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Abstract

This paper describes the design, modeling, and analysis of a novel magnetic spring–damper. This cost-effective, self-

powered magnetic spring–damper utilizes two permanent magnets and a conductive aluminum plate to generate both

spring and variable damping effects. Eddy currents are generated in the aluminum plate due to its relative motion with

respect to the magnets. These eddy currents produce a repulsive force that is proportional to the velocity of the conductor

such that the moving magnet and conductor act as a viscous damper. The structure of the proposed passive magnetic

spring–damper is simple, and does not require an external power supply or any other electronic device. An accurate,

analytical model of the system is obtained by using the electromagnetic theory to estimate the electromagnetic forces,

induced in the system. The newly developed model can be used to design high-performance dampers for various

applications. To optimize the design, simulations are conducted and the design parameters are evaluated. After a magnetic

spring–damper prototype is fabricated, experiments are conducted to verify the accuracy of the theoretical model. The

eddy current model exhibits a 7.5% RMS error for the damping ratio estimation, and a damping ratio as high as 40N s/m

is achieved by the fabricated prototype.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Eddy currents are generated in a conductor in a time-varying magnetic field. They are induced either by the
movement of the conductor in the static field or by changing the strength of the magnetic field, initiating
motional and transformer electromotive forces (emfs), respectively. Since the generated eddy currents create a
repulsive force that is proportional to the velocity of the conductor, the moving magnet and conductor behave
like a viscous damper. Graves et al. [1] have derived a mathematical representation for eddy current dampers,
based on the motional and transformer emf, and have developed an analytical approach to compare the
efficiency of the dampers in terms of these two sources. For more than two decades, the application of eddy
currents for damping purposes has been investigated, including magnetic braking systems [2–4], vibration
ee front matter r 2008 Elsevier Ltd. All rights reserved.

v.2008.02.022

ing author. Tel.: +1519 888 4567 35095.

ess: khamesee@uwaterloo.ca (M.B. Khamesee).

www.elsevier.com/locate/jsvi
dx.doi.org/10.1016/j.jsv.2008.02.022
mailto:khamesee@uwaterloo.ca


ARTICLE IN PRESS

Nomenclature

B magnetic flux density
E(k) elliptic integral of the first kind
F force
g gap between two magnets
I electrical current
jm equivalent surface current density of a

permanent magnet
J current density
Jm equivalent volume current density of a

permanent magnet
K(k) elliptic integral of the second kind
L length of the magnet

M magnetization
n̂ unit surface normal
R permanent magnet radius
t time
V induced electromotive force
Vemf motional electromotive force
Vtrans transformer electromotive force
v equivalent velocity of the aluminum plate
ẑ longitudinal unit vector
G conductor volume
d conductor thickness
m0 permeability of free space
s conductivity
û tangential unit vector
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control of rotary machinery [5], structural vibration suppression [6–8], and vibration isolation enhancement in
levitation systems [9,10].

Sodano et al. [6] have analyzed the suppression of cantilever beam vibrations, where a permanent magnet
is fixed so that it is perpendicular to the beam motion, and a conducting sheet is attached to the beam tip. In
Ref. [8], a theoretical model of an eddy current damper has been modified and further developed by applying
an image method to satisfy the boundary condition of the zero eddy current density at the conducting plate’s
boundaries. An additional permanent magnet is included in the device with the like-poles fixed in the same
direction, intensifying the radial magnetic flux density, enhancing the damping effect. Teshima et al. [9] have
studied the effect of an eddy current damper on the vibration isolation properties of superconducting
levitation, and demonstrated that in the vertical direction, the damping is improved by approximately 100
times by using eddy current dampers. Elbuken et al. [10] have investigated the eddy current damping for high
precision magnetic levitation. The authors in Ref. [10] have suggested an eddy current damper to suppress the
vibration of the levitated object. Karnopp [11] has devised a new electromechanical damper for vehicle
applications, consisting of copper wire and permanent magnets. He has demonstrated that for oscillation
frequencies, expected in road vehicle suspensions, electrodynamic variable shock absorbers are feasible.
Schmid and Varaga [12] have designed and analyzed a vibration attenuation system for the construction of
high-resolution nanotechnology structures such as the scanning tunnelling microscope by using eddy current
dampers. For eddy current dampers and couplers under dynamic conditions, Tonoli [13] has presented a
physical, dynamic model.

