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A classical problem in auditory theory is the relation between the loudn@gsand the intensity
just-noticeable differenc€IND) Al(l). The intensity JND is frequently expressed in terms of the
Weber fraction defined by(l)=Al/l because it is anticipated that this ratio should be a constant
(i.e., Weber's law. Unfortunately,J(1) is not a constant for the most elementary case of the pure
tone JND. Furthermore it remains unexplained why Weber’s law holds for wide-band stimuli. We
explore this problem and related issues. The loudness and the intensity JND are defined in terms of
the first and second moments of a proposed rand@tision variablecalled the single-trial
Ioudnessilgl), namely the loudness Is(1)=#L (1), while the variance of the single trial loudness

is UEEZ(L—L)Z. The JND is given by the signal detection assumptddn=d’o , where we
define the loudness JNRL(I) as the change in loudness correspondingstdl). Inspired by
Hellman and Hellman'’s recent thedd. Acoust. Soc. Am87, 1255—-12711990], we compare the
Riesz[Phys. Rev31, 867—8751928] Al (1) data to the Fletcher and Munsph Acoust. Soc. Am.

5, 82—108(1933] loudness growth data. We then make the same comparison for Mifl&r's
Acoust. Soc. Am19, 609-6191947] wideband noise JND and loudness match data. Based on this
comparison, we show empirically thAt_ (L)L, wherep=2 below~5 sones and is 1 above.
Since AL(l) is proportional too , when p=2 the statistics of the single-trial loudneksare
Poisson-like, namelyrfocL. This is consistent with the idea that the pure tone loudness code is
based a neural discharge rdtet the auditory nerye Furthermore, whep=1 (above about 5
soney, the internal loudness signal-to-noise ratio is constant. It is concluded that Ekman’s law
(AL/L is constantis true, rather than Weber's law, in this loudness range. One of the main
contributions of this paper is its attempt to integrate Fletcher’s neural excitation pattern model of
loudness and signal detection theory. 1©97 Acoustical Society of America.
[S0001-496607)02411-9

PACS numbers: 43.66.Ba, 43.66.Ch, 43.66"&]

INTRODUCTION by merging the 1953 Fletcher neural excitation pattern model
of loudnesgAllen, 1995, 1996awith auditory signal detec-
tion theory(Green and Swets, 1984t is generally accepted
that the intensity JND is the physical correlate of the
psychological-domain uncertainty corresponding to the psy-
chological intensity representation of a signal. Along these
lines, for long duration pure tones and wideband noise, we
assume that th#-domain intensity is the loudness, and that

loudness could be quantified was first suggested by Fechndf€ loudness JND results from loudness “noise” due to its
(1966 in 1860, which raised the question of the quantitativeStochastic representation. _ .
transformation between the physical and psychophysical in- _TO model .the Intensﬂy JND we mus.t definadacision
tensity. For a recent review of this problem, and a brief sum.Variable associated with loudness and its random fluctua-
mary of its long history, see Schlauetal. (1995. tions. We call this loudness random decision variable the

An increment in the intensity of a sound that results in asingle-trial loudness Accordingly we define the loudness
just-noticeable differenc€IND) is called an intensity JND. and the loudness JND in terms of the first and second mo-
Fechner suggested quantifying the intensity-loudness growtfents of the single-trial loudness, corresponding to the mean
transformation by counting the number of loedness JNDs and variance of the distribution of the intensity decision vari-
between two intensity values. However, after many years ofible. Because of its fundamental importance, we define the
work, the details of the relationship between loudness andatio of the mean loudness to the loudness standard deviation
the intensity JNDs have remained unclédmwislocki and  as theloudness signal-to-noise ratidlSNR ).
Jordan, 1986; Viemeister, 1988; Plack and Carlyon, 1995 We will show that a transformation of thé-domain

The contribution of this paper is that it takes a freshJND data into thel' domain unifies tonal-stimuli JIND data,
view of the whole problem of the intensity JND and loudnesswhich do not obey the Weber's la{/near-miss results’,

When modeling human psychophysics we must care
fully distinguish the externaphysical variables, which we
call ® variables, from the interngdsychophysicalariables,
which we refer to agl variablest Psychophysical modeling
seeks a transformation from tkde domain to the¥ domain.
The ® intensity of a sound is easily quantified by direct
measurement. Th# intensity is the loudness. The idea that

3628 J. Acoust. Soc. Am. 102 (6), December 1997  0001-4966/97/102(6)/3628/19/$10.00 © 1997 Acoustical Society of America 3628



show that SNR(L) is functionally the same for both the l()=—=| s¥tydt, 1)

and wideband noise data, for which Weber’s law holds. We 1 [t
=

tone and noise cases. To help understand these results, we T
introduce the concept of a near-miss to Stevens’ law, whiclwhereT is the integration time andc is the specific acous-
we show cancels the near—miss to Weber's law, giving thdic impedance of air. Thetensity leveis defined ass/| ,
invariance in SNR for the tone case. Our ultimate goal in and thesound-pressure levels s/s,; where the reference
this work is to use signal detection theory to unify maskingintensity isl ¢ or 1010 yWicn? and the reference pressure
and the JND, following the 1947 outline of this problem by s=20uPa. These two reference levels are equivalent at
Miller (1947. This work has applications in speech and au-only one temperaturéput both seem to be in use.
dio coding.

For the case of tones, we have chosen to illustrate oup. Intensity of masker +probe
theoretical work using the classical intensity modulation

. . ) ) The JND is sometimes called “self-masking,” to reflect
measurements of Rie$2928. Riesz measured the intensity g

IND usi I low-f H ! idal modul the view that it is determined by the internal noise of the
using small, low-frequenciB-Hz), sinusoidal modula- auditory system. To model the JND it is useful to define a

tion of tof‘es- Modern” methods generally use “pulsed more general measure called timasked thresholdwvhich is
tones which are turned on and off somewhat abruptly, to

; . . defined in theD domain in terms of a pressure scale factor

make them suitable for a two-alternative, forced-choice, e 15 the probe signai(t) that is then added to the

(2AFC) paradigm. Riesz's modulation method has a distinc asking pressure signai(t). The relative intensity of the

advantage for characterizing the internal signal detectio robe and masker is varied by changing Setting

process, because it maintains a nearly steady-state sm [t)=m(t) + ap(t), we denote the combined intensity as

signal condition within the auditory system. The interpreta- '

tion of intensity JNDs is therefore simplified since the under-

lying stochastic processes are stationary. I p(t, @) = EL,T(m(tH ap(t))*dt. @
An outline of the paper is as follows: After some basic . .

definitions in Sec. I, and a review of some previous modeld "€ unscaled probe signpl(t) is chosen to have the same

in Sec. Il in Sec. Il we explore issues surrounding the re/ong-term average intensity as the maskt), defined as.

lation between the intensity JND and loudness, for the spe=€t Im(t) be the mten?ty of the masker with no probe

cial case of tones in quiet and for wideband noise. First, wd@=0), andly(t,a)=al be the intensity of the scaled

look at formulas for counting the number of intensity and Probe signal with no masker. THus

loudness JNDs and we use these formulas, together with I =1 s p(£,0)= I (1) =1 (1, 1).

decision-theoretic principles, to relate loudness to the inten-

sity JND. We then review the loudness-JND theory devel-3 geats

oped by Hellman and Hellmafl990, which provided the

inspiration for the present work. Next, we empirically esti-

mate the loudness SNR as a function of both intensity an

I ing the tonal JND data of Ri¢$22 th . )
oudness, using the tonal J data of Ri¢$229 and the drop the time dependence in termg andl,. Because of

loudness growth function of Fletcher and Munsd®33. beats bet t dn(t ing th ¢  th
We then repeat this calculation for Miller’'s wideband noise eats be weem( ) andp(t) (asedmlng € spectra of these
signals are within a common critical bgnahe must proceed

JND and loudness data. Finally we propose a model of loud- ) .
ness that may be used to compute the JND. This modeqarefully. Slowly varying correlations between the probe and

merges Fletcher's neural excitation pattern model of Ioud—maSker having frequency components within the bandwidth
ness with signal detection theory of the integration window mawot be ignored, as with beats

between two tones separated in frequency by a few Hz. Ac-
|. DEFINITIONS cordingly we keep the tlme dependence in the term
_ _ I'm+p(t,@) and other slow-beating time-dependent terms. In

We need a flexible yet clear notation that accounts fothe & domain these beats are accounted for with a probe-

important time fluctuations and modulations that are presentasker correlation functiom,,(t) (Sydorenko and Allen,
in the signals, such as beats and gated signals. Toward thi®94; Green and Swets, 1966, p. 213

end, we propose the following definitions. We include a defi-
nition of masked thresholdecause we view the intensity , Intensity increment  8i(t,a)

