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1. INTRODUCTION

Auditory maskingis critical to our understanding of
speech and music processing. There are many classes
of masking, but two major classes are easily defined.
These two types of masking and their relation to non-
linear (NL) speech processing and coding are the fo-
cus of this chapter.

Thefirst class of masking, denotedneural mask-
ing, is due to internalneural noise, characterized in
terms of the intensityjust noticeable difference, de-
noted∆I(I, f, T ) (abbreviated JNDI ) and defined
as the “just discriminable change in intensity.” The
JNDI is a function of intensityI, frequencyf and
stimulus typeT (e.g., noise, tones, speech, music,
etc). As aninternal noise, the JNDI may be mod-
eled in terms of a loudness (i.e., perceptual inten-
sity) noise density along the length of the cochlea1

(0 ≤ X ≤ L), described in terms of apartial loud-
ness JND(∆L(X, T ), a.k.a. JNDL). The loudness
JND is a function of thepartial loudnessL(X), de-
fined as the loudness contribution coming from each
cochlearcritical band, or more generally, along some
tonotopic central auditory representation. The crit-
ical band is a measure of cochlear bandwidth at a
given cochlearplace X . The loudness JND plays
a major role in speech and music coding since cod-
ing quantization noise may be masked by this internal
quantization (i.e., “loudness noise”).

The second masking class, denoted here as
dynamic-masking, comes from the NL mechanical
action of cochlearouter hair cell(OHC) signal pro-
cessing. It can have two forms, simultaneous and

1The cochlea or inner ear is the organ that converts signals from
acoustical to neural signals.

non-simultaneous, also known asforward masking,
or post-masking. Dynamic-masking (i.e., nonlinear
OHC signal processing) is well-known (i.e., there is
a historical literature on this topic) to be intimately
related to questions of cochlear frequency selectivity,
sensitivity, dynamic range compression andloudness
recruitment (the loss of loudness dynamic range).
Dynamic masking includes theupward spread of
masking(USM) effect, or in neural processing par-
lance,two-tone suppression(2TS). It may be under-
appreciated that NL OHC processing (i.e., dynamic
masking) is largely responsible forforward masking
(FM, or post-stimulus masking), which shows large
effects over long time scales. For example OHC ef-
fects (FM/USM/2TS) can be as large as 50 dB, with
a FM “latency” (return to base line) of up to 200 ms.
Forward masking(FM) and NL OHCsignal onset
enhancementare important to the detection and iden-
tification of perceptual features of a speech signal.
Some research has concluded that forward masking
is not related to OHC processing (Relkin and Turner,
1988; Hewitt and Meddis, 1991), so the topic remains
controversial. Understanding and modeling NL OHC
processing is key to many speech processing appli-
cations. As a result, a vibrant National Institute of
Health driven research effort on OHC biophysics has
ensued.

This OHC research effort is paying off at the
highest level. Three key examples are notable.First
is the development of wide dynamic-range multi-
band compression (WDRC) hearing aids. In the
last 10-15 years WDRC signal processing (first pro-
posed in 1937 by Bell Labs researchers Steinberg
and Gardner), revolutionized the hearing aid industry.
With the introduction of compression signal process-
ing, hearing aids now address the recruitment prob-
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lem, thereby providing speech audibility over a much
larger dynamic range, at least in quiet.2 This pow-
erful circuit (WDRC) is not the only reason hearing
aids of today are better. Improved electronics and
transducers have made significant strides as well. In
the last few years the digital barrier has finally been
broken, with digital signal processing hearing aids
now becoming common.

A secondexample is the development of otoa-
coustic emissions (OAE) as a hearing diagnostic
tool. Pioneered by David Kemp and Duck Kim, and
then developed by many others, this tool allows for
cochlear evaluation of neonates. The identification of
cochlear hearing loss in the first month has dramati-
cally improved the lives of these children (and their
parents). While it is tragic to be born deaf, it is much
more tragic for the deafness to go unrecognized until
the child is 3 year old, when they fail to learn to talk.3

With proper and early cochlear implant intervention,
these kids can lead nearly normal-hearing lives and
even talk on the phone. However they cannot under-
stand speech in noise.4

A third example of the application of NL OHC
processing to speech processing is still an under-
developed application area. The key open problem
here is ”How does the auditory system, including the
NL cochlea, followed by the auditory cortex, pro-
cesses human speech?” There are many aspects of
this problem including speech coding, speech recog-
nition in noise, hearing aids and language learning
and reading disorders in children. If we can solve
the robust phone decoding problem,we will funda-
mentally change the effectiveness of human-machine
interactions. For example, the ultimate hearing aid
is the hearing aid with built in robust speech feature
detection and phone recognition. While we have no
idea when this will come to be, and it is undoubt-
edly many years off, when it happens there will be a
technology revolution that will change human com-
munications.

Chapter Outline: Several topics will be re-
viewed. First is the history of cochlear models in-
cluding extensions that have taken place in recent

2The problems of the impaired ear given speech in noise is
poorly understood today, but this problem is likely relatedto the
effects of NL OHC processing.

3If you can’t hear you don’t learn to talk.
4It is at least possible that this loss is due to the lack of NL-

OHC processing.

years. These models include both macromechanics
and micromechanics of the tectorial membrane and
hair cells. This leads to comparisons of the basi-
lar membrane, hair cell, and neural frequency tun-
ing. Hearing loss, loudness recruitment, as well as
other key topics of modern hearing health care, are
discussed. The role of NL mechanics and dynamic
range are reviewed to help the reader understand
the importance of modern wideband dynamic range
compression hearing aids as well as the overall im-
pact of NL-OHC processing.

Any reader desiring further knowledge about
cochlear anatomy and function or a basic description
of hearing, they may consult Pickles (1982); Dallos
(1996); Yost (2006).

1.1. Function of the Inner Ear

The goal of cochlear modeling is to refine our un-
derstanding of how auditory signals are processed.
The two main roles of the cochlea are to separate
the input acoustic signal into overlapping frequency
bands, and to compress the large acoustic intensity
range into the much smaller mechanical and electri-
cal dynamic range of the inner hair cell. This is a
basic question of information processing by the ear.
The eye plays a similar role as a peripheral organ. It
breaks the light image into rod and cone sized pixels,
as it compresses the dynamic range of the visual sig-
nal. Based on the intensity JND, the corresponding
visual dynamic range is about 9 to 10 orders of mag-
nitude of intensity (Hecht, 1934; Gescheider, 1997),
while the ear has about 11 to 12. The stimulus has
a relatively high information rate. Neurons are low
bandwidth neural channels. The eye and the ear must
cope with this problem by reducing the stimulus to
a large number of low bandwidth signals. It is then
the job of the cortex to piece these pixel signals back
together, to reconstruct the world as we see and hear
it.

The acoustic information coding starts in the
cochlea (Fig. 1(a)) which is composed of three ma-
jor chambers formed by Reissner’s membrane and
the basilar membrane (BM). Mechanically speaking,
there are only two chambers, as Reissner’s mem-
brane is only for electrical isolation of the Scala
media (SM) (Pickles, 1982; Dallos, 1996). Figure
1(b) shows a blown up view of the organ of Corti
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where the inner hair cells (IHC) and outer hair cells
(OHC) sit between the BM and the tectorial mem-
brane (TM). As the BM moves up and down, the Tec-
torial membrane (TM) shears against the Reticular
Lamina (RL), causing the cilia of the inner and outer
hair cells to bend. The afferent auditory nerve fibers
which are connected to the inner hair cells carry the
signal information into the auditory system. Many
fewer efferent fibers bring signals from the auditory
system to the base of the outer hair cells. The exact
purpose of these efferent fibers, which modulate the
neural sensitivity, remains unknown.

Inner Hair Cells: In very general terms, the role
of the cochlea is to convert sound at the eardrum into
neural pulse patterns along approximately 30,000
neurons of the human auditory (VIIIth) nerve. After
being filtered by the cochlea, a low-level pure tone
has a narrow spread of excitation which excites the
cilia of about 40 contiguous inner hair cells (Allen
and Neely, 1992; Allen, 1996b; Dallos, 1996). The
IHC excitation signal is narrow band with a center
frequency that depends on the inner hair cell’s loca-
tion along the basilar membrane. Each hair cell is
about 10 micrometers in diameter while the human
basilar membrane is about 35 mm in length (35,000
microns). Thus the neurons of the auditory nerve en-
code the responses of about 3,500 inner hair cells
which form a single row of cells along the length
of the BM. Each inner hair cell voltage is a low-
pass filtered representation of the detected inner hair
cell cilia displacement (Hudspeth and Corey, 1977).
Each hair cell is connected to many neurons, having a
wide range of spontaneous firing rates and thresholds
(Liberman, 1982c). In the cat, for example,5 approx-
imately 15–20 neurons encode each of these narrow
band inner hair cells with a neural timing code. It
is widely believed that the neuron information chan-
nel between the hair cell and thecochlear nucleus
is a combination of the mean firing rate and the rela-
tive timing between neural pulses (spikes). The mean
firing rate is reflected in the loudness coding, while
the relative timing carries more subtle cues, including
for example pitch information such as speech voicing
distinctions.

Outer Hair Cells: As shown in Fig. 1(b) there

5It is commonly accepted that all mammalian cochleae are sim-
ilar in function except the frequency range of operation differs be-
tween species (e.g., human≈0.1–20 kHz and cat≈0.3-50 kHz).

are typically 3 (occasionally 4) outer hair cells
(OHCs) for each inner hair cell (IHCs), leading to
approximately 12,000 OHCs in the human cochlea.
Outer hair cells are used for intensity dynamic range
control. This is a form of NL signal processing,
not dissimilar to Dolby sound processing.6 It is
well known (as was first proposed by Lorente de Nó
(1937) and Steinberg and Gardner (1937)) that noise
damage of “nerve cells” (i.e., OHCs) leads to a reduc-
tion of dynamic range, a disorder clinically named
loudness recruitment7

We may describe cochlear processing two ways.
First in terms of the signal representation at various
points in the system. Second, in terms of models
which are our most succinct means of conveying the
conclusions of years of detailed and difficult experi-
mental work on cochlear function. The body of ex-
perimental knowledge has been very efficiently rep-
resented (to the extent that it is understood) in the
form of these mathematical models. When no model
exists (e.g., because we do not understand the func-
tion), a more basic description via the experimental
data is necessary. Several good books and review pa-
pers are available which make excellent supplemen-
tal reading (Littler, 1965; Pickles, 1982; Gescheider,
1997; Hartmann, 1997).

For pedagogical purposes this chapter has been
divided into four parts: Besides this Introduction,
we have sections on the NL cochlea, Neural mask-
ing and finally a brief discussion. Section 2 dis-
cusses dynamic masking due to NL aspects of the
cochlear outer hair cells. This includes the practical
aspects, and theory, of the upward spread of mask-
ing (USM) and two-tone suppression. Section 3 dis-
cusses neural masking, the JND, loudness recruit-
ment, the loudness-SNR, and the Weber-fraction.
Section 4 provides a brief summary.

6This form of processing was inspired by cochlear function,
and was in use long before it was patented by Dolby, in movie
sound systems developed by Bell Labs in the 1930’s and 1940’s.
Telephone speech is similarly compressed (Steinberg, 1941) via
µ-Law coding.

7The wordrecruitment, which describes the abnormal growth
of loudness in the impaired ear, is a seriously misleading term,
since nothing is being recruited (Neely and Allen, 1997).
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1.2. History of cochlear modeling

Typically the cochlea is treated as an uncoiled long
thin box, as shown in Fig. 2(a). This represents the
starting point for the macromechanical models.

1.2.1. Macromechanics

In his bookOn the Sensations of ToneHelmholtz
(1863) likened the cochlea to a bank of highly tuned
resonators selective to different frequencies, much
like a piano or a harp (Helmholtz, 1857, page 22-
58), with each string representing a different placeX
on the basilar membrane. This model as proposed
was quite limited since it leaves out key features, the
most important of which is the cochlear fluid cou-
pling between the mechanical resonators. But given
the early publication date, the great master of physics
and psychophysics Helmloltz shows deep insight and
his studies provided many very important contribu-
tions.

The next major contribution by Wegel and Lane
(1924) stands in a class of its own even today, as a
double barreled paper having both deep psychophys-
ical and modeling insight.8 The paper was the first
to quantitatively describe the details of how a high
level low frequency tone affects the audibility of a
second low-level higher frequency tone (i.e., theup-
ward spread of masking). It was also the first publi-
cation to propose a “modern” model of the cochlea,
as shown in Fig. 2(b). If Wegel and Lane had been
able to solve the model equations implied by their
circuit (of course they had no computer to do this),
they would have predicted cochlear traveling waves.
It was their mistake, in my opinion, to make this a
single paper. The modeling portion of their paper has
been totally overshadowed by their experimental re-
sults.9

8Fletcher published much of the Wegel and Lane data one year
earlier (Fletcher, 1923a). It is not clear to me why Wegel and
Lane are always quoted for these results rather than Fletcher. In
Fletcher’s 1930 modeling paper, he mentioned that he was thesub-
ject in the Wegel and Lane study. It seems to me that Fletcher
deserves some of the credit.

9Transmission line theory had been widely exploited by Camp-
bell, the first mathematical research at AT&T research (ca. 1898)
with the invention of the wave filter (Campbell, 1903, 1922),
which had been used for speech articulation studies (Campbell,
1910; Fletcher, 1922; Fletcher and Steinberg, 1930), and Fletcher
and Wegel were fully utilizing Campbell’s important discoveries.

It was the experimental observations of G. von
Békésy starting in 1928 on human cadaver cochleae
which unveiled the physical nature of the basilar
membrane traveling wave. What von Békésy found
(consistent with the 1924 Wegel and Lane model)
was that the cochlea is analogous to a “dispersive”
transmission line where the different frequency com-
ponents which make up the input signal travel at dif-
ferent speeds along the basilar membrane, thereby
isolating each frequency component at a different
placeX along the basilar membrane. He properly
identified this dispersive wave a “traveling wave,”
just as Wegel and Lane had predicted in their 1924
model of the cochlea.