The application of the magnetic spring effect [14,15], and eddy current effect [6–8] in vibration suppression
studies have been reported, but, to the best of the authors’ knowledge, the application of eddy currents with a
magnetic spring effect has not been addressed in prior publications. Magnetic spring dampers are appealing in
various vibration isolation systems such as precision machinery, structure vibration isolation, and vehicle
suspension systems.

In this article, the eddy current damping effect is exploited for the development of a spring–damper, and a
model of the magnetic and eddy current forces for the designed magnetic spring–damper is proposed. Fig. 1 is
a schematic of the proposed system, which consists of a ring-shaped conducting aluminum plate and two
cylindrical permanent magnets, whose like-poles are in close proximity. The lower permanent magnet and the
aluminum plate are stationary, while the upper magnet has a reciprocating motion. The use of a ring-shaped
conductor plate simplifies the fabrication, and its thickness does not limit the magnets’ air gap. Also, the
conductor’s shape is more appropriate for laboratory experiments that are described in Section 6.3. The
relative movement of the magnets causes the conducting plate to undergo a time-varying magnetic field such
that a transformer eddy current is generated. Since there is a relative movement between magnets and the
conducting plate, a motional eddy current is generated as well.
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Fig. 1. Schematic view of the proposed eddy current spring–damper.
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An analytical approach is adopted for modeling the proposed damper. Finite element modeling and the
experimental results verify the accuracy of the analytical model, derived from basic electromagnetic principles.
This paper outlines the steps to model the proposed magnetic spring–damper. First, the magnetic flux density,
generated by a single cylindrical permanent magnet is calculated in Section 2 by the current method [16]. The
calculated flux density is validated with finite element and experimental results, and then used for the eddy
current calculation in Section 4. Next, the repulsive force between the two adjacent magnets is calculated, and
the spring effect is characterized via combining the current method and Ampere’s force law. In Section 6.2, the
accuracy of the newly developed force model is confirmed by the finite element and experimental results.
Finally, the motional eddy force and transformer eddy force are calculated and validated separately by
experimental results that ultimately lead to the dynamic damping modeling and analysis of the designed
magnetic spring–damper.
2. Magnetic flux density calculation

There are a number of approaches for calculating the magnetic flux density of a permanent magnet. The
simplest approach is the dipole moment model, which is more appropriate for the flux density calculation for
long distances, compared with the magnets’ diameter. The charge method and the current method, model the
magnet with a distribution of the charge and the current, respectively [16]. In this article, the current model is
used for modeling the permanent magnets. Furlani [16] has shown that a cylindrical magnet can be replaced by
an equivalent magnetic volume current density Jm ¼X�M and an equivalent surface current density jm ¼

M� n̂ that circulates around the body of the cylinder. M and n̂ are the magnetization vector and unit surface
normal, respectively. By assuming that the cylindrical magnet is polarized along its longitudinal direction with
unit vector ẑ and that a uniform magnetization, i.e., M ¼M ẑ, the volume and surface current densities are

Jm ¼ 0,

jm ¼Mû, (1)

where û is the tangential unit vector. For a cylindrical current sheet, extending betweenz0 ¼ �L=2, the flux
density components at (r, z) are given by Craik [17] as

Br ¼
m0I

2pL

Z L=2

�L=2

ðz� z0Þ

r½ðRþ rÞ2 þ ðz� z0Þ2�1=2
�KðkÞ þ

R2 þ r2 þ ðz� z0Þ2

ðR� rÞ2 þ ðz� z0Þ2
EðkÞ

� �
dz0,

Bz ¼
m0I
2pL

Z L=2

�L=2

1

½ðRþ rÞ2 þ ðz� z0Þ2�1=2
KðkÞ þ

R2 � r2 � ðz� z0Þ2

ðR� rÞ2 þ ðz� z0Þ2
EðkÞ

� �
dz0, (2)
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where K(k) and E(k) are the complete elliptic integrals of the first and second kind, respectively, and are
defined as

KðkÞ ¼

Z p=2

0

dyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 sin2 y

p (3)

and

EðkÞ ¼

Z p=2

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2sin2 y

p
dy, (4)

where

k2
¼ 4Rr½ðRþ rÞ2 þ ðz� z0Þ2��1.

