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ABSTRACT

In this thesis, complex wideband acoustic immittance (WAI) measurements of the middle ear are
studied. The body of work presented here has three major components: (1) design of a hearing
measurement probe and probe tip, (2) extraction of the effects of the residual ear canal (REC)
and estimation of the WAI at the tympanic membrane (TM), and (3) analysis of the TM-WAI to
characterize middle-ear conditions. Major contributions of this thesis include a pole-zero modeling
method to estimate WAI at the TM (Robinson et al., 2013), and analysis of changes in WAI with
static negative middle-ear pressure (NMEP) (Robinson et al., 2016). Additionally, an extensive
review of the literature and theory underlying WAI measurements is presented, using both time-
and frequency-domain analyses.

(1) Measurement probe: The design of a WAI measurement probe and probe tip was conducted
with Mimosa Acoustics (Champaign, IL). The inclusion of this work in the present document
is primarily limited to the probe-tip project. Two-port network modeling techniques were
applied to describe and extract the effects of a variable-area probe tip on WAI measurement.
This procedure is effective up to at least 3-5 [kHz], depending on the quality of the probe
calibration.

(2) Reflectance factorization: Complex reflectance data may be fit to a pole-zero model, and
factored into its all-pass and minimum-phase parts, representing the lossless ear canal and
complex middle-ear reflectance respectively (Robinson et al., 2013). This provides an intu-
itive analysis of reflectance, which is computationally efficient and adaptable to non-ideal
(e.g. bandlimited or noisy) data. A detailed comparison is performed between this method
and other TM-WAI estimation methods in the literature.

(3) Negative middle-ear pressure (NMEP): Thompson et al. (2015) trained eight subjects with
normal middle-ear function to induce consistent NMEPs, quantified by the tympanic peak
pressure (TPP), to study the effects of NMEP on distortion-product otoacoustic emissions.
WAI data were also collected in that study, and are analyzed in this thesis using the reflectance
factorization method (Robinson et al., 2016). For the 8 ears presented here, NMEP has the
largest and most significant effect across ears from 0.8 to 1.9 [kHz], resulting in reduced power
absorbance by the middle ear and cochlea. On average, NMEP causes a decrease in the power
absorbance level for low- to mid-frequencies, and a small increase above about 4 [kHz]. The
effects of NMEP on WAI quantities, including the absorbance level and TM impedance, vary
considerably across ears. The complex WAI at the TM and fitted model parameters show
NMEP effects consistent with an increased stiffness in the middle ear, which could originate
from the TM, tensor tympani, annular ligament, or other middle ear structures.
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LIST OF SYMBOLS

Presented here is an incomplete list of symbols used in this thesis, grouped by topic.

A note about subscripts. Immittance quantities (e.g. impedance, admittance, reflectance)
without a subscript are typically those measured at the probe location. Subscripts may denote a
quantity at another location, such as Ztm, the impedance at the tympanic membrane. Subscripts
may also denote separation into parts, for instance, Γ = ΓmpΓap where subscripts indicate the
minimum-phase and all-pass components, respectively. Other common subscripts include ‘s’ for
Thévenin source parameters (e.g. Ps, Zs) and L for a transmission-line load (e.g. ZL).

A note about double usage. Every effort has been made to use distinct symbols to represent
distinct quantities. In some cases, this is virtually impossible, and one must consider the subscript
or context of the quantity in question.

Time-frequency analysis
f Frequency in [Hz]

s = σ + jω Complex frequency

σ Real component of the complex Laplace frequency

t Time

τ Group delay

ω = 2πf Frequency in radians (imaginary component of the complex Laplace frequency)

Operators
~∇ Gradient

∇2 Laplacian

F , F−1 Fourier transform and its inverse

= Take imaginary component

L, L−1 Laplace transform and its inverse

< Take real component
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CHAPTER 1

INTRODUCTION

The middle ear is a critical part of the auditory pathway. Malfunction of the middle ear can lead
to conductive hearing loss (CHL), a problem with acoustical or mechanical transmission of sound
to the cochlea. This type of hearing loss is very different from sensorineural hearing loss (SNHL),
which is characterized by damage along the auditory pathway to the brain, beginning with the
‘hair cell’ sensory receptors in the cochlea. Many tests of hearing deliver acoustic stimuli to the
cochlea via the ear canal. Therefore, assessment of the middle ear is key to differentiating SNHL
from CHL. Furthermore, the accuracy and variability of such hearing tests depend upon delivery
of acoustic stimuli to the cochlea. CHL or individual variation in the middle ear can cause the
actual level of a stimulus in the cochlea to vary from target. Using acoustic measurements made in
the ear canal, sound transmission to the cochlea, including specific dysfunctions of the middle ear,
may be modeled. This thesis describes techniques for making and modeling such measurements.

Figure 1.1 shows the outer, middle, and inner ear. Generally, the middle ear may be defined as
beginning at the eardrum and ending at the oval window of the cochlea. Pressure waves propagate
down the ear canal to the eardrum, or tympanic membrane (TM), and cause it to vibrate. This
vibration drives the ossicular chain (malleus, incus, and stapes) via the connection of the malleus
to the TM at the umbo. The ossicles function as a mechanical lever system, delivering an amplified
pressure wave to the cochlea via the stapes footplate at the oval window. For low frequencies (up
to 2-4 [kHz]) the footplate of the stapes moves approximately like a piston (Voss et al., 2000),
creating pressure waves in the fluid of the cochlea. All components of this system, including the
cochlea itself (Wegel & Lane, 1924), may be modeled as a series of transmission lines. Therefore,
we may study this system by measuring its acoustic input impedance as a function of frequency.

1.1 Conductive hearing loss (CHL)

Numerous dysfunctions of the middle-ear system can result in CHL. Research has shown that
CHL can have a frequency-specific pattern, depending on its physical cause (Feeney, Grant, &
Marryott, 2003; Allen et al., 2005). Middle ear pathologies can affect all age groups and have a
variety of causes. Some conditions associated with CHL are given in Table 1.1. Examples of CHL
in infant, child and adult populations are given in the following paragraphs. Many audiometric
measurements cannot bypass the middle ear,1 thus a correct diagnosis of middle-ear function is
needed to distinguish SNHL from CHL.

One important example of this need arises in newborn hearing screening programs. Such pro-
grams are intended to identify candidates for cochlear implants as early as possible, since implant
efficacy diminishes rapidly with age (Fallon et al., 2008). As infants are unable to cooperate with

1Some exceptions include bone-conducted stimuli, and measurement of the auditory brainstem response (ABR).
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Figure 1.1: The human ear (including outer, middle, and inner ear), which
may be modeled as a series of transmission lines. Image edited from
http://www.kidsent.com/pediatricent/ear infections/index.html

traditional perceptual threshold testing, an objective measure of hearing function is required. Typ-
ically an acoustic measurement is taken, which detects stimulus-dependent otoacoustic emissions
(OAEs) from the cochlea. These low-level signals are indicative of a healthy cochlea. However,
fluids associated with birth (i.e. amniotic fluid) can lead to temporary CHL. This disrupts the
round-trip travel of the acoustic stimulus and OAEs, causing false positive detections of hearing
loss. Hunter et al. (2010) found that the distortion-product (DP) OAE pass rate increased dras-
tically in the hours following birth, from about 50% within the first 20 hours to about 85% by 36
hours, as transient cases of middle-ear fluid are resolved. Thus, identification of transient CHL
cases reduces the need for more extensive audiometric tests, and frees necessary clinical resources
for infants with SNHL, or persistent middle-ear infections.

