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In order to better understand signal propagation in the ear, a time-domain model of the tympanic
membrane �TM� and of the ossicular chain �OC� is derived for the cat. Ossicles are represented by
a two-port network and the TM is discretized into a series of transmission lines, each one
characterized by its own delay and reflection coefficient. Volume velocity samples are distributed
along the ear canal, the eardrum, and the middle ear, and are updated periodically to simulate wave
propagation. The interest of the study resides in its time-domain implementation—while most
previous related works remain in the frequency domain—which provides not only a direct
observation of the propagating wave at each location, but also insight about how the wave behaves
at the ear canal/TM interface. The model is designed to match a typical impedance behavior and is
compared to previously published measurements of the middle ear �the canal, the TM, the ossicles
and the annular ligament�. The model matches the experimental data up to 15 kHz. © 2007
Acoustical Society of America. �DOI: 10.1121/1.2747156�

PACS number�s�: 43.64.Bt, 43.64.Ha, 43.64.Kc �WPS� Pages: 918–931
I. INTRODUCTION

Understanding sound propagation in the ear is critical to
our understanding of both the middle ear and the cochlea,
and can have a significant impact on the diagnosis of hearing
loss. Various diagnosis methods have been derived to isolate
the different factors playing a role in the ear’s response, both
in the middle ear, such as otitis media with effusion �Allen et
al., 2005�, and in the cochlea, such as damaged outer hair
cells �Allen, 2001, 2003�. Such models of middle ear and
cochlear wave propagation may be roughly classified into
two broad categories: distributed and lumped circuit models.

Lumped-parameter circuit representations are usually
implemented in the frequency domain using electrical circuit
analogies, including the first quantitative model of the co-
chlea �Wegel and Lane, 1924�. In such models, elements of
fluid or tissue are represented by inductors representing the
element mass, and capacitors representing the stiffness. The
analogy with the well-known electrical circuit theory makes
this method quite intuitive to use. A key work in the field is
the model of the middle ear by Zwislocki �1957,1962�,
which is based on impedance measurements performed on
patients with normal and pathological ears. Due to the tym-
panic membrane’s �TM’s� complex geometry and nonrigid
construction, and due to its distributed nature, this and other
lumped-parameter models are not accurate above a few kHz
�Puria and Allen, 1998�. Furthermore, modeling details of
cochlear and middle ear structures using lumped-parameter
methods may require Herculean efforts. For example, mod-
eling a delay in the TM would require a cascade of inductors
and shunt capacitors; a second example is the two-piston TM
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model of Shaw �1977�. On the other hand, in their favor,
such works have been intuitive and promising starting points
for many other models �Shaw and Stinson, 1981; Lynch et
al., 1982; Goode and Killion, 1987; Rosowski et al., 1990;
Puria and Allen, 1998�.

Distributed models may be used when a precise physical
model of the ear anatomy and geometry is required. Typi-
cally, those models would rely on a finite element analysis or
an asymptotic approach, and make sense when it comes to
studying complex anatomical structures, such as the eardrum
�Funnel and Laszlo, 1978; Rabbitt and Holmes, 1986; Funnel
et al., 1987; Fay, 2001; Fay et al., 2002�. A clear strength of
these models is that they can account for complex mechani-
cal and physical constraints by accurate �but complex� rep-
resentations of the eardrum behavior. Their main drawbacks
reside in the complexity to generate the mesh representing
the three-dimensional �3D� structure to be analyzed, their
computational time, and that they, like the lumped models,
are usually �but not necessarily� implemented in the fre-
quency domain.

Shaw’s early representation of the TM as a double-
piston source �Shaw, 1977; Shaw and Stinson, 1981� enabled
his model to produce a higher-modes response, improving its
utility up to 6 kHz. Even better results could be obtained
with more sophisticated models, but the number of param-
eters required to be accurate over an extensive range of fre-
quencies may be unacceptable. All of these models ignore
the simple physical source of higher order modes, namely
delay. An alternative approach was suggested by Puria and
Allen �1998�, who represented the TM by a simple distrib-
uted transmission line to account for an observed delay,
which they estimated from measurements. Using a parameter
optimization algorithm, they found excellent agreement with

cat impedance data from Allen �1986�, over the entire fre-
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quency range, up to 30 kHz. A major weakness of this TM
model is the lack of any impedance transformation, as re-
quired by an actual TM. The impedance transformation ratio
between the ear canal and the middle ear is known to be
around 30 �Bekesy and Rosenblith, 1951; Zwislocki, 1957�.
In fact, Puria and Allen �1998, page 3475� suggest a more
subtle distributed model of the TM, formed by discretizing it
into a set of concentric annuli of different impedances, rang-
ing from the canal impedance at the membrane periphery, to
the malleus impedance at its center, with the change in im-
pedance along the TM radius being mainly due to its increas-
ing stiffness. In the model presented here, these several ideas
are implemented, using a time-domain reflectance model of
the middle ear.

The interest of the present study resides in two main
points. First, it aims at a full development of the conceptual
TM model from Puria and Allen �1998�, using a spatially
dependent description of the impedance. Second, it uses a
time-domain implementation. When a system is described by
a lumped-parameter model, it is usually quite easy to derive
its frequency response and inverse-Fourier transform it as a
convolution in the time domain.

Distributed systems—such as the TM—are infinite order
and require a high order approximation to be dealt with prop-
erly. A time-domain description only requires interactions of
neighboring elements at each observation point and is there-
fore a computationally sparse representation since only near-
est neighbor elements are involved with each time step up-
date. Furthermore, nonlinear systems need to be studied in
the time domain; in fact, they usually have to be described
by a series of differential equations which need to be solved
to represent the system’s current state. Conversion from the
frequency domain to such a family of equations can be dif-
ficult, especially when the order of the differential equations
changes �e.g., at a horn’s cutoff frequency�. A direct time-
domain approach is ideal in such cases �Parent, 2005; Parent
and Allen, 2006� and has been used to model nonlinear phe-
nomena such as those occurring in the cochlea �Sen and
Allen, 2006�. Finally, previous works �Allen, 1986; Puria and
Allen, 1998� have concluded that the canal and the TM have
frequency-independent delays, not always nicely represented
by a cascade of mass and stiffness elements. Our approach is
to implement this delay in the time domain using transmis-
sion lines.

This study is largely about the TM and its dynamics and
response, as a variable impedance delay line and impedance
matching device. The model is introduced and its results are
compared to a range of experimental data. Since impedance
is known to be a reliable measurement of the middle ear
status �Allen et al., 2005�, the model parameters are adjusted
to fit experimental impedance-related data from Allen
�1986�. Finally, the model’s behavior is compared to ossicles
displacements measurements by Guinan and Peake �1967�.