Parameters R and L are the radius and length of the cylindrical permanent magnet, respectively, and
I ¼ML is the equivalent current of the permanent magnet [17]. Since Eq. (2) does not have any analytical
solution [6], a numerical approach is used for solving the integrals. The estimated values are validated by the
FE and experimental results. The calculated magnetic flux density is used for the estimation of the eddy
current in Section 4.

3. Magnetic force calculation

In this section, the repulsion force between the two adjacent cylindrical permanent magnets is obtained by
considering the magnets as two single current-carrying loops, and two solenoids, as depicted in Fig. 2. The
force that a single current-carrying loop undergoes in the presence of another current-carrying loop is
calculated by applying Ampere’s force law. It states that when two current-carrying elements I1 dL1 and I2 dL2

interact, the elemental magnetic force, exerted by element 1 on element 2, is

dF21 ¼
m0I2 dL2

4p
�

I1 dL1 � R21

R3
21

� �
, (5)

where R21 is the distance vector between the two elements, as illustrated in Fig. 2. R1 and R2 are the radii of
loop one and two, respectively.

Therefore, the magnetic force is

F21 ¼
m0
4p

Z
c2

I2 dL2 �

Z
c1

I1dL1 � R21

R3
21

. (6)
Fig. 2. Schematic of two current-carrying loops, illustrating the variables used in Eq. (5).
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The right integral is the magnetic flux density produced by current-carrying loop 1 at the location of
element 2. Typically, when a current-carrying loop is placed in an external magnetic field B, the magnetic force
of the loop is mathematically expressed as

F ¼

Z
c

I dL� B: (7)

By assuming R1 ¼ R2 ¼ R, the vertical component of the interacting forces between two current-carrying
loops with the opposite current direction is

F zðzdÞ ¼
m0I1I2R

2

4p

Z 2p

0

Z 2p

0

�zd cosðy2 � y1Þdy1 dy2
ð2R2 � 2R2 cosðy2 � y1Þ þ z2d Þ

3=2
, (8)

where zd is the distance between the two loops. By using the same current technique as that for the
permanent magnet modeling, the vertical component of the interacting forces between the two adjacent
magnets with the opposite magnetization direction is obtained by integrating Eq. (8) along the magnets’ length
as follows:

Fz ¼
m0I1I2R2

4pL2

Z g=2þL

g=2

Z �g=2

�L�g=2

Z 2p

0

Z 2p

0

�½zd � z0 � z00� cosðy2 � y1Þdy1 dy2 dz0 dz00

ð2R2 � 2R2 cosðy2 � y1Þ þ ½zd � z0 � z00�2Þ3=2
: (9)

Eqs. (8) and (9) are used in Section 6.2 as alternative approaches for the magnetic force estimation. It is seen
that the single-loop approximation of Eq. (8) maintains its accuracy for the wide air gap between the magnets,
but underestimates the magnetic force for the narrower air gaps. The accuracy of the calculated repulsive force
in Eq. (9) is verified in Section 6.2 by using the finite element and experimental results. Finally, Eq. (9) is used
to anticipate the spring behavior of the magnetic spring–damper device.

4. Eddy current damping force

Fig. 3 exhibits the configuration of the eddy current damping system, where the stationary aluminum plate
is the source of the eddy currents due to the movement of the upper permanent magnet.

Fig. 4 demonstrates a two-dimensional (2D) axial-symmetry finite element model of the proposed system.
The streamlines represent the magnetic flux density. The upper magnet in Fig. 4(b) is moved 10mm closer to
the lower magnet, compared with Fig. 4(a). This movement is equivalent to moving the aluminum plate with a
thickness of d and a conductivity of s up 5mm. It is noteworthy that the plate velocity (v) should be
considered as half of the upper magnets’ velocity.