Otitis media (OM), any inflammation of the middle ear, is especially common in infants and
children. OM or Eustachian tube dysfunction (ETD) can be accompanied by a fluid effusion or
middle-ear pressure (MEP), which can impede the motion of the ossicles and cause temporary
CHL. Otitis media with effusion (OME) can cause a hearing loss of 27 [dB] on average, or up to 60
[dB] depending on the fluid level (Bluestone & Klein, 2007). This can become a serious problem,
as chronic CHL due to middle-ear effusion can impair or delay speech and language abilities in
children (Bluestone & Klein, 2007). High effusion levels or large middle-ear pressures can also
lead to eardrum bursts (TM perforation2). Finally, chronic or recurring OM can, in some cases,
be related to biofilm, a bacterial colony on the middle-ear side of the TM. Biofilm interferes with
the motion of the TM, causing a conductive hearing loss, and is resistant to antibiotic treatments
(Nguyen et al., 2010, 2012, 2013). Some of these conditions may be visible3 during an otoscopic
examination, while others may require acoustic measurements to differentiate or diagnose.

Adult populations can be afflicted by a wide range of middle-ear pathologies (Feeney, Grant, &

2Sometimes a perforation is created on purpose, to relieve pressure or fluid in the middle ear; this surgical procedure
is called a myringotomy.

3The healthy TM appears clear, whereas OM, fluid, biofilm, or pressure may cause it to appear inflamed, cloudy,
or retracted.
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Table 1.1: An incomplete list of middle-ear conditions that can affect sound transmission from the
ear canal to the cochlea.

Condition Description

Bacterial Biofilm A bacterial colony on the middle-ear side of the eardrum,
which hinders the vibration of the TM. It can result from
and/or cause chronic recurring otitis media (OM).

Middle-Ear Pressure Static pressure in the middle ear space, which can occur due
to Eustachian tube dysfunction (ETD), or as a mild transient
condition in normal middle ears. Negative pressure (NMEP)
is more common than positive (PMEP).

Ossicular Discontinuity Partial or complete separation of the ossicle joints, which
most commonly occurs at the incudo-stapedial joint.

Otitis Media (OM) Any inflammation of the middle ear. When accompanied by
fluid in the middle-ear space, it is OM with effusion (OME).

Otosclerosis Abnormal bone growth in the middle ear, which most com-
monly occurs at the stapes (this can result in ‘stapes fixa-
tion’).

Superior Semicircular Canal
Dehiscence (SSCD)

A condition of the inner ear, involving a thinning or absence
of part of the temporal bone. This can cause CHL and may be
detected via ear-canal measurements (Nakajima et al., 2012).

Tympanic Membrane (TM)
Perforation

A hole in the eardrum. Acoustically, this behaves as a
Helmholtz resonator (Voss et al., 2001).

Marryott, 2003). In adults, extreme noise trauma (e.g. battlefield explosions) can cause both TM
perforation and ossicular discontinuity (Rronenberg et al., 1993), a separation of the ossicle joints.
Otosclerosis, abnormal bone growth in the ossicles, causes the ossicular chain to stiffen and can even
immobilize the stapes (this is called ‘stapes fixation’). This causes CHL due to an impedance change
in the middle ear (Shahnaz et al., 2009). Pathologies such as otosclerosis, ossicular discontinuity
and superior semicircular canal dehiscence (SSCD) can be difficult to diagnose using traditional
audiological methods (Nakajima et al., 2012). This can lead to surgical exploration of the middle
ear, which is expensive and unnecessary for some patients. For instance, SSCD cannot be remedied
by middle ear surgery.

1.2 Middle-ear assessment

Conductive hearing loss may be identified by an ‘air-bone gap,’ which is a difference in the audiomet-
ric thresholds for sound conducted in air versus sound conducted in bone. Bone-conducted stimuli
are typically delivered via a ‘bone driver’ oscillator placed on the mastoid bone or forehead (Weece
& Allen, 2010). Aside from invasive (i.e. surgery) and non-invasive visual diagnoses, non-invasive
acoustic techniques have been adopted to identify the causes of CHL. These non-invasive tests are
based on measurements of the acoustic impedance of the ear, and quantities that may be derived
from it. The set of impedance-related quantities, including impedance, admittance, reflectance,
conductance, and so on, is often collectively referred to as the acoustic ‘immittance.’ Table 1.2
describes multiple impedance-based tests and quantities currently used in clinical audiometry or

3



Table 1.2: Impedance-based tests and quantities for describing sound transmission in the ear canal
and middle ear. All tests are made with a probe that is acoustically or hermetically sealed in the
ear canal.

Test/Quantity Description

Tympanometry Impedance is measured at a single low frequency
(e.g. 226[Hz]) while the static ear canal pressure is
varied (e.g. over a ±400 [daPa] range; often swept
from 200 to -400 [dPa]).

Multi- or High-Frequency Tympa-
nometry

Impedance is measured as a function of pressure at
multiple frequencies, such as 226 [Hz], 600 [Hz], 1
[kHz], or 2 [kHz]. High-frequency (e.g. 1 [kHz]) tym-
panometry is sometimes used in infants due to low-
frequency compliance effects of the soft tissue in the
ear canal. However, tympanograms are more compli-
cated to interpret at higher frequencies (Vanhuyse et
al., 1975).

Wideband Acoustic Reflectance or Im-
mittance (AR, WAI)

Impedance is measured over a broad range of frequen-
cies (e.g. 0.2 to 8 [kHz]). This can be measured at
ambient pressure, or with static pressure applied in
the ear canal.

Wideband Tympanometry WAI is measured as a function of pressure (e.g. over
0.2 to 8 [kHz] and 200 to -400 [daPa]). Immittance
quantities are typically represented as a 3D contour
plot.

Forward Pressure Level (FPL) The forward-going pressure at the probe (Eq. 2.32),
calculated from WAI. This can be used for in-the-ear
(ITE, or in situ) calibration.

research.
All immittance-based measurements share a common obstacle for middle-ear assessment. The

stimulus must be transmitted to the middle ear and back via the ear canal, which can have variable
effects on the measured impedance across populations, individuals, and probe insertions. The two
primary methods of accounting for this variability are

1. controlling the ear canal pressure while measuring the impedance, and

2. estimating and removing ear-canal delay in the reflectance domain.

Method 1 requires a hermetic seal while method 2 may be performed under both pressurized and
ambient pressure conditions. Impedance, reflectance, and the acoustic effects of the ear canal will
be described further in the following chapters. In this thesis, the portion of the ear canal between
the probe and TM will be referred to as the residual ear canal (REC).

Tympanometry, developed for clinical use in the 1960s (Shanks & Shohet, 2009), measures the
admittance of the TM at a single frequency as the ear-canal pressure is varied. This procedure
accounts for the impedance effects of the ear canal by assuming that the TM becomes rigid at
extreme pressures (method 1). Low-frequency tympanometry can estimate middle-ear pressure
because the impedance is minimum (admittance is maximum, or ‘peak’) when the pressure on both

4



sides of the TM is equal. In normal adult ears at 226 [Hz], the admittance tympanogram has a single
peak at the tympanic peak pressure (TPP), and decreases as the pressure increases or decreases
from the TPP. Tympanometry can often detect CHL, but cannot always differentiate between
middle ear conditions (Nakajima et al., 2012). In part, this is because middle-ear malfunctions
can have many different frequency-dependent effects on the measured impedance, not necessarily
at 226 [Hz]. Additionally, the assumptions of ‘method 1’ to account for the REC are not generally
valid above 500 or 600 [Hz]. Still, some middle-ear conditions may be identified by considering
tympanogram shape as a function of pressure (Shanks & Shohet, 2009).

Multiple- or ‘high’-frequency4 tympanometry (e.g. 660 [Hz], 1 [kHz], 2 [kHz]) is sometimes used
to obtain impedance information over a broader range of frequencies. However, tympanograms have
much more complicated shapes at higher frequencies, requiring detailed interpretation (Vanhuyse
et al., 1975). In normal adult ears at low frequencies, the admittance is dominated by its imaginary
part (the susceptance). However, this will not necessarily be true in pathological ears or at higher
frequencies. Therefore, Vanhuyse et al. (1975) consider the susceptance and conductance (real part
of the admittance) tympanograms separately. Tympanometry at 1 [kHz] is also used to assess
middle-ear function in newborns and infants, since it produces more reliable tympanogram pat-
terns than low-frequency tymponometry (Shanks & Shohet, 2009; Prieve et al., 2013). In general,
tympanometric measurement and interpretation in infants are problematic because the ear-canal
walls are much more compliant in this population.5 In some cases, pressurization of the ear canal
can even cause it to collapse. Measurements made at ambient pressure, discussed next, may avoid
some of these complications.

