Principles of the Brain’s communication network
and possible applications

Jont B Allen
UIUC Urbana IL, USA

September 30, 2022
Abstract

The goal of this presentation is multi-fold:
- **Summarize some basic facts about brain science**
- The first measurement neural spike propagation by Helmholtz (Frog)
- Hodkins and Huxley explain spike propagation (1950 Nobel Prize)
- Review HH-50's discovery
- Explain how this can be implemented in electronics
- Applications of spike communication on silicon
- Densities approach or even surpass those of the brain
Abstract

The goal of this presentation is multi-fold:

- Summarize some basic facts about brain science
- The first measurement neural spike propagation by Helmholtz (Frog)
- Hodkins and Huxley explain spike propagation (1950 Nobel Prize)
- Review HH-50’s discovery
- Explain how this can be implemented in electronics
- Applications of spike communication on silicon
- Densities approach or even surpass those of the brain
Abstract

The goal of this presentation is multi-fold:

- Summarize some basic facts about brain science
- The first measurement neural spike propagation by Helmholtz (Frog)
- Hodgkin and Huxley explain spike propagation (1950 Nobel Prize)
- Review HH-50’s discovery
- Explain how this can be implemented in electronics
- Applications of spike communication on silicon
- Densities approach or even surpass those of the brain

Abstract

The goal of this presentation is multi-fold:
- Summarize some basic facts about brain science
- The first measurement neural spike propagation by Helmholtz (Frog)
- Hodkins and Huxley explain spike propagation (1950 Nobel Prize)
- Review HH-50’s discovery
 - Explain how this can be implemented in electronics
 - Applications of spike communication on silicon
 - Densities approach or even surpass those of the brain

The PDFs cited here is: https://auditorymodels.org/index.php?n=Main.Publications
Abstract

The goal of this presentation is multi-fold:

- Summarize some basic facts about brain science
- The first measurement neural spike propagation by Helmholtz (Frog)
- Hodkins and Huxley explain spike propagation (1950 Nobel Prize)
- Review HH-50’s discovery
- Explain how this can be implemented in electronics

- Applications of spike communication on silicon
- Densities approach or even surpass those of the brain
Abstract

The goal of this presentation is multi-fold:

- Summarize some basic facts about brain science
- The first measurement neural spike propagation by Helmholtz (Frog)
- Hodkins and Huxley explain spike propagation (1950 Nobel Prize)
- Review HH-50’s discovery
- Explain how this can be implemented in electronics
- Applications of spike communication on silicon
- Densities approach or even surpass those of the brain
Abstract

The goal of this presentation is multi-fold:

- Summarize some basic facts about brain science
- The first measurement neural spike propagation by Helmholtz (Frog)
- Hodkins and Huxley explain spike propagation (1950 Nobel Prize)
- Review HH-50’s discovery
- Explain how this can be implemented in electronics
- Applications of spike communication on silicon
- Densities approach or even surpass those of the brain
Overview of Human brain

Neurons:

- Properties of Neurons
- The anatomy of the neuron has
 - The brain’s communication network is based on action potentials (spikes)
 - Each neuron is typically part of a large network
 - The brain contains an estimated 10^{11} (100 billion) neurons
 - Personal lives of Golgi vs. Cajal
Overview of Human brain

Neurons:

- Properties of **NEURONS**
 - The **ANATOMY** of the neuron has an input **DENDRITE**, an output **SYNAPSE**, and a cell body.
 - The brain’s communication network is based on **ACTION POTENTIALS** (spikes).
 - Each neuron is typically part of a large **NETWORKS OF NEURONS**.
 - The brain contains an estimated 10^{11} (100 billion) **NEURONS**.
 - Personal lives of **Golgi vs. Cajal**
Overview of Human brain

Neurons:

- Properties of neurons
- The anatomy of the neuron has
 - an input dendrite
 - an output synapse, and a
 - cell body.

