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After many decades of work it is not understood how the average Normal
Hearing (NH) ears, or significantly, Hearing Impaired (HI) ears, decode con-
sonants. We wish to discover the strategy HI persons use to recognize conso-
nants in a consonant-vowel (CV) context. To understand how NH ears decode
consonants, we have repeated the classic consonant perception experiments of
Fletcher, French and Steinberg, GA Miller, Furui, and others. This has given
us access to the raw data (e.g., to allow for ANOVA testing) and the ability
to verify many widely held (typically wrong) assumptions. The first lesson
of this research is the sin of averaging: while audiology is built on average
measures, most of the interesting information is lost in these averages. It has
been shown, for example, that averaging across consonants is a grievous error,
as is averaging across talkers for a given consonant. It will be shown how an
average entropy measure (a measure of dispersion in probability) has higher
utility than the average error.

INTRODUCTION

A fundamental problem in auditory science is the perceptual basis of speech, that is,
phoneme decoding. How the ear decodes basic speech sounds is important for both
hearing aid and cochlear implant signal processing, both in quiet and in noise. The
object of our studies are three-fold (We are at the out-set of objective 3, objectives 1
and 2 being mostly complete):

1. We have isolated the acoustic cues in >100 consonant-vowel (CV)
utterances.
2. We have measured the full-rank confusions in ≈50 hearing impaired (HI)
ears.
3. We are attempting to relate the measured HI confusions to the NH cues.

Objective 1): An acoustic cue is defined as the time-frequency features of the acoustic
signal which are decoded by the auditory system for representing the consonant-vowel
(CV) combination (Cole and Scott, 1974). The acoustic cues used by the average nor-
mal hearing (ANH) ear are made up of at least four different cues (Li and Allen, 2009):
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a) Onset bursts, b) Low-frequency “edges,” c) Durations, and d) F0 modulation. The
timing of the onset burst is relative to the onset of voicing of the vowel. A low-
frequency edge is defined as the lowest frequency of the fricative region (Li and Allen,
2011).
Objective 2): We shall see that individual differences are the rule in HI confusions.
No two ears are the same.
Objective 3): Our underlying hypothesis is that the consonant loss experienced by the
HI ear is due to degradations in the cochlea, that cause a specific loss of detectability
of specific classes (e.g., onset-burst, F0 detection) of consonant cues. Based on the HI
data obtained, the most likely character of the consonant loss is cochlear dead regions,
e.g., regions where the synapse is poorly connected to the auditory nerve (Allen et al.,
2009).
We hypothesize that when one or more of these cues is diminished in the ANH ear,
certain consonants are confused with others in a predictable way. This hypothesis
seems in agreement with our present findings, however the precise relationships are
yet to be determined. It is significant that a) there are large individual differences, that
appear to be b) uncorrelated to the audiograms, and that c) the HI ears are consistent
in their judgments.
Questions being addressed in our publications include the following (many papers are
still under review, as identified in Table 1):
1. What is the the phone error rate in NH and HI ears? (Phatak and Allen,
2007)
2. What is the source of this error (which consonants and confusions
vs. SNRs)? (Singh and Allen, 2010)
3. What are the invariant acoustic cues used by NH and HI ears to identify
consonants? (Li et al., 2010)
4. Is audibility of an acoustic cue sufficient (it is necessary), and how may
this be measured? (Li and Allen, 2011)
5. How does the HI ear differ from the NH ear in detecting invariant acoustic
cues? (Han, 2011)
6. When does enhancing the SNR of a missed cue improve the robustness to
noise of a consonant (Kapoor and Allen, 2010)?
7. What is the impact of NAL-R amplification on consonant perception
(Phatak et al., 2009; Han, 2011)?
8. How can we clinically quantify and diagnose the HI ear using speech
(Han, 2011)?

