmatrix} =
\begin{bmatrix}
 u_2 & 1 \\
 1 & 0
\end{bmatrix}
\begin{bmatrix}
 r_1 \\
 r_2
\end{bmatrix},
\]

since $u_2 = \lfloor \frac{113}{16} \rfloor = 7$. Solving for the RHS gives $[r_1; r_2] = [16; 1]$ ($113 = 16 \cdot 7 + 1$). It seems we are done, but let's go one more step.

For $n = 3$ we now have
\[
\begin{bmatrix}
 16 \\
 1
\end{bmatrix} =
\begin{bmatrix}
 u_3 & 1 \\
 1 & 0
\end{bmatrix}
\begin{bmatrix}
 r_2 \\
 r_3
\end{bmatrix},
\]

that since $u_3 = \lfloor \frac{16}{1} \rfloor = 16$. Solving for the RHS gives $[r_2; r_3] = [1; 0]$. This confirms we are done since $r_2 = 0$.

Derivation of Eq. E.3: Equation Eq. E.3 is derived as follows: Starting from the target $x \in \mathbb{R}$, define
\[
p = [x] \quad \text{and} \quad q = \frac{1}{x - p} \in \mathbb{R},
\]

These two relations for truncation and remainder allow us to write the general matrix recursion relation for the CFA (Eq. E.3). Given $\{p, q\}$, continue with the above cfa method.

One slight problem with the above is that the output is on the right and the input is on the left. Thus we need to take the inverse of these relationships to turn this into a composition.

E.3 Taking the inverse to get the gcd

Variables r_{n-1} and r_n are the remainders r_{n-1} and r_n, respectively. Using this notation with $n - 1$ gives Eq. E.3.
Inverting this gives the formula for the GCD:
\[
\begin{bmatrix}
 r_{n-1} \\
 r_n
\end{bmatrix} =
\begin{bmatrix}
 0 & 1 \\
 1 & -\frac{1}{r_{n-1}}
\end{bmatrix}
\begin{bmatrix}
 r_{n-2} \\
 r_{n-1}
\end{bmatrix},
\]

This terminates when $r_n = 0$ and the gcd (p, q) is r_{n-1}. Not surprisingly these equations mirror a Eq. 2.8 (p. 53), but with different indexing scheme and interpretation of the variables.

This then explains why Gauss called the CFA the Euclidean algorithm. He was not confused. But since they have an inverse relation, they are not strictly the same.
Appendix F

Nine postulates of Systems of algebraic Networks

Physical systems obey very important rules that follow from the physics. It is helpful to summarize these physical restrictions in terms of postulates, presented in terms of a taxonomy, or categorization method, of the fundamental properties of physical systems. Nine of these are listed below. These nine come from a recently published paper (Kim and Allen, 2013). It is possible that given time, others could be added.

A taxonomy of physical systems comes from a systematic summary of the laws of physics, which includes at least the nine basic network postulates described in §3.9. To describe each of the network postulates, it is helpful to begin with the A-port transmission (aka ABCD) chain matrix representation, discussed in §2.7 (p. 125).

![Figure F.1: The schematic representation of an algebraic network, defined by its A-port ABCD transmission matrix, has three elements (i.e., Hunt parameters): $Z_A(s)$, the electrical impedance; $z_m(s)$, the mechanical impedance, and $T(s)$, the transmission coefficient (Hunt, 1952; Kim and Allen, 2013). A matrix of an electromechanical transducer network. The port variables are $\Phi(f)$, $I(f)$: the frequency domain voltage and current, and $F(f)$ and $U(f)$: the force and velocity. The matrix factors the A-port model into three 2×2 matrices, separating the three physical elements as matrix algebra. It is a standard impedance convention that the flows $I(f)$ and $U(f)$ are always defined into each port. Thus it is necessary to apply a negative sign on the velocity $-U(f)$ so that it has an outward flow, as required to match the next cell with its inward flow.]