II. BASIC ASSUMPTIONS

This section reviews our underlying assumptions regard-
ing acoustics and transmission lines, and provides our nota-

tion.
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Most transmission line elements can be approximated by
the circuit in Fig. 1 �Brillouin, 1953; Beranek, 1954; Kinsler
et al., 2000�. In the limit of small dx, this circuit represents a
distributed medium. This one-dimensional approach to the
middle ear is widely adopted �Rabbitt and Holmes, 1988;
Stinson and Khanna, 1994�. The pressure is denoted p�x , t�,
and the volume velocity u�x , t�, both variables depending on
their position along the propagation axis and on time. Let us
define the Laplace variable, s= i�, where � is the angular
frequency. In the frequency domain, state variables are de-
noted P�x ,s� and U�x ,s� and, assuming a one-dimensional
�1D� approximation, they are related by the impedance
z�x , t�↔Z�x ,s� and admittance y�x , t�↔Y�x ,s� �Brillouin,
1953�:

�

�x
�P�x,s�

U�x,s� � = − � 0 Z�x,s�
Y�x,s� 0

��P�x,s�
U�x,s� � . �1�

Assuming that no dispersion occurs, that the propagation is
plane and lossless, and that impedances are constant along
the small length dx, Eq. �1� leads to the classical d’Alembert
solution in the time domain �Kinsler et al., 2000�:

p�x,t� = est�Ae−�x + Be�x� , �2�

u�x,t� = est�Ce−�x + De�x� , �3�

where A, B, C, and D are four complex constants determined
by the boundary conditions of the propagation. The complex
wave propagation factor ��x ,s� is defined via the impedance
and admittance and given in the frequency domain by

��x,s� = �Z�x,s�Y�x,s� . �4�

The pressure and velocity can then be decomposed into a
positive �factor e−�x�, and a retrograde component �factor
e�x�, indicated by superscripts ±.

Based on theoretical arguments �Stinson and Khanna,
1994; Lynch, 1981, pp. 146–148�, Puria and Allen �1998�
have underlined that the vibration propagation in the ear can
be assumed to be plane below 25–30 kHz. In this case, p
and u components are related by the medium characteristic

FIG. 1. Circuit representation for an element of transmission line. The series
impedance is noted z�x , t� and the shunt admittance is noted y�x , t�, in terms
of their per unit length distributions �i.e., an impedance will be of the form
z�x , t�dx�.
impedance, z0�t�:
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p±�x,t� = z0�t� � u±�x,t� , �5�

where � represents convolution. After some algebra
z0�t�↔Z0�s� can be expressed in terms of the circuit element
impedances in the frequency domain

Z0�s� =
Z�s�
��s�

=�Z�s�
Y�s�

. �6�

In nondispersive fluids, frequency dependencies in Z�s�
=sM and Y�s�=sC cancel out so that Z0=�M /C is indepen-
dent of frequency. If the duct is presumed to be uniform, then
Eq. �6� is the expression of the transmission line’s character-
istic impedance. The solution of the D’Alembert equation
leads to the signal representation used in the model: two sets
of transmission lines, one representing the forward-going
wave and one representing the backward-going wave; both
lines actually model the sound wave volume velocity. The
use of this approach was first suggested by Kelly and Loch-
baum �1963� and is a well-known method in vocal tract
�speech� simulations.

In this work the “Kelly-Lochbaum” model is first ap-
plied to the ear canal. Since the canal is not perfectly
straight, some minor reflections may occur during propaga-
tion �Stinson et al., 1982; Stinson and Khanna, 1989; Stin-
son, 1990; Stinson and Khanna, 1994; Stinson and Daigle,
2005�, but shall be ignored. In addition, in an intact ear, the
canal opens at the pinna which has previously been modeled
by a horn radiation impedance �Rosowski et al., 1988�,
which for the human pinna has a cutoff that is presently
undetermined. However, our study uses the same conditions
as the measurements by Allen �1986�, i.e., with the stimulus
launched very close to the TM. It is therefore reasonable to
approximate the remaining part of the canal by a lossless
straight tube. Canal samples are then simply distributed
along its length, �xec apart, where �xec is defined by

�xec =
Cec

fs
, �7�

where the wave speed in the medium is Cec and the sampling
frequency fs takes into account spatial sampling constraints
of the ossicular chain �OC�. The canal length is approxi-
mated by the closest multiple of �xec, which for our choice
of parameters �discussed below� represents a relative error of

FIG. 2. Discretized tympanic membrane model for N=5. �a� Position of th
geometry of the membrane. �c� The one-dimensional model that we actually
the different widths of the stripes. The number of samples on TM is 2N−1
about 3%.
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III. METHODS

This work uses two modeling approaches. The TM, as
well as the ear canal, is represented by a distributed model
which takes its space-varying properties into account. It is
then attached into a classic lumped-parameter model of the
OC �Zwislocki, 1962; Puria and Allen, 1998�, as is explained
in the following sections.

A. Tympanic membrane

The model of the TM is the gist of this study. This
section describes basic anatomical aspects of this organ, then
explains how it is modeled and interfaced with the model of
the ear canal.

1. Anatomical description

We assume that the main role of the eardrum is to ensure
energy is efficiently transmitted from the ear canal to the OC.
The impedance of the OC is significantly higher than in the
canal �our study assumes a factor of 30 �Bekesy and Rosen-
blith, 1951; Zwislocki, 1957��, thus a direct interface would
result in a near-total reflection and large standing waves. The
TM has a conical funnel shape, its mouth toward the ear
canal and its throat toward the OC �umbo�. It is set at an
angle with respect to the ear canal axis which varies signifi-
cantly between species; for the cat it is roughly 40° �Fay,
2001, p. 17�, as shown in Fig. 2�a�. Lim �1968a,b�; Funnel
and Decraemer �1996� and others have detailed the geometry
of the TM, its microstructure, and its different layers of fi-
bers. The general idea is that these layers, along with the
double curvature of the funnel, are responsible for the mem-
brane stiffness �and impedance�. To ensure a proper imped-
ance matching, the TM characteristic impedance increases
continuously, starting from values close to the canal imped-
ance at its periphery, to much higher values at its center.
Propagation of the vibration is realized by transverse waves
on the TM surface, coupled to the compressional airborne
waves in the canal. Previous works have highlighted that the
TM brings an important delay; estimates from Olson �1998�
and from Puria and Allen �1998� have shown it is on the
order of 30–40 �s: thus, the TM can be seen as a delay line,
with a space-varying characteristic impedance to match the
air and OC waves. Given this view, the TM is similar to an

in the ear canal. �b� The decomposition in annuli, respecting the circular
derived from the previous one by applying mass conservation, indicated by
nine in this example.
e TM
use,

, i.e.,
acoustic horn. Note that this TM horn-like propagation does
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not occur in air, but rather as a transverse wave, which is a
significant difference when compared to previous theoretical
works on traditional acoustic horns �Beranek, 1954; Salmon,
1946a,b�.

2. Distributed model

The essence of this contribution is inspired primarily by
previous research on high-frequency middle ear models
�Shaw, 1977; Goode and Killion, 1987; Puria and Allen,
1998�. The first goal is to identify the key factors in the
interaction of the airborne canal compressional wave and the
membrane-borne TM transverse wave. Our second goal is to
implement a time-domain, reflectance-based �Kelly and
Lochbaum, 1963� model simulation of this “canal ⇔ TM”
wave interaction. Since this is the first attempt at such a
detailed interaction model, many shortcuts and approxima-
tions are necessary. It is hoped that any shortcomings and
limitations can be the work of future models.