Additional questions for future research include:
1. How do invariant acoustic cues depend on the following vowel?
2. Can we fit a hearing aid using consonant confusion profiles?
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HISTORICAL STUDIES

The first speech studies were done in by Lord Rayleigh (1908) following the tele-
phone’s commercialization. Within a few years, Western-Electric’s George Campbell
(1910) developed the electrical wave filter to high and lowpass speech signals, as well
as probabilistic models of speech perception such as the confusion matrix method of
analysis. With these tools established, Harvey Fletcher (1921) extended these with
related studies. He soon discovered that by breaking the speech into bands having
equal scores, he could formulate a rule relating the errors in each band to the wide-
band error. This method became known as the articulation index (AI). Even today it is
not clear why the AI is well correlated to the average speech score (Singh and Allen,
2010). Today we know that Fletcher’s 1921 AI formulation is similar to Claude Shan-
non’s theory of information (1948) (Allen, 2004).

Contemporary studies: In 1970-80 a number of papers explored the role of the
transitional and burst cues in consonant-vowel context. In a review of the literature,
Cole and Scott (1974) argued that the burst must play at least a partial role in percep-
tion, along with transition and speech energy envelope cues. Explicitly responding to
Cole and Scott (1974), Dorman et al. (1977) executed an extensive experiment, using
natural speech consisting of nine vowels, proceeded by /b,d,g/. The experimental pro-
cedure consisted of truncating the consonant burst and the devoiced transition (follow-
ing the burst), of a CVC, and then splicing these onto a second VC sound, presumably
having no transition component (since it had no initial consonant). Their results were
presented as a complex set of interactions between the initial consonant (burst and
devoiced cue) and the following vowel (i.e., coarticulations).
The same year Blumstein et al. (1977) published a related /b,d,g/ study, using syn-
thetic speech, that also presented a look at the burst and a host of transition cues. They
explored the possibility that the acoustic cues were integrated (acted as a whole). This
study was looking to distinguish the necessary from the sufficient cues, and first intro-
duced the concept of conflicting cues, in an attempt to pit one type (burst cues) against
the other (transition cues).
While these three key publications highlighted the relative importance of the two main
types of acoustic cue, burst and transition, they left unresolved their identity, or even
their relative roles. In these three studies, no such masking noise was used, ruling
out any form of information analysis. Masking is the classical key element basic
to an information theoretic analysis of any communication channel (Fletcher, 1922;
Shannon, 1948; Allen, 1994, 1996). As discussed by Allen (2005), based on the earlier
work of Fletcher and Galt (1950); Miller and Nicely (1955) and inspired by Shannon’s
source-channel model of communication, we repeated many of the classic experiments
(Phatak and Allen, 2007; Phatak et al., 2008; Li and Allen, 2009). A table summariz-
ing the speech experiments done at UIUC between 2003-2011 is summarized in Table
1.1

1http://hear.beckman.illinois.edu/wiki/Main/Publications
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2011).
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Table 1: Table of HSR experiments performed at UIUC from 2004-2011

Year Experiment Student &Allen Details Publications
2004 MN04(MN64) Phatak MN14 Phatak and Allen (2007)
2005 MN16R Phatak, Lovitt MN55R Phatak et al. (2008)
2005 HIMCL05 Yoon, Phatak 10 HI ears Phatak et al. (2009)
2006 HINALR05 Yoon et al. 10 HI ears Yoon et al. (2011)
2006 Verification Regnier /ta/ Régnier and Allen (2007)
2006 CV06-s/w Phatak/Regnier 8C+9V SWN/WN –
2007 CV06 Pan CV06 –
2007 HL07 Li Hi/Lo pass Li and Allen (2009)
2008 TR08 Li Furui86 ASSP
2009 3DDS Li plosives Allen and Li (2009); Li et al.