As shown in Fig. F.1, the A-port transmission matrix for an acoustic transducer (loudspeaker) is characterized by the equation

$$\begin{pmatrix} \Phi(t) \\ I(t) \end{pmatrix} = \begin{bmatrix} A(s) & B(s) \\ C(s) & D(s) \end{bmatrix} \begin{bmatrix} F_t \\ -U_t \end{bmatrix} = \frac{1}{T} \begin{bmatrix} z_m(s) & z_e(s) + T^2 \\ 1 & z_e(s) \end{bmatrix} \begin{bmatrix} F_t \\ -U_t \end{bmatrix},$$

shown as a product of three 2×2 matrices in the figure, with each factor representing one of the three physical elements (i.e., Hunt parameters) of the loudspeaker.

This figure represents the electromechanical motor of the loudspeaker, consists of three elements: the electrical input impedance $Z_e(s)$, a gyrator, which is similar to a transformer, but relates current to force, and an output mechanical impedance $Z_m(s)$. This circuit describes what is needed to fully characterize its operation, from electrical input to mechanical (acoustical) output.

The input is electrical (voltage and current) $[\Phi(t), I(t)]$ and the output (load) are the mechanical (force and velocity) $[F_t, U_t]$. The first matrix is the general case, expressed in terms of four unspecified functions $A(s), B(s), C(s), D(s)$, while the second matrix is for the specific example of Fig. F.1. The four entries are the electrical driving point impedance $Z_e(s)$, the mechanical impedance $z_m(s)$, and the transmission $T = B_0/L$, where B_0 is the magnetic flux strength and L is the length of the wire crossing the flux. Since the transmission matrix is anti-reciprocal, its determinant $\Delta_T = -1$, as is easily verified.
APPENDIX F. 9 SYSTEM POSTULATES

Other common transduction examples of cross-modality transduction include current–thermal (thermoelectric effect) and force–voltage (piezoelectric effect). These systems are all reciprocal; thus the transduction has the same sign.

Impedance matrix

These nine postulates describe the properties of a system having an input and an output. For the case of an electromagnetic transducer (loudspeaker) the system is described by the A-port, as shown in Fig. F.1. The electrical input impedance of a loudspeaker is $Z_e(s)$, defined by

$$Z_e(s) = \frac{V(\omega)}{I(\omega)} .$$

Note that this driving-point impedance must be causal, thus it has a Laplace transform and therefore is a function of the complex frequency $s = \sigma + j\omega$, whereas the Fourier transforms of the voltage $V(\omega)$ and current $I(\omega)$ are functions of the real radian frequency ω, since the time-domain voltage $v(t) \leftrightarrow V(\omega)$ and the current $i(t) \leftrightarrow I(\omega)$ are signals that may start and stop at any time (they are not typically causal).

The corresponding A-port impedance matrix for Fig. F.1 is

$$\begin{bmatrix} \Phi_1 \\ F_1 \end{bmatrix} = \begin{bmatrix} z_{11}(s) & z_{12}(s) \\ z_{21}(s) & z_{22}(s) \end{bmatrix} \begin{bmatrix} I_i \\ U_i \end{bmatrix} = \begin{bmatrix} Z_e(s) & -T(s) \\ T(s) & Z_m(s) \end{bmatrix} \begin{bmatrix} I_i \\ U_i \end{bmatrix} .$$

Such a description allows one to define *Thévenin parameters*, a very useful concept used widely in circuit analysis and other network models from other modalities.

The impedance matrix is an alternative description of the system but with generalized forces $[\Phi_1, F_1]$ on the left and generalized flows $[I_i, U_i]$ on the right. A rearrangement of the equations allows one to go from the ABCD to impedance set of parameters (Van Valkenburg, 1964b). The electromagnetic transducer is anti-reciprocal (P6), $z_{12} = -z_{21} = T = B_0$.