JND as a special case of the masked threstiditler, 1947). i ) ) o

We include a definition obeatsso that we can discuss their Expanding Eq.(2) and solving for theintensity incre-
influence on Riesz’'s method for the measurement of intenMeNtdl we find

t

Rapid fluctuations having frequency components outside
6he bandwidth of thel' second rectangular integration win-
dow are very small and will be ignored. Accordingly we

sity JNDs. ol (t,a)=Imnp(t,@)—1 3
A. Basic definitions = Qapmt)+ad)l, (4
1. Intensity where

In the time domain, it is common to define theinten- 1 .
sity in terms of the time-integrated squared signal pressure t) = _f m(t)p(t)dt 5
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defines a normalized cross correlation function between theuch as in the 2AFC experiment, though its role is poorly
masker and the probe. The correlation function must lie beunderstood in this case. To model the JND as measured by

tween—1 and 1. Riesz’s method of just-detectable beats, one must know the
W¥-domain resolution duration to calculate the probe-masker
5. Detection threshold effective correlationp,(t) in the' W domain. It may be more

practical to estimate th&-domain resolution from experi-

A?hthe pr(l;be to masketr rzﬁtmbls (sjlo;xvlyt w:jcr\e/\z/ised frqm ¢ ments that estimate the degree of correlation, as determined
Zero, the probe can eventually be detected. vve specify hl?y the beat modulation detection threshold as a function of
detection thresholds «, , where the asterisk indicates the

threshold val £ wh biect discriminate int the beat frequency, (Sydorenko and Allen, 1994

'treT 0 tva uefo W (tare a.ltS:J Ject%an5olos/crlrplt|:]a et.'n en- In summary, even though Riesz’s modulation detection
Sity Im.p(t,a,) from Intensity .m“’( :0) o of the time, experiment is technically a masking task, we treat it, follow-
corrected for chancf.e., obtain a 75% correct score in a

) . X ing Riesz(1928, Miller (1947, and Littler (1965, as char-
direct comparison of the two signaf¥ost, 1994; Green and g nie ( 8 . (19479 (1969
Swets. 1966 129 Th it 1 is th be t acterizing the intensity JND.

Weks, P 129 (:’. qu?r:hl yg‘(t ' 2 IS the pLO Io? Ict)' It follows that theW -domain temporal resolution plays a
Masker fms pressure ratio at the detection threshold. 1 1S Qey role in intensity JND and masking models.
function of the masker intensity and, depending on the
experimental setup, time.

8. The intensity JND Al

6. Masked threshold intensity The intensityjust-noticeable differenc&ND) is®

Themasked threshold intensity defined in terms o, Al(Hh=4(t,a,), (6)

as
the intensity increment at the masked threshold, for the spe-

(D=1y(a,)=2?l, cial case where the probe signal is equal to the masking

which is the threshold intensity of the probe in the presenc&/9nal[P(t)=m(t)]. From Eq.(4) with « set to threshold
of the masker. a, andpn(t)=1
The masked threshold intensity is a function of the Al(D)=(2a,+ ad)l. @)

stimulus modulation parameters. For example, tone maskers

and narrow-band noise maskers of equal intensity, and ther@in important alternative definition for the special case of the
fore approximately equal loudness, give masked thresholdRUre-tone INDs to let the maSker b(_a a pure tone, and let the
that are about 20 dB differeiifEgan and Hake, 1950As a probe be a pure 'Fone of a slightly dlffere.nt frequelﬁe;g.,_ a
second example, when using the method of béRiesz, beat frequency difference &f, =3 Hz). This was the defini-

1928, the just-detectable modulation depends on the beeﬂon usgd by Ries; in 1928. Begts are hearth,at3 Hz, and
frequency. With “modern” 2AFC methods, the signals are assuming the perlqd of 3 Hz is within _the passband of the
usually gated on and offl00% modulatioh (Jesteadet al., ¥-temporal resolution windowpm(t) =sin(2nf,) and

1977). According to Stevens and Davip. 142, 1983 Al(t,1)=[2a, sin2mfyt)+a?]l. €]

A gradual transition, such as the sinusoidal varia- |f the beat period is less than th& temporal resolution
tion used by Riesz, is less easy to detect than an  window, the beats are “filtered” out by the auditory brain

abrupt transition; but, as already suggested, an  (the effectivep,, is smal) and we do not hear the beats. In
abrupt transition may involve the production of this caseAl (1) =a?l.

unwanted transients.

One must conclude that thelative masked threshold

. . . . - 9. Internal noise
[i.e., @, (1,1)] is a function of the modulation conditions.

It is widely accepted that the pure tone intensity JND is
determined by th@ternal noiseof the auditory systen(Sie-
bert, 1965; Raab and Goldberg, 1978nd thatAl is pro-

When modeling time varying psychological decision portional to the standard deviation of tie-domain decision
variables, the relevant integration tirfieis not the duration  variable that is being discriminated in the intensity detection
defined by theb-intensity Eq.(1), rather the integration time  task, reflected back into th&® domain. The usual assump-
is determined in theV domain. This important’-domain  tion, from signal detection theory, is thAt =d’ o, where
model parameter is calletbudness temporal integration d’'=Al/¢, is a constant that depends on the experimental
(Yost, 1994. It was first explicitty modeled by Munson in design, ando, is the intensity standard deviation of the

1947. ®-domain intensity due ta'-domain auditory nois€Yost,
The ®-domain temporal resolutionT( is critical to the  1994.

definition of the JND in Riesz’'s experimefdéee Appendix

A) because it determines the measured intensity of the beats, .

The ¥-domain temporal resolution plays a different role. 10- Hearing threshold

Beats cannot be heard if they are faster than, and therefore Thehearing thresholdor unmasked threshglihtensity
“filtered” out by, the ¥ domain response. Th&-domain may be defined as the intensity corresponding to the first
temporal resolution also impacts results for gated stimuli(lowest intensity JND. The hearing threshold is represented

7. W -domain temporal resolution
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as I;(O) to indicate the probe intensity when the maskerl. Weber fraction J
intensity is small(i.e., | —0). It is believed that internal

noise is responsible for the hearing threshold, however, therij
iS no reason to assume that this noise is the same as the

The intensity JND is frequently expressed asektive
D called theWeber fractiondefined by

internal noise that produces the JND. J(H=AI(H/I. (11
From the signal detection theory premise that=d’o,
11. Loudness L (Yost, 1994, J is just the reciprocal of an effective signal-
Theloudness Lof a sound is thel intensity. Theloud- to-noise ratio defined as
ness growth function (I) depends on the stimulus condi- SNR((I)=l/oy(1) (12

tions. For exampld_(1) for a tone and for wideband noise since
are not the same functions. Likewise the loudness growth
function for a 100-ms tone and a 1-s tone differ. When de- J=d’'o,/I=d'/SNR. (13

fining aloudness scald is traditional to specify the inten- One conceptual problem with the Weber fractidris
sity, frequency, and duration of a tone such that the loudnesg, ¢ it is aneffectivenoise-to-signal ratio, expressed in te

growth function is onefi.e., L(lrer frer Tre) =1 defines a i,y sica) domain, but determined by ¥ (psychophysical
loudness scale For the sone scale, the reference signal is Homain mechanisrfinternal nois

| =40 dB SPL tone af =1 kHz with durationT, =1 s.
For Fletcher’'s LU scale the reference intensity is the hearing
threshold, which means that 1 soen@75 LU (Fletc.her, 2 Loudness JND AL
1953 for a “normal” hearing person. In the next section we
shall show that Fletcher’s LU loudness scale is a more natu-  Any superthreshol&¥ -domain increments may be quan-
ral scale than the sone scalitne ANSI and ISO standard tified by correspondingd-domain increments. Thieudness
scale$. JND AL(l) is defined as the change in loudnég$) corre-
sponding to the intensity JNRI (). While it is not possible
to measureé\L directly, we assume that we may expand the
12. The single-trial loudness loudness function in a Taylor series, giving

A fundamental postulate of psychophysics is that all de-
cision variables(i.e., ¥ variable$ are random variables,
drawn from some probability density functiaiGreen and . )
Swets, 1966, Chap)5For early discussions of this point see Where HOT representsigher-order termswhich we shall
Montgomery (1935 and page 144 of Stevens and Davisignore. If we solve for
(1983. To clearly indicate the distinction between random AL=L(1+Al)—L(I) (14)
and nonrandom variables, a tilde-J is used to indicate a

dL
LA+AD=L(D+Al 57

+HOT,
|

random variablé. we find
We define the loudness decision variable asdingle- dL
trial loudness L, which is the sample loudness heard on each AL=Al ar . (15

stimulus presentation. The loudnédsss then the expected

value of the single-trial loudneds We call this expression themall-JND approximation. The

_ above shows that the loudness JMID(1) is related to the
L(hH=&L(). (9) intensity INDAI(I) by the slope of the loudness function,
evaluated at intensity. According to the signal detection
model, the standard deviation of the single trial loudness is
ol=#(L—L)? (10)  proportional to the loudness JND, namely

The second moment of the single-trial loudness

defines the loudnes@riances? andstandard deviationr, . AL=d"oy. (16)
A more explicit way of expressing this assumption is

B. Derived definitions AL o 17
The definitions given above cover the basic variables. Al o

However, many normalized forms of these variables are used d

in the literature, and these also need to be defined. Thes% Loudness SNR

derived variables were frequently formed with the hope of  In a manner analogous to tle-domain SNR, we de-

finding an invariance in the data. This could be viewed as d@ine the ¥-domain loudness SNR as SNR)=L/o (L).

form of modeling exercise that has largely failéglg., the  Given Eq.(16), it follows that

near-miss to Weber’s lawThe shear number of combina- B

tions has lead to serious confusiofiéost, 1994, p. 15 SNR=» SNR, (18

Each normalized variable is usually expressed in dB, addingvhere v is the slope of the log-loudness function with re-

an additional unnecessary layer of confusion to the picture spect to log-intensity, namely

3631 J. Acoust. Soc. Am., Vol. 102, No. 6, December 1997 J. B. Allen and S. T. Neely: Intensity JND and loudness 3631



dLog
dp /3,

where B=10 logo(1/1,¢) is theintensity levelin dB, and
Liog(8)=10 logyo(L (10°19).

