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We demonstrate the ability of a simple algorithm based on the venerable method of images

(MOIs), to accurately model the detailed frequency response of a multidimensional, rectangular,

lossy resonant cavity. The convergence properties of the model’s infinite series solution are shown

to be determined by the cavity’s quality factor Q. A 1D example demonstrates that the MOI series

converges to the exact solution. Next, a comparison to precisely measure 2D cavity data confirms

that a straightforward extension of the 1D algorithm to multiple dimensions provides accurate

results. The algorithm is short, easily understandable by undergraduate students and relatively

undemanding to code. An example using
VR

MATHEMATICA is provided. # 2023 Published under an exclusive
license by American Association of Physics Teachers.
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I. INTRODUCTION

Midway through their sophomore year, our physics majors
are introduced to the rigors and the joys of experimental sci-
ence by a required and quite difficult lab course. Having just
completed a one-term lecture course introducing the analyses
of oscillations, waves, and normal modes (albeit mostly in
one dimension), they now learn how to collect and analyze
frequency and energy spectra generated by a variety of phe-
nomena. These experiences during lab provide students with
a useful working knowledge of several subjects later covered
in detail by upper division lecture courses.

One of the lab course’s more popular experiments
involves the determination of the dispersion relation of
sound waves in air by observing and analyzing the normal
mode frequencies of a small acoustic cavity. Figure 1 is a
photo of the apparatus, and Fig. 2 shows a high-resolution
measurement of the cavity’s frequency response. The
expected normal mode wave numbers are calculated from
the rectangular cavity’s measured dimensions, and these are
matched with the corresponding peaks in its measured fre-
quency response. The rectangular cavity has thick acrylic
side walls and a thinner top surface. Its bottom surface is
provided by the sturdy aluminum base plate upon which it
rests. The source sound transducer (speaker) is mounted in a
side wall near the cavity’s bottom right corner in the photo.
The response transducer (microphone) is mounted beneath
the center of the base plate. (The small opening for this trans-
ducer is visible in the base plate just to the left of center of
the cavity’s upper side wall.) Moving the cavity around on
the base plate changes the relative position of the response
transducer within it.

The data plotted in Fig. 2 consist of (response transducer)/
(source transducer) signal voltage amplitude ratios (gains)
measured at 2070 frequencies with the transducers posi-
tioned near diagonally opposite corners of the cavity. As
expected, the frequency response peaks correspond to the
cavity’s normal modes. If air is nondispersive, then these fre-
quencies should be proportional to the cavity’s normal mode

wave numbers. A proportional, least-squares fit of the
observed peaks’ frequencies to their corresponding normal
mode wave numbers (calculated from the measured cavity
dimensions, assuming that the cavity is rectangular) was per-
formed by optimizing its slope, i.e., the average phase veloc-
ity of sound in air over the measured frequency range. The
fit result was quite consistent with the hypothesis that air is
nondispersive over this frequency range. The dashed vertical
lines in Fig. 2 show predicted cavity resonant frequencies
calculated from the mode wave numbers and the best fit
slope.1

The accuracy and large dynamic range of the experiment’s
data acquisition system enable it to provide a wealth of
details in the measured gain and phase responses of the cav-
ity. It should come as no surprise that the cavity’s frequency
response peaks at nearly every normal mode, because, given

Fig. 1. Configuration of the experimental apparatus. The interior of the rect-

angular acrylic box is approximately 152 mm� 114 mm� 32 mm. The

metal plate serves as the cavity’s bottom boundary, and the small hole at the

plate’s center marks the position of the sound pressure response transducer

(a microphone). Its amplified signal is displayed on the computer monitor as

the experimenter moves the box around on the base plate, mapping out the

mode’s nodal line structure. The selected normal mode corresponds the cav-

ity’s third resonance, near 1:9 kHz.
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its construction, the quality factor Q of the cavity’s resonan-
ces should be on the order of 100. What might be surprising,
on the other hand, is the rich structure evident in the response
at intermediate frequencies. Interestingly, between several
pairs of resonant frequencies, the response drops sharply by
as much as two orders of magnitude, a seemingly resonant-
like behavior for which the transducer positions correspond
to nodes rather than antinodes. Between other peaks, how-
ever, the response gently falls and rises. This variation in
behavior piques the interest of many of our more sophisti-
cated students as well as our TAs, and we devote the remain-
der of this text to model the driven response of the cavity as
a function of frequency.

II. STEADY-STATE RESPONSE OF A 1D CAVITY

As a warm-up exercise, first consider a familiar, one-
dimensional example: A resonant cavity consisting of a sec-
tion of electromagnetic transmission line of length L with
reflective terminations at positions x¼ 0 and x¼ L. Assume
that the line is linear, homogeneous, and nondispersive, but
it has a finite quality factor Q. The cavity is driven by a
constant-amplitude, sinusoidal source coincident with the
termination at x¼ 0.

A. Exact solution

This 1D system is simple enough to solve exactly. Once
the system reaches steady state, the transmission line sup-
ports two traveling waves moving in opposite directions with
a common wave number k. Let VþðxÞ be the complex-valued
voltage amplitude phasor of the wave traveling toward larger
x values, and V�ðxÞ that of the wave traveling in the opposite
direction.2 With both waves present, the total voltage phasor
V(x) at some position x on the line will then equal
VþðxÞ þ V�ðxÞ. Assume the line terminations to be ideal,
free boundaries for a wave’s voltage (i.e., the boundaries
have infinite impedances), so that at a termination, the
reflected wave’s phasor will equal that of the incident wave.