Over the intervening years these experiments
have been greatly improved, but von Békésy’s funda-
mental observation of the traveling wave still stands.
His original experimental results, however, arenot
characteristic of the responses seen in more recent
experiments, in many important ways. These differ-
ences are believed to be due to the fact that Békésy’s
cochleae were dead, and because of the high sound
levels his experiments required. He observed the
traveling wave using stroboscopic light, in dead hu-
man cochleae, at sound levels well above 140 dB
SPL.

Today we find that the traveling wave has a more
sharply defined location on the basilar membrane for
a pure tone input than that observed by von Békésy.
In fact, according to measurements made over the last
20 years, the response of the basilar membrane to a
pure tone can change in amplitude by more than five
orders of magnitude per millimeter of distance along
the basilar membrane (e.g., 300 dB/oct is equivalent
to 100 dB/mm in the cat cochlea).

1.2.2. The 1-dimensional model of the cochlea

To describe this response it is helpful to call upon
the macromechanicaltransmission line modelof
Wegel and Lane (1924) (Fig. 2(b)) and Fletcher
(1930), first quantitatively analyzed by Zwislocki
(1948); Ranke (1950); Zwislocki (1950); Peterson
and Bogert (1950); Fletcher (1951b,a). This popu-
lar transmission line model is now denoted theone-
dimensional(1-D), or long-wavemodel.

Zwislocki (1948) was first to quantitatively an-
alyze Wegel and Lane’s macromechanical cochlear
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model, explaining Békésy’s traveling wave observa-
tions. The stapes input pressureP1 is at the left, with
the input velocityV1, as shown by the arrow, corre-
sponding to the stapes velocity. This model repre-
sents the mass of the fluids of the cochlea as elec-
trical inductors and the BM stiffness as a capacitor.
Electrical circuit networks are useful when describ-
ing mechanical systems. This is possible because of
an electrical to mechanical analog that relates the two
systems of equations.10

BM impedance. During the following discus-
sion it is necessary to introduce the concept of a1-
port (two-wire) impedance.Ohm’s Lawdefines the
impedance as

Impedance=
effort
flow

. (1)

In an electrical system the impedance is the ratio of a
voltage (effort) over a current (flow). In a mechanical
system it is the force (effort) over the velocity (flow).

For linear time-invariant causal(LTIC) systems
(e.g., an impedance),phasornotation is very useful,
where the tone is represented as the real part (ℜ) of
the complex exponential11

ei2πft+iφ ≡ cos(2πft + φ) + isin(2πft + φ). (2)

More specifically, impedance is typically defined in
the frequency domain usingLaplace transformnota-
tion, in terms of a damped tone

Aeσt cos(2πft + φ) ≡ Aℜest+iφ (3)

excitation, characterized by the tone’s amplitudeA,
phaseφ and complex Laplace frequencys ≡ σ +
i2πf . When a function such asZ(s) is shown as a
function of the complex frequencys, this means that
its inverse Laplace transformz(t) ↔ Z(s) must be
causal. In the time-domain, the voltage may be found
from the current via a convolution withz(t). Three
classic examples of such impedances are presented
next.

10Electrical circuit elements comprise ade factostandard for
describing such equations. It is possible to write down the equa-
tions that describe the system from the circuit of Fig. 2(b),by those
trained in the art. Engineers and scientists frequently findit eas-
ier to “read” and think in terms of these pictorial circuit diagrams,
than to interpret the corresponding equations.

11The symbol≡ denotes “equivalence.” It means that the quan-
tity to the left of≡ is defined by the quantity on the right.

Example 1: The impedance of the tympanic
membrane (TM, or eardrum) is defined in terms of
a pure tone pressure in the ear canal divided by the
resulting TM volume velocity (the velocity times the
area of TM motion) (Puria and Allen, 1998; Allen
et al., 2005). The pressure (effort) and volume ve-
locity (flow) referred to here are conventionally de-
scribed using complex numbers, to account for the
phase relationship between the two.

Example 2:The impedance of a spring is given
by the ratio of the forceF (f) to velocity V (f) =
sX(f) with displacementX

Z(s) ≡ F

V
=

K

s
=

1

sC
, (4)

where the spring constantK is the stiffness,C the
compliance ands is the complex radian frequency.
The stiffness is represented electrically as a capaci-
tor.12 Havings = σ + i2πf in the denominator in-
dicates that the impedance of a spring has a phase of
−π/2 (e.g.,−90o). Such a phase means that when
the velocity is cos(2πft), the force issin(2πft).
Equation 4 follows from Hooke’s Law

F = KX =
K

s
sX =

K

s
V. (5)

Example 3: From Newton’s LawF = Ma
where F is the force,M is the mass, and accel-
erationa(s) = sV (s) [i.e., the acceleration in the
time domain isdv(t)/dt]. The electrical element cor-
responding to a mass is an “inductor,” indicated in
Fig. 2(b) by a coil. Thus for a mass Z(s) = sM.

From the above relations the magnitude of the
impedance of a spring decreases as1/f , while the
impedance magnitude of a mass is proportional tof .
The stiffness with its -90o phase is called alagging
phase, while the mass with its +90o phase is called a
leadingphase.

Different points along the basilar membrane are
represented by the cascaded sections of the lumped
transmission line model of Fig. 2(b). The position
X along the model is called theplacevariable and
corresponds to the longitudinal position along the
cochlea. We shall assume thatX = 0 is at the
stapes. The series (horizontal) inductors (coils) de-
notedLk represent the fluid mass (inertia) along the

12As parallel lines in Fig. 2(b).
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length of the cochlea, while the shunt elements rep-
resent the mechanical (acoustical) impedance of the
corresponding partition (Organ of Corti) impedance,
defined as the pressure drop across the partition di-
vided by its volume velocity per unit length

Zp(s, X) =
Kp(X)

s
+ Rp(X) + sMp, (6)

whereKp(X) is the partition stiffness,Rp is the par-
tition resistance. Each inductor going to ground (li
in Fig. 2(b)) represents the partition plus fluid mass
per unit lengthMp of the section. Note thatsMp, Rp

andKp/s are impedances, but MassMm and stiff-
nessKp are not. The partition stiffness decreases ex-
ponentially along the length of the cochlea, while the
mass is frequently approximated as being indepen-
dent of place.

As shown in Fig. 3(a), for a given input frequency
the BM impedance magnitude has a local minimum
at the shunt resonant frequency, at which the mem-
brane can move in a relatively unrestricted manner.
The shuntresonancehas special significance because
at this resonance frequencyFcf(X) the inductor and
the capacitor reactance cancel each other, creating an
acoustic “hole,” where the only impedance element
that contributes to the flow resistance isRp. Solving
for Fcf(X)

Kp(X)

2πiFcf
+ 2πiFcfMp = 0. (7)

defines thecochlear map function, which is a key
concept in cochlear modeling:

Fcf(X) ≡ 1

2π

√
Kp(X)/Mp. (8)

The inverse of this function specifies the location of
the “hole” Xcf(f) as shown in Fig. 3(a). In the ex-
ample of Fig. 3(a) two frequencies are show, at 1 and
8 kHz, with corresponding resonant points shown by
Xcf(1) andXcf(8).

Basal toXcf(f) in Fig. 3(a), the basilar mem-
brane is increasingly stiff, and apically (to the right
of the resonant point), the impedance is mass dom-
inated. In this apical region the impedance has lit-
tle influence since almost no fluid flows past the low
impedance hole. The above description is dependent
on the input frequencyf since the location of the hole

is frequency-dependent. This description is key to
our understanding of why the various frequency com-
ponents of a signal are splayed out along the basilar
membrane.

If one puts a pulse of current in at the stapes, the
highest frequencies that make up the pulse would be
shunted close to the stapes since at high frequencies
the hole is near the stapes, while the lower frequen-
cies would continue down the line. As the low-pass
pulse travels down the basilar membrane, the higher
frequencies are progressively removed, until almost
nothing is left when the pulse reaches the right end
of the model (the helicotrema end, the apex of the
cochlea).

When a single tone is played, the response in
the base increases in proportion to the BM compli-
ance (inversely with the stiffness) until there is a lo-
cal maximum just before the traveling wave reaches
the resonant hole, at which point the response plum-
mets, since the fluid flow is shorted by the hole. For a
fixed stimulus frequencyf there is a maximum along
the place axis called thecharacteristic place, denoted
X

(p)
cf (f). Likewise at a given placeX as a func-

tion of frequency there is a local maximum called the
characteristic frequency, denotedF (p)

cf (X). The re-
lation between the peak in place as a function of fre-
quency or of the peak in frequency as a function of
place is also called thecochlear map.13 The cochlear
map functionFcf(X) plays a key role in cochlear me-
chanics, has a long history, and is known by many
names14 (Fletcher, 1930; Fletcher and Munson, 1937;
Fletcher, 1938, 1940; Steinberg, 1937; Greenwood,
1961a), the most common today beingGreenwood’s
function.

The spread of the response around the peak for a
fixed frequency is denoted thecritical spread∆x(f),

13There is a serious confusion with conventional terminology
here. The resonant frequency of the BM impedance mathemati-
cally definesFcf and specifies the frequency on the base of the
high-frequency steep portion of the tuning slope,not the peak.
However the peak is used as the visual cue,not the base of the
high frequency slope. These two definitions differ by a smallfac-
tor (that is ignored) that depends directly on the high frequency
slope of the response. Over most of the frequency range this slope
is huge, resulting in a very small factor, justifying its being ig-
nored. However at very low frequencies the slope is shallow and
the factor can then be large. The “droop” in the cochlear map seen
in Fig. 3(b) at the apex (x = L) may be a result of these conflicting
conflicting definitions.

14In the speech literature it is called theMel-scale.
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while the frequency spread at a given place is called
thecritical band denoted∆f (X). As early as 1933
it was clear that the critical band must exist, as ex-
tensively discussed by Fletcher and Munson (1933).
At any point along the BM the critical band is pro-
portional to thecritical ratio κ(X), defined as the
ratio of pure tone detection intensity at threshold in
a background of white noise, to the spectral level of
the noise, namely

∆f (X) ∝ κ(X), (9)

In the next section we shall show how these various
quantities are related via the cochlear map.

Derivation of the cochlear map function: The
derivation of the cochlear map is based on “counting”
critical bands as shown by Fletcher (Allen, 1996b)
and popularized by Greenwood (1961b). Thenum-
ber of critical bandsNcb may be found by integrat-
ing the critical band density over both frequency and
place, and equating these two integrals, resulting in
the cochlear mapFcf(X):

Ncb ≡
∫ Xcf

0

dX

∆f (X)
. =

∫ Fcf

0

df

∆x(f)
(10)

There are approximately 20 pure-tone frequency
JNDs per critical band and Fletcher (1938), Fletcher
(1953a, page 171)) showed that thecritical ratio ex-
pressed in dBκdB(X) is of the formaX + b, where
a andb are constants (Allen, 1996b). As verified by
Greenwood (1961b, page 1350, Eq. 1) the critical
bandwidth in Hz is therefore

∆f (X) ∝ 10κdB(X)/10. (11)

The critical spread∆x(X) is the effective width
of the energy spread on the basilar membrane for
a pure tone. Based on a suggestion by Fletcher,
Allen (1996b) showed that for the cat∆x(X) cor-
responds to about 2.75 times the basilar membrane
width Wbm(X) ∝ eX . It is reasonable to assume
that the same relation would hold in the human case.

The direct observation of the cochlear map in the
cat was made by Liberman (1982a) and Liberman
and Dodds (1984), and they showed the following
empirical formula fit the data

Fcf(X) = 456
(
102.1(1−X/L) − 0.8

)
, (12)

where the length of the cat cochlea isL = 21
[mm] and X is measured from the stapes (Liber-
man, 1982b). The same formula may be used for
the human cochlea ifL = 35 [mm] is used, the
456 is replaced by 165.4, and 0.8 by 0.88. Based on
Eq. 12, and as defined in Fig. 3(b), the “slope” of the
cochlear map is 3 mm/oct for the cat and 5 mm/oct
for the human, as may be determined from the for-
mulaL log10(2)/2.1 with L = 21 or 35 for cat and
human respectively.

For a discussion of work after 1960 on the critical
band see Allen (1996b); Hartmann (1997).

2. THE NONLINEAR COCHLEA

In cochlear modeling there are two complex fun-
damental intertwined problems,cochlear frequency
selectivityand cochlear/OHC nonlinearity. Wegel
and Lane’s 1924 transmission line wave theory was
a most important development, since it was pub-
lished 26 years prior to the experimental results of
von Békésy, and it was based on a simple set of
physical principles, conservation of fluid mass, and
a spatially variable basilar membrane stiffness. It
also gives insight into the NL cochlea, as well as 2-
dimensional model wave-transmission effects (mass-
loading of the BM).

Over a 15 year period starting in 1971, there was
a paradigm shift. Three discoveries rocked the field:
(1) nonlinear compressive basilar membrane and in-
ner hair cell measures of neural-like cochlear fre-
quency selectivity (Rhode, 1971; Sellick and Rus-
sell, 1978), (2) otoacoustic (ear canal) nonlinear
emissions (Kemp, 1978), and (3) motile outer hair
cells (Brownell, Bader, Bertran, and de Rabaupierre,
1985). Today we know that these observations are
related, and all involve outer hair cells. A theory
(e.g., a computational model) is needed to tie these
results together. Many groups are presently working
out these theories.

On the modeling side during the same period (the
1970’s) all the variants of Wegel and Lane 1-D lin-
ear theory were becoming dated because: (1) numer-
ical model results became available, which showed
that 2-D and 3-D models were more frequency se-
lective than the 1-D model, (2) experimental basi-
lar membrane observations showed that the basilar
membrane motion had a nonlinear compressive re-
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sponse growth, and (3) improved experimental basi-
lar membrane observations became available which
showed increased nonlinear cochlear frequency se-
lectivity.

