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ON THE AGING OF STEEL GUITAR STRINGS

by

jontB. A "en
Bell Laboratories

Murray Hill, New Jersey 07974

INTRODUCTION
It is well-known by musicians who play

steel string guitars that their strings are very
susceptible to aging. The sound of a quality
guitar can be totally lost within a few hours
of playing because of string aging. This
problem is such that professional musicians
frequently change their strings during an
intermission.

It has been suggested by Prof. Lothar
Cremer 1 that nonlinearities are actually
responsible for the removal of the degen-
eracy, but I have been unable to confirm
this suggested theory. The double mode
structure is important perceptually because
of beating between neighboring modes. The
resulting time dependence of the partials is
clearly important and greatly complicates the
analysis of real string impulse responses.
The resulting homogeneous equation is

where we have defined

(10)

If we further define

(11)

There exists a great deal of folklore
concerning a cure for aging strings. It is a
generally accepted fact that strings age more
rapidly for some people than others ~ an
effect that is presumed to be attributable to
the propensity of musicians to perspire.
Many a thrift-minded guitar player has tried
the technique of boiling his week-old strings
in vinegar in an attempt to rejuvenate them.
The relatively short life of the guitar string
and the frequent necessity to replace strings
(a 10-minute, mindless ordeal) inspired me
to investigate this perplexing problem of
aging.

where the primes indicate differentiation
with respect to z and the dots with respect
to time, c is the velocity of transverse
waves on the string, R is the loss coefficient
and e , which Is smnll, is the stiffness
coefficient. Equation (1) may be analyzed
by the following argument. Assume we
were able to force a standing-wavelike pat-
tern on the string of the form

Equation (12) defines the damping
coefficient for each mode,

w„

is the fre-
quency, and B is commonly called the
coefficient of inharmonicity [3 J. In Fig. 2
we plot (12, 13). When B is zero the modes
(partials) are perfectly harmonic.

Note that B is zero for the lossless case
when e is zero. For the typical case (13)
may be accurately approximated by expand-
ing the square root since B is very small
compared to 1.

THEORY

A guitar string may be modeled as a
rigid string (bar) under tension [1,2]. The
linearized differential equation describing
the string and the physical model are shown
in Fig. 1. The first term in this equation
represents the wire's inherent rigidity. This
term is small but contributes significantly to
one's perception of the string's sound
because it introduces inharmonicity. Since
the ear is very sensitive to this inharmoni-
city, even the slightest degree of stiffness is
important.

Under these conditions, what (complex) fre-
quency s=cr4-/ai would be required to main-
tain this motion? Substituting (2) into (1)
we may solve for tne unknown complex fre-
quencies s as a function of k. Note that the frequency in Hertz is defined

as

(16)

The 45 degree line of Fig. 2 is the case
of the harmonic string. For a stiff string,
the partials are increasingly sharpened. The
damping constant also increases quadrati-
cally. If we define the reverberation time T„
as the time required for a mode to decay 60
dB, then

For simple pinned boundary conditions k
may be found to beThe second and third terms in the

equation are the standard wave equation
terms which make up classical string theory.
The loss is introduced into the equation by
the fourth term. This term represents the
rate of change of the string's curvature and
is a term which may be related to internal
loss mechanisms. The quantitative validity
of this term has not yet been

confirmed;

however, it is qualitatively in agreement
with all of our present measured results.
The right hand side of the equation is the
source term, which for simplicity has been
chosen to be a point source at r=z0.

corresponding to the vibrating modes of the
string. Using (5) in (4) we may determine
the complex resonant frequency of each
mode

(17)

PHYSICAL MEASUREMENTS
The greatest problem in making the

physical measurements was obtaining old
guitar strings which were intact. D. Thomp-
son of The Martin Guitar Company was
kind enough to donate several dozen new
base E strings. New sets of strings were
given to guitar virtuosos in trade for their
old, worn guitar strings.