At the right-hand boundary x¼L, it must then be the case
that V�ðLÞ ¼ VþðLÞ. At the x¼ 0 termination, the outgoing
wave Vþð0Þ must also include the driving source power.
Denote the complex-valued source amplitude phasor as VS,
so that Vþð0Þ ¼ V�ð0Þ þ VS. This model provides a wave
representation of the state of the system,3 presenting us with
an inhomogeneous boundary value problem because of the
presence of VS.

The waves Vþ and V� propagate on the transmission line
in their respective directions. If the line were not lossy,
then the complex phasors representing these traveling
waves would have constant magnitudes as their phases
change with position: Vþðxþ dÞ ¼ VþðxÞ exp ðikdÞ and
V�ðxþ dÞ ¼ V�ðxÞ exp ð�ikdÞ. Loss introduces a decrease
in amplitude along the direction of propagation that will gen-
erally be frequency dependent and, thus, also dependent on
the wave number k. We specify this loss using the quality fac-
tor Q(k), where the wave’s squared amplitude (proportional to
its intensity) decreases as it propagates, e-folding with the
attenuation length kðkÞ ¼ QðkÞ=k. Including this attenuation
with distance, the two waves’ propagation operators, or
propagators, Pþ and P�, become

Vþðxþ dÞ ¼ PþðdÞVþðxÞ and V�ðxþ dÞ
¼ P�ðdÞV�ðxÞ; (1)

where

PþðdÞ ¼ exp ikd 1þ i

2Q

� �� �
and

P�ðdÞ ¼ exp �ikd 1þ i

2Q

� �� �
: (2)

We use the propagators Pþ and P� to tidy up our deriva-
tions. Note a couple of their properties: P�ðdÞ ¼ Pþð�dÞ
¼ 1=PþðdÞ and Pþðd1 þ d2Þ ¼ Pþðd1Þ Pþðd2Þ. The loss
factor is parameterized by Q(k) rather than kðkÞ. For many
systems, it turns out that Q(k) is a more slowly varying func-
tion of k than is kðkÞ, except near a resonant absorption fea-
ture. The forms in Eq. (1) for VþðxÞ and V�ðxÞ provide the
traveling wave components we use to derive the solution to
the boundary value problem. This solution will yield V(x),
the complex-valued voltage phasor field on the transmission
line in terms of the source excitation’s amplitude VS and its
frequency (actually wave number k)

VðxÞ ¼ VþðxÞ þ V�ðxÞ ¼ PþðxÞVþð0Þ þ P�ðxÞV�ð0Þ:
(3)

Express V�ð0Þ in terms of Vþð0Þ using the boundary condi-
tion at x¼ L

V�ð0Þ ¼ P�ð�LÞV�ðLÞ ¼ P�ð�LÞVþðLÞ
¼ P�ð�LÞ PþðLÞVþð0Þ ¼ Pþð2LÞVþð0Þ;

so that P�ðxÞV�ð0Þ ¼ P�ðxÞ Pþð2LÞVþð0Þ
¼ Pþð2L� xÞVþð0Þ: (4)

Next, express Vþð0Þ in terms of VS,

VS ¼ Vþð0Þ � V�ð0Þ ¼ Vþð0Þ 1� Pþð2LÞ½ �;

[ Vþð0Þ ¼ VS
1

1� Pþð2LÞ

� �
: (5)

Fig. 2. Measured frequency response of the cavity. The curve shows the

actual data (no smoothing applied). The logarithmic vertical scale has grid

lines separated by factors of 10. The measured response is generally higher

for frequencies of 1.4–2:1 kHz, because the conversion efficiencies of the

two transducers are highest in that range. The dashed vertical lines show the

expected set of resonant frequencies determined by the slope of a linear fit

of the observed response peaks vs the cavity’s expected normal mode wave

numbers calculated from its measured dimensions.
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Finally, put these expressions together to derive the 1D cav-
ity’s complex-valued response function, Hðk; xÞ � VðxÞ=VS,

VðxÞ ¼ VþðxÞ þ V�ðxÞ ¼ PþðxÞ þ Pþð2L� xÞ½ �Vþð0Þ

¼ PþðxÞ þ Pþð2L� xÞ
1� Pþð2LÞ

� �
VS; and

Hðk; xÞ ¼ PþðxÞ þ Pþð2L� xÞ
1� Pþð2LÞ

¼ Pþðx� LÞ þ PþðL� xÞ
Pþð�LÞ � PþðLÞ

: (6)

The final expression for H in Eq. (6) was obtained by mul-
tiplying the previous one by Pþð�LÞ=Pþð�LÞ and distribut-
ing through its numerator and denominator. The dependence
of H on x and L is explicit in these expressions; its depen-
dence on k and Q is through the propagator definitions in Eq.
(2). The final form for H in Eq. (6) is straightforward to con-
vert to an equivalent trigonometric expression

Hðk; xÞ ¼ i
cos kðL� xÞð1þ i=2QÞ½ �

sin kLð1þ i=2QÞ½ � : (7)

For reasonably high Q, the denominator will be small for kn

¼ np=L and positive integer n. At x¼L, jHðnp=L; LÞj ¼
1=sinhðnp=2QÞ � ð2=pÞðQ=nÞ for large Q/n. Clearly, the kn

denote the cavity’s resonant wave numbers, and the Hðkn; xÞ
approach ideal normal modes as Q!1.