(2010); Li and Allen (2011)
2009 Verification Kapoor/Cvengros burst mods Submitted JASA
2009 MN64 NZ-Error Singh PA07 Submitted JASA
2010 HI-MCL10 1,2,3 Han 46 HI ears @MCL Submitted EH
2011 3DDS Li Fricatives Submitted JASA
2011 HI-NAL11 4 Han 17 HI ears w NALR Thesis Ch. 3

Methods: Isolated CVs were taken from real speech, with up to 20 talkers. Noise
was added to the speech with a range of between 4-8 SNRs, from -26 to quiet (Q). The
speech was high and lowpass filtered with up to 10 high/lowpass cutoff frequencies.
Both white and speech weighted additive noise was used. The listener corpus con-
sisted of more than 200 NH subjects, 45 HI ears, up to 18 consonants and 8 vowels,
and always maintaining a high source entropy (e.g., 4 bits) to eliminate guessing. To
assure the estimates of the error are reliable, a minimum of 20 trials per consonant and
SNR are required.
In Fig. 1 the average probability of the error Pe(SNR) is shown (for speech-weighted
noise the SNR is the articulation index). In Fig. 2 confusion patterns (CPs) are dis-
played vs. SNR.

RESULTS
From Fig.1 we see the ANH score Pe(SNR) (black line), along with the score for each
heard consonant h given spoken consonant s [i.e., Ph|s(SNR)], as a function of the
SNR. What is most obvious is the large variation in scores: the SNR corresponding to
the 50% point ranges from -12 dB [/m, n/ to +8 dB /T, D/ (shown as /T/ and /D/ in the
figure)]. Such a large range of scores is not well captured by an average. The same is
true for HI ear 112R shown in Fig. 1(b): the average score (black dashed curve) does
not meaningfully represent the consonant scores. Although not show, every consonant
in our database has a wide range of scores, varying from zero error on most cases, to
chance, over a wide range of SNRs (Singh and Allen, 2010).
CPs allow one to determine the precise nature of the confusions of each sound as a
function of the SNR. The confusion set, and their dependence on SNR, are not pre-
dictable without running masking experiments. These confusions, and their masked
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Fig. 1: Due to the large variation across consonants, the average error [e.g., Pe(SNR) ≡ 1−Pc(SNR),
black line] fails to characterize speech loss. This sin of averaging results from (a) averaging across the
natural variance across consonants (left: NH listeners), (b) across consonants for individual HI listeners
(right). HI data for 112R from Phatak et al. (2009).
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Fig. 2: The sin of averaging extends down to the utterance level. On the left (a) we see CPs for the
average score across /ta/ from Miller and Nicely (1955), while on the right (b) we see the CPs for a
specific /te/. As in Fig. 1, one must conclude that averaging across utterances removes critical infor-
mation from the ANH scores. As we shall see, this sin is much worse for HI ears, at the utterance level.
Priming is reporting the sound one is thinking of, typically from a small group of sounds (Li and Allen,
2011).

dependence, are important because they reveal the mix of underlying perceptual cues.
From the CP it is easy to identify a sound that primes, meaning that it can be heard
as one of several sounds, by changing one’s mental bias. In this case the confusion
patterns show subject responses that are equal (the curves cross each other), similar to
the CP of Fig. 2(b) at -8 [dB], where one naturally primes /p/, /t/ and to a lesser extent
/k/ (at -15 [dB]).

Identifying perceptual cues: Li et al. (2010) first described the 3DDSmethod, used
to identify speech cues for a variety of real speech sounds. This method uses extensive
psychophysical experimental on CV speech by noise masking at a variety of SNRs,
along with time-truncation and high and low pass filtering. These experiments made
it possible, for the first time, to reliably locate the subset of perceptually relevant

Sources of decoding errors of the perceptual cues, in normal and hearing impaired ears
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AIgram, as exampled in the lower-left panel for each of the six consonants in Fig. 3.

