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Chaotic Convergence of Newton’s method
Jont B Allen

Abstract—Problem statement: In 1680 Newton proposed
an algorithm for finding roots of polynomials. His method
has since evolved, but the core concept remains intact. Here
we briefly review this evolution, and consider the question
of convergence.

Methods: Newton’s method may be applied to any
complex analytic function, thus holds for solutions of linear
differential equations. The derivation is based on a Taylor
series expansion in the Laplace frequency s = σ+ ȷω. The
convergence of Newton’s method depends on the important
concept known as the Region of convergence (RoC).

Findings: Under certain conditions, non-linear (NL)
limit-cycles appear, resulting in a reduced rate of conver-
gence to a root. Since Newton’s method is inherently com-
plex analytic (that is, linear and convergent), it is important
to establish the source of this NL divergence. We show that
this NL effect is due to violations of the Nyquist Sampling
theorem, also known as aliasing. Aliasing is a well-known
concept in discrete-time signal processing, due to the
sampling a signal at less that twice its highest frequency.
When a time signal is under-sampled, frequencies above the
sampling frequency are shifted down in frequency. This
is the definition of this nonlinear phenomena, known as
aliasing, which follows from the reduced-sampling. Here
the conditions and method for uniform convergence are
explored.

Conclusions: The source of the nonlinear limit-cycle is
explained in terms of aliasing. We numerically demonstrate
that reducing the step-size always results in a more stable
convergence. The down side is that it always results in a
sub-optimal convergence. It follows that a dynamic step
size would be ideal, by slowly increasing the step-size until
it fails, and then decreasing it until it converges. A balance
of the two methods seems like a potential solution, but this
remains unproven.

I. INTRODUCTION

Newton’s method (NM) is a venerable method for
finding the roots of polynomials. However its utility
has been questioned. First, and most important, does his
method always converge? From numerical experiments,
it does converge for the vast initial guesses. Thus a key
and important question: does the convergence depend on
this initial guess? This question was carefully evaluated
by Willkinson, who studied conditions of sever diver-
gence.1

Assuming it does converge, what are the necessary
conditions for convergence? In the following discussion
we assume a monic polynomial of degree N . The funda-
mental theorem of algebra states that every polynomial
of degree N has N roots, which are typically complex
sn ∈ C.

Because Newton’s algorithm converges within the
RoC for any complex analytic function, it converges to
one of the roots of the polynomial when the nearest root
sr (s ∈ C) inside the RoC out to the nearest pole. This
follows because every complex-analytic point on the
complex plan has a region of convergence (Allen, 2020).
We show that on the boundaries of the RoC regions, the
method becomes hyper-sensitive to the initial condition
(i.e., guess s0).

We propose a complex adaptive step-size η = aeȷϕ ∈
C which we adaptively adjusted, greatly reducing, even
removing the nonlinear effects of aliasing. Introducing
this adaptive step-size (η) is known as the damped
Newton’s method (Galántai, 2000, p. 25). In the limit
as η → 0, the NL aliasing is avoided. This naturally fol-
lows from the complex-analytic properties of Newton’s
method.

Under some special conditions, a minor modification
in the initial guess s0 (n = 0) can result in the n + 1
estimate of the root (sn+1) to cross (or not cross) an RoC
boundary, resulting in NM to divert its initial path (or
not) to a alternate root. When this happens, the change
in the step δ = sn+1− sn is unpredictable, and possibly
even chaotic. It is this condition that is the source of a
convergence instabilities due to aliasing, possibly leading
to a limit cycle. This chaotic behavior is a main topic of
this document.

The N regions of convergence (RoC) are investigated.
From the definition of the RoC, these contiguous natu-

1https://en.wikipedia.org/wiki/Wilkinson’s polynomial
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rally existing regions are defined over all s0 ∈ C < ∞.
That is, every possible s0 comes from one of the N
RoC regions. This naturally happens as η → 0, since
Newton’s method is complex analytic (the step size is
the ratio of two polynomials with different roots). The
magnitude of |η| = a may also be manually reduced to
avoid crossing the boundary between two RoCs. As a is
reduced, the trajectory naturally moves away from the
poles and the smaller it is, the greater the effect. For
this reason adaptively setting |η| is likely the optimum
balance, to minimize the computation while avoiding
NL aliasing, which results from any crossing of RoC
boundaries.

As an alternate to reducing |η|, one can modify its
angle ϕ, redirecting the trajectory away from any RoC
boundary, so to avoid crossings it. Note that we have not
yet implemented this idea.

We show that when η = 1, depending on s0, the
solution can cross an RoC boundary (i.e., diverge). In
such cases the target root will change, resulting in a
chaotic trajectory. Examples are provided. Depending
critically on s0, as long as the RoC region remains the
same, every iteration converges.