B. Method of images model

Now we derive a method of images (MOIs) approach that
leads to a result equivalent to Eq. (6) for the 1D cavity’s
response function. Consider again the first equality in that
expression

Hðk; xÞ ¼ PþðxÞ þ Pþð2L� xÞ
1� Pþð2LÞ :

Now expand the division by ð1� Pþð2LÞÞ, creating an
equivalent series expression. Recalling that ½Pþð2LÞ�m
¼ Pþð2mLÞ, the expression becomes

Hðk; xÞ ¼ PþðxÞ þ Pþð2L� xÞ½ �
� 1þ Pþð2LÞ þ Pþð4LÞ þ Pþð6LÞ þ � � �½ �;

(8)

Hðk; xÞ ¼ PþðxÞ hdirect path contribution from the source i
þPþðxÞ Pþð2LÞ þ Pþð4LÞ þ Pþð6LÞ þ � � �½ �
hleft imagesi
þPþð�xÞ Pþð2LÞ þ Pþð4LÞ þ Pþð6LÞ þ � � �½ �
hright imagesi: (9)

Equation (8) is an infinite series representation of the exact
solution, Eq. (6). It is also the series that would result by add-
ing the signals from an infinite array of identical sources
arranged along an infinite transmission line, the sources
spaced at intervals of 2L, and the sum of their individual
voltage phasor contributions measured at a point located a
distance x � L from the nearest source. This infinite series
for H converges absolutely for finite Q and k> 0. The ratio

of the magnitudes of successive series terms is exp ð�kL=QÞ,
which will approach 1 if kL	 Q. In this case, the required
number of series terms for an accurate model calculation
may be large, as illustrated in Fig. 3.

Keeping the series solution in mind, reconsider the origi-
nal 1D cavity configuration: the terminations at 0 and L, the
source coincident with the termination at 0, and the measure-
ment point at position x, 0 � x � L. Now think of the mea-
sured signal VðxÞ ¼ VþðxÞ þ V�ðxÞ constructed as follows:
the signal from the source reaches x with relative amplitude
PþðxÞ. This signal continues onward and reflects from the
termination at L to return through x with relative amplitude
P�ðx� LÞ PþðLÞ ¼ Pþð�xÞ Pþð2LÞ, adding this value to
the measurement. The signal then reflects again at 0 (now
with relative amplitude Pþð2LÞ), subsequently passing yet
again by x with PþðxÞ Pþð2LÞ, and so on. The total signal
measured at x is the sum of these contributions, leading again
to the series solution in Eq. (8). Thus, the members of the
infinite array of sources described in the preceding paragraph
represent the source along with an infinite sequence of its
mirror images, reflected by the terminations. Equation (9)
rearranges the series representation of H(k, x) as a sum of
signals from the real source and this sequence of reflections.
This idea will be the basis of the method of images algorithm
presented in Sec. III.

III. MODELING THE MULTIDIMENSIONAL

CAVITY

The method used in Sec. II to calculate an exact solution
to the steady-state response of a 1D resonator is very difficult
to extend to the multidimensional geometry of the acoustic
cavity shown in Fig. 1. Useful alternative approaches typi-
cally generate an infinite series, which is then truncated to
provide adequate accuracy in an approximate method. One
approach, especially when dealing with a high-Q system,
might be to perform some form of normal mode expansion
of the inhomogeneous part of the boundary value problem,
generating a set of coupling coefficients to the homogeneous
system’s eigenfunctions. Typical examples might include the
coupling of free-space signals into an antenna or optical

Fig. 3. MOI model of the 1D cavity. The top graphic shows the configura-

tion of the source VS (black circle), the sense position at the opposite termi-

nation Vðx ¼ LÞ (white circle), and image sources (gray circles) spaced at

intervals of 2L. The bottom graphic shows the model frequency response

results for Q¼ 50. The black curve is for 100 terms of the Eq. (8) series

(equivalent to 200 image sources) and the gray curve is for 25 terms (50

image sources). The plot shows the two lowest resonances, where conver-

gence is slowest. The 100-term calculation has a maximum relative error of

0.5% (at kL=p ¼ 0:745).
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system and estimating the changes to resonator’s normal
modes induced by a small perturbing effect on its state or
geometry. Another common practice, especially in commer-
cial software used to model very complicated structures, is to
discretize the system boundaries and volume and employ
one of a variety of techniques such as finite element, finite
difference, and the method of moments approaches.4

Presented here is a quite different and simple approach
that is easy to understand, even by early undergraduates: we
extend the MOI model from Sec. II to the acoustic cavity’s
multidimensional geometry and use it to numerically approx-
imate the cavity’s detailed frequency response for any choice
of positions for the source and detector within it.5 The model
can be adapted to accommodate mixed boundary conditions,
boundaries that are not perfectly reflective, and transducers
that are not isotropic. The method is, unfortunately, limited
to only a small set of cavity geometries. Fortunately, a rect-
angular geometry happens to be a member of this set. The
Appendix provides a brief derivation of the boundary value
problem for the complex-valued sound wave pressure phasor
field pðrÞ induced in our acoustic cavity and calculates the
cavity’s normal modes. It also shows that the physical
dimensions of the cavity (Fig. 1) effectively reduce the
required model geometry to only two dimensions, but
extending the analysis to three dimensions is straightforward.
This exercise is an example of finding a Green’s function
solution to the problem.6

A. Image source lattice construction

The reflection of an isotropic source wave from a flat cav-
ity boundary can be modeled as an identical wave emitted by
an image source as shown in Fig. 4. The advantage of this
model is immediately apparent: The image’s location is
unaffected by the detector location or any other model
parameter such as k or Q. One, therefore, need only calculate
the distance to the detector from the image in order to deter-
mine the reflected wave’s contribution to the response phasor
at the detector’s location. It is relatively straightforward to
include not only the attenuations introduced by the propagat-
ing medium but also to add factors to the image phasor that
incorporate any additional amplitude and phase effects intro-
duced by the reflection at the boundary.7

The rectangular cavity’s multiple boundaries and conse-
quent multiple wave reflections complicate the situation.
Each of the four planar boundaries, of course, requires the
inclusion of its own mirror image of the source. Waves from

these images, however, will reflect from the other interior
surfaces of the cavity, and those subsequent reflections must
be accounted for. Thus, each image requires the inclusion of
more images to account for these reflected waves, and so on.
The result is an infinite lattice of image sources whose pha-
sor contributions become the terms in our series solution for
the cavity’s response.