Wideband acoustic immittance (WAI) can be measured at ambient pressure using a probe that
is acoustically (but not necessarily hermetically) sealed in the ear canal. These ‘wideband’ mea-
surements are typically made from 0.2 to 6 [kHz], or higher in frequency (e.g. up to 8, 10, or 15
[kHz]). The measurable bandwidth depends on accurate Thévenin calibration of the measurement
probe. This calibration typically depends on probe geometry and transducer selection, as will be
discussed later in this thesis. A subject of research for decades, WAI has been used in a growing
number of clinical studies in the past 20 years, and demonstrates promise for differentiating be-
tween various types of conductive hearing loss (Møller, 1960; Rabinowitz, 1981; Allen, 1986; Keefe
et al., 1993; Voss & Allen, 1994; Feeney, Grant, & Marryott, 2003; Allen et al., 2005; Nakajima et
al., 2012; Feeney et al., 2013). An important factor in the advent of clinical reflectance technology
was the ability to estimate the contribution of the REC to WAI. In the reflectance domain, the
ear-canal effect is approximately that of a lossless delay (Voss & Allen, 1994; Voss et al., 2008;
Abur et al., 2014), therefore, the magnitude reflectance or power reflectance may be used to study
clinical populations across ears and probe insertions. This is the simplest example of method 2 for
removing the effects of the REC.

Studies have shown systematic changes in the power reflectance for various pathological condi-
tions of the middle ear, including disarticulation or fixation of middle ear joints, tympanic mem-
brane (TM) perforations, or degrees of fluid in the middle-ear cavity (Feeney, Grant, & Marryott,
2003; Allen et al., 2005; Shahnaz et al., 2009; Nakajima et al., 2012; Voss et al., 2012; Prieve et
al., 2013). However, more analyses and normative databases are required before WAI can reach its
full clinical potential (Feeney et al., 2013). Additionally, more sophisticated algorithms and models
may be employed when implementing method 2 to remove the effects of the REC (Robinson et al.,

4Note that 1 [kHz] is not actually that high, as the human hearing range extends out to 15 or 20 [kHz].
5However, Prieve et al. (2013) suggest that the ear-canal effect may be less variable across newborns and infants

due to less variability in ear canal volume, presumably due to similar body size. They found that subtracting the
tympanogram tail from the peak to account for the ear canal did not change their statistical results.
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2013; Rasetshwane & Neely, 2011; Lewis & Neely, 2015). Many of these methods are intended to
estimate the complex immittance at the eardrum, rather than just the magnitude reflectance. The
ability to analyze the complex immittance of the eardrum is expected to improve differential di-
agnoses. Furthermore, improved characterization of the REC acoustics will decrease measurement
variability across ears and probe insertions for multiple types of insert-earphone hearing measure-
ments. This thesis presents a comparison of methods to remove the REC effect and estimate the
middle-ear immittance.

Wideband tympanometry, reviewed in Keefe et al. (2015), combines the elements of tympanom-
etry and WAI. The pressure is swept over range similar to that of tympanometry (e.g. 200 to -400
[daPa], or sometimes 300 to -600 [daPa]), and instead of measuring the impedance at a single fre-
quency for each pressure, a wideband impedance measurement is made. Keefe et al. (2015) discuss
how eardrum immittance may be estimated; typically, a combination of methods 1 and 2 is em-
ployed. Advantages to this technique include the ability to analyze the results by frequency or by
ear-canal pressure. Disadvantages of such measures include increased complexity of the acquired
data, the need to pressurize the ear canal, and the effects pressurization can have on subsequent
measurements due to preconditioning of the TM (Burdiek & Sun, 2014). Clinical efficacy is still be-
ing established; for example, Keefe et al. (2012) did not find an advantage to adding pressurization
in detecting CHL in children with OME.

WAI measurements may also be used for in-the-ear (ITE) calibration of hearing measurements,
such as otoacoustic emissions6 (OAEs) or pure-tone audiometry (PTA). ITE calibration is a natural
extension of OAE probe functionality. OAE measurement requires the probe to include a micro-
phone, thus the only significant extra step required for ITE calibration is Thévenin calibration of
the probe. Then, a WAI measurement is made to calibrate the probe in situ. This is not an extra
step, since all OAE measurements require calibration, either ITE or in an ear simulator, to set the
stimulus level. From the measured WAI, the steady-state forward-traveling pressure wave may be
calculated. Forward pressure level (FPL) calibration has proven to be the most effective method for
characterizing ear-canal standing waves, and setting the target stimulus level at the TM (Scheperle
et al., 2008; Lewis et al., 2009; Scheperle et al., 2011; Souza et al., 2014). Furthermore, WAI mod-
els of the ear canal for reverse transmission of OAEs (the ‘emitted pressure level,’ EPL) improve
test-retest reliability of OAE measurements at high frequencies (Charaziak & Shera, 2017). FPL
calibration also improves reliability of PTA (McCreery et al., 2009; Lapsley Miller et al., 2017).
Currently, most PTA testing is done with headphones and earphones; therefore, widespread adop-
tion of FPL calibration for PTA would require the use of probes containing microphones instead
of just loudspeakers.

1.3 Focus of this thesis

Clinical uses of WAI include estimation of the middle-ear impedance (diagnosis of TM and ossicle
function) and characterization of the acoustic effects of the residual ear canal and middle ear (ITE
calibration). This thesis explores these topics. First, the desired characteristics and design of a
clinical measurement probe are described. Effects of variable-area horns on immittance measure-
ments are studied in the context of a measurement probe tip, which extends beyond the point
of Thévenin calibration. Then, multiple methods for removing the effects of the ear canal and

6The most common types of OAE measurements include distortion product (DP), stimulus frequency (SF), and
transient evoked (TE) OAEs. Measurement of DPOAEs requires two loudspeakers, due to loudspeaker harmonic
distortion.
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estimating the middle-ear impedance are analyzed. Finally, the middle-ear impedance is studied,
using measurements of WAI in normal ears with ambient and negative middle-ear pressure.
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CHAPTER 2

BACKGROUND: ACOUSTIC IMMITTANCE OF THE EAR

Wideband acoustic immittance (WAI) measurements can be made with a probe containing at least
one microphone and loudspeaker (Møller, 1960; Allen, 1986). The design and characteristics of
such a probe will be described in the following chapter. The probe can be either acoustically or
hermetically sealed in the ear canal; in this thesis, all measurements are made at ambient ear-canal
pressure. Note that the probe must be calibrated in order to make immittance measurements. The
calibration procedure is designed to find the Thévenin equivalent ‘source’ parameters of the probe,
given the loudspeaker voltage.

To make a measurement, a wideband stimulus such as a steady-state periodic chirp is played
via the loudspeaker. The acoustic signal is partially reflected, in a frequency-dependent manner,
by the ear. The largest reflection will come from the tympanic membrane (TM) and middle ear.
However, any changes in impedance along the ear canal (such as area changes) will also cause
sound reflections. The probe microphone signal records these reflections, and may be used to
calculate acoustic ‘immittance’ quantities, including the impedance, reflectance, admittance, and
so on. The relationships between these immittance quantities will be described in this chapter,
along with the typical immittance of the human ear. Understanding the relationships between
immittance quantities is key to modeling the effects of the residual ear canal (REC) and estimating
the immittance of the middle ear.

In this thesis, plane-wave propagation is assumed for measurements and models of the middle-
ear immittance. The assumption is that, in a constant-area horn waveguide, only the 0th order
plane-wave mode propagates below some cutoff frequency. Above this cutoff frequency, waves are
evanescent, and their amplitudes decay rapidly (e.g. over a few millimeters). The cutoff frequency
is determined by the dimensions of the horn. For example, in a cylindrical horn the cutoff frequency
is given by

fc =
1.841c0

2πa0
, (2.1)

where a0 is the radius of the cylinder (Pierce (1981), p. 317).1 In the ear canal, which is approx-
imately cylindrical with an average diameter of 7.5 [mm], fc ≈ 27 [kHz]. For smaller diameters,
such as a sound delivery tube or port leading to the microphone, this frequency only increases.

