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This study characterizes middle ear complex acoustic reflectance (CAR) and impedance by fitting poles and
zeros to real-ear measurements. The goal of this work is to establish a quantitative connection between
pole-zero locations and the underlying physical properties of CAR data. Most previous studies have
analyzed CAR magnitude; while the magnitude accounts for reflected power, it does not encode latency
information. Thus, an analysis that studies the real and imaginary parts of the data together, being more
general, should be more powerful. Pole-zero fitting of CAR data is examined using data compiled from
various studies, dating back to Voss and Allen (1994). Recent CAR measurements were taken using the
Mimosa Acoustics HearID system, which makes complex acoustic impedance and reflectance mea-
surements in the ear canal over a 0.2e6.0 [kHz] frequency range. Pole-zero fits to measurements over
this range are achieved with an average RMS relative error of less than 3% with 12 poles. Factoring the
reflectance fit into its all-pass and minimum-phase components estimates the effect of the residual ear
canal, allowing for comparison of the eardrum impedance and admittance across measurements. It was
found that individual CAR magnitude variations for normal middle ears in the 1e4 [kHz] range often give
rise to closely-placed pole-zero pairs, and that the locations of the poles and zeros in the s-plane may
systematically differ between normal and pathological middle ears. This study establishes a methodology
for examining the physical and mathematical properties of CAR using a concise parametric model. Pole-
zero modeling accurately parameterizes CAR data, providing a foundation for detection and identifica-
tion of middle ear pathologies.

This article is part of a Special Issue entitled “MEMRO 2012”.
� 2013 Elsevier B.V. All rights reserved.
1. Introduction

1.1. Background

Acoustic reflectance measurements and their clinical applica-
tions have been the subject of many recent studies. These studies
have shown that power reflectance, the magnitude squared of the
complex acoustic reflectance (CAR), shows distinct and often sys-
tematic variations between pathological and normal middle ears
(e.g. Feeney et al., 2003; Allen et al., 2005; Hunter et al., 2010).
Studies by Voss et al. (2012) and Nakajima et al. (2012) have
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investigated the efficacy of reflectance measurements for differ-
ential diagnosis of middle ear pathology. Tympanometry and laser
doppler vibrometry are the current standards for presurgical dif-
ferentiation between ossicular fixation, ossicular discontinuity, and
third window disorders (Rosowski et al., 2003, 2008); Nakajima
et al. concluded that power reflectance performs as well as laser
doppler vibrometry, both in combinationwith audiometry (e.g. air-
bone gap measurements), for differential diagnosis of these disor-
ders. This is a valuable result, because CAR measurements can be
performed using the United States Food and Drug Administration
(FDA) 510(K) cleared HearID system (Mimsosa Acoustics), which, as
stated by Nakajima et al. (2012), costs an order of magnitude less
than the laser Doppler vibrometer (z10;000 vs. 100,000 USD) and
requires less training to operate. In another recent study, Voss et al.
(2012) systematically manipulated cadaver ears to isolate the ef-
fects of various pathologies with differing degrees of severity, and
examined the CAR responses. They also concluded that power
reflectance may be a strong supplement to audiometry for the
diagnosis of certain pathologies.
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CAR and impedance are measured at ambient pressure by a
probe containing a microphone and loudspeaker, sealed in the ear
canal via a foam tip. The probe is calibrated using a multi-cavity
least squares procedure to find the Thévenin equivalent parame-
ters of the acoustic source (Allen, 1986). A stimulus is emitted by
the probe, and the complex cavity pressure response is measured.
From the calibration pressure responses, the acoustic impedance,
reflectance, and related quantities (admittance, power reflectance,
etc.) may be calculated. The CAR, denoted G(u), is equal to the ratio
of the reflected to incident wave pressure at the microphone,
located in the ear canal, as a function of frequency (u ¼ 2pf). The
magnitude squared of the reflectance, jGðuÞj2, represents the rela-
tive acoustic power reflected back to the ear canal from the middle
and inner ears. The power reflectance is related to conductive
hearing functionality and is therefore relevant to clinical assess-
ment of the middle ear (Allen et al., 2005). The complex acoustic
impedance Z(u) and reflectance G(u), as functions of frequency, are
related by

GðuÞ ¼ ZðuÞ=r0 � 1
ZðuÞ=r0 þ 1

; (1)

where r0 ¼ rc/A is the estimated surge resistance, r is the density of
air, c is the speed of sound, and A is the area of the ear canal. The
‘surge’ impedance (Campbell, 1922) is defined as the amplitude of
the d(t) component of the time-domain impedance; because it is a
real constant, it is denoted as a resistance. It follows that the
reflectance is strictly causal (Claerbout, 1985).

The clinical utility of CAR depends on its capacity to discern
normal from pathological results, which requires a method for
comparing measurements across ears. Direct comparison of CAR is
complicated because the residual canal dimensions between the
probe tip and tympanic membrane (TM) vary across subjects. This
uncertainty has a large effect on the reflectance phase and the
complex acoustic impedance. The residual ear canal is frequently
modeled as a rigid-walled tube of uniform area A and length L.
Under this assumption, the relationship between the CAR at the
probe and at the TM becomes

GðuÞ ¼ GTMðuÞe�j2Lc u: (2)

In many cases this is not a realistic model, particularly because
the residual ear canal area A(x) varies with distance x (Farmer-Fedor
and Rabbitt, 2002). Equation (2) represents a special case of a
uniform (constant A(x)), lossless canal; a nonuniform, lossless canal
would have a more complicated phase dependence on frequency.
However, consideration of the CAR magnitude (or the power
reflectance jGðuÞj2) is highly effective because even when A(x) is
nonuniform, the ear canal may be reasonably approximated as
lossless, in which case

jGðuÞj ¼ jGTMðuÞj: (3)

Eliminating the variation due to the residual ear canal by using the
CAR magnitude or power reflectance allows for comparison across
measurements with unknown residual canal dimensions. Thus, the
magnitude reflectance is the current diagnostic standard using CAR
measurements. The relationship in Eq. (3) was experimentally
verified by Voss et al. (2008).

While uncertainty in the residual ear canal volume significantly
confounds phase information associated with the eardrum and
ossicles, taking the magnitude of the CAR eliminates this relevant
information entirely. It follows that a holistic analysis of the com-
plex data could be more powerful and generalizable if the canal
effect were accounted for in a rigorous manner, without
eliminating all phase data. This study seeks to develop such a
method for concise parametric characterization of CAR measure-
ments, with the ultimate goal of improving differential diagnosis of
middle ear pathology. This is accomplished by fitting poles and
zeros to the complex data. It is important to note that this work is
primarily intended to aid in middle ear modeling efforts and
automated diagnosis of pathologies; it is not our intention to
introduce a raw pole-zero diagnosis into the clinic.

1.2. Pole-zero fitting

Poles and zeros may be expressed in terms of a rational poly-
nomial fraction, as the roots of the denominator and numerator,
respectively. Such a function will have the form

bF ðsÞ ¼ bNz
sNz þ bNz�1sNz�1 þ.þ b1sþ b0

sNp þ aNp�1sNp�1 þ.þ a1sþ a0

¼ bNz

YNz

i¼1

ðs� ziÞ

YNp

i¼1

ðs� piÞ
;

(4)

where s is the complex angular frequency variable (s ¼ s þ ju), ai
and bi are the polynomial coefficients, Np is the number of poles, Nz

is the number of zeros, pi are the poles, and zi are the zeros (Van
Valkenburg, 1964). For our application, the relative order is con-
strained to jNz � Npj � 1 by the fitting procedure (Appendix A).
Poles and zeros are a familiar concept regarding impedance;
considering Eq. (1), the reflectance must also have poles and zeros
via a simple algebraic transformation. Thus, bF ðsÞ may be a fit to the
impedance Z, the reflectance G, or some other simple algebraic
transformation of the data.

