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Micromagnetic hysteresis models for large, bulk like samples are useful for the identification of

relations between microscopic material properties and macroscopic magnetic behavior. To bridge the

gap between the nanometer space scale of the micromagnetic theory and the large sample dimensions,

time and memory efficient numerical schemes are needed. In micromagnetic computations, fast Fourier

transforms (FFTs) have been widely adopted to speed up magnetostatic field computations. In this

paper, two FFT schemes are compared. The first scheme evaluates the magnetostatic field directly

starting from the magnetization and has a large accuracy, while in the second scheme the magnetostatic

field is derived from the scalar magnetic potential resulting in a reduced accuracy but also in a CPU time

reduction for a magnetostatic field evaluation to 65% and a reduction of memory requirements to 55%.

The influence of the low accuracy evaluations on the simulated macroscopic hysteresis behavior is

studied. Therefore, comparison is made with the influence of thermal effects in hysteresis simulations. It

is found that the resulting changes in macroscopic hysteresis behavior are of the same order of

magnitude as the ones obtained when thermal fluctuations are taken into account in the high accuracy

computations.

& 2009 Elsevier B.V. All rights reserved.
1. Introduction

The micromagnetic theory has been used to understand the
fundamental magnetization processes on a microscopic space and
time scale. Numerical micromagnetic schemes are, e.g. used
successfully in the development of storage media. Now the
growing computer resources open up the opportunity to apply
the micromagnetic theory also to large, bulk like samples as
electrical steels. Indeed, the magnetic dynamics in electrical steels
used in machine cores and transformers is based on the same
interactions as described by the micromagnetic theory. Since the
exact material parameters (location of dislocations, interstitials,
grain boundaries) are not known on a nanometer scale, the exact

space and time localization of the internal magnetization
processes is also much less important. One is predominantly
interested in the resulting—averaged—macroscopic magnetic
behavior and the determination of the dominant magnetization
processes resulting from the non-ideal crystallographic structure
of the material. Hence, while simulations on nanometer sized
objects are performed to get an exact knowledge of the space and
time behavior of the magnetization (mostly reversal) processes,
ll rights reserved.

de Wiele).
the intended simulations on bulk like samples in the framework of
electrical steels aim at distinguishing the different influences of
the material parameters on the magnetic (hysteresis) processes. In
this framework, it was already shown that the magnetization
processes can be described on a somewhat larger space scale [1].
Now we also investigate how the accuracy of the computations
influences the predicted macroscopic magnetic behavior.

In the micromagnetic theory the magnetic moments of the
distinct atoms are homogenized to a continuum vector field which
varies on a nanometer space scale [2]. This continuum field Mðr; tÞ
has a fixed, material dependent amplitude Ms, and a time and
space varying orientation: M¼Msmðr; tÞ. The dynamics of the
magnetic vector field are described by the Landau–Lifshitz
equation. Different time stepping schemes, implicit [3,4] and
explicit [5], are developed to integrate the Landau–Lifshitz
equation. In these time stepping schemes, the interaction fields
are evaluated several thousand times during one simulation. In
practice, most of the CPU time goes to the evaluation of the
magnetostatic field Hms which describes the long range interac-
tions in the ferromagnetic material. When the spatial discretiza-
tion is performed using finite difference (FD) cells, fast Fourier
transforms (FFTs) are widely used for the evaluation of Hms

(e.g. [6–8]).
In [9], two FFT based methods to compute the magnetostatic

field in 2D structures are compared. The constant magnetization
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method starts from a discretization where a uniform magnetiza-
tion is assumed in each discretization cell. The constant charge

method [10,11] starts from a discretization where a uniform
magnetic charge density is assumed in each cell. In [9], the
constant magnetization method is concluded to have superior
convergence properties when edge and surface effects are
important. In this paper, the constant magnetization method is
used. Within this method, two approaches are adopted to
compute the magnetostatic field.