Although it is neither circular nor symmetrical, the TM
can roughly be seen as a very shallow horn, and to a further
extent as a plane circular membrane if we neglect its depth
with respect to its diameter. This assumption is valid for the
range of frequencies we shall consider �0.3–15 kHz�, where
the wavelength is much larger than the TM dimensions; in
Fay �2001, p. 21�� the cat’s TM depth is estimated to be
around 1 mm while our study focuses on wavelength ranging
from 7 to 350 mm.

The TM is discretized into N concentric annuli, each
having a characteristic impedance that gradually increases,
from the periphery to the center. Figure 2�b� shows an ex-
ample of this first decomposition, for N=5; the figure shows
only a small number of annuli for the sake of simplicity:
actual simulations were obtained with N=71 �i.e., 14 times
more�. This representation, a significant approximation of the
TM, requires two-dimensional processing of the wave; in
fact, due to the tilt of the TM in the canal, different locations
on a given annulus will not contact the canal wave at the
same time. Properly modeling the synchronization of the dif-
ferent locations seems a difficult issue and so the model is
further simplified, with this circular model a conceptual step-
ping stone to the model shown in Fig. 2�c�.

In order to work in one dimension, the circular model
�Fig. 2�b�� is replaced by the rectangular model �Fig. 2�c��.
As the airborne canal compressional wave touches the TM,
the compressional transverse membrane-born wave is im-
pressed into the TM membrane. It is assumed that the im-
pedance match between the airborne sound and the trans-
verse elastic membrane-born sound is such that most �but not
all� of the energy is coupled into the membrane. If this were
not the case, all energy would be reflected back into the
canal, which is not the experimental observation: in actuality,
some energy is reflected, but most of it is propagated to the
OC. This coupling of energy requires the conservation of
mass and momentum �Kirchoff’s laws�. Thus the volume ve-
locity is scaled in the spatial domain to ensure mass conser-
vation, by taking into account the relative area of the annuli,
so that larger annuli �at the periphery� are given more weight
than central annuli. This results in the representation of Fig.

2�c�, where one stripe corresponds to one semiannulus in
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Fig. 2�b�. If Ai is the area of the stripe at index i, and ri its
radial position, referenced from the TM center, then

Ai =
��ri

2 − ri−1
2 �

2
� �ri�rtm, �8�

where �rtm is the annulus width. Note that the central stripe
has the same area as the central disk in the annular discreti-
zation. Thus, N annuli are associated with 2N−1 stripes on
the TM. Also, symmetrical positions with respect to the
umbo represent the same single annulus, hence they are char-
acterized by the same impedance. Note that it is an even
coarser representation than the circular discretization of Fig.
2�b�. Following sections of this paper show, however, that it
is relevant. In actuality, the impedance varies continuously
from the periphery to the umbo and so we assume that re-
flections occurring during transverse propagation on the TM
are negligible �this is the second of the limitations mentioned
above, that could easily be repaired, given the motivation�.
As a consequence, in this model, once the wave has been
transmitted onto the TM from the canal, it is not reflected
anymore and propagates unaltered to the umbo. On stripe i,
the TM is then modeled by a pure delay corresponding to the
distance to the umbo. Each stripe is then modeled by: 1� a
reflection coefficient from the interface with the canal, 2� a
pure delay, represented by a double �forward/backward� ra-
dial transmission line. With this representation, the stripes
are totally independent from each other and they do not in-
teract.

3. Reflection coefficient function

The main issue is to derive an impedance function for
the TM in order to associate each TM transmission line with
a reflection coefficient from its interface with the ear canal.
This derivation is obviously not trivial and is one of the key
contributions of this analysis. From Sec. II, each semiannu-
lus �stripe� of the membrane can be represented by a series
Z�s� and shunt Y�s� association, where Z�s�=�s �� is the
annulus density, which we use here because we consider an
infinitely small volume� and Y�s�=Cs �C is the annulus com-
pliance brought by the membrane’s curvature�. The basic hy-
pothesis of the model is to assume impedances are invariant
on the annulus, i.e., there is no assumed space dependency
other than that of the natural annulus area variation �a third
significant simplification�. The characteristic impedance of
the semiannulus number i is then, from Eq. �6�

z0
i =� �i

Ci
. �9�

We have not found empirical estimates of this compliance in
the literature, however another equivalent variable can be
more intuitively considered: the speed of sound, C, defined as

C =
s

��s�
=

s
�Y�s�Z�s�

=
1

��C
. �10�

Given an estimate of the density and speed profiles along the
membrane, one may then compute the TM impedance at
each location. Such profiles, however, are still not readily

available to the authors, and would be complex to implement
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�a good exercise for the future�. The impedance function
used in the model then relies on two more hypothesis: �1� the
wave speed is constant over the entire TM surface and �2�
the impedance profile is exponential. The constant speed hy-
pothesis may well be wrong: previous works strongly sug-
gest that it is not verified on the whole surface �Funnel and
Laszlo, 1978; Rabbitt and Holmes, 1986; Funnel et al., 1987;
Rosowski et al., 2006�. However, our model does not aim at
describing the subtleties of the TM 3D motion. Thus we have
assumed a constant speed derived from simple delay esti-
mates, the rationale being that such an approximation would
be nearly transparent from the input impedance point of
view, on which the whole work is based. As for the imped-
ance exponential profile assumption, we have previously
suggested that it is probable that some analogies do exist
between the traditional acoustic horn theory and our TM
model: we have then assumed a simple, classical profile to
start our derivation. Thus, the impedance of annulus i as-
sumes the form

z0
i = z0e−2Mri, �11�

where z0 is the impedance at the umbo, ri is the radial posi-
tion on the membrane, with the origin at the center, and M
the flair constant. It is defined from the radius and the im-
pedance transformer ratio of the TM:

M = −
1

2rtm
log	 1

Ratiotm

 . �12�

Our study assumes an impedance transformation ratio of 30
for the global system including the TM and the OC. It is
commonly assumed that the OC performs a transformation
due to its lever ratio, N�r�2 �Puria and Allen, 1998�, prob-
ably due to rotation about the incudo-malleolar �IM� joint
�Guinan and Peake, 1967�. The impedance transformation
realized by the TM alone is then

Ratiotm =
30

N�r
2 . �13�

Note that N�r represents the ratio of malleus to incus dis-
placement, which is why it is squared in the impedance ratio
computation. The TM reflection coefficient function Rtm/ec

can then be computed from the canal impedance, being
aware that it depends on its position along the axis; in fact,
the canal cross-section area gets smaller and smaller toward
its termination, due to the TM inclination. This model leads
to very large impedances at the canal termination, resulting
in reflection coefficients being close to −1 and too much
reflection at the interface. Thus, we have decreased the nega-
tive reflection coefficients �by 70%� to eventually obtain the
reflection function shown in Fig. 3. Note that it is asymmet-
ric, due to the TM inclination and the resulting impedance
variation in the canal.

Reflection coefficients are more intuitive to deal with
than impedances. That is why our approach was

1. to derive an impedance function on the TM,
2. then, to compute the corresponding reflection function
due to the interface with the canal, and finally
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3. to adjust the negative reflection coefficients via
experimentation.

It is difficult to justify our final adjustment in terms of TM
impedance, but the resulting reflection function seems physi-
cal, as is shown from simulations. In our analysis, the previ-
ous TM impedance description may not be not an accurate
model, but rather viewed as a pedagogical stepping stone to
obtain a relevant reflection function.