As shown in Fig. 4, permanent magnets generate a time-varying magnetic field in both the axial (z) and
radial (r) directions. The total generated emf of the aluminum plate is based on either a time-varying magnetic
field, or the relative motion of the conducting plate. The former contribution is associated with the
Fig. 3. Geometric definition of the eddy current spring–damper.
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Fig. 4. 2D axial-symmetry Femlab simulation of the system, where the air gap is decreased from (a) 30mm to (b) 20mm; the streamlines

represent the magnetic flux density (other specifications are listed in Table 1).
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‘‘transformer emf’’ and is easily obtained from the third Maxwell equation (Faraday’s law), whereas the latter
is associated with the ‘‘motional emf’’ and is derived from the Lorentz force law by calculating

V ¼ V trans þ Vmotional ¼ �

Z
s

qB
qt
� dsþ

Z
c

ðv� BÞ � dl. (10)

Also, it is noted that plate velocity (v) is actually the relative velocity of the conducting plate with
respect to the permanent magnets. Since the movement of the aluminum plate is in the vertical direction,
the vertical component of the magnetic flux density does not contribute to the generation of the motional
eddy current (i.e., v�Bz ¼ 0). As a result, the generated motional-emf depends on the radial component
of the magnetic flux density. The current density J, induced in the conducting sheet due to the motional
emf is

J ¼ sðv� BÞ. (11)

The damping force due to the motional emf term is defined [6] by computing

Fmotional ¼

Z
G
J� BdG ¼ �k̂sdv

Z 2p

0

Z rout

rin

rB2
r ðr; z0Þdrdy, (12)

where G is the conductor volume. As demonstrated in Fig. 3, the total radial component of the magnetic flux
density is the sum of the magnetic flux density, generated by the two permanent magnets at the mid-plane of
the conducting plate such that

Br;total ¼ Brðz0Þ þ Brðz1Þ, (13)

where

z1 ¼
Lþ g� z0 if z0oLþ g;

�L� gþ z0 if z04Lþ g:

�����
Eq. (12) is valid for only an infinite conducting plate, indicating that the boundary condition of zero current

at the conducting plate’s boundaries (the edge effect) is not considered. If the edge effect is not considered, the
predicted force is overestimated [8]. To include the edge effect, the image method [18] is employed, as
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Fig. 5. Modification of the eddy current using the image method [8].
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illustrated in Fig. 5. Thus, the motional eddy current force is modified by calculating

Fmotional ¼ � k̂sdv

Z 2p

0

Z rout

rin

rB2
r ðr; z0Þdrdy�

Z 2p

0

Z rout

rin

rB2
r ð2rout � r; z0Þdrdy

� �

¼ � k̂s2pdv

Z rout

rin

rB2
r ðr; z0Þdr�

Z rout

rin

rB2
r ð2rout � r; z0Þdr

� �
. (14)

As denoted in Fig. 5, the first term in Eq. (14) corresponds to the damping force to account for the infinite
plate, whereas the second term is the damping force for considering the imaginary eddy currents. The
subtraction of these two terms gives the modified motional damping force. Since the magnetic field is not
uniform in the vertical direction, the aluminum plate is prone to a magnetic flux density variation during the
reciprocating oscillation. Consequently, the transformer term should be considered in the eddy current
calculations.

The transformer emf is calculated by conducting numerical integration over the surface of the conductor
plate as follows:

V trans ¼ �

Z
s

qB

qt
� ds ¼ �

Z
s

qB
qz

qz

qt
þ

qB
qr

qr

qt

� �
� ds ¼ �

Z
s

qBz

qz

qz

qt
ẑþ

qBr

qz

qz

qt
r̂

� �
� ds, (15)

where the second term in the last integral is zero, by considering the symmetry of the radial flux density about
the plate center axis. The calculated gradient of the magnetic flux density on the bottom surface is reduced
from that of the upper one, since their respective normal units are in the opposite directions. Therefore, the
damping force generated by the transformer eddy currents, is calculated from the respective emf (Vtrans) as
follows:

Ftrans ¼
�ks

l

Z
s

qB
qt

ds

Z
rBr dG ¼

�ksv

l

Z
s

qBz

qz
ds

Z
rBr dG (16)

in which l ¼ pðrout þ rinÞ.
Thus, Eqs. (14) and (16) provide the motional and transformer damping force estimation, and the total

damping force is validated in Section 6.3 by some experimental results.