Newton’s method (NM) a is a venerable complex-
analytic mathematical algorithm for finding roots of any
monic polynomial PN (s), where N is the degree and
s = σ + ωȷ ∈ C is the Laplace frequency. However
the convergence properties of NM are controversial2

(Stewart, 2012, p. 347). In this report we shall investigate
why such a controversy developed, and discuss how to
assure convergence. In our experience, given some care,
the method always converges to a root.

Every initial guess s0 on the plane of a complex
analytic function is uniquely associated with one of the
N roots of that function, which in turn are associated a
unique region of convergence (RoC). This follows from
the complex analytic property of a function (those that
may be expanded in a complex-analytic Taylor series).
When the trajectory of NM jumps to a different RoC,
corresponding to a different root, it has been interpreted
as a failure to convergence. What then happens in the
examples presented here, the iteration still converges,
but to a different root. NM contains properties that are
similar to dynamic analysis, a mathematical science first
introduced by Poincaré.

This question of the convergence of NM was recently
explored in Allen (2020), where no instability or limit-
cycles were observed. An explanation is due: Newton’s
method was modified by applying an adaptive step-
size η, (Galántai, 2000, p. 25), a widely recognized
contemporary technique in the engineering numerical

2https://en.wikipedia.org/wiki/Newton’s method#Failure of the method to
converge to the root

analysis literature.3

A properly chosen adaptive step-size stabilizes the
convergence, by forcing the convergence to remain in
the target RoC. We show that its easy to detect when the
divergence of the step, which should be monotonically
decreasing. The onset of limit cycles are easily detected,
and easily stabilized by modifying η.

Here we show that random jumps and limit-cycles
can occur when η = 1. When the adaptive step-size η
is sufficiently small, we show that the iteration always
converges. The key here is to adaptively modify the
magnitude of η, thereby constraining the trajectory to
the initial RoC.

In Allen (2020, Fig. 3.2), two examples were provided
using a fixed step-size (η = 0.5) and a random initial
guess. The details of the step-size used by Allen (2020)
was not discussed. One of these figures is presented in
Fig. 1 (LEFT).

While most of the curves seem to converge to a
root, there are some small percentage (e.g., 1%) of
cases where the trajectories take huge jumps to random
locations in the complex plane. We shall show that
these jumps occur when the trajectory approaches any
of the poles of Newton’s method, that is, at the roots
of P ′

N (s) = d
dsPN (s). Near a pole the step can be

arbitrarily large, depending on how close the step comes
to the pole (Boas, 1987). We shall show that the poles are
the source of the limit cycles, which are easily detected.

In Fig. 1 (LEFT), the five RoC regions are color coded,
with each RoC region associated with one of the N roots.
Due to the complex analytic nature of an RoCs, every
point in the RoC is a valid initial condition. However this
is limited by the numerical accuracy of the computer.
Also the convergence depends on the size of the steps,
defined as sn+1 − sn, s ∈ C, n ∈ N, which typically
decreases in magnitude with n. An exception occurs if
sn+1 approach one of the N − 1 poles of NM, causing
the step to abruptly diverge. The properties of this small
subset of initial conditions depends critically on the step
size |η|, which is a key topic of this article.

For most initial guess s0 ∈ C the iteration simply
converges to a root, independent of |η| ≤ 1. In fact for
most starting values the solution converges for |η| = 1.
However for s0 values near the RoC boundary between
two roots, the dependence is highly dependent on |η|,
and can even be chaotic. This happens when s0 defines
a path that heads directly for a pole. In these cases
the trajectory will be hypersensitive to both s0 and
|η|. The RoC regions are well defined non-overlapping
complex-valued analytic regions. When s0 is close to
the RoC boundary, the convergence of NM critically
depends on the magnitude and angle of the complex

3https://en.wikipedia.org/wiki/Adaptive step size
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Fig. 1: Example LEFT: 1a This figure is taken from Allen (2020, p. 78). It is a plot of a thousand trajectories for Newton’s method, with a random initial guess,
taken from the complex plane, between [0,5] along the real axis and ±1.5 along the imaginary axis, for a polynomial having N = 5 complex coefficients. Note the long
straight lines that occasionally appear in the figure. Example RIGHT: 1b shows the poles and zeros of the polynomial having coefficients C = [1, 0, 0, 0,−1,−1]
with random starting points, for 200 iterations of Newton’s Method. In this case the roots (o) and poles (×) are superimposed on top of the trajectories of Newton’s
method. An adaptive step-size of η = 0.1 is used to reduce the NL aliasing. RIGHT: ADD ROOTS IN TITLE; LEFT: ADD o,x.