Taxonomy of algebraic networks

The postulates must go beyond postulates P1-P6 defined by Carlin and Giordano (§3.9, p. 135) when there is an interaction of waves and a structured medium, along with other properties not covered by classic network theory. Assuming the QS property, the wavelength must be large relative to the medium's lattice constants. Thus the QS property must be extended to three dimensions and possibly to the cases of anisotropic and random media.

Causality: P1 We stated above, due to causality the negative properties (e.g., negative refractive index) must be limited in bandwidth as a result of the Cauchy-Riemann conditions. However, even causality needs to be extended to include the delay, as quantified by the d'Alembert solution to the wave equation, which means that the delay is proportional to the distance. Thus we generalize P1 to include the space-dependent delay. When we wish to discuss this property, we denote it *Einstein causality*, which says that the delay must be proportional to the distance x, with impulse response $\delta(t - x/c)$.

Linearity: P2 The wave properties of may be nonlinear. This is not restrictive as most physical systems are naturally nonlinear. For example, a capacitor is inherently nonlinear: as the charge builds up on the plates of the capacitor, a stress is applied to the intermediate diellectric due to the electrostatic force $F = qE$. In a similar manner, an inductor is nonlinear. Two wires carrying a current are attracted or repelled due to the force created by the flux. The net force is the product of the two fluxes due to each current.

In summary, most physical systems are naturally nonlinear; it's simply a matter of degree. An important counter example is an amplifier with negative feedback, with very large open-loop gain. There are, therefore, many types of nonlinear, instantaneous and those with memory (e.g., hysteresis). Given
Postulate

the nature of P1, even an instantaneous non-linearity may be ruled out. The linear model is so critical for our analysis, providing fundamental understanding, that we frequently take P1 and P2 for granted.

Author: Should this subscript be zero? See the displayed equations above and below.

\[
\Gamma(s) = \frac{Z(s) - r_0}{Z(s) + r_0} = \frac{Z - 1}{Z + 1},
\]

where \(Z = Z/r_0 \). The surge resistance is defined in terms of the inverse Laplace transform of \(Z(s) \leftrightarrow z(t) \), which must have the form

\[
z(t) = r_0 \delta(t) + \rho(t),
\]

where \(\rho(t) = 0 \) for \(t < 0 \). It naturally follows that \(\gamma(t) \leftrightarrow \Gamma(s) \) is zero for negative and zero time, namely \(\gamma(0) = 0, t \leq 0 \), at

that has

Given any linear PR impedance \(Z(s) = R(\sigma, \omega) + jX(\sigma, \omega) \); having real part \(R(\sigma, \omega) \) and imaginary part \(X(\sigma, \omega) \), the impedance is defined as being PR (Brune, 1931b) if and only if

\[
\Re Z(s) = R(\sigma \geq 0, \omega) \
\geq 0.
\]
(F.3)

That is, the real part of any PR impedance is non-negative everywhere in the right half-plane (\(\sigma \geq 0 \)). This is a very strong condition on the complex analytic function \(Z(s) \) of a complex variable \(s \). This condition is equivalent to any of the following statements (Van Valkenburg, 1964a):

1. There are no poles or zeros in the right half-plane (\(Z(s) \) may have poles and zeros on the \(\sigma = 0 \) axis).
2. If \(Z(s) \) is PR then its reciprocal \(Y(s) = 1/Z(s) \) is PR (the poles and zeros swap).
3. If the impedance may be written as the ratio of two polynomials (a limited case, related to the quasi-static approximation, P9) having degrees \(N \) and \(L \), then \(|N - L| \leq 1 \).
4. The angle of the impedance \(\theta = \angle Z \) lies between \([-\pi, \pi] \).
5. The impedance and its reciprocal are bounded in the right half-plane, thus they both obey the Cauchy-Riemann conditions there.