Note that acoustic variables discussed in the following sections may be defined either in the time
or frequency domain. It is important to always be aware of which domain is under consideration.
Typically, uppercase variables are used to describe frequency-domain signals and lowercase variables
are used to describe time-domain signals. Often these variables are also a function of location. For

This chapter is loosely based on “Middle-ear reflectance: Concepts and clinical applications” by J. B. Allen,
S. R. Robinson, J. A. Lapsley Miller, P. S. Jeng and H. Levitt in Scientific Foundations of Audiology: Perspectives
from Physics, Biology, Modeling, and Medicine (p. 1-18) by A. Cacace, E. de Kleine, A. Holt, & P. van Dijk (Eds.).
Copyright c©2016 Plural Publishing, Inc. All rights reserved. Used with permission.

1The constant 1.841 is the first root of the Bessel function derivative d
dx
J1(x).
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measurements in the ear canal, we define x = 0 as the probe location2 and x = L as the location
of the TM ‘load.’

2.1 Acoustic impedance and reflectance

Appendix A gives a detailed description of the acoustics principles relevant to the analyses in this
thesis. These include wave propagation in cylindrical and variable-area horns, with and without
viscous and thermal energy dissipation. Note that the following derivation of reflectance assumes
that the horn in question is uniform, at least in the region where reflectance is defined.

2.1.1 Definition of reflectance

When sound is presented via a probe sealed in the ear canal, the pressure plane wave travels
toward the TM, where it is reflected back toward the probe in a frequency-dependent manner.
The probe also reflects the sound back toward the TM, and so on ad infinitum. Therefore, the
forward- and reverse-traveling pressure waves discussed here are those at steady state. The following
transmission-line description of the reflectance is discussed in detail in Section 3.1.2.

The average pressure across a cross-sectional slice of the ear canal is denoted as Ψ. The forward-
traveling pressure wave will be denoted as Ψ+(f, x) [Pa]. This wave is a function of both frequency
f [Hz] and location x [m], and has units of pascals [Pa]. Similarly, the reverse-traveling pressure
wave is denoted Ψ−(f, x). At any location x in the ear canal, the total steady-state pressure Ψ(f, x)
is defined as

Ψ(f, x) = Ψ+(f, x) + Ψ−(f, x). (2.2)

Note that the pressure is a scalar quantity. However, any change in the pressure results in a force,
which is a vector quantity; this force leads to the motion of air particles. A related variable is the
acoustic volume velocity V(f, x), defined as the velocity of an infinitesimally thin cross-section of air
particles any point x in the canal. It may also be decomposed into forward- and reverse-traveling
components, as

V(f, x) = V+(f, x)− V−(f, x). (2.3)

The volume velocity is a vector quantity, which accounts for the change in sign of the retrograde
wave in Equation 2.3.

The complex pressure reflectance is defined as

Γ(f, x) =
Ψ−(f, x)

Ψ+(f, x)
, (2.4)

the ratio of reverse- to forward-traveling pressure waves. The acoustic impedance is defined as the
ratio of the total pressure to the total volume velocity,

Z(f, x) =
Ψ(f, x)

V(f, x)
. (2.5)

The acoustic admittance is given by Y (f, x) = 1
Z(f,x) , and various other WAI quantities may be

readily calculated from Γ(f, x), Z(f, x) and Y (f, x). Assuming the canal area is of uniform area at

2The front end of the probe. This is also the point of Thévenin calibration.
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the measurement point, the complex reflectance and impedance are related by

Γ(f, x) =
Z(f, x)− z0(f, x)

Z(f, x) + z0(f, x)
and Z(f, x) = z0(f, x)

1 + Γ(f, x)

1− Γ(f, x)
, (2.6)

where the function z0(f) is the characteristic acoustic impedance3 of the ear canal. If the ear canal
has a locally varying area function at the measurement point, this formula is not exact, as will be
described in Section 3.2.

In the case of lossless wave propagation through a cross-sectional area A0,

z0(f) = r0 =
ρ0c0

A0
(lossless case), (2.7)

where ρ0 ≈ 1.2 [kg/m3] is the density of air at 20 [oC], c0 ≈ 343 [m/s] is the speed of sound. Note
that the density will decrease and the speed of sound will increase as the temperature increases.4 In
a human ear, the ear-canal area A0 will vary with distance x along the canal, thus z0 will also vary.
The exact area of the ear canal at the measurement location is unlikely to be known. However,
variation due to the use of an incorrect area to define z0 has been shown to have a relatively small
effect on reflectance and impedance measurements, compared to individual variation across ears
(Keefe et al., 1992; Voss & Allen, 1994). Therefore, it is often sufficient to use the average area of
the adult ear canal, about 44.2× 10−6 [m2] (corresponding to a diameter of 7.5 [mm]), to calculate
A0.

0.5 1 5 10
−60

−50

−40

−30

−20

−10

0

10

20

Frequency [Hz]

R
at

io
 in

 [d
B

]

7.5 [mm] diameter

0.5 1 5 10
−60

−50

−40

−30

−20

−10

0

10

20

Frequency [Hz]

R
at

io
 in

 [d
B

]

0.75 [mm] diameter

0.5 1 5 10
−60

−50

−40

−30

−20

−10

0

10

20

Frequency [Hz]

R
at

io
 in

 [d
B

]
0.075 [mm] diameter

 

 

|z
0
|/r

0

ℜ (z
0
)/r

0

ℑ (z
0
)/r0

Figure 2.1: Difference between the complex characteristic impedance z0 and real ‘surge’ resistance
r0 for different diameters. Except in the case of extremely narrow tubes (e.g. diameter less than
0.1 [mm]), z0 ≈ r0.

Expressions for the characteristic impedance z0 including viscous and thermal losses are given
in Section A.2.2. For a tube of relatively large diameter (e.g. greater than 0.1 [mm]; see Fig. A.1),

3Note that acoustic impedance is defined as the ratio of the average pressure to the volume velocity. This is
different from a specific acoustic impedance, which is defined the pressure over the particle velocity. The specific
acoustic impedance of air is ρ0c0.

4The human body temperature is 37 [oC]; the temperature in the ear canal is expected to be closer to body
temperature than the environmental temperature.
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the characteristic impedance is given by

z0(f) = r0 +H(f), (lossy case, ‘large’ diameter) (2.8)

where the function H(f) is a complex series in f−1/2. Figure 2.1 relates the complex, frequency-
dependent z0 to the real constant r0 for various diameters. For ‘large’ diameters such as the ear
canal, the imaginary component of z0 is small, and the real component is approximately equal to
r0. For very small diameters below about 0.1 [mm], viscous and thermal losses contribute much
more to the characteristic impedance, and it is no longer simply related to r0. This can be seen in
Section A.2.2, considering the ‘small’ diameter approximation of z0.

2.1.2 Time-frequency properties of the reflectance and impedance

The reflectance by definition must be strictly causal (γ(t) = 0 for t < 0+), meaning that there can
be no reflection exactly at t = 0 (Claerbout, 1985). The impedance must also be causal (z(t) = 0
for t < 0), meaning that the pressure can depend only on current or past values of the volume
velocity. The characteristic impedance must be causal as well. Note that, due to their causal
nature, impedances should be analyzed using the Laplace transform. Therefore, the impedance
z(t)↔ Z(s) and characteristic impedance ζ0(t)↔ z0(s) may be expressed in terms of the complex
Laplace frequency s.