Plosives: In Fig. 3 there are six sets of 4 panels, as described in the caption. Each of
the six sets corresponds to a specific consonant, labeled by a character string that de-
fines the gender (m,f), subject ID, consonant and SNR for the display. For example, in
the upper left 4 panels we see the analysis of /ta/ for female talker 105 (f105ta0dB)
at 0 dB. Along the top are unvoiced plosives /t/, /k/ and /p/ while along the bottom are
voiced plosives /d/, /g/ and /b/. Data from the same talker was not always available
in the LDC database (Fousek et al., 2004), so different talkers are sometimes used for
this analysis.
Three different modifications have been made to the speech: The first was the reported
experiments (MN64, MN16R) (Phatak and Allen, 2007; Phatak et al., 2008) where
each CV sound was subjected to a variable signal to noise ratio, from -12 dB SNR to
quiet, and the average score was measured by 23 NH listeners.
Next each sound was time-truncated from the onset in 10 ms steps (Exps. TR07, TR08)
(Furui, 1986), and played back in random order to 14 listeners. Noise was added to
the truncated sound at 12 [dB] SNR to remove any low-level artifacts. The results
of this truncation experiment are presented in the top upper-left panel (labeled as
TR07). Each curve is the probability Ph|s(tk), where h is the heard (reported) sound
as a function of the spoken sound s at a truncation time tk, with a labeled as to the
identified consonant.
Finally each CV sample was high and lowpass filtered to a variable cutoff frequency
(Li and Allen, 2009, Exps. HL05 & HL07), as indicated on the frequency axis. These
HL07 data are rotated by 90 degrees so that the frequency axis lines up with that of
the AIgram on the far left.
One may learn to identify perceptual cues from the 3DDS display (Li et al., 2010).
For example, the feature that labels the sound is indicated by the blue rectangle in
the AIgram (lower-left panel) of each of the six sounds. When this burst is time
truncated (the TR07 experiment), the /t/ morphs to /p/. The term morphs means that
one sound can be primed, i.e., is heard as several different sounds. When masking
noise is added to the sound, such that it masks the boxed region, the percept of /t/ is
lost. When the high and lowpass filters remove the frequency of the /t/ burst, again the
consonant is lost. Thus the three experiments are in agreement, and collectively they
uniquely identify the location of the acoustic cue responsible for /t/. This generalizes
to the other plosive consonants shown (i.e. voiced /k/, /p/, and unvoiced /d/, /g/, /b/),
fricatives, as well as consonants followed by other vowels (not shown).
Looking at specific examples in the individual 3DDS plots is helpful. From the top-
left 4 panels we see that /t/ is defined by a 4-5.4 kHz burst of energy, ≈10cs (100 ms)
before the vowel, whereas /k/ is defined as a 1.4-2 kHz burst, also ≈ 10 cs before the
vowel. The consonant /p/ shows up as a burst of energy between 0.7-1 kHz, sticking
out in front of the vowel, but connected. The three voiced sounds /d/, /g/ and /b/
have similar frequencies but onset with the vowel. The case of /b/ is not obvious, and
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Fig. 3: Identification of cues by time, frequency and intensity bisection using the 3-dimensional deep
search (3DDS) methods, as shown here. Along the top we have unvoiced consonants /t/, /k/ and /p/,
while along the bottom, the corresponding voiced consonants /d/, /g/ and /b/. Each of the six sounds
consists of 4 sub-panels. For example, for /t/, upper left, shows four panels consisting of the time-
truncation confusions (upper-left), the score vs. SNR (upper-right), the AIgram (lower-left) and the
score as a function of low and highpass filtering (lower-right). This last panel is rotate by 90 degrees
with the score along the abscissa and the frequency along the ordinate, to line-up with the AIgram
frequency axis.

cues in time and frequency, while the noise-masking data characterizes the feature’s
masked threshold (i.e., it’s strength). In Fig. 3 the speech was displayed by an AIgram
(Regnier and Allen, 2008). The AIgram resolves acoustic features than are not easily
visualized in the traditional spectrogram due to its fixed frequency resolution. First the
AIgram is normalized to the noise floor. This is similar to the cochlea which dynami-
cally adapts to the noise floor due to outer hair cell (OHC) nonlinear (NL) processing
(Allen, 2003; Allen et al., 2009). Second, unlike a fixed-bandwidth spectrogram, the
AIgram uses a cochlear filter bank, with bandwidths given by Fletcher critical bands
(ERBs) (Allen, 1996). Finally the intensity scale in the plot is proportional to the
signal-to-noise ratio, in dB, in each critical band, as in AI-band densities AIk(SNR) for
the kth band (Li et al., 2010; Li and Allen, 2011). At the present time the AIgram is
linear as it contains no on-frequency neural masking, nor forward and upward spread
of neural masking. As a result the AIgram shows details in the speech that are not
actually audible. Much work remains to be done on time-domain NL cochlear models
of speech.
A summary of the audible sound cues at the threshold of masking are shown in the
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AIgram, as exampled in the lower-left panel for each of the six consonants in Fig. 3.

