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Abstract

The general expression for the magnetostatic energy of two magnetized nanoparticles with arbitrary shape and

magnetization state is derived within the framework of a Fourier space approach. It is shown how the standard dipole–

dipole interaction, valid for large interparticle distances, should be modified in order to take into account the shape

anisotropy of each particle. Explicit computations are given for a simple system of two interacting cylinders. For

magnetic nanowires, i.e., cylinders with a very large aspect ratio, a simple derivation shows that the interaction is of

monopolar, rather than dipolar, nature.
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1. Introduction

Single-domain magnetic nanoparticles are pos-
sible candidates for information bits in high-
density magnetic recording media [1,2]. To under-
stand and control the miniaturization processes
which will lead to ultra-high-density storage
systems, it is necessary to properly analyze the
interactions between the nanoparticles within the
array, in particular, the effect of shape anisotropy
in the case of non-spherical particles. To the best
of our knowledge, the long-range magnetostatic
interaction is often treated as if each nanoparticle
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were a pure dipole, which, as will be demonstrated,
may result in large discrepancies for densely
packed arrays. In some cases, a superficial treat-
ment of magnetostatic coupling based on an
unjustified extension of the demagnetizing factor
concept leads to a large overestimate of the
interaction effects [3]. It will be shown in this
article how to properly take into account the effect
of shape anisotropy on the magnetostatic coupling
between magnetic particles of arbitrary shape and
magnetization state.

It is often said in magnetism textbooks that
analytical calculations regarding demagnetizing
field and energy can be performed only if the
magnet shapes are either ellipsoidal or prismatic
[4]. It was recently shown [5–7] that this limitation
is only apparent, and analytical calculations can be
d.
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performed in Fourier space for a huge class of
particles, such as the faceted magnets and magnets
with high-symmetry. For solids with some degree
of symmetry, in particular for cylinders and shapes
with rotational symmetry, the results can be
expressed analytically in real space. In all other
cases, a numerical inverse Fourier transform is
required to compute the quantities of interest.

In this paper, we derive a new expression for the
magnetostatic (dipolar) interaction energy between
nanoparticles of arbitrary shape and magnetiza-
tion state which takes into account the particle
shape anisotropy without resorting to any approx-
imation. Then, we specialize the formalism to
particles with rotational symmetry, showing ex-
plicit results for interacting cylinders of variable
aspect ratios (disks and rods) and special magne-
tization states (in-plane and axial).

The analysis presented in this article is purely
magnetostatic. Other energy contributions, such as
exchange, magneto-crystalline anisotropy, Zee-
man, magnetoelastic, etc. are not considered.
However, magnetostatic coupling is the most
challenging interaction to be computed properly
when shape anisotropy is involved, while other
contributions can be treated in the standard real-
space formalism which is, basically, the micro-
magnetic simulation framework.

The energy computation scheme presented in
this article may contribute significantly to a proper
understanding of magnetostatic coupling between
nanoparticles or in general magnetic structures in
the nanoscale, something which still lacks a
complete and satisfactory overall picture, despite
extensive numerical evaluations by micromagnetic
simulations (often very time-consuming and pro-
blematic in defining shapes), mean field approx-
imations [8] or phenomenological treatments [9].

First, we recall the foundation of the Fourier
space framework for magnetostatic calculations,
extending the results recently obtained [5–7] to
interacting magnetized nanoparticles. Then, to
verify the correctness of the procedure, we derive
the standard dipole–dipole interaction, which is
valid if the particles are spherical (the demagnetiz-
ing field outside a sphere is purely dipolar) or, as
an approximation, when two shapes are interact-
ing at large distances. In the following section, we
present a general expression for the computation
of the magnetostatic interaction energy when
some degree of symmetry is present in the
magnetic structures, in particular cylindrical sym-
metry. Finally, we specialize the analysis to
interacting cylinders, in the form of disks and
rods (nanowires).
2. Theoretical model

Let us first recall and extend the main results
obtained in Ref. [5] to the treatment of shape
anisotropy in a magnetic particle of arbitrary
shape and magnetization state. Consider a magne-
tized particle with shape function DðrÞ (equal to 1
inside and 0 outside the particle) and magnetiza-
tion M0 #mðrÞ: The magnetization vector field MðrÞ
is then given by

MðrÞ ¼ M0DðrÞ #mðrÞ; ð1Þ

where the unit direction vector #mðrÞ has a different
orientation in different points of a Cartesian
reference system. In Fourier space, this relation
can be written as MðkÞ ¼ M0DðkÞ; with

DðkÞ �
Z

DðrÞ #mðrÞe�ik�r dr: ð2Þ

As shown in Ref. [10], the magnetic vector
potential in Fourier space is given by

AðkÞ ¼ �i
m0

jkj2
½MðkÞ 
 k� ¼ �i

B0

jkj2
DðkÞ 
 k ð3Þ

with B0 ¼ m0M0: The magnetic induction BðrÞ is
given by the curl of the vector potential B ¼
r
 A; which in Fourier space is equivalent to
BðkÞ ¼ ik
 AðkÞ: Inserting Eq. (3) results in

BðkÞ ¼
B0

jkj2
k
 ½DðkÞ 
 k�

¼B0 DðkÞ �
k½DðkÞ � k�

jkj2

� �
: ð4Þ

After an inverse Fourier transform, we obtain for
the magnetic field around a non-uniformly mag-
netized particle with arbitrary shape

HðrÞ ¼ �
1

8p3

Z
d3k

k½MðkÞ � k�

jkj2
eik�r ð5Þ
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and also for the magnetic induction

BðrÞ ¼ m0½MðrÞ þHðrÞ�: ð6Þ

The magnetostatic energy is generally defined as

Em ¼ �
m0

2

Z
V

HðrÞ �MðrÞ d3r; ð7Þ

where the integral is taken over the volume of the
particle. Inserting Eq. (5) and interchanging the
order of the integrations, we arrive at

Em ¼
m0

16p3

Z
d3k

jMðkÞ � kj2

jkj2
: ð8Þ

This is the general expression for the magneto-
static energy of a non-uniformly magnetized
particle with an arbitrary shape. In the case of
uniform magnetization, we have MðkÞ ¼
M0DðkÞ #m; so that the energy becomes

Em ¼
m0M2

0

16p3

Z
d3k

ð #m � kÞ2

jkj2
jDðkÞj2; ð9Þ

an expression first reported by Beleggia and De
Graef [5].