Energy and Power: The PR (positive real or physically realizable) condition assures that every impedance is positive-definite (PD), thus guaranteeing conservation of energy is obeyed (Schwinger and Saxon, 1968, p.17). This means that the total energy absorbed by any PR impedance must remain positive for all time, namely

\[
E(t) = \int_{-\infty}^{t} v(t)\ i(t) \ dt = \int_{-\infty}^{t} i(t) \ast z(t) \ i(t) \ dt > 0,
\]

where \(i(t) \) is any current, \(v(t) = z(t) \ast i(t) \) is the corresponding voltage, and \(z(t) \) is the real causal impulse response of the impedance, e.g., \(z(t) \leftrightarrow Z(s) \) are a Laplace-Transform pair. In summary, if \(Z(s) \) is PR, \(E(t) \) is PD.
As discussed in detail by Van Valkenburg, any rational PR impedance can be represented as a partial fraction expansion, which can be expanded into first-order poles as

\[Z(s) = K \frac{\prod_{n=1}^{L} (s - m_n)}{\prod_{k=1}^{N} (s - a_k)} = \sum_{n} \frac{\rho_n}{s - s_n} e^{j(\phi_n - \theta_n)}, \]

where \(\rho_n \) is a complex scale factor (residue). Every pole in a PR function has only simple poles and zeros, requiring that \(|L - N| \leq 1 \) (Van Valkenburg, 1964b).

Whereas the PD property clearly follows P3 (conservation of energy), the physics is not so clear. Specifically what is the physical meaning of the specific constraints on \(Z(s) \)? In many ways, the impedance concept is highly artificial, as expressed by P1-P7.

When the impedance is not rational, special care must be taken. An example of this is the inductor \(M \sqrt{s} \) and the capacitor \(K / \sqrt{s} \), due, for example, to the skin effect in EM theory and viscous and thermal losses in acoustics, both of which are frequency-dependent boundary-layer diffusion losses (Vanderkooy, 1989). They remain positive-real but have a branch cut, thus are double-valued in frequency.

Real-time response: P4 The impulse response of every physical system is real, \(\bar{z} = z \), complex. This requires that the Laplace transform have conjugate-symmetric symmetry \(H(s) = H^*(s^*) \), where \(* \) indicates conjugation (e.g., \(
\begin{bmatrix} R(\sigma, \omega) + X(\sigma, \omega) \\ R(\sigma, -\omega) - X(\sigma, -\omega) \end{bmatrix} \)).

Time-invariant: P5 The meaning of time-invariant requires that the impulse response of a system does not change over time. This requires that the system coefficients of the differential equation describing the system are constant (independent of time).

Rayleigh Reciprocity: P6 Reciprocity is defined in terms of the unloaded output voltage that results from an input current. Specifically (same as Eq. 3.65, p. 126)

\[\begin{bmatrix} z_{11}(s) & z_{12}(s) \\ z_{21}(s) & z_{22}(s) \end{bmatrix} = \frac{1}{C(s)} \begin{bmatrix} A(s) & \Delta_T(s) \\ 1 & D(s) \end{bmatrix}, \]

where \(\Delta_T = A(s)D(s) - B(s)C(s) \pm 1 \) for the reciprocal and antireciprocal systems respectively. This is best understood in terms of Eq. F.2. The off-diagonal coefficients \(z_{12}(s) \) and \(z_{21}(s) \) are defined as

\[z_{12}(s) = \frac{\Phi_1}{U_1} \bigg|_{I_2 = 0} \]

\[z_{21}(s) = \frac{\Phi_1}{I_1} \bigg|_{U_2 = 0} \]

When these off-diagonal elements are equal \(\{z_{12}(s) = z_{21}(s)\} \), the system is said to obey Rayleigh reciprocity. If they are opposite in sign \(\{z_{12}(s) = -z_{21}(s)\} \), the system is said to be antireciprocal. If a network has neither of the reciprocal nor antireciprocal characteristics, then we denote it as non-reciprocal (McMillan, 1946). The most comprehensive discussion of reciprocity, even to this day, is that of Rayleigh (1896, Vol. I). The reciprocal case may be modeled as an ideal transformer (Van Valkenburg, 1964a), while the antireciprocal case the generalized force and flow are swapped across the \(\lambda \)-port.