Constructing the lattice of image sources is conceptually
simple: reflect the geometry of the cavity (including the
source) across each of its boundaries and then reflect each of
these images across its own boundaries, etc., until the entire
plane (or 3D space) is tiled with cavity images. The sources
within these images then constitute the infinite set of image
sources to be used in the series solution. Figure 5 illustrates a
possible result of this process. In this example, the actual sig-
nal source is located at an interior point of the rectangular
cavity. Note how the source images form identical clusters,
regularly spaced at intervals of twice the horizontal and ver-
tical cavity dimensions, a generalization of the 1D image
pattern shown in Fig. 3.

As with the 1D example, each image source corresponds
to a unique, reflected path from the real source to detector
within the cavity. This correspondence is illustrated by two
example paths in Fig. 5. Note how the lengths and angles of
the reflected path segments correspond to segments of the
direct path from the image to detector as that path passes
through intervening cavity images. The countably infinite
number of reflected paths from the source to detector make
up a set isomorphic with the set of image source positions,
and the lengths of two corresponding paths match. These are
the essential properties that allow the MOI series expansion
to succeed.8

B. Propagators and the calculation algorithm

Now consider the driven acoustic cavity, whose state, as
shown in the Appendix, may be described by a scalar pres-
sure field p. We continue to assume that the driving source
radiates isotropically into the cavity interior, and the wave
medium is homogeneous, linear, and isotropic. Given these
characteristics, we may conclude that the pressure field

Fig. 4. Source and its image from a planar surface. The source (black circle)

and its mirror image (gray) radiate identical waves. The signal phasor at the

detector (white circle) is the coherent sum of these two signals. The arcs

show corresponding surfaces of equal phase for the two emissions.

Fig. 5. A lattice of cavity images. The original, rectangular cavity and its

enclosed source (black boundary and disk) have mirror images tiling the

plane. The pattern repeats at intervals of 2Lx horizontally and 2Ly vertically.

Also shown are examples of how a ray to the detector from each image

source corresponds to a unique reflected signal path within the cavity from

the real source.

291 Am. J. Phys., Vol. 91, No. 4, April 2023 Rice, Riedel, and Curtis 291



associated with the emitted wave from any source in the
image lattice can be characterized by a complex-valued pres-
sure phasor whose value at any location depends only on its
distance r from the source: p ¼ pðrÞ. Because the isotropic
natures of source and medium ensure that the wave’s local
wave vector k is parallel to the location’s radius vector r

from the source, the phase of p(r) is determined by a simple,
scalar calculation: exp ði k � rÞ ¼ exp ðikrÞ.

The amplitude of an emitted wave’s phasor depends on
two factors. First is a geometric factor which requires that, in
the absence of absorption by the medium or the cavity
boundaries, the net total power escaping from an imaginary
surface containing the source must be independent of the sur-
face’s size and shape. For the effectively 2D cavity geome-
try, this factor must, therefore, be r�1=2. Second comes the
loss of power in the emitted wave. Air at ordinary lab tem-
peratures and pressures offers very little attenuation to
acoustic waves at audio frequencies. Attenuation in the appa-
ratus shown in Fig. 1 is dominated by acoustic radiation
escaping from the cavity and by frictional losses, both
mainly caused by sound-induced vibrations of the acrylic
box and base plate forming the cavity. Nevertheless, we
assume that this attenuation may be adequately described by
a quality factor Q(k) attributed to the medium (air), just as
for the 1D example presented earlier. The amplitude attenua-
tion factor is then exp ½�kr=ð2QÞ�, cf. Eq. (2). This is, of
course, a greatly simplified model of the actual loss pro-
cesses. The final expression for a source’s pressure field pha-
sor becomes

pðrÞ ¼ r�1=2 exp ðikrÞ exp �kr=ð2QÞ½ �; (10)

where r is the distance from the source and Q will be a func-
tion of the wave number k.9 The contribution of the nth
image source, located at rn, to the total response phasor
field value at the detector position rd is calculated using
rn ¼ jrn � rdj in Eq. (10). The image source contributions
coherently add to generate the field value pðrdÞ,

pðrdÞ ¼
X1
n¼1

exp ðikrnÞffiffiffiffiffi
rn
p exp � krn

2Q

� �
: (11)

C. Convergence and accuracy of the model calculations

Consider the convergence of the infinite series of image
contributions to the field value pðrdÞ given in Eq. (11). Let
Lx be the long dimension of the cavity, and let R
 Lx be
some very large distance. As R!1, the number of image
sources N for which jR� rnj < Lx grows proportionally to R:
N � ð2pRÞð2LxÞ=ðLxLyÞ � 4pR=Ly. If there is no loss, then
as R!1 these sources’ contribution to pðrdÞ will be

����XN
exp ðikrnÞffiffiffiffiffi

rn
p

���� �
���PN exp ðikrnÞ

���ffiffiffi
R
p : (12)

However, the sum in the numerator is just that of N unit vec-
tors in the complex plane with uncorrelated directions
(phases), so as N becomes large jR exp ðikrnÞj !

ffiffiffiffi
N
p

� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
pR=Ly

p
. Therefore, as R!1, Eq. (12) approaches a

constant, and, if the system is lossless, the ratio test for abso-
lute convergence fails.10 As was the case for the 1D

example, the series convergence is dependent on the loss fac-
tor exp ½�krn=ð2QÞ�, and an approximate expression for the
magnitude of the total contribution of these N image sources
to pðrdÞ is