Because these models and measures are still un-
der development today [the problem has not yet
(ca. 2007) been solved], it is necessary to describe
the data rather than the models. Data that drives these
nonlinear cochlear measures includes:

• The upward spread of masking (USM), first de-
scribed quantitatively by Wegel and Lane in 1924,

• Distortion components generated by the cochlea
and described by Wegel and Lane (1924); Gold-
stein and Kiang (1968); Smoorenburg (1972);
Kemp (1979a); Kimet al.(1979); Fahey and Allen
(1985) and many others,

• Normal loudness growth and recruitment in the
impaired ear (Fletcher and Munson, 1933; Stein-
berg and Gardner, 1937),

• The frequency dependent neural two–tone sup-
pression observed by Sachs and Kiang (1968);
Arthur et al. (1971); Kiang and Moxon (1974);
Abbas and Sachs (1976); Fahey and Allen (1985);
Pang and Guinan (1997) and others,

• The frequency dependent basilar membrane re-
sponse level compression first described by Rhode
(1971, 1978),

• The frequency dependent inner hair cell recep-
tor potential level compression, first described by
Sellick and Russell (1978); Russell and Sellick
(1978).

• Forward masking data that shows a linear return to
baseline after up to 0.2 s (Duifhuis, 1973). There
may be compelling evidence that OHCs are the
source of forward masking.

We shall discuss each of these, but two related mea-
sures are the most important for understanding mask-
ing effects, the upward spread of masking (USM) and
two tone suppression (2TS).

Basilar membrane nonlinearity: The most ba-
sic early and informative of these nonlinear effects
was the NL basilar membrane measurements made
by Rhode (1971, 1978), as shown in Fig. 4(a), show-
ing the basilar membrane displacement to be a highly

NL function of level. For every four dB of pressure
level increase on the input, the output displacement
(or velocity) only changed one dB. This compressive
nonlinearity depends on frequency, and only occurs
near the most sensitive region (i.e., the tip of the tun-
ing curve). For other frequencies the system was ei-
ther linear, namely, one dB of input change gave one
dB of output change for frequencies away from the
best frequency, or very close to linear. This NL effect
was highly dependent on the health of the animal, and
would decrease, or would not be present at all, if the
animal was not in its physiologically pristine state.

An important and useful measure of cochlear
linear and nonlinear response proposed by Rhode
(1978, Fig. 8) Fig. 4(b) describes cochlear tuning
curves by straight lines on log-log coordinates. Such
straight line approximations are calledBode plots
in the engineering literature. Theslopesandbreak
points, defined as the locations where the straight
lines cross, characterize the response.

Otoacoustic Emissions: A few years after
Rhode’s demonstration of cochlear nonlinearity,
David Kemp observed otoacoustic emissions (tonal
sound emanating from the cochlea and NL “echos” to
clicks and tone bursts) (Kemp, 1978, 1979b,a, 1980,
1986). Kemp’s findings were like a jolt to the field,
which led to a cottage industry of objective testing
of the auditory system, including both cochlear and
middle ear tests.

Motile OHCs: Subsequently, Brownellet
al. (1985) discovered that isolated OHCs change their
length when placed in an electric field, thus that the
outer hair cell is motile (Brownell, Bader, Bertran,
and de Rabaupierre, 1985). This then led to the in-
tuitive and widespread proposal that outer hair cells
act as voltage controlled motors that directly drive the
basilar membrane on a cycle by cycle basis.15 OHC
NL processing is the basis for both the asymmetry
of simultaneous (upward vs. downward spread) and
temporal (forward vs. backward) masking.

As summarized in Fig. 5 the OHCs feed back to
the BM via the receptor potential, which in turn is
modulated by both the position of the basilar mem-

15It seems quite clear from a great deal of data that the OHC on-
set response time is on the order of one cycle or so of the BM im-
pulse response, because the first peak is linear (Recio and Rhode,
2000). The release time must be determined by the OHC mem-
brane properties, the time constant of which must be long relative
to the attack.
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brane (forming a fast feedback loop), and alterna-
tively by the efferent neurons that are connected to
the outer hair cells (forming a slow feedback loop).
The details of all this are the topic of a great deal of
present research.

The OHCs are the one common element that link
all the NL data previously observed, and a missing
piece of the puzzle that most needs to be understood
before any model can hope to succeed in predicting
basilar membrane, hair cell, and neural tuning, and
NL compression. Understanding the outer hair cell’s
two-way mechanical transduction is viewed as the
key to solving the problem of the cochlea’s dynamic
range.

Historically the implication that hair cells might
play an important role in cochlear mechanics go
back at least to 1936 when loudness recruitment was
first reported by Fowler (1936) in a comment by
Lorente de Nó (1937), stating that cochlear hair cells
are likely to be involved in loudness recruitment.

The same year Steinberg and Gardner (1937)
were explicit about the action of recruitment when
they concluded

When someone shouts, such a deaf-
ened person suffers practically as much
discomfort as a normal hearing person
would under the same circumstances.
Furthermore for such a case, the effec-
tive gain in loudness afforded by ampli-
fication depends on the amount of vari-
able type loss present. Owing to the
expanding action of this type of loss it
would be necessary to introduce a corre-
sponding compression in the amplifier in
order to produce the same amplification
at all levels.

Therefore as early as 1937 there was a sense that
cochlear hair cells were related to dynamic range
compression.

In more recent years, theoretical attempts to ex-
plain the difference in tuning between normal and
damaged cochleae led to the suggestion that OHCs
could influence BM mechanics. In 1983 Neely and
Kim conclude

We suggest that the negative damping
components in the model may represent

the physical action of outer hair cells,
functioning in the electrochemical envi-
ronment of the normal cochlea and serv-
ing to boost the sensitivity of the cochlea
at low levels of excitation.

In 1999 yet another (a fourth) important discov-
ery was made, that the outer hair cell mechanical
stiffness depends on the voltage across its membrane
(He and Dallos, 1999, 2000). This change in stiff-
ness, coupled with the naturally occurring internal
static pressure, may well account for the voltage
dependent accompanying length changes (the cell’s
voltage dependent motility). This view follows from
block diagram feedback model of the organ of Corti
shown in Fig. 5 where the excitation to the OHC
changes the cell voltageVohc, which in turn changes
the basilar stiffness (Allen, 1997a). It should be noted
that this is only one of many possible theories that
have been put forth.

This experimental period set the stage for ex-
plaining the two most dramatic NL measures of
cochlear response, the upward spread of masking and
its related neural correlate, two-tone suppression, and
may well turn out to be the explanation of the nonlin-
ear forward-masking effect as well (Duifhuis, 1973).

2.0.3. Simultaneous dynamic-masking

The psychophysically measuredupward spread of
masking (USM) and the neurally measuredtwo-
tone suppression(2TS) are closely related dynamic-
masking phenomena. Unfortunately these two mea-
sures have traditionally been treated independently in
the literature. As will be shown, it is now clear that
they are alternative objective measures of the same
OHC compressive nonlinearity. Both involve the dy-
namic suppression of a basal (high frequency) probe
due to the simultaneous presentation of an apical (low
frequency) suppressor. These two views (USM ver-
sus 2TS) nicely complement each other, providing a
symbiotic view of cochlear nonlinearity.

Upward Spread of Masking (USM): In a clas-
sic paper, Mayer (1876) was the first to describe
the asymmetric nature of masking (Titchener, 1923;
Duifhuis, 1973). Mayer made his qualitative obser-
vations with the use of clocks, organ pipes and tun-
ing forks, and found that that the spread of masking
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is a strong function of the probe-to-masker frequency
ratio (fp/fm).

In 1923, Fletcher published the first quantita-
tive results of tonal masking. In 1924, Wegel
and Lane extended Fletcher’s experiments16 using
a wider range of tones. Wegel and Lane then dis-
cuss the results in terms of their 1-D model described
above. As shown in Fig. 6(a), Wegel and Lane’s ex-
periments involved presenting listeners with a masker
tone at frequencyfm = 400 [Hz] and intensityIm

(the abscissa), along with a probe tone at frequency
fp (the parameter used in the figure). At each masker
intensity and probe frequency, the threshold probe in-
tensityI∗p (Im) is determined, and displayed relative
to its thresholdsensation level(SL) (the ordinate is
the probe level at threshold [dB-SL]). The∗ indicates
a threshold measure.

In Fig. 6(a) fm = 400 Hz, Im is the abscissa,
fp is the parameter on each curve, in kHz, and
the threshold probe intensityI∗p (Im) is the ordinate.
The dotted line superimposed on the 3 kHz curve
(Im/1060/10)2.4 represents the suppression threshold
at 60 dB-SL which has a slope of 2.4 dB/dB. The dot-
ted line superimposed on the 0.45 kHz curve has a
slope of 1 and a threshold of 16 dB SL.

Three regions are clearly evident: thedownward
spreadof masking (fp < fm, dashed curves),critical
bandmasking (fp ≈ fm, dashed curve marked 0.45),
and theupward spreadof masking (fp > fm, solid
curves) (Allen, 1997b).

Critical band masking has a slope close to 1
dB/dB (the superimposed dotted line has a slope of
1).17 The downward spread of masking (the dashed
lines in Fig. 6(a)) has a low threshold intensity and
a variable slope that is less than one dB/dB, and ap-
proaches 1 at high masker intensities. The upward
spread of masking (USM), shown by the solid curves,
has a threshold near 50 dB re sensation level (e.g., 65
dB SPL), and a growth just less than 2.5 dB/dB. The
dotted line superimposed on thefp=3 kHz curve has
a slope of 2.4 dB/dB and a threshold of 60 dB.

The dashed box shows that the upward spread of
masking of a probe at 1 kHz can be greater than the
masking within a critical band (i.e.,fp = 450 Hz>
fm=400 Hz). As the masker frequency is increased,

16Fletcher was the subject (Fletcher, 1930, Page 325).
17Four years later in Riesz (1928) shows critical band masking

obeys thenear–miss to Weber’s Law, as described in Sec. 3.2.

this “crossover effect” occurs in a small frequency
region (i.e., 1/2 octave) above the masker frequency.
The crossover is a result of a well documented NLre-
sponse migration,of the excitation pattern with stim-
ulus intensity, described in a wonderful paper by Mc-
Fadden (1986). Response migration was also ob-
served by Munson and Gardner in a classic paper
on forward masking (Munson and Gardner, 1950).
This important migration effect is beyond the scope
of the present discussion, but is reviewed in (Allen,
1997b; Strope and Alwan, 1997; Allen, 1999b) (see
also Fig. 10).

The upward spread of masking is important be-
cause it is easily measured psychophysically in nor-
mal hearing people, is robust, well documented, and
nicely characterizes normal outer hair cell nonlineari-
ties. The psychophysically measured USM has corre-
lates in basilar membrane and hair cell, and is known
as two–tone suppression (2TS) in the auditory nerve
literature, as shown in Fig. 6(b).

Two–tone suppression:The neural correlate of
the psychophysically measured USM is calledtwo–
tone suppression(2TS). As shown in the insert of
Fig. 7(a), first a neural tuning curve is measured. A
pure tone probe at intensityIP (fp), and frequency
fp, is placed a few dB (e.g., 6 to 10) above threshold
at the characteristic (best) frequency of the neuronFcf

(i.e., fp = Fcf). In 2TS a suppressor tone plays the
role of the masker.

There are two possible thresholds. The intensity
of the suppressor toneIs(fs) at frequencyfs is in-
creased until either the rate response to the probe
aloneR(IP , Is = 0) (a) decreases by a small incre-
ment∆R, or (b) increases from the undriven spon-
taneous rateR(0, 0) by increment∆R. These two
criteria are defined in Fig. 7(a) as:

RP (IP , I∗s ) ≡ R(IP , 0) − ∆R (13)

and
Rspont(IP , I∗s ) ≡ R(0, 0) + ∆R. (14)

∆R indicates a fixed small but statistically significant
constant change in the rate (e.g.,∆R = 20 spikes/s is
a typical value). The threshold suppressor intensity
is defined asI∗s (fs).18 The two threshold definitions
Rspont andRP are very different, and both are use-
ful. The more common measure is (a), and the differ-
ence in intensity between the two thresholds is quite

18As before the∗ indicates the threshold suppressor intensity.
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large. The second measure (b) is consistent with neu-
ral tuning curve suppression and corresponds to sup-
pression of the probe to threshold.

Neural data of Abbas and Sachs (1976) (their
Fig. 8) are reproduced in Fig. 6(b). For this example
(see entry in lower-right just below 105),Fcf is 17.8
kHz, and thefp = Fcf probe intensity20 log 10(|P1|)
is 60 dB. The label on the curves is the frequency
f1. The threshold intensity of the associated neural
tuning curve has a low spontaneous rate and a 50-55
dB threshold. The left panel of Fig. 6(b) is for api-
cal suppressors that are lower in frequency than the
CF probe (fs < fp). In this case the threshold is
just above 65 dB SPL. The suppression effect is rel-
atively strong and independent of frequency. In this
example the threshold of the effect is less than 4 dB
apart (the maximum shift of the two curves) at sup-
pressor frequenciesfs of 10 and 5 kHz (a one octave
separation).

The right panel shows the casefs > fp. The sup-
pression threshold is close to the neuron’s threshold
(e.g., 50 dB SPL) for probes at 19 kHz, but increases
rapidly with frequency.The strength of the suppres-
sion is weak in comparison to the case of the left
panel (fs < fp), as indicated by the slopes of the
family of curves.