An electromagnetic transducer (e.g., a moving coil loudspeaker or electrical motor) is antireciprocal (Kim and Allen, 2013; Beranek and Mellow, 2012), requiring a gyrator rather than a transformer, as shown in Fig. F.1.

Reversibility: P7 A second \(\lambda \)-port property is the reversible/non-reversible postulate. A reversible system is invariant to the input and output impedances being swapped. This property is defined by the input and output impedances being equal.

Referring to Eq. F.5, when the system is reversible \(z_{12}(s) = z_{22}(s) \) or, in terms of the transmission matrix variables \(\frac{A(s)}{C(s)} = \frac{D(s)}{E(s)} \) or simply \(A(s) = D(s) \) assuming \(C(s) \neq 0 \).
An example of a non-reversible system is a transformer where the turns ratio is not one. Also, an ideal operational amplifier (when the power is turned on) is non-reversible due to the large impedance difference between the input and output. Furthermore, it is active (it has a power gain due to the current gain at constant voltage) (Van Valkenburg, 1964b).

Generalizations of this lead to group theory and the Noether's theorem. These generalizations apply to systems with many modes whereas quasi-statics holds when operate below a cutoff frequency (Table F.1), meaning that, like the case of the transmission line, there are no propagating transverse modes. While this assumption is never exact, it leads to highly accurate results because the non-propagating evanescent transverse modes are attenuated over a short distance and, thus, in practice, may be ignored (Montgomery et al., 1948; Schwinger and Saxon, 1968, Chap. 9 and 11).

We extend the Carlin and Giordano postulate to include (P7) Reversibility, which was refined by Van Valkenburg (1964a). To satisfy the reversibility condition, the diagonal components in a system's impedance matrix must be equal. In other words, the input force and the-flow are proportional to the output force and flow, respectively (i.e., $Z_e = z_{in}$).

Spatial invariant: P8 The characteristic impedance and wave number $\kappa(s, v)$ may be strongly frequency and/or spatially dependent, or even be negative over some limited frequency ranges. Due to causality, the concept of a negative group velocity must be restricted to a limited bandwidth (Brillouin, 1960). As is made clear by Einstein's theory of relativity, all materials must be strictly causal (P1), a view that must therefore apply to acoustics but at a very different time scale. We first discuss generalized postulates, expanding on those of Carlin and Giordano.

Quasistatic

The QS constraint: P9 When a system is described by the wave equation, delay is introduced between two points in space, which depends on the wave speed. When the wavelength is large compared to the delay, one may successfully apply the **quasistatic approximation**. This method has widespread application and is frequently used without mention of the assumption. This can lead to confusion, since the limitations of the approximation may not be appreciated. An example is the use of QS in Quantum Mechanics. The QS approximation has widespread use when the signals may be accurately approximated by a band-limited signal. Examples include KCL, KVL, wave guides, transmission lines, and most importantly, impedance. The QS property is not mentioned in the six postulates of Carlin and Giordano (1964); thus they need to be extended in some fundamental ways.

When the dimensions of a cellular structure in the material are much less than the wavelength, the QS approximation is valid. This effect can be viewed as a **mode filter** that suppresses unwanted (or conversely enhances the desired) modes (Ramo, 1965). QS may be applied to a 2-dimensional specification, as in a semiconductor lattice. But such applications fall outside the scope of this text (Schwinger and Saxon, 1968).

Although I have never seen the point discussed in the literature, the QS approximation is applied when defining Green’s theorem. For example, Gauss’s \mathbf{F} is not true when the volume of the container violates QS, since changes in the distribution of the charge have not reached the boundary, when doing the integral. Thus such integral relationships assume that the system is in quasisteady-state (i.e., that QS holds).

Formally, QS is defined as $ka < 1$, where $k = 2\pi/\lambda = \omega/c$ and a is the cellular dimension or the size of the object. Other ways of expressing this include $\lambda/\sqrt{a} > a$, $2\pi/a > a$, $a > 4\lambda$, or $\lambda > 2\pi a$. It is not clear if it is better to normalize λ by 4 (quartermode-length constraint) or $\pi/2 > 4$, which is more conservative by a factor of $\pi/2 \approx 1.6$. Also k and a can be vectors (e.g., Eq. 3.3, p. 71).