(6)

The model is specified by a two-
dimensional vector differential equation. A
vector is required because we assume that
the degeneracy of the x and y motion has
been removed. The physical mechanism
which removes the degeneracy is presently
unknown, so in our model we arbitrarily
assume that the boundary conditions are

(7)
The measurement jig consisted of a

wooden electrical guitar body. Electrical
pickup was made by placing a one-inch
diameter X cut quartz disk under the metal
bridge. A plastic pick served as the point
source. The string was plucked as close to
the bridge as possible while the spectrum
was monitored on a Spectral Dynamics SD-

(8)

ffl/|=i!l£Vi^ (9)
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time dependence of the partials is then (8, 9, 10) may be rewritten as
portant and greatly complicates the _ n 2
3ff real string impulse responses. <x„= t—^-h 2 (sec~] ) (12)
ting homogeneous equation is

<o„=a)ony/l+B0 ny/l+Bn2 (rad/sec) (13)

(i) B.^-lLi (14)
c 4

ifiks (x,t)=ei'cos(kx) (2)

<u„=a>ofl[l +—r—] (rad Isec) (15)

ek4+k 2+Rsk2+s 2/c2=o (3)
f„-t»„l2ir (Hz)

Solving for s, we find that

,±- ~^k2 ±Jck^Jl+k2{e _R 2^_m

k=mr/L;

n=±l, ±2, ±3,... (5)

T„—6.91/<r„ (sec)

s*=\-Rc2(lf) 2

s^"o-„±Joi„
we may identify a n and

&>„

a~-Rc 2TT2 n 2 12L2
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301 real time spectrum analyzer. An panel of Fig. 4a,b. In the insert we have
attempt was made to create a spectrum plotted
which was as uniform as possible. When . . . .
the plucking technique was mastered, the " °signal was digitized with al2 bit A/D con- which from (15) is equal to
verier and the lime waveform was stored on � „ ,veitei uiiu uii: nine wavciuuu was siuieu on u a 2

na\

digital magnetic tape. The final responses
were chosen by listening to the digitized In this manner both

,/'

0 and B have been
samples via al2 bit D/A converter. One determined.
new and one old sample were chosen as jt js easily seen from the figures that B
being characteristic of the sound quality we \ s the same for both the new and old strings
wished to study. sjnce the curvature of the plots is the same.

The first 50 ms of the waveforms for Thus it appears that the stiffness does not
the new and old string are shown in Figs. change as the string ages.
3a,b. A great deal of information may be rn Fig . 4a>b the double mode structure
obtained from the time waveforms. As the

;

s aiso apparent above 1 kHz. The double
initial pulse propagates on the wire the high structure complicates the analysis greatly
frequencies separate out. This effect is due when two modes lie very close to each other
to the stiffness of the wire which causes and are not resolved by the DFT. Under
dispersion. Because of the

stiffness,

the this condition, the modes beat together and
high frequencies propagate with a greater cause problems in measuring the decay con-
velocity. When the pulse reaches the end of stant cr,,. Even when a single mode was
the wire it is reflected back. Thus we see a apparently resolved there were problems
series of pulses with a high frequency pre- measuring cr ir When each of the modes
cursor separating out from the main part of was

inverse-transformed,

a very irregular
the pulse. It is easy to understand why the decay curve was common. One possible
modes become sharper as the frequency cause 0f this phenomenon is the slight

increases. The increased velocity of propa- change in the mode frequency of each of
gation at higher frequencies implies a the two modes as the response decays.
shorter time period for the round trip of the Because of the irregular decay, we have not
pulse at those frequencies. Thus the high yet found a reliable method of measuring
frequency partials are shifted up in fre- &
quency relative to the frequency predicted Ir .... .... . . . . .. However, one qualitative cone usion isby a constant sound velocity. ...

_�

.

�_

, , .possible. The main difference observed in
We wish to demonstrate that e does comparing Fig. 4a and 4b is the loss of the

not change as the string ages. We may do high frequency modes in the old string spec-
this if we measure the mode frequencies of trum 4b. These modes, which are inhar-
the new and old string and plot them as a monic, are initially excited but decay away
function of the mode number. The string so rapicj|y they are not perceived. In the
time response was Fourier transformed by new string the loss factor Ris smaller and
the use of a discrete Fourier transform therefore the decay time is long enough that
(DFT). From a visual inspection, the mode the inharmonicity is audible.
frequencies were determinedand are plotted _ „ , .