Some example CAR measurements (dots) and pole-zero fits
(lines) are shown in Fig. 1 for two standard artificial ear simulators,
the B&K 4157 (black) and the DB-100 (gray). These measurements
are from Voss and Allen (1994). Each fit is performed on reflectance
domain data (G(u)) with Np ¼ Nz ¼ 6; the B&K 4157 fit has a RMS
relative error of 1.7%, and the DB-100 fit has a RMS relative error of
2.9%. Reflectance and impedance magnitude vs. frequency (Fig. 1a,
b), and phase vs. frequency (Fig. 1c, d), are shown for both couplers.
The impedance is normalized by the estimated surge resistance, r0.
Effects of the residual simulator ear canals are particularly notice-
able in the reflectance phase and normalized impedance magni-
tude. Considering the reflectance phase (Fig. 1c), the DB-100 has a
much flatter phase across frequency than the B&K 4157, indicating
less delay and thus a shorter residual canal. The normalized
impedance magnitude of the B&K 4157 shows a high frequency
notch, while the normalized impedance magnitude of the DB-100
does not. This deep notch is due to the ear canal ‘standing wave’
between the TM and the probe tip (Scheperle et al., 2008; Withnell
et al., 2009). The absence of such a notch in the DB-100 impedance
magnitude indicates a shorter distance between the probe tip and
TM; such a notchmay still exist, but at a higher frequency outside of
the measured range. Finally, considering the impedance magnitude
and phase, the B&K 4157 ear canal impedance becomes mass
dominated at high frequencies (beyond the standing wave fre-
quency) while the DB-100 impedance does not.

According to Voss and Allen (1994), the reflectance magnitude
of the DB-100 ear simulator best resembles that of their ten human
ear average below 4 [kHz], but the B&K 4157 is a better match to the
average for frequencies up to 10 [kHz]. Considering Fig. 1a, the B&K
4157 reflectance magnitude is close to one at low frequencies, has a
broad minimum from about 1 to 4 [kHz], and rises again at high
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Fig. 1. Standard ear simulater measurements from Voss and Allen (1994). (a) Reflectance magnitude jbGðjuÞj, (b) normalized impedance magnitude jbZðjuÞj=r0, (c) reflectance phase
:bGðjuÞ, (d) impedance phase :bZðjuÞ. Example measured data (dots) and pole-zero fit (lines) are shown for the B&K 4157 (black) and the DB-100 (gray). The fits were performed in
the reflectance domain over 0.1e8.2 [kHz], yielding 6 poles and 6 zeros for each fit. The B&K 4157 fit has a RMS relative error of 1.7%, and the DB-100 fit has a RMS relative error of
2.9%. The reflectance magnitude (a) of the B&K 4157 is more similar to an average normal ear across the entire frequency range than the DB-100. The DB-100 exhibits a much shorter
ear canal behavior than the B&K 4157 considering the impedance magnitude (b) and the reflectance phase (c).
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frequencies; this is also similar to the average results obtained by
Rosowski et al. (2012), among others. However, the reflectance
magnitude of the DB-100 does not share this high frequency
behavior, instead continuing to decrease above 4 [kHz]. Thus, the
B&K 4157 measurement is a better standard for comparison of
complex pole-zero fits, and will be used in this paper to represent
an average normal ear. It is important to note that while the average
magnitude reflectance of normal middle ears has a broad, flat
minimum from about 1 to 4 [kHz], individual ears have variable
fine-structure minima and maxima in this range (Rosowski et al.,
2012; Allen et al., 2005). These intersubject variations are typi-
cally due to anatomical differences across ears, including properties
of the TM, ossicles, middle ear cavities and inner ear load (Voss
et al., 2000; Aibara et al., 2001; Rosowski et al., 2012).

Fig. 2 shows the poles and zeros that produce the fit to the B&K
4157 shown in Fig. 1. Fig. 2a shows the poles and zeros of the
reflectance fit bGðsÞ and Fig. 2b shows the poles and zeros of the
normalized impedance fit bZðsÞ=r0, which have been calculated from
the fitted reflectance domain poles via Eq. (1). Notice that in both
domains the poles and zeros have complex conjugate symmetry
(those in the upper half s-plane mirror those in the lower half s-
plane); this is a necessary condition for the polynomial coefficients
in Eq. (4) to be real. With relation to the magnitude and phase
response, the u ¼ Im{s} location of a pole or zero typically de-
termines the frequency region inwhich it has the largest effect, and
the s¼ Re{s} component of a pole or zero is related to the damping.
Poles and zeroswith smaller damping, which lie closer to theu axis,
have a larger effect on the fitted magnitude and phase responses.
Throughout this presentation, pole-zero locations will be plotted as
s/(2p), such that the frequency axis f¼ u/(2p) may be referenced to
the frequency axes of the magnitude and phase responses.
Considering the poles and zeros of bGðsÞ in Fig. 2a, the pole-zero
pair labeled a (with conjugate a*) seems to characterize the first
minimum of the magnitude reflectance at 1 [kHz] (Fig. 1a), while
the zero at b (b*) and the pole at c (c*) correspond to its high-
frequency behavior. Considering the poleezero plot of the
normalized impedance bZðsÞ=r0 (Fig. 2b), note the solitary pole,
labeled d, on the real axis approximately at the origin. This pole is
actually in the right half s-plane (RHP), with a relatively small value
of s/(2p) ¼ 9 [Hz], causing the impedance fit to be unstable.
Because its jsj value is small, pole d is functionally at the origin;
such small instabilities in the impedance can occur when fitting
reflectance domain data, and will be discussed at length in Section
2.1.2. Because it is approximately at the origin, the pole at d char-
acterizes the stiffness of the impedance below 1 [kHz]; it has a
stronger effect on jbZðjuÞj=r0 (Fig. 1b) than the other zeros and poles
on the real axis, as it has the smallest s value. Thus the pole-zero fits
may be used to model some physics of CAR and impedance
measurements.

It is important to note that pole-zero fitting of CAR data cannot
be accomplished by autoregressive moving-average (ARMA)
modeling methods (e.g. Recio-Spinoso et al., 2011), because the
time domain signal gðtÞ ¼ F�1fGðuÞg (where F�1 denotes the
inverse Fourier transform) is not very precise. CAR is measured as a
function of frequency, and measurement noise below 100 or 200
[Hz] typically prevents the accurate calculation of an inverse FFT.
Instead, a method developed by Gustavsen and Semlyen (1999) is
used to fit CAR data directly in the frequency domain. This proce-
dure finds a rational approximation of the data as a function of
complex frequency, using their ‘vector fitting’ method. Such pole-
zero fits capture magnitude and phase characteristics of CAR
measurements with low RMS relative error and a small set of
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Fig. 2. Pole-zero fit of the B&K 4157 measurement from Voss and Allen (1994). (a) Poles and zeros of bGðsÞ, (b) poles and zeros of bZðsÞ=r0. Note that there are two closely-spaced poles
on the real axis in (a), though they appear to overlap on this scale. The fit was performed in the reflectance domain over 0.1e8.2 [kHz], and the impedance domain poles and zeros
were calculated via Eq. (1). This pole-zero fit produces the curves shown in Fig. 1. The pole-zero pair labeled a (a) appears to characterize the first minimum of jbGðjuÞj (Fig. 1a), and
the pole at d (b) appears to characterize the low-frequency stiffness of jbZðjuÞj (Fig. 1b).
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parameters. The fitting procedure is described next, followed by our
results and their diagnostic implications.

2. Methods

2.1. Fitting CAR data

The CAR data sets examined in this paper were compiled from
previous studies. A population of normal ears was drawn from Voss
and Allen (1994) and Rosowski et al. (2012). Fourteen CAR mea-
surements of ten ears (four retest measurements) were collected
in vivo up to 15 [kHz] by Voss and Allen, using a measurement
system described in their paper. The B&K 4157 and DB-100 ear
simulator measurements shown in Fig. 1 were also collected in that
study. Fifty-eight CAR measurements (and 58 retest measure-
ments) were collected in vivo over a frequency range of 0.2e6 [kHz]
by Rosowski et al., using the Mimosa Acoustics HearID system.
These 58 “strictly normal” ears met specific audiometric criteria in
order to be included in the study.

Pathological and cadaver measurements were drawn from
Nakajima et al. (2012) and Voss et al. (2012). The Nakajima et al.
(2012) CAR measurements were collected in vivo from patients
with confirmed stapes fixation due to otosclerosis, ossicular
discontinuity, and superior semicircular canal dehiscence. The Voss
et al. (2012) CAR measurements were collected from cadaver
preparations, which were manipulated to simulate static pressure
disorders in the middle ear cavity (positive and negative), middle
ear fluid, fixed stapes, disarticulated incudo-stapedial joints, as well
as TM perforations. Additionally, the cadaver ears were measured
in their ‘normal’ (unmodified) state. These data were also collected
using the Mimosa Acoustics HearID system.