Plosives: In Fig. 3 there are six sets of 4 panels, as described in the caption. Each of
the six sets corresponds to a specific consonant, labeled by a character string that de-
fines the gender (m,f), subject ID, consonant and SNR for the display. For example, in
the upper left 4 panels we see the analysis of /ta/ for female talker 105 (f105ta0dB)
at 0 dB. Along the top are unvoiced plosives /t/, /k/ and /p/ while along the bottom are
voiced plosives /d/, /g/ and /b/. Data from the same talker was not always available
in the LDC database (Fousek et al., 2004), so different talkers are sometimes used for
this analysis.
Three different modifications have been made to the speech: The first was the reported
experiments (MN64, MN16R) (Phatak and Allen, 2007; Phatak et al., 2008) where
each CV sound was subjected to a variable signal to noise ratio, from -12 dB SNR to
quiet, and the average score was measured by 23 NH listeners.
Next each sound was time-truncated from the onset in 10 ms steps (Exps. TR07, TR08)
(Furui, 1986), and played back in random order to 14 listeners. Noise was added to
the truncated sound at 12 [dB] SNR to remove any low-level artifacts. The results
of this truncation experiment are presented in the top upper-left panel (labeled as
TR07). Each curve is the probability Ph|s(tk), where h is the heard (reported) sound
as a function of the spoken sound s at a truncation time tk, with a labeled as to the
identified consonant.
Finally each CV sample was high and lowpass filtered to a variable cutoff frequency
(Li and Allen, 2009, Exps. HL05 & HL07), as indicated on the frequency axis. These
HL07 data are rotated by 90 degrees so that the frequency axis lines up with that of
the AIgram on the far left.
One may learn to identify perceptual cues from the 3DDS display (Li et al., 2010).
For example, the feature that labels the sound is indicated by the blue rectangle in
the AIgram (lower-left panel) of each of the six sounds. When this burst is time
truncated (the TR07 experiment), the /t/ morphs to /p/. The term morphs means that
one sound can be primed, i.e., is heard as several different sounds. When masking
noise is added to the sound, such that it masks the boxed region, the percept of /t/ is
lost. When the high and lowpass filters remove the frequency of the /t/ burst, again the
consonant is lost. Thus the three experiments are in agreement, and collectively they
uniquely identify the location of the acoustic cue responsible for /t/. This generalizes
to the other plosive consonants shown (i.e. voiced /k/, /p/, and unvoiced /d/, /g/, /b/),
fricatives, as well as consonants followed by other vowels (not shown).
Looking at specific examples in the individual 3DDS plots is helpful. From the top-
left 4 panels we see that /t/ is defined by a 4-5.4 kHz burst of energy, ≈10cs (100 ms)
before the vowel, whereas /k/ is defined as a 1.4-2 kHz burst, also ≈ 10 cs before the
vowel. The consonant /p/ shows up as a burst of energy between 0.7-1 kHz, sticking
out in front of the vowel, but connected. The three voiced sounds /d/, /g/ and /b/
have similar frequencies but onset with the vowel. The case of /b/ is not obvious, and
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the low score seem to reflect this weak burst. Many of the sounds in our consonant
database (≈100 consonants) were analyzed using this 3DDS method, and gave similar
results.
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Fig. 4: Frication sound female 101 saying /sa/ (Exp. TR07). As the sound is truncated from the onset,
the /s/ is heard as /z/, then /d/ and finally /D/. Each time the conversion happens at about a factor of two
in frication duration.

Fricative sounds: Not surprisingly, the perceptual cues associated with fricative
sounds are quite different from the plosives. Timing and bandwidth remain impor-
tant variables. For the fricative sounds, a swath of bandwidth of fixed duration and
intensity is used to indicate the sound.
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Fig. 5: Time-frequency allocation of the plosives and the fricatives. Mapping these regions into
perceptual cues requires extensive perceptual experiments. Once the sounds have been evaluated, it
is possible to prove how the key noise-robust perceptual cues map to acoustic features. The three
consonants with the tilde over them (/z,Z,Ã/) indicating they are modulated at the pitch frequency, are
voiced.

