

Cross section of Knowles ED receiver

$\mu_{0} \ll \mu_{\mathrm{a}}$

S

S

Eddy current \circlearrowleft

$$
\begin{gathered}
\nabla \times H=J_{c}+\dot{\boldsymbol{D}} \approx J_{c}=\sigma E \text { (1. Ampere's law for } \\
\text { conducting current) } \\
\nabla \times E=-\dot{B} \text { (2. Faraday's law) } \\
\int \boldsymbol{H} \cdot \boldsymbol{d l}=\int \nabla \times \boldsymbol{H} \cdot \boldsymbol{d A}=\int J_{c} \cdot d A=n I \\
2 \boldsymbol{H}_{Z}=n I \text { (armature side) } \\
\boldsymbol{B}_{Z}=\frac{\mu_{a} n I}{2} \text { (of the armature) }
\end{gathered}
$$

Use vector identity,

$$
\nabla \times(\nabla \times \boldsymbol{H})=\nabla(\underbrace{\nabla \cdot \boldsymbol{H}}_{0})-\nabla^{2} \boldsymbol{H}
$$

$$
\nabla \times\left(\nabla \times H_{Z}\right)=-\nabla^{2} \boldsymbol{H}_{Z}
$$

$$
\text { From 1, } \nabla \times(\sigma E)=-\nabla^{2} H_{z}
$$

$$
\text { Where (2), } \sigma \nabla \times E=-\sigma \dot{B}_{z}
$$

$$
\nabla^{2} H_{z}=\sigma \dot{B}_{z}
$$

Therefore,

$$
\nabla^{2} H_{Z}=\sigma \mu_{a} \frac{d H_{Z}}{d t}
$$

$$
(j k)^{2}=\sigma \boldsymbol{\mu}_{\boldsymbol{a}} j \omega
$$

$$
k= \pm \sqrt{\sigma \mu_{\boldsymbol{a}} \omega} e^{-\angle 45^{\circ}} \text { (diffusion) }
$$

$$
2 H_{Z}(r, t)=2 H_{0} e^{j \omega t-k r}=n I
$$

$e m f=\int E_{\phi} \cdot d \mathbb{l} l=\int \nabla \times E_{\phi} \cdot d \mathbb{A} A=-\int \dot{B}_{Z} \cdot d \mathbb{A} A=-\dot{\Psi}_{a}$
Where, ©LA is the cross sectional area of the armature core Emf is Thevenin voltage.

- - Armature becomes magnet with its magnetic flux density B_{0} (Tesla=Wb/m ${ }^{2}$), the armature's magnetic dipoles are lined up from N to S .
- The armature is balanced: $\Psi_{\text {gap1 }}=\Psi_{\text {gap2 }}$ and on the armature the net flux, $\Psi_{\text {Oup }}+\Psi_{\text {odown }}=0$

- $\Psi_{1}=\Psi_{\text {Oup }}+\Psi_{a}, \Psi_{2}=\Psi_{0 \text { down }}-\Psi_{a}$, where $\Psi_{1}>\Psi_{2}$
- Therefore $\Psi_{\text {gap1 }}>\Psi_{\text {gap2 }}$:
- $\mathrm{F}_{\text {gap }}=$ flux ${ }^{*}$ reluctance of air, $\mathrm{F}_{\text {gap1 }}>\mathrm{F}_{\text {gap2 }}$, so the armature goes up