In a first approach, an FFT based scheme evaluates the
magnetostatic fields using the direct relation between Hms and
the uniform magnetization in each discretization cell. This FFT
scheme provides results with a high accuracy. A second
alternative FFT scheme evaluates, the magnetostatic field by
taking the gradient of the scalar magnetic potential cms which is
in turn computed using the relation between cms and the uniform
magnetization in each discretization cell. This FFT scheme has a
lower accuracy, but is faster and requires less memory. In this
paper, the two FFT schemes are compared and evaluated in the
framework of the micromagnetic hysteresis scheme [12], designed
to investigate the relations between microstructure and macro-
scopic magnetic behavior. In [13,14] the validity and accuracy of
the hysteresis scheme [12] is demonstrated.

In what follows, both schemes are summarized and their
performance is evaluated. The influence of the low accuracy
magnetostatic field evaluation on the simulated hysteresis
behavior is determined and is compared with the influence of
thermal fluctuations.
2. Magnetostatic field evaluation schemes

In the considered micromagnetic hysteresis model [12], the
ferromagnetic sample is discretized using identical cubic FD cells
as shown in Fig. 1. The magnetization is considered to be uniform
in every FD cell. According to the micromagnetic theory, the
amplitude of the magnetization is fixed jMj ¼Ms but the
orientation can differ from cell to cell.

The magnetic moments of the FD cells interact with each other
and with the local material properties. Classically, five different
interaction terms are considered in the micromagnetic hysteresis
scheme: the Zeeman interaction, the exchange interaction, the
magnetostatic interaction, the anisotropy interaction and the
magnetoelastic interaction. By time stepping the Landau–Lifshitz
equation, the dynamic behavior in all N magnetization cells is
simulated. Here, the corresponding interaction fields have to be
N cellsy

yx

z

N cellsx

N cellsz

Δ

Fig. 1. Geometry discretization of a ferromagnetic sample.
evaluated several times. The evaluation of the magnetostatic field

HmsðrÞ ¼ �
Ms

4p

Z
O
rr

mðr0Þ

jr� r0j
dr0 ð1Þ

is the most time and memory intensive. In (1) O is the sample
volume. Classically, the computations scale OðN2Þ. Numerical
schemes based on FFTs accelerate these computations to
OðNlogðNÞÞ. Now two FFT based schemes to evaluate (1) are
briefly outlined.
2.1. Direct magnetostatic field evaluation (scheme 1)

In this approach, further referred to as scheme 1, expression (1)
is evaluated directly. The magnetostatic field values have to be
obtained in the center ri of each FD cell i¼ 1; . . . ;N. The volume
integral in (1) is split into N integrals over the volumes of the FD
cells (with center rj, j¼ 1; . . . ;N). Since the magnetization is
constant in each FD cell and all FD cells have the same volume V,
Hms can be rewritten as

HmsðriÞ ¼ �
Ms

4p
XN

j ¼ 1
j a i

Z
V
rq

ri � rjþq

jri � rjþqj3
dq �mðrjÞ: ð2Þ

The self-contribution to the magnetostatic field ðj¼ iÞ is left out,
according to [15]. Rewriting (2) explicitly as a convolution product
yields

HmsðriÞ ¼
XN

j ¼ 1
j a i

gðri � rjÞ �mðrjÞ; ð3Þ

with gðrÞ the symmetrical Green’s function tensor

gðrÞ ¼

gxxðrÞ gxyðrÞ gxzðrÞ

gxyðrÞ gyyðrÞ gyzðrÞ

gxzðrÞ gyzðrÞ gzzðrÞ

2
64

3
75: ð4Þ

Now, the discrete convolution theorem [16] is applied to the
product (3):

~H
i;j;k

ms;x ¼ ~gi;j;k
xx

~mi;j;k
x þ ~g

i;j;k
xy

~mi;j;k
y þ ~g

i;j;k
xz

~mi;j;k
z ;

~H
i;j;k

ms;y ¼ ~gi;j;k
xy

~mi;j;k
x þ ~g

i;j;k
yy

~mi;j;k
y þ ~g

i;j;k
yz

~mi;j;k
z ;