The derivation of Eq(18) is as follows: If we express
the loudness as a power law

v(B)= (19

L()=1"

and letx=Ilog(l) andy=log(L), theny= vx. If the change of
v with respect to dB SPL is small, thety/dx~Ay/Ax~v.
Sinced log(y)=dyly we get

AL/L=wAl/l. (20)

From Eq.(17), Eq. (18) follows.

Equation(18) is important becaus@) it tells us how to
relate the SNRs between tide and ¥ domains,(b) every
term is dimensionlesgg) the equation is simple, sinceis
approximately constant above 40 dB §le., Stevens’ lay
and becauséd) we are used to seeing and thinking of lou

Il. EMPIRICAL MODELS

This section reviews some earlier empirical models of
the JND and its relation to loudness relevant to our develop-
ment.

A. Weber's law

In 1846 it was suggested by Weber tlét) is indepen-
dent ofl. According to Eq.(7),

J()=2a,+a?.

If J is constant, thera, must be constant, which we denote
by a,(+) (we strike out to indicate thatr, is not a function
of intensity. This expectation, which is called Weber's law
(Weber, 1988 has been successfully applied to many hu-
man perceptions. We refer the reader to the helpful and de-
tailed review of these questions by Viemeist€r988,
Johnsoret al. (1993, and Moore(1982.

Somewhat frustrating is the empirical observation that
J(1) is not constant for the most elementary case of a pure

d- tone (Riesz, 1928; Jesteadt al, 1977. This observation is

ness, intensity, and the SNR, on log scales, and also the slofgfe’red to asthe near-miss to Weber's lafMcGill and

on log-log scales.

4. Counting JND’s

Goldberg, 1968p It remains unexplained why Weber's law
holds as well as it doeGreen, 1988, 1970, p. 721or even
why it holds at all. Given the complex and nonlinear nature
of the transformation between thé and ¥ domains,
coupled with the belief that the noise source is in the

While the concept of counting JNDs has been frequentl)}jomam' it seems unreasonable that a law as simple as We-

discussed in the literature, starting with Fechner, unfortu

nately the actual counting formulé.e., the equationis

ber's law, could hold in any general way. A transformation

of the JND from thed® domain to the¥ domain might

rarely provided. As a result of a literature search, we foundarify the situation.

the formula in Nutting(1907), Fletcher(19233, Wegel and
Lane (1929, Riesz (1928, Fletcher (1929, and Miller
(1947).

To derive the JND counting formula, E€L5) is rewrit-
ten as

dl  dL
Integrating over an interval gives
J"z dI_JLZdL -
L AT ALY 2

whereL;=L(l;) andL,=L(l,). Each integral counts the

total number of JND’s betweeh; and |, (Riesz, 1928;
Fletcher, 1929 For example

(23

definesN,,, the number of intensity JNDs betweén and
I,. Equivalently

\ _J’deL
1= Llﬂ

defines the number of loudness JNDs betwkgrand L,.

(24

The number of JNDs must be the same regardless of the

domain(i.e., the abscissa variabjeb or .
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Weber's law does make one simple prediction that is
potentially important. From Eq23) along with Weber's law
Jo=J(#) we see that the formula for the number of JNDs is

N_f'zdl
27 )1, 3ol
1, |2)
—Eni.

B. Fechner’s postulate

(25

(26)

In 1860 Fechner postulated that the loudness JND
AL(l) is a constarit (Stevens, 1951; Fechner, 1966; Luce,
1993; Plack and Carlyon, 1985We shall indicate such a
constancy with respect tbasAL(+) (as before, we strike
out thel to indicate thatAL is not a function of intensity.

As first reported by Stever{§961), we shall show that Fech-
ner's postulate is not generally true.

1. The Fechner JND counting formula

From Eq.(24), along with Fechner’s postulatséL(+),
we find

N f‘—z dL 27
Yol ALG)
Lo—L,y
=—x (28
J. B. Allen and S. T. Neely: Intensity JND and loudness 3632



This says that if the loudness JND were constant, one coul®. Hellman and Hellman'’s alternative to Fechner
calculate the number of JNDs by dividing the length of the
interval by the step size. We call this relation thechner
JND counting formula

In 1990 Hellman and Hellman proposed an alternative to
Fechner's hypothesis, thatL is constant, by showing that
the PIN model could give reasonable loudness growth func-
tions. Their paper concludes that the relation between the
2. The Weber—Fechner law intensity JND and loudness is

It is frequently statedLuce, 1993 that Fechner’s pos- hr, di
tulate[AL(H#)] and Weber's law J,=J({)] lead to the con- VL(I)—L(I)= —J .
clusion that the difference in loudness between any two in- 2)1, AL

tensities|; andl, is proportional to the logarithm of the ratio In the next section we discuss the underlying principles be-

(30

of the two intensities, namely hind Eq.(30), and discuss its generalization to other condi-
L) —L(l 1 | tions, such as higher intensities, noise, complex tones, and
( 2) ( l) 2 . .
— AL o K (290  pulsed signals of various duty cycles.
0 1

The PIN JND counting formula. Given the definition
This is easily seen by eliminatindl;, from Eq. (26) and  of the number of IND$Eq. (23)] we may rewrite the Hell-
(29). This result is calledrechner’s law and was called the man and Hellman formulgEg. (30)] as

WeberFechner lawby Fletcher and his colleaguéss it is

. . 2
today by the Vision communilybecause Eq(29) results Npo=—(VLo—\Ly). (32)
when one assumes that both Fechner's postulate and We- h
ber's law are simultaneously true. We call this relation théIN JND counting formulalt speci-

Even though Weber's law is approximately true, be-fies the number of JINDs between two loudness values, where
cause Fechner's postulate E@8) is not trué (Stevens, the factorh depends on the reference intensity for the
1961), Fechner's law cannot be true. The arguments on botfbudness scale. Equati¢B1) was first described by Stevens
sides of this proposal have been weakened by the uncle@i 1936(Stevens and Davis, 1983, p. 248 a slightly modi-
relation between loudness and the intensity JND. For exfied form asL,=N3?, whereL,=0 is the loudness for
ample, it has been argued that since the relation betwean=0, and again by Miller(1947) for white noise as
L(I) and Al(l) depends on many factors, there can be na_,=N3,. Equation(31) (i.e., L,~N3,) should be compared
simple relation between the tw@Zwislocki and Jordan, and contrasted to Fechner's JND counting formula @8§).
1986. It has even been suggested that loudness and the it the next section we show that for long duration tones,
tensity JND may be independéehEor a recent discussion of pelow about 20 dB SL, Eq31) is essentially correct; how-
loudness and psychophysical scaling, see M&tk34, Ge-  ever, when the PIN model does not hojé.g., when
scheider(1976, Luce (1993, and Plack and Carlyof1999.  AL(L)# L, such as for continuous tones at high intensi-