2.1.1. Pole-zero fitting procedure
Rational approximations to the CAR data as a function of fre-

quency (u ¼ 2pf) were calculated using a vector fitting procedure
developed by Gustavsen and Semlyen (1999). bF ðsÞ, where s¼ sþ ju
is the complex angular frequency variable, will be used to denote
the complex frequency domain fit, and F(u) will be used to denote
the measured complex frequency domain data. It is important to
note that the data is only available as a function ofu, thus the data is
related to the fitted function by FðuÞzbF ðsÞjs¼ju; inwords, when bF ðsÞ
is evaluated along theu axis of the complex s-plane, it approximates
the observed data. Because the middle ear is not a lossless system,
the poles and zeros of the fit are typically located off theu axis (have
non-zero s values related to the damping). Thus bF ðsÞjs¼ju typically
has minima and maxima instead of zero and infinite values.
The data (e.g. the complex reflectance G(u), impedance Z(u), or
admittance Y(u) ¼ 1/Z(u)) is fit to a residue expansion of the form

bF ðsÞ ¼
XNp

i¼1

Ci
s� Ai

þ Dþ Es; (5)

where the constants D and E are real quantities, while the constant
poles and residues, Ai and Ci, are either real or occur in complex
conjugate pairs. Note that if E and D are non-zero, the numerator
order (Nz, Eq. (4)) is one greater than the denominator order
(Nz ¼ Np þ 1). Similarly, if E is zero and D is non-zero the numerator
and denominator orders are equal (Nz ¼ Np), and if both D and E are
zero the numerator order is one less than the denominator order
(Nz ¼ Np � 1). Equation (5) is nonlinear in its unknowns, because
the unknown poles Ai appear in the denominator. Since the poles
and zeros of a 1-port network impedance are restricted to first
order, with a relative order of jNz � Npj � 1, the functional form of
Eq. (5) is sufficient for fitting impedance domain data (Van
Valkenburg, 1964). The reflectance does not have the same con-
straints, but given its relationship to impedance (Eq. (1)) we assume
it will also fit well to this form. It is important to note that while the
total number of parameters may seem daunting, there are typically
fewer ‘degrees of freedom’ than it seems, because the complex
poles and zeros are constrained to come in complex conjugate
pairs. For instance, if a fit has twelve poles and ten of them are
complex, there are only seven ‘degrees of freedom’ related to the
poles, because five (half) of the complex poles are constrained by
conjugate symmetry. This constraint is preserved under the
transformation in Eq. (1).

The vector fitting procedure is a two step process, which con-
verts a nonlinear least squares problem to a linear least squares
problem by introducing an unknown scaling function with known
poles (Gustavsen and Semlyen, 1999). This procedure is described
at length in Appendix A. Given a fixed number of poles, the algo-
rithm converges very rapidly, usually within a few iterations. The
algorithm may be re-run with an increasing number of poles, until
some error criterion is met. For some measurements, the fitting
procedure may return a set of poles and zeros with nearly over-
lapping pole-zero pairs, due to small extrema from measurement
noise. Such pairs may be considered to ‘overfit’ the data, and it is
often possible to eliminate them from the fit without causing an
appreciable increase in the fitting error. For the remainder of this
presentation, goodness of fit will be described using a mean
squared error (MSE) metric, in decibels, relative to the L2 norm of
the signal:
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2P����FðuÞ � bF ðjuÞ����23

MSE ½dB� ¼ 10log104 P jFðuÞj2

5: (6)

A MSE of �30 [dB] corresponds to a RMS relative error of about 3%.

2.1.2. Domain of fitting
An error analysis of the fitting procedure is given in Fig. 3.

Average MSE vs. pole order is plotted for pole-zero fits of two data
sets of normal middle ears in different domains. The impedance (Z),
admittance (Y), and reflectance (G) domains are examined. Fig. 3a
shows the average MSE for fits of 14 normal ear measurements
made by Voss and Allen (1994) over 0.1e10 [kHz]. Fig. 3b shows the
average MSE for fits of 112 normal ear measurements made by
Rosowski et al. (2012) over 0.2e6 [kHz]. Error bars show �1 stan-
dard deviation of the MSE for a given data set and fitting domain.
Considering Fig. 3a and b, the fit error saturates between about 10
and 20 poles, beyond which the algorithm begins to fit the mea-
surement noise; this behavior is best captured by the admittance
and reflectance domain curves in Fig. 3b, where the error improves
by 15 [dB] between 4 and 20 poles, and by less than 5 [dB] between
20 and 60 poles. Fig. 3a shows higher average MSEs than Fig. 3b.
This is primarily because the Voss and Allen (1994) measurements
were fit over a larger frequency range, which includes more noise
than the Rosowski et al. (2012) measurement range. In Fig. 3a,
impedance domain fitting performs better than admittance domain
fitting, and vice versa in Fig. 3b, due to the frequency range of the fit
and measurement noise. Because of the typical shape of the
impedance response (e.g. Fig. 1b), low frequency noise has a larger
effect on error in the impedance domain, and high frequency noise
has a larger effect on error in the admittance domain. There are
differing amounts of low and high frequency noise over the 0.1e
10 [kHz] and 0.2e6 [kHz] ranges, causing differences in impedance
domain error relative to admittance domain error.

Considering Fig. 3, the fitting procedure consistently performs
best in the reflectance domain. Additionally, for diagnostic appli-
cations it may be desirable to have the best possible fit to the
magnitude reflectance, which has shown the greatest promise for
detecting middle ear pathologies. While the impedance magnitude
and phase are both dominated by the ear canal response, in the
reflectance domain only the phase is significantly affected by the
ear canal (e.g. Eq. (2)). Additionally, the dynamic range of the
reflectance is much smaller than that of the impedance, typically
spanning less than 10 [dB], whereas the impedance may span
20e40 [dB] (1e2 orders of magnitude). Due to the nature of the
least squares procedure, small magnitude data points of Z(u)
inadvertently receive less emphasis in the fitting procedure than
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MSE [dB] vs. pole order (Np) for each domain, with error bars indicating one standard deviati
range, (b) 112 measurements of normal ears (Rosowski et al., 2012) fit over the 0.2e6 [kHz]
data points with larger magnitude. Thus, fitting to the impedance
may provide a better approximation to the low frequency data
(where the magnitude is large, as in Fig. 1b), but will yield a rela-
tively poorer fit in the mid-frequency region of the reflectance
magnitude, where individually varying minima and maxima occur
for normal middle ears. To characterize the reflectance for a given
ear, it may be useful to capture these fluctuations. Due to the
smaller dynamic range of the reflectance, fitting the data in the
reflectance domain gives approximately equal weight to the error
across frequencies. Fitting 112 measurements over the 0.2e6 [kHz]
range in the reflectance domain, an averageMSE ofe33.4 [dB] (2.1%
RMS relative error with a standard deviation of 0.7%) is achieved
with 12 poles for 18 iterations of the fitting algorithm. Fitting the
data over a larger frequency range typically requires more poles.

Considering all measurements from the Rosowski et al. (2012)
and Nakajima et al. (2012) studies, it was found that reflectance
domain fits usually yield values of E (Eq. (5)) that are close to zero.
Typically, jEj is very small for fits to both normal and pathological
CAR measurements, on the order of 10�5 for fits with Np < 20. For
higher pole orders there is more variation in the value of jEj, which
is to be expected as the number of fitting parameters increases.
Average jEj values are similar for normal and pathological data sets,
indicating that this is a property of reflectance measurements and
not a property of middle ear functionality. These results suggest
that E should be forced to zero when fitting in the reflectance
domain, enforcing a relative pole-zero order of Np � Nz. For most
fits, forcing E to be zero has a negligible effect on the error; often
this effect may be remedied by adding a few more poles. However,
the average value of jDj is on the order of 1 for fits with Np < 20. For
instance, when fitting 112 measurements of normal ears from
Rosowski et al. (2012) with Np ¼ Nz ¼ 12, the average magnitude of
D is 0.8 with a standard deviation of 0.4. Thus, it seems necessary to
allow D to be non-zero when fitting in the reflectance domain,
resulting in a relative pole-zero order of Np ¼ Nz. While it may not
be obvious, this is a significant conclusion due to the physical
meaning of D, as we will discuss in Section 4.2.