~H
i;j;k

ms;z ¼ ~gi;j;k
xz

~mi;j;k
x þ ~g

i;j;k
yz

~mi;j;k
y þ ~g

i;j;k
zz

~mi;j;k
z : ð5Þ

Here, and in what follows, Fourier transformed quantities are
denoted with a tilde. Following the convolution theorem, one
computes the magnetostatic field by (i) Fourier transforming
the magnetization data mx, my and mz after zero padding,
(ii) performing the pointwise products (5) of the Fourier
transformed magnetization data with the Fourier transformed
Green’s tensor elements (4) and (iii) inverse Fourier transforming
the result of the previous step. Note that the zero padding is
needed to exclude unwanted side effects originating from the
cyclic nature of the FFTs. The elements in the Green’s function
matrices can be determined by evaluating the integrals in (2)
using a Gaussian quadrature formula. When an adequate high
order Gaussian quadrature formula is used to compute the
elements of (4), the magnetostatic fields generated by the
uniformly magnetized FD cells can be computed up to any
wanted accuracy. In this work, a six digit accuracy is used since all
other computations are single precision. The accuracy of the
scheme is checked by comparison with analytical expressions
provided in [17].
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Table 1
Memory requirements expressed in real numbers for N FD cells.

Scheme 1 Scheme 2

m 3� N 3� N

Hms 3� N 3� N

~g or ~f 6� 4N 3� 4N

~m 3� 8N 1� 8N

~Hms or ~cms
1� 8N 1� 8N

Total 62N 34N

Table 2
Computations for the evaluation of Hms for N FD cells.

Scheme 1 Scheme 2

Forward FFTs 3 3

Pointwise products 9� 4N 3� 4N

Inverse FFTs 3 1

Gradients 0 N
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2.2. Magnetostatic field evaluation using the magnetic potential

(scheme 2)

In this approach, further referred to as scheme 2, first the scalar
magnetic potential cmsðrÞ is computed in each FD cell. Afterwards,
the magnetostatic field is evaluated by taking the negative
gradient of the magnetic potential

HmsðrÞ ¼ � rcmsðrÞ; ð6Þ

with

cmsðrÞ ¼
Ms

4p

Z
O0
r

mðr0Þ

jr� r0j
dr0: ð7Þ

The magnetic potential has to be obtained in the center ri of each
FD cell i¼ 1; . . . ;N. As in Section 2.1 the volume integral is split
into N integrals over the volumes of the FD cells (with center rj,
j¼ 1; . . . ;N). Since the magnetization is constant in each FD cell
and all FD cells have the same volume V, the magnetic potential
can be rewritten as

cmsðriÞ ¼
Ms

4p
XN

j ¼ 1

Z
V
rq

1

jri � rjþqj
dq �mðrjÞ: ð8Þ

Rewriting (8) explicitly as a convolution product yields

cmsðriÞ ¼
XN

j ¼ 1

fðri � rjÞ �mðrjÞ; ð9Þ

with fðrÞ the Green’s function vector

fðrÞ ¼ ½fxðrÞ fyðrÞ fzðrÞ�: ð10Þ

Adopting the convolution theorem gives

~c
i;j;k

ms ¼
~f

i;j;k

x
~mi;j;k

x þ
~f

i;j;k

y
~mi;j;k

y þ
~f

i;j;k

z
~mi;j;k

z : ð11Þ

Hence, one computes the magnetic potential by (i) Fourier
transforming the magnetization data mx, my and mz after zero
padding in non-periodic directions, (ii) performing the pointwise
products (11) of the Fourier transformed magnetization data with
the Fourier transformed Green’s vector elements (10) and (iii)
inverse Fourier transforming the result of the previous step. Again,
the elements in the Green’s function vector can be determined by
evaluating the integrals in (8) using a Gaussian quadrature
formula or can be evaluated analytically in closed form [15].

To derive the magnetostatic field HmsðrÞ in each FD cell ði; j; kÞ
one has to take minus the gradient of the local magnetic potential
cmsðrÞ. This is approximated numerically using the following
formula

Hi;j;k
ms;x

Hi;j;k
ms;y

Hi;j;k
ms;z

2
6664

3
7775¼ 1

2D

ci�1;j;k
ms � ciþ1;j;k

ms

ci;j�1;k
ms � ci;jþ1;k

ms

ci;j;k�1
ms � ci;j;kþ1

ms

2
664

3
775: ð12Þ

The self-contribution of each FD cell to the magnetic field in its
center has to be subtracted in the last step of these computations.
The numerical evaluation of the gradient (12) introduces
discretization errors in the computed values of the magnetostatic
fields.
3. Performance study