ties], a different relation must apply.
C. Poisson noise

Starting in 1923, Fletcher and Steinberg studied loug/!!- RESULTS
ness coding of pure tones, noise, and speééetcher, In the following we directly compare the loudness-
1923a, 1923b; Fletcher and Steinberg, 1924; Steinbergyrowth function of Fletcher and Munson to the number of
1925, and proposed that loudness was related to neurdiNDs N,, from Riesz, as described in Appendix A. The
spike countFletcher and Munson, 1983and even provided Fletcher and Munson loudness ddtunson, 1932 were
detailed estimates of the relation between the number ofietermined for long duration tonal stimuli using the loudness
spikes and the loudness in sor(étetcher, 1953, p. 271In  palance methodFletcher and Munson, 1983he method of
1943 De Vries first introduced a photon counting Poissorconstant stimul{Yost, 1994, and the assumption of additiv-
process model as a theoretical basis for the threshold of vity of partial loudness. Riesz’s data were also determined for
sion(De Vries, 1943 Siebert(1965 proposed that Poisson- |ong duration stimuli with just-detectable modulaticie.,
point-process noise, resulting from the neural rate code, acthey were tonelike sounglsSince the JND depends on the
as the internal noise that limits the frequency JNBreen, modulation depth, as discussed in tBefinitions section,
1970; Jesteadetal, 1977. A few years later(Siebert, Riesz’'s JND data seem to be ideal for this comparison since
1968, and independentt) McGill and Goldberg(1968a  both the loudness data and the JND data have minjarad
proposed that the Poisson internal noiB&N) model might  similar) modulation parameter¢Riesz’'s continuous tonal
account for the intensity JND, but they did not find a reasonstimuli, which have just-detectable modulations, are more
able loudness growth function. Hellman and Hellnta890  tonelike than gated 2AFC stimiuli
further refined the argument that Poisson noise may be used o .
to relate the loudness growth to the intensity JND, and theya" Determination of the JND counting formula
found good agreement between the JND and realistic loud- Motivated by Eq.(31), in Fig. 1 we have compared the
ness functions. number of JNDs to the square root of the loudness at all 11

As we shall show, the PIN model requires th¥dt (L) frequencies that Fletcher and Munson used to define the
«+/L, which may be written aSrEocL. The proportionality  loudness, requiring the reconstruction of the loudness curves
constant depends on the loudness scale. from the raw data given in Table | of the 1933 paper. The
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FIG. 1. Observed versus predicted number of INDs. In this fidu_ge— \/L—1 is the abscissa, using the loudnegs) from Fletcher and Munsof1933, versus

the number of JND§,, from Riesz(1928 on the ordinate, for intensitids, from 1 dB to 120 dB SL(above the threshold intensity). The 11 curves,
corresponding to the frequencies 0.062 to 16 kHz, are distributed among the four panels for clarity. Except at low frequencies and high levels, the resulting
plots are nearly parallel to the 45° line, in support of the Hellman and Hellman PIN model.

procedure for doing this is described in Appendix B. TheAgain we see reasonable agreement between the Hellman
figure is divided into four panels to separate the resultand Hellman theory and the tonal data.

across frequency. The abscissa gives the difference between

the square root of loudness above threshold and the square .

root of the loudness at threshold,— yL,, while the ordi-  B- An alternative to Fechner's postulate

nate gives the corresponding number of JNDs above thresh-  |f one treats Eq(31) as an exact representation of Fig. 2,
old Ni,. The results for 62 and 125 Hz clearly depart fromthereby ignoring any deviations with intensity and fre-

straight-line behavior. Also at high levels for all frequencies,quency, one may draw several interesting conclusions. First
for L>10* LU (i.e., >10 sone} the results deviate from a it follows that

straight-line. However, over the rest of the range, @4) is
an excellent summary of the curves of Fig. 1. AL=hL, (32
Figure 2 shows an alternative way of presenting the datgyhere h is a proportionality constant, as may be seen by

that estimates ®/and provides a more sensitive indication of direct substitution of Eq(32) into the JND counting formula
the deviations from Eq31). In this figure we plot the ratio Eq. (24):

of N, divided by JL,— \L;, as a function of the intensity

expressed in dB SL. EquatidB1) says that this ratio should _ JLZ dL (33
be independent of intensity. The deviation from a constant 12 L, hyL

value shown in Fig. 2 is greatest at low frequencies, but is

small in comparison to the large range of values spanned by _ E B

both the numerator and denominator of this ratio. h(\fz \/L—l)' (34
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FIG. 2. These data are the same as that of Fig. 1 except the ordinate has been normalized by the abscissa. On the abscissa is the sound intensity, in dB SL

and on the ordinate i8l;,/(\L,— vL;). This allows the estimation of the parameteh,24s described by Eq31). The 11 curves represent the same
frequencies shown in the previous figure.

which is Eq.(31). In summary, Fechner's postulate cannotcounts, is just such a scal&letcher and Munson, 1983
be true sinceAL=h+/L, which isnot constant. sinceL(l) =1 whenl, is the threshold intensity;(O).

As discussed in Sec. |, a basic tenant of signal detectioifhe sone scale is not such a loudness scale since in that case
theory is that the standard deviation of the decision variablé,.; corresponds to 40 dB SPL.

is proportional to the change in the mean, which is @) Since for the PIN model we know botAl(l) and
in the present case, since the decision variable is the singletL (L), we may evaluate Eq22) and obtain a usable alter-
trial loudness. native to Fechner’s ill-founded loudness law Eg9). For

If we eliminateAL from Egs.(32) and(16), we recover example based on Eq82) and(Al), Eq.(22) givesL(l) for
the fundamental assumption of the PIN mo@géc. Il O, tones by equating Eq$31) and (A5), leading to

LA (35) (1) ot (Jper—3.) | 12

= F O, _ ref) oo ref” Yoo
L(I) L eft P In I .

which says thathe mean of the single-trial loudness L is (36)

proportional ton , the variance of the single-trial loudness

where thesingle-trial loudnesss the loudness decision vari- The parameters, J.., andJ, are described in Appendix A.
able. By the proper choice of the reference intenkifycor-  Equation(36) provides a good description of the tonal loud-
responding to unity loudnes§.e., L,=1), along with ness functions over the range of intensities where the PIN
knowledge ofd’, which depends on the experimental condi-model is valid. A similar use of Eq22) should give a rea-
tions, the proportionality constand{/h) may be setto 1. In sonable fit to any loudness growth function orkgl) and
fact, Fletcher’'s LU loudness scale, which is based on spikdL(L) have been estimated.
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FIG. 3. In this figure we show L (L, f) computed directly from Eq14) using Riesz's JND data and the Fletcher—Munson loudness-intensity curve, for levels
between 0 and 120 dB SL. ® has been placed on the curves at an intensity of 55 dB SL, for 62 and 125 Hz, 60 dB SL for 0.25 to 1 kHz, 55 dB SL for
2-5.65 kHz, and 50 dB SL for 8—16 kHz. In the upper-right panel we have added a straight line for reference, having slopes of 1/2, 1/3, and 1, for levels
between 0-20, 20-60, and above 60 dB SL, respectively. From these plots it is cleit (hatis described by a power law in having three straight line
segments. Between 0 and 20 dB SL, the slope is close to 0.5. Between 20 and 60 dB SL the slope is cloag tol1/3) (for tones, and 2/3 for noise. Above

60 dB SL, the slope is 1XLxL). Fechner’s law AL(+)] appears to hold only for 62 and 125 Hz below 50 dB SL. One extra curve, labeled with a thick
solid line, has been added to the lower-left panel, showihgL ) for the wideband noise data of Mill€L947. This curve has a slope of approximately 1/2

below 25 dB SL, 2/3 between 25 and 55 dB SL, and then merges with the tone data up to a loudnégdj,ite upper limit of Miller's data. Note that

1 sone is 975 LU.

C. The direct estimate of AL to loudness using Fletcher and Munsofl933 reference
curve(i.e., Fig. 6 upper lejt In Fig. 3 (thick line, lower-left
pane) we showAL(L) for Miller's (1947 wideband noise
JND, data. Between 25 and 55 dB SL, the slopéaf(L) on

a log—log plot is close to 2/3. Above 55 dB SA| (L) is the

same as that for tones.

The above discussion hé® drawn out the fundamental
nature of the JND(b) shown the critical nature of the de-
pendence oAL(L) onL, and(c) has shown that below 10
sones the PIN model, E432), approximately holds. Given
its importance, it is reasonable to estimate directly from
its definition Eq.(14), using Riesz’'Al(l) and Fletcher and
Munson’s(1933 estimate ofL(1).