Using a time-truncation experiment similar to Furui (1986), as reported in Regnier and Allen
(2008), we see the importance of duration to these consonants. In Fig. 4, a /sa/, spo-
ken by female talker 101 and presented at 0 dB, was truncated in 10 ms steps. After
about 60 ms of truncation from the onset of the sound, our pool of subjects reported
/za/ instead of /sa/. After 30 additional ms of truncation, /d/ was heard. Finally at the
shortest duration /Da/ was reported. A related experimental result found Sa → Ù→ Ã→

d. At the end of this chain is the plosive. Thus the fricatives and the voiced-plosives
seem to form a natural continuum, in the limit of very-short duration sounds.
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The 3DDS results for the plosive consonants are summarized in the left half of Fig. 5,
and for the fricatives in the right half of the figure. A small subset of acoustic cues
define perceptual cues. Figure 5 is a modified version of the graphic by Allen and Li
(2009), detailing the various acoustic cues for CV sounds, specifically with the vowel
/a/, that were established to be perceptual cues, using a method denoted the three-
dimensional deep search (3DDS) (Li et al., 2010). Briefly summarized, the CV sounds
/ta, da/ are defined by a burst at high frequencies, /ka, ga/ are defined by a similar
burst in the mid frequencies, and /ba, pa/ were traced back to a wide-band burst. As
noise is added, the wide-band burst frequently degenerates into a low frequency burst,
resulting in many low-level confusions. The recognition of burst-consonants depends
on the delay between the burst and the sonorant onset, defined as the voice onset time
(VOT). Consonants /t, k, p/ are voiceless sounds, occurring about 50 [ms] before the
onset of F0 voicing while /d, g/ have a VOT <20 [ms]. Plosive /b/ may have a
negative VOT.
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Fig. 6: On the left we see an AIgram of the original sound f113ga at 12 dB SNR, and in the middle, at
0 dB. The sound is identified 100% of the time, at and above 0 dB, 90% at -6 dB, and 30% at -12 dB. On
the right is an AIgram of the sound after modification by the STFT method, where the mid-frequency
burst at [at 20 cs, 1.5 kHz] was removed, along with remnants of the pre-vocalic burst, and 12 dB of
gain was applied at 20 cs between 3.9-5.4 kHz, amplifying the low-level burst of energy, unmasked
at 12 dB (left panel), as seen in the right panel. These two modifications resulted in the sound being
reported as /da/.

Verificationmethods: To further verify all these results we have developed a method
to modify the speech sounds using short-time Fourier transform (STFT) methods
(Allen, 1977; Allen and Rabiner, 1977), to attenuate and amplify these bursts of en-
ergy. These studies have confirmed that the narrow band bursts of energy shown
in Fig. 3 are both necessary and sufficient to robustly label the plosive consonants
(Li and Allen, 2011). Above the feature’s masked threshold, the score is independent
of SNR (Regnier and Allen, 2008; Singh and Allen, 2010).
Verification methods using STFT modifications are exampled in Fig.6. On the left is
the unmodified sound at 12 dB SNR, and in the middle again the unmodified sound at
0 dB SNR. For the right panel the /g/ perceptual cue at 1.4-2 kHz has been removed
and the /d/ perceptual cue between 4-5.5 kHz has been enhanced. Following the two
modifications, noise was added at 0 dB. The two modifications resulted in the morph
/ga/→ /da/.
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of sounds in HI ears, a high-consistency measure (i.e., entropy) seems like a better
measure.