Figure PN (s) = ℜsr ℑsr
Fig. 1a; LEFT s5 − (13 + 0.5ȷ)s4 + (66.25 + 5ȷ)s3 [4, 3, 3, 2, 1] [1, -2, 2, -1, 1]/2

−(164.25 + 20.125ȷ)s2

+(195 + 38.75ȷ)s − 87.5 − 31.25ȷ

Fig. 1b; RIGHT s5 − s− 1 ↔ [1, 0, 0, 0, -1, -1] [1.17, 0.18, 0.18, -0.76, -0.76] [ 0, 1.08 -1.08, 0.35, -0.35]

TABLE I: Properties of the polynomials for the left and right panels.

step-size η. Even when |η| ≪ 1, the convergence can
become nonlinear (NL), resulting in a chaotic path.
These observations are supported by several detailed
numerical examples.

In Fig. 1 (LEFT), the red region, corresponding to the
root at (2.0 − 0.5ȷ), has a long narrow “RoC stream”
for initial guesses s0 south-east of (4.5− 1ȷ). There is a
second green narrow neighboring related parallel stream,
just north of the red stream, for initial values s0 at (5−
1ȷ), which is in the RoC of root (3 + 1ȷ).

While it may seem obvious given Fig. 1, I am not
aware of any discussion of such distortion of the RoC’s.
The conditions for Fig. 1 are provided in Table I.

A. Convergence of Newton’s method

Given the monic polynomial of degree N ∈ N
PN (s) = sN + cN−1s

N−1 + cN−2s
N−2 + · · ·+ c0, and

its derivative P ′
N (s) ≡ dP (s)/ds of degree N − 1, we

may express Newton’s method as the ratio of monics

sn+1 − sn = − η

N

PN (sn)

P ′
N (s)

(I.1)

Our key idea is to define the ratio of monic polynomi-
als as the step-size SN (sn), thus modifying the syntax

of Newton’s method. Equation A.5 then becomes

sn+1 − sn
η

=
1

N
SN (sn).

Scaling P ′
N (s) as a monic does not alter its roots.

Taking the limit η → 0 results in the complex-analytic
expression for NM

ds

dη
≡ lim

η→0

(
sn+1 − sn

η

)
= − 1

N
SN (sn). (I.2)

The right hand side SN (sn) is the reciprocal of the log-
derivative of Pn(s) expressed as monics, and the left
hand side is the slope of the Laplace frequency (s =
σ+ ȷω) wrt η. Note that Eq. I.2 has no cellular structure
along the RoC boundaries, due to its complex analytic
properties.

B. What is going on?

In the limit as η goes to zero, the RoC boundaries are
well defined analytic regions. But for small η ̸= 0, no
matter how small, the boundaries are cellular, becoming
smooth only in the limit at zero. This cellular structure
is always present even for the smallest nonzero values of
η. Insight into how this happens is explained by example
in Figs. 2, 3.
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In Fig. 3 an infinitesimal change in s0 leads to large
jumps into different RoC. This is best shown by two
starting values at s0 = 1 + βȷ for β just above 0.5 and
again just below 1.0. The effect occurs only when the
trajectory heads directly at a pole. Any starting value
s0 that goes directly at one of the poles can jump to a
random RoC.

We have defined η as the adaptive step-size, because
we can set η to modify the step-size SN .— This result
follows from a mathematical property cited by (Boas,
1987), that the entire plane may be found in the neigh-
borhood of every pole.

Given this mapping, infinitesimal changes in the start-
ing points which head directly at a pole, are reassigned
to a random RoC, due to this analytic mapping.

a) In summary: Determining the RoCs for NM
by analytic methods seems difficult, since the function
SN (sn) has poles, confounding the locations of the RoC
boundaries. Based on Fig. 1, the RoC are complicated.
If sn approaches one of these the poles, the update can
become arbitrarily large, depending on how close sn is
to the pole. If the adaptive step-size is within the RoC,
this will not occur. When the value of sn+1 falls outside
the RoC there can be an arbitrary increase in step-size.
Normally this will not happen, since when sn approaches
a pole sn+1 is naturally “pushed” away from the pole,
as may be seen in Fig. 2 (black circles) .

II. EXAMPLES OF NEWTON’S METHOD

a) Example 1: We start with the monic polynomial
of Example 1b, Fig. 1 (RIGHT), for N = 5,

P5(s) = s5 − s− 1. (II.1)

In this case monic 1
5P

′(s) = s4 − 1/5, has four roots,
shown as bold × symbols. These are the poles. The black
bold circles are the desired zeros of P5(s).

As shown in Example 1b, Fig. 1 (RIGHT), given
the initial guess s0 and step-size η, as n → ∞, sn
approaches a unique root sr. Complex sn+1 is the n+1
the estimate of the root given the n estimate sn, defined
by Eq. I.1.