The relationship between these quantities may be analyzed in the time domain, given the fact
that the reflectance must be strictly causal (γ(0) = 0). In the time domain, Equation 2.6 becomes

z(t) ? [δ(t)− γ(t)] = ζ0(t) ? [δ(t) + γ(t)]

z(t)− z(t) ? γ(t) = ζ0(t) + ζ0(t) ? γ(t)

z(t)−
∫ t−

−∞
z(τ)γ(t− τ)dτ = ζ0(t) +

∫ t−

−∞
ζ0(τ)γ(t− τ)dτ, (2.9)

where the boundaries of the convolutions (∞ to t−) are due to the fact that γ(t − τ) = 0 when
τ ≥ t. Due to the causal property of both impedances, at t = 0 these convolutions become∫ 0−

−∞
z(τ)γ(−τ)dτ =

∫ 0−

−∞
ζ0(τ)γ(−τ)dτ = 0, (t = 0) (2.10)

because z(τ) = ζ0(τ) = 0 for τ < 0. Therefore, at t = 0

z(0) = ζ0(0). (2.11)

Lossless case. In the lossless case, the characteristic impedance is a constant r0, and

ζ0(x, t) = r0(x)δ(t)↔ z0(x, f) = r0(x). (2.12)

Therefore, the impedance at t = 0 is given by

z(0) = ζ0(0) = r0δ(0). (2.13)

The surge impedance (Campbell, 1922) is defined as the amplitude of the δ(t) component of the
time-domain impedance. Therefore, r0 may be referred to as the ‘surge impedance’ or ‘surge
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resistance.’

Lossy case. When viscous and thermal losses are considered, the characteristic impedance be-
comes a complex function of frequency, as shown in Section A.2.2. The time-domain characteristic
impedance remains real, but is no longer just a delta function.

Considering Sections A.2.2 and A.4.5, when the radius is large compared to the visco-thermal
boundary layer,

z0(x, s) = r0(x)

[
1 +

α′−1

a(x)
√
s

+
α′−2

a2(x)s
+

α′−3

a3(x)s3/2

]
, (2.14)

where the a(x) is the radius of a cylindrical horn and α′k = αk(ρ0/µ0)k/2 are constants defined in
Appendix A for a ‘large’ diameter tube. If the ratio of the tube radius to the boundary layer is
sufficiently large, a(x) may be generalized to

a(x) =
2A(x)

Π(x)
, (2.15)

where Π(x) is the horn perimeter at location x (Richards, 1986).
The Laplace transforms of the

√
s terms are given as follows:

1√
πt
u(t)↔ 1√

s
, u(t)↔ 1

s
, 2

√
t

π
u(t)↔ 1

s3/2
, (2.16)

where u(t) is the Heaviside step function, which means that these functions are causal. Therefore,
in the time domain the characteristic impedance becomes

ζ0(t) = r0δ(t) + r0

[
α′−1

a(x)

1√
πt
u(t) +

α′−2

a2(x)
u(t) +

α′−3

a3(x)
2

√
t

π
u(t)

]
. (2.17)

Thus r0 is still the ‘surge resistance,’ as it is the magnitude of the δ(t) component. Note that
the time-domain characteristic impedance diverges as t → ∞, which gives an unstable result for
ψ±(t) = v±(t) ? ζ0(t). Keefe (1984) derived the frequency-domain expression for z0(x, s) using an
asymptotic expansion for the ‘large-r’ case. He states that a property of asymptotic expansions
is that the approximation can degrade as more terms in the series are included. In this case, it
appears this has very serious implications in the time domain.

When the radius is small compared to the boundary layer, the characteristic impedance becomes
(Sec. A.2.2)

z0(x, s) = r0(x)

[
α′1a(x)

√
s+

α′−1

a(x)
√
s

]
, (2.18)

which requires the Laplace transform pair

d

dt

[
L

{
1√
s

}]
= − 1

2
√
πt3/2

u(t)↔
√
s = s

[
1√
s

]
. (2.19)
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In this case, the time-domain characteristic impedance becomes

ζ0(t) = r0

[
− α′1a(x)

1

2
√
πt3/2

u(t) +
α′−1

a(x)

1√
πt
u(t)

]
. (2.20)

Thus for the ‘small-r’ case where visco-thermal losses play a larger role, there is no δ(t) (‘surge’)
component of the characteristic impedance.

2.1.3 Utility of the magnitude reflectance

Compared to other immittance quantities, the reflectance quantifies sound transmission in the ear
somewhat more intuitively. This is because the magnitude reflectance describes the ratio of reflected
to incident pressure, while its phase codifies the latency of the pressure reflections (e.g., the depths
at which reflections occur). Additionally, the ratio of power absorbed by ear (including the ear
canal, middle, and inner ear) may be calculated. Acoustic power is proportional to the square of
pressure, so the ratio of power reflected is ΓΓ∗ = |Γ|2. Thus, the ratio of power absorbed by the
ear is 1− |Γ|2. In the healthy middle ear, most of the power absorbed by the ear is transmitted to
the cochlea (Rosowski et al., 1986). Various conductive hearing loss (CHL) conditions may cause
more power to be reflected from the middle ear, or to be absorbed by the middle ear instead of
transmitted to the cochlea (Lewis & Neely, 2015).

For the middle ear, the magnitude reflectance |Γ| and the power reflectance |Γ2| will never be
greater than 1. For a passive system, the real part of the impedance must always be non-negative
(Brune, 1931; Van Valkenburg, 1964). The corresponding constraint on the reflectance magnitude
is proved as follows:

0 ≤ Re{Z(f)} =
Z(f) + Z∗(f)

2

0 ≤ z0

2

[
1 + Γ(f)

1− Γ(f)
+

1 + Γ∗(f)

1− Γ∗(f)

]

0 ≤ z0

2

[
(1 + Γ(f))(1− Γ∗(f)) + (1 + Γ∗(f))(1− Γ(f))

(1− Γ(f))(1− Γ∗(f))

]

0 ≤ z0

[
(1− |Γ(f)|2)

|1− Γ(f)|2

]
. (2.21)

For this inequality to hold, it is required that |Γ| ≤ 1. It follows that a purely imaginary impedance
(Re{Z} = 0) must have a reflectance magnitude of 1. If the reflectance measured in any passive sys-
tem is found to be greater than 1, there may be errors in the Thévenin calibration, or nonlinearities
in the loudspeaker(s) or microphone.

2.2 Effects of the ear canal: A simple model

The clinical utility of WAI depends on its ability to characterize and separate the ear-canal and
middle-ear effects on the complex immittance measured at the probe. The residual ear canal (REC)
dimensions between the probe and TM have a large impact on these measurements. As REC
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dimensions vary across ears and probe insertions, it is necessary to estimate the TM immittance
in order to diagnose middle-ear pathologies. Furthermore, characterization of sound transmission
(magnitude and phase) in the ear canal and middle ear can improve the accuracy of stimulus
delivery for other tests of hearing. In this section, a simplified model of the ear canal and middle
ear is presented to describe the effects of the REC on WAI measurements.

(a) (b)

Figure 2.2: Measuring WAI in the ear canal. (a) Probe placement in the ear canal, (b) a simple
model for immittance measurements in the ear canal.

The ear canal may be most simply modeled as a rigid-walled cylindrical tube, shown in Fig-
ure 2.2b. The tube is terminated in a load Ztm(ω), the lumped impedance of the middle ear
beginning at the TM. This model assumes plane-wave propagation, which is valid up to about 27
[kHz] depending on the speed of sound and the area of the canal (Voss & Allen, 1994; Pierce, 1981).
Above this frequency, higher-order modes can significantly contribute to the measured pressure.
This is typically not a problem, since the human hearing range is about 20 [Hz] to 15 or 20 [kHz].
Note that in Figure 2.2 the TM is approximated as perpendicular to the canal, even though it is
actually approximately 45 to 60 degrees from perpendicular (Stinson & Lawton, 1989). Nonplanar
modes exist close to the TM due to its angle and vibration, but they are well attenuated within a
few [mm] (Voss & Allen, 1994). Thus, it is convenient that measurements are typically made at a
canal location relatively far from the TM.