When the fitting procedure is performed in the reflectance
domain, all fits to G(u) are stable (all poles are in the left half s-plane
(LHP)) because stability is enforced by the algorithm (see Appendix
A). However, when the fit is transformed to the impedance domain
by the relation in Eq. (1), stability is not ensured. If E is allowed to be
non-zero, out of the fits performed to 112 measurements of G(u)
over 0.2e6 [kHz] (Rosowski et al., 2012) with a �30 [dB] MSE
tolerance, no fits are stable when transformed to the impedance
domain. With E forced to zero and all other conditions the same, 59
fits are stable in the impedance domain. All of these fits are also
minimum-phase in the impedance domain, meaning that the zeros
of bZðsÞ=r0 reside in the LHP as well as the poles, ensuring that both
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the impedance and admittance are causal and stable. Of the 53
remaining fits to G(u) that are unstable when transformed to the
impedance domain, 46 have a single pole of bZðsÞ=r0 that lies on the
real axis in the RHP causing the instability; that pole has a mean
value of s/2p ¼ 17.8 [Hz], with a standard deviation of 12.2 [Hz].
Thus, for these 46 fits, the unstable pole is approximately at the
origin of the s-plane, characterizing the low frequency stiffness of
Z(u) for a normal middle ear. The remaining 7 fits to G(u) which are
unstable in the impedance domain have higher pole orders andmay
need more careful attention during the fitting procedure (e.g. the
data is noisy). Note that the impedance should be minimum-phase,
and it should also have the positive real property, RefZðuÞg � 0 for
all frequencies, assuming the system is passive (Brune,1931). Due to
noise, some CAR measurements have |G(u)| > 1, corresponding to
Re{Z(u)}< 0 for some u (Van Valkenburg, 1964). Typically, all fits to
these measurements will also have jbGðjuÞj>1.

2.2. Comparing complex fits

Considering the CAR instead of its magnitude re-introduces the
problem of comparing across measurements, because the residual
ear canal introduces uncontrolled variation in the complex
response (due to varying probe-TM distance, and canal area). This
effect is difficult to extract, particularly because the limited high
frequency range of the measurements does not allow for a good
estimate of any pure delay in the ear canal. Even though mea-
surements are available to 15 [kHz] for the Voss and Allen (1994)
study, there is high frequency noise in the data that makes it
difficult to accurately estimate the distance L from the probe to the
TM (this point was previously made in their 1994 publication).

Under the assumption that the ear canal is lossless, and the rest
of the middle ear system has loss, the reflectance may be factored
such that the residual ear canal effect is approximately removed.
Using the Weiner factorization technique

bGðsÞ ¼ bGmpðsÞbGapðsÞ; (7)

where bGmpðsÞ is the minimum-phase component and bGapðsÞ is the
all-pass component of the pole-zero fit bGðsÞ, it is possible to pre-
serve the magnitude reflectance while removing variable residual
canal delay.

By definition, it is required that all poles and zeros of a mini-
mum-phase function lie in the LHP. To construct the minimum-
phase component bGmpðsÞ, we must factor a component out ofbGðsÞ that accounts for all zeros that lie in the RHP (if the fit was
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zero u/(2p) values have complex conjugates in the southwest quadrant, not shown.
performed in the reflectance domain, all poles will be constrained
to the LHP by the fitting algorithm). Let the function bGLHPðsÞ contain
all the poles and zeros of bGðsÞ that lie in the LHP; let Nz,RHP be the
number of RHP zeros of bGðsÞ, with values qi. The reflectance fit may
be factored as follows:

bGðsÞ ¼ bGLHPðsÞ
YNz;RHP

i¼1

ðs� qiÞ
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|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}bGmpðsÞ

" YNz;RHP

i¼1

ðs� qiÞ�
sþ q*i

�#
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}bGapðsÞ

:

(8)

Considering Eq. (8), overlapping poles and zeros are introduced
in the LHP at s ¼ �q�i . Grouping the terms, a component with LHP
poles and RHP zeros symmetrically placed about the u axis
emerges. This is called the all-pass component, because its
magnitude jbGapðjuÞj is 1 for all frequencies in the fitting range; it
passes all frequencies with no attenuation. The factorization
required to form the all-pass component is unique. The remaining
terms contain only poles and zeros in the LHP, and form the
minimum-phase factor bGmpðsÞ. When working with poles and
zeros, this factorization requires no additional calculations.

An example of this factorization is shown in Fig. 4. Fig. 4a shows
the all-pass component and Fig. 4b shows the minimum-phase
component of the reflectance fit shown in Fig. 2a (the B&K 4157).
Note that Fig. 4b shows only the northwest quadrant of the s-plane.
This style of plotting will be used for all bGmpðsÞ results; though
limited to one quadrant of the LHP, it completely describes the set
of poles and zeros for a given fit. By definition, bGmpðsÞ only has poles
and zeros in the LHP. Thus, a logarithmic s axis may be used for the
LHP (northwest and southwest quadrants), on which the large
dynamic range of s values may be more easily viewed. Because the
southwest quadrant contains only complex conjugates of the poles
and zeros in the northwest quadrant, it does not need to be shown.
Considering Fig. 2a, the zeros at b and b* correspond to the qi’s in Eq.
(8). To factor the fit, overlapping poles and zeros are introduced
at �b* and �b, respectively; the zeros are assigned to bGmpðsÞ
(Fig. 4b), and the poles are assigned to bGapðsÞ (Fig. 4a) along with
the RHP zeros of bGðsÞ. Note how the poles and zeros of bGapðsÞ are
symmetrically placed about the u axis, such that the poles and
−5 −1 −0.5
0

1

2

3

4

5

6

Poles and Zeros of Γ
mp

(s)

Re{s/2π} [kHz]

Im
{s

/2
π}

 [
kH

z]

a

−b*

c
poles
zeros

b)

. 2a). (a) Poles and zeros of bGapðsÞ, (b) poles and zeros of bGmpðsÞ. Note that by definition
northwest quadrant of the s-plane (shown in (b)). All poles and zeros in (b) with non-



S.R. Robinson et al. / Hearing Research 301 (2013) 168e182174
zeros at b, b*, �b* and �b are constrained by both complex
conjugation and all-pass symmetry.

The minimum-phase and all-pass factors have the following
properties:����bGmpðjuÞ

���� ¼
����bGðjuÞ���� (9)

����bGapðjuÞ
���� ¼ 1 (10)

:bGmpðjuÞ þ:bGapðjuÞ ¼ :bGðjuÞ: (11)

The reflectance magnitude is maintained in the minimum-
phase component of the fit, while the component of the reflec-
tance that is uniformly lossless across the frequency range of the fit,
including any pure delay, is accounted for in the all-pass compo-
nent. Because the factors are multiplied, their phases add.

Assuming negligible losses in the ear canal, we may approxi-
mate the residual ear canal contribution to the reflectance as the
all-pass component bGapðsÞ. In some cases, the all-pass component
of the factorization has an approximately linear phase (constant
group delay), resulting in a robust estimate bL of the ear canal length
according to Eq. (2). From this equation, the constant group delay
may be calculated as

sapðuÞ ¼ �dfapðuÞ
du

z
2bL
c
; (12)

where fap(u) is the phase of bGapðjuÞ. If sap(u) is frequency depen-
dent, a frequency independent delaymay be estimated by taking its
minimum over the measured frequency range. When bGapðsÞ gives a
good approximation to the residual ear canal component of the
reflectance,

bGmpðsÞzGTMðsÞ: (13)

Thus, from this factorization it is possible to estimate the
normalized TM impedance using Eq. (1),

bZTMðsÞ
r0

¼ 1þ bGmpðsÞ
1� bGmpðsÞ

: (14)

When the approximate residual ear canal contribution has been
removed, the magnitude TM impedance jbZTMðjuÞj=r0 typically has
no high frequency notch due to ear canal standing waves. In the
case of a uniform ear canal area A(x), the TM impedance estimate is
similar to the ‘propagated impedance’ function described by Voss
and Allen (1994), calculated by removing a pure delay from the
reflectance.