The example shown in Fig. 2 is a zoomed-in version of
Example 1b, Fig. 1 (RIGHT). When the step-size is η =
0.5 (red squares), sn+1 over-shoots the pole, resulting in
a limit cycle. When the step-size is reduced to η = 0.1
(black circles), the trajectory is stable (avoids the pole)
and converges smoothly to the complex root.

A. Discussion of Example 1b of Fig. 2

To study the convergence and limit-cycles it is helpful
to use numerical methods and look at specific step-sizes
and starting points, and explore for limit cycles.

n=28;   S
0
= 1+0.75 i)

-2 -1 0 1 2

-2

-1

0

1

2

Fig. 2: This is a zoomed-in version of Fig. 1b (RIGHT), presented as a
colorized plot (Allen, 2020, p. 168) of SN (s), for P5(s) = s5 − s − 1
([1, 0, 0, 0,−1,−1]). The magnitude of SN (s) is coded by the brightness,
and the phase (∠(LN (s))) by the color (hue). Dark regions are zeros (roots
of Pn(s)) while the white regions are poles of SN (s) (roots of P ′(s)). Two
trajectories of Newton’s method are shown, as the black circles and red squares.
The initial value for both cases is s0 = 1 + 0.75ȷ. The black circles correspond
to η = 0.1, while the red squares (η = 0.5) form a brief limit cycle. The
vertical white lines are at {-1.0, 0 ,1.0} and the horizontal lines are at {0,
1.0}. The polynomial coefficients are P5(s) = [1, 0, 0, 0,−1,−1], with roots
sr = [1.167, 0.181 ± 1.084ȷ], −0.765 ∓ 0.3525ȷ. The real poles (roots of
P ′

5(sr) = 0) are ±1/50.25, while the imaginary poles are at ±0.6687ȷ.

Figure 2 shows two paths with the same initial condi-
tion s0 = 1+ 0.75ȷ with different step-sizes. The utility
of the reduced step-size is clear from the Figure.

In practice, once near a pole, it takes only a few addi-
tional steps to limit-cycle, recover and finally converge.
Once near a zero, fewer than 10 steps typically give
double-precision floating-point machine accuracy.

As discussed in the figure caption, if sn is close to a
root sr of P ′

N (i.e., a pole), the recursion dramatically
fails, because the step becomes arbitrarily large, forcing
the next trial to a random location in the s plane, denote
s̃r. In such cases the solution typically converges to a
different root (RoC). It is not difficult to detect these
large random steps by monitoring |sn+1 − sn|, which
must monotonically decrease.

If we start the iteration with the larger step size, the
path develops into a NL limit-cycle near the pole at
−0.669. It is a combination of the large steps and the
proximity to the real pole that results in the nonlinear
limit-cycle. On the 10 step it comes out of the limit
cycle, and after 10 more steps, has converged to the root.
When the step-size η is reduced from 0.5 to 0.1, as the
path approaches the pole, it moves away, avoid the limit-
cycle. With steps sizes of 0.2, 0.3 it becomes captured
by the pole. The black circles show a smooth analytic
trajectory, while the red-squares are chaotic.

With the step-size of 0.9 (not shown), the trajectory is
similar to that of 0.5, but after 5 steps it is in well within
a different RoC, corresponding to the zero at −.8− .3ȷ.
After 20 steps, the error is less than 1%.

In summary, given a larger step size it still converges,
but much more slowly, since the NL becomes greater.
Thus the convergence time may be a crude metric of
the NL. The smoothness of the trajectory may be more
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appropriate. This NL result is due to the reduced sample
step size, also known as aliasing.

a) Example 2: This example is for P3(x) = x3 −
x + 1 (C = [1, 0,−1, 1]), an example where Newton’s
method appears to fail. This example has two imaginary
roots, 0.66236 ± 0.56228ȷ, and a real root -1.32472. If
the initial guess is taken to be s0 = 1, the recursion
proceeds using real arithmetic (Matlab and Octave). Due
to the restriction that the computation is real, the solution
is forced to the real line, where it limit cycles between
1.155 and 0.694. The iteration cannot converge if sr ∈ R
and s0 ∈ C (Allen, 2020).

If x0 = ȷ, the solution converges in 3 steps to the
upper complex root x3(3) = 0.639379 + 0.509792ȷ If
one starts the iteration with an imaginary component at
1+ ȷ10−6, the iteration converges to the imaginary root
in 13 steps.4

b) In summary: Roots sr ∈ C may be found by a
recursion that denotes a sequence sn → sr ∈ C, n ∈
N, such that PN (sn) → 0 as n → ∞. As shown in
Fig. 2, solving for sn+1 using Eq. A.5 always gives one
of the roots, due to the analytic behavior of the complex
logarithmic derivative P ′

N/PN = d ln(Pn(s)).
When there are no limit cycles, each step (sn+1) is

always closer to the root, finally converging to the root
for increased n. As it approaches the root, the linearity
assumption becomes more accurate, resulting in a rapid
convergence.