Take the distance between the probe tip and the TM to be L. The acoustic impedance at any
point along the cylindrical horn is related to the impedance at the TM by the acoustic transmission
line relation

Z(x, f) =
Ψ(x, f)

V(x, f)
=

Ψ+(x, f) + Ψ−(x, f)

V+(x, f)− V−(x, f)

=
Ψ+
tme
−κ(x−L) + Ψ−tme

κ(x−L)

V+
tme
−κ(x−L) − V−tmeκ(x−L)

, (2.22)

where Ψ±tm and V±tm are the forward- and reverse-traveling pressure and volume-velocity waves at
the eardrum. A nice derivation of this equation is given by Staelin et al. (1998) for an electrical
transmission line. The complex wavenumber κ depends on the cross-sectional dimensions of the
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horn when visco-thermal losses are present. For lossless transmission κ is purely imaginary,

κ =
s

c
= j

2πf

c
(lossless propagation). (2.23)

Note that even a hard-walled cylinder is expected to have some viscous and thermal losses (W. Ma-
son, 1928; Keefe, 1984).

Using the relations in Equation 2.22 and the definitions presented in the previous section, it is
possible to estimate the effect of a REC of length L on the measured impedance and reflectance. The
goal is to determine the difference between immittance measured at the probe and the immittance
of the middle ear at the TM. Starting from Equation 2.22,

Z(x, f) =
Ψ+(x, f)

V+(x, f)

[
1 + Ψ−(x,f)

Ψ+(x,f)

1− V
−(x,f)
V+(x,f)

]
=

Ψ+(x, f)

V+(x, f)

[
1 +

Ψ−tm
Ψ+
tm

e2κ(x−L)

1− V
−
tm

V+
tm

e2κ(x−L)

]

= z0(f)
1 + Γ(x, f)

1− Γ(x, f)
= z0(f)

1 + Γtm(f)e2κ(x−L)

1− Γtm(f)e2κ(x−L)
, (2.24)

where z0(f) does not vary with location x because the cylinder is of uniform area. Examining this
relationship at the probe location (x = 0),

Z(0, f) = z0(f)

[
1 + Γ(0, f)

1− Γ(0, f)

]
= z0(f)

[
1 + Γtm(f)e−2κL

1− Γtm(f)e−2κL

]

= z0(f)

[
(Ztm(f) + z0(f))eκL + (Ztm(f)− z0(f))e−κL

(Ztm(f) + z0(f))eκL − (Ztm(f)− z0(f))e−κL

]

= z0(f)

[
Ztm(f) cosh(κL) + jz0(f) sinh(κL)

jZtm(f) sinh(κL) + z0(f) cosh(κL)

]
. (2.25)

Thus, according to this simplified model, the impedance and reflectance measured at the probe
location in the ear canal are related to the impedance and reflectance at the TM by

Γ(f) = Γtm(f)e−2κL (2.26a)

Z(f) = z0(f)

[
Ztm(f) + jz0(f) tanh(κL)

z0(f) + jZtm(f) tanh(κL)

]
. (2.26b)

Note that in this thesis, if x is not specified or there no subscript, it may be assumed that the
quantity in question is at x = 0 (the probe location). From Equation 2.26b, it follows that the
variable REC length between subjects makes it difficult to compare impedance measurements at
the probe. However, the reflectances Γ(f) and Γtm(f) only differ by a phase delay.

The reflectance phase, ∠Γ(f), is a measure of signal latency. The ‘group delay’

τ(f) = − d

dω
∠Γ(f) =

−1

2π

d

df
∠Γ(f) (2.27)

is a frequency-dependent measure of round-trip signal delay in the ear canal and middle ear.
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Assuming a lossless ear canal of uniform area,

Γ(f) = Γtm(f)e−j2πfτrec (2.28a)

∠Γ(f) = ∠Γtm(f)− 2πfτrec (2.28b)

τ(f) = τtm(f) + τrec (2.28c)

τrec = 2L/c0. (2.28d)

Thus the cylindrical ‘ear canal’ in this model contributes a pure delay τrec that is constant for
all frequencies. Note that for a REC of varying area (i.e. a human ear canal) the ear canal will not
contribute a pure delay. The effects of a variable-area horn may be modeled using two-port network
techniques as described in Appendix B. A variable-area ear canal can also affect the magnitude
reflectance measured at the probe, and the severity of these effects depends on the size of the area
change, and the relative delays of the ear canal and the load impedance (in this case, the middle
ear).

Taking the magnitude of Equation 2.28a yields

|Γ(f)| = |Γtm(f)| (2.29)

for a lossless, cylindrical ear canal. Equation 2.29 indicates that, if the simple model is a good
approximation for the REC effect, the reflectance magnitude does not depend on probe depth in
the ear canal. This has proven to be a reasonable assumption for adult ears (Voss & Allen, 1994;
Voss et al., 2008; Abur et al., 2014), which allows for comparisons across ears and probe insertion
depths. Deviations from this relationship may increase with REC length due to the compliance of
the ear canal tissue (Voss et al., 2008), particularly when the probe is seated outside of the bony
portion of the ear canal. In many ears, canal compliance losses are relatively small compared to the
variability of measurements across ears. Equation 2.29 is a standard assumption for WAI analysis
of the middle ear, which often considers only the power reflectance or absorbance level.

Given the measured Γ(f) and an estimated canal length L, one may estimate Γtm(f) and Ztm(f).
Voss and Allen (1994) used the complex reflectance to estimate the acoustic properties of the TM,
by removing pure delay from the reflectance phase. However, as the eardrum is expected to contain
a significant amount of delay (Puria & Allen, 1998; Parent & Allen, 2010), it is difficult to determine
how much to remove. Furthermore, when the area of the canal depends on position (as in a real
ear canal), estimating the immittance of the middle ear at the TM requires two-port modeling
techniques. This subject will be addressed in detail in Chapter 4.

The ear-canal standing wave. A standing wave is created when the forward and retrograde
pressures in the ear canal are out of phase, nearly canceling each other and creating a deep minimum
in the total pressure (Eq. 2.2). The frequency at which this cancellation occurs is dependent upon
the round-trip delay from the probe source (x = 0) to the TM (x = L), and varies significantly
across probe insertions. To understand the standing-wave effect, consider the cylindrical ear-canal
model presented previously in this section. The retrograde pressure at the microphone is related
to the forward pressure by Ψ−(0, f) = Ψ+(0, f)Γtm(f)e−j2πfτrec . Therefore, the total pressure at
the microphone is

Ψ(f) = Ψ(0, f) = Ψ+(0, f)(1 + Γtm(f)e−j2πfτrec). (2.30)

16



If Γtm is real-valued, this quantity is at its minimum when e−j2πfτrec = −1 (i.e. fτrec = n/2 for
odd integers n). Any delay in Γtm will modify the locations of these minima.

Below 8 kHz, insert-earphone measurements are typically only affected by the lowest standing
wave frequency, corresponding to a distance of one-quarter wavelength. The one-quarter wavelength
standing wave occurs in a tube that is closed at one end and open at the other. For an insert-
earphone configuration, the eardrum represents the closed end of the tube, while the earphone
represents the open end due to the earphone sound source. For example, a standing wave at 6
kHz corresponds to a distance of about 14 [mm]. This distance is not well-defined for in-the-ear
measurements due to the angled eardrum, and any eardrum delay (Puria & Allen, 1998) may
make the earphone-eardrum distance appear longer, decreasing the standing wave frequency. For
example, Parent & Allen (2010) attribute 24 [µs] of one-way delay to the TM (the speed of sound
is much slower on the TM than in air), and 9 [µs] to the ossicles. This gives a round-trip delay of
66 [µs], which corresponds to a length of about 11 [mm] for sound traveling in air.

2.3 Immittance of the human middle ear

Major physical mechanisms that contribute to the measured immittance of the middle ear include
the TM, ossicle chain, middle-ear cavities, and cochlear load. As described in the previous section,
the acoustic impedance measured in the ear canal is dominated by a standing wave related to the
ear-canal length. Therefore, this section will show experimental measurements of the reflectance
magnitude, and refer to models to describe the complex impedance.