3. Results

3.1. Factorization of bGðsÞ
An example factorization is shown in Fig. 5 for a normal ear,

subject #7 of Voss and Allen (1994). The fit was performed in the
reflectance domain over 0.1e10 [kHz], yielding Np ¼ 18 and Nz ¼ 18
with a MSE of �31.9 [dB]; approximately overlapping pole-zero
pairs at u=ð2pÞz7:5 [kHz] and u=ð2pÞz9 [kHz] were removed,
yielding a MSE of �31.5 [dB] and Np ¼ 14 and Nz ¼ 14. Fig. 5a and b
show the poles and zeros of the all-pass and minimum-phase
components of bGðsÞ, similar to Fig. 4a and b. Note again how the
poles and zeros of bGapðsÞ (Fig. 5a) are symmetrically placed about
the u axis, such that the zero labeled a has a symmetrical
counterpart at -a*, and the poles and zeros at f, f*, �f* and �f are
constrained by both complex conjugation and all-pass symmetry.
Considering Fig. 5b, the pole-zero pairs labeled b, c, d and e corre-
spond in frequency (f ¼ u/(2p)) to minima of the magnitude
reflectance, as labeled in Fig. 5c. The first pair, labeled b, is located at
about 1 [kHz], corresponding to the first minimum of the magni-
tude reflectance. This is similarly located to the pole-zero pair at a
in Fig. 4b, which corresponds to the first minimum of the B&K 4157
magnitude reflectance in Fig. 1a; it is aligned with the low fre-
quency edge of the broad minimum in jG uð Þj for average normal
ears. While the B&K 4157 reflectance fit has an approximately flat
magnitude from 1 to 4 [kHz] and has nomore pole-zero pairs in this
region, the reflectance fit for Voss and Allen subject #7 has closely
spaced pole-zero pairs at c, d and e that correspond to the indi-
vidually varying minima and maxima of its magnitude in that fre-
quency region.

The total phase and the phases of the all-pass and minimum-
phase components of the reflectance fit are shown in Fig. 5d. The
phase of bGapðjuÞ appears linear, while the phase of bGmpðjuÞ appears
flatter than:bGðjuÞ, meaning it contains less delay from the residual
ear canal. This is apparent in the group delay aswell, shown in Fig. 7a
for the reflectance fit and its all-pass and minimum-phase compo-
nents. The group delay of the all-pass component of the reflectance
appears constant, with a value equal to the gap between the curves
for the original reflectance fit and its minimum-phase component.
Because the phase of the all-pass component is approximately linear
(its group delay is approximately constant), the canal delay may be
estimated by Eq. (12). For subject #7 (Voss and Allen, 1994), the
group delay of bGapðjuÞ has a mean value across frequency of
sap ¼ 40:4 [ms], with a standard deviation of 0.5 [ms]. TakingbL ¼ sapc=2 with c¼ 350 [m/s], the estimated residual canal length bL
is 7.1 [mm]; taking min(sap) ¼ 38.9 [ms], the estimated length is
6.8 [mm]. These are reasonable estimates, given that Voss and Allen
estimate the length of the foam plug plus probe at 15 [mm], and the
typical total ear canal length between the opening and center of the
TM is about 23.5 [mm] (Fletcher, 1925). The TM impedance and
phase are shown in Fig. 5e and f. Removing the all-pass component
from the reflectance fit bGðsÞ removes the deep notch in the imped-
ancemagnitude (jbZTMðjuÞj=r0 does not have a high frequency notch),
and causes the impedance phase to have no jump at the jZðuÞj notch
frequency.

A second example factorization is shown in Fig. 6. This is
cadaver ear 12R from the Voss et al. (2012) study, in its normal
(unmodified) state. The fit was performed in the reflectance
domain over 0.2e6 [kHz], yielding Np ¼ 12 and Nz ¼ 12 with a MSE
of �35.8 [dB]. Fig. 6a and b show the poles and zeros of the all-
pass and minimum-phase components of bGðsÞ. Considering
Fig. 6b, the pole-zero pairs labeled b, c, d and e correspond in
frequency to minima of the magnitude reflectance labeled in
Fig. 6c. The pole-zero pair labeled b is located at u/(2p) ¼ 1 [kHz],
corresponding to the first minimum of jbG juð Þj (similar to Voss and
Allen subject #7 and the B&K 4157 ear simulator), and the pole-
zero pairs at c and d correspond to the individually varying
minima and maxima in the mid-frequency region of the magni-
tude reflectance. The pole-zero pair at a seems to correspond to a
small bend in the reflectance below 1 [kHz]; presumably, it has a
smaller effect on jbG juð Þj because it has more damping than the
pairs at b and c, and the pole and zero are closer to overlapping
than the pair at d. The tightly spaced pair labeled e corresponds to
a small dip in a noisy region of the magnitude reflectance between
5 and 6 [kHz].

The total phase and the phases of the all-pass and minimum-
phase components of the reflectance fit are shown in Fig. 6d for
ear 12R from Voss et al. (2012). Here the all-pass component phase
:bGapðjuÞ appears to have a frequency dependent delay.
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Fig. 5. Factored reflectance fit for subject #7 from Voss and Allen (1994). (a) Poles and zeros of bGapðsÞ, (b) poles and zeros of bGmpðsÞ, (c) reflectance magnitude jbGðjuÞj, (d) reflectance
phase :bGðjuÞ, (e) normalized impedance magnitude jbZ ðjuÞj=r0, (f) impedance phase :bZðjuÞ. Note that bGmpðsÞ has no poles or zeros in the right half s-plane, thus the fit is
completely described by northwest quadrant of the s-plane (shown in (b)). The fit was performed in the reflectance domain over 0.1e10 [kHz], yielding Np ¼ 18 and Nz ¼ 18 with a
RMS relative error of 2.5% (MSE ¼ �31.9 [dB]); approximately overlapping pole-zero pairs at u=ð2pÞz7:5 [kHz] and u=ð2pÞz9 [kHz] were removed, yielding Np ¼ 14 and Nz ¼ 14
with a MSE of �31.5 [dB].
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Considering Fig. 6e and f, neither the approximated TM impedancebZTMðjuÞ=r0 nor the data Z(u)/r0 show a standing wave notch in the
magnitude impedance, or a jump in the phase at high frequencies.
This behavior is indicative of a very short ear canal distance be-
tween the probe tip and the TM. The magnitude estimated TM
impedance bZTMðjuÞ=r0 is relatively large at high frequencies in
comparisonwith Fig. 5e; however, this seems plausible because the
magnitude reflectance of the cadaver ear (Fig. 6c) is much closer to
1 at high frequencies than the magnitude reflectance of the normal
ear (Fig. 5c, Voss and Allen subject #7).

Unlike measurements made in vivo, CAR measurements of
cadaver ears typically have amuch shorter residual ear canal, due to
the nature of the preparation. For this ear, the group delay of the
reflectance all-pass component, shown in Fig. 7b, is not constant.
For Voss et al. (2012) ear 12R the mean group delay is 34.0 [ms] over
the entire frequency range of the fit, with a standard deviation of
12.2 [ms]. Instead, a frequency independent group delay, estimated
as the minimum value of the group delay of bGapðjuÞ over the 0.2e
6 [kHz] range (min(sap) ¼ 21.7 [ms]), yields the estimatebLz3:8 [mm]. This is short compared to bL for the in vivo measure-
ment in the preceding example, which makes sense given the
measurement conditions for cadaver ears. Variation of the all-pass
group delay with frequency may be accounted for by non-uniform
area of the ear canal, or lossless mass-stiffness properties of the TM
and middle ear. The TM in particular may contribute a significant
amount of lossless delay (Puria and Allen, 1998; Parent and Allen,
2010).

Estimating the residual ear canal length from the all-pass factor
of the reflectance fit, the probe-TM distance for the B&K 4157 and
DB-100 ear simulators are estimated to be 7.6 [mm] and 2.3 [mm],
respectively. Considering Fig. 1, these results are reasonable, and
agree with the observations made in Section 1.2. While the B&K
4157 shows large residual canal effects in the magnitude imped-
ance and reflectance phase, the DB-100 does not. With a shorter
probe-TM distance, the standing wave impedance notch for the DB-
100 would be at a higher frequency than that for the B&K 4157,
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Fig. 6. Factored reflectance fit for cadaver ear 12R from Voss et al. (2012). (a) Poles and zeros of bGapðsÞ, (b) poles and zeros of bGmpðsÞ, (c) reflectance magnitude jbG juð Þj, (d)
reflectance phase :bGðjuÞ, (e) normalized impedance magnitude jbZ ðjuÞj=r0, (f) impedance phase:bZðjuÞ. Note that bGmpðsÞ has no poles or zeros in the RHP, thus the fit is completely
described by northwest quadrant of the s-plane (shown in (b)). The fit was performed in the reflectance domain over 0.2 to 6 [kHz], yielding Np ¼ 12 and Nz ¼ 12 with a MSE
of �35.8 [dB].