Comparison between the audiogram and confusion patterns: The observation
that HI ears can exhibit large individual differences in their average consonant loss
given similar pure tone average (PTA) Phatak et al. (2009), is further supported by
the data of Fig. 8. Subject JG (HI36) has (left panel) 10-20 dB better thresholds in
the left ear (blue-x) and (right panel) has a large left-ear advantage for /ba/. In the
middle panel is ∆CLP(SNR), defined as the difference in consonant scores between
the ears, as a function of SNR. The left ear advantage for /ba/ peaks at 6 dB SNR at
60%. Other than /b/, subject JG heard most consonants similarly in both ears (less
than 20% difference), and with no difference in /pa/, whose burst spectrum has energy
in the same frequency range of .3–2 kHz with /ba/. The results for HI36 in Exp. I,
collapsed over SNR, showed little difference in consonant loss between left and right
ears. However in Exp. II a left-ear advantage in the /ba/ syllable was clearly indicated.
This illustrates the utility of the 20 trials/condition for Exp. II, which allowed us to
determine the loss as a function of SNR.
Subject HI30/DG (Fig. 10) has a 30 dB right ear advantage for za, and has a distinct
left ear advantage for syllables /va, sa, fa/ and a 60% left ear advantage for /va/, at 12
[dB].

Summary: This article has reviewed some of what we have recently learned about
speech perception of consonants, and how this knowledge might impact our under-
standing of NL cochlea speech processing. The application of NL OHC processing in
speech is still an under-developed application area (Allen, 2008; Allen and Li, 2009)
Many new ideas and methods for testing and analysis have been suggested and evalu-
ated. The jury is out.
It is now widely accepted that outer hair cells (OHCs) provide dynamic range and are
responsible for much of the NL cochlear speech signal processing, thus the common
element that link all the NL data (Allen et al., 2009). OHC dynamics must be un-
derstood before any model can hope to succeed in predicting basilar membrane, hair
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Fig. 8: Subject JG (HI36) has similar audiograms in the two ear, but a dramatic difference in the
scores for /b/, of more than 50% difference between the two consonant loss profiles (∆CLPs). On the
right is the entropy for each consonant vs. SNR (dashed=left ear, solid=right ear).

Summary: Based on such 3DDS results along with the verification experiments on
the ≈100 CV in our database, we are confident that these bursts of energy label the
identity of these consonant.

CONFUSIONS IN HEARING IMPAIRED EARS

As a direct extension of earlier studies (Phatak et al., 2009; Yoon et al., 2011), four
experiments were performed (Han, 2011), two of which will be reported on here. In
experiment I (Exp-I), full-rank confusion matrices for the 16 Miller-Nicely CV sounds
were determined, at 6 signal to noise ratios (SNRs) [Q, 12, 6, 0, -6, -12], for 46 HI
ears (25 subjects). In experiment II (Exp-II) a subset of 17 ears were remeasured, but
with the total number of trials per SNR per consonant raised from 2-8 (Exp-I), to as
high as 20 (Exp-II), to statistically verify the reliability of the subjects’ responses in
doing the task.
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Fig. 7: Left: Average consonant error for 46 HI ears of Exp. I (Solid colored lines) and 10 NH ears
(gray lines). Middle: Average consonant errors for the 17 HI ears of Exp. II (solid colored lines),
as function of signal-to-noise ratio (SNR) using speech-weighted noise. Right: Average entropy for
Exp. II.

The average error as a function of SNR for the 46 ears from Exp-I is shown on the
left most panel of Fig. 7. The intersection of the thick horizontal dashed line at the
50% error point and the plotted average error line for each ear, marks the consonant
recognition threshold (CRT) in dB. The data for 10 normal hearing (NH) ears are
superimposed as solid gray lines for comparison. NH ears have a similar and uniform
CRT of -18 to -16 dB (a 2-dB range), while the CRT of HI ears are spread out between
-5 to +28 dB (a 33-dB range). Three out of 46 ears had greater than 50% error in quiet
(i.e., no definable CRT).
The data for the 17 ears (Exp. II) are mostly from the <0 dB CRT region, thus the
mean error is much smaller (1% or so) compared to Exp. I, where the mean error is
15%. The minimum error for Exp. II is much lower because two high-error consonants
[T,D Fig. 1(a)] were removed.
As discussed earlier the average score is a crude metric due to its high variance (i)
across consonants, (ii) across utterances for each consonant, and (iii) across HI sub-
jects, across both consonants and utterances. Entropy (Fig. 7, right) gives a direct mea-
sure of consistency and is insensitive to mislabeling errors (e.g., consistently across a
voicing error, as in reporting /d/ given /t/). Given the observed increased mislabeling
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of sounds in HI ears, a high-consistency measure (i.e., entropy) seems like a better
measure.