2.3.1 Immittance of the middle ear

The impedance of the middle ear is stiffness-dominated below about 1 [kHz]. This stiffness causes
the impedance to be higher, and the magnitude reflectance to approach 1 at low frequencies. It
originates from multiple middle-ear features, including the ossicle joints and ligaments, TM, and
middle-ear cavities. The middle-ear stiffness maybe be altered by a number of pathologies, or by
the acoustic reflex5 (Feeney & Keefe, 2001; Feeney, Keefe, & Marryott, 2003).

In the mid-frequency range (e.g. 1 to 5 [kHz]), the middle-ear impedance is more closely matched
to the ear-canal impedance, causing a broad minimum in the power reflectance (Parent & Allen,
2010; Rosowski et al., 2012). In this region, and at higher frequencies, immittance quantities tend to
have variable local minima and maxima, due to the transmission characteristics of individual ears.
At high frequencies, the impedance may be mass-dominated, but it is difficult to measure precisely
due probe insertion and transducer frequency response (Parent & Allen, 2010). Additionally,
area variation in the ear canal may have an effect on high-frequency minima and maxima of the
impedance and reflectance (Lewis & Neely, 2015).

As previously described, the magnitude reflectance measured at the probe location in the ear
canal |Γ(f)| = |Γ(0, f)| is assumed to be approximately equal to the magnitude reflectance at the
TM |Γtm(f)| = |Γ(L, f)|, while its phase is highly variable across ears. Therefore, many clinical
studies have focused on the power reflectance, |Γ(f)|2. Because this value is between 0 and 1,
expressing the ratio of power reflected from the middle ear, it is often expressed as a percentage.

A related quantity, the power absorbance, 1− |Γ(f)|2, is a measure of middle-ear energy trans-
mission. Assuming low-loss transmission in the ear canal, it approximately quantifies power ab-

5The acoustic reflex is a contraction of the stapedius muscle in reaction to a high stimulus level.

17



0.25 0.5 1 1.5 2 3 4 6 8 10
−20

−15

−10

−5

0

Frequency [kHz]

10
lo

g 10
(1

−
|Γ

|2 ) 
[d

B
]

Examples: Absorbance Level

0.25 0.5 1 1.5 2 3 4 6 8 10

20

40

60

80

100

Frequency [kHz]

|Γ
|2  [%

]

Examples: Power Reflectance

 

 

B&K4157
S1
S1 Retest
S7
S7 Retest
22.5 [mm] Cavity

Figure 2.3: Absorbance level (left) and power reflectance (right) for 2 normal ears (with retest mea-
surements) from Voss & Allen (1994). Additionally, a measurement of the B&K 4157 ear simulator
from that study is presented, where the ear simulator is intended to mimic the response charac-
teristics of the average adult ear. Finally, a measurement of a rigid cylindrical cavity (22.5 [mm]
long) is shown. From “Middle-ear reflectance: Concepts and clinical applications” by J. B. Allen,
S. R. Robinson, J. A. Lapsley Miller, P. S. Jeng and H. Levitt in Scientific Foundations of Au-
diology: Perspectives from Physics, Biology, Modeling, and Medicine (p. 10) by A. Cacace, E. de
Kleine, A. Holt, & P. van Dijk (Eds.). Copyright c©2016 Plural Publishing, Inc. All rights reserved.
Used with permission.

sorption by the middle ear and cochlea (Allen et al., 2005; Rosowski et al., 2012). In the case of
some middle-ear conditions, power can be absorbed or dissipated in the middle ear, and does not
reach the cochlea. The power absorbance expressed in decibels, 10 log10(1− |Γ(f)|2), is referred to
as the “power absorbance level,” and has a distinctive shape for normal ears. This quantity has
also been referred to as the “transmittance” (Allen et al., 2005). In normal ears, it is expected to
be closely related to the middle-ear transfer function.

Figure 2.3 shows example power reflectance and absorbance level measurements from normal
ears (Voss & Allen, 1994), an ear simulator (the Brüel & Kjær 4157), and a rigid cylindrical cavity.
The cavity has a power reflectance close to 100% across all frequencies, as expected, with some
small losses due to viscous and thermal effects of air flow along the cylinder walls (Keefe, 1984).
For normal ears, the absorbance level has a distinctive shape, with a rising slope below about 1
[kHz], a flat region with small individual variations between about 1 and 5 [kHz], and a falling
slope at high frequencies.

2.3.2 Middle-ear models

The complex acoustic impedance of the middle ear is traditionally modeled using electrical net-
works. Resistor elements represent resistive losses in the middle ear, while capacitors and inductors
correspond to compliance (stiffness) and mass, respectively. These impedance elements represent
analogous differential equations in electrical, mechanical, and acoustical dynamics. When mod-
eling electrical and mechanical parts together, such as for a loudspeaker (Kim & Allen, 2013) it
is necessary to take the ‘dual’ of the mechanical portion, or use a gyrator. In the case of the
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middle-ear, only transformers are required to convert between the mechanical and acoustical parts
of the model.

Figure 2.4: Block diagram of the major acoustic components of the middle ear. Tables 2.1 and
2.2 show how various published models account for each of these blocks. (1) middle-ear cavities
(including the tympanic cavity, antrum, and mastoid air cells), (2) tympanic membrane (TM), (3)
malleus (and any part of the TM that moves as one unit with the malleus), (4) incudomalleolar
joint, (5) incus, (6) incudostapedial joint, and (7) stapes and cochlea.

Figure 2.4 shows a block diagram of the major acoustic components of the middle ear. These
are represented as either series or shunt impedance blocks, or as two-port networks (for a review of
two-port networks, see Appendix A). The ear canal is an acoustic horn of variable area, and may
also be modeled as a two-port network. The major components of the middle ear represented by
the numbered blocks are the (1) middle-ear cavities, (2) tympanic membrane (TM), (3) malleus,
(4) incudomalleolar joint, (5) incus, (6) incudostapedial joint, and (7) stapes and cochlea. This
section describes blocks 1-7 (not the ear canal), as models of the ear canal will be explored in more
detail in future chapters.

Tables 2.1 and 2.2 summarize a selection of middle-ear models from the literature. These models
are primarily used to describe middle-ear immittance, and the middle-ear transfer function from
the TM to the cochlea. Table 2.1 focuses on Zwislocki-type models, which are quasi-static, lumped-
element models, while Table 2.2 shows models that combine distributed delay-line models of the
TM with lumped-element models of the ossicles. Note that Figure 2.4 and Tables 2.1 and 2.2 do
not show all transformers included in these models. However, any acoustical-mechanical impedance
change will have a transformer related to the cross-sectional area of the acoustical section, and some
models include a transformer for the lever ratios between ossicles. In many cases, the parameter
values given are adjusted to eliminate transformers. An example of how these network models
may be simplified by removing low-sensitivity components is given by Lewis & Neely (2015), as
compared to the other models in Table 2.1.

Modeling the middle-ear cavities, ossicles, and cochlea. The first block represents the
middle-ear cavities. These include the tympanic cavity, antrum, and mastoid air cells. Zwislocki
(1953) models this as the parallel combination of a C-R-L circuit, a resistor, and a capacitor. In the
C-R-L circuit, the inductor and resistor represent the constricted passage between the tympanic
cavity and the antrum, and the capacitor represents the volume of the antrum and pneumatic
cells. The other capacitor represents the volume of the tympanic cavity, which is the space where
the ossicles reside. Finally, the resistor represents general absorption by the cavity walls. This
resistor value is large (e.g. approaching a short circuit), and is often left out in other models, such
as that of Kringlebotn (1988). Stepp & Voss (2005) used Kringlebotn’s model to characterize
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their measurements of the middle-ear cavities in cadaver ears, and found it suitable to capture the
acoustic effects of these cavities, though their parameter values differed from those of Kringlebotn.
While many models omit the middle-ear cavities, Stepp & Voss (2005) found that they can affect
the impedance measured at the tympanic membrane by up to 10 [dB] above 1 [kHz].