5. Experimental setup

Two experimental setups are established to validate the accuracy of the three developed models in
Sections 2–4. The magnetic spring–damper in Fig. 1 is fabricated and tested, as shown in Figs. 6 and 7. The
physical properties of the newly developed prototype are listed in Table 1. The permanent magnets in this
experiment are neodymium–iron–boron rare-earth magnets with a radius of 25 and length of 20mm.
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Fig. 6. First experimental test bed for large amplitudes and low frequencies.

Fig. 7. Second experimental test bed for small amplitudes and high frequencies.

B. Ebrahimi et al. / Journal of Sound and Vibration 315 (2008) 875–889882
The prototype frame, as well as the rod connecting the upper permanent magnet to the load cell, is composed
of PVC to avoid interference with the magnetic field. The first test bed in this experiment is composed of a
hydraulic actuator with feedback from an LVDT displacement sensor, a 1 klb load cell and an MTS-FlexTest-SE
controller device. This system is particularly appropriate for large displacement strokes (more then 5mm) and
static force measurements. The hydraulic shaker covers the frequencies as high as 5Hz at a 15mm displacement
amplitude. Fig. 6 reflects the first experimental test bed to verify the spring effect of the magnetic spring–damper.

As seen in Fig. 7, the second experimental test bed is prepared, achieving higher accuracies for small
amplitudes and high frequencies. The setup consists of an electromagnetic shaker, which is controlled by
accelerometer sensor feedback data. Load-cell data, as well as LVDT displacement data, is captured by
another A/D board. The electromagnetic shaker is capable of producing amplitudes up to 3mm and a force up
to 100 lbf. All of the measurements are carried out at the University of Waterloo.
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Fig. 8. Vertical component of the magnetic flux density along the magnet’s centerline. &: finite element results, : theoretical results,

m: experimental results.

Table 1

Physical properties of the experimental configuration

Property Value

Aluminum electrical conductivity 3.37e7 (S/m)

Inside diameter of aluminum plate 38 (mm)

Outside diameter of aluminum plate 100 (mm)

Thickness of the aluminum plate 8 (mm)

Permanent magnet diameter 25 (mm)

Permanent magnet length 20 (mm)

Magnetization of the permanent magnet 1.03e6 (A/m)

Permanent magnet composition NdFeB42
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6. Comparison of the mathematical model with the experimental results

In the experimental setups, the accuracy of the proposed model is verified. Before the eddy current damping
force is established, the magnetic flux density and the force, generated by the permanent magnets, are
calculated and verified by experimental results.

6.1. Verification of the magnetic field model

Since Eq. (2) does not have an analytical solution [6], it is numerically integrated. Fig. 8 shows the
verification of the vertical component of the magnetic flux density along the magnet’s centerline with the
experimental results and the finite element results, obtained from Femlab 3.2 software. For the finite element
results, the Lagrange-quadratic elements are used. The proposed model is reliable and is used for the eddy
current estimation in Section 6.3.

6.2. Verification of the permanent magnets’ interaction force model

The force equations for both the single-loop approximation (8) and solenoid electromagnet approximation
(9) for simulating the permanent magnets are derived. Fig. 9 gives the results of these two approximations,
compared with the finite element results. It is observed in Fig. 9 that the single current-carrying-loop method
(8), in which the permanent magnet is modeled as a single current-carrying loop at the middle of the magnet’s
length, deviates from the solenoid approach (9) and the finite element results for the air gap between the
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Fig. 9. Analytical and finite element results comparison for the interaction force between two magnets. : Analytical solution for a

single loop, : analytical solution for a solenoid, K: finite element solution for a single loop, J: finite element solution for permanent

magnet.

Fig. 10. Comparison of the experimental results and the analytical results. : Experimental force,&: analytical solution for a solenoid,

: finite element solution for permanent magnet.
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magnets below 3 cm. It is revealed that modeling the permanent magnet with a single current-carrying loop is
no longer valid for narrow gap distances between the magnets.