4. Interface with the ear canal

As in the ear canal model, the number of annuli N is
based on the sampling rate fs and from the wave speed on the
eardrum. Both theoretical considerations as well as delay es-
timates �Olson, 1998; Puria and Allen, 1998�, require that the
speed of sound on the membrane, Ctm, is slower than in the
canal by a factor we shall call q, provided in the table of
constants. Defining �rtm as the annulus width, i.e., the spac-
ing between positions on the TM, we then have

Cec = qCtm, �14�

�xec = q�rtm. �15�

As a consequence, it is impossible to line up every TM trans-
mission line input with a canal sample. Our solution to this
problem is to up sample to improve the density of samples
on the TM. The classic up-sampling method consists in pad-
ding with zeros and low-pass filtering �Oppenheim et al.,
1999�. This is not possible here because q is not integral. To
solve this problem of fractional delay, we perform two op-
erations. First, we up sample to reduce the size of a sample
delay. Second, we model the delay from each TM annulus to
the OC independently of the other sections, as summarized
in Fig. 4. At location i0 on the TM, the canal forward wave is
scaled by

wi0
=

Ai0

Atot
, �16�

where Ai0
is the area of stripe i0, computed from Eq. �8� and

Atot=�i=1
2N−1Ai is the TM total area. The wave propagates in

FIG. 3. Tympanic membrane reflection coefficient for a discretized mem-
brane with 71 annuli, i.e., 141 samples. Note the asymmetry in Rtm/ec, and
its maximum, at the TM center. At the canal termination, the canal imped-
ance is actually greater than the TM impedance, which results in negative
reflection coefficients.
air under the TM �first transmission line� and then hits the
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TM. At that point, it is split into two contributions: one trans-
mitted on the TM, and the other reflected into the canal. The
reflection coefficient, Ri0

, is different at each location on the
TM and has been derived in Sec. III. Since Ri0

is frequency
independent, transmitted and reflected contributions are sim-
ply computed by a multiplication:

� u−�x�
u+�x + dx� � = � Ri0

1 + Ri0

1 − Ri0
− Ri0

�� u+�x�
u−�x + dx� � . �17�

Both transmitted and reflected parts propagate in their re-
spective medium, toward the umbo or the canal termination
where they are summed up and fed to the single-transmission
line representation used in the OC and in the canal, respec-
tively. At the umbo, the impedance is matched with the OC
and we assume that waves are entirely output to the OC, and
that they do not propagate to the other side of the TM. This
is actually quite intuitive given the conical shape of the TM.

The backward-going wave, reflected from the OC, uses
a similar path in the opposite sense. Along the OC, we as-
sume a transverse propagation of the wave. As a conse-
quence, the OC applies a force on the TM superior region,
along the manubrium. Note that it is different from the inter-

FIG. 4. Interface between the ear canal and the tympanic membrane. Forw
heads, respectively. Rectangles represent transmission line delays with lengt
the last forward sample is multiplexed into the interface transmission lines an
Atot. The second section from the left represents transmission lines showin
different delays. At the interface between the canal �air� and the membrane
part, computed from the knowledge of the reflection coefficient on the TM �s
the umbo �right-most series of transmission lines� where finally, in the fifth s
canal/TM interface propagates in air back to the canal input. In the backwar
region, where it is in contact with the manubrium, and is multiplexed and sc
It propagates to the canal input using the same path than the forward-go
transmission line. Note that our actual implementation takes into account th
inferior region, but these �velocity� inputs are presently zeroed �far lower-ri
face between the TM and the canal: in the canal, we assume
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the sound wave to be compressional in air and in contact
with the TM over its entire surface. Due to the independence
of the annuli transmission lines, the inferior region of the TM
does not play a role in the backward propagation of the
wave. Note that the middle ear cavity space has a compres-
sional wave in air which will apply a pressure over the entire
TM. We have presently chosen not to model this phenom-
enon; however, our current implementation is ready for such
an extension. As indicated in Fig. 4, all inputs of the inferior
region for the backward-going wave are set to zero but could
receive a different input in a future development of the
model.

5. Power conservation

It is important to discuss power conservation at this
point, as it is necessary for the validity of the model. Two
operations are involved in the process of propagation: the
spreading of the wave from the canal termination �and from
the OC input� to the TM and the reflection junction at the
interface between the canal and TM transmission lines. The
spreading of the wave is designed to conserve volume veloc-
ity �the sum of the scaling factors is 1� and so the operation

nd backward propagation path are represented by solid and hollow arrow
portional to delay. In the first section from the left, at the canal termination,
led according to the ratio of the stripe area Ai over the total TM surface area
wave in air under the TM; due to the inclination of the drum, they bring

middle or third section�, the wave is split into a transmitted and a reflected
g. 3�. In the fourth section the transmitted part propagates on the TM toward
n, all contributions are added and then feed the OC. The reflected part at the
pagation, the wave coming from the OC is only input into the TM superior
according to the ratio of the stripes areas over the superior region area, Atot� .

ave. All contributions are then added before being input into the canal
re possibility of adding an input from the middle ear cavity space into the
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is equivalent to connecting a duct into a series of smaller
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ducts which cross section areas sum up to be equal to the
bigger duct cross section area, which does conserve power.
As shown by Bilbao �2001�, the reflection junction also con-
serves volume velocity. Thus the middle ear model, as imple-
mented, is lossless.

B. Ossicular chain

1. Anatomical description

The OC is an association of three bones coupling the
TM output and the cochlea oval window. Complex mechani-
cal interactions between them and their ligaments act as a
lever from the input of the chain to its output: as a conse-
quence, the impedance is increased with minimal sound re-
flection. Note that this is also an impedance matching pro-
cess, but lumped rather than distributed. This description as a
lever, while valid at low frequencies, breaks down at higher
frequencies due to the OC mass. A more refined high-
frequency description is beyond the scope of this study and
we have assumed, as in �Puria and Allen, 1998�, that the
lever ratio was constant over the entire frequency range of
interest.

After having propagated along the TM, the wave reaches
the umbo, where it is connected directly to the malleus
manubrium tip. In actuality, the manubrium is connected to
the TM along the entire length of its superior region. The
wave then propagates through the OC, and arrives at the
stapes footplate, a flat piece of bone embedded in the cochlea
oval window and fixed by the annular ligament. The foot-
plate moves in the oval window, transmitting the vibration to
the cochlea fluid, and in reverse for the retrograde wave. The
various lumped elements make up a transmission line, hav-
ing series mass and shunt stiffness, with a characteristic im-
pedance given by Eq. �6�.

2. Lumped-parameter OC model

The middle ear model shown in Fig. 5 is largely inspired
by the circuit presented by Puria and Allen �1998�, which in
turn is based on the work by Zwislocki �1957�. The lumped-
parameter circuit for the OC representation has proved to be
a modeling method which is easy to implement and accurate
�Brillouin, 1953; Zwislocki, 1957, 1962; Lynch et al., 1982;
Puria and Allen, 1998�. This method has been implemented
in the time domain, to be used with the TM model.