S.R. Robinson et al. / Hearing Research 301 (2013) 168e182176



S.R. Robinson et al. / Hearing Research 301 (2013) 168e182 177
outside of the range shown. Additionally, the shorter canal of the
DB-100 simulator requires the probe tip to be much closer to the
middle ear (TM) for a good acoustic seal.
3.2. Characterization of CAR data

Figs. 8 and 9 show data and pole-zero fits of four reflectance
measurements of ears with varying middle ear conditions (one
normal þ three pathologies). Fig. 8 shows a reflectance summary,
while Fig. 9 shows a sensitivity analysis of various poles and zeros
for each measurement. These poles and zeros were chosen to help
the reader develop an intuition for the effect of pole-zero locations
on the magnitude response. This exercise is meant as a tour of the
pole-zero fits for various pathologies; two poles, zeros, or pole-zero
pairs are chosen for each pathology, but any poles and zeros of the
fit could be analyzed in this way.

Fig. 8b shows the absorbance level in [dB] (Allen et al., 2005;
Rosowski et al., 2012), defined as

Absorbance dB½ �h10 log10 1� jG uð Þj2
� �

; (15)

where 1� jG uð Þj2 is the power absorbance. The mean and
normative region of the absorbance level for normal middle ears
have a very distinct shape. Rosowski et al. (2012) characterize the
rising slope as 15 [dB] per decade and the falling slope as �23 [dB]
per decade, with a flat region occurring between about 1 and
4 [kHz]. This is a useful way to characterize reflectance data,
because deviations of the absorbance level from normal are more
easily recognized, and are closely related to hearing sensitivity
(Allen et al., 2005). Additionally, the absorbance level condenses in
a rational way the region of individual variation in the magnitude
reflectance for normal ears, to a range of a few [dB].

Fig. 9 is comprised of four subplots. In each subplot, the left
panel shows two sensitivity analyses of poles and zeros from the
right panel; different analyses are color-coded in red and blue.
These color-coded regions display ratios of a modified magnitude
reflectance fit to the original jbGmpðjuÞj, shown in Fig. 8a for each of
the four measurements, as a function of frequency. Note that the
frequency axes of the left and right panels in each subplot are
vertically aligned. For each sensitivity analysis, the reflectance is
modified by shifting the color-coded pole, zero, or pole-zero pair ofbGmpðsÞ by 10% of its value on the s plane; pole-zero pairs are shifted
as a unit about their two-dimensional centers. Sensitivity regions
show the minimum and maximum values of the ratio
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����bGmpðsþ 3ðsÞÞ
����
RGðuÞ ¼ s¼ju����bGmpðsÞ
����
s¼ju

(16)

out of 1000 shifts of the chosen pole, zero, or pair (sk) by

3ðsÞ ¼

8>><>>:
0:1

�����1N XN
k¼1

sk

�����ejQ for s ¼ sk

0 else

(17)

where Q is a random variable uniformly distributed between �p
and p.

A sensitivity analysis is presented in Fig. 9 for a normal ear (Fig. 8
black, Fig. 9a) from Rosowski et al. (2012) and for three pathological
ears fromNakajima et al. (2012). A representativemeasurement has
been chosen for each pathology examined in that study, including
stapes fixation (Fig. 8 orange, Fig. 9b), ossicular disarticulation
(Fig. 8 purple, Fig. 9c), and superior semicircular canal dehiscence
(SSCD) (Fig. 8 green, Fig. 9d).

3.2.1. Normal ears
Consider the normal earmeasurement shown in Fig. 8, ear 22L of

the Rosowski et al. (2012) study of normal ears. This fit was per-
formedon reflectance domain datawith E forced to zero, achieving a
MSE of �35.6 [dB] with 12 poles and 12 zeros. The resulting poles
and zeros of bGmpðsÞ are shown in Fig. 9a (right). The magnitude
reflectance jbGmpðjuÞj ¼ jbGðjuÞj is plotted in Fig. 8a (black). Norma-
tive data, showing �1 standard deviation for 112 measurements of
normal ears (Rosowski et al., 2012), is plotted as the shaded gray
region in Fig. 8a and b; ear 22L falls within this normal region.

Considering Fig. 9a (left), the red shaded region shows a sensi-
tivity analysis of the pole-zero pair labeled a at about 900 [Hz]
(close to 1 [kHz]), and the blue region shows a sensitivity analysis of
the pole-zero pair labeled b at 2.5 [kHz]. These pole-zero pairs were
analyzed because they lie in the mid-frequency region, where
normal ears show individually varying minima and maxima of the
magnitude reflectance. Note that the frequency axis of the sensi-
tivity plot is aligned with that of the poleezero plot for comparison.
According to Fig. 9a (left), the reflectance magnitude is only
significantly affected by variations of the pair location in the fre-
quency neighborhood where each pair resides. This indicates that
the exact location and curvature of the minima and maxima in
those frequency regions are determined by the corresponding pole-
zero pairs.
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data and fit for stapes fixation ear 62L, disarticulation (ossicular discontinuity) ear 28L,
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Fig. 9. Sensitivity analysis of select poles and zeros for the ears of Fig. 8. Each subplot shows the poleezero plot of bGmpðsÞ (right), and two color-coded sensitivity analyses cor-
responding to the highlighted poles and zeros (left); the frequency axes are vertically aligned for each pair of plots. (a) Normal ear, (b) stapes fixation, (c) disarticulation, (d) SSCD.
Each sensitivity analysis shows the minimum and maximum values of RG (Eq. (16)) across frequency for the corresponding colored pole, zero, or pole-zero pair.
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Thus, the individually varying fine-structure minima and max-
ima in the 1e5 [kHz] range (Allen et al., 2005; Rosowski et al., 2012)
seem to be characterized primarily by closely-associated pole-zero
pairs in that frequency range. Identifying the pole-zero behavior
that characterizes the variation of normal ears will allow for better
detection of abnormal reflectance measurements. Additionally, the
pole-zero pair located close to 1 [kHz] corresponds to the first
minimum of jbG juð Þj and the ‘breakpoint’ of the power absorbance
(Fig. 8b), between the low-frequency ramp and the flat region.
Based upon the pole-zero fits for this ear, the B&K 4157 (Fig. 4b),
Voss and Allen (1994) subject #7 (Fig. 5b), and Voss et al. (2012)
cadaver ear 12R (Fig. 6b), it seems that bGmpðsÞ for normal ears
will typically have pole-zero pair near 1 [kHz], characterizing the
breakpoint of the absorbance level (and the first minimum of the
magnitude reflectance).

3.2.2. Stapes fixation
The orange fit curve and data points in Fig. 8a and b show an

example CARmeasurement (patient ear 62L, Nakajima et al. (2012))
for a patient with confirmed stapes fixation due to otosclerosis, in
the presence of an intact TM and aerated middle ear. The reflec-
tance domain fit has Np ¼ 10, Nz ¼ 10, and a MSE of �40.3 [dB]. The
absorbance level (Fig. 8b) and magnitude reflectance (Fig. 8a) for
this ear fall significantly outside of the normative regions.

Stapes fixation due to otosclerosis is best characterized by an
increased middle ear stiffness (Feeney et al., 2003; Allen et al.,
2005; Nakajima et al., 2012). This typically results in an elevated
reflectance magnitude at low frequencies, corresponding to a right
shift of the low-frequency sloping region of the absorbance level
(Allen et al., 2005). This behavior is apparent in Fig. 8b, where the
absorbance level curve for ear 62L is significantly shifted to the
right of the normative region below 2 [kHz]. The sensitivity plot in
Fig. 9b (left) analyzes low frequency singularities, due to the un-
usual behavior of the magnitude reflectance at low frequencies.