By using the first test setup in Fig. 6, the magnetic force between the two adjacent permanent magnets is
experimentally measured. Fig. 10 signifies the accuracy of the proposed model, compared with the
experimental results. Also, it is observed that a force, as high as 150N can be achieved when the magnets’ air
gap is close to 5mm. This graph also conveys the nonlinear spring characteristic of the system in the absence
of the aluminum plate.

6.3. Validation of eddy current model

There are a number of factors that can affect the damping ratio, and they can be varied to attain the
desirable damping characteristics. In this section, the effect of the air gap between the magnets, aluminum
plate size, and position are considered. As mentioned in Section 4, the time-varying magnetic field, and the
relative motion of the aluminum plate and permanent magnets produce two different effects, causing the
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opposing eddy force. Fig. 11 denotes the motional and transformer effects, contributing in the damping
generation at the different size air gaps between the magnets. It is observed that for a vibration amplitude
equal to 5mm, the transformer eddy current contribution is 25% less than that of the motional eddy currents.
This contribution varies in relation to the position and thickness of the aluminum plate. The plate is
positioned in the middle of the air gap between the magnets in Fig. 11. The amplitude and frequency of the
upper magnet oscillation are 5mm and 10Hz, respectively.

As illustrated in Fig. 11, the total damping effect decreases for the wider air-gap distance between the two
magnets. Consequently, the desired damping ratio is achieved by choosing the gap distance between the
magnets. The opposing eddy force, generated by eddy current effect, is also calculated for the different plate
positions. Fig. 12 shows the analytical and experimental values for the damping coefficient at different
aluminum plate positions (z0), when the upper magnet peak velocity is 0.25m/s and the air gap between the
magnets is 30mm. The aluminum plate positions are measured from the mid-plane of the lower permanent
magnet.

It is observed that the most effective position for the aluminum plate is midway between the two permanent
magnets. A comparison of the two sets of experiments with the analytical solutions shows an RMS error of
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1.05 kg/s (7.5%) in the damping coefficient estimation. The slight peak-value offset in the analytical results can
be due to the round-off error in the numerical calculation of integrals in Eq. (2).

The size of the conducting plate is optimized as exhibited in Fig. 13. It is observed that increasing the
outside radius of the aluminum plate does not affect the damping coefficient after a certain level and so there is
an optimal outside radius for each case to obtain the maximum damping coefficient. This figure is obtained for
a 20mm gap between the magnets, and the upper magnet oscillation amplitude and frequency are 5mm and
10Hz, respectively. Each line represents the specific aluminum plate position (z0), measuring from the mid-
plane of the lower magnet.

Fig. 14 signifies the maximum value of the eddy current’s opposing force at different frequencies and
amplitudes. It is observed that the damping characteristic of the eddy currents is similar to the linear viscous
damper for the range of frequencies and amplitudes in Fig. 14. Also, the linear dependency of the force on the
frequency at a low speed is confirmed in Ref. [19]. In addition, it is shown that a maximum damping force up
to 10N is achievable by using the specified dimensions. Figs. 13 and 14 illustrate the analytical results of
Eqs. (14) and (16).
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6.4. Dynamic damping characterization

The goal in this section is to derive an experimental non-parametric model of the magnetic spring–damper
damping effect. By changing the prototype configuration, the damping effect can be distinguished from the
spring effect. The damping characteristic is obtained separately; i.e., the magnetic spring–damper converts to a
magnetic damper. The new test configuration comprises two fixed permanent magnets and a moving
aluminum plate. Fig. 15 represents the dynamic behavior of the magnetic damper at three different
frequencies. The fixed air gap between the magnets is set to 35mm.