It is now straightforward to use Eq. (8) to derive
the energy of interaction between two particles.
Consider two particles with shape functions DiðrÞ
and magnetization states miðrÞ ði ¼ 1; 2Þ; located at
positions ri: The origin of each particle is typically
taken to be at the center of inversion, if one is
present, otherwise any other point may be used.
The total magnetization field is then given by

MðrÞ ¼M1ðr� r1Þ þM2ðr� r2Þ

¼
X2

i¼1

MiDiðr� riÞ #mðr� riÞ: ð10Þ

In Fourier space, the magnetization is represented
by

MðkÞ ¼
X2

i¼1

MiDiðkÞeik�ri ; ð11Þ

since a translation in direct space is equivalent to a
phase shift in Fourier space. Substituting MðkÞ
into Eq. (8), we obtain

EmðrÞ ¼
m0

16p3

Z
d3k

jkj2
X2

i¼1

jMiðkÞ � kj
2

(

þ½M1ðkÞ � k�½M�
2 ðkÞ � k�e

ik�q

þ ½M�
1 ðkÞ � k�½M2ðkÞ � k�e�ik�q

)
ð12Þ

with q ¼ r1 � r2; the vector connecting the two
particles. This expression is equivalent to the
following real space expression:

Em ¼ �
m0

2

X2

i¼1

Z
Vi

HiðrÞ �MiðrÞ d3r

"

þ
Z

V1

H2ðrÞ �M1ðrÞ d3r

þ
Z

V2

H1ðrÞ �M2ðrÞ d3r

#
: ð13Þ

Defining the self-energy as

Eself
i �

m0

16p3

Z
d3k

jMiðkÞ � kj
2

jkj2
ð14Þ

and combining the last two terms in Eq. (12), we
obtain for the total magnetostatic energy

EmðqÞ ¼
X2

i¼1

Eself
i þ m0R


 F�1 ½M1ðkÞ � k�½M�
2 ðkÞ � k�

jkj2

� �	 

; ð15Þ

where R denotes the real part and F is the Fourier
transform operator. The complex conjugate sym-
bol can be placed on either one of the two factors
MiðkÞ: The second term in this expression is the
magnetostatic interaction energy between two
particles with different shapes and magnetization
states as a function of their relative position q:

For particles with a uniform magnetization
state, Eqs. (14) and (15) are replaced by

Eself
i �

m0M2
i

16p3

Z
d3k

ð #mi � kÞ
2

jkj2
jDiðkÞj2 ð16Þ
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and

EmðqÞ ¼
X2

i¼1

Eself
i þ m0M1M2R


 F�1 ð #m1 � kÞð #m2 � kÞ

jkj2
D1ðkÞD�

2 ðkÞ
� �	 


:

ð17Þ

For particles with identical shape functions we
also have D1ðkÞD�

2 ðkÞ ¼ jDðkÞj2:
In the following sections, we will present several

applications of Eqs. (16) and (17). First, in Section
3, we derive the standard expression for the
dipole–dipole interaction energy, starting from
the shape amplitudes for two uniformly magne-
tized spheres. Then, in Section 4, we analyze the
interaction energy between particles of identical
shape, assuming that the particles possess some
symmetry (in particular cylindrical). In Section 5,
we specialize the results of Section 4 to the
interaction between two uniformly magnetized
cylinders. We present analytical expressions for
the interaction energy for four different configura-
tions of two cylinders: two adjacent cylinders with
axial and in-plane magnetization states, and a
stack of vertically displaced cylinders, again with
axial and in-plane magnetization states. The
energy expressions reduce to the standard di-
pole–dipole interactions for large particle separa-
tions, but describe significant corrections to the
dipole approximation when the particles are close
together. Finally, in Section 6, we analyze the case
of semi-infinite cylinders, and we show that the
dipolar interaction is no longer a valid description;
instead, a monopolar, Coulomb-like interaction
must be used.
3. Dipole–dipole interaction

To verify the correctness of the equations
derived in the previous section, we will derive a
well-known result, such as the expression for the
dipole–dipole interaction. In order to obtain this
result, we will consider two uniformly magnetized
spheres of equal radius R; described by a shape
amplitude [10]

DðkÞ ¼
4pR2

k
j1ðkRÞ; ð18Þ

where k ¼ jkj; and j1ðxÞ is the first-order spherical
Bessel function. The spheres are separated from
each other by the vector q (where we assume that
jqj ¼ r > 2R; i.e., the spheres are not in contact or
overlapping). Writing the double scalar product in
Eq. (17) in terms of a sum over its components

ð #m1 � kÞð #m2 � kÞ ¼
X3

i;j¼1

mi
1m

j
2kikj ð19Þ

and inserting the shape amplitude, we can write
the interaction energy as

Eintðq; #m1; #m2Þ ¼
2m0M1M2R4

p

X3

i;j¼1

mi
1m

j
2

Z
dkj2

1ðkRÞ



Z

dO
kikj

k2
eik�q: ð20Þ

Only the real part of the integral will be considered
at the end, but, from a computational standpoint,
the full complex exponential is more convenient.