Even for cases where fractional derivatives are in-
volved Newton’s method will converge since the log-
derivative linearizes the equation (Allen, 2020, p. 197,
#5).

B. Newton’s method applied to functions other than
polynomials

a) Example 2: Example of Plank’s formula for
Black Body radiation.

Planks famous BB radiation formula is (Kuhn, 1978;
Allen, 2020)

S(ν) =
ν3

ehν/kT − 1
. (II.2)

In this historically important example, because the func-
tion is real (it is not complex analytic), the spectrum
only has one pole, at ν = 0. This formula is known
to match the experimental data of the smoothed (non-
analytic) black-body power spectrum (Haar, 2016).

If we replace the real frequency ν with the negative
Laplace frequency −s = −σ − ωȷ, Eq. II.2 becomes

S(−s) =
−s3

e−ℏs/kT − 1
, (II.3)

4Octave program: ./DEMO-MATHINSIGHT/NEWTONEXP1.M

which is complex analytic, thus has a causal inverse
Laplace transform. To use Newton’s method we must
compute NM update L(sn) where sn is the present
estimate of the root, defined as the the reciprocal of
the logarithmic derivative (see derivation in Apdx. A).
Taking the log followed by its derivative wrt s ∈ C,
gives

1

L(s)
≡ d

ds
lnS(−s)

=
d

ds
[−3 ln s+ ln(e−ℏs/kT − 1)],

= −3

s
− ℏ

kT
· e−ℏs/kT

e−ℏs/kT − 1
.

Thus there is a first order pole at s = 0 and poles
at hνn/kT = 2πn for n ∈ N. The discrete frequencies
account for the eigen-modes in the black body radiation,
as discussed by Kuhn, Plank and Einstein (Haar, 2016).
Equation II.3 is causal, since it has a causal inverse LT
(Allen, 2020, p. 321)

−3u(t)− ℏ
kT

∞∑
n=1

δ(t− n
ℏ
kT

) (II.4)

The application of NM to Plank’s famous formula
can be used to make it complex analytic, by replace ν
with the Laplace frequency s = 2πνnȷ and h by ℏ. It
is well established that complex analytic functions of
the Laplace frequency s are causal (zero for negative
time). In the case of Eq. II.3, S(−s) is causal, due to
the Laplace transform relation of the exponent

δ(t− τo) ↔ e−sτo .

Here the time delay τo = ℏ/kT = (6.63/2πk) · 10−11

[s], 6,280 [GHz], λ ≈ π
2 10

−11 [m], or π
20 [Å], and T °

[K] is the temperature.
Newton’s method uses the reciprocal of L(s) to find

the sr (S(sr) = ∞), given by

N(sr) = 1− e−ℏsr/kT = 0. (II.5)

There are an infinite number of such roots, since the
roots are ℏsr/kT ≈ 2πȷ. These poles are the missing
discrete spectral lines (atomic resonances), required by
quantum mechanics.

Applying Newton’s method gives

xn+1 = xn − exn − 2

exn
= sn − (1− 2e−sn).

Since ex is entire, there are no convergence issues.5

Since x ∈ C, the imaginary part quickly decays to zero,
and depending on the starting condition, approaches one
of the infinite number of solutions, within a few steps.

5https://www.quantamagazine.org/how-mathematicians-make-sense-of-chaos-20220302/
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 1+0.25j

  <---   1+0.102 j

 1+ 0.4j

  <--- 1.2+6.95e-11 j

 1+0.95j

  <---0.016+0.817 j

 1+0.99j
  <---0.18+ 1.08 j  1+ 1.1j

  <---0.19+0.953 j

 1+0.69j

  <----0.76+0.352 j

 1+0.92j

  <----0.48+0.289 j

 1+0.93j

  <---0.081+0.361 j

 1+0.65j

  <----0.76+-0.352 j

 1+0.63j

  <----0.23+-0.492 j

 1+0.63j

  <---0.47+-0.791 j

 1+0.63j

  <---0.44+-0.67 j

 1+0.63j

  <---0.25+-0.983 j

 1+0.63j

  <---0.66+-1.06 j

 1+0.63j

  <--- 1.1+-1.06 j

 1+0.63j

  <--- 1.3+-0.968 j

 1+0.62j

  <--- 1.5+-0.806 j

Fig. 3: This numerical experiment for polynomial coefficients
[1, 0, 0, 0,−1,−1] (the same as shown on the right panel of Fig. 1)
having a step-size of 0.1), reveals the inner workings of Newton’s
method. We number the roots counter-clockwise from 1-5, with s1 =
1.2, s2 = 0.18123 + 1.08395ȷ and s5 = s∗2 . Seventeen different
starting values have been carefully chosen, to determine the RoCs.
All the starting values are of the form s0 = 1 + ȷβ, where each β
and the converged root are indexed in Table II. The root index goes
from 1 to 5, counting counter clockwise from the eastern-most root.
The scattering angle is determined by the residue of the scattering
pole. Each curve is labeled twice, once at the starting point and again
at another point on the trajectory. The carefully evaluated case is for
starting points between 1 + 0.62ȷ and 1 + 0.5999ȷ, which converge
to dramatically different RoCs, due to squarely hitting the positive real
pole at s0 = 1 + ȷ 0.6± 0.001.