Schefflenoff may have been the first to formalize this concept (Schefflenoff, 1943), but not the first to use it, as exemplified by the Helmholtz resonator. George Ashley Campbell was the first to use the concept in the important application of a wavefilter, some 30 years before Schefflenoff (Campbell, 1903a). These two men were 40 years apart and both worked for the telephone company (after 1929, called AT&T Bell Labs) (Fagen, 1975).
Table F.1: There are several ways of indicating the quasi-static (QS) approximation. For network theory there is only one lattice constant a, which must be much less than the wavelength (wavelength constraint). These three constraints are not equivalent when the object may be a larger structured medium, spanning many wavelengths, but with a cell structure noisymuch less than the wavelength. For example, each cell could be a Helmholtz resonator or an electromagnetic transducer (i.e., an earphone).

<table>
<thead>
<tr>
<th>Measure</th>
<th>Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>$ka < 1$</td>
<td>Wavenumber constraint</td>
</tr>
<tr>
<td>$\lambda > 2\pi a$</td>
<td>Wavelength constraint</td>
</tr>
<tr>
<td>$f_c < c/(2\pi a)$</td>
<td>Bandwidth constraint</td>
</tr>
</tbody>
</table>

There are alternative definitions of the QS approximation, depending on the geometrical cell structure. The alternatives are outlined in Table F.1.

The quasi-static approximation: Since the velocity perpendicular to the walls of the horn must be zero, any radial wave propagation is exponentially attenuated ($\kappa(s)$ is real and negative, i.e., the propagation function $\kappa(s)$ (§4.4, p. 160) will not describe radial wave propagation), with a space constant of about 1 diameter. The assumption that these radial waves can be ignored (i.e., more than 1 diameter from their source) is called the quasi-static approximation. It is often increased, thus above this critical frequency, radial waves (and higher order modes) are supported (κ becomes imaginary). Thus for Eq. 5.27 to describe guided wave propagation, $f > f_c$. But even with this condition, the solution will not be precise within a diameter (or so) of any discontinuities (i.e., rapid variations) in the area.

Each horn, as determined by the area function $A(r)$, has a distinct wave equation and thus a distinct solution. Note that the area function determines the upper cutoff frequency via the quasi-static approximation, since $f_c = c_0/\lambda > \lambda_c/2 > d$, $A(r) = \pi(d/2)^2$. Thus to satisfy the quasi-static approximation, the frequency f must be less than the cutoff frequency:

\[
f < f_c = \frac{\pi}{4 \sqrt{A(r)}}.
\]

We shall discuss two alternative matrix formulations of these equations: the ABCD transmission matrix, used for computation, and the reciprocity matrix, used when working with experimental measurements (Pierce, 1981, Chapter 7). For each formulation, reciprocity and show up as different matrix symmetries, as addressed in §14.9 (p. 135) (Pierce, 1981, p. 195, 203).

Summary

A transducer converts between modalities. We propose the general definition of the nine system postulates, that include all transduction modalities, such as electrical, mechanical, and acoustical. It is necessary to generalize the concept of the QS approximation (P9) to allow for guided waves.

Given the combination of the important QS approximation along with these space-time, linearity, and reciprocity properties, a rigorous definition and characterization a system can thus be established. It is based on a taxonomy of such materials formulated in terms of material and physical properties and in terms of extended network postulates.
Appendix G

Webster horn equation Derivation

In this section we transform the acoustic equations, Eq. 5.22 and 5.23 (p. 205), into their equivalent integral form, Eq. 5.27 (p. 207). This derivation is similar (but not identical) to that of Hanna and Slepicka (1924) and Pierce (1981, p. 360).