The kikj=k2 term is purely angular when written
in spherical coordinates, and was analyzed in Ref.
[5] in connection with the derivation of the
demagnetizing tensor of a sphere. The result of
the angular integration over dO is a combination
of j0ðkrÞ and j2ðkrÞ spherical Bessel functions.
After the final integration over k; we obtain the
standard dipolar tensor to be summed over the
magnetization components

Eintðq; #m1; #m2Þ

¼
16p2m0M1M2R4

9

X3

i;j¼1

mi
1m

j
2DijðqÞ ð21Þ

with

DðqÞ ¼
1

4pr5

r2 � 3x2 �3xy �3xz

�3xy r2 � 3y2 �3yz

�3xz �3yz r2 � 3z2

0
B@

1
CA;

ð22Þ

the dipolar tensor. Now, defining the magnetic
moment of each sphere as the product of
magnetization and volume, i.e. li ¼ 4=3pR3Mi #mi;
and performing the sum of the components as in
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Eq. (19), we finally arrive at the standard dipole–
dipole energy

Eintðq; l1;l2Þ ¼
m0

4p
l1 � l2

r3
� 3

ðl1 � qÞðl2 � qÞ
r5

	 

; ð23Þ

which is, of course, also valid in the limit for R-0;
provided that each magnetic moment mi ¼ MiV ;
with V the particle volume, remains finite.

In Ref. [5], we have introduced a Fourier space
expression for the demagnetization tensor field
NijðkÞ:

NijðkÞ ¼ DðkÞ
kikj

k2
: ð24Þ

If we convert this to real space we find an
expression for the DTF, which was used in Ref.
[6,7] to compute the DTF for the finite cylinder,
and for a series of other important shapes. An
interesting result can be obtained if we compute
the inverse Fourier transform of Eq. (24), using
the convolution theorem

NijðrÞ ¼ DðrÞ#F�1 kikj

k2

	 

; ð25Þ

where # indicates the convolution product. The
second function in this convolution product can be
computed explicitly using cylindrical coordinates

F�1 kikj

k2

	 

¼

1

8p3

Z 2p

0

dy
Z þN

�N

dkze
ikzz



Z

N

0

dkk
kikj

k2 þ k2
z

eikr cosðy�y0Þ: ð26Þ

A straightforward integration followed by a
conversion to Cartesian coordinates reveals that
this integral is equal to the tensor field Dij

introduced earlier:

NijðrÞ ¼ DðrÞ#DijðrÞ: ð27Þ

If we consider a point dipole, with shape function
dðrÞ; then we find

NijðrÞ ¼ dðrÞ#DijðrÞ ¼ DijðrÞ; ð28Þ

where we have used the fact that the delta-function
is the identity function for the convolution
product. In other words, the DTF for a single
dipole is the tensor field DijðrÞ: The DTF for an
object of arbitrary shape is the convolution of the
dipole DTF with the shape function of the object.
In other words, the dipole tensor field is copied at
every point of the object to obtain the full DTF.
4. Interactions between magnetic particles of

identical shape

Consider two point dipoles with magnetic
moments li; located at a relative position q: The
interaction energy between these dipoles is given
by

EintðqÞ ¼
m0

4p
l1 � l2

r3
� 3

ðl1 � qÞðl2 � qÞ
r5

	 

: ð29Þ

Working in cylindrical coordinates, we can write
the moments as li ¼ ðm>i cos yi;m>i sin yi;mz

i Þ with
m2

i ¼ ðm>i Þ2 þ ðmz
i Þ

2; and the position vector as q ¼
ðr cos yr; r sin yr; zÞ; with r2 ¼ r2 þ z2: The interac-
tion energy is then given in component notation by

EintðqÞ ¼
m0

4p
m>1 m>2
r3

cosðy1 � y2Þ þ
ðr2 � 2z2Þ

r5
mz

1m
z
2

	

�
3

r5
r2m>1 m>2 cosðy1 � yrÞ cosðy2 � yrÞ

�
þ rz½m>1 mz

2 cosðy1 � yrÞ

þ m>2 mz
1 cosðy2 � yrÞ�

�

: ð30Þ

We will next determine how this expression
changes when the dipoles are replaced by two
identical objects with uniform magnetization and
cylindrical symmetry. Consider the shape ampli-
tude for an object with cylindrical symmetry, as
defined in Ref. [6]. The shape amplitude can be
written as

DðkÞ ¼
2p
k

Z h2

h1

dz0f ðk; z0Þe�iz0kz ; ð31Þ

where k ¼ ðk cos y; k sin y; kzÞ and k2 þ k2
z ¼ K2:

The function f ðk; z0Þ is defined as

f ðk; z0Þ � r2ðz0ÞJ1ðkr2ðz0ÞÞ � r1ðz0ÞJ1ðkr1ðz0ÞÞ; ð32Þ

where J1ðxÞ is the Bessel function of the first kind,
and the functions riðz0Þ describe the inner and
outer surfaces of the object, as shown in Fig. 1.
The interaction energy between two such objects
located at relative position q and with identical
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orientation, is given by

EintðqÞ ¼m0M1M2R


 F�1 ð #m1 � kÞð #m2 � kÞ
K2

jDðkÞj2
� �	 


; ð33Þ

which becomes

EintðqÞ ¼
m0M1M2

2p
R



Z

d3k

K2

ð #m1 � kÞð #m2 � kÞ
k2

"



Z h2

h1

dz0f ðk; z0Þe�iz0kz

����
����
2

eik�q

#
: ð34Þ

Writing the modulus squared factor as F ðk; kzÞ; we
arrive at

EintðqÞ ¼
m0M1M2

2p
R

Z
N

0

dk

k

Z þN

�N

dkz

F ðk; kzÞeizkz

k2 þ k2
z

	



Z 2p

0

dyð #m1 � kÞð #m2 � kÞeikr cosðy�yrÞ


: ð35Þ

The angular integral can be solved by noting that

ð #m1 � kÞð #m2 � kÞ

¼ m>
1 m>

2 k2 cosðy1 � yÞ cosðy2 � yÞ þ mz
1mz

2k2
z

þ kkz½m>
1 mz

2 cosðy1 � yÞ þ m>
2 mz

1 cosðy2 � yÞ�:

ð36Þ
The resulting integral is given by

2pm>
1 m>

2

k

r
J1ðkrÞ cosðy1 � y2Þ

	

� k2J2ðkrÞ cosðy1 � yrÞ cosðy2 � yrÞ



� 2pikkzJ1ðkrÞ m>
1 mz

2 cosðy1 � yrÞ
�

þ m>
2 mz

1 cosðy2 � yrÞ
�
þ 2pmz

1mz
2k2

z J0ðkrÞ; ð37Þ

where the functions JiðxÞ are Bessel functions of
the first kind. Note that the angular terms in this
expression are identical to the terms in Eq. (30).
Introducing the magnetic moments as li ¼
VMi #mi; substituting Eq. (37) into Eq. (35), and
rearranging terms we find

E intðqÞ ¼
m0

4p
m>1 m>2
r3

S1ðr; z; sÞ cosðy1 � y2Þ
	

þ
ðr2 � 2z2Þ

r5
mz

1m
z
2S2ðr; z; sÞ

�
3

r5
fr2m>1 m>2 S3ðr; z; sÞ


cosðy1 � yrÞ cosðy2 � yrÞ

þ rzS4ðr; z; sÞ½m>1 mz
2 cosðy1 � yrÞ

þ m>2 mz
1 cosðy2 � yrÞ�g



; ð38Þ

where the functions Siðr; z; sÞ are defined by

S1ðr; z; sÞ ¼
8pr3

rV 2

Z
N

0

dkJ1ðkrÞ



Z

N

0

dkz

F ðk; kzÞ cosðzkzÞ
k2 þ k2

z

; ð39Þ

S2ðr; z; sÞ ¼
8pr5

ðr2 � 2z2ÞV2

Z
N

0

dk

k
J0ðkrÞ



Z

N

0

dkz

k2
z F ðk; kzÞ cosðzkzÞ

k2 þ k2
z

; ð40Þ

S3ðr; z; sÞ ¼
8pr5

3r2V 2

Z
N

0

dkkJ2ðkrÞ



Z

N

0

dkz

F ðk; kzÞ cosðzkzÞ
k2 þ k2

z

; ð41Þ
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S4ðr; z; sÞ ¼ �
8pr5

3rzV 2

Z
N

0

dkJ1ðkrÞ



Z

N

0

dkz

kzF ðk; kzÞ sinðzkzÞ
k2 þ k2

z

ð42Þ

and the vector s represents all the parameters that
define the shape of the object. The angular
dependence of the interaction energy (38) is
identical to that of the pure dipole case in
Eq. (30), but each of the four terms is weighted
by a position- and shape-dependent correction
factor Siðr; z; sÞ:

Consider next two special configurations of the
two particles: (1) both particles have their center in
the plane z ¼ 0; and (2) both particles are aligned
along the z-axis, so that r ¼ 0: The interaction
energy for those two cases is given by the following
expressions:

Eint
h ðr; 0Þ ¼

m0

4pr3
½m>1 m>2 S1ðr; 0; sÞ cosðy1 � y2Þ

þ mz
1m

z
2S2ðr; 0; sÞ

� 3m>1 m>2 S3ðr; 0; sÞ


 cosðy1 � yrÞ cosðy2 � yrÞ�; ð43Þ

Eint
v ð0; zÞ ¼

m0

4pz3
½m>1 m>2 S1ð0; z; sÞ cosðy1 � y2Þ

� 2mz
1m

z
2S2ð0; z; sÞ�: ð44Þ

Note that the function S4ðr; z; sÞ only enters the
equation when both r and z are different from
zero. For particles of finite size, all four integrals Si

must approach 1; when the particles are suffi-
ciently far removed from each other, i.e., the
interactions must approach the pure dipolar
interactions. When the distance between the
particles is small, comparable to their dimensions,
significant deviations from the pure dipolar
behavior may be expected. In the following
section, we will analyze the special cases (43) and
(44) for the interaction between two identical
uniformly magnetized disks.
5. Interactions between identical magnetic disks

In this section, we will apply Eqs. (43) and (44)
to the interaction between two uniformly
magnetized disks with arbitrary aspect ratio. The
energy of interaction between disks is usually
considered as purely dipolar, if the disks are
sufficiently far away from each other. A numerical
analysis was performed in Ref. [11] in order to
verify this approximation. However, this analysis
was only numerical, as the expression of the
interaction energy between disks is not yet known.
The goal of this section is to show that we can
derive an analytical expression for the magnetic
energy of two disks, which consists of a modifica-
tion of the standard dipole–dipole interaction. It
will be shown that, in the limit where the disks are
widely separated, the approximation of pure
dipole–dipole interaction is justified. However, by
means of our approach, we can provide further
insight on the matter. In particular, it will be
shown that for two disks sufficiently close to each
other, there are significant deviations from the
dipolar behavior. This may have a dramatic
impact in the study of the energetics of arrays of
nanoparticles.

We begin by computing the function F ðk; kzÞ for
a disk with radius R; height 2d; and volume V :
Since, for the cylinder, we have f ðk; z0Þ ¼ RJ1ðkRÞ;
we find

F ðk; kzÞ ¼ 4R2J2
1 ðkRÞ

sin2ðdkzÞ
k2

z

: ð45Þ

The cylinder aspect ratio is defined as t � d=R:
The self-energy can be computed using Eq. (16)
and was reported in Ref. [6]. It can be expressed as
a function of the aspect ratio t and the component
mz of the unit magnetization vector #m:

Eself
m ðt;mzÞ ¼

m0M2
0 R3

6
4ð3m2

z � 1Þ þ 6ptm2
z

	

� 3p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ t2

p
ð3m2

z � 1Þ


 2F1 �
1

2
;
3

2
; 2;