The red region of Fig. 9b (left) shows a sensitivity analysis of the
pole labeled c on the real axis of bGmpðsÞ, closest to the origin. This
pole was chosen because it has the least damping, thus the stron-
gest effect on the reflectance, and the magnitude reflectance is
higher (has a more pole-like behavior) at low frequencies. The
movement of this pole affects the magnitude reflectance at low
frequencies up to about 2 [kHz]. Moving this pole towards the
origin strengthens its effect, increasing the magnitude reflectance
at low frequencies, and moving it away from the origin will
decrease the magnitude reflectance at low frequencies. The blue
region shows the sensitivity analysis for the pole-zero pair labeled
d at about 1.75 [kHz]. This pair was chosen because it is the first
pole, zero, or pair occurring in frequency off the s axis, when we
would expect to see a pole-zero pair at about 1 [kHz] for a normal
ear. While its largest effect occurs in the frequency neighborhood
where the pair resides, movement of this pole-zero pair also affects
the magnitude reflectance at low frequencies. This pair appears to
characterize the breakpoint of the absorbance level (and perhaps
also, in part, its slope) for this pathological ear. For normal ears, this
breakpoint occurs significantly lower in frequency, around 1 [kHz],
as discussed in Section 3.2.1.

3.2.3. Ossicular discontinuity
The purple fit curve and data points in Fig. 8a and b show an

example CARmeasurement (patient ear 28L, Nakajima et al. (2012))
for a patient with confirmed ossicular discontinuity, in the presence
of an intact TM and aerated middle ear. The reflectance domain fit
has Np ¼ 10, Nz ¼ 10, and a MSE of �31.3 [dB]. The absorbance level
(Fig. 8b) and magnitude reflectance (Fig. 8a) for this ear also fall
outside the normative regions, but the nature of this variation is
quite different from that due to stapes fixation.
Ossicular discontinuity typically causes a narrow-band (tuned)
resonance in the magnitude reflectance between 0.5 and 0.8 [kHz]
(Nakajima et al., 2012). This is visible in the case of ear 28L, which
has a deep notch in the reflectance magnitude at about 700 [Hz]
and a corresponding elevated absorbance level in that frequency
region. The absorbance level does not have a normal breakpoint at
1 [kHz]. The poles and zeros of bGmpðsÞ correspondingly show an
abnormal behavior in this range. In this case of ossicular disconti-
nuity there are poles and zeros near 1 [kHz], but they are not tightly
paired. Hence, the pole and zero closest in frequency to 1 [kHz] are
analyzed.

Fig. 9c (left) shows a sensitivity analysis of the poles and zeros
close to 1 [kHz]. The red region indicates that the zero labeled e
near 700 [Hz] characterizes the deep notch in the magnitude
reflectance. The magnitude reflectance is very sensitive to the
location of this zero, experiencing sharp relative dips when it is
moved higher or lower in frequency. It makes sense that this zero
has a large effect on the magnitude response, because it has a very
small s value compared to the other poles and zeros of bGmpðsÞ. The
blue region shows the sensitivity of the magnitude reflectance to
the pole labeled f at 1 [kHz]. Not only does this pole affect the
magnitude reflectance in the 1 [kHz] region (where the magnitude
reflectance is higher than average), but it has a significant effect on
the magnitude reflectance for all frequencies below 2 [kHz].

3.2.4. Superior semicircular canal dehiscence (SSCD)
The green fit curve and data points in Fig. 8a and b show an

example CARmeasurement (patient ear 52L, Nakajima et al. (2012))
for a patient with confirmed SSCD, in the presence of an intact TM
and aerated middle ear. The reflectance domain fit has Np ¼ 12,
Nz ¼ 12, and an MSE of �34.3 [dB]. The absorbance level (Fig. 8b)
and magnitude reflectance (Fig. 8a) for this ear fall slightly outside
of the normative regions around 1 [kHz].

SSCD typically shows a similar variation from normal to that
caused by ossicular discontinuity, though not as extreme (Nakajima
et al., 2012). In Fig. 8a there is an abnormally deep minimum in the
magnitude reflectance at 1 [kHz], corresponding to a slight eleva-
tion of the absorbance level at that frequency (Fig. 8b), relative to
the normal middle ear region. Comparing this with the purple
curve for ossicular discontinuity, the effect is similar but not as
pronounced, and the notch occurs in a slightly higher frequency
range. Because the variation in the magnitude reflectance is
observed at low frequencies around 1 [kHz], the sensitivity of poles
and zeros in that region is analyzed.

Fig. 9d (left) shows the sensitivity analysis for the pole-zero pairs
at 500 [Hz] and 1 [kHz] in Fig. 9d (right). The red region of Fig. 9d
(left) shows the effect of the pole-zero pair labeled g at 500 [Hz] on
the magnitude reflectance. This pair was selected because it lies
between the s axis and the normal 1 [kHz] pair location. Shifting this
pole-zero pair causes a variation in the reflectance magnitude
around that frequency. However, the effect is not very pronounced;
the pole and zero are very close together, and appear to be fitting a
small noise peak. In fact, this effect is so small compared to the effect
of the 1 [kHz] pole-zero pair, that the red region is hard to see. The
blue region shows that shifting thepole-zero pair labeledh at 1 [kHz]
causes large variations of the magnitude reflectance in that fre-
quency neighborhood. Notice that the zero of this pair has a signif-
icantly smaller s value than the pole, increasing its relative effect on
the reflectance. This zero and its distance from the pole affect the
depth of the minimum in the magnitude reflectance at 1 [kHz]. This
pole-zero pair also characterizes the nature of the breakpoint in the
absorbance level between the initial slope and the flat region.
Considering thepole-zero pairs near 1 [kHz] found for normal ears in
this paper (Figs. 4b, 5b, 6b and 9a (right)), the abnormal depth of the
1 [kHz] notch in the SSCD magnitude reflectance could be due to
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nuances of the location of its 1 [kHz] pair, such as damping and
relative distance between the pole and zero.
4. Discussion

4.1. Limitations

The pole-zero fitting method is limited by the data provided,
and will typically not be accurate outside of the fitted frequency
range (either above or below). Because the reflectance is not known
at higher or lower frequencies, the calculation of bGapðsÞ, approxi-
mating the residual ear canal effect, must be inherently imperfect
(Voss and Allen, 1994). Additionally, the appropriate relative order
of the fit (Nz vs. Np) is related to high frequency asymptotic behavior
of the data, which may be unknown. As stated in Section 2.1,
the relative order is determined by the values of D and E in
Eq. (5); these fit the high frequency data, because all other terms
(e.g. Ci/(s � Ai)) go to zero for large u values.

Pole-zero fits to the data are also impacted by the estimated
surge resistance r0 (Eq. (1)). The use of an incorrect area value to
calculate r0 will cause errors in the calculation of the reflectance
(Rasetshwane et al., 2012). For the Mimosa Acoustics HearID sys-
tem, the canal area A is set according to the size of the foam tip
used. It has been shown that small variations in the ear canal area
relative to the calibration cavity area, within 20%, cause a negligible
change in the reflectancemeasurement (Keefe et al., 1992; Voss and
Allen, 1994). Nonetheless, this will have a small effect on the CAR
function and the pole-zero locations of its approximation.

4.2. Relative order of bGðsÞ
In Section 2.1.2, it was determined empirically that the fit

parameter E should be set to zero when fitting in the reflectance
domain, while the value D should not (though it is typically small).
When E is forced to zero, the inverse Laplace transform of the
reflectance fit bGðsÞ is
bgðtÞ ¼ DdðtÞ þ

XNp

i¼1

Cie
AituðtÞ: (18)

Thus, a non-zero fit parameter D corresponds to an initial Dirac
d-function singularity of the time domain reflectance (Lundberg
et al., 2007); this value D is related to the reflectance fit via

lim
s/þN

�bGðsÞ	 ¼ D: (19)

Now consider the surge resistance, which is defined as the initial
d-function singularity of the time domain impedance (Section 1.1).
For a transmission line model of the ear canal and middle ear (e.g.
having wave propagation) the impedance Z(s) at the probe tip has
the property

lim
s/þN

½ZðsÞ� ¼ r0; (20)

where r0 is the true surge resistance, a real-valued constant.
Considering Eq. (1) in this limit, we find

lim
s/þN

½GðsÞ� ¼ r0 � r0
r0 þ r0

: (21)

If r0 is equal to the true surge resistance r0, the limit of GðsÞ as
s/þN must be zero. This means there must be no initial d-sin-
gularity in the time domain reflectance (Claerbout, 1985). Thus,
considering Eqs. (19) and (21), D should be zero; a non-zero value of
D may indicate a fitting inaccuracy, or the use of an incorrect r0
value. In the latter case, if the fitting procedure yields a good
approximation of the initial singularity in the time domain reflec-
tance, due to an incorrect r0 value, D might be used to estimate the
true surge resistance value from the CAR data via

r0 ¼ r0
1þ D
1� D

: (22)

4.3. Applications

The fitting algorithm is fast, and may be easily implemented in a
reflectance measurement system. Ultimately, it may allow for more
robust automated classification than visual assessment or correla-
tions between magnitude reflectance values and audiometric
measurements. Pole-zero fitting is advantageous because it reduces
the entire complex response to a small set of parameters, without
extensive processing of the CAR data. Further study will be needed
to meet this objective, using larger sets of normal and pathological
CAR data in combination with known physical characteristics of
normal and pathological middle ears, to establish final classifica-
tion strategies.