■„

� . , . ■ ,

n

. To confirm these cone usions we syn-m the upper right hand corners of each , .. „ . M . . *thetically generated string impulse responses

mvs NUMaeR h

FIG- 2

on the computer so that the perceptual
effect of different R values could be deter-
mined.

SIMULATIONS
To simulate the sound of a guitar

string we evaluated the sum

where

cr„

and <d„ are given by (12) and
(13). It was recessary to modify (12)
slightly by adding a small constant. Without
this modification the lower modes would
have excessive reverberation time. The
modification is equivalent to an extra term
in (1) porportional to i/». Although the
naturalness of the synthetic strings left
something to be desired, the change in qual-
ity which was perceived with increased R
was distinctly similar to the difference
between a new i.nd an old string. !n Fig. 3c
we show an example of a synthetic impulse
response. The dispersion we described ear-
lier is clearly present.

SUMMARY
We have discussed in some detail the

theory of a plucked stiff steel string under
tension. The stiffness is important perceptu-
ally because it introduces inharmonicity. In
a new string the loss is such that the inhar-
monicity is easily perceived. As the string
ages the loss increases and damps out the
higher harmonics making the inharmonicity
imperceptible. If one could stabilize the loss
coefficient R of a string he might be able to
greatly improve its aging properties.
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Found in the "VTOLIM TIMES

of October 15,1895
Here is a good story of Joachim, which has theadvantage of being absolutely authentic. During

one of his visits to London some years ago, the greatvirtuosohad occasion to enter a barber's shop for a
shave. The barber's acquaintance with illustriousmusicians was limited, and Joachim preserved his
incognito.

" Hair cut, sir ? " demanded the obsequious
assistant, eyeing Joachim's flowing locks with an air
of proprietorship.

Joachim intimated hisperfect satisfaction with the
existing length of his hair ; but the barber was not tobe so easily baffled.

" Trifle long at the'back, sir," he suggested diplo-
matically.

Joachim explainedthat that was the way he liked
it,and the barber was silent for a little.

il Bather thin on top, sir," was his next remark,
whereby he sought to convey his own firm conviction
that to sacrifice thickness to length in the matter of
hair was altogether a poor policy ; but Joachim onlyglared at the barberand tossed his lion mane. Andthe barber went on shaving, but in a moody, discon-tented kind of way. Hope springs Ieternal in thehuman breast, and the barber's " breast was noexception.

" Just trim the edges for you, sir ? Half-an-irtch all

round,

sir ? "Joachim remained obdurate, and the barber"s stock
ofpatience and ingenuity deserted him at the same
time. He vented his indignation in the most scathing
expression of contempt that suggested itself to histonsorial mind.

" Well, of course, if you want to look like a
German musician,'' he remarked, "it's no good
talking."

of January 15,1894

Scene : Doorstep of a house. Landlady just com-
ing- out when an itinerant fiddler accosts her.
" Patronise the wandering minstrel, kind lady ? "Kind Lady : " Certainlynot, one scraper at the door is
quite enough."

Landlady (to lodger) : "Beg pardon, sir. Did I
understand as you were a doctorofmusic ? "—Lodger :
" I am, ma'am. Why ? "—Landlady : " Well, sir, my
Billy 'ave just bin and broke his

concertina,

and I
thawt as 'ow I should be glad tc put a hodd job in
yer way."

Here's a yarn, not new, but good, and attributed to
the composer Cherubini. One day a young fellow
called on him to have his voice tried. Cherubini
heard him give a song or two,and then the youth
asked, " What branch of the profession do you advise
me to go in for?"- " Auctioneer,"promptly replied
the maestro ; and then the interviewended.

A thief broke into a largemansion early the other
morning, and found himself in a music-room. Hear-
ing footsoeps approaching he hid buhind a screen.
From 7 to 8 o'clock the eldest daughter had a lesson
on the piano. From 8 to 9 o clock the second daughter
had a singing lesson. From 9to 10 o'clock the eldest
son had a violin lesson. From 10 to 11 o'clock the
other son had a lesson on the flute. At 11 o'clockall
the brothers and sisters assembled, and studied janear-splitting piece for piano, violin,

flute,

and voice.The thief staggered out from behind the screen at
11.30, and falling at their feet, cried—"For mercy'ssake, have me arrested or give me a rest 1 "