- The brain’s communication network is based on action potentials (spikes).
- Each neuron is typically part of a large network of neurons.
- The brain contains an estimated 10^{11} (100 billion) neurons.
- Personal lives of Golgi vs. Cajal
Overview of Human brain

Neurons:

- Properties of neurons
- The anatomy of the neuron has:
 - an input (dendrite)
 - an output (synapse) and a
 - cell body.
- The brain’s communication network is based on action potentials (spikes).
- Each neuron is typically part of a large network of neurons.
- The brain contains an estimated 10^{11} (100 billion) neurons.
- Personal lives of Golgi vs. Cajal.
Overview of Human brain

Neurons:

- Properties of **neurons**
- The **anatomy** of the neuron has
 - an input **dendrite**
 - an output **synapse** and a
 - cell body.
- The brain’s communication network is based on **action potentials** (spikes)
- Each neuron is typically part of a large **network of neurons**
- The brain contains an estimated 10^{11} (100 billion) **neurons**
- Personal lives of **golgi vs. cajal**
Overview of Human brain

Properties of Neurons:

- The anatomy of the neuron has an input dendrite, an output synapse, and a cell body.

The brain’s communication network is based on action potentials (spikes). Each neuron is typically part of a large network of neurons. The brain contains an estimated 10^{11} (100 billion) neurons. Personal lives of Golgi vs. Cajal.
Overview of Human brain

Neurons:
- Properties of neurons
- The anatomy of the neuron has an input dendrite, an output synapse, and a cell body.
- The brain’s communication network is based on action potentials (spikes)
 - Each neuron is typically part of a large network of neurons.
 - The brain contains an estimated 10^{11} (100 billion) neurons.
 - Personal lives of Golgi vs. Cajal.
Overview of Human brain

Neurons:
- Properties of Neurons
- The Anatomy of the neuron has an input Dendrite, an output Synapse, and a cell body.
- The brain’s communication network is based on Action potentials (spikes)
- Each neuron is typically part of a large Networks of Neurons.
- The brain contains an estimated 10^{11} (100 billion) Neurons.
- Personal lives of Golgi vs. Cajal.
Overview of Human brain

Neurons:

- Properties of neurons
- The anatomy of the neuron has an input dendrite, an output synapse, and a cell body.
- The brain’s communication network is based on action potentials (spikes).
- Each neuron is typically part of a large network of neurons.
- The brain contains an estimated \(10^{11}\) (100 billion) neurons.

Personal lives of Golgi vs. Cajal.
Overview of Human brain

Neurons:

- Properties of neurons
- The anatomy of the neuron has an input dendrite, an output synapse, and a cell body.
- The brain’s communication network is based on action potentials (spikes).
- Each neuron is typically part of a large network of neurons.
- The brain contains an estimated 10^{11} (100 billion) neurons.
- Personal lives of Golgi vs. Cajal
Helmholtz first measures spike propagation

Figure: Helmholtz’ system for measuring neural spike speed in 1830

Figure: First oscillogram of a neural spike.
HH-50 voltage-clamp experiment on Squid nerve
HH-50 neural-clamp Results

(a) $V(t)$ vs. t

(b) Ion currents $J_K(V_j, t)$, $J_{ion}(V_j, t)$, $J_{Na}(V_j, t)$

(c) Conductances $G_{Na}(V_j, t)$, $G_K(V_j, t)$
3 Diode model of a neural spike

```
.dtrans 0 5e-3 0 1e-7
PULSE(0 .155e-4 1e-6 1e-6 5e-5 5e-2 1)
```

```
R_src 50
V_in

Di
R_K_src .1
V_k .090

Di
R_Na .1
4.9575nV

Di
R_Na_src .5
V_Na .050

C_myelin 1e-6
R_K 5000
```
Conclusions

Summary of the properties of NEURONs

- Gated channels: Na^+, K^+, Cl^-
- Neurotransmitter signaling: TYPES
Conclusions

- Summary of the properties of NEURONs
- Gated channels: Na^+, K^+, Cl^-
Conclusions

- Summary of the properties of **NEURONs**
- Gated channels: Na^+, K^+, Cl^-
- Neurotransmitter signaling: TYPES
Copies of my documents

https://jontalle.web.engr.illinois.edu/Public