The memory requirements for both FFT based evaluation
schemes are shown in Table 1. The different contributions are
expressed in terms of real numbers. In both schemes 3N real
numbers need to be saved for the magnetization data and the
resulting magnetostatic field data. In schemes 1 and 2, the Fourier
transformed Green’s function elements are stored in, respectively,
6 and 3 matrices containing 4N real numbers. In scheme 1, 3� 8N

real numbers are required to store the 3� 4N complex values of
the Fourier transformed magnetization components while 8N real
numbers suffice to store the pointwise products and inverse
Fourier transforms in (5) successively for each magnetostatic field
component. In scheme 2, the magnetization components Mq

ðq¼ x; y; zÞ are Fourier transformed, multiplied pointwise with the
corresponding Green’s function matrix fq and added to the Fourier
transformed magnetic potential ~cms, one after the other, limiting
the required memory for the Fourier transformed magnetization
components to 4N complex values. In total the magnetostatic field
evaluation scheme based on the magnetic potential requires
about half of the memory compared to the direct evaluation
scheme 1.

The computations needed for the evaluation of Hms per time
step are shown in Table 2 for both schemes. In both schemes all
three zero padded magnetization matrices are Fourier trans-
formed. In scheme 1, 9� 4N real� complex multiplications are
performed to evaluate the pointwise products (5), while scheme 2
only needs 3� 4N real� complex multiplications to evaluate (11).
The first scheme needs three inverse Fourier transforms while the
second scheme only needs one. Additionally, in the FFT scheme
based on the magnetic potential, the gradient of the magnetic
potential cms has to be evaluated in every FD cell. This leads to a
CPU time reduction for the magnetostatic field evaluation scheme
2 based on the magnetic potential of 65% compared with the
direct evaluation scheme 1.

Due to the numerical gradient evaluation of the gradient
(12), scheme 2 is expected to have a lower accuracy compared
to scheme 1. The accuracy of the magnetic potential based FFT
scheme is determined by comparing the magnetostatic field
values obtained by both schemes for iron monocrystals of
different dimensions in a micromagnetic equilibrium state
encountered in the simulation of their hysteresis loop. The
normalized error, defined as

error¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i ¼ 1 jH

FFT2
ms;i �HFFT1

ms;i j
2PN

i ¼ 1 jH
FFT1
ms;i j

2

vuut ð13Þ

is shown in Table 3 for different sample dimensions. The fields
HFFT1

ms , computed in scheme 1 are considered as a reference. Table 3
shows that the error decreases for larger sample dimensions to
less than one percent. This is because in larger monocrystals
the magnetostatic potential is smoother than in the small
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monocrystals. This results in a more accurate numerical
approximation of the gradient (12). To demonstrate this Fig. 2
shows magnetic configurations in different planes of the sample
with edges of 1:28mm together with the magnetostatic field
values and the local normalized error in the same planes. As
expected, the largest errors occur near the domain walls where
the variations of the magnetic potential are larger leading to larger
errors on the magnetostatic field values. Furthermore, it should be
noted that higher order approximations for the gradient operator
only lead to small improvements in accuracy.
4. Hysteresis simulation

When considering hysteresis properties, one is predominantly
interested in magnetization process in micromagnetically large
objects with dimensions in the order of micrometers and larger.
On this space scale the study of magnetization processes is
typically based on the domain theory [18]. Here, uniform
magnetization regions are assumed through the complete sample.
Since this assumption is not always valid, micromagnetic simula-
tions should be able to validate and probably improve the results
Table 3
Accuracy of scheme 2 for different dimensions.

Edge size (mm) Normalized error

0.32 0.0250

0.64 0.0124

1.28 0.0056

2.56 0.0031

Fig. 2. Locally averaged magnetization (left), amplitude of the magnetostatic field ½A m

x¼ 0:16mm (up) and z¼ 0:16mm (down) of an iron cubic sample with edges of 1:28mm
obtained by the domain theory. Ideally, the micromagnetic
computations should be worked out with the same spatial and
numerical accuracy as used in the ‘classical’ micromagnetic
research domains.