TABLE II: Table of starting values s0 = 1 + βȷ use in Fig. 3, along
with the RoC targeted root index, defined as #1 for the real root at 0.21/4. Root
#1 converges from s0 = 0 + 1.25ȷ, Root #2 is defined by counting counter-
clockwise from #1, at 0.18 + 1.08ȷ, starting fro s0 = 1 + 0.69ȷ. Root #3 also
converges from three values of β. Root #5 is the most carefully explored, starting
from 1+βȷ. It is shown to converge to roots 1, 3, 4, 5, but not 2, which is reachable
from very selective values of β. For other choices of β0, all 5 roots can be reached,
as shown in Fig. 3 for η = 1. (For numeric values see ./M/ZvizDemo.m)

β root
0.25, 0.4 #1
0.95, 0.99, 1.1 #2
0.69, 0.92, 0.93 #3
0.65, 0.632 #4
0.63, 0.631 #5

C. Example 3:

The impact of s0 is shown in greater detail in Example
3, as shown in Fig. 3. When the value to s0 is finely
tuned, such that the trajectory intercepts a pole, a host
of NL limit-cycles are exposed.

The Gauss-Lucas theorem6 comes into play at this
point (Allen, 2020, p. 81). This theorem says that the
convex hull of the roots of a polynomial bound the
roots of its derivative. This theorem is relevant to the

6https://en.wikipedia.org/wiki/Gauss-Lucas theorem

convergence of Newton’s method. Galántai (2000) has
75 relevant citations, many citing the same problems
addressed here. The key to avoiding the troublesome
limit-cycles is to detect them, and then reduce the step-
size.

The following quote is from Galántai (2000, p. 39):
The possibility that a small change in s0 can
cause a drastic change in convergence indicates
the nasty nature of the convergence problem.
The set of divergence points of the Newton
method is best described for real polynomials.

As demonstrated in Fig. 3, we agree with Galántai’s first
point. His second seems vague: Is a “real polynomial”
one with real coefficients, real roots, or both?

For example in Fig. 1, the red “stream” corresponding
to the root near (2−0.5ȷ) has an interesting long narrow
“RoC-stream,” converging from the lower-right quadrant,
first seen at (4.5 − 1ȷ). There is a second green RoC-
stream just north of the red stream, first seen near
(4.5 − 0.9ȷ). Thus a small change in the starting value
s0 robustly converges to a totally different root.

I am not aware of any discussion in the literature of
this distortion of the RoC regions, bound to Newton’s
method. Presently I know of no way to predict the
conformal remapping of the RoC regions for NM, other
than tracking them, as done here. It seems likely that
methods for doing must exist using modern analysis
techniques (see Appendix III-A).

In the example of Fig. 3,

sn+1 = sn − 0.1

5
· s

5
n − sn − 1

s4n − 1/5
,

for 17 carefully chosen initial guess s0 ∈ C. For
readability, each trajectory is color-coded either red or
blue.

a) Nonlinear limit cycles: It is well documented
that limit cycles are nonlinear. Newton’s method on the
other hand is a linear recursion equation, with poles and
zeros in the complex plane. The obvious research ques-
tion is “Why does the complex-analytic linear equation
become nonlinear?” We show how the these NL limit-
cycles may be easily avoided by removing (linearizing)
the NL recursion once it is detected.