The importance of the criterion: The data of
Fig. 6(b) uses the first suppression threshold defini-
tion Eq. 13RP (a small drop from the probe driven
rate). In this case theFcf probe is well above its de-
tection threshold at the suppression threshold, since
according to definition Eq. 13, the probe is just de-
tectably reduced, and thus audible. With the second
suppression threshold definition Eq. 14Rspont, the
suppression threshold corresponds to the detection
threshold of the probe. Thus Eq. 14,suppression to
the spontaneous rate, is appropriate for Wegel and
Lane’s masking data where the probe is at its detec-
tion thresholdI∗P (Im). Suppression threshold defi-
nition Eq. 14 was used when taking the 2TS data of
Fig. 7(b), where the suppression threshold was esti-
mated as a function of suppressor frequency.

To be consistent with a detection threshold crite-
rion, such as the detection criterion used by Wegel
and Lane in psychophysical masking, (Eq. 14) must
be used. To have a tuning curve pass through the
Fcf probe intensity of a 2TS experiment (i.e., be
at threshold levels), it is necessary to use the sup-

pression to rate criterion given by Eq. 14. This is
shown in Fig. 7(b) where a family of tuning curves
is taken with different suppressors present. As de-
scribed by Fahey and Allen (1985), when a probe is
placed on a specific tuning curve of Fig. 7(b), corre-
sponding to one of the suppressor level symbols of
Fig. 7(b), and a suppression threshold is measured
(their Fig. 13). (lower panel), that suppression curve
will fall on the corresponding suppression symbol of
Fig. 7(b). There is a symmetry between the tuning
curve measured in the presents of a suppressor, and
a suppression threshold obtained with a given probe.
This symmetry holds only for criterion Eq. 14, the
detection threshold criterion, which is appropriate for
Wegel and Lane’s data.

Suppression threshold: Using the criterion
Eq. 14, Fahey and Allen (1985) showed (their
Fig. 13) that the suppression thresholdI∗s (IP ) in the
tails is near 65 dB SPL (0.04 Pa). This is true for sup-
pressors between 0.6 and 4 kHz. A small amount of
data are consistent with the threshold being constant
to much higher frequencies, but the Fahey and Allen
data are insufficient on that point.

Suppression slope:Bertrand Delgutte has writ-
ten several insightful papers on masking and suppres-
sion (Delgutte, 1990a,b, 1995). He first estimated
how the intensity growth slope (the ordinate, in
dB/dB) of 2TS varies with suppressor frequency (the
abscissa) for several probe frequencies (the parame-
ter indicated by the vertical bar) (Delgutte, 1990b).
As may be seen in the figure, the suppression growth
slope for the case of a low frequency apical sup-
pressor on a high frequency basal neuron (the case
of the left panel of Fig. 6(b)), is≈2.4 dB/dB. This
is the same slope as for Wegel and Lane’s 400 Hz
masker, 3 kHz probe USM data shown in Fig. 6(a).
For suppressor frequencies greater than the probe’s
(fs > fp), Delgutte reports a slope that is signifi-
cantly less than 1 dB/dB. Likewise Wegel and Lane’s
data has slopes much less than 1 for the downward
spread of masking.

Summary: The USM and 2TS data show sys-
tematic and quantitative correlations between the
threshold levels and slopes. The significance of these
correlations has special importance because (a) they
come from very different measurement methods, and
(b) Wegel and Lane’s USM are from human, while
the 2TS data are from cat, yet they show similar
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responses. This implies that the cat and human
cochleae may be quite similar in their NL responses.

The USM and 2TS threshold and growth slope
(e.g., 50 dB-SL and 2.4 dB/dB) are important fea-
tures that must be fully understood and modeled be-
fore we can claim to understand cochlear function.
While there have been several models of 2TS (Ka-
nis and de Boer, 1994; Hall, 1974; Geisler and Nut-
tall, 1997) as discussed in some detail by Delgutte
(Delgutte, 1990b), none are in quantitative agreement
with the data. The two–tone suppression model of
Hall (Hall, 1974) is an interesting contribution to this
problem because it qualitatively explores many of
the key issues. Finally forward masking data also
show related nonlinear properties that we speculate
may turn out to be related to NL OHC function as
well (Strope and Alwan, 1997; Régnier and Allen,
2007a,b).

2.1. Outer Hair Cell Transduction

The purpose of this section is to address two inti-
mately intertwined problemscochlear frequency se-
lectivity andcochlear nonlinearity. The fundamen-
tal question in cochlear research today is:What is
the role of the outer hair cell (OHC) in cochlear me-
chanics? The OHC is the source of NL effect, and
the end product is dynamic masking, including the
USM, 2TS and forward masking, all of which include
dramatic amounts of gain and tuning variation. The
issues are the nature of the NL transformations of the
BM, OHC cilia motion, and OHC soma motility, at a
given location along the basilar membrane.

The prevailing and popular view is that the OHC
providescochlear sensitivityand frequency selec-
tivity (Dallos, 1996; Narayan, Temchin, Recio, and
Ruggero, 1998; deBoer, 1996; Geisler, 1998). The
alternative view, argued here, is that the OHC com-
presses the excitation to the inner hair cell, thereby
providing dynamic range expansion.

There is an important difference between these
two views. Thefirst view deemphasizes the role of
the OHC in providing dynamic range control (the
OHC’s role is to improve sensitivity and selectivity),
and assumes that the NL effects result from OHC sat-
uration.

Thesecondview places the dynamic range prob-
lem as the top priority. It assumes that the sole pur-

pose of the OHC nonlinearity is to provide dynamic
range compression, and that the OHC plays no role
in either sensitivity or selectivity, which are treated
as important but independent issues.19

The dynamic range problem: The question of
how the large (up to 120 dB) dynamic range of the
auditory system is attained has been a long stand-
ing problem which remains fundamentally incom-
plete. For example,recruitment, the most com-
mon symptom of neurosensory hearing loss, is best
characterized as the loss of dynamic range (Steinberg
and Gardner, 1937; Allen, 1996a,b; Neely and Allen,
1997). Recruitment results from outer hair cell dam-
age (Carver, 1978). To successfully design hearing
aids that deal with the problem of recruitment, we
need models that improve our understanding ofhow
the cochlea achieves its dynamic range.

Based on a simple analysis of the IHC voltage,
one may prove that the dynamic range of the IHC
must be less than 65 dB (Allen, 2001). In fact it is
widely accepted that IHC dynamic range is less than
50 dB.

The IHC’s transmembrane voltage is limited at
the high end by the cell’s open circuit (unloaded)
membrane voltage, and at the low end by thermal
noise. There are two obvious sources of thermal
noise, cilia Brownian motion, and Johnson (shot)
noise across the cell membrane (Fig. 8).

The obvious question arises:How can the basic
cochlear detectors (the IHCs) have a dynamic range
of less than 50 dB (a factor of0.3× 102), and yet the
auditory system has a dynamic range of up to 120 dB
(a factor of106? The huge amount of indirect evi-
dence has shown that this increased dynamic range
results from mechanical NL signal compression pro-
vided by outer hair cells. This dynamic range com-
pression shows up in auditory psychophysics and in
cochlear physiology in many ways.

This discrepancy in dynamic range forms a basic
paradox.

Outer Hair Cell Motility model: A most signif-
icant finding in 1985 was of OHCmotility, namely
that the OHC changes its length by up to 5% in
response to the cell’s membrane voltage (Brownell
et al., 1985; Ashmore, 1987; Santos-Sacchi, 1991).
This less than 5% change in length must account for

19Of course other views besides these two are possible.
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a 40 dB (100 times) change in cochlear gain. This
observation led to a significant increases in research
on the OHC cell’s motor properties.

In 1999 it was shown that the cell’s longitudi-
nal soma stiffness changes by at least a factor of
2 (>100%), again as a function of cell membrane
voltage (He and Dallos, 1999, 2000). A displace-
ment of the cilia in the direction of the tallest cilia,
which is called adepolarizingstimulus, decreases the
magnitude of the membrane voltage|Vm|, decreases
the longitudinal soma stiffness, anddecreasesthe
cell soma length. A hyper polarizing stimulus in-
creases the stiffness and extends the longitudinal
soma length.

Given this much larger relative change in stiff-
ness (a factor of 2) compared to the relative change
in length (a factor of 1.05), for a maximum voltage
change, it seems possible, or even likely, that the
observed length changes (the motility) are simply a
result of the voltage dependent stiffness. For exam-
ple, imagine a spring stretched by applying a con-
stant force (say a weight), and then suppose that the
spring’s stiffness decreases. It follows from Hooke’s
Law (Eq. 5) that the spring’s length willincrease
when the stiffness decreases.

Each cell is stretched by its internal static pres-
sureP (Iwasa and Chadwick, 1992), and its stiffness
is voltage controlled (He and Dallos, 1999, 2000).
The voltage dependent relative stiffness change is
much greater than the relative length change. Thus
we have the necessary conditions for a stiffness in-
duced motility.

2.2. Micromechanics

Unlike the case of macromechanical models, the
physics of every micromechanical model differs sig-
nificantly. This is in part due to the lack of direct
experimental evidence of physical parameters of the
cochlea. This is an important and very active area of
research [e.g., (Russellet al., 2007)].

To organize our discussion of cochlear mi-
cromechanics, we represent each radial cross-section
through the cochlear partition as a linear 2-port net-
work. A general formalization in transmission ma-
trix form of the relation between the basilar mem-
brane input pressureP (x, s) and velocityV (x, s)
and the OHCoutputcilia bundle shear forcef(x, s)

and shear velocityv(x, s)
[

P
V

]
=

(
A B
C D

) [
f
v

]
, (15)

whereA, B, C, andD are complex functions of place
x and radian frequencys.

2.2.1. Passive BM models

The most successfulpassivemodel of cochlear tun-
ing is the resonant tectorial membrane (RTM) model
(Allen, 1980; Allen and Neely, 1992). The RTM
model starts from the assumption that the slopeS2 of
BM tuning is insufficient to account for the slopeS2

of neural tuning, as seen in Fig. 4(b). This sharpening
is accounted for by a reflection in the tectorial mem-
brane, introducing an antiresonance (spectral zero) at
frequencyFz (see Fig. 4(b)), which is about half an
octave below the resonant frequencyFcf of the basilar
membrane. As described by Allen and Neely (1992),
the detailedA, B, C, D elements of Eq. 15 are given
by Allen (1980); Allen and Neely (1992).

As described in Allen (1977), the response ra-
tio of IHC cilia bundle displacement to basilar mem-
brane displacement is defined asHihc(x, s). The pa-
rameters of the resonant tectorial membrane (RTM)
model may be chosen such that model results fit the
experimental neural threshold tuning curves closely,
as shown in Fig. 9.

The nonlinear RTM model: The resonant tec-
torial membrane (RTM) model is made NL by con-
trol of the BM stiffness via OHC’s stiffness, as mod-
eled in Fig. 10(a). The OHC soma stiffness has been
shown to be voltage dependent by Dalloset al.(1997)
and dependent on Prestin in the membrane wall (Dal-
los, 2002). If an elastic connection is assumed where
the TM attaches to the Limbus, and if this elasticity is
similar to that of the cilia of the OHC, then the result-
ing transfer function between the BM and IHC cilia
is strongly filtered at low frequencies (Allen, 1997a,
1999a; Allen and Sen, 1999; Sen and Allen, 2006).
Such models are actively under consideration (Rus-
sell et al., 2007).

It is postulated that the decrease in OHC stiffness
accompanying cilia stimulation results in a decrease
of the net BM partition stiffnessKp(x) (i.e. increas-
ing compliance) of Eq. 6. As shown in Fig. 3, this
decrease in the local BM stiffness would result in the
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partition excitation pattern shifting basally towards
the stapes. Such shifts in the BM response patterns
are commonly seen. Another way to view this is
shown in Fig. 10. This migration of the excitation
pattern, combined with the assumption that the TM
has a highpass characteristic, means that the cilia ex-
citation gain at CF is nonlinearly compressed as the
intensity increases. This compression effect is shown
in a cartoon format in Fig. 10(b), while Fig. 10(a)
shows the actual calculated model results. Note how
the bandwidth∆f (X)) remains approximately con-
stant as a function of input intensity.

Sewell (1984) has nicely demonstrated that as the
voltage driving the hair cells changes, the neural gain
in dB at CF changes proportionally. It is not yet
known why the dB gain is proportional to the voltage
(1 dB/mv), however this would explain why forward
masking decays linearly in dB value with time, after a
strong excitation, since the membrane voltageVm(t)
is proportional toet/τm , due to the OHC membrane’s
τm = RC time constant. In my view, explaining the
proportionality between the neural threshold in dB
and the linear membrane voltage, is key.

Discussion: Two important advantages of the
NL-RTM model include its physically based assump-
tions (described above), and its simplicity. Given
these physical assumptions the NL-RTM model can
explain (see the references for the details): a) the
basal-ward half-octave traveling wave migration as
a function of increasing intensity (McFadden, 1986),
b) the upward spread of masking (USM) (Fletcher,
1923a; Wegel and Lane, 1924), two-tone suppression
(2TS) (see Sec. 2.0.3), d) distortion product gener-
ation (Kemp, 1978; Kim, Siegel, and Molnar, 1979;
Allen and Fahey, 1983; Fahey and Allen, 1985; Allen
and Lonsbury-Martin, 1993; Fahey and Allen, 1997),
e) normal and recruiting loudness growth, and f) hy-
persensitive tails (Liberman and Dodds, 1984).

From the steep 2.5 dB/dB slope of the USM
and 2TS (Fig. 6(a)) it seems necessary that the low
frequency suppressor is turning down the high fre-
quency probe even though the growth of the masker
at the high frequency’s place is linear with masker
level, as shown in Fig. 10(b).

2.2.2. Active BM models

One obvious question about active cochlear models is
“Are they really necessary?” At least three attempts
to answer this question based on detailed compar-
isons of basilar membrane responses have concluded
that the measured responsescannotbe accounted for
by a passive cochlear model (Diependaal, de Boer,
and Viergever, 1987; Zweig, 1991; deBoer and Nut-
tall, 1999, 2000a,b).