In Fig. 3 we show an estimate &fi (L) computed using The pure tone and wideband noise JND results may be
all 11 tonal frequencies that Fletcher and Munson used tgummarized in terms of the loudness SR data shown in
define the loudness. Each of the four panels displays a difrig. 4 where we show./AL=SNR /d’ as a function of
ferent frequency range. As indicated in the figure caption wéntensity. As before we separate frequencies into separate
have marked the point on the curve where the slope changesanels. The SNRfor the wide band noise data of Miller is
For the 62 Hz data in the upper-left panel we see ffiatis  shown in the lower-left panel.
constant for levels below about 50 dB SL. Over most of the  For noise below 55 dB SL the loudness signal-to-noise
frequency range, below 20 dB SAL L. Between 20 and ratio SNR=L/o, increases as the cube root {2/3
60 dB SL,ALxL3 Above 60 dB SLALxL. =1/3) of the loudness; namely the noise increases by a fac-

Miller's (1947 famous JND paper also includes wide- tor of 2 when the loudness increases by a factor of 8. For
band noise loudness-level results. We transformed these dd&vels above about 55 dB SL, SNf) remains approxi-

D. Determination of the loudness SNR
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mately constant with a value between 20 and 60 for botrturve fit to Riesz's data and Riesz's formula is excellent.
tones and noise. For tones, between threshold and 60 dB Shver this 100 dB range the curve defined by the loudness
o =LY with 2<p=<3. Above 60 dB SL,o L (i.e., function fits as well as the curve defined by Riesz’s formula
p=1). given in Appendix A(the dashed curye The excellent fit
To the extent that the curves are all approximately thegives us further confidence in the basic assumptions of the
same across frequency, Fig. 4 provides a stimulus indepemrodel.
dent description of the relation between the intensity JND  In the lower-right panel we have superimposed the JND
and loudness. This invariance in SNReems significant. data of Jesteadit al. (1977 with h=3 andL,=10 000 LU
Where the high level segment of SN constant, the in- for comparison to Eq(40). The Jesteadét al. data were
tensity resolution of the auditory system has a fixed internataken with gated stimuli(100% modulatiop and 2AFC
relative resolution (Ekman, 1959 The obvious interpreta- methods. It is expected that the experimental method would
tion is that as the intensity is increased from threshold, théead to a different value ofi than the valued required for
neural rate-limited SNR increases until it saturates due t®iesz's data set. The discrepancy between 0 and 20 dB may
someother dynamic range limit, such as that due to somebe due to the 100% modulation for these stimuli. The fit
form of central nervous systef@€NS) noise. from 20 to 80 dB SL is less than a 5% maximum error, and
Near-miss to Stevens’ lawIn Fig. 5 we show a sum- much less in terms of rms error. Note the similarity in slope
mary of L(1), »(l), J(I), andAL/L=d'/SNR_for the tone  between the model and the data.
and noise data. For tones the intensity expongh} varies
systematically between 0.3 and 0.4 above 50 dB SL, 3% Riess's counting ratio
shown by the solid line in the upper-right panel. We have ’
highlighted this change in the power law with intensity for a According to Eq.(31), the frequency dependence of the
1 kHz tone in the upper-right panel with a light-solid straight number of intensity JNDs between any two values of loud-
line. It is logical to call this effect th@ear-miss to Stevens’ ness must be isolated to the coefficid(f). This was first
law, since it cancels the near-miss to Weber's law, giving aobserved empirically by Riesz in 1933 in a different form
constant relative loudness JNBL/L for tones. when he pointed out that for levels below approximately 70
In the lower-right panel we provide a functional sum- dB SL the JND counting-ratio
mary of AL/L for both tones and noise with the light-solid

line described by Nix/Ni (4D
AL(L is independent of frequencfRiesz, 1933; Houtsmat al.,
© =h[min(L,Lo)] 2, 37 1980. In this equationN;x andN, are given by Eq(23).

L The index 1 corresponds to the threshold intensity

whereh=12 andL,=5000 LU (=5 sones We call this I1=I;(O), theR index indicates some re.feren_ce.intens*.i,iy
relation the Saturated Poisson Internal NaiS®@IN) model.  [€-9-,Lr(Ir) =1sone alg=40 phon, while X indicates an

bound on the relative loudness JNDor both tones and guency dependence &ff) on f. In the ratio given by Eq.
noise. (41), this dependence cancels, making the counting ratio in-

dependent of frequency.
Riesz’'s observation about the JND counting ratio is in-
E. Weber-fraction formula teresting because the isoloudness contours depend signifi-

. . . . cantly on frequencyAl(l,f) depends significantly on fre-
In this section we derive the relation between the Weber : .
fraction J(I) given the loudnesd (I) starting from the quency, and yet the ratio E¢4l), which depends only on

R Al(l,f), shows little variation with frequency.
small-JND approximation By assuming that the counting ratio is independent of
AL=AIL'(I), (389)  frequency, Riesz was able to mimic Munson’s loudness
curves(Munson, 1932 (i.e., the Fletcher—Munson isoloud-
ness curvesbelow a critical level of approximately 70 dB
SL, given two isolevel contourée.g.,L; andLg) and his
Al AL 1928 measurements afl (1) expressed in terms & using
== (39  Eq.(23.
I From ratio Eq.(41) and Eq.(31) we obtain
Finally we substitute the SPIN model ER7)

whereL’(l)=dL/dl. If we solve this equation foAl and
divide byl we find

h e \/L_x—_ Ly (42)
J(')=%[min(L(l),Lo)]l’? (40) Nir  VLg— L,

Thus we see that the frequency independence of (E).
This formula is the same as that derived by Hellman andnamely Riesz's(1933 observation follows directly from
Hellman (1990 whenL<L,. In Fig. 6 we plot Eq.(40) in Eq. (32) and the definition of the number of INDs Eg4).
the lower two panels labeled “SPIN model.” From the A more general statement may be mad@llf(L,f) has
lower-left panel of this figureh=2.4 andL,=10 000 LU. no direct dependence on intensity and is either independent
For levels between 0 and 100 dB SL, the SPIN mddelid  of frequency or contains a frequency dependence which is
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FIG. 4. In this figure we ploL(1)/AL=SNR_/d’ for intensities between 0 and 120 dB SL. Below about 55 dB SL the internal signal-to-noise rati¢| 5NR
is increasing and is proportional td =Y, where 2<p=3 for tones anch~3/2 for noise. Above 60 dB SL the SNRaturates at about 50 linear units. At
62 and 125 Hz the SNRdecreases at high levels.

separablefi.e., AL(L,f)=¢.(L+)eo(f+)], then the fre- count is equal to the mean count for a Poisson protbss
qguency independence of Riesz’s counting ratio follows fromPIN mode), Fletcher's neural rate model of loudness pre-
Eq. (24), regardless of the detailed form of the dependence oflicts the JND when the neural spike train obeys Poisson
AL onlL. statistics. Above 60 dB, where the SNI® saturated, a dif-
G. Summary ferent explanation is require@.g., CNS noisge

Riesz's(1933 observation that the counting ratio is in-
dependent of frequency for intensities below 70 dB SL teIIsA A i bout loud ¢ N
us that the loudness JND has no direct dependence on inteh- ssumptions about foudness for pure tones
sity [i.e., AL(L+,f)], and that its dependence on loudness  To understand all these relations we need a model, and
can be separated from any possible dependence on fre«e make the following model assumptions about the single-
guency. Turning the argument around, when Riesz’s counttrial pure-tone loudness: _
ing ratio is independent of intensity, it follows that (1) The single-trial pure-tone loudness(L,f) is given
AL(L#,f) (i.e., thatAL does not depend o). This obser- by the total number of neural spikes that result from the
vation supports Fechner’s idea thatl) may be found by presentation of the tone of duratiofi seconds. Namely
counting JNDs; he simply had the wrong formulas Adr(1)

— X t -
andAL(L). L(|,t,f)=f Lf 22 (1,1,f,x)dt dx,
0 t—7

IV. A MODEL OF TONAL LOUDNE DIN ~ . . .
© OF TO ou SS CODING where.7 (1,t,f,x) is a random variable that describes the

In this section the SPIN modgEq. (37)] is merged with  neural spike rate at timé associated with plac& on the
Fletcher's loudness theory. Fletcher was the first to describbasilar membrane, given a tone of frequericand intensity
the neural excitation pattern model of partial loudness and. The length of the basilar membranexis. The additivity
propose that the summation of the total spike activity couldi.e., the integral over place and tijnis based on Fletcher’s
account for the loudness. Since the variance of the spikanalysis of 10 years of loudness measurements by Munson
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FIG. 5. In 1947 Miller measured the JNBnd the loudness level for two subjects using wide band r(6id&—7 kHz for levels between 3 and 100 dB SL.

The intensity of the noise was modulated with a ramped square wave that was high for 1.5 s and low 4.5 s. The loudness, computed from Miller's phon data
(dashed curveusing Fletcher and Munson(d933 1-kHz tone loudness-growth curve are shown in the upper-left panel, along with the Fletcher Munson
tonal loudness-growth functidisolid curve. The upper-right panel shows the exponeit) =dL,,,/dg for both Fletcher and Munson’s and Millertaverage

of two subjects loudness-growth function. In the lower-left panel we pidt| vs| for Miller's two subjects, Miller's equation, and Riesz’s equation. In the
bottom-right panel we show th&L/L vs L for the noise and tones cases. From &) AL/L=wv(1)J(l). Note how the product of(l) andJ(l) is close

to a constant for tones above 65 dB SL. This invariance justifies calling the variations in the power-law exgbonémt tones the “near-miss to Stevens’

law.” For reference, 1 sone is 975 LU.