Classically, the discretization size is imposed by the exchange
length. Together with a careful description of the exchange
interaction this guarantees the most accurate simulation of the
magnetization processes in the small magnetic samples under
study [19,20]. In micromagnetic (hysteresis) simulations that
describe magnetization processes in much larger non-ideal
ferromagnetic samples, the accuracy which is aimed at is much
lower, particulary because the materials’ microstructure itself is
only known to a certain extend. In this case, the use of a
discretization size larger than the exchange length corresponds to
a low level homogenization. The resulting low accuracy evaluation
of the exchange interaction has only a limited influence on the
macroscopic magnetic (hysteresis) properties under study, but
vastly accelerates the computations [1]. The limited impact on the
magnetization curves can be understood by the fact that in large
ferromagnetic samples where domains determine the magnetiza-
tion processes, the exchange interactions are much less dominant,
compared to the magnetization processes in classical small
magnetic samples where vortex magnetization states are more
present.

In this context, the question arises to what extend the use of
the lower accuracy Hms evaluation scheme influences the
simulated macroscopic hysteresis behavior of micrometer sized
samples. To investigate the impact of the lower accuracy
evaluation of Hms, the micromagnetic hysteresis scheme [12] is
used. We recall that the hysteresis loop is obtained as an assembly
of successive equilibrium states and that the Landau–Lifshitz
equation is time stepped to go from one equilibrium state to the
next one. As an example, elongated iron samples ðm0Ms ¼ 2:1 TÞ
�1� (middle) and local normalized error on a logarithmic scale (right) in planes

.
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Fig. 3. Hysteresis loops for a ferromagnetic sample A with dimensions

0:5mm� 0:5mm� 16:0mm, computed using the high accuracy Hms evaluation

scheme 1 (full line) and the magnetic potential based Hms evaluation scheme 2

(dashed line).
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Fig. 4. Hysteresis loops for a ferromagnetic sample B with dimensions

1:0mm� 1:0mm� 32:0mm, computed using the high accuracy Hms evaluation

scheme 1 (full line) and the magnetic potential based Hms evaluation scheme 2

(dashed line).
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with dimensions 0:5mm� 0:5mm� 16:0mm, 1:0mm� 1:0mm�
32:0mm and 1:5mm� 1:5mm� 48:0mm are considered, discre-
tized using 10 nm sized FD cells leading to 4 000 000, 32 000 000
and 108 000 000 FD cells, respectively. All samples contain 32
grains with cubic anisotropy axes. Here, random stresses are
added to simulate the grain boundaries. In what follows, the
samples will be referred to as samples A, B and C, respectively. The
semi-analytical predictor-corrector scheme [5] is used to time
step the Landau–Lifshitz equation that describes the evolution
towards equilibrium states at successive constant values of the
external field, applied along the longest direction of the sample.
All simulations are performed using a multithreaded implemen-
tation on an AMD Opteron 2350 machine (4� 2 cores) with 32 GB
of shared memory.
−5000 0 5000
−1

H [A/m]

H
ms,1

H
ms,2

Fig. 5. Hysteresis loops for a ferromagnetic sample C with dimensions

1:5mm� 1:5mm� 48:0mm, computed using the high accuracy Hms evaluation

scheme 1 (full line) and the magnetic potential based Hms evaluation scheme 2

(dashed line).
4.1. Influence of low accuracy Hms evaluation

The resulting hysteresis loops with the magnetostatic field
computed using schemes 1 and 2 are shown in Fig. 3–5. Due to the
elongated shape of the sample, the hysteresis loops take a large
jump at the coercive field. In both Figs. 3 and 4 the coercive field
values for the loops simulated with the high accuracy Hms

evaluation scheme 1 are larger than the corresponding loop
simulated with the lower accuracy Hms evaluation scheme 2. This
is understood as follows. When saturated at high (positive)
external fields, the samples are in a stable micromagnetic
equilibrium state. Diminishing the applied field makes the
systems evolve from these stable states to metastable
equilibrium states. When the applied field corresponds with the
coercive field, domain structures are initiated which enable the
magnetic system to reverse to the opposite magnetization state.
The domain nucleation, needed to initiate such a domain
structures, typically originates at points where small variations
occur in the quantities describing the magnetic sample. If these
variations are absent, large opposite external fields are required to
initiate the reversal process. In the hysteresis loops based on the
lower accuracy Hms evaluation scheme 2, the numerical noise on
the magnetostatic fields account for the small variations that
nucleate the domain structure. In the loops simulated with the
high accuracy Hms evaluation scheme 1, such variations are absent
and a higher opposite applied field is needed to initiate the
magnetization reversal.