The CA hypothesis: The most popular active
micromechanical theory is called thecochlear am-
plifier (CA) hypothesis. The concept of thecochlear
amplifier, originated by Gold, Kemp, Kim and Neely,
and named by H. Davis, refers to a hypothetical
mechanism within the cochlear partition which in-
creases thesensitivityof basilar membrane vibrations
to low-level sounds and, at the same time, increases
the frequency selectivityof these vibrations (Kim,
Neely, Molnar, and Matthews, 1980). The CA adds
mechanical energy to the cochlear partition at acous-
tic frequencies by drawing upon the electrical and
mechanical energy available from the outer hair cells.
In response to a tone, the CA adds mechanical energy
to the cochlear traveling wave in the region defined
by S2 [define in Fig. 4(b)] as it approaches the place
of maximum response. This energy is reabsorbed at
other places along the cochlear partition. The result-
ing improvement in sensitivity of the ear due to the
CA is thought to be 40 dB, or more under certain con-
ditions; however, the details of how this amplification
might be accomplished are still unknown. A gen-
eral discussion of this model is presented in Geisler
(1998) and in Allen and Fahey (1992).

It is presumed that this OHC action amplifies the
BM signal energy on a cycle-by-cycle basis, increas-
ing the sensitivity (Neely and Kim, 1983, 1986). In
some of the models it is assumed that this cycle-
by-cycle pressure (force) due to the OHCs causes
the sharp BM tuning tip. In most of these models,
the CA is equivalent to introducing a frequency de-
pendent negative damping (resistance) into the BM
impedance. Nonlinear compression is introduced by
assuming that the resistance is signal level dependent.
This NL resistance model was first described by Hall
(Hall, 1974) for the case ofR > 0. Thus the CA
model is an extension of Hall’s model to the case of
R < 0. In several models NL negative damping is
obtained with a nonlinear stiffness and a small delay.
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The addition of a small delay introduces a negative
real part into the impedance.20

Allen and Fahey (1992) developed a method for
directly measuring the cochlear amplifier (CA) gain.
All of the studies to date using this method have
found no gain. However many researchers continue
to believe that the CA has gain. Given that the gain
is on the order of 40-50 dB, this is difficult to un-
derstand. A nice summary of this situation has been
recently published in Shera and Guinan (2007). The
reasons for the failure to directly measure any CA
gain are complex and multifaceted, and many im-
portant questions remain open. One possibility that
remains open is that the many observed large NL
OHC BM effects we see are not due to cycle by cycle
power amplification of the BM traveling wave.

2.2.3. Discussion and summary

Discussion:Both active and passive BM models are
reasonably successful at simulating the neural thresh-
old response tuning curves. Thus we need to look
elsewhere to contrast the difference between these
two approaches, such as 2TS/USM. While the pas-
sive RTM model is easily made NL with the intro-
duction ofKohc(Vm), differences betweennonlinear
RTM and CA models have not yet been investigated.
The CA and RTM models differ in their interpreta-
tion of damaged cochlear responses. In CA models,
the loss of sensitivity of the cochlea with damage is
interpreted as a loss of CA gain while in passive mod-
els, the loss of sensitivity has been interpreted as a 2:1
change in the BM stiffness (Allen, 1991).

The discovery of OHC motility demonstrates the
existence of a potential source of mechanical energy
within the cochlear partition which is suitably po-
sitioned to influence vibrations of the basilar mem-
brane. It is still an open question whether this source
of energy is sufficient to power a CA at high frequen-
cies.

One possible advantage of the CA is that of im-
proving the signal-to-noise ratio in front of the IHC
detector. A weakness of the CA models has been
their lack of specificity about the physical realization
of the active elements. Until we have a detailed phys-

20In mathematical physics, NL damping resonators are de-
scribed byvan der Pol equations, while NL stiffness resonators
are described byDuffing equations(Pipes, 1958).

ical representation for the CA, RTM models have the
advantage of being simpler and more explicit.

The discovery by He and Dallos that the OHC
soma stiffness is voltage dependent is an exciting
development for the NL passive RTM model, as it
greatly simplifies the implementation of the physical
model. The RTM model has been in disfavor because
many feel it does not account for basilar membrane
tuning. This criticism is largely due to the experi-
mental results of physiologists who have measured
the BM-ear canal transfer function, and found the
tuning of BM velocity to be similar to neural thresh-
old response data. Much of the experimental BM
data, however, are not convincing on this point, with
the BM slopeS2 [Fig. 4(b)] generally being much
smaller than that of neural responses. The question
of whether an active model is required to simulate
measured BM responses is still being debated.

Better estimates of the amplitude of cilia bundle
displacement at a given sound pressure level directly
address the sensitivity questions. If the estimate of
Russell of 30 mV/degree is correct (Russellet al.,
1986), then the cochlear sensitivity question may be
resolved by having very sensitive detectors. Also,
better estimates are needed of the ratio of the BM
frequency response to the IHC frequency response,
both at high and low frequencies. Rhode’s approach
of using the slopes of Fig. 4(b) rather than traditional
ad hocbandwidth measures,21 might be a useful tool
in this regard.

Summary: This section has reviewed what we
know about the cochlea. TheIntroductionsection re-
views the nature of modeling and briefly describes
the anatomy of the inner ear, and the function of in-
ner and outer hair cells. In Sec. 1.2 we reviewed the
history of cochlear modeling. The Wegel and Lane
paper was a key paper that introduced the first de-
tailed view of masking, and in the same paper in-
troduced the first modern cochlear model Fig. 2(b).
We presented the basic tools of cochlear modeling,
impedance, and introduced theTransmission matrix
method (2-port analysis). We described how these
models work in intuitive terms, including how the
basilar membrane may be treated as having a fre-

21The bandwidth 10 dB down relative to the peak has been pop-
ular but arbitrary and thus poor, criterion in cochlear research. A
second somewhat better bandwidth measure is Fletcher’sequiva-
lent rectangular bandwidthdiscussed in Allen (1996b).
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quency dependent acoustic hole. The location of the
hole, as a function of frequency, is called the cochlear
map. This hole keeps fluid from flowing beyond a
certain point, producing the cochlear traveling wave.

We reviewed and summarized the NL measures
of cochlear response. Since these data are not fully
understood, and have not been adequately modeled,
this is the most difficult section. However it is worth
the effort to understand these extensive data and to
appreciate the various relations between them, such
as the close parallel between two–tone suppression
and the upward spread of masking, and between
loudness recruitment and outer hair cell damage.

We reviewed several models of the hair cell, in-
cluding forward and reverse transduction. Some of
this material is recently published, and the view of
these models could easily change over the next few
years, as we better understand reverse transduction.

Finally in Sec. 2.2 we reviewed the basics of mi-
cromechanics. We have presented the two basic types
of models,PassiveandActivemodels, with a critical
review of each.

3. NEURAL MASKING

When modeling human psychophysics we must care-
fully distinguish the externalphysical variables,
which we call Φ variables, from the internalpsy-
chophysicalvariables, which we refer to asΨ vari-
ables.22 Psychophysical modeling seeks a transfor-
mation from theΦ domain to theΨ domain. TheΦ–
intensity of a sound is easily quantified by direct mea-
surement. TheΨ–intensity is the loudness. The idea
that loudness could be quantified was first suggested
by Fechner (1966) in 1860, which raised the question
of the quantitative transformation between the physi-
cal and psychophysical intensity. For a recent review
of this problem see Schlauchet al. (1995). This sec-
tion is based on an earlier report by Allen (1999b)
and Allen and Neely (1997).

An increment in the intensity of a sound that
results in ajust noticeable differenceis called an
intensity JND. Fechner suggested quantifying the
intensity-loudness growth transformation by count-

22It may be helpful to note thatΦ andΨ sound similar to the ini-
tial syllable of the wordsphysical andpsychological, respectively
(Boring, 1929)

ing the number of theloudness JNDsbetween two
intensity values. However, after many years of work,
the details of the relationship between loudness and
the intensity JNDs have remained unclear (Zwislocki
and Jordan, 1986; Viemeister, 1988; Plack and Car-
lyon, 1995).

The contribution of Allen and Neely (1997);
Allen (1999b) is that it takes a new view of the prob-
lem of the intensity JND and loudness by merging
the 1953 Fletcher neural excitation pattern model of
loudness (Allen, 1995, 1996b) with auditory signal
detection theory (Green and Swets, 1966). It is gen-
erally accepted that the intensity JND is the physical
correlate of the psychological–domain uncertainty
corresponding to the psychological intensity repre-
sentation of a signal. Along these lines, for long du-
ration pure tones and wideband noise, we assume that
theΨ–domain intensity is the loudness, and that the
loudness JND results from loudness “noise” due to
its stochastic representation.

To model the intensity JND we must define ade-
cision variableassociated with loudness and its ran-
dom fluctuations. We call this loudness random deci-
sion variable thesingle–trial loudness. Accordingly
we define the loudness and the loudness JND in terms
of the first and second moments of the single–trial
loudness, that is the mean and variance of the distri-
bution of the single-trial loudness decision variable.
We also define the ratio of the mean loudness to the
loudness standard deviation as theloudness signal–
to–noise ratioSNRL.

Our ultimate goal in this work is to use signal de-
tection theory to unify masking and the JND, follow-
ing the 1947 outline of this problem by Miller (1947).
Tonal data follows the “near–miss to Weber’s Law”
(thus does not obey Weber’s law), while the wide-
band noise data does obey Weber’s law.23 We will
show that the transformation of theΦ–domain (in-
tensity) JND data (both tone and noise) into theΨ
domain (loudness) unifies these two types of JND
data, since SNRL(L) is the same for both the tone
and noise cases. To help understand these results,
we introduce the concept of a near–miss to Stevens’
law, which we show cancels the near–miss to Weber’s
law, giving the invariance in SNRL for the tone case
(Allen and Neely, 1997). This work has applications

23Weber’s law says that the relative JND is a constant, as dis-
cussed in Sec. 3.2.
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in speech and audio coding.
For the case of tones, we have chosen to illus-

trate our theoretical work using the classical intensity
modulation measurements of Riesz (1928) who mea-
sured the intensity JND using small, low-frequency
(3-Hz), sinusoidal modulation of tones. “Modern”
methods generally use “pulsed” tones which are
turned on and off somewhat abruptly, to make them
suitable for a two-alternative, forced-choice (2AFC)
paradigm. This transient could trigger cochlear for-
ward masking. Riesz’s modulation method has a dis-
tinct advantage for characterizing the internal sig-
nal detection process, because it maintains a nearly
steady-state small-signal condition within the audi-
tory system, minimizing any cochlear forward mask-
ing component. The interpretation of intensity JNDs
is therefore simplified since underlying stochastic
processes are stationary.

An outline of this neural masking section is as
follows: After some basic definitions in Sec. 3.1 and
a review of historical models (e.g., Weber and Fech-
ner), in Sec. 3.2, we explore issues surrounding the
relation between the intensity JND and loudness, for
the special case of tones in quiet and for wide–band
noise. First, we look at formulae for counting the
number of intensity and loudness JNDs and we use
these formulae, together with decision-theoretic prin-
ciples, to relate loudness to the intensity JND. We
then review the loudness–JND theory developed by
Hellman and Hellman (1990), which provided the
inspiration for the present work. Next we empiri-
cally estimate the loudness SNR, defined as the loud-
ness divided the loudness variance, and proportional
to L/∆L, as a function of both intensity and loud-
ness, using the tonal JND data of Riesz (1928) and
the loudness growth function of Fletcher and Munson
(1933). We then repeat this calculation for Miller’s
wideband noise JND and loudness data. Finally we
propose a model of loudness that may be used to
compute the JND. This model merges Fletcher’s neu-
ral excitation pattern model of loudness with signal
detection theory.

3.1. Basic definitions

We need a flexible yet clear notation, that accounts
for important time fluctuations and modulations that
are present in the signals, such as beats and gated

signals. We include a definition ofmasked thresh-
old because we view the intensity JND as a special
case of the masked threshold (Miller, 1947). We in-
clude a definition ofbeatsso that we can discuss their
influence on Riesz’s method for the measurement of
intensity JNDs.

Intensity: In the time domain, it is common to
define theΦ–intensityin terms of the time-integrated
squared signal pressures(t), namely,

Is(t) ≡
1

̺cT

∫ t

t−T

s2(t)dt, Watts/m2 (16)

whereT is the integration time, assumed long com-
pared with the period, and̺c is the specific acoustic
impedance of air. Theintensity levelis defined as
Is/Iref, and thesound pressure levelass/sref where
the reference intensity isIref or 10−10 µW/cm2 and
the reference pressuresref = 20 µPa. These two
reference levels are equivalent at only one temper-
ature,24 but both seem to be in use.

Intensity of masker + probe: The JND is some-
times called “self-masking,” to reflect the view that
it is determined by the internal noise of the audi-
tory system. To model the JND it is useful to define
a more general measure called themasked thresh-
old, which is defined in theΦ domain in terms of
a pressure scale factorα applied to the probe signal
p(t) that is then added to the masking pressure signal
m(t). The relative intensity of the probe and masker
is varied by changingα. Settings(t) = m(t)+αp(t),
we denote the combined intensity as

Im+p(t, α) ≡ 1

̺cT

∫ t

t−T

(m(t) + α p(t))2dt. (17)

The unscaled probe signalp(t) is chosen to have
the same long–term average intensity as the masker
m(t), defined asI. Let Im(t) be the intensity of the
masker with no probe (α = 0), andIp(t, α) = α2I
be the intensity of the scaled probe signal with no

24Equivalence of the pressure and intensity references requires
that ̺c = 40 cgs Rayls. At standard atmospheric pressure, this is
only true when the temperature is about 39◦C.
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masker. Thus25

I ≡ Im+p(t, 0) = Im(t) = Ip(t, 1).