(Fletcher and Munson, 1933as well as more recent obser- the auditory nerve response may not be claimed to be loud-
vations. nessper se We have shown in this paper that a point-process

(2) From signal detection theory, the relation betweenrepresentation of loudness appears to be a realistic assump-
the loudness JNDAL and the standard deviation of the tion It is remarkable, given the primitive state of knowledge
single-trial loudnes$Eq. (10)] is AL=d" o . in 1923 about auditory neurophysiology, that Fletcher asso-

(8) The single-trial loudness is Poisson below 60 dB SL..jated neural rate with loudnesBletcher, 1923a; Fletcher
A second .|ndependent noise source limitstWAL ratio to a and Steinberg, 1924Unfortunately this association receives
fixed maximum of about 50 for levels above 60 dB. s . ) .

. only tenuous acceptance toda@yiemeister, 1988; Smith,

(4) The loudness-growth functio(1,f) has a slope 1988; Delgutte, 1995; Doucet, 199%0ur assumption of a
dL/dI which is a good local approximation to the ratio of the =~ ™ =~ N 7 R L
loudness JND to the intensity JINBL/AI(1,f). uniform time we.|g-ht|ng-ha\{|ng dura@ﬂoﬁ is not realistic,

and a more realistic weighting function needs further study.
Assumption 2 is widely accepted, and works well for the
B. Model discussion 2AFC JND task, but is not correct for the modulation-

Fletcher's modelassumption )1 has been heavily and detection task such as Riesz’s method of beats. When modu-
widely criticized(e.g., Licklider, 1959. Clearly, the auditory lation detection is the taskyL~0. This is best seen from
nerve response is the input to such loudness calculations, bEg. (8). Since «, is small, the mean change in intensity
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FIG. 6. Comparison between loudness data and intensity JND data at 1 kHz using the SPIN model. The upper-left panel shows the Fletcher—Munson loudness
data from their Table ll(Fletcher and Munson, 1983The upper-right panel is a plot of the slope of the loudness with respect to inténgitym/W). In

the lower-left we show the relation between the SPIN-m§Hgl (40) with h=2.4] relative IND(solid line), calculated from the Fletcher—Munson loudness

data, and the measured relative JND obtained by RiE328 at 1 kHz. We display both Riesz’'s formuldashed lingand Riesz's raw dat&ircles, which

may be found in Fletche1953, 1995. In the lower right we compare the SPIN-model relative J¥H9. (40), with h=3.0], and the relative JND computed

from the Jesteadit al. formula(dashed linpand data from their Table B{tircles. They measured the JND using pulsed tones for levels between 5 and 80

dB. For reference, 1 sone is 975 LU.

defined by the second terafl is not what is detected by the theory. We defined a random decision variable called the
listener. The beating terma2 sin(2xf,t) is responsible for single-trial loudness. Theaeanof this random variable is the
detection. From basic detection theory we know that thdoudness, while itstandard deviations proportional to the
width of the distribution is responsible for modulation detec-loudness JND. We define the loudness signal-to-noise ratio
tion rather than the change in the mean. Riesz avoided thiSNR _as the ratio of loudnegshe signal to standard devia-
problem with the empirical definition of described in Ap- tion (a measure of the noigse
pendix A.

Assumption 4 is easily tested by direct comparison ofa_ Model validation

the two sides of Eq(15).
19 To evaluate the model we have compared the loudness

data of Fletcher and Munsgi933 with the intensity JND
data of Riesz(1928 for tones. A similar comparison was
Inspired by the Poisson internal noi€®IN) based made for noise using loudness and intensity JND data from
theory of Hellman and Hellmaf1990, we have developed a Miller (1947. We were able to unify the tone and noise data
theoretical framework that can be used to explore the relaby two equivalent methods. First, since the loudness SNR is
tionship between the pure-tone loudness and the intensitgroportional to the ratio of the loudness to the JNDAL,
JND. The basic idea is to combine Fletcher’s neural excitathe SNR is also a piecewise power-law function we call the
tion response pattern model of loudness with signal detectioBPIN model. All the data are in excellent agreement with the

V. DISCUSSION
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SPIN model, providing support for the validity of this theory. spike amplitude, assuming that the output cell soma voltage

Second, we found that the loudness JND(L) is a piece- is sensitive to the area under each spike input.

wise power law, namely The direct estimate oAL(L) from Fig. 4 shows that

AL(L)=L, o ()<L (Ekman, 1959 leading to a Iqudness S_Npr .

~50. We may understand better what is happening in this

wherep is a piecewise intensity-independent constant. Nextegion by looking at the model. If we combine E¢$3) and

we discuss the various piecewise regions for long-duratiori18), we find

tones.

!

1. Below 20 dB SL J()= (1) SNR(D) (43

In this intensity range we have found that the pure-tonge,,m, this equation it appears that the near-miss to Weber's
loudness JND is proportional to the square root of the loud, ahove 60 dB SL results from the variationsul) with
ness, that i=2. One interpretation of this dependence is| ' gjnce SNR is independent o in this region. We call this
that the single-trial loudness obeys Poisson Statislts g variation in(1) the near-miss to Stevens law.

PIN model is valid, which says that{=L), and that the An example. As a sanity check on Eq43), we calcu-
tonal loudness is the average count of the total number gf;;o SNR for Miller's wideband JND data. As shown in Fig.
spikes. 5 lower-left panel, dashed line, Mill¥rfound J=0.1. From

From the data of Figs. 1 anq 2{ we conclude that the PII\Eq_ (13), assumingl’ ~ 1, SNR is therefore 10. As shown in
JND cpuntlng formula Eq(31) is in excellent agreement Fig. 5, upper right, the power-law exponentis-1/4 at 60
with Riesz's (1928 JND data and Fletcher and Munson's 4g'sy_ for noise, which means SNR 40. This estimate is in

(1933 loudness data between 250 Hz and 16 kHz. We takgasonable agreement with the measured values of Fig. 4.
these results as a direct demonstration of the validity of the

theory presented in Sec. IV, which implies that the theory’s

underlying assumptions are correct. Most important is asB. The noise model

sumption 1 which says that the loudness is equal to the total

neural spike count. This same assumption inspired Fletcher's, The sSPIN model

model of loudness and led to theudness uni{LU) scale, . . .
Equation (37) summarizes our results on the relative

hich tes th I 1 . H th . . .
which predates the sone scale by 10 years. However, o forudness JND for both tones and noise. Using this formula

than for setting the reference intensity corresponding to uni ) .
loudness, Fletcher did not actually use the neural countinizong with Eq.(18), the JND may be estimated for tones and

assumption in his derivation. The success of the PIN theor O'Sf oncS the I(;)ulanesshhas, beent dlettem;;]nc?[d{hbyl mtcajasure—
supports the view that it is Poisson noise that limits ourJI\TS’i or nytrT:t) ?'n ?C ner Sr't pc;)iuaer, nal ie ir?u r;ess
ability to discriminate pure tone intensity below 70 B0 S constant, IS not supported by our analysis, In agree-

sones. In other words, the source of uncertainty that givesment with Stevens1963.
rise to the intensity JND is due to the granularity of the
neural spikes in the counting representation of loudness, a8 1he piN model

reflected by assumption 3. ) _ _ )
The success of the PIN model is consistent with the idea

that the pure-tone loudness code is based on neural discharge
2. Between 20 and 60 dB SL rate. This theory should apply between threshold and mod-
In this region, for the tone casp,increases from 2 to 3. erate intensitiege.g., <60 dB) for “frozen stimuli” where

We have no way of judging the statistical significance of thisthe JND is limited by internal noise.
change to evaluate the significance of this change in expo-
nent. Is it a result of a spread of the excitation pattern, pri-

. ... 3. CNS noise
mary neural saturation, or a more central effect? Could it be

an anomaly of Riesz’s formula faxl, or Fletcher and Mun- Above 60 dB SL we find that the loudness signal-to-
son’s 1 kHz loudness-growth curve? The only safe concluhoise ratio saturated with a constant loudness SNR between
sion is that we need more data. 30 and 50 for both the tone and noise conditions, as summa-

rized by Ekman’s law(Ekman 1959 We conclude that the
Hellman and Hellman theory must be modified to work at
3. Above 60 dB SL these higher intensities.