Comparison between the audiogram and confusion patterns: The observation
that HI ears can exhibit large individual differences in their average consonant loss
given similar pure tone average (PTA) Phatak et al. (2009), is further supported by
the data of Fig. 8. Subject JG (HI36) has (left panel) 10-20 dB better thresholds in
the left ear (blue-x) and (right panel) has a large left-ear advantage for /ba/. In the
middle panel is ∆CLP(SNR), defined as the difference in consonant scores between
the ears, as a function of SNR. The left ear advantage for /ba/ peaks at 6 dB SNR at
60%. Other than /b/, subject JG heard most consonants similarly in both ears (less
than 20% difference), and with no difference in /pa/, whose burst spectrum has energy
in the same frequency range of .3–2 kHz with /ba/. The results for HI36 in Exp. I,
collapsed over SNR, showed little difference in consonant loss between left and right
ears. However in Exp. II a left-ear advantage in the /ba/ syllable was clearly indicated.
This illustrates the utility of the 20 trials/condition for Exp. II, which allowed us to
determine the loss as a function of SNR.
Subject HI30/DG (Fig. 10) has a 30 dB right ear advantage for za, and has a distinct
left ear advantage for syllables /va, sa, fa/ and a 60% left ear advantage for /va/, at 12
[dB].

Summary: This article has reviewed some of what we have recently learned about
speech perception of consonants, and how this knowledge might impact our under-
standing of NL cochlea speech processing. The application of NL OHC processing in
speech is still an under-developed application area (Allen, 2008; Allen and Li, 2009)
Many new ideas and methods for testing and analysis have been suggested and evalu-
ated. The jury is out.
It is now widely accepted that outer hair cells (OHCs) provide dynamic range and are
responsible for much of the NL cochlear speech signal processing, thus the common
element that link all the NL data (Allen et al., 2009). OHC dynamics must be un-
derstood before any model can hope to succeed in predicting basilar membrane, hair
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Fig. 8: Subject JG (HI36) has similar audiograms in the two ear, but a dramatic difference in the
scores for /b/, of more than 50% difference between the two consonant loss profiles (∆CLPs). On the
right is the entropy for each consonant vs. SNR (dashed=left ear, solid=right ear).
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Fig. 10: Subj. 30/DG L/R PTA (left) along with the difference in the confusions vs SNR (∆CPL)
on the right. While the two HLs are virtually identical, the scores are highly biased toward the left ear
(Left ear advantage). These data are from Exp. II where the number of trials was up to 20 per consonant
per SNR.

cell, neural tuning, and NL compression. Understanding the outer hair cell’s two-way
mechanical transduction is viewed as the key to solving the problem of the cochlea’s
dynamic range and dynamic response (Allen, 2003).
However the perception of speech by the HI ear does not seem to be consistent with
the above commonly held view. For example the large individual differences seem
inconsistent with the OHC as the tying link, and seem more likely related to synaptic
dead regions. Continued analysis of these confusion will hopefully provide further key
insights into this important question. The detailed study of how a complex system fails
can give deep insights into how the normal system works. The speech HI perception
results provided here may provide further insight into normal speech perception.
The key open problem here is “How does the auditory system (e.g., the NL cochlea and
the auditory cortex) processes human speech?” There are many applications of these
results including speech coding, speech recognition in noise, hearing aids, cochlear
implants, as well as language acquisition and reading disorders in children. If we can
solve the robust phone decoding problem, we will fundamentally change the effec-
tiveness of human-machine interactions. For example, the ultimate hearing aid is the
hearing aid with built in robust speech feature detection and phone recognition. While
we have no idea when speech-aware hearing aids will come to be, and the time is
undoubtedly many years off, when it happens it will be a technological revolution of
some magnitude.
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