Beats:Rapid fluctuations having frequency com-
ponents outside the bandwidth of theT -s rectangu-
lar integration window are very small and will be ig-
nored. Accordingly we drop the time dependence in
termsIm andIp. Because of beats betweenm(t) and
p(t) (assuming the spectra of these signals are within
a common critical band) one must proceed care-
fully. Slowly varying correlations between the probe
and masker having frequency components within the
bandwidth of the integration window maynot be ig-
nored, as with beats between two tones separated in
frequency by a few Hz. Accordingly we keep the
time dependence in the termIm+p(t, α) and other
slow–beating time dependent terms. In theΦ domain
these beats are accounted for with a probe–masker
correlation functionρmt(t) (Green and Swets, 1966,
Page 213).

Intensity increment δI(t, α): Expanding Eq. 17
and solving for theintensity incrementδI we find

δI(t, α) ≡ Im+p(t, α) − I (18)

=
(
2αρmp(t) + α2

)
I, (19)

where

ρmp(t) =
1

̺cT I

∫ t

t−T

m(t)p(t)dt (20)

defines a normalized cross correlation function be-
tween the masker and the probe. The correlation
function must lie between -1 and 1.

Detection threshold: As the probe to masker
ratio α is slowly increased from zero, the probe
can eventually be detected. We specify thedetec-
tion thresholdasα∗ where the asterisk indicates the
threshold value ofα at which a subject can discrimi-
nate intensityIm+p(t, α∗) from intensityIm+p(t, 0)
50% of the time, corrected for chance [i.e., obtain a
75% correct score in a direct comparison of the two
signals (Green and Swets, 1966, Page 129)]. The

25Because of small fluctuations inIm andIp due to the finite
integration timeT , this equality cannot be exactly true. We specif-
ically ignore these small rapid fluctuations – when these rapid fluc-
tuations are important, our conclusions and model results must be
reevaluated.

quantityα∗(t, I) is the probe to masker rms pressure
ratio at the detection threshold. It is a function of the
masker intensityI and, depending on the experimen-
tal setup, time.

Masked threshold intensity: The masked
threshold intensityis defined in terms ofα∗ as

I∗p (I) ≡ Ip(α∗) = α2
∗I,

which is the threshold intensity of the probe in the
presence of the masker.

The masked threshold intensity is a function of
the stimulus modulation parameters. For example,
tone maskers and narrow–band noise maskers of
equal intensity, and therefore approximately equal
loudness, give masked thresholds that are about 20
dB different (Egan and Hake, 1950). As a second ex-
ample, when using the method of beats (Riesz, 1928),
the just–detectable modulation depends on the beat
frequency. With “modern” 2AFC methods , the sig-
nals are usually gated on and off (100% modulation)
(Jesteadtet al., 1977). According to Stevens and
Davis (p. 142, 1983)

A gradual transition, such as the sinu-
soidal variation used by Riesz, is less
easy to detect than an abrupt transition;
but, as already suggested, an abrupt tran-
sition may involve the production of un-
wanted transients.

One must conclude that therelative masked threshold
[i.e., α∗(t, I)] is a function of the modulation condi-
tions.

Ψ–domain temporal resolution: When model-
ing time varying psychological decision variables,
the relevant integration timeT is not the duration de-
fined by theΦ–intensity Eq. 16, rather the integration
time is determined in theΨ–domain. This important
Ψ–domain model parameter is calledloudness tem-
poral integration(Yost, 1994). It was first explicitly
modeled by Munson in 1947.

The Φ–domain temporal resolution (T ) is criti-
cal to the definition of the JND in Riesz’s experiment
(see appendix A) because it determines the measured
intensity of the beats. TheΨ–domain temporal res-
olution plays a different role. Beats cannot be heard
if they are faster than, and therefore “filtered” out by,
theΨ domain response. TheΨ–domain temporal res-
olution also impacts results for gated stimuli, such as
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in the 2AFC experiment, though its role is poorly un-
derstood in this case. To model the JND as measured
by Riesz’s method of just–detectable beats, one must
know theΨ–domain resolution duration to calculate
the probe–masker effective correlationρmp(t) in the
Ψ domain. It may be more practical to estimate the
Ψ domain resolution from experiments that estimate
the degree of correlation, as determined by the beat
modulation detection threshold as a function of the
beat frequencyfb.

In summary, even though Riesz’s modulation de-
tection experiment is technically a masking task, we
treat it, following Riesz (1928), Miller (1947), and
Littler (1965), as characterizing the intensity JND. It
follows that theΨ–domain temporal resolution plays
a key role in intensity JND and masking models.

The intensity JND ∆I: The intensity just-
noticeable difference(JND) is26

∆I(I) ≡ δ(t, α∗), (21)

the intensity increment at the masked threshold, for
the special case where the probe signal is equal to the
masking signal (p(t) = m(t)). From Eq. 19 withα
set to thresholdα∗ andρmp(t) = 1 [see Eq. 20]

∆I(I) = (2α∗ + α2
∗)I. (22)

An important alternative definition for the spe-
cial case of thepure–tone JNDis to let the masker
be a pure tone, and let the probe be a pure tone of
a slightly different frequency (e.g., a beat frequency
difference offb = 3 Hz). This was the definition
used by Riesz in 1928. Beats are heard atfb =
3 Hz, and assuming the period of 3 Hz is within
the passband of theΨ–temporal resolution window,
ρmp(t) = sin(2πfbt) and

∆I(t, I) = [2α∗ sin(2πfbt) + α2
∗]I. (23)

If the beat period is less than theΨ temporal resolu-
tion window, the beats are “filtered” out by the audi-
tory brain and we do not hear the beats. In this case
∆I(I) = α2

∗I.
Internal noise: It is widely accepted that the

pure–tone intensity JND is determined by thein-
ternal noiseof the auditory system (Siebert, 1965;

26It is traditional to define the intensity JND to be a function of
I, rather than a function ofα(I), as we have done here. We shall
treat both notations as equivalent [i.e.,∆I(I) or ∆I(α(I))].

Raab and Goldberg, 1975), and that∆I is propor-
tional to the standard deviation of theΨ–domain de-
cision variable that is being discriminated in the in-
tensity detection task, reflected back into theΦ do-
main. The usual assumption, from signal detection
theory, is that∆I = d′σI , whered′ is defined as
the proportionality between the change in intensity
and the varianced′ ≡ ∆I/σI . Threshold is typically
whend′ = 1 but can depend on the experimental de-
sign, andσI is the intensity standard deviation of the
Φ–domain intensity due toΨ–domain auditory noise
(Hartmann, 1997, Chapter 4).

Hearing threshold: The hearing threshold(or
unmasked threshold)intensitymay be defined as the
intensity corresponding to the first (lowest intensity)
JND. The hearing threshold is represented asI∗p (0)
to indicate the probe intensity when the masker inten-
sity is small (i.e.,I → 0). It is believed that internal
noise is responsible for the hearing threshold, how-
ever, there is no reason to assume that this noise is
the same as the internal noise that produces the JND.

LoudnessL: The loudnessL of a sound is the
Ψ intensity. Theloudness growth functionL(I) de-
pends on the stimulus conditions. For exampleL(I)
for a tone and for wideband noise are not the same
functions. Likewise the loudness growth function for
a 100 ms tone and a 1-s tone differ. When defining a
loudness scaleit is traditional to specify the intensity,
frequency, and duration of a tone such that the loud-
ness growth function is one (i.e.,L(Iref, fref, Tref) = 1
defines a loudness scale). For the sone scale, the ref-
erence signal is aIref = 40 dB SPL tone atfref = 1 kHz
with durationTref = 1-s. For Fletcher’s LU loudness
scale, the reference intensity is the hearing threshold,
which means that 1 sone = 975 LU (Fletcher, 1953b)
for a “normal” hearing person. In the next section
we shall show that Fletcher’s LU loudness scale is
a more natural scale than the sone scale (the ANSI
and ISO standard scales). For a detailed discussion
of how loudness is measured see Allen (1996b).

The single–trial loudness:A fundamental pos-
tulate of psychophysics is that all decision variables
(i.e.,Ψ variables) are random variables, drawn from
some probability density function (Green and Swets,
1966, Chapter 5). For early discussions of this point
see Montgomery (1935) and p. 144 of Stevens and
Davis (1983). To clearly indicate the distinction be-
tween random and nonrandom variables, a tilde (∼)
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is used to indicate a random variable.27

We define the loudness decision variable as
the single–trial loudness̃L, which is the sample–
loudness heard on each stimulus presentation. The
loudnessL is then the expected value of the single–
trial loudness̃L

L(I) ≡ EL̃(I). (24)

The second moment of the single-trial loudness

σ2
L ≡ E(L̃ − L)2 (25)

defines the loudnessvarianceσ2
L andstandard devi-

ationσL.

3.1.1. Derived definitions

The definitions given above cover the basic vari-
ables. However many alternative forms (various nor-
malizations) of these variables are used in the litera-
ture. These derived variables were frequently formed
with the hope of finding an invariance in the data.
This could be viewed as a form of modeling exer-
cise that has largely failed (e.g., the near–miss to We-
ber’s law), and the shear number of combinations
has led to serious confusions (Yost, 1994, p. 152).
Each normalized variable is usually expressed in dB,
adding an additional unnecessary layer of confusion
to the picture. For example,maskingis defined as
the masked threshold normalized by the unmasked
(quiet) threshold, namely

M ≡ I∗p (I)/I∗p (0).

It is typically quoted in dB re sensation level (dB-
SL) The intensity JND is frequently expressed as a
relative JNDcalled theWeber fractiondefined by

J(I) ≡ ∆I(I)/I. (26)

From the signal detection theory premise that∆I =
d′σI (Hartmann, 1997),J is just the reciprocal of an
effective signal to noise ratio defined as

SNRI(I) ≡ I/σI(I) (27)

since
J = d′σI/I = d′/SNRI . (28)

27As a mnemonic, think of the∼ as a “wiggle” associated with
randomness.

One conceptual problem with the Weber fraction
J is that it is aneffectivenoise–to–signal ratio, ex-
pressed in theΦ (physical) domain, but determined
by a Ψ (psychophysical) domain mechanism (inter-
nal noise), as may be seen from Fig. 11.

Loudness JND ∆L: Any suprathresholdΨ–
domain increments may be quantified by correspond-
ing Φ domain increments. Theloudness JND∆L(I)
is defined as the change in loudnessL(I) correspond-
ing to the intensity JND∆I(I). While it is not possi-
ble to measure∆L directly, we assume that we may
expand the loudness function in a Taylor series, giv-
ing

L(I + ∆I) = L(I) + ∆I
dL

dI

∣∣∣∣
I

+ HOT,

where HOT representshigher–order terms, which we
shall ignore. If we solve for

∆L ≡ L(I + ∆I) − L(I) (29)

we find

∆L = ∆I
dL

dI

∣∣∣∣
I

. (30)

We call this expression thesmall–JNDapproxima-
tion. The above shows that the loudness JND∆L(I)
is related to the intensity JND∆I(I) by the slope of
the loudness function, evaluated at intensityI. Ac-
cording to the signal detection model, the standard
deviation of the single-trial loudness is proportional
to the loudness JND, namely

∆L = d′σL. (31)

A more explicit way of expressing this assumption is

∆L

∆I
=

σL

σI
(32)

where we have assumed here thatd′ in both theΦ and
Ψ domains is the same and thus cancels.

Loudness SNR:In a manner analogous to the
Φ–domain SNRI , we define theΨ–domain loudness
SNR as SNRL(L) ≡ L/σL(L). Given Eq. 31, it fol-
lows that

SNRI = νSNRL, (33)

whereν is the slope of the log–loudness function
with respect to log–intensity. If we express the loud-
ness as a power law

L(I) = Iν
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and letx = log(I) andy = log(L), theny = νx. If
the change ofν with respect to dB SPL is small, then
dy/dx ≈ ∆y/∆x ≈ ν. Sinced log(y) = dy/y we
get

∆L/L = ν∆I/I. (34)

From Eq. 32, Eq. 33 follows.
Equation 33 is important because(a) it tells us

how to relate the SNRs between theΦ and Ψ do-
mains,(b) every term is dimensionless,(c) the equa-
tion is simple, sinceν is approximately constant
above 40 dB SL (i.e., Stevens’ law), and because(d)
we are used to seeing and thinking of loudness, inten-
sity, and the SNR, on log scales, andν as the slope
on log-log scales.

Counting JNDs: While the concept of count-
ing JNDs has been frequently discussed in the litera-
ture, starting with Fechner, unfortunately the actual
counting formula (i.e., the equation) is rarely pro-
vided. As a result of a literature search, we found the
formula in Nutting (1907), Fletcher (1923a), Wegel
and Lane (1924), Riesz (1928), Fletcher (1929), and
Miller (1947).

To derive the JND counting formula, Eq. 30 is
rewritten as

dI

∆I
=

dL

∆L
. (35)

Integrating over an interval gives the total number of
intensity JNDs

N12 ≡
∫ I2

I1

dI

∆I
=

∫ L2

L1

dL

∆L
, (36)

whereL1 = L(I1) and L2 = L(I2). Each inte-
gral counts the total number of JNDs in a different
way betweenI1 andI2 (Riesz, 1928; Fletcher, 1929).
The number of JNDs must be the same regardless of
the domain (i.e., the abscissa variable),Φ or Ψ.

3.2. Empirical models

This section reviews some earlier empirical models
of the JND and its relation to loudness relevant to our
development.

Weber’s Law In 1846 it was suggested by Weber
that J(I) is independent ofI. According to Eq. 22
and Eq. 26

J(I) = 2α∗ + α2
∗.

If J is constant, thenα∗ must be constant, which we
denote byα∗(6I) (we strike outI to indicate thatα∗ is
not a function of intensity). This expectation, which
is called Weber’s law (Weber, 1988), has been suc-
cessfully applied to many human perceptions. We
refer the reader to the helpful and detailed review of
these questions by Viemeister (1988), Johnsonet al.
(1993), and Moore (1982).