����XN exp ðikrnÞffiffiffiffiffi
rn
p exp � krn

2Q

� ����� � 2

ffiffiffiffiffi
p
Ly

r
exp � kR

2Q

� �
:

(13)

Again taking Lx to be the cavity’s long dimension, con-
sider a sequence of circles centered on the detector position
rd with radii Rm ¼ ð2m� 1ÞLx for positive integers m.
These circles then define a set of annuli with outer and inner
radii of Rm6Lx, which tile the plane. The set of lattice sour-
ces within each annulus generates a contribution to the
response phasor pðrdÞ given in Eq. (11). The magnitude of
this contribution may be estimated using R ¼ ð2m� 1Þ Lx in
Eq. (13), an estimate which will be quite accurate for
m
 1. Now assume that we truncate the infinite series for
pðrdÞ, including only those sources within the annuli defined
by 1 � m � m0 for some m0 
 1. We wish to estimate the
accuracy of this approximation of the infinite series by esti-
mating the relative magnitude of the sum of the contributions
of the excluded sources.

For the longest wavelength mode, k ¼ p=Lx; for a given Q,
this value of k will yield a slower convergence than for higher-
order modes. Using this value, consider the annulus defined by
Rm ¼ ð2m� 1Þ Lx. Let Cm equal the magnitude of the total con-
tribution from sources in this annulus estimated using Eq. (13)

Cm � 2

ffiffiffiffiffi
p
Ly

r
exp � pRm

2QLx

� �
¼ 2

ffiffiffiffiffi
p
Ly

r
exp �pð2m� 1Þ

2Q

� �

¼ 2

ffiffiffiffiffi
p
Ly

r
exp

p
2Q

� �" #
exp � p

Q

� �m

: (14)

The Cm are approximated by terms of an infinite geometric
series that converges if Q> 0. Designate the sum of these
terms from m to1 as Sm. Then

Sm ¼ 2

ffiffiffiffiffi
p
Ly

r
exp

p
2Q

� �" #X1
j¼m

exp � p
Q

� �j

¼ 2

ffiffiffiffiffi
p
Ly

r
exp

p
2Q

� �" #
exp � p

Q

� �m

� 1� exp � p
Q

� �� ��1

: (15)

Assume that the full series S1 will give a rough approxi-
mation of the magnitude of the detector’s response pðrdÞ for
the lowest mode k ¼ p=Lx and with quality factor Q. An esti-
mate of the fractional error introduced by the truncation of
the MOI model infinite series for pðrdÞ at the annulus defined
by Rm0

¼ ð2m0 � 1ÞLx is then Sm0þ1=S1,

fractional error � Sm0þ1=S1

¼ exp � p
Q

� �m0þ1

exp � p
Q

� ��1

¼ exp � p
Q

� �m0

¼ exp �m0p
Q

� �
: (16)
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It must be emphasized that, given the several approxima-
tions used to develop Eq. (16), this expression for the
fractional error in the MOI method provides only an order-
of-magnitude estimate. Nevertheless, it is a useful tool for
setting the values of computational parameters used in an
MOI algorithm. These results are for k ¼ p=Lx, the lowest
frequency resonant mode of the cavity, for which the series
convergence is slowest.

Figure 6 provides a graphical analysis of the relative
error estimate Eq. (16) in terms of the series truncation
index m0 and cavity Q. This analysis applies to the lowest
resonant mode of the cavity. For a higher frequency reso-
nance, divide the model cavity Q by the ratio of the desired
frequency to that of its the lowest mode before consulting
Fig. 6. The plots clearly demonstrate that the MOI approach
can result in a very inefficient model of a high-Q cavity, but
it places much more reasonable computational demands
when modeling cavities with Qs of less than a couple of
hundred.

IV. MODEL IMPLEMENTATION, RESULTS, AND

DISCUSSION

Section III provided the details of an infinite series solu-
tion for the steady-state frequency response of a rectangular
acoustic cavity such as that shown in Fig. 1. The series solu-
tion was developed using a method of images approach that
is particularly well suited to systems of moderate quality fac-
tor Q. We now use the results of the last section to assess the
computational demands required to accurately model the fre-
quency response of the cavity shown in Fig. 1, whose mea-
sured response was presented in Fig. 2. The widths of the
resonance peaks in that figure indicate that the cavity’s Q is
approximately 80–150. Knowing that the errors plotted in
Fig. 6 are order-of-magnitude estimates, and because we
wish our model to accurately capture the details of the
response between the resonance peaks, we will make conser-
vative use of that figure’s estimates: For Q¼ 150 and an
error target of 0.1%, Fig. 6 suggests that an appropriate trun-
cation limit would be m0 � 300. With Ly=Lx ¼ 3=4, the inte-
rior of a circle with radius 2m0Lx ¼ 600Lx will include
approximately 1.5 � 106 image sources. The calculation of
pðrdÞ using Eq. (11) requires a distance calculation followed

by an exponential and two trigonometric function calls for
each of these sources. This computational effort yields a cal-
culation of the response at a single location in the cavity for
a single wave number, k. Clearly, careful choice of program-
ming environment and algorithm organization will be impor-
tant. A

VR

MATHEMATICA notebook with a reasonably efficient
algorithm is available online.11

Our implementation of the MOI model was configured to
approximate the conditions of the measured frequency
response dataset of Fig. 2. It used the measured cavity
dimensions and the speed of sound determined from that
data.1 To simplify image source indexing for the model cal-
culations, a square area with side lengths of 2� 600Lx was
chosen rather than a circular area of radius 600Lx. This
increased the number of images to over 1.9 � 106. To ease
this potential computational burden, the modeled source
position was selected to be a corner of the cavity, collapsing
each cluster of four image sources (Fig. 5) to a single source
and reducing the number of sources to just over 481 000. A
further simplification was to choose rd as the diagonally
opposite corner. This placed the images symmetrically
around the response location, reducing the number of unique
p(r) calculations from 1.9� 106 to only approximately
121000 per frequency (or k).