1

1 þ t2

� �

ð46Þ

with 2F1ða; b; c; zÞ a hypergeometric series. For
totc � 0:90647; the in-plane magnetization state
with mz ¼ 0 has the lowest energy, while for t > tc;
the axial magnetization state is preferred.
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In the remainder of this section we will consider
two special configurations of the two disks, as
shown in Fig. 2. In configuration (a), both disks
are located in the same plane z ¼ 0 at a center-to-
center distance r: In configuration (b), the disks are
aligned along the z-axis ðr ¼ 0Þ at a center-to-
center distance 2h: It will be useful to define two
dimensionless quantities r and z

r �
2R

r
; z �

h

d
: ð47Þ

When the two disks touch in configuration (a), we
have r ¼ 1; at infinite separation r ¼ 0: For
configuration (b), the disks touch when z ¼ 1:
For each configuration, we will analyze the
interaction energy for both in-plane (1 and 3 in
Fig. 2) and axial (2 and 4) magnetization states.
The argument s of the functions Siðr; z; sÞ will
be equal to s ¼ ðR; tÞ; the dimensional parameters
of the cylinder. In dimensionless units, the
relevant integrals will be represented by Siðr; tÞ
and Siðz; tÞ:

Next, we will derive analytical expressions for
the interaction energy for all four cases of Fig. 2.
Following the derivations, we will analyze the
results and compare them to the standard dipole–
dipole interaction.
5.1. Case 1

The interaction energy (43) in this case can be
written as

E int
h ðr; 0Þ ¼

m0

4p
l1 � l2

r3
S1ðr; 0;R; tÞ

	

� 3
ðl1 � rÞðl2 � rÞ

r5
S3ðr; 0;R; tÞ



: ð48Þ

Since both disks are located in the plane z ¼ 0; the
kz integral for both S1 and S3 can be shown to be
equal toZ

N

0

dkz

k2
z

sin2ðdkzÞ
k2 þ k2

z

¼
p
k3

½kt � 1 þ e�kt�: ð49Þ

Expression (48) has the familiar dipole–dipole
form, with the exception of the two functions
Siðr; 0;R; tÞ which are defined by the following
relations (dropping the > on k):

S1ðr; 0;R; tÞ

�
8r2

R2t2

Z þN

0

dk

k3
J2

1 ðkRÞJ1ðkrÞ½kt � 1 þ e�kt�;

ð50Þ

S3ðr; 0;R; tÞ

�
8r3

3R2t2

Z þN

0

dk

k2
J2

1 ðkRÞJ2ðkrÞ½kt � 1 þ e�kt�:

ð51Þ

Since there is no known analytical solution for
these integrals, they must be solved numerically. It
is possible, however, to simplify the integrals for a
thin disk, i.e., when t5R: In that case, we can
expand the exponential e�kt to second order, and
only the term in k2t2 remains. If we represent the
approximate integrals as Gi; then we find

4r2

R2

Z þN

0

dk

k
J2

1 ðkRÞJ1ðkrÞ ¼ 3F2
1

2
;
3

2
;
3

2
; 2; 3; r2

� �
�G1ðrÞ; ð52Þ

4r3

3R2

Z þN

0

dkJ2
1 ðkRÞJ2ðkrÞ ¼ 3F2

1

2
;
3

2
;
5

2
; 2; 3; r2

� �
�G2ðrÞ; ð53Þ
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where r was defined in Eq. (47). The functions

3F2ðyÞ are generalized hypergeometric series.
There is no longer a thickness dependence in the
approximate integrals; the thickness t only appears
in the definition of the magnetic moments li: The
functions G1 and G2; shown in Fig. 3, can be
interpreted as an indication of the modified
balance between the two driving forces in the
dipole–dipole interaction. In fact, G1 and G2 can
be seen as a coefficient assigned to the two terms in
Eq. (48): the first represents a tendency to keep the
moments antiparallel, while the tendency in the
second term is to keep the moments aligned along
the direction connecting them. In the pure dipole–
dipole interaction, for instance when we have
spherical particles, the relative coefficients for the
two terms are ð1;�3Þ; while in the shape-aniso-
tropy corrected expression, valid for cylinders of
small aspect ratio, the coefficient become
ðG1;�3G2Þ:

The self-energy of the uniformly magnetized
cylinder was derived analytically by Tandon et al.
[6], and is given (for in-plane magnetization) by

Eself
i ¼

m0M2
i R2

12
�8R þ 3pt2F1 �

1

2
;
1

2
; 2;�

1

t2

� �	 

ð54Þ

with 2F1½y� a hypergeometric series. If we express
the self-energy in terms of the magnetic moments,
and expand the energy with respect to the disk
aspect ratio t; we find the following expression:

Eself
i ¼

m0

4p
li � li

pR3
ln

4

t
�

1

2

� �
: ð55Þ

The total magnetostatic energy for a pair of
identical thin interacting disks with in-plane
magnetic moments l1 and l2 is then given by

Emðr; l1; l2Þ

¼
m0

4p
jl1j

2 þ jl2j
2

pR3
ln

4

t
�

1

2

� �	

þ
l1 � l2

r3
G1ðrÞ � 3

ðl1 � rÞðl2 � rÞ
r5

G2ðrÞ


: ð56Þ

The total energy, including the self-energy, of a
pair of parallel cylinders, not necessarily thin, with
parallel in-plane magnetization can be written in
dimensionless form as

%Etot
h ðr; tÞ

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ t2

p
t2 2F1 �

1

2
;
3

2
; 2;

1

1 þ t2

� �

�
4

3pt2
þ

r3

8
½S1ðr; tÞ � 3S3ðr; tÞ�; ð57Þ

where the overbar on the energy indicates a
normalization by the factor m0jm1jjm2j=4pR3:

5.2. Case 2

For the axial magnetization state, the interac-
tion energy (43) becomes

Eint
h ðr; 0Þ ¼

m0

4p
jl1j jl1ja1a2

r3
S2ðr; 0;R; tÞ; ð58Þ

where ai ¼ 71 for the two magnetization states.
The kz-integral in S2ðr; 0;R; tÞ for z ¼ 0 can be
shown to be equal to

Z
N

0

dkz

sin2ðdkzÞ
k2 þ k2

z

¼
p
k
ð1 � e�ktÞ;

which leads to

S2ðr; tÞ �
16

r3t2

Z
N

0

dq
J2

1 ðqÞ
q2

J0
2q

r

� �
½1 � e�2qt�:

ð59Þ
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Expanding J2
1 ðqÞ=q2 in a Taylor series around q ¼

0 and integrating term by term we obtain

S2ðr; tÞ ¼
2

r2t2 3F2
1

2
;
1

2
;
2

3
; 2; 3; r2

� �

�
4

r3t3

XN
n¼0

ð�1Þnð2nÞ!ð2n þ 1Þ!