Somewhat frustrating is the empirical observa-
tion thatJ(I) is not constant for the most elemen-
tary case of a pure tone (Riesz, 1928; Jesteadtet al.,
1977). This observation is referred to asthe near–
miss to Weber’s law(McGill and Goldberg, 1968b).
It remains unexplained why Weber’s law holds as
well as it does (Green, 1988, 1970, p. 721) (it holds
approximately for the case of wide band noise), or
even why it holds at all. Given the complex and NL
nature of the transformation between theΦ andΨ do-
mains, coupled with the belief that the noise source
is in theΨ domain, it seems unreasonable that a law
as simple as Weber’s law, could hold in any general
way. A transformation of the JND from theΦ domain
to theΨ domain might clarify the situation.

Weber’s law does make one simple prediction
that is potentially important. From Eq. 36 along with
Weber’s lawJ0 ≡ J(6I) we see that the formula for
the number of JNDs is

N12 =

∫ I2

I1

dI

J0I
(37)

=
1

J0
ln(I2/I1). (38)

Fechner’s postulate In 1860 Fechner postu-
lated that the loudness JND∆L(I) is a constant28

(Stevens, 1951; Fechner, 1966; Luce, 1993; Plack
and Carlyon, 1995). We shall indicate such a con-
stancy with respect toI as ∆L(6I) (as before, we
strike out theI to indicate that∆L is not a function
of intensity). As first reported by Stevens (1961), we
shall show that Fechner’s postulate is not generally
true.

The Weber–Fechner law.It is frequently stated
(Luce, 1993) that Fechner’s postulate
(∆L(6I)) and Weber’s law (J0 ≡ J(6I)) lead to the
conclusion that the difference in loudness between

28We are only considering the auditory case of Fechner’s more
general theory.



Springer Handbook on Speech Processing and Speech Communication 22

any two intensitiesI1 andI2 is proportional to the
logarithm of the ratio of the two intensities, namely

L(I2) − L(I1)

∆L
=

1

J0
log(I2/I1). (39)

This comes from Eq. 36 by assuming Weber’s law
and Fechner’s Hypothesis. This result is calledFech-
ner’s law (also called theWeber-Fechner law). It is
not true because of the false assumptions.

3.3. Models of the JND

Starting in 1923, Fletcher and Steinberg studied
loudness coding of pure tones, noise, and speech
(Fletcher, 1923a,b; Fletcher and Steinberg, 1924;
Steinberg, 1925), and proposed that loudness was re-
lated to neural spike count (Fletcher and Munson,
1933), and even provided detailed estimates of the
relation between the number of spikes and the loud-
ness in sones (Fletcher, 1953b, Page 271). In 1943
De Vries first introduced a photon counting Poisson
process model as a theoretical basis for the threshold
of vision (De Vries, 1943). Siebert (1965) proposed
that Poisson–point–process noise, resulting from the
neural rate code, acts as the internal noise that lim-
its the frequency JND (Green, 1970; Jesteadtet al.,
1977). A few years later (Siebert, 1968), and inde-
pendently29 McGill and Goldberg (1968a) proposed
that the Poisson internal noise (PIN) model might ac-
count for the intensity JND, but they did not find this
to produce a reasonable loudness growth function.
Hellman and Hellman (1990) further refined the ar-
gument that Poisson noise may be used to relate the
loudness growth to the intensity JND, and they found
good agreement between the JND and realistic loud-
ness functions.

Given Poisson Noise, the variance is equal to the
mean, thus

∆L(L) ∝
√

L. (40)

This may be rewritten asσ2
L ∝ L. We would expect

this to hold if the assumptions of McGill and Gold-
berg (1968b) (i.e., the PIN model) are valid.

A direct estimate of ∆L(L) In the following
we directly compare the loudness–growth function
of Fletcher and Munson to the number of JNDsN12

from Riesz (Riesz, 1928; Allen and Neely, 1997).

29W. Siebert, personal communication.

The Fletcher and Munson loudness data (Munson,
1932) were determined for long duration tonal stim-
uli using the loudness balance method (Fletcher and
Munson, 1933), the method ofconstant stimuli(Yost,
1994), and the assumption of additivity of partial
loudness. Riesz’s data were also determined for
long duration stimuli with just–detectable modula-
tion (i.e., they were tone-like sounds). Since the JND
depends on the modulation depth, as discussed in
theDefinitionssection, Riesz’s JND data seem to be
ideal for this comparison since both the loudness data
and the JND data have minimal (and similar) modu-
lation parameters (Riesz’s continuous tonal stimuli,
which have just–detectable modulations, are more
tone-like than gated 2AFC stimuli).

3.4. The direct estimate of∆L

The above discussion has

(a) drawn out the fundamental nature of the JND,

(b) shown that the PIN loudness model holds below
5 sones (5,000 LU) (The solid line in the lower
right panel of Fig. 11 below 5000 LU obeys the
PIN model, and the data for both tones and wide
band noise fall close to this line below 5000 LU)30

(c) shown that above 5 sones the PIN model fails and
the loudness SNR remains constant.

Given its importance, it is reasonable to estimate
∆L directly from its definition Eq. 29, using Riesz’s
∆I(I) and Fletcher and Munson’s 1933 estimate of
L(I).

Miller’s 1947 famous JND paper includes wide–
band noise loudness–level results. We transformed
these data to loudness using Fletcher and Munson
(1933) reference curve (i.e., Fig. 12(b) upper left).

3.4.1. Loudness growth, recruitment and the
OHC

In 1924 Fletcher and Steinberg published an impor-
tant paper on the measurement of the loudness of
speech signals (Fletcher and Steinberg, 1924). In this
paper, when describing the growth of loudness, the
authors state

30One sone is 975 LUs (Allen and Neely, 1997, page 3631), thus
5000 LUs = 5.13 LU. From the loudness scale this corresponds to
a 1 kHz pure tone at 60 dB SL.
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the use of the above formula involved a
summation of the cube root of the energy
rather than the energy.

This cube–root dependence had first been described
by Fletcher the year before (Fletcher, 1923a).

In 1930 Fletcher postulated that there was a
monotonic relationship between central nerve firings
rates and loudness. Given a tonal stimulus at the ear
drum, Stevens’ law says that the loudness is given by

L ≡ L(f, x, I) ∝ Iν , (41)

where{f, x, I} are the frequency, place and inten-
sity of the tone, respectively. The exponentν has
been experimentally established to be in the range be-
tween1/4 and1/3 for long duration pure tones at 1
kHz. Fletcher and Munson (1933) foundν ≈ 1/4 at
high intensities and approximately 1 near threshold.
Although apparently it has not been adequately doc-
umented,ν seems to be close to 1 for therecruiting
ear (Neely and Allen, 1997).

Recruitment: What is the source of Fletcher’s
cube root loudness growth (i.e., Stevens’ Law)? To-
day we know that cochlear outer hair cells (OHC) are
the source of the cube root loudness growth observed
by Fletcher.

From noise trauma experiments on animals and
humans, we may conclude that recruitment (abnor-
mal loudness growth) occurs in the cochlea (Carver,
1978; Gardner, 1994). Steinberg and Gardner
(1937) described such a loss as a “variable loss”
(i.e., sensory–neural loss) and partial recruitment
as a mixed loss (i.e., having a conductive compo-
nent) (Steinberg and Gardner, 1937, 1940). They
and Fowler verified the conductive component by
estimating the air–bone gap. In a comment to
Fowler’s original presentation on loudness recruit-
ment in 1937, the famous anatomist Lorente de No
theorized that recruitment is due to hair cell dam-
age (Lorente de Nó, 1937). Steinberg and Gardner
clearly understood recruitment, as is indicated in the
following quote (Steinberg and Gardner, 1937, page
20)

Owing to the expanding action of this
type of loss it would be necessary to
introduce a corresponding compression
in the amplifier in order to produce the
same amplification at all levels.

This compression/loss model of hearing and
hearing loss, along with the loudness models of
Fletcher and Munson (1933), are basic to an even-
tual quantitative understanding of NL cochlear signal
processing and the cochlea’s role in detection, mask-
ing and loudness in normal and impaired ears. The
work by Fletcher (1950) and Steinberg and Gardner
(1937), and work on modeling hearing loss and re-
cruitment (Allen, 1991) support this view.

In summary, many studies agree: The cube–root
loudness growth starts with the NL compression of
basilar membrane motion due to stimulus dependent
voltage changes within the OHC.

3.5. Determination of the loudness SNR

The pure-tone and wideband noise JND results may
be summarized in terms of the loudness SNRL(I)
data shown in Fig. 12(a) where we show∆L/L =
d′/SNRL, as a function of loudness. As before we
separate frequencies into separate panels.

For noise below 55 dB SL the loudness signal–
to–noise ratio SNRL ≡ L/σL increases as the cube–
root (1 - 2/3 = 1/3) of the loudness; namely the
noise increases by a factor of 2 when the loudness in-
creases by a factor of 8. For levels above about 55 dB
SL, SNRL(L) remains approximately constant with a
value between 20 and 60 for both tones and noise.

To the extent that the curves are all approximately
the same across frequency, Fig. 12(a) provides a stim-
ulus independent description of the relation between
the intensity JND and loudness. This invariance in
SNRL seems significant. Where the high level seg-
ment of SNRL is constant, the intensity resolution of
the auditory system has a fixed internalrelative res-
olution (Ekman, 1959). The obvious interpretation is
that as the intensity is increased from threshold, the
neural rate–limited SNR increases until it saturates
due to someotherdynamic range limit, such as that
due to some form of central nervous system (CNS)
noise.

Near–miss to Stevens’ law. In Fig. 12(a) we
show a summary ofL(I), ν(I), J(I) and ∆L/L
= d′/SNRL for the tone and noise data. For tones
the intensity exponentν(I) varies systematically be-
tween 0.3 and 0.4 above 50 dB SL, as shown by the
solid line in the upper–right panel. We have high-
lighted this change in the power law with intensity
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for a 1 kHz tone in the upper–right panel with a light–
solid straight line. It is logical to call this effect the
near–miss to Stevens’ law,since it cancels the near–
miss to Weber’s law, giving a constant relative loud-
ness JND∆L/L for tones.

In the lower–right panel we provide a functional
summary of∆L/L for both tones and noise with the
light–solid line described by

∆L(L)

L
= h [min(L, L0)]

−1/2
, (42)

whereh =
√

2 andL0 = 5000 LU (≈ 5 sones). We
call this relation the Saturated Poisson Internal Noise
(SPIN) model. With these parameter values, Eq. 42
appears to be a lower bound on the relative loudness
JNDL for both tones and noise.

In Fig. 12(a) the second top panel shows the ex-
ponentν(I) [see Fig. 11], for both Fletcher and Mun-
son’s and Miller’s loudness growth function. In the
lower–left panel we see∆I/I versusI for Miller’s
subjects, Miller’s equation, and Riesz’s JND equa-
tion. In second from left bottom panel we show the
∆L/L versusL for the noise and tones cases. From
Eq. 34∆L/L = ν(I)J(I). Note how the product of
ν(I) andJ(I) is close to a constant for tones above
65 dB SL. This invariance justifies calling the vari-
ations in the power–law exponentν(I) for tones the
“near–miss to Stevens’ law.” For reference, 1 sone
is 975 LU. The upper–left panel shows the Fletcher-
Munson loudness data from their Table III (Fletcher
and Munson, 1933). The upper–right panel is a plot
of the slope of the loudness with respect to intensity
(LU-cm/W). In the lower–left we show the relation
between the SPIN–model (Eq. 45 withh = 2.4) rela-
tive JND (solid line), calculated from the Fletcher–
Munson loudness data, and the measured relative
JND obtained by (Riesz, 1928) at 1 kHz. We dis-
play both Riesz’s formula (dashed line) and Riesz’s
raw data (circles), which may be found in Fletcher
(1953, 1995). In the lower–right we compare the
SPIN–model relative JND (Eq. 45, withh = 3.0),
and the relative JND computed from the Jesteadtet
al. formula (dashed line) and data from their Table
B-I (circles). They measured the JND using pulsed
tones for levels between 5 and 80 dB. For reference,
1 sone is 975 LU.

3.6. Weber–fraction formula

In this section we derive the relation between the We-
ber fractionJ(I) given the loudnessL(I) starting
from thesmall–JND approximation

∆L = ∆IL′(I), (43)

whereL′(I) ≡ dL/dI. If we solve this equation for
∆I and divide byI we find

J(I) ≡ ∆I

I
=

∆L

IL′(I)
. (44)

Finally we substitute the SPIN model Eq. 42

J(I) =
hL(I)

IL′(I)
[min(L(I), L0)]

−1/2 (45)

This formula is the same as that derived by Hellman
and Hellman (1990) whenL ≤ L0. In Fig. 12(b) we
plot Eq. 45 in the lower two panels labeled “SPIN
model.” From the lower–left panel of this figure,
h = 2.4 andL0 = 10, 000 LU. For levels between
0 and 100 dB SL, the SPIN model (solid curve) fit to
Riesz’s data and Riesz’s formula is excellent. Over
this 100 dB range the curve defined by the loudness
function fits as well as the curve defined by Riesz’s
formula (Allen and Neely, 1997). The excellent fit
gives us further confidence in the basic assumptions
of the model.

In the lower–right panel we have superimposed
the JND data of Jesteadtet al. (1977) withh = 3
and L0 = 10, 000 LU for comparison to Eq. 45.
The Jesteadtet al. data were taken with gated stim-
uli (100% modulation) and 2AFC methods. It is ex-
pected that the experimental method would lead to
a different value ofh than the valued required for
Riesz’s data set. The discrepancy between 0 and 20
dB may be due to the 100% modulation for these
stimuli. The fit from 20 to 80 dB SL is less than a
5% maximum error, and much less in terms of rms
error. Note the similarity in slope between the model
and the data.