Comparisons of the measured data to a calculation using
this MOI model are shown in Figs. 7 and 8. In order to
approximate the behavior of the measured data peak widths
vs frequency, the Q( f) function used for the model increased
linearly from Qð1:1kHzÞ ¼ 80 to Qð4:5kHzÞ ¼ 220. This
observed Q( f) behavior may be due to a reduced ability of
the sound to excite vibrations of the cavity’s acrylic box at
higher frequencies, reducing the level of vibration-induced
sound emissions. The model took 158 s of the CPU time to
calculate responses at the 2403 frequencies plotted in Fig. 7,
equivalent to approximately 1.8 � 106 p(r) calculations per
second (or about 15 frequencies per second).

The relatively simple, straightforward MOI model algo-
rithm was, nevertheless, able to capture the rich structure of
the acoustic cavity response with detail that is quite similar
to that of the measured data, even given its assumption of a
2D model, the chosen source and detector positions, and

Fig. 7. Comparison of the model to measured data. The model source posi-

tion rs was in a corner of the cavity, and the detector position rd was chosen

to be the diagonally opposite corner. Approximately 121 000 complex-

valued response calculations were performed for each of 2403 frequencies.

The result was normalized to match the measured data near 3 kHz.

Fig. 6. Estimated relative errors vs m0 and Q. Shown are several plots of the

Eq. (16) fractional error estimate as a function of the index m0 at which the

infinite series for pðrdÞ is truncated. Each line is labeled with the cavity Q
value used to generate it. The logarithms are base 10.
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very simple loss model. On the other hand, its fidelity to the
measured data leaves much to be desired. The primary flaw
is its omission of the frequency responses of the transducers
used to generate and detect the sound. The two transducers
were identical, quite old hearing aid speakers, a vintage of
the late 1960s. The reciprocal nature of these purely electro-
mechanical devices allows one to serve as a detector micro-
phone while its twin serves as the source speaker. Their
frequency response is limited for a variety of reasons, the
primary one being that they were designed to optimize a
hearing-impaired user’s ability to understand the spoken
word. As mentioned previously, they have an enhanced
response over a small range of frequencies centered at
1.7 kHz. Their small size and design cause their response at
lower frequencies to fall rapidly, whereas their high fre-
quency response falls more gradually to provide some ambi-
ent noise filtering.

A simple filter model was created to approximate the
observed transducer frequency response effects on the mea-
sured data. This model was applied to the MOI result, and
the filter parameters were adjusted to optimize the match
between the simulation and the measurements. The improved
model result is presented in Fig. 9. The remaining discrepan-
cies in its fidelity to the measured data are probably due
mainly to its simplistic loss model: Eq. (10) with a linear
model for Q( f).

In conclusion, the method of images approach can clearly
be quite successful at calculating the steady-state frequency
responses of resonant cavities with simple geometries and
moderate quality factors. Although not nearly so capable or
as fast as the sophisticated algorithms used by commercial
software, it has its own advantages. In particular, a program
to efficiently implement an MOI algorithm consists of only a
couple of dozen lines of code. As such, the algorithm is
well-suited for instruction, especially for undergraduates at
the junior or even sophomore level.
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APPENDIX: SUPPLEMENTAL INFORMATION

1. Wave equation for sound propagation

Assume that the sound wave medium (air in this case) is
an isotropic, homogeneous, ideal fluid (continuous, linear,
zero viscosity, and lossless) with equilibrium pressure p0

and density q0, which at sea level are approximately 1:01
�105 pascal and 1:23 g=l, respectively. Given these assump-
tions, a sound wave induces a stress tensor field on the
medium that reduces to the combination of a scalar pressure
change pðr; tÞ and its gradient vector rpðr; tÞ. Furthermore,
assume that sound waves will disturb the equilibrium values
by very small amounts, i.e., pðr; tÞ 	 p0.12

A tiny parcel of air within the cavity at equilibrium posi-
tion r responds to the sound in two ways: (1) qðr; tÞ, its
change in density away from q0, varies adiabatically with the
local pressure change pðr; tÞ; and (2) its center of mass is
accelerated by the local pressure gradient rpðr; tÞ. The first
effect defines a velocity, which turns out to be the speed of
sound, cs,

c2
s ¼ ð@p=@qÞjp0;q0

¼ pðr; tÞ=qðr; tÞ ¼ Cp0=q0: (A1)

For small, adiabatic pressure oscillations at audio frequen-
cies, the ratio of specific heats C of dry air at room tempera-
ture is very close to the ideal diatomic gas value of 1.4. At
ultrasonic frequencies, CO2 plays a larger role in determin-
ing dry air’s C, and air becomes slightly dispersive.13

The vector displacement field Xðr; tÞ of the air parcels’
positions away from equilibrium is influenced by both
effects

acceleration: rpðr; tÞ ¼ �q0

@2Xðr; tÞ
@t2

; (A2)

continuity: r � Xðr; tÞ ¼ � qðr; tÞ
q0

: (A3)

Fig. 8. Detail of the model vs measured data. The model successfully repro-

duces the sharp dips in the response in these clusters of resonances. Also

shown are the positions of the ideal normal mode frequencies as indicated in

Fig. 2. The complicated frequency response structure around these nearly

degenerate modes (especially the triplet at 4.53 kHz) is addressed in Sec. 3

of the Appendix.