The suggested procedure will result in a net con-
vergence speed-up, because the NL limit-cycle adds
meandering NL steps to the recursion. If you experience
a slowdown, try changing the step-size angle. This may
be a panacea, since this is a ’local’ modification that
deals directly with the main problem of being on a
RoC boundary. If you find an angle that reduces the
chaos, then your moving in the right direction, away
from the RoC boundary. This method seems obvious,
yet unexplored. If your inside a “cell,” it will fail and
you need to reduce the magnitude as well.
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Fig. 4: Four colorized plots for PN = [1, 0, 0, 0,−1,−1] showing the N = 5 regions of convergence and two trajectories, for s0 = 1.8 − 1.5ȷ and
−1.95− 0.1ȷ. The four step-sizes are η = {1.0, 0.5, 0.2, 0.1} (note that the imaginary axis is reversed). The fractal regions reside on the RoC boundaries, the sizes
of which depend on the step-size, with the step-size of η = 1.0 (Upper-Left) resulting in large fractal regions. Reducing the step-size to η = 1/2 dramatically reduces
the fractal regions. For η = 0.1 they almost disappear, except at 0.5+0ȷ. In the dark RoC (purple) corresponding to root −0.76−0.352ȷ, two trajectories are shown.
For the step-size of 1, a limit cycle is seen, for both trajectories. For the other step-sizes [0.5, 0.2, 0.1], there are no limit cycles. As the trajectories approach the negative
real pole, labeled as the red ×, they head for the root at −0.76− .352ȷ. In summary: 1) limit cycles are wasted steps, easily fixed by reducing the step-size. 2) Given a
smaller step-size, the fractal regions shrink, but never totally disappear. 3) Detecting a limit cycle is easy because the path reverses (oscillates). An obvious method for
avoiding limit cycles is to detect that the boundary has been crossed, corresponding to a different root, and restart with a reduced step-size, at step sn or sn−1.

b) Ratios of monics as NM: It can be notationally
useful to define the adaptive step-size SN (s) as the ratio
of monic polynomials

sNn + cN−1s
N−1
n + · · ·+ c0

sN−1
n + N−1

N cN−1s
N−2
n . . .+ 1

N c1
=

1

N

PN (sn)

P ′
N (sn)

.

(II.6)
Using this trick we can absorb the factor of N into the
definition of η ≡ 1

N eϕȷ. Increasing N from 1 to 0.1
dramatically improves the convergence, while the poles
(and zeros) of the step-size are unmodified.

Figure 4 quantifies the effect of reducing the step by
up to 1/N (|η| = [1, 1/2, 1/5, 1/10]). For the largest
step size, the trajectory of red squares in Fig. 2 limit
cycle. This natural reduction in step-size by N , due

to expressing the step-size as the ratio of monics, is
dramatic. Given sn, everything on the right is known;
thus when sn is within the RoC, sn+1 will converge
to a unique root of PN (s) as n → ∞. For sufficiently
small step-size, the roots of Eq. II.6 are the solution to
a linear difference equation, the simplest example being
(Galántai, 2000)

sn+1 = sn − η

N
SN (sn). (II.7)

Introducing the adaptive step-size gain |η| < 1 ∈ C,
linearizes the iteration when sn is in the neighborhood
of a pole.

Near any pole, the step-size |SN (sn)| can become
arbitrary large, introducing aliasing (non-linearity) into
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the iteration.

III. SUMMARY AND DISCUSSION

A. The role of the step-size

In the derivation of NM we modified Eq. A.5 with the
adaptive step-size η < 1, to obtain Eq. I.1. The effect
of the reduced step-size is to force the trajectory to be
more sensitive to the influence of the poles, rather than
stepping over them. The modification of the step size SN

by η is an important modification to Newton’s method.
The smaller step-size can eliminate the nonlinear limit-
cycles, as seen in the example of Fig. 4.

When the initial value for the iteration s0 is close
to the cross-over of two RoCs, sn → sn+1 can cross
over an RoC boundary, changing the limit point (root
it converges to). A limit cycle can happen when sn
comes close to one of the poles of SN (sn). At a pole,
the value of SN can become arbitrary large, causing
the unmodified (η = 1) update SN = sn+1 − sn to
fail to satisfy the required RoC convergence condition
(Eq. A.6).

One strategy for detecting the pole is to look at
the magnitude of the step (|η|). If |ŝn+1 − sn| > 1,
the RoC condition has failed. The step must then be
reverted back to sn, and the step-size reduced, and sn+1

recomputed. This then repeated until the RoC condition
(|sn| > |sn+1|), thus avoiding a possible limit cycle.

Based on our numerical results, the addition of the
convergence factor η seems unnecessary when the the
initial value is well within the RoC, as required by
Eq. A.6. The main question is when (and why) the limit-
cycles are created with Newton’s method. This question
is at least partial explored in the example of Fig. 2. As
long as the RoC condition is maintained, each step will
progress closer to a root, and in the limit, as n → ∞,

PN (sn)

P ′
N (sn)

→ 0, (III.1)

since sn → sr as n → ∞.
We don’t understand many observations in science

(math and physics). But with some basic analysis, they
are eventually explained. Einstein’s 1905 analysis is
the best known example. It is the reductionist method
in science, and explains the success of the scientific
method. This might be viewed as a form of evolution:
success begets more success, while failure eventually
dies off, perhaps slowly.