Generally, bones are represented by mass �inductance�
and ossicular joints by springs �compliance�: the OC is then
a sequence of mass/compliance shunt associations. The rea-
son for this is suggested by Puria and Allen �1998�: to in-
crease the bandwidth of lumped-parameter circuits, each
mass is coupled with a shunt compliance; in such an asso-
ciation, the two-port characteristic impedance does not de-
pend on frequency �the dependencies in s cancel out� and
compliance can be adjusted given the mass, so that the im-
pedance is matched. Each two-port is defined in the time
domain by the four frequency-dependent reflectance filters
described in the caption of Fig. 5, from which the outputs are
computed. A detailed description of these reflectance filters’
computation is not provided here, other than to say that the

“ABCD matrix” method �expression of output velocities
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from input velocities� and the bilinear transform were used.
Note how the OC lever ratio is represented by a transformer
between the malleus and the incus. Its ratio is denoted N�r

and the malleus and incus impedances are related by Zi

=N�r
2 Zm. The OC implementation details are provided in an

appendix.

IV. RESULTS

Various simulations are run with the model described
previously, and the results are compared to experimental
conditions, to check for consistency against normal as well
as pathological conditions. These comparisons are then used
to refine the model parameters, starting from �Puria and
Allen, 1998�. Once the parameters are established for each
section, no further changes are made to that section. At each
stage the model is compared to experimental data. Finally
the entire model is compared to the ossicles displacements
ratios of Guinan and Peake �1967�.

A. Impedance-related measurements

Impedance measurements by Allen �1986� are used to
determine the model parameters. Following the approach by
Zwislocki �1962�, simpler cases are studied first, such as the
blocked TM, and the disarticulated stapes, in order to reduce
the number of unknowns. The complexity of the model is
then incrementally increased, with the previously adjusted
parameters fixed.

1. Case I: Blocked tympanic membrane

The simplest case �Fig. 6� is the input impedance of a
blocked umbo, i.e., loaded by an infinite impedance at its
output �Rumbo=1�. This condition is necessary as it is used to

FIG. 5. Ossicular chain circuit representation. Each element is modeled by a
two port with four filters given by the matrix of Eq. �17�. The multipliers are
frequency-dependent, and thus must be implemented as convolutions in the
time domain. This is done using a bilinear transformation of the reflectance
function in the frequency domain. this operation converts the Laplace-
domain formula into its digital domain �Z—transform� equivalent. It re-
places the Laplace variables s by 2fs�1—z� / �1+z�, where fs is the sampling
rate. X2+/2− represents the filter computing the forward output from the back-
ward input, X1−/1+ the backward output from the forward input, etc. The
stapes/cochlea association is modeled by only one filter �Lynch et al., 1982�.
The OC lever ratio is represented by the transformer between the malleus
and the incus, its ratio is denoted N�r. Malleus impedance Zm is matched
with the TM central impedance, and incus impedance is equal to N�r

2 Zm.
adjust the TM reflection coefficients. The results of Fig. 6
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show the expected characteristics of a pure delay transmis-
sion line, corresponding to the residual canal and TM delay.
As a sanity check, this delay can be estimated from the out-
put of the TM. In Fig. 6�b�, the main pulse occurs at
40.43 �s. Subtracting the canal delay of 4.32 �s �length of
0.15 cm�, the TM delay estimate is 36.11 �s �estimate by
Puria and Allen �1998� is 35.7 �s for the ear on which this
model is based �p. 3476�. Their estimates for the other two
ears are 34 and 41 �s �p. 3472��.

The general shape of the output signal �Fig. 6�b�� can be
roughly approximated by two consecutive broad, dispersed
pulses: the first one �the greatest� corresponds to the propa-
gation of the wave coming from the superior region of the
TM, and is followed by the wave propagating on the inferior
region. Some noticeable “perturbations” occur periodically
in the fine “structure” of the signal, especially for the inferior
region wave. This is due to the discrete TM implementation
that was used: for each location on the TM, the correspond-
ing canal+TM delay is rounded to be a multiple of the sam-
pling period, which leads to the signal not being perfectly
continuous at the umbo. Those perturbations do not have any
influence over the general behavior of the system, as is seen
from the impedance plots. Actually, given a physical mea-
surement of the blocked TM response, one would not see the
discrete pulses, which are an artifact of the discrete nature of
the TM model, as any low-pass filter effect would remove
them. The time reflectance shows three broad consecutive
pulses. The first two pulses �at 18.19 and 41.44 �s, respec-
tively� show the same periodical perturbation that we previ-
ously discussed: the first one corresponds to the primary re-
flection of the wave on the superior region of the TM where
reflection coefficients are positive, the second one corre-
sponds to negative reflections in the inferior region. Eventu-
ally, the propagated signal is reflected by the blocked condi-
tion and appears as the third broad main pulse �at 71.26 �s�.

Figure 6�c� presents the reflectance magnitude: it reveals
a slight decrease of the high frequencies, above 15 kHz,
where it crosses 0.8. Since the line is lossless, this phenom-
enon is nonphysical. Our hypothesis is that the spreading of
the wave and the various delays at the canal/TM interface
lead to the reflected signal at canal input being similar to a
sequence of pulses �see Fig. 6�a��, which Fourier transform
rolls off at high frequencies. We believe that, in actuality, a
more complex phenomenon �or a combination of such� takes
place along the path of propagation which compensate for
this high-frequency loss. A probable candidate for such a
phenomenon is the interaction between the TM transmission
lines. We have assumed no reflection occurred on the TM,
which is an approximation: it is possible that such reflections
do exist and have a noticeable influence at high frequencies.
The model as implemented is therefore not accurate above
15 kHz. The impedance plot of Fig. 6�d� is characteristic of a
blocked transmission line with acute poles and zeros, since
no damping is assumed. The previously mentioned high-
frequency reflectance decrease is also visible in the imped-
ance magnitude’s less acute pole around 15 kHz, although

less obvious.

J. Acoust. Soc. Am., Vol. 122, No. 2, August 2007 P. Paren
FIG. 6. Tympanic membrane for the blocked-TM �clamped-umbo� condi-
tion: time-domain reflectance and TM output, reflectance and impedance
magnitudes. �a� Reflectance �time signal�, �b� TM output, �c� reflectance
magnitude, �d� impedance magnitude.
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2. Case II: Pathological ears

Figure 7 displays the results obtained with the model,
compared with experimental data from Allen �1986�, for the
disarticulated stapes �DS� experiment. In this case, the os-
sicular chain is cut free just before the incudo-stapedial �IS�
joint, corresponding to a short circuit �the load impedance is
zero�, resulting in Rincus=−1. The DS experiment is impor-
tant for adjusting the attic ligaments parameters, Cm and Rm,
as well as the malleus parameters, Mm, Cim, and Rim. The
intuitive behavior of the system is confirmed by the experi-
mental data �dashed line� and the results of the model �solid
line�. The impedance magnitude has acute poles and zeros,

FIG. 7. In this figure we compare the experimental data for the disarticu-
lated stapes �DS� �dashed� with two model simulations, the disarticulated
stapes �DS� �solid� and the drained cochlea �DC� �dotted�. In the left column
are four input impedance measures: �a� the impedance magnitude, �b� the
reflectance magnitude, �c� the impedance imaginary part, and �d� the imped-
ance phase. In the right column are: �e� the power transmittance, �f� the
reflectance phase, �g� the impedance real part, and �h� the reflectance group
delay. As discussed by Allen �1986�, removing the stapes reduces the stiff-
ness below 1 kHz by about a factor of 3, as shown in �a� for the model
calculations, but otherwise has only a small effect, especially above 5 kHz.
characteristic of low-loss standing waves. A significant dif-
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ference between the DS data �a� with respect to a normal
short-circuit transmission line, is the low-frequency stiffness
response below 1 kHz, confirmed by the phase response �d�.
Namely, the short circuit line has a zero at f =0, whereas the
middle ear, in short circuit, has a pole. Such a stiffness most
likely results from the attic ligaments. In the model this stiff-
ness results from Cm. The irregularity in the experimental
resistance in �g� is due to the inherent difficulty in measuring
a relatively small resistance in the presence of a large stiff-
ness �i.e., the impedance angle is very close to −90°�. Also
are shown the reactance �c� and reflectance phase �f�.