Conservation of momentum: The first step is an integration of the normal component of Eq. 5.22 (p. 205) over the isopressure surface S, defined by $\nabla p = 0$:

$$- \int_S \nabla p(x, t) \cdot dA = \rho_0 \frac{\partial}{\partial t} \int_S u(x, t) \cdot dA.$$

The average pressure $\bar{p}(x, t)$ is defined by dividing by the total area:

$$\bar{p}(x, t) = \frac{1}{A(x)} \int_S p(x, t) \hat{n} \cdot dA. \quad (G.1)$$

From the definition of the gradient operator, we have

$$\nabla p = \frac{\partial p}{\partial x} \hat{n}, \quad (G.2)$$

where \hat{n} is a unit vector perpendicular to the isopressure surface S. Thus the left side of Eq. 5.22 reduces to $\partial \bar{p}(x, t)/\partial x$.

The integral on the right side defines the volume velocity:

$$\nu(x, t) = \int_S u(x, t) \cdot dA. \quad (G.3)$$

Thus the integral form of Eq. 5.22 (p. 205) becomes

$$- \frac{\partial}{\partial x} \bar{p}(x, t) = \frac{\rho_0}{A(x)} \frac{\partial}{\partial t} \nu(x, t) \leftrightarrow Z(x, s) \nu', \quad (G.4)$$

where

$$Z(s, x) = \frac{s \rho_0}{A(x)} = sM(x) \quad (G.5)$$

and where $M(x) = \rho_0/A(x) [\text{kgm/m}^2]$ is the per-unit-length mass density of air.

Conservation of mass: Integrating Eq. 5.23 (p. 205) over the volume V gives

$$- \int_V \nabla \cdot u \, dV = \frac{1}{\eta_0 \rho_0} \frac{\partial}{\partial t} \int_V p(x, t) \, dV.$$

The volume V is defined by two isopressure surfaces between x and $x + \delta x$ (green region of Fig. G.1). On the right-hand side we use the definition of the average pressure (i.e., Eq. G.1) integrated over the volume dV. 297
Applying Gauss's law to the left-hand side,\(^1\) and using the definition of \(\gamma\) (on the right), in the limit \(dx \to 0\), gives

\[
\frac{\partial}{\partial x} \phi(x, t) = \frac{A(x)}{\eta_o P_o} \frac{\partial}{\partial x} \psi(x, t) \leftrightarrow \gamma(x, s) \mathcal{P}(x, s),
\]

where

\[
\gamma(x, s) = \frac{sA(x)}{\eta_o P_o} = C(x).
\]

\(C(x) = A(x)/\eta_o P_o \text{ [m}^4\text{N}]\) is the per-unit-length compliance of the air. Equations G.4 and G.6 accurately characterize the Webster plane-wave mode up to the frequency where the higher order eigenmodes begin to propagate (i.e., \(f > f_c\)).

Speed of sound \(c_o\): In terms of \(M(x)\) and \(C(x)\), the speed of sound and the acoustic admittance are

\[
c_o = \sqrt{\frac{\text{stiffness}}{M(x)}} = \sqrt{\frac{1}{C(x)M(x)}} = \sqrt{\frac{\eta_o P_0}{\rho_o}}.
\]

This assumes the medium is lossless. For a discussion of lossy propagation, see Appendix D (p. 283).

Characteristic admittance \(\gamma_r(x)\): Since the horn equation (Eq. 5.27) is second-order, it has two eigenfunction solutions \(\mathcal{P}^\pm\). The ratios of Eq. G.7 over Eq. G.5 are determined by the local stiffness \(1/C(x)\) and mass \(M(x)\). The ratio of \(C/M\) determines the area dependent characteristic admittance \(\gamma_r(x)\) \((\in \mathbb{R})\):

\[
\gamma_r(x) = \sqrt{\frac{1}{\gamma(x, s) \mathcal{P}(x, s)} = \sqrt{\frac{C(x)}{M(x)}} = \sqrt{\frac{A(x)\delta A(x)}{\rho_o \eta_o \delta P_o}} = \frac{A(x)}{\rho_o c_o} > 0},
\]

\((\text{Campbell, 1903a, 1910, 1922})\). The characteristic impedance is \(Z_r(x) = 1/\gamma_r(x)\). Based on a physical argument, \(\gamma_r(x)\) must be positive and real; thus only the positive square root is allowed. As long as \(A(x)\) has no jumps (is continuous), \(\gamma_r(x)\) must be the same in both directions. It is locally determined by the isobaric pressure surface and its volume velocity.