Above 60 dB SL the PIN counting formula E¢32)
begins to fail—above 80 dB it fails dramatically @sap-
proaches 1. At high rates the variance could depend o
“dead-time” effects(Teich and Khanna, 1985; Young and It is significant that while botld(1) and »(l) vary with
Barta, 1986 which introduce a correlation between spikes.intensity, the product is constant above 60 dB SL. Given that
One problem with the dead-time model is that it does notl=d’'/v SNR _, the saturation in SNRexplains Weber's
seem consistent with p of 1. A more likely possibility is  law for wideband signal&sincerv and SNR for that case are
that this high level “CNS noise” is due to the variability in constantas well as the near—miss to Weber’s law for tones,

ﬁ. Weber’s law
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wherev is not constantthe near-miss to Stevens’ law, Fig. C. Discussion of the model

5). 1. Does Weber’s law hold in a single channel?

o It has been observed that Weber’s law holds for wide-
5. Generalization to other data band stimuli(Florentine and Buus, 1981; Viemeister, 1988
If o (L+) depends o, and is independent df then ~ This observation has led to the conclusion that Weber’s law

the SNR (L) should not depend on the nature of the functionmust hold in a single auditory channel. Because SN&R
L(1) [i.e., it should be true for ank(1)]. This prediction is approximately the same for both tones and noise, we are led
Supported by our ana'ysis summarized by BT) It will be to the conclusion that the source of noise for Miller's JND
interesting to see how SNRlepends ot and! for subjects experiment is the same internal noise as that for tones. Im-
having a hearing-loss-induced recruitment, and how well thifortant questions are: If the noise is internal, and both

theory explains other data in the literature, such as loudnesaNR (L) and »(L) depend orL, why is »(L) SNR_ con-
and JNDs with masking-induced recruitmef®chlauch —Stantwhen many channels are excited? Does this observation

et al, 1995. hold true for both frozen as well as random stimuli? What is
the physical mechanism that determines the value iofthe
normal cochlea?
Miller's data shows thafl is constant from 20 to 80 dB
- SL. Above 80 the relative JIND seems to decrease slightly,
To further test the SPIN model, several conditions musng pelow 20 it dramatically increases. Between 20 and 50
be met. First the loudness and the JND must have been megg g bothr(1) and SNR(I) change by a factor of 4, but in
sured under the same stimulus conditions. Second, the integych a way that their product is constant. While the source of
nal noise must be the dominate factor in determining thenis covariation is presently unknown, it may be related to
JND. This means that the stimuli must be frozem have ihe compressive role of outer hair cell feedba@ulen,
significant duration and bandwidthand the subjects well 199gp.

trained in the task. As the signal uncertainty begins to domi-
nate the internal noise, as it does in the cases of roving the noar-miss and the spread of excitation

stimulus, the intensity JND will become independent of the )
loudness. Based on the results presented here it seemsAthat

As discussed by Stevens and Daffitevens and Davis, is the invariant(Ekman’s law above about 5 sond® 000

1983, pp. 141-143 IND data are quite sensitive to the LU) rather thamil/. As a result of Eq(18), when (1) is
modulation conditions. The Rie§2928 and Munsor(1932 ~ constant, Weber's law must hold. In this view, the “near-
data make an interesting comparison because they are takBHSS” 10 Weber 1988's law results from the range:df ,x)
under steady-state conditions and are long duration tonal sig/@/Ues that contribute to the specific loudnéss., .7) for
nals. Both sets of experimental ddiz., Riesz and Munson ~ Pure tones. Ifv were independent of intensitfi.e., if
were taken in the same laboratory within a few years of eacfpt€vens’ law strictly held and.(1) was exactly a power
other!? Riesz(1928 states that he used the same methods a@W]: the addition of components of differing intensities
Wegel and Lané1924, and it is likely that Munsor{1932  |eads to a power law, that is

did as well. (I+al)y’=(1+a)"l". (44

Differences in the signal conditions are the most likely h N d q intensitv. th . | tictl
explanation for the differences observed in the intensity JNdN enw(1) depends on intensity, the sum is no longer strictly

measurements of Riesz and Jesteadt shown in Fig. 6. orfePower law(.e., the near-migs According to th_is "ieV_V: the
difference between the data of Rie&¥928 and Jesteadt near-miss results from the large spread of intensities, and

et al. (1977 is that Riesz varied the amplitude of the tones in'_tltﬁreforel O.f et>_<ponents(l),d_|][f1 the tt(irr:al iﬁc'tité%nl patterr:j. f
a sinusoidal manner with a smadlle., just detectab)enodu- IS éxplaination seems difierent than the spread o

lation index, while Jesteadtt al. alternated between two in- masking explanation of the near-miss offered by Florentine

tervals of different amplitude, requiring that the tones beand Buus.

gated on and offi.e., a 100% modulation indégx ) )

The neural response to transient portions of a stimulus is- A correlation with other cochlear measures
typically larger than the steady-state respofsg., neural It seems to be more than coincidence that 60 dB is
overshoot and, therefore, may dominate the perception ofwhere the cochlear microphonic saturates, two-tone suppres-
stimuli with large abrupt changes in amplitude. The fact thatsion neural threshold sets ifFrahey and Allen, 1985 the
the intensity JND is sensitive to the time interval betweenupward spread of masking becomes importéifegel and
two tones of different amplitudéStevens and Davis, 1983 Lane, 1924, and the internal noise of the SPIN model satu-
is another indication that neural overshoot may play a role.rates. If the saturation of the SNREkman’s law seen in

It would be interesting to check the SPIN model on Fig. 4 is found for other experimental conditions, then itis an
loudness and JND data taken using gated signals, given thmportant result that could lead to a great simplification of
observed sensitivity to the modulation. While these JND dataur understanding of neural coding. It is important to estab-
are availabldJesteadét al, 1977, one would need loudness lish the source of the saturation, which might be viewed as
data taken with identicalor at least similgr modulations. some form of CNS noise. This saturated region, which is an
We are not aware of such data. example of Ekman’s law, supersedes Weber’s law. Ekman’s

6. Conditions for model validity

3642 J. Acoust. Soc. Am., Vol. 102, No. 6, December 1997 J. B. Allen and S. T. Neely: Intensity JND and loudness 3642



law is similar to Weber’s law, but instead of tlde relative =~ ACKNOWLEDGMENTS
JND being constant, it is thé relative JND that is constant. We would like to thank Don Sinex, Donna Neff, Walt
Schlauchet al. (1995 tested Ekman’s law and found it did jesteadt, Stefan Launer, Mohan Sondhi, and Joe Hall for
not provide a good fit to their data. many helpful comments and corrections and for the exten-
Some measurements of the relative intensity JN&ve  sjve Journal of the Acoustical Society of Ameri@views by
shown a discontinuity around 60 dB SRabinowitzetal.  Ken Norwich, Rhona and Bill Hellman, and one anonymous
1976; Greenwood, 1993which is not apparent in the data review, and for their excellent suggestions, and for putting
of Riesz (1928 and Jesteadet al. (1977. This intensity  yp with our endless revisions. We would like to thank those
JND discontinuity may be related to saturation of the IOUd'WhO he|ped in very Specific ways: Mark Sydorenko worked
ness JND. extensively on narrow-band JND and masking experiments,
and worked out a signal detection theory model which pro-
vided important insights into the JND problem described
here. Patricia Jeng led us to the Fletcher data and provided us
with the computer program we used to reconstruct the loud-
VI. SUMMARY ness curves. Neal Viemeister helped us to clarify assump-
tions and understand the meaning of loudness growth. Dun-
A summary list of some of the main conclusions of thiscan Luce helped us to understand better the controversy

paper is: . _ created by Fechner’s law, and Jennifer Melcher did some
—~Fechner’s postulate is not valid, except perhaps belovhe|pful detective work. Finally George Zweig challenged us
125 Hz and 50 dB SPL. to solve the problem.

—Fechner’s idea that theumberof INDs may be useful
in defining a basic psychophysical scale which quantifieAPPENDIX A: RIESZ'S EXPERIMENT
supra-threshold loudness seems correct if modified to allow  The Riesz intensity JND data were measured by modu-

AL to depend or.. lation detection. Two tones, separated by small “beat” fre-
—OnceAl(l) andAL(L) are known,L(l) may be de- quency differencée.g., 3 H2, were presented to the subject,
termined from Eq(22). who was asked to vary the level of the lower-level, higher-

—The near-miss to Weber’s law for tones covaries withfrequency tone, until the 3-Hz beat was just detectable. The
the near-miss to Stevens’ law, defined as a deviation from 8Veber fraction was computed from the relative levels of the
power-law dependence of loudness on intensity for tones. tones using the relation

—Above 125 Hz, a possible replacement for Fechner’s ’ ’
law for tones is given by Eq36). This formula assumes that )= (a1 +ay)"— (a1 —ay)
AL =L, and therefore should be valid for tones between 0
and 60 dB SL.

—The variance of the single-trial loudness is strictly
proportional to the mean of the single trial Ioudnesé# L)
for I < 20 dB for frequencies between 250 Hz and 16 kHz.

(a;—ap)? ,
wherea;(f;) anda,(f,) are thepeakamplitudes of the two
tones atf; andf,, with f,—f;>0.