The reflectance is shown �b�. It is less than 1 because of
the OC losses. The power reflectance part �e� shows the rela-
tive low power transmitted into the disarticulated middle ear.
Below 2 kHz, the experimental data show a slight increase
of the transmittance from −10.5 to −8 dB between 300 and
700 Hz, then a plateau up to 1.5 kHz, and a sharp decrease
down to −12 dB at 2 kHz. This behavior is not captured by
the model which first decreases from −7.5 to −10 dB be-
tween 300 Hz and 1 kHz, and then increases up to 10 kHz.
However, the model remains within ±3 dB of the experimen-
tal data, except perhaps around the sharp minimum at 2 kHz;
�h� gives the latency of the reflectance, a measure of how
long the energy remains in the middle ear. The low-
frequency slope of the model is slightly smaller than for the
experimental data, highlighting that the model stiffness is
also slightly smaller, which is confirmed by the impedance
magnitude in this region. Around 10 kHz, the experimental
group delay shows a local maximum which is not present in
the model simulation: this discrepancy is probably due to the
least inaccuracy of the model at high frequencies, as sug-
gested from the blocked-TM results.

In the next stage of analysis we add back the stapes and
annular ligament, as well as the cochlea model. In Fig. 7
�dotted lines�, are shown model results from the case of the
drained cochlea �DC�. In this case the experimental data are
not shown, to reduce the clutter, and because the difference is
easily described. In the DC experiment, the entire OC is left
intact but the cochlear fluid is drained, resulting in a great
reduction of the cochlear load �stapes volume velocity is ba-
sically unloaded�. From the data of Allen �1986�, the canal
impedance is very similar to the DS experiment, except for
an increase in the stiffness below 1 kHz, due to the inclusion
of the annular ligament. This change can also easily be seen
in the real and imaginary parts of the impedance, in Figs.
7�c� and 7�g�. The difference is mainly visible at low fre-
quencies, and not at all above about 4 kHz, except for a
general decrease of the impedance magnitude because the
middle ear is better matched to the canal in this case. Note
how the resistance increases over most of the frequency
range. At 5 kHz this is difficult to see due to the large peak in
the resistance, associated with the pole in the impedance.

3. Case III: Intact ear

With the intact ear, the change from the two previous
cases is dramatic, although the main difference in the model
is the cochlear resistance, previously equivalent to an air
load. The consequence of this highly resistive final load,

matched to the middle ear output, is a dramatic damping of
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the standing waves, and the reflectance being globally much
lower, as shown in Fig. 8. From the impedance plot, the
damping is obvious since the phase of the impedance is close
to zero, above 1 kHz.

The overall match to the experimental data is generally
excellent. A more detailed study of the impedance real and
imaginary parts, Figs. 8�g� and 8�c� shows some small dis-
crepancies. The low-frequency slope of the impedance is due
to the stiffness of the system: it can be seen from Fig. 8�a�
that the model is slightly stiffer, which results in too high an
impedance and group delay. Above 1 kHz, experimental data
show that the resistance slightly increases, while the model is
less resistive �Fig. 8�g��. Also, the ear becomes slightly mass

FIG. 8. In this figure we compare the experimental data for the intact ear
�dashed� with the model simulation �solid�. In the left column are four input
impedance measures: �a� the magnitude impedance, �b� reflectance magni-
tude, �c� the impedance imaginary part, and �d� the impedance phase. In the
right column are: �e� the power transmittance, �f� the reflectance phase, �g�
the impedance real part, and and �h� the reflectance group delay. The intact
ear brings a major change with respect to the pathological ears: due to the
increased load impedance, standing waves are damped out and reflectance is
much lower, overall.
dominated, as can be seen from the phase plot in Fig. 8�d�
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and the imaginary part in Fig. 8�c�. This has obvious conse-
quences on the impedance and reflectance between 1 and
5 kHz: Figs. 8�a� and 8�b� clearly show the model is not as
well matched as the actual ear. Between 5 and 10 kHz, ex-
perimental data show resonances �standing waves� which are
not captured here. Above 10 kHz the ear is still slightly mass
dominated, while the model has a slightly negative imagi-
nary part for the impedance. Another serious discrepancy can
be seen in the reflectance phase in Fig. 8�f� around 1.2 kHz,
the measured phase suddenly drops from −0.3 to
−1 rad/ �2�� which can also be seen as the notch in the re-
flectance plot. More generally, the complex reflectance is
characteristic of a series of delayed pulses with different
phases and magnitudes, which results in the several notches
in the magnitude and the sawtooth-like behavior in the
phase. The model, however, remains smooth. This is even
more obvious in the group delay plot �Fig. 8�h�� which
shows a huge peak at 1.2 kHz, due to the phase discontinu-
ity. Also, the low-frequency group delay is nearly constant
while our simulation is progressively decreasing. This behav-
ior probably shows a shift of mode between the stiffness-
dominated low-frequency region and the mid-frequency
range which is more resistance dominated: the change is very
sharp in the actual ear while the model seems to smooth out
the transition. Modes transitions are quite difficult to appre-
ciate and our model is probably too simplistic to deal with
them accurately �Fay et al., 2006�.

Despite those numerous discrepancies, the model
matches the data fairly well, and the general behavior of the
ear is nicely captured. As the agreement is clearly less good
than with the pathological ears, a probable source for the
discrepancies is the lack of a cochlea model. Simulations run
with the stapes/cochlea filter on its own, using Lynch’s val-
ues give excellent agreement with his results. However, clear
differences appear when it is used with the global TM-OC
system since it requires significant adjustments to match ex-
perimental data, especially for the helicotrema parameters.
Our hypothesis is that the model by Lynch has been derived
using measurements made by direct stimulation at the stapes
footplate, hence bypassing the entire TM and OC. We have
tried to compensate such a major difference by multiplying
the impedances by RatioTM, which seems to be relevant for
most parameters except the helicotrema. We suspect that im-
pedance transformation is not the only process involved in
the interaction between the OC parameters and the cochlea
and it is possible that the current circuit is too coarse to deal
with such processes accurately.