The process of systematically exploring these seem-
ingly tiny discrepancy, almost always leads to new
knowledge. Seeking out these idiosyncratic inconsisten-
cies and trying to explain them is at the heart of the
scientific method. When a problem is longstanding and
considered fundamental, its resolution can even lead to
a paradigm shift. Not surprisingly such deep insights are

rarely welcomed by the scientific community, rather they
are viewed with great skepticism. This can be good when
if doesn’t go on for 50 years.

The problem of finding roots using Newton’s method
is an excellent example. It is a case that can be explained
only after careful thought and iterative analysis. I feel
we are either close to that understanding, or it has been
explained clearly enough that the debate can be stopped,
and final conclusions may be reached. However, realize
that there is no “final.”

Limit cycles do exist in Newton’s method, but in my
view, they are due to under-sampling the complex plane.
This is an example of aliasing, in the Nyquist sense,
(Allen, 2020, p. 153,262). An under-sampled process
becomes nonlinear when the “high frequencies” alias
into the “base-band” frequencies. This nonlinear effect
is easily removed by increasing the sampling rate above
the Nyquist sampling frequency, defined as twice the
highest frequency in the signal. While that concept is
not clear in the context of Newton’s method, it can
explain limit-cycles, and slightly (2x-3x) increasing the
computation, by decreasing the step-size η, the aliasing
may be brought under control, and the problem becomes
linear and well behaved. The onset of aliasing is easily
detected. This leads to a well know method in signal
processing called the adaptive step-size, which has been
successfully applied in many engineering problems. It
is, I believe, well understood and characterized in terms
of aliasing (Allen and Sondhi, 1979; Rinzel and Miller,
1980, Sec. V, p. 126).

a) The linear prediction algorithm: An interesting
alternative to stabilize NM is to use the linear prediction
method, a causal recursion method invented in the 1940’s
(Vaidyanathan, 2007). It seems likely to me that the
use of Linear Prediction (LP) could greatly improve the
convergence properties of NM. The down side is that the
LP method assume the step-size only has poles, which
in our case is clearly not true. The zeros of PN (s) bias
the estimate in a negative manner. However when the
trajectory steps near a pole, the LP algorithm should fit
the data extremely well, thus removing the influence of
the pole. This approach could be especially effective if
there were several poles in proximity.

APPENDIX

A. Derivation of Newton’s method

Consider the monic polynomial PN (s), with
s, sr, cn ∈ C and n, k,N ∈ N:

PN (s) = (s− sr)
N +

N∑
k=1

cN−k(s− sr)
N−k, (A.1)
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where Taylor’s formula is used to determine the coeffi-
cient vector C = [cN , cN−1, · · · c0]TN×1

ck =
1

k!

dk

dsk
PN (s)

∣∣∣∣
s=sr

. (A.2)

Here s = σ+ ȷω is called the Laplace frequency, as de-
fined by the Laplace transform (Allen, 2020). Depending
on physical considerations, the coefficients ck may be
real or complex.

Assuming our initial guess for the root is s0 is within
the RoC (close to root sr, we replace sr with s1 and s
with s0, since |(s1− s0)

k| ≪ |(sr − s0)| for k ≥ 2 ∈ N.
Here we have assumed that within the RoC, the higher
order terms may be ignored.

Iterating we increase n by 1. Thus s0 → s1 and s1 →
s2, so the truncated Taylor series becomes

PN (s2) ≈ (s2 − s1)
d

ds
PN (s)

∣∣∣∣
s2

+ PN (s2). (A.3)

Generalizing this for n ≫ 1 we find replace find
|(sn+1 − sn)

k| ≪ |(s1 − s0)| for k ≥ n ∈ N, (i.e.,
ϵn = s1 − s0 is within its RoC), thus we may truncate
Eq. A.1 to its linear term n = 1, resulting in the
approximation Thus for large n → ∞, sn+1 → sr,
resulting in

�����:0
PN (sn+1) = (sn+1 − sn)

N +

N∑
k=1

c′k(sn+1)
N−k (A.4)

Here c′n+1 is shorthand for dPN (sn+1)/ds.
Solving for sn+1 gives Newton’s method:

sn+1 = sn − PN (sn)

P ′
N (sn)

. (A.5)

Importantly, if sn approaches a root of P ′(s), the
denominator can become arbitrarily large, resulting in
a restart of the entire procedure.

On the other hand, if any guess of the root sn is close
to a root of (i.e., PN (sr ± ϵ) ≈ 0) then for n ≥ 2 ∈ N,
ϵ = sn−sr is within the RoC. Namely for all k ∈ N+1

|(sn − sr)
k| ≪ |(sn − sr)|. (A.6)

This complex analytic linearization step is the key to
Newton’s method. It will only be true if the difference
equation remains linear, which requires Eq. A.6.

In summary: Newton’s method is a linear approx-
imation that critically depends on the RoC condition
(Eq. A.6).
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