Radiation admittance: The radiation admittance is defined looking into an horn with no termination (infinitely long) from the input at \(x = 0\):

\[
\gamma_{\text{rad}}^\pm(s) = \frac{\gamma_{\text{rad}}^\mp}{\rho_o} \in \mathbb{C}.
\]

The impedance depends on the direction, with + looking to the right and - to the left.

\(^1\)As shown in Fig. G.1, taking the limit of the difference between the two volume velocities \(u(x + \delta x) - u(x)\) divided by \(\delta x\), results in \(\partial u/\partial x\).
The input admittance $Y_{in}^{\pm}(x, s)$ is computed using the upper equation of Eq. 5.28 (p. 208) for $V(x, s)$, and then divided by the pressure eigenfunction P^{\pm}. This results in the logarithmic derivative of $P^{\pm}(x, s)$:

$$Y_{in}^{\pm}(x, s) = \frac{P^{\pm}}{P^{\mp}} = \frac{-1}{sM(x)} \frac{\partial}{\partial t} \ln P^{\pm}(x, s).$$

For example, for the conical horn (last column of Table 5.2)

$$Y_{cm}^{\pm} = \gamma_i (1 \pm c_0/sr_o).$$

Note that $Y_{cm}^{+}(x, s) + Y_{cm}^{-}(x, s) = 2\gamma_i = 2A_0 v^2/\rho_0 c_0 \in \mathbb{R}$, which shows that the frequency dependent part of the two admittances begins equal and opposite in sign, exactly cancel.

As the wavefront travels down the variable area horn, there is a mismatch in the characteristic admittance due to the change in area. This mismatch creates a reflected wave, which in the case of the conical horn is $-c_0/sr_o$. Due to conservation of volume, there is a corresponding identical forward component that travels forward, equal to $+c_0/sr_o$. The sum of these two responses—due to the change in area—must be zero, to conserve volume velocity.

The resulting equations for the velocity eigenfunctions is therefore

$$V^{\pm}(x, s) = Y_{cm}^{\pm}(x, s) P^{\pm}(x, s).$$

Propagation function $\kappa(s)$ The eigenfunctions of the lossless wave equation propagate as

$$P^{\pm}(x, s) = \frac{\kappa(s)x}{A(x)},$$

where $\kappa(s) = \sqrt{\kappa(x,s)}P(x,s) = \pm \sqrt{MC}$. The velocity eigenfunctions $V^{\pm}(x, s)$ may be computed from Eq. G.4.

From the above definitions

$$\kappa(s) = \sqrt{\frac{s\rho_o sA(x)}{\eta_0 P_0}} = \frac{s}{c_0},$$

Thus $\kappa(s)$ and s are the eigenvalues of the differential operations $\partial/\partial x$ and $\partial/\partial t$ operating on the pressure $P(x, s)$. See Appendix D for the inclusion of viscothermal losses.
Bibliography

https://www.youtube.com/watch?v=0zlfJq4Nh0Q.

Campbell, G. (1903a), “On loaded lines in telephonic transmission,” Phil. Mag. Ser. 5, 313-321; see Campbell (1922, footnote 2). In that discussion, ... it is tacitly assumed that the line is either an actual line with resistance, or of the limit such with resistance.

Feynman: How to measure the speed of light. YouTube. https://www.youtube.com/watch?v=r20wx3uQ2wo

Feynman (2019). Take another point of view (1/2). YouTube. https://www.youtube.com/watch?v=xn2EIH5yj1q