B. Ossicles displacement ratios

An ultimate validation of the model is carried out by
comparing its results to data which have not been used at all
in its derivation. Guinan and Peake �1967� measured ratios
of displacements in the OC �slippage�. These are taken to be
classical references of the ear typical behavior. This compari-
son is shown in Fig. 9. In general, the model is in good
agreement with the experimental data, except for the high-
frequency phase of the incus to malleus displacement. This

discrepancy is actually the exact same as the one reported by
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Puria and Allen �1998�: since the model uses their param-
eters values, it is not too surprising and actually underlines
the consistency of our time-domain approach. This phase
difference merely represents a delay difference. It is possible
that an additional slippage factor is involved at the IM joint
which could have an influence on the phase. Such a factor
was used in the work by Puria and Allen �1998, p. 3471� but
its influence is not obvious and, in any case, it did not bring
any improvement here.

V. DISCUSSION

The model gives a robust match across all conditions.
However, some discrepancies in the middle ear model need
to be refined, especially at high frequencies, above 10 kHz.
Further refinements will require an improved cochlear load
simulation. This study leads to two significant results. The
first one is the relevance of the time-domain implementation,
a very intuitive and convenient approach, and, in our view,
certainly useful to model distributed and/or nonlinear sys-
tems, such as the TM �and the cochlea�. The second is the
added insight that the time domain provides into the basic
operating of the TM and its impedance-matching properties;
in our view this approach provides a different way to look at
the TM, and to appreciate how wave propagation occurs and
how the different delays interact.

A. Attic ligaments

Experimental data for the disarticulated stapes experi-
ment show the presence of a stiffness element in the ear,
before the annular ligament. It can be assumed that the IM-
and IS-joint ligaments do not add stiffness to the input im-
pedance, as the joints are compensated by the ossicles mass,
associated with them �matched-impedance transmission line
condition�. It is probable that this stiffness results either from
the TM, or the attic ligaments. Puria’s model—and conse-
quently this study—assumes the attic ligaments are respon-
sible for this low-frequency stiffness: such an assumption is
relevant and both models show reasonable agreement with
this hypothesis. It is open to question, however, until it is
experimentally verified; in fact, from the input impedance
point of view both approaches are quite equivalent and our
model is not able to partition between them. At the junction
between the umbo and the malleus and at the IM joint, the
bone movements are mainly rotational. Thus, it can be as-

FIG. 9. Ossicles displacement ratios: magnitude and phase. The model incus
to malleus displacement ratio is the solid line, the model stapes to incus
displacement ratio is the dashed line, symbols are cats 58, 65, 68, and 69
from Guinan and Peake �1967�. �a� Ratio magnitude, �b� ratio phase.
sumed that the ligaments are not significantly stretched: they
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mainly have a “ball-bearing”-like behavior, bonding the os-
sicles to the attic, rather than being stretched. Alternatively, it
seems reasonable to think the TM, with its many layers of
microfibers, brings stiffness to the system. This is entirely an
experimental issue.

B. Tympanic membrane cutoff

The impedance-matching role of the TM is widely rec-
ognized. Various hypothesis have been suggested to explain
this role, such as the TM/footplate area ratio, but the hypoth-
esis here is that this match is realized thanks to a radially
varying impedance. From theoretical studies, nonhomoge-
neous media lead to evanescent modes �Salmon, 1946a,b;
Leach, 1996�: below a certain cutoff frequency, no energy is
propagated because the propagation factor � is real �see Sec.
II�. To our knowledge, such evanescent waves propagation in
the middle ear has never been investigated. We feel this
problem needs further experimental and theoretical investi-
gation, with some priority.

VI. SUMMARY

This research has been focused on implementing a time-
domain model of the middle ear, and is a significant exten-
sion of the frequency domain model of Puria and Allen
�1998� in that the ear canal and the tympanic membrane are
represented by a parallel complex of delay lines; their inter-
face is complex due to the inclination of the membrane in the
canal, due to different speeds of sound in both media, and
due to the impedance mismatch between the two. Using a
particular spatial distribution, the transmission from one to
the other is simulated and the reflection is computed using an
exponential TM impedance distribution. Simulations show
good consistency with the model.

The TM system is then coupled to a time-domain ver-
sion of the previously published lumped-parameter model of
the middle ear �Zwislocki, 1962; Puria and Allen, 1998�.
Ossicles parameters are adjusted manually from published
values in order to match experimental data in three cases:
disarticulated stapes, drained cochlea, and intact ear. The fi-
nal adjusted model shows relevant similarities with
impedance-based and ossicle motion measures.

The model does an excellent job of capturing the es-
sence of the middle ear responses. Some discrepancies still
exist at high frequencies, especially in our highly simplified
cochlear load impedance, and underline the need for some
refinements.

Relative to previous studies, the new model offers two
main differences. While previous works have modeled the
middle ear in the time domain �Funnel and Laszlo, 1978;
Rabbitt and Holmes, 1986; Funnel et al., 1987�, as far as we
know, no such “wave” models have been published. Our
wave formulation allows for significantly more detail in the
TM model and for the simulation of wave propagation on its
surface. With respect to previous detailed models, the main
interest is to be able to directly observe the spreading of the
wave on the TM surface by modeling its time response. Sec-
ond, the TM distributed model enables better simulation of

its complex interface with the ear canal and its space-varying
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impedance distribution. We show that it interfaces to existing
OC models easily, and offers interesting agreement with ex-
perimental data. The apparent relevance of the space-varying
impedance hypothesis leads to the need for investigation of a
TM cutoff and any resulting evanescent modes.

APPENDIX: OSSICULAR CHAIN MODEL

Following are details about each section, as required to
implement the OC model.

1. Malleus and incus

Those two ports are in the form of Fig. 1, with

Malleus: Y =
RimCims

1 + RimCims
and Z = Mm,

Incus: Y =
RisCiss

1 + RisCiss
and Z = Mi.

The filters being of order greater than 1, final states of the
filters need to be stored from one time step to the other to
ensure proper signal processing. Note that this study has ap-
proximated the two ossicles characteristic impedance by
�M /C, i.e., neglecting the joint resistance in the computa-
tion, which is a good approximation at low frequencies �in
the long wavelength limit�. From Campbell �1922�, both two
ports are low-pass filters having a cutoff frequency of f0

=1/2��MC. For the chosen parameters of our simulations

Malleus: f0 = 17.71 kHz,

Incus: f0 = 238.3 kHz.

We can then conclude that the incus does not have much
influence over the propagating wave in the considered fre-
quency range. However, the malleus filter has probably a
slight influence over very high frequencies �over 15 kHz�,
which the authors have actually observed when playing with
the parameters: increasing the malleus mass does lower the
cutoff frequency and brings some perturbations to the input
impedance at very high frequencies.

2. Middle-ear attic ligaments

For the attic ligaments we include the anterior malleal
ligament, anchoring the manubrium and TM at the tympanic
ring to the attic, and the posterior incudal ligament, anchor-
ing the incus to the attic. These two ligaments are repre-
sented by a single compliance, in series with the malleus
mass. The attic ligaments account for the residual stiffness
for the short-circuit boundary condition corresponding to the
disarticulated stapes experiment �Puria and Allen, 1998�.