The experimental data proves the existence of the eddy current hysteresis effect. Several models have been
proposed to represent the hysteresis phenomena. The Bouc–Wen model [20], as shown in Fig. 16, is one of the
differential hysteresis models, which is used to model the eddy current hysteresis effect. The Bouc–Wen model
has attracted more interest in the last few years due to the ease of its numerical implementation and ability to
represent a wide range of hysteresis loop shapes [21]. In this model, the damping force is given by

Fdamper ¼ c _xþ z, (17)

where z is the force determined by computing the following:

_z ¼ A _x� bj _xjzjzjn�1 � g _xjzjn, (18)

where A, b, g, c, and n are the experimental model’s parameters, estimated by the nonlinear least square
optimization method. The Bouc–Wen model parameters are ½c; b; g;A; n� ¼ ½1:11; �50; 24; �69:5; 2�.

Another important plot in the dynamic damper characterization is the peak force in terms of the peak
velocity, which is obtained experimentally for a 35mm air gap between the magnets and is given in Fig. 17.
This plot confirms the linear damping properties of the eddy current effect, obtained in Eqs. (14) and (16).
Fig. 15. Dynamic characterization of the MD: (a) force vs. displacement and (b) force vs. velocity. : Experimental results, :

modeling.

Fig. 16. The Bouc–Wen model of the system.
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Fig. 17. Peak force vs. peak velocity at a constant frequency of 20Hz.

B. Ebrahimi et al. / Journal of Sound and Vibration 315 (2008) 875–889888
7. Conclusion

In this paper, a passive magnetic spring–damper system is developed by using the eddy current damping
effect. The proposed magnetic spring–damper utilizes two permanent magnets and a stationary conductive
aluminum plate. A theoretical model of the proposed system is constructed by using the transformer eddy
current contribution and the image method for the motional eddy current estimation. The magnetic flux,
interaction force of the magnets, and eddy current damping force are analytically calculated and validated by
finite element and experimental results. Finally, the dynamic damping characterization of the system is derived
by using the differential Bouc–Wen model.

The newly developed analytical model is used to design high-performance dampers for a variety of
applications. The damping characteristic of the proposed system can be easily changed by either re-positioning
the conductor or choosing the appropriate conductor size and the air-gap distance between the magnets. The
novel magnetic spring–damper described in this article is a non-contact device with adjustable damping
characteristics, no external power supply requirement, and suitable for different vibrational structures for high
accuracy and simple implementation. The proposed magnetic spring–damper can be modified in terms of size,
material, and topological design for different applications. Future work might involve extending the magnetic
spring–damper design for vehicle suspension systems, since the damper is oil free, inexpensive, requires no
external power, and is simple to manufacture.
Acknowledgments

The authors would like to express their appreciation to Mechworks Systems Inc. (MSI) and the Ontario
Centers of Excellence (OCE) for their financial support of the research conducted in association with this
publication.
Appendix A. Derivation of Eq. (8)

Regarding Fig. 2,

r1 ¼ R1r̂þ y1ĥ ¼ R1 cos y1 îþ R1 sin y1 ĵ, (A.1)

r2 ¼ R2r̂þ y2ĥ ¼ R2 cos y2 îþ R2 sin y2 ĵþ zd k̂, (A.2)
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R21 ¼ ð�R1 cos y1 þ R2 cos y2Þîþ ð�R1 sin y1 þ R2 sin y2Þĵþ zd k̂, (A.3)

R21 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

2 þ R2
1 � 2R1R2 cosðy2 � y1Þ þ z2d

q
(A.4)

and

dLk ¼ Rk dykĥ ¼ �Rk sin yk dyk îþ Rk cos yk dyk ĵ ðk ¼ 1; 2Þ. (A.5)

By assuming R1 ¼ R2 ¼ R, Ampere’s force law results in

F21 ¼
m0I1I2R2

4p
½

Z 2p

0

Z 2p

0

R cos y2 1� cosðy2 � y1Þð Þdy1 dy2
ð2R2 � 2R2 cosðy2 � y1Þ þ z2dÞ

3=2
î

þ

Z 2p

0

Z 2p

0

R sin y2 1� cosðy2 � y1Þð Þdy1 dy2
ð2R2 � 2R2 cosðy2 � y1Þ þ z2dÞ

3=2
ĵ

þ

Z 2p

0

Z 2p

0

�zd cosðy2 � y1Þdy1 dy2
ð2R2 � 2R2 cosðy2 � y1Þ þ z2d Þ

3=2
k̂� . (A.6)
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