Pole-zero fits may also be used to synthesize network models of
the complex impedance (e.g. Brune, 1931; Van Valkenburg, 1964).
However, such RLC networks will not necessarily be unique. Net-
works synthesized from pole-zeros fits of CAR measurements will
often lack direct physical interpretations present in other models,
such as the Zwislocki (1962), Kringlebotn (1988), or Parent and
Allen (2010) models. However, they will have great utility for
quantifying CAR data.

As stated in Section 1.1, pole-zero fits are not intended to be used
in their raw form in the clinical realm; a visual diagnosis may be
much better achieved by considering the absorbance level in [dB],
as shown in Fig. 8b. However, we believe that this method is of
great value for modeling and diagnosis of middle ear pathologies
based on reflectance. Pole-zero fitting allows for a concise quanti-
tative representation of reflectance that can be useful when
designing algorithms to automatically detect pathologies.

4.4. Summary

This study establishes amethodology for examining the physical
and mathematical properties of CAR data using pole-zero fitting.
Pole-zero fits can characterize CAR data with low error and small
number of parameters. While the complex data reintroduces
measurement variation due to the residual ear canal, measure-
ments may be effectively compared across ears by factoring the
reflectance fit into its minimum-phase and all-pass components.
The magnitude of the minimum-phase component of the CAR is, by
definition, equal to the reflectance magnitude, thus preserving the
current diagnostic standard. In this investigation, it was established
that reflectance domain fits show distinct pole-zero pairs in the
mid-frequency region of individual variation for normal ears, and
that they may systematically differ for various pathologies. Pole-
zero modeling provides a concise, parametric characterization of
CAR data, in order to enable improved automated identification of
middle ear pathology using a noninvasive, yet relatively low cost
measurement system.
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Appendix A. Vector fitting

A vector fitting procedure developed by Gustavsen and Semlyen
(1999) is used to fit complex, frequency domain data to a function
of the form shown in Eq. (5). The vector fitting procedure is an
iterative two step process, which converts a nonlinear least squares
problem to a linear least squares problem by introducing an un-
known scaling function Q, having known poles. Let the iteration
index of the algorithm be denoted by m ¼ 1,2,.,M. Note that the
pole order of the algorithm is fixed; if some error criterion is not
met, the algorithm may be re-run with a greater number of poles
Np. On each iteration, a least squares problem is solved based on the
following equations:

HmðsÞ ¼
XNp

i¼1

ci;m
s� ai;m�1

þ dm þ ems (A.1)

QmðsÞ ¼
XNp

i¼1

bi;m
s� ai;m�1

þ 1: (A.2)

These equations are linear in their unknowns ci,m, dm, em, and
bi,m. Both QmðsÞ and Hm(s) share the same known poles ai,m�1,
which have either been determined in the previous iteration, or
initialized by the user. It is important that QmðsÞ and Hm(s) have the
same poles, because the poles algebraically cancel when a ratio of
the functions is taken in a later step of the algorithm (Eq. (A.4)). The
algorithm iterates to converge on the unknownpoles Ai¼ ai,M of the
fit bF ðsÞ ¼ FMðsÞ (which are a nonlinear unknown in Eq. (5)). The
initial poles ai,0 are the ‘starting poles’ of the algorithm; their se-
lection will be described below.

The vector fitting method relates Eqs. (A.1) and (A.2) to the
measured data FðukÞ at a given frequency index k via

QmðsÞjs¼juk
FðukÞ ¼ HmðsÞjs¼juk

: (A.3)

When evaluated over the many available frequency points of
FðuÞ, Eq. (A.3) results in an over-determined linear problem in the
unknowns ci,m, dm, em, and bi,m. At each algorithm step, the current
fit is given by

FmðsÞ ¼ HmðsÞ
QmðsÞ (A.4)

using the estimated values of ci,m, dm, em, and bi,m. This fit is
related to the data via
FðuÞzFmðsÞjs¼ju (A.5)

and should improve with iteration.
Because Hm(s) and QmðsÞ share the same poles, by construction

there is a perfect cancellation in Eq. (A.4). Thus, upon iteration, the
zeros of QmðsÞ become the poles of Fm(s). To see this, consider the
product forms of Eqs. (A.1) and (A.2) for a non-zero em,

HmðsÞ ¼
em

YNpþ1

i¼1

�
s� zi;m

�
YNp

i¼1

�
s� ai;m�1

� (A.6)

QmðsÞ ¼

YNp

i¼1

�
s� ai;m

�
YNp

i¼1

�
s� ai;m�1

� (A.7)
where zi,m are the zeros of Hm(s), ai,m are the zeros of QmðsÞ, and
ai,m�1 are the known poles of both functions. Substituting Eqs. (A.6)
and (A.7) for Eq. (A.4) yields

FmðsÞ ¼ HmðsÞ
QmðsÞ ¼

em
YNpþ1

i¼1

�
s� zi;m

�
YNp

i¼1

�
s� ai;m

� : (A.8)

Thus, on each iteration the zeros of the scaling function QmðsÞ
become the poles of the fitted function Fm(s). On the last iteration,
the poles ai,M become the poles of FMðsÞ ¼ bF ðsÞ (Eq. (5)) such that
Ai ¼ ai;M . Gustavsen and Semlyen found that it is better to calculate
the remaining quantities Ci, D, and E via the least squares procedure
outlined by Eq. (A.3), using ai,M as the starting poles. Thus, the final
quantities Ci ¼ ci,Mþ1, D ¼ dMþ1, and E ¼ eMþ1 are the result of a
partial iteration.

An appropriate selection of starting poles ai,0 is necessary for the
convergence of the vector fitting method. For a function with reso-
nance peaks, such as the reflectance, Gustavsen and Semlyen (1999)
suggest that the starting poles (complex conjugate pairs
ai,0¼�ai,0� jbi,0, with ai,0¼ bi,0/100 advised) be linearly distributed
over the frequency rangeof the data. The linear problemcanbecome
ill-conditioned if the starting poles are real. Large differences be-
tween the starting poles and the best fit poles of the response can
cause large differences between QmðsÞ and Hm(s) resulting in poor
least squares solutions (Gustavsen and Semlyen, 1999).

If the least squares procedure returns unstable poles
(Refai;mg > 0), their real parts are reflected to the left half s-plane
before the next iteration. Due to this, the error will not always
decrease monotonically with iteration. Depending on the applica-
tion, it may also be beneficial to impose additional properties. For
example, one might force the impedance to be minimum-phase,
instead of merely stable. This could be done by inverting the real
part of any zero that appears in the RHP, similar to the procedure for
enforcing stability of the poles. Such a constraint may cause an
increase in error, but could have utility for physical modeling.

The error depends on the starting pole values due to noise in the
data. Additionally, due to the smoothness of the reflectance func-
tion and the number of available parameters, there exist multiple
non-unique fits yielding reasonable fit errors (e.g. within a certain
MSE tolerance). Thus the poles (of an already low error fit) may vary
with iteration, resulting in non-monotonic error. Typically, signifi-
cant MSE improvement over the first few iterations occurs only for
low pole orders (e.g. Np < 10 over a 0.1e10 [kHz] range). For high
pole orders (e.g. Np > 20 over the same range) the fitting procedure
achieves close to its lowest MSE within one iteration. When the
order is approximately known, as it is here, the starting poles better
cover the entire frequency range, causing the fit to commonly
converge within a few iterations. For low orders of poles, more it-
erations may be necessary to migrate the poles to their best fit
locations.
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