24nðn!Þ2ðn þ 1Þ!ðn þ 2Þ!t2n


 2F1 n þ
1

2
; n þ 1; 1;�

1

r2t2

� �
; ð60Þ

where 2F1½y� is the standard hypergeometric
series. An approximate value can be obtained if
we assume that the aspect ratio t is large; retaining
only the first two terms of the series expansion
above we have

S2ðr; tÞE
1

t2

2r2t2 � 1

8ð1 þ r2t2Þ5=2
�

2

r2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ r2t2

p
"

þ
2

r2 3F2
1

2
;
1

2
;
2

3
; 2; 3; r2

� �#
: ð61Þ

This approximation results in an error of less than
3% for t > 2: In the limit r-0; i.e., a large
separation between the rods, the function S2ðr; tÞ
approaches 1 for all aspect ratios t; so that we
recover the standard dipole–dipole interaction
energy in equation (58). The function S2ðr; tÞ is
shown in Fig. 4 for a range of aspect ratios t: The
solid horizontal line corresponds to the standard
dipole–dipole approximation. The dotted lines
were computed using the approximate equation
(61); for large values of t; the approximation is
rather good. Fig. 5 shows the function S2ð1; tÞ for
a continuous range of aspect ratios.

The normalized total energy, including the self-
energy, of a pair of parallel cylinders with anti-
parallel axial magnetization can be written as

%Etot
v ðr; tÞ ¼

8

3pt2
þ

2

t
�

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ t2

p
t2


 2F1 �
1

2
;
3

2
; 2;

1

1 þ t2

� �

�
r3

8
S2ðr; tÞ: ð62Þ

5.3. Case 3

For two disks positioned on top of one another,
with in-plane magnetization vectors, we can
proceed along similar lines as in the preceding
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cases. The interaction energy (44) for in-plane
magnetization can be written as

Eint
v ð0; zÞ ¼

m0

4p
l1 � l2

z3
S1ð0; z;R; tÞ ð63Þ

with, in dimensionless form

S1ðz; tÞ � 32z3t
Z

N

0

dq
J2

1 ðqÞ
q2

e�q2ztðcoshð2qtÞ � 1Þ;

¼ 8z3t
Xþ1

n¼�1

cn½4 þ ð2zþ nÞ2t2�1=2


 2F1 �
1

2
;
1

2
; 2;

4

4 þ ð2zþ nÞ2t2

� �
ð64Þ

and c�1;0;1 ¼ ½1;�2; 1�: It is easily verified that
S1ðN; tÞ ¼ 1; so that the dipolar approximation is
again a good one for a large separation distance.

The normalized total energy, including the self-
energy, of a pair of parallel cylinders aligned along
the z-direction with in-plane magnetization can be
written as

%Etot
h ðz; tÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ t2

p
t2 2F1 �

1

2
;
3

2
; 2;

1

1 þ t2

� �

�
4

3pt2
þ

1

8t3z3
S1ðz; tÞ: ð65Þ

5.4. Case 4

Finally, for a stack of two disks with axial
magnetization, we find that the interaction energy
(44) is described by

Eint
v ð0; zÞ ¼ �

m0

4p
l1 � l2

z3
2S2ð0; z;R; tÞ: ð66Þ

As shown in the appendix, the functions
S1ðr; z;R; tÞ and S2ðr; z;R; tÞ are identical in the
limit r-0; so that the normalized total energy for
this case is given by

%Etot
v ðz; tÞ

¼
8

3pt2
þ

2

t
�

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ t2

p
t2


 2F1 �
1

2
;
3

2
; 2;

1

1 þ t2

� �
�

1

4t3z3
S1ðz; tÞ: ð67Þ
5.5. Discussion

The result for case 1 is strikingly similar to the
dipole–dipole energy found in Eq. (23), the only
difference being the two hypergeometric functions,
which do not depend on the magnetization angles,
but only on the ratio of the diameter to the
distance between the disks. Fig. 3 indicates that, in
the limit for rb2R (i.e., r-0), both hypergeo-
metric functions tend to 1; thus confirming that
sufficiently far away the disks can be treated as
pure dipoles. However, when the disks are close
enough to each other, there are strong deviations
from the dipole–dipole interaction. The maximum
difference is reached when the disks are in contact,
or r ¼ 1: In this case, the two hypergeometric
functions reach their maximum value, which is
1:388 for G1ð1Þ and 2:477 for G2ð1Þ: It is evident
that the deviation from the dipolar interaction is
rather dramatic, reaching in some particular
configurations even a factor of three, such as
for two disks with magnetization ð1; 0Þ and a
separation vector ð2R; 0Þ (Cartesian), where the
dipolar energy gives �0:25 while the correct
expression, using the approximate integrals GiðrÞ;
results in �0:755:

Fig. 6 shows a comparison between the
magnetostatic interaction energy in the dipole
approximation (a) (i.e., Gi ¼ 1) and the energy
for the interacting disks (b) as a function of the
dipole angles y1 and y2 (these are the angles
between the dipole moments and the line connect-
ing the centers of the disks). Both grayscale plots
use the same absolute scale; it is clear that the
energy minima for the disks are significantly
deeper than for the dipole approximation. This is
also shown in the linear plot in Fig. 6(c), which
represents both energies as a function of y1 for
y2 ¼ 0:

To better evaluate when the dipolar approxima-
tion is appropriate, we can simply check the value
of the two hypergeometric functions for a certain
value of the ratio r: For instance, when the
distance between the disks is equal to 10 times
their radius (r ¼ 1

5
), we have G1ð15Þ ¼ 1:008 and

G2ð15Þ ¼ 1:012: In this condition, we can approx-
imate the energy as dipolar within, roughly, 1%
accuracy.
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We can combine the normalized total energies
for cases 1 and 2 or 3 and 4 to determine how the
critical aspect ratio tc for a single cylinder is
affected by the presence of the second cylinder.
Fig. 7 shows a contour plot of %Etot

v ðr; tÞ �
%Etot

h ðr; tÞ; using Eqs. (57) and (62); the thicker
contour indicates the critical aspect ratio tcðrÞ as a
function of the separation distance between the
two cylinders. When the cylinders touch each
other, the critical aspect ratio tcð1Þ ¼ 1:0921: The
presence of the second cylinder stabilizes the in-
plane magnetization orientation with respect to
the axial orientation.
For cases 3 and 4, Fig. 8 shows a contour plot
of %Etot

v ðz; tÞ � %Etot
h ðz; tÞ; using Eqs. (65) and (67);

the thicker contour once again indicates the
critical aspect ratio tcðzÞ: When the cylinders
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touch, the critical aspect ratio tcð1Þ ¼ tc=2 ¼
0:45323; which indicates that the axial magnetiza-
tion state is stabilized with respect to the in-plane
configuration.
6. Nanowires

Magnetic nanowires, namely elongated cylin-
ders with a very large aspect ratio, are described in
this section. While the most general energy
expression of cylinders with axial magnetization
was derived in a previous section, often real
nanowires resemble more a semi-infinite cylinder
rather than a finite one. From an energy point of
view, we cannot easily treat nanowires by some
limit procedure of the equations already derived,
as we have always assumed that two exit poles
exist. The sources of the magnetic energy are, in
fact, the two poles of the cylinder, or the regions of
space where the fringing field is generated. A semi-
infinite magnetic nanowire can be described as
having a single exit pole, and this difference must
show in the energy balance of a single wire or an
array of wires.

To show how the two cases, finite and semi-
infinite, are different, we consider a cylinder with
infinite thickness. This is equivalent to an infinite
solenoid, where no fringing field is present (the
field is confined within the cylinder surface).
Therefore, if we calculate the self-energy of such
a structure, we should expect zero. Indeed, starting
from the shape amplitude of an infinite cylinder,
DðkÞ ¼ 4p2J1ðk>RÞdðkzÞ; we can easily verify that
the self-energy is zero. On the other hand, taking
the limit for t-N after calculating the self-energy
for a finite thickness we obtain

Eself
m ¼

4

3
m0M2

0 R3; ð68Þ

which is evidently not zero.
Depending on how we approach the calculation

of the energy, taking the appropriate limit before
or after the integration in Fourier space, we end up
with physically different situations. In the case of
the finite vs. infinite cylinder, the difference
consists in assuming the exit poles at a finite
distance, which then goes to infinity (the energy is
kept) or assuming that they are at infinity since the
beginning and do not generate fringing fields or
interact with each other (the energy is lost).

The intermediate case, namely a semi-infinite
cylinder, will now be examined in detail. It will be
shown that the self-energy is exactly halved with
respect to a finite cylinder of very large thickness,
and the interaction energy has a monopolar, rather
than dipolar, character.

The shape amplitude for a semi-infinite cylinder
can be written as

DðkÞ ¼
2pR

k
J1ðkRÞ pdðkzÞ �PV

1

ikz

	 
� �
; ð69Þ

where the bracketed term is the generalized Four-
ier transform of a step function (see Ref. [12]) and
PV is the principal value distribution. Plugging
the shape amplitude in the expression for the self-
energy, and considering the properties of the
Dirac-delta distribution, we simply obtain

Eself
m ¼

2

3
m0M2

0 R3; ð70Þ

which is the same expression we obtained for a
finite cylinder with infinite thickness, just divided
by 2. This clearly shows that the sources of the
magnetic energy are the poles: now we have
neglected one of them (the one positioned at
infinity before the energy is computed), and the
energy is halved.

The same calculation can be performed for the
interaction energy, confirming that for two infinite
cylinders there is no interaction, for two semi-
infinite cylinders we obtain some Eint; and for two
finite cylinder in the t-N limit, we have 2E int:
The interaction energy can be expressed either
from Eq. (58) or by direct computation from
Eq. (69), and the final result turns out to be

Eintðr;RÞ ¼
m0

4p
F1F2

r
3F2

1

2
;
3

2
;
3

2
; 2; 3; r2

� �

¼
m0

4p
F1F2

r
G1ðrÞ; ð71Þ

where we have defined the two ‘‘magnetic charges’’
Fi ¼ aipMiR

2; which are nothing but the magne-
tization flux, with correct sign, across the cylinder
pole (its flat surface). The function G1ðrÞ is shown
in Fig. 3. The interaction energy has a monopolar
character, as the 1=r term is reminiscent of a



ARTICLE IN PRESS

0 10 20 30 40 50
aspect ratio τ 

E
ne

rg
y 

(a
rb

. u
ni

ts
.)

Edip

Emon

E

monopolar regime

dipolar regime

Fig. 9. Comparison between the dipolar and monopolar

interaction energies as a function of the cylinder aspect ratio

t; for a cylinder separation distance of 4R: The thick solid line

labeled E represents the exact interaction energy, while Edip and

Emon represent the dipolar and monopolar approximations,

respectively.