The coercive fields for the simulated hysteresis loops of the
largest sample C have identical values and the resulting loops are
very similar (see Fig. 5). However, the above reasoning still holds.
Here, the micromagnetic equilibrium states before the reversal
point are more stable and the numerical noise has only little
influence. It is only at the coercive field that in both simulations
domains are initiated leading to the magnetization reversal.

The stability of the successive micromagnetic equilibrium
states is also expressed by the number of time steps needed to
time step the Landau–Lifshitz equation (and consequently the
CPU time) between successive equilibrium states during the
simulation of the hysteresis loops. The number of times steps dt

are given in Table 4, together with the CPU time and the memory
requirements for the discussed simulations. For the loops of
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Table 4
Simulation data: hysteresis loops with different Hms evaluation schemes.

Simulation dt CPU time Mem. (GB)

Sample A, scheme 1 1461 1 h 5 min 1.1

Sample A, scheme 2 1796 1 h 5 min 0.65

Sample B, scheme 1 4447 24 h 22 min 8.9

Sample B, scheme 2 6378 29 h 18 min 5.5

Sample C, scheme 1 11219 236 h 20 min 30.0

Sample C, scheme 2 11388 212 h 31 min 18.7
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x 104
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 <
M

> 
[M

s]

0 K
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Fig. 6. Hysteresis loops for the same ferromagnetic sample as in Fig. 3 (sample A),

computed using Hms scheme 1. Thermal effects are taken into account for different

temperatures.
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Fig. 7. Hysteresis loops for the same ferromagnetic sample as in Fig. 4 (sample B),

computed using Hms scheme 1. Thermal effects are taken into account for different

temperatures.
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samples A and B, more time steps are needed when the low
accuracy Hms evaluation scheme 2 is used. Indeed, due to the
introduced numerical noise, the micromagnetic systems converge
slower to the successive metastable equilibrium states when the
lower accuracy Hms evaluation scheme 2 is used. This is not the
case for the hysteresis simulation of sample C. As outlined above,
the successive equilibrium states are more stable, enabling the
system to converge fast to the next equilibrium state despite the
numerical noise.

From Table 4 it is also clear that when the Hms evaluation
scheme 2 is introduced in the micromagnetic hysteresis model
[12] instead of scheme 1 (i) the CPU time to compute a time step is
reduced with about 15% and (ii) the memory requirements are
reduced with 37%. A possible gain in the total CPU time depends
on the stability of the system in every point of the hysteresis loop.
Furthermore, one can conclude that for growing sample sizes (i)
the number of time steps in the hysteresis simulation grows and
(ii) the coercive fields diminish (see Figs. 3–5).

4.2. Influence of thermal fluctuations

Now, comparison is made with the influence of thermal
fluctuations on the hysteresis behavior of the ferromagnetic
samples. Therefore a random thermal fluctuation field [21] is
added in the micromagnetic description. The thermal field Hth is
assumed to be a Gaussian random process with zero mean value
in each direction q¼ x; y; z and to be uncorrelated in both space
and time

/Hth;qðr; tÞS¼ 0; ð14Þ

/Hth;pðr; tÞHth;qðr
0; t0ÞS¼ 2Ddpqdðr� r0Þdðt � t0Þ: ð15Þ

The amplitude of the thermal fluctuations is derived from the
fluctuation-dissipation theorem

D¼
akBT

jgGjm0MsD3
; ð16Þ

with a the damping constant, kB the Boltzmann constant, T the
temperature, gG the gyromagnetic ratio and m0 the vacuum
permeability. Hence, the thermal field can be expressed as

Hth ¼ gðr; tÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2akBT

jgGjm0MsD3dt

s
; ð17Þ

with dt the used time step and gðr; tÞ a stochastic vector whose
components are Gaussian random numbers, uncorrelated in space
and time, with zero mean value and dispersion 1. In the semi-
analytical predictor-corrector time stepping scheme, Hth is added
to the other effective field terms, so no changes in the time
stepping algorithm are required.