4. DISCUSSION AND SUMMARY

Inspired by the Poisson internal noise (PIN) based
theory of Hellman and Hellman (1990), we have de-
veloped a theoretical framework that can be used to
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explore the relationship between the pure–tone loud-
ness and the intensity JND. The basic idea is to
combine Fletcher’s neural excitation response pattern
model of loudness with signal detection theory. We
defined a random decision variable called the single–
trial loudness. Themeanof this random variable is
the loudness, while itsstandard deviationis propor-
tional to the loudness JND. We define the loudness
signal–to–noise ratio SNRL as the ratio of loudness
(the signal) to standard deviation (a measure of the
noise).

4.1. Model validation

To evaluate the model we have compared the loud-
ness data of Fletcher and Munson (1933) with the in-
tensity JND data of Riesz (1928), for tones. A similar
comparison was made for noise using loudness and
intensity JND data from Miller (1947). We were able
to unify the tone and noise data by two equivalent
methods. First, since the loudness SNR is propor-
tional to the ratio of the loudness to the JNDL/∆L,
the SNR is also a piecewise power–law function we
call the SPIN model. All the data are in excellent
agreement with the SPIN model, providing support
for the validity of this theory.

4.2. The noise model

The SPIN model. Equation 42 summarizes our re-
sults on the relative loudness JND for both tones and
noise. Using this formula along with Eq. 33, the JND
may be estimated for tones and noise once the loud-
ness has been determined, by measurement, or by
model. Fechner’s postulate, that the loudness JND is
constant, is not supported by our analysis, in agree-
ment with Stevens (1961).

The PIN model. The success of the PIN model
is consistent with the idea that pure–tone loudness is
based on neural discharge rate. This theory should
apply between threshold and moderate intensities
(e.g.,< 60 dB) for “frozen stimuli” where the JND is
limited by internal noise.

CNS noise. Above 60 dB SL we find that the
loudness signal–to–noise ratio saturated with a con-
stant loudness SNR between 30 and 50 for both the
tone and noise conditions, as summarized by Ek-
man’s law (Ekman, 1959). We conclude that the

Hellman and Hellman theory must be modified to
work at these higher intensities.

Weber’s law. It is significant that while both
J(I) andν(I) vary with intensity, the product is con-
stant above 60 dB SL. Given thatJ = d′/νSNRL,
the saturation in SNRL explains Weber’s law for
wideband signals (sinceν and SNRL for that case
are constant) as well as the near–miss to Weber’s law
for tones, whereν is not constant (the near–miss to
Stevens’ law, Fig. 12(a)).

Generalization to other data. If σL(L, 6I) de-
pends onL, and is independent ofI, then the
SNRL(L) should not depend on the nature of the
function L(I) (i.e., it should be true for anyL(I)).
This prediction is supported by our analysis summa-
rized by Eq. 42. It will be interesting to see how
SNRL depends onL and I for subjects having a
hearing–loss induced recruitment, and how well this
theory explains other data in the literature, such as
loudness and JNDs with masking induced recruit-
ment (Schlauch, Harvey, and Lanthier, 1995).

Conditions for model validity. To further test
the SPIN model, several conditions must be met.
First the loudness and the JND must have been mea-
sured under the same stimulus conditions. Second,
the internal noise must be the dominant factor in de-
termining the JND. This means that the stimuli must
be frozen (or have significant duration and band-
width), and the subjects well trained in the task. As
the signal uncertainty begins to dominate the inter-
nal noise, as it does in the cases of roving the stim-
ulus, the intensity JND will become independent of
the loudness.

As discussed by Stevens and Davis (Stevens and
Davis, 1938b, p. 141-143), JND data are quite sensi-
tive to the modulation conditions. The Riesz (1928)
and Munson (1932) data make an interesting compar-
ison because they are taken under steady–state con-
ditions and are long duration tonal signals. Both sets
of experimental data (i.e., Riesz and Munson) were
taken in the same laboratory within a few years of
each other.31 Riesz (1928) states that he used the
same methods as Wegel and Lane (1924), and it is
likely that Munson (1932) did as well.

Differences in the signal conditions are the most
likely explanation for the differences observed in the

31In 1928 Wegel, Riesz, and Munson were all members of
Fletcher’s department.
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intensity JND measurements of Riesz and Jesteadt
shown in Fig. 12(b). One difference between the
data of Riesz (1928) and Jesteadtet al. (1977) is that
Riesz varied the amplitude of the tones in a sinusoidal
manner with a small (i.e., just detectable) modulation
index, while Jesteadtet al. alternated between two in-
tervals of different amplitude, requiring that the tones
be gated on and off (i.e., a 100% modulation index).

The neural response to transient portions of a
stimulus is typically larger than the steady-state re-
sponse (e.g., neural overshoot) and, therefore, may
dominate the perception of stimuli with large abrupt
changes in amplitude. The fact that the intensity JND
is sensitive to the time interval between two tones
of different amplitude (Stevens and Davis, 1938b) is
another indication that neural overshoot may play a
role.

It would be interesting to check the SPIN model
on loudness and JND data taken using gated sig-
nals, given the observed sensitivity to the modula-
tion. While these JND data are available (Jesteadt,
Wier, and Green, 1977), one would need loudness
data taken with identical (or at least similar) modu-
lations. We are not aware of such data.
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(a) Cross-section through the cochlear duct (b) Cross-section through the Organ of Corti.

Figure 1: On the left we see all the major structures of the cochlea. Thethree chambers are filled with fluid. Reissner’s membrane is
an electrical barrier and is not believed to play a mechanical role. The right panel shows the inner and outer hair cells, pillar cells and
other supporting structures, the basilar membrane (BM), and the tectorial membrane (TM).
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(a) TheBase(x=0) is the high frequency end of the cochlea while
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(b) The model is built from a cascade of electrical sec-
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Figure 2: On the left se see the basic 2-D box-model of the cochlea, and on the right the 1924 Wegel and Lane electrical equivalent
circuit.
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Figure 3: On the left showing the impedance, the region labeledK(X) is the region dominated by the stiffness and has impedance
K(X)/s. The region labeledM is dominated by the mass and has impedancesM . The characteristic places for 1 and 8 kHz are shown
asXcf. The resonance frequency depends on place according to thecochlear map function, as shown by the plot on the left. Acritical
bandwidth∆f (f) and acritical spread∆x(X) area related through the cochlear map.

1.0 10.0Frequency [kHz]

G
ai

n 
[d

B
]

(a) This panel shows a reproduction of Figure 9a panel
B from Rhode (1978), showing the response of the
basilar membrane for his most sensitive animal. The
graduals along the abscissa are at 0.1, 1.0 and 10.0
kHz.

S1

S2

Fz

S3

E
xc

es
s 

ga
in

Fcf

G
ai

n 
[d

B
]

Frequency

(b) Basic definition of the 6 parameters for characterizing a
tuning curve: slopesS1, S2, S3, frequenciesFz andFcf ,
and the Excess-gain.

Figure 4: There are 6 numbers that characterize every curve, three slopes (S1, S2, S3), in dB/oct, two frequencies (Fz, Fcf), and
the Excess-gaincharacterizes the amount of gain atFcf relative to the gain defined byS1. The Excess-gain depends on the input level
for the case of a nonlinear response like the cochlea. Rhode found up to≈35 dB of excess gain at 7.4 kHz and 55 dB SPL, relative to
the gain at 105 dB SPL. From of the 55 dB SPL curve of Fig. 4(a) (the most sensitive case), and his Table I,S1 = 9, S2 = 86, and
S3 = −288 (dB/oct)), Fz = 5 kHz, Fcf = 7.4 kHz, and anexcess gainof 27 dB. Rhode reportedS1 = 6 dB/oct, but 9 seems to be a
better fit to the data, so 9 dB/oct is the value we have used for our comparisons.
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Figure 5: Block flow diagram of the inner ear (Allen, 1997a).

0 20 40 60 80
0

10

20

30

40

50

60

70

0.25

0.35

0.45

0.3

1

2

3

4

MASKER LEVEL (dB−SL)

M
A

S
K

IN
G

 (
d

B
−

S
L

)

MASKER AT 400 HZ

(a) Upward spread of masking as characterized
by Wegel and Lane in 1924. The solid lines cor-
respond to the probe being higher than the 400
Hz masker, while the dashed lines correspond
to the 400 Hz probe lower than the masker. On
the left we see upward spread of masking func-
tions from Wegel and Lane for a 400 Hz low
frequency masker. The abscissa is the masker
intensity Im in dB-SL while the ordinate is
the threshold probe intensityI∗p (Im) in dB-SL.
The frequency of the probefp, expressed in
kHz, is the parameter indicated on each curve.
The dashed box shows that the masking due to
a 1 kHz tone becomes more than that at 450 Hz,
for a 400 Hz probe. This is the first observa-
tion of excitation pattern migrationwith input
intensity.

(b) Two-tone suppression (2TS) IO functions from Fig. 8 of Abbas
and Sachs (1976). On the left is low-side suppression and on the
right we see high-side suppression. In 2TS the suppressor plays the
role of the masker and the probe the role of the maskee. Note that the
threshold of suppression for low-side suppressor (masker)is close
to 70 dB SPL, which is similar to human low-side suppressors,the
case of the Wegel and Lane USM (left) (60-70 dB-SPL). The onset
of suppression for high-side suppressors is close to the neuron’s CF
threshold of 50 dB, as elaborated further in Fig. 7(a).

Figure 6: On the left we see the psychoacoustic measure of 2TS, called the upward spread of masking. On the right are related
measures taken in the auditory nerve by a procedure called two-tone suppression (2TS). Low-side and high-side masking or suppression
have very different thresholds and slopes. These suppression slopes and thresholds are very similar between 2TS and theUSM.
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Figure 7: On the left are shown the definitions used in 2TS, while on the right we see 2TS in in a cat neural tuning curve. A cat neural
tuning curve taken with various “low-side” suppressors present (suppressor below the best frequency), as indicated bythe symbols. The
tuning curve with the lowest threshold is for no suppressor.When the suppressor changes by 20 dB, theFcf threshold changes by 36 dB.
Thus for a 2 kHz neuron, the slope is 36/20, or 1.8. These numbers are similar to those measure by Delgutte (1990b). One Pascal = 94
dB SPL.
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Figure 8: On the far left is the electrical equivalent circuit model ofan OHC with thermal noise sources due to the cell leakage
resistance Johnson and shot noisevJ and the Brownian motion of the cilia, represented by the voltage noise sourcevB . The cilia force
fc and velocityξ̇c are the stimulus (input) variables to theFORWARD TRANSDUCTION, and are loaded by the mechanical impedance of
the cilia viscous dragr and compliancec. When the cilia move, current flows into the cell charging themembrane capacitance and thus
changing the membrane voltageVm. This membrane capacitanceCm(Vm) is voltage dependent (i.e., it is NL). The membrane voltage
has also been shown to control the cell’s soma axial stiffness. It follows that the axial forceFz(Vm) the cell can deliver, and the axial
velocityVz(Vm) of the cell, must also depend on the membrane voltage. The precise details of how all this works is unknown.
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(a) Comparison between neural data and the computed model
excitation patterns from Allen’s passive RTM model (transfer
function format). This CA model assumes an IHC cilia bun-
dle displacement of about 50 pm at the neural rate threshold.

(b) Comparison between neural data computed tuning curves
from Neely’s active model (Neely, 1992). This CA model
assumes an IHC cilia bundle displacement of 300 pm (0.3
nm) at the neural rate threshold.

Figure 9: The tuning curves shown by the dashed lines are the average ofsingle nerve fiber responses from six cats obtained by M.
C. Liberman and B. Delgutte.
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(b) Cartoon showing the effect of a low-side masker on a high
frequency tone as a function of position along the basilar mem-
brane. When the suppressor is turned on the CF of the high-
frequency probe becomes less sensitive and shifts to higherfre-
quencies. We model this effect in the panel on the left as BM
stiffness that depends on level (i.e.,Kp(Is)).

Figure 10: In (a) results of model calculations by Sen and Allen (2006) are shown of a NL BM stiffness model. On the right shows
a cartoon of what might happen to the excitation pattern of a low-level probe when a suppressor is turned on given such a nonlinearity.
The presence of the suppressor causes the probe to be suppressed and shifted slightly toward the base when the stiffness is decreased
with increased level. It may be inferred from Fig. 3(a) that if the BM stiffness is reduced the location of the maximum willshift to the
base, as is seen in real data.
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Hypothesis:
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Figure 11: This figure summarizes all the historical ideas about psychophysics and the relations between theΦ andΨ variables.
Along the abscissa we have the physical variable, intensity, and along the ordinate, the psychological variable loudness. The curve
represents the loudness, on a log-intensity log-loudness set of scales. A JND in loudness is shown as∆L and it depends on loudness,
as described by thePoisson internal noise(PIN) model shown in the box on the left. Fechner assumed that∆L was constant, which we
now know to be incorrect. The loudness JND is reflected back into the physical domain as an intensity JND∆I, which also depends on
level. Weber’s law, is therefore not true in general (but is approximately true for wide-band noise). Our analysis showsthat the loudness
SNR and the intensity SNR must be related by the slope of the loudness growth function, as given by Eq. 33. These relations are verified
in Fig. 12(a), as discussed in detail in Allen and Neely (1997).
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(a) The direct derivation of∆L based on pure tone JND and
loudness data data from Miller (1947); Riesz (1928); Fletcher and
Munson (1933).

(b) Test of the model derived on the left based on a comparison
between loudness data and intensity JND data at 1 kHz, using the
SPIN model.

Figure 12: (a) In 1947 Miller measured the JNDI and the loudness–level for two subjects using wideband modulated noise (0.15–7
kHz) for levels between 3 and 100 dB SL. The noise (dash line) and pure tone (solid line) loudness are shown in the upper–left panel.
The similarity between∆L/L derived from the loudness curves for pure tones and for noiseprovide an almost perfect fit to the SPIN
model. which results from assuming the noise is neural point-process noise. See the text for a summary of these results. (b) Test of the
SPIN model against the classic results of Riesz (1928); Jesteadtet al.(1977).