M. Beleggia et al. / Journal of Magnetism and Magnetic Materials 278 (2004) 270–284 283
Coulomb interaction, with the usual hypergeometric
correction which takes into account the shape
anisotropy. In the limit for R-0; i.e., considering
the cylinder as a line of dipoles, we would have
obtained a pure Coulomb interaction, as the
hypergeometric function goes to 1 in this limit.

It is worthwile to examine the transition
between dipolar and monopolar regime in two
interacting cylinders. For this purpose, we may
calculate the interaction energy in three different
ways: (i) as if the two cylinders were dipoles; (ii) by
means of Eq. (71); (iii) by the correct full expres-
sion equation (58). We choose to evaluate the
energy as a function of aspect ratio, and at a fixed
distance between the two cylinders r ¼ 4R: The
result is shown in Fig. 9, where the straight dotted
line represents Emon; the value of the monopolar
approximation (it is obviously a constant, as the
monopolar expression is derived in the t-N limit
and therefore does not depend on t), the dashed
line represents the pure dipole–dipole energy Edip

without shape corrections and the solid line is the
correct full expression of the interaction energy E

which takes into account shape anisotropy. It is
evident that when the aspect ratio is small (disks)
the dipolar approximation agrees reasonably well
with the correct energy, but it soon diverges to
arbitrarily large errors when the aspect ratio
increases. The residual difference between E and
Edip; barely visible near the plot origin, is due to the
fact that, for a distance r ¼ 4R; the two cylinders
cannot be considered as pure dipoles, even for
negligible thickness. On the other hand, the energy
E appears to converge to the monopolar regime
Emon for an aspect ratio around t ¼ 50 (this value
is of course dependent on the chosen distance
between the rods: if the energy was evaluated at
r ¼ 2R; the transition between the two regimes
would have occurred for a smaller aspect ratio).

These results confirm once more the need for
particular care when dealing with magnetostatic
coupling between particles when shape anisotropy
is present. The deviations from either dipole–dipole
or Coulomb interactions are very strong, and if not
properly accounted for, the energy evaluation can
be affected by an error as high as several orders of
magnitude. For example, for two nanowires with
aspect ratio of 50 separated by a distance r ¼ 4R;
the ratio Edip=E is 320, while the monopolar energy
agrees reasonably well (Emon=E ¼ 1:04). For an
intermediate case (not easily approximable in either
way) of t ¼ 10; the ratio Edip=E is roughly 15,
while the ratio Emon=E is 1.24.
7. Conclusions

It has been shown how a Fourier space
approach can describe the magnetostatic coupling
between magnetic nanoparticles of arbitrary shape
and magnetization state. The main advantages of
this approach, compared to the standard real-
space evaluation of a double volume integral, are
(i) an easy and compact mathematical treatment of
shape anisotropy, (ii) the accuracy of the results is
related to the number of pixels in the 3D
computational arrays rather than to numerical
precision in the evaluation of the integrals, and (iii)
the availability of advanced FFT algorithms,
which can efficiently evaluate the various real-
space quantities.

The main conclusion to be drawn from the
results presented in this paper is, except for the
general expressions of self- and interaction en-
ergies, the modified expression (38) for the
interaction energy between two particles of iden-
tical rotationally symmetric shape. Because of the
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cylindrical symmetry, the angular dependence can
be separated from the other coordinates, resulting
in a dipole–dipole-like expression. While the
correction factors Siðr; z; sÞ can be determined
analytically for a circular disk, as shown in Section
5, numerical evaluation of these integrals
(Eqs. (39)–(42)) should be possible for a wide
range of particle shapes, including prolate and
oblate rotational ellipsoids, tori with either rec-
tangular or circular cross-sections, and truncated
cones and paraboloids. The expressions can also
be generalized to the case where the two objects do
not have the same orientation in space. This would
significantly complicate analytical evaluation of
the integrals, but should have no effect on
numerical evaluations.

Finally, a Fourier space representation of the
magnetization immediately suggests the inclusion
of time-dependent phenomena, i.e., spin waves. In
fact, the approach presented in this paper can be
considered as a static spin wave analysis of the
particle magnetization distribution. Work is now
in progress to extend the framework to spin wave
dynamics, generalizing the approach first intro-
duced by Suhl [13].
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Appendix

In this appendix, we prove that the functions
S1ðr; z;R; tÞ and S2ðr; z;R; tÞ are identical in the
limit r-0; i.e.,

lim
r-0

S1ðr; z;R; tÞ ¼ lim
r-0

S2ðr; z;R; tÞ:

Working out the kz integrals for Eqs. (39) and (40),
and using Eq. (45), we find

S1ðr; z;R; tÞ ¼
4p2r3R

rV2

Z
N

0

dk
J1ðkrÞJ1ðkRÞ

k2


 eðd�zÞk � e�ðdþzÞk� �
;

S2ðr; z;R; tÞ ¼
4p2r5R

ðr2 � 2z2ÞV2

Z
N

0

dk
J0ðkrÞJ1ðkRÞ

k


 e�ðdþzÞk � eðd�zÞk� �
:

Taking the difference between the two integrals
and ignoring constant pre-factors we find

S1 � S2E
Z

N

0

dk

k

r2 þ z2

r2 � 2z2
J0ðkrÞ þ

J1ðkrÞ
kr

	 

J1ðkRÞ


 e�ðdþzÞk � eðd�zÞk� �
:

Taking the limit for r-0; the factor between
square brackets becomes

lim
r-0

r2 þ z2

r2 � 2z2
J0ðkrÞ þ

J1ðkrÞ
kr

	 


¼ lim
r-0

�
1

2
J0ðkrÞ þ

J1ðkrÞ
kr

	 


and since limr-0 J0ðkrÞ ¼ 1 and limr-0 J1ðkrÞ=kr ¼
1
2

we find that, for the cylinder, S1 ¼ S2 when
r ¼ 0:
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