In the considered simulations, the damping constant a is 0.02,
the FD cell size D¼ 10 nm and the used time step dt is 2.5 ps. It is
known that the above introduced thermal fluctuations make it
possible to overcome energy barriers in the micromagnetic
energy landscape of the considered ferromagnetic system. The
larger the amplitude of the thermal fluctuations, the larger the
energy barriers that can be overcome. Figs. 6–8 show the
simulated hysteresis loops for the ferromagnetic samples
considered above. Here, the high accuracy magnetostatic field
evaluation scheme 1 is used. The fluctuating thermal fields
correspond with different temperatures (0, 210, 260, 310 and
360 K). It is clear that for T ¼ 0 K the thermal fields are zero and
the resulting hysteresis loops correspond to the ones simulated
in Section 4.1.

Figs. 6 and 7 show the hysteresis loops corresponding with
samples A and B. As expected, higher temperatures result in
lower coercive field values. Indeed, at higher temperatures, the
amplitude of the fluctuations rises, enabling the system to
overcome larger energy barriers, resulting in a possible domain
nucleation in more stable energy states. Hence, the magnetiza-
tion reversal can take place at smaller applied fields. The
hysteresis loops at different temperatures for sample C with
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Fig. 8. Hysteresis loops for the same ferromagnetic sample as in Fig. 5 (sample C),

computed using Hms scheme 1. Thermal effects are taken into account for different

temperatures.

Table 5
Simulation data: hysteresis loops for different temperatures.

Simulation dt CPU time

Sample A, 0 K 1461 1 h 5 min

Sample A, 210 K 1639 1 h 12 min

Sample A, 260 K 1825 1 h 19 min

Sample A, 310 K 1827 1 h 20 min

Sample A, 360 K 2159 1 h 34 min

Sample B, 0 K 4447 24 h 22 min

Sample B, 210 K 5790 37 h 49 min

Sample B, 260 K 5643 36 h 52 min

Sample B, 310 K 5753 37 h 35 min

Sample B, 360 K 6328 42 h 11 min

Sample C, 0 K 11219 236 h 20 min

Sample C, 210 K 13220 262 h 11 min

Sample C, 260 K 11479 228 h 8 min

Sample C, 310 K 12466 246 h 44 min

Sample C, 360 K 12487 247 h 35 min
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Fig. 9. Hysteresis loops for sample A, computed using Hms scheme 1, Hms scheme 2

with discretization size D¼ 10 nm and Hms scheme 2 discretization size D¼ 5 nm.
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dimensions 1:5mm� 1:5mm� 48:0mm shown in Fig. 8 are
almost identical. Since the successive equilibrium states are
more stable compared with the ones in samples A and B, the
thermal fluctuations only have a negligible influence on the
hysteresis loop. For applied fields somewhat smaller than
the coercive field, the energy barriers are still too large to be
overcome by the thermal fluctuations and to initiate the
magnetization reversal.

In these simulations, the temperature can also have a large
impact on the number of time steps and thus on the CPU time.
This is shown in Table 5. For samples A and B, the number of time
steps dt increases for higher temperatures, while this is much less
pronounced for sample C. In samples A and B, higher
temperatures (i.e. rising amplitudes of the fluctuating thermal
field) make the micromagnetic systems converge slower to
successive equilibrium points. The larger fluctuations open up a
higher number of possible energy paths between successive
(metastable) equilibrium points, resulting in more time steps and
larger CPU times. For the hysteresis simulation of sample C, the
successive equilibrium states are more stable and the energy
paths between the equilibrium states are more confined. Hence
the thermal fluctuations do not have a large impact on the total
number of time steps.
4.3. Comparison

Now we can compare the results described in Sections 4.1 and
4.2. In both simulation series, noise terms of very different origin
influence the hysteresis behavior. For a given magnetic config-
uration, the numerical noise in Section 4.1 is constant, while the
thermal noise still depends on the used time step dt and
discretization size D, see expression (17). However, similar
conclusions can be drawn concerning their influence. Indeed,
the same mechanisms are at the origin of the possible variations
of the coercive fields. The numerical noise on the Hms evaluation
on the one hand and the thermal fluctuations on the other hand,
can initiate domain nucleation at smaller applied fields compared
with the loops computed with the high accuracy Hms evaluation
scheme at T ¼ 0 K. The possible reduction of the coercive field
depends in both cases on the stability of the equilibrium states in
every point of the hysteresis loop. From Tables 4 and 5 it is also
clear that given a micromagnetic system, the low accuracy
evaluation of Hms or the addition of thermal fluctuations has the
same impact on the number of time steps required for the
simulation of the hysteresis loop. When the systems runs through
metastable equilibrium states, more time steps are required in
both cases.