The first series was taken at 25 and 50 dB Slf;at 1
. . . . kHz for eight beat frequencies ranging from 0.2 to 30 Hz.
—The variance of the single-trial loudness is appProXi-the pest-heats detection frequency was found to be 3 Hz. A

me;tely proportional to the mean Of_ the single-trial IOUdnesssecond series of measurements was made using a beat fre-
(of=~L) for I < 60 dB, for frequencies between 250 Hz and quency of 3 Hz, as a function of frequenéy between 35

16 kHz. . 2 ) _ and 10 000 Hz and levels @f; between threshold and 110
'—The.observ;.auon th%LNL, for 1<60 dB (Fig. 3) is dB SL (the upper limit depended on frequefcyfwelve
not inconsistent with the near-miss to Weber’s law for toneg, o subjects were used.

or Weber's law for wide band stimuli. _ _ Riesz summarized his data using a formula for
—The standard deviation of the single trial loudness IS3(1,£)=A1(1)/1, that fit the mean data points. This impor-

proportional to the mean of the single-trial loudness. (  ant formula is repeated here for convenience
«L) for I>60 dB SL, for all frequencies.

—The PIN model is easily merged with Fletcher's neu-  J(1,f)=J..(F) + (Jo(f) = Jo()) (1 o/1) <P (A1)
ral counting model of loudness. It has three frequency-dependent parameters
—At 1 kHz the loudness SNRof the auditory system
seems to saturate at a value-e60 (linear unit$ at an in- _ 6 126
tensity of~60 dB SL. A=A+ e gy (A2)
—WhenL(l)«l*, SNR=»SNR .
—When L(I)xl”, the Weber fraction is o193
J=d'/(v SNR). Jo(f)=0.3+0.3x 10" °f + m, (A3)
—We interpret the invariance of Riesz’'s JND counting
ratio with frequency in terms of Eq22) as showing that the 0.244x 1P 0.65f
loudness JND for tones is a separable function of loudness  «(f)= TRTN : (A4)
3500+ f
and frequency, and is not a function of intensitye., (0.358<10°f 18+ £2) )
AL(f,LA)=o(f)y(L)]. whereJo(f)=J(1,f) andJ.(f)=J(I —=,f).
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Riesz also evaluated the integral for the number of JINDJABLE BI. Regression coefficients used to calculate the phon value at the
betweenl, andl, Eq. (23) frequency defined by the first column. This regression relates the ear canal

sound pressure in dB at 1 kHz to the ear canal sound pressure in dB at the
measurement frequency, that is equally loud, as measured by Munson
(1932 and Fletcher and Munsaid933.

1 (D)1 1) D+3o(f)—J.. (f))
(DI 3o(F) f c3 3 cl %

(AS) 0062  7.46169e-05 —0.00984189  0.74629 0.425879

It is interesting to compare Riesziéy; to Eq. (26). A table 0125  52594e-05 —0.00654132  0.800557  0.295663

No1=

a . s 0.25 0 0.00124457 0.720323 0.780066

pf Aa=a;—a, values(i.e., Riesz's raw dajamay be found 05 0 000209933 0.761911 0.467849
in Fletcher(1953, Table 24, page 1146 1 0 0 1 0

2 0 —0.0011956 1.14141 —0.622967

4 0 —0.00240718 1.2314  —0.393083

5.65 0 —0.00272458 1.24014 0.481007
APPENDIX B: RECONSTRUCTION OF THE 8 0 —0.00232339 1.20659 0.0426691
LOUDNESS CURVES 11.3 0 —0.002439 1.24474 —1.51871

16 0 —0.000566296  1.03446 —1.82771

The isoloudness data were first reported in 1932 by
Munson at 11 different frequencies, for 11 subjects, using
earphonesMunson, 1932’ Fletcher and Munson, 19.38" Simple, it does not directly giVe the loudness for any value of
this Appendix we describe the procedure and the assum@2(f), asP; is the independent variable, but can be used to
tions required to reconstruct the loudness-growth curve8uild a “look-up™ table. The second method, which is logi-
L(l,f) at any frequency (Jeng, 1992 cally more direct, is to define thaverseof the phon func-

It is helpful to have a notation to describe the isoloud-tion P*(P;,f) corresponding to the test pressuR{f),
ness curves. The pressure of a test tone at test freqdeiscy Which we define asP;(P,f). Using this notation,
defined asP(f). The reference frequency is 1 kHz and the G(P,f)=L(P;(P,f)). If you think this is confusing, you
reference tone pressure = P(1000). The average hear- have a greater than average attention span. We used the first
ing threshold at the reference frequency is defined)@s method. Linear interp0|ati0n was then used to obtain the
We use the superscript asterisk Bf) to indicate that the loudness for phon values between the tabulated values,
test tone pressure corresponds to the isoloudness conditioffhich were computed in 1-dB steps froml0O to 129 dB.
Thus P*(P,,f) is defined by the conditionL(P",f)
=L(P,,1000),which says that theoudnesf the test tone
at frequencyf and pressurd®” (P, ,f) is equal to the loud-
ness of the reference tone at 1 kHz. Equally loud sounds We used polynomial regressiqdeng, 1992, p. 27on
define thephon scale ofloudness levelThus P*(P,,f) is  the raw dataFletcher and Munson, 1933, Tablg df iso-
said to be at 20 log(P,/P,) phons. Loudness level, in loudness measurements to defiRg(f,P,). The measure-
phons, isnot a loudness scaléloudness is measured is ments of the subject’s threshold, given in the lower portion
sones. of their Table I, were also used in the regression to increase

The raw data are given in Table | of Fletcher and Mun-the accuracy of regression estimate at threshold. It was also
son (1933, which provides rms voltages on the earphone aimportant to use the 1-kHz reference values as the abscissa,
ten frequencies from 62 Hz to 16 kHz, expressed in dBV.when setting up the regression, since these are unaffected by
Since the earphone is linear, the voltage across the earphottee subject’s loudness estimate variabilityeng, personal
and the ear canal pressure are related by a scale factor. Thesmmunication
the values(Fletcher and Munson, 1933, Tabl¢ provide The resulting regression coefficients, given in Table B,
estimates of 20 log(P" (P, ,f)/P,), namely the relative in- are defined by the cubic polynomial
tensity of a test tone in dB that is equal in loudness to the
reference tone. We have reduced this data to a frequency
dependent regression. Thus to find the phon v&Ug°, ,f) where the abscisse= 20 log,o( P, /Py) represents the 1-kHz
at frequencyf, one may use the regression coefficients ofreference earphone voltage in dB and the ordinate
our Table BlI, derived in the next section. y=20 log,o(P*/Py) is the earphone voltage at the frequency

Fletcher and Munson’s Table Il gives tHeudness where the phon value is being specified. For the two lowest
G(P,)=L(1000P,), which is plotted in the upper-left panel frequencies, at 62 and 125 Hz, it was necessary to use third-
of our Fig. 6. Today loudness is defined using the sone scal@rder polynomials, while second-order regressions were ad-
One sone is the loudness at 40 dB SPL at 1 kHz. In 1938quate for the remaining frequencies.
Fletcher and Munson used the Loudness-UhlY)) scale.
One LU is the loudness at 0 dB SL at 1 kHz. These scale§t may be helpful to note thab and¥ sound similar to the initial syllable
differ in ratio by 975, namely 975 LUs is 1 sone. 2of the wordsphysical aqdps;phological, respectivelyBoring, 19_29.

To computeL(P,f) for any f and P(f) there are two The symbol= denotes “equivalence.” It means that the quantity to the left

. . of the = is defined by the quantity on the right.
ways to proceed. The first method is to comth(ePr) and SEquivalence of the pressure and intensity references requireg ¢va#0

P (_Pr ,f) using the reference preS*SLH’e as the_ independgnt cgs Rayls. At standard atmospheric pressure, this is only true when the
variable. One can then pl@ vs P . While this method is  temperature is about 39 °C.

1. Phon estimation

y=C3x3+ X%+ coxt+cg,
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“Because of small fluctuations I, and| p due to the finite integration time

Green, D., and Swets, (L966. Signal Detection Theory and Psychophysics

T, this equality cannot be exactly true. We specifically ignore these small (Wiley, New York).
rapid fluctuations—when these rapid fluctuations are important, our conGreenwood, D(1993. “The intensitive DL of tones: Dependence of signal/

clusions and model results must be reevaluated.
St is traditional to define the intensity JND to be a function pfather than

masker ratio on tone level and on specturm of added noise,” Hearing Res.
65, 1-39.

a function ofa(l), as we have done here. We shall treat both notations adiellman, W., and Hellman, R1990. “Intensity discrimination as the driv-

equivalenti.e., Al(1) or Al(a(1))].

6As a mnemonic, think of the- as a “wiggle” associated with randomness.
"We are only considering the auditory case of Fechner's more gener
theory.

8Except, as we shall show, in the limited region below 125 Hz and 50 dB

SL.

For example, when the signal is roved, the JND will be determined by the
magnitude of the rove, and the loudness and the JND must be independe

0. Siebert, personal communication.
HMiller used 10 log(#+J) as the measure of the JND rather thian

12n 1928 Wegel, Riesz, and Munson were all members of Fletcher's depar
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