Fig. 9. Applying a transducer frequency response model. The upper dashed

curve shows the transducer frequency response model used to correct the

MOI results. It is meant to model the combined effects of both transducers,

and it peaks at 1:72 kHz with a Q of 9. The corrected MOI model was calcu-

lated by multiplying the complex-valued MOI and transducer response pha-

sors at each frequency.
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Combining these three equations results in a homogeneous
wave equation for the time-varying sound pressure amplitude
field pðr; tÞ,

from ðA2Þ: r2pðr; tÞ ¼ �q0r �
@2Xðr; tÞ
@t2

¼ �q0

@2

@t2
r � Xðr; tÞ;

from ðA3Þ and ðA1Þ:¼ @2qðr; tÞ
@t2

¼ c�2
s

@2pðr; tÞ
@t2

: (A4)

For a sinusoidal wave oscillating at angular frequency x,
pðr; tÞ ¼ Re ½ pðrÞ exp ð�ixtÞ �, defining the wave’s
complex-valued pressure phasor field pðrÞ. Substituting this
expression for pðr; tÞ into Eq. (A4) results in the phasor
field’s corresponding Helmholtz equation

r2pðrÞ þ k2pðrÞ ¼ 0; where k � x=cs: (A5)

Clearly, k is the wave number, thus showing that cs, defined
in Eq. (A1), is the sound wave’s phase velocity v/.

2. Boundary conditions and normal modes

If the cavity walls are rigid, then their shapes and positions
are unaffected by the sound pressure field within the cavity,
and a tiny air parcel abutting a wall is unable to move in a
direction perpendicular to it. Therefore, at a rigid boundary
with surface normal nðrÞ, it must be the case that
nðrÞ � @2Xðr; tÞ=@t2 ¼ 0, implying that

nðrÞ � rpðrÞ ¼ 0: (A6)

The rigid cavity walls are, therefore, free boundaries for the
sound pressure field, and Eqs. (A5) and (A6) define the
Neumann boundary value problem for the sound pressure
phasor field.14

Equations (A5) and (A6) separate in a Cartesian coordi-
nate system, and, because the cavity is rectangular, this is an
obvious choice. Aligning the origin and the axes with a cav-
ity corner and its adjoining three edges almost makes the
solution obvious by inspection. Assign Lx, Ly, and Lz as the
three cavity edge lengths, and assume a formal solution of
pðrÞ ¼ pxðxÞpyðyÞpzðzÞ. The separated differential equations
become

p00x ðxÞ þ k2
x pxðxÞ ¼ 0 with

p0xð0Þ ¼ p0xðLxÞ ¼ 0 ðditto for y and zÞ; (A7)

with the solution, for nonnegative integers l, m, and n such
that lþ mþ n > 0

kl ¼ p l=Lx; km ¼ p m=Ly; kn ¼ p n=Lz; (A8)

k2
l;m;n ¼ k2

l þ k2
m þ k2

n; (A9)

and pl;m;nðx; y; zÞ ¼ cos ðkl xÞ cos ðkm yÞ cos ðkn zÞ:
(A10)

The pressure field phasor pðrÞ ¼ pl;m;nðx; y; zÞ in Eq. (A10)
has been assigned a phase that makes it a real number. The
three cosine factors have identical phases (real). In terms of
traveling waves, each cosine term can be written as a sum of

oppositely directed traveling waves, e.g., cos ðkl xÞ
¼ ð1=2Þðeiklx þ e�iklxÞ. Multiplying these expressions and
gathering terms will show that pl;m;nðx; y; zÞ can be written as
a sum of as many as eight equal-amplitude plane waves, all
with wave vectors whose squared magnitudes equal k2

l;m;n,
Eq. (A9), and whose vector sum vanishes.

The original, homogeneous boundary value problem for
these free oscillations, Eqs. (A5) and (A6), is, of course, an
eigensystem problem. The k2

l;m;n are the eigenvalues and the
pl;m;nðx; y; zÞ their corresponding eigenfunctions. Because the
problem’s differential equations, both for the cavity interior
and for its boundaries, do not include damping or loss terms,
the eigenvalues are all real. The solutions constitute the set
of ideal cavity normal modes, a complete set of orthogonal
basis states for sound waves in an ideal, rectangular cavity.

The longest side of the cavity was designed to have length
Lx ¼ 6:00 in: or 15.24 cm. The other two side lengths were
designed to be Ly ¼ 4:50 in: and Lz ¼ 1:25 in:. The measured
lengths are 15.225, 11.442, and 3.185 cm. The measured Lx

and Ly values are each within 0.1% of their design values,
and their ratio is 0.2% away from the designed 4 : 3 value.
The Lz value is about 0.3% greater than its design length.
These numbers set the relevant wave number and, therefore,
frequency ranges of the experiment. The lowest frequency
mode will have wave number k1;0;0 ¼ p=Lx with a wave-
length equal to 2Lx. Taking the speed of sound to be
344.7 m/s,1 the lowest mode frequency is expected to be
1.132 kHz. (The measured frequency was 1.1323 kHz.)

The lowest mode frequency with a z-component variation
corresponds to k0;0;1, which is Lx=Lz times that of the lowest
mode. The location of the driving source, however, has
z ¼ Lz=2 (see Fig. 1). However, this lowest z-mode has a
nodal surface at Lz=2, as shown in Eq. (A10). This implies
that the source position makes it impossible for the source to
excite this mode. The lowest excitable mode for this configu-
ration must be k0;0;2 with frequency 2Lx=Lz times the lowest
mode frequency of 1.132 or 10.8 kHz.