When thermal fluctuations are considered in a certain sample,
the coercive field HcðTÞ increases monotonically to HcðT ¼ 0Þ for
decreasing temperatures and thus decreasing amplitudes of the
thermal field Hth. In the same way, smaller numerical noise levels
should lead to increasing coercive fields, converging to HcðT ¼ 0Þ
when numerical noise is zero. To examine this, the simulations of
Fig. 3 on sample A are rerun with the Hms evaluation scheme 2.
The discretization, however, is refined to FD cells with halved
dimensions ðD¼ 5 nmÞ leading to a higher precision. The hyster-
esis loop is shown in Fig. 9 together with the loops of Fig. 3
(D¼ 10 nm, Hms evaluated with schemes 1 and 2). From Fig. 9 it is
clear that, as expected, the hysteresis loop simulated with Hms

scheme 2 and D¼ 5 nm has an intermediate coercive field, since
the magnetostatic field evaluations in the considered simulation
have also an intermediate precision.

When we interpret these results in the framework of the
micromagnetic hysteresis modeling we can see that the hysteresis
loops in Fig. 9 are very similar, but not identical. Indeed, on the
microscopic level, the space and time behavior of the magnetiza-
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tion is slightly different. However, it is clear that the same
magnetic processes dominate the hysteresis behavior of the
ferromagnetic sample and identical conclusions concerning the
macroscopic magnetic behavior can be drawn independent of
the used Hms evaluation scheme. This shows that the low accuracy
Hms evaluation scheme can be used in micromagnetic hysteresis
simulations. Furthermore, the origin of the small variations in the
hysteresis loops is now clarified: the introduced numerical noise
initiates the domain reversal at smaller coercive fields and larger
numerical noise levels give rise to smaller coercive fields.
Although the numerical noise is not Gaussian distributed and is
not uncorrelated in space and time, these conclusions are
identical to the conclusions drawn from simulations with
additional thermal noise. Indeed, the influence of the thermal
fluctuations depends in the same way on the stability of the
successive micromagnetic equilibrium points. Moreover, the
differences in the hysteresis loops simulated with the low
accuracy Hms evaluation scheme are of the same magnitude as
encountered when thermal fluctuations for moderate tempera-
tures are taken into account.
5. Conclusions

In micromagnetic hysteresis modeling one aims to relate
microstructural material features with macroscopic magnetic
behavior. Here, the evaluation of the magnetostatic field
determines the performance of the used numerical scheme.
Two FFT based schemes for the evaluation of magnetostatic
fields are presented. The first scheme has an accuracy corre-
sponding with the machine precision, while the second scheme
is less accurate, but significantly reduces the memory require-
ments and CPU time for one magnetostatic field evaluation. The
influence on the simulated hysteresis loops is investigated.
Applying the low accuracy Hms evaluation scheme results in a
total memory reduction to 63% of the high accuracy calculation,
but can introduce some differences in the shape of the hysteresis
loops. To interpret these differences comparison is made with
the influence of thermal effects. It is found that the deviations
introduced by the numerical noise on the Hms evaluation on the
one hand and by the thermal fluctuations on the other hand,
both find their origin in the stability of the magnetization states
between successive equilibrium points. The resulting differences
in the macroscopic (hysteresis) behavior, introduced by the
numerical noise, are of the same magnitude as those when
taking thermal fluctuations into account with moderate tem-
peratures.
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[11] D.V. Berkov, K. Ramstöck, A. Hubert, Phys. Status Solidi A 137 (1) (1993)

207–225.
[12] B. Van de Wiele, F. Olyslager, L. Dupré, J. Appl. Phys. 101 (2007) 07390.
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