This two port is special because it does not have any
explicit shunt admittance: consequently, the usual “ABCD
matrix” method cannot be directly applied, because the
method requires the estimate of the characteristic impedance
for each section �i.e., Eq. �6��. The resolution of this has been
the addition of a shunt �rotational� mass, making the first two
port a high-pass filter �Campbell, 1922�. Our reasoning as to

why this element must be a mass is that every horn results
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from a spatially varying impedance having a cutoff, leading
to a high-pass behavior, presumably with a low cutoff fre-
quency �e.g., well below 1 kHz�. This mass element could
then be associated with the TM rather than the OC. This is an
interesting problem, related to that described in Rosowski et
al. �1988�. Its value is equally difficult to estimate, thus it has
been adjusted empirically: the authors have decided to sim-
ply decrease the cutoff frequency so that the mass does not
disrupt the system response. The mass is then set to very
high values, resulting in a cutoff frequency around 100 Hz.
This ensures a proper reflection of low frequencies, without a
noticeable attenuation above 1 kHz. This problem clearly re-
quires an experimental investigation, well beyond the scope
of the present modeling effort. The present implementation
of this two port is to be seen as a stepping stone toward the
resolution of the TM cutoff, rather than an actual solution.

3. Stapes and cochlear load

The cochlear impedance model is taken from Lynch et
al. �1982�, modeled by a cochlear resistor Rc, shunted by a
series mass and resistor M0 and R0, representing the heli-
cotrema. The round window is represented by a series com-
pliance Crw. The model published by Lynch et al. �1982� also
includes another mass, in series with the shunt association
which had little utility, and thus was dropped, as by Puria
and Allen �1991�. The final load is treated as a simple one
port, since the wave transmitted into the cochlea is not de-
veloped in the present analysis. A single frequency-
dependent reflection coefficient Rload�s� is derived from this
load impedance:

Zload�s� = Mss +
1

Cals
+ Ral +

Rc�M0s + R0�
Rc + M0s + R0

+
1

Crws
,

�A1�

giving a cochlear reflectance of

Rload�s� =
Zload�s� − z0i

Zload�s� + z0i

, �A2�

where z0i
is the incus characteristic impedance, �Mi /Cis; in

fact, since the stapes is included in the final load impedance,
the reflection coefficient must be computed using the incus
impedance, not the stapes. The reflected sample is obtained
by filtering the forward output of the incus two port. Note
that the round window compliance is not expected to have
much influence here since, according to both Puria and Allen
�1998� and Lynch et al. �1982�, its value is around 50 times
lower than the annular ligament compliance. It is included in
the model, however, because it is associated with an actual
physical element of the ear and could have a more serious
influence in further work on pathologic ears.

4. Sampling rate

With the lumped-parameter approach, delay is no longer
simulated by shifting samples along the transmission line,
but directly by filtering. It is then critical to set the filters
parameters properly so that the phase shift of each two port

is physically relevant. A critical factor is the sampling rate.
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Typical delays in the ossicles are in the order of the micro-
second �Puria and Allen, 1998�: proper handling of such
small delays requires high sampling rates, namely, in the
order of 2 MHz �more precisely, fs=1.96 MHz�. Once de-
rived, fs is used to compute the spatial sampling on the TM
and in the canal. This may be a detail where some future
simplification might occur. For now we remain detailed, so
that we can accurately simulate the fine structure of various
pathologies, rather than be fast �a possible goal of such fu-
ture models�.

5. Choice of parameters

Model parameters are summarized in Tables I and II.
Acoustical units are specified with superscript a, mechanical
units with superscript m, following the representation used
by Puria and Allen �1998�. The various middle ear model
parameters are inspired by the values from Puria and Allen
�1998�, and Lynch et al. �1982� for the cochlea model �i.e.,
M0, R0, Rc, and Crw�. Since these two studies do not take into

TABLE I. Model parameter values �1/2�.

Parameter Value

Sampling rate �Hz� fs=1.96�106

Ear canal:
Canal length �cm� Lec=0.15
Spatial period �cm� �xec=0.018
Speed of sound
�cm/s�

Cec=34,720

Canal diameter �cm� Dec=0.46
Canal cross-section
area �cm2�

Aec=0.17

Characteristic impedance �g/ �cm4 s�� Zec
a =245.0

Tympanic membrane:
TM diameter �cm� Dtm=0.72
TM area �cm2� Atm=0.41
Number of annuli N=71
Ratio of speeds q=3.4
Wave speed �cm/s� Ctm=10,212
Spatial period �cm� �rtm=0.005
Angle with respect to
canal axis �°�

�=40

Impedance ratio RatioTM=7.5
Impedance at TM output �g/ �cm4 s�� Ztmout

a =1837.3
Ossicular chain:
Middle ear cavity cross-section
area �cm2�

Ame=Atm=0.41
�0.41�

Ossicular chain lever ratio N�r=2 �2�
Malleus ligaments resistance
�dyne s /cm�

Rm
m=60 �30,2�

Malleus ligaments compliance
�cm/dyn�

Cm
m=1.90�10−6

�8.89�10−7 ,2.14�
Malleus ligaments inertial
mass �g�

Mmh
m =1.39

Malleus mass �g� Mm
m=0.0028 �0.0028�

IM-joint resistance
�dyne s /cm�

Rim
m =7.50 �7.50�

IM-joint compliance �cm/dyn� Cim
m =2.91�10−8

�2.87�10−8 ,1.01�
Malleus impedance �g/ �cm4 s�� Zm

m=308.86
account the TM impedance transformation ratio, RatioTM,
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their values have been scaled by this factor before being used
in our model. Note that for the two joint compliances, Cim

and Cis, the formula used in our work �Eq. �6�� differs
slightly from the ones mentioned by Puria and Allen �1998,
Eqs. 16 and 17�, because we do not allow an IM joint slip-
page factor, and our IM joint is located on the left side of the
OC transformer. Our approach, as in �Puria and Allen, 1998�,
is to start from the earlier values and then to adjust them to
best match experimental impedance data of Allen �1986�.
The parameters were adjusted manually, and the influence of
each one is intuitively understood. In Tables I and II, previ-
ously published �scaled� values are indicated in brackets,
along with the relative variation we have applied to get the
values that are actually used in the model �not indicated
when values are equal�. In most cases, this factor lies be-
tween 0.5 and 2, which shows that our model is consistent
with the previous analysis. Only helicotrema parameters had
to be decreased significantly to obtain a proper match, as
discussed further.

It is interesting to question the difference between the
malleus and incus mass. The values reported here are very
close to the ones from Puria and Allen �1998�. In their paper,
they compare their malleus mass to experimental measure-
ments by Lynch �1981�; Lynch et al. �1994�: their mass is
smaller by a factor of around 4. According to them, “this
factor might be accounted for by the smaller size of animals
used in �their� study in comparison to those of Lynch et al.
�1994�. Another explanation might be the differences in the
radius of gyration between Lynch’s measurements and those
in �their� study.” However, the ratio of malleus mass to incus
mass is consistent with the values from Lynch. No reference
is made to the stiffness values. It is probably relevant to say
that the incus is smaller than the malleus, hence the differ-
ence of mass.

Allen, J. B. �1986�. “Measurement of eardrum acoustic impedance,” in Pe-
ripheral Auditory Mechanisms, edited by J. B. Allen, J. L. Hall, A. Hub-

TABLE II. Model parameter values �2/2�.

Parameter Value
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