This lowest frequency involving a mode with a z compo-
nent to its wave vector, 10.8 kHz, exceeds the high frequency
response limit of the transducers. Thus, the wave vectors rel-
evant to the experiment will all have vertical index n¼ 0,
effectively reducing the cavity geometry to only two dimen-
sions for the behavior of the pressure field pðr; tÞ generated
by the driving source and its images, and even with the
detector transducer located in the bottom surface of the cav-
ity (z¼ 0), its signal is representative of the cavity pressure
field at any z, except, perhaps, when located very near the
driving source transducer. Consequently, we will refer to
only the x and y components of the cavity wave vectors with
their associated mode indices l and m.

3. Behavior at degenerate mode frequencies

The rectangular cavity’s normal mode eigenfunctions
pl;mðx; yÞ have a particularly simple structure (note that the z
component factor has been removed from Eq. (A10) because
it � 1 and is, thus, irrelevant at the frequencies we consider).
If either the x or y cosine factor’s argument in Eq. (A10) is
an odd multiple of p=2, then pl;mðx; yÞ ¼ 0. This criterion
defines the function’s nodal lines, and in this case, the nodal
lines are straight and aligned with the cavity boundaries. The
mode index values provide counts of the nodal lines: l is the
number of nodal lines parallel to the y direction, m the num-
ber parallel to the x direction. For example, Fig. 1 shows the
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experimenter investigating the nodal line structure for the
third normal mode, p1;1, with a single vertical and a single
horizontal nodal line which intersect at the center of the
cavity.

If the ratio of the rectangular cavity boundary lengths is
rational, then there will be pairs of distinct normal modes
with the same wave number: kl;m ¼ kl0;m0 . Such a pair is then
degenerate, and linear combinations of them are also eigen-
functions with the same eigenvalue k2. These linear combi-
nations can have nodal line structures which are very
different from those of the original pl;m and pl0;m0 . Our cavity
has a design Ly=Lx ¼ 3=4, and the actual cavity differs by
only 0.2% from this value. Thus, the cavity was designed to
have k4;0 ¼ k0;3, making this pair degenerate. The common
resonant frequency of the pair is 4 times that of the k1;0

mode, or 4.528 kHz.
The nodal line structures of these two 4.528 kHz modes

are shown in Fig. 10. With the source transducer placed in a
corner of the cavity and emitting this degenerate mode fre-
quency, both modes should be excited with equal phases and
nearly equal amplitudes. This means that the cavity will
respond with a linear combination of the two modes. With
the transducer in the lower left corner of the cavity, for
example, the cavity should respond with the combination
p4;0 þ p0;3. The nodal structure of this state, along with its
orthogonal counterpart p4;0 � p0;3, are shown in Fig. 11.

Note the interesting nodal line structures of the sum and
difference combinations shown in Fig. 11: Each nodal line
meets a boundary at an angle of 45

�
, either at a corner or

paired with another nodal line along a wall. Each of these
intersections is a saddle point of the resultant pðrÞ, satisfying
the boundary condition Eq. (A6) because rpðrÞ ¼ 0 at these
points. Particularly relevant to the measured cavity fre-
quency response is the observation that diagonally opposite
corners of the cavity represent antinode–node pairs. The
source will occupy the antinode position, and a diagonally
opposite position of the detector will be on a nodal line,
causing the frequency response to show a sharp decrease at
the degenerate mode frequency. This behavior could not
occur at a nondegenerate resonance, where all corners are
antinodes of the individual pl;m eigenfunctions, Eq. (A10).

Of course, any real cavity is not a perfect rectangle with a
side length ratio of exactly 4:3. Thus, this degeneracy due to
an ideally shaped, lossless cavity will be broken by any
actual resonant cavity. A real cavity also would not have
zero loss; however, so its resonances have nonzero quality
factors Q, and this makes all the difference. If the errors in
the shape of the cavity break such a degeneracy by a frac-
tional frequency shift smaller than the resonances’ nominal
1=Q, then two nearly degenerate modes may be mixed

strongly enough to behave in a way that is well-
approximated by this ideal description. Such is the case
with the cavity of Fig. 1, who response at 4.53 kHz, shown
in Fig. 8, exhibits behavior that is consistent with the anti-
node–node response of the ideal p4;0 þ p0;3 model, as indi-
cated by the sharp dip confirming the near cancellation of
the two modes’ responses over a very narrow range of fre-
quencies—a behavior present both in the actual data and in
the MOI model.

In fact, for the particular design ratio choice of 4:3, there
is a further complication involving the p4;0 þ p0;3 degener-
acy. The p3;2 mode would have a k and frequency which dif-
fer from the degenerate pair by only 0.3% at this design
ratio. The actual cavity dimensions would assign mode fre-
quencies of

ðf0;3; f4;0; f3;2Þ ¼ ð4:520; 4:529; 4:541Þ kHz: (A11)

The differences of the successive frequencies are only
0.20% and 0.26%, so with a Q � 150, these three frequen-
cies form what is effectively a degenerate triplet, complicat-
ing the observed frequency response and nodal line structure
near 4.53 kHz (cf. Fig. 8).
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Fig. 10. Nodal line structures of the (l¼ 4, m¼ 0) and (l¼ 0, m¼ 3) degen-

erate cavity modes. Also shown are the signs of the pressure phasor fields in

the areas between nodal lines.

Fig. 11. Nodal line structures of linear combinations of the (l¼ 4, m¼ 0)

and (l¼ 0, m¼ 3) degenerate cavity modes. These two linear combinations

form an alternative, orthogonal pair of states spanning the subspace of

degenerate modes at this frequency. Also shown is an example of a linear

combination with unequal amplitudes.
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