Blocks 3, 5, and 7 of Figure 2.4 represent the malleus, incus and stapes. Blocks 4 and 6 represent
the incudomalleolar and incudostapedial joints, respectively. While most of the models in Table 2.2
include the incus and incudomalleolar joint, the Zwislock-based models in Table 2.1 represent the
malleus and incus as one unit (Zwislocki, 1957). Assuming that the incudomalleolar joint is very
stiff, this may be a good approximation at frequencies below 1 or 2 [kHz]. However, as the goal of
many distributed TM models (Table 2.2) is to model the middle-ear immittance at high frequencies,
it is necessary to include this joint. Puria & Allen (1998) suggest that both joint compliances should
be chosen to minimize reflections between the ossicles, given the proven efficiency of the normal
middle ear.

Block 3, representing the malleus, may also include any portion of the TM that is rigidly coupled
to the malleus at the umbo. Likewise block 7, which represents the stapes, also includes the
impedance of the cochlea in series with the stapes impedance. When modeling ear-canal immittance
measurements, it is typically sufficient to represent the cochlea as a resistor. Furthermore, the
cochlear load provides the main resistive component of the model (Zwislocki, 1962; Lynch et al.,
1982), as it should be the primary place where power is dissipated in an efficient middle ear.

The elements of block 7 may be broken out into separate series blocks to model the cochlea
or middle-ear transfer function in more detail. For instance, Pascal et al. (1998) include separate
nonlinear capacitors in series, representing the stapes and annular ligament, in order to model the
nonlinear acoustic reflex. Note that in the model of Keefe (2015b), the model of the cochlea is
much more detailed. Therefore, block 7 of Figure 2.4 is not merely a series impedance. Instead,
it contains numerous branches to ground allowing for shunt sound pathways in the scala tympani
and scala vestibuli.

Modeling the TM. In the literature, the TM (block 2) is primarily modeled in one of two ways:
as a lumped-element or distributed model. Table 2.1 shows models where the TM is represented as a
quasistatic, lumped-element network. In the models listed, the TM is represented either as a shunt
impedance element, or a series element followed by shunt element. In Zwislocki’s model, a portion
of the TM is assumed to vibrate in concert with the malleus (block 3), while the portion that is
not directly coupled to the malleus is represented by a shunt impedance.6 Shaw & Stinson (1983)
suggest that the TM be modeled using two pistons7 to accommodate its mechanical complexity. In
this model, one piston represents the portion of the TM that is rigidly attached to the malleus, and
the other piston represents the rest of the TM, including its inertance (mass) and periphery (which
has capacitance and resistance). Rearranging the schematic given in Shaw & Stinson (1983), the
first piston may be combined with the malleus (block 3), the second piston is in series, and the
coupling between these pistons is a shunt impedance. Kringlebotn’s model is quite similar to the
two-piston model, except that the series block is more complicated. Kringlebotn (1988) includes a
series inertance for the TM, then represents its suspension as a parallel combination including the
suspension and rim.

Table 2.2 shows hybrid models which incorporate lumped-element networks and transmission-

6Zwislocki (1962) suggests that the TM should be modeled as a transmission line above low- to mid-frequencies.
7Shaw’s first versions of this model were presented as conference abstracts, Shaw (1977) and Shaw & Stinson

(1981). In Table 2.1, this model has been rearranged to show its functional similarity to the models of Zwislocki
(1962) and Kringlebotn (1988).
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line delay to represent the middle ear. Given the experimental evidence for TM delay (Puria &
Allen, 1998; O’Connor & Puria, 2008; Milazzo et al., 2017), such a model should be vastly superior
to purely lumped-element model. The four models shown have similar middle-ear network models,
with varying levels of simplification. For instance, the model of Goll & Dalhoff (2011) is primarily
intended to characterize the TM, and a single mass-spring-damper system is attributed to the
middle ear. Alternatively, the model of Keefe (2015b) is extremely detailed, particularly in its
representation of the cochlea. Keefe’s model is also the only one of these models to include the
middle-ear cavities and mastoid air cells, which he represents using a transmission line containing
many branches as described in Keefe (2015a).

O’Connor & Puria (2008), similar to Puria & Allen (1998), model the TM as a uniform tube
transmission line. This model therefore attributes a frequency-independent group delay to wave
propagation from the ear canal to the umbo. This is an over-simplification, but is the easiest way to
add delay to the middle-ear model. Keefe (2015b) adds a simple delay quite differently. Beginning
with an expanded version of the two-piston model (Shaw, 1977; Shaw & Stinson, 1983; Shera &
Zweig, 1991), Keefe inserts a time-delayed compliance (e.g. a spring with delay) between the two
portions of the TM.

The model of Parent & Allen (2010), constructed in the time domain using wave digital filters,
presents a highly intuitive representation for the TM. In this model, the TM is discretized into
annular rings, which are split in half and attributed to either the near or far side of the angled TM
as viewed from the ear canal. In this model, sound waves impinge on each of these annular rings,
traveling a variable distance to reach the umbo. One downside to this model is that the reflection
coefficients between the annuli have been heuristically rather than analytically determined (Parent
& Allen (2010), Fig. 2).

Goll & Dalhoff (2011), who extensively cite Parent & Allen (2010) and praise the intuition
behind their model, attempt to provide a rigorous physical model using a string to represent an
arbitrary radial component of the TM. During forward excitation, a driving force due to the ear-
canal pressure is applied uniformly over the length of the string. For reverse excitation, the force
is applied at one point, the umbo-end of the string. Goll & Dalhoff (2011) explore two boundary
conditions for the rim of the TM, finding that it is best modeled as a non-rigid boundary.

Model verification and finite-element modeling. Note that comparing these middle-ear
models to their input impedances is only one method of verification. In fact, to fully validate any
of these models, extensive invasive measurements are needed. Some possible measurements include
transfer functions between the ear-canal pressure and umbo or stapes velocities, using techniques
such as laser Doppler vibrometry. Many such experiments have been performed in animal models,
or cadaveric human ears, due to the need to invasively modify the middle ear. While the scope
of this thesis is limited to measurements of the middle-ear input impedance, it is important to
consider how these models are developed.

Also note that the transmission-line models described in this section all describe one-dimensional
transmission lines, using the average pressure and volume velocity. Extremely detailed three-
dimensional models may be developed using finite-element modeling. However, such complicated
models do not always lend more insight into the physics of the problem. Often, simple phenomeno-
logical models are adequate to model the data, and are much easier to interpret.
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2.4 Limitations and sources of measurement error

There are many possible sources of error for clinical impedance measurements of human ears. These
include calibration, noise, probe-tip insertion and air leaks, and normal variation across ears. In
the design of a probe and analysis of measurements, the goal is to detect and mitigate these errors
as much as possible.

2.4.1 Probe calibration

Acoustic measurements can be very sensitive to probe calibration, described in the following chap-
ter. The calibration procedure measures the acoustic Thévenin parameters of the probe. Any
errors in this measurement will be propagated to measurements of the middle-ear immittance, and
in-the-ear (ITE) calibrations for other tests such as OAEs. For instance, any noise or vibration
present in the environment throughout the calibration can cause measurement error.

It would be advantageous for the Thévenin parameters to be stable over time, so that the probe
may be calibrated as infrequently as possible (e.g. to save time in a busy clinical setting). However,
any acoustic or electrical changes in the measurement system, or changes in the environment, can
impact the stability of the Thévenin parameters. For example, the speed of sound is dependent
on temperature, so large variations in temperature can impact the calibration. The calibration is
dependent on the voltage provided to the loudspeaker, so any significant changes in the electrical
path could also cause errors. For instance, errors could arise when using measurement probes and
hand-held modules (containing loudspeaker or microphone circuitry) interchangeably.

Finally, changes in the probe tip geometry will also alter the Thévenin parameters. In the case
of a foam-tipped probe such as the ER-10C8, parameters characterizing the sound source may drift
over time with expansion and compression of the foam. Furthermore, insertion of the foam tip into
the ear canal may cause changes in the foam geometry, such as large creases or even blockage of
the sound path, that were not present during calibration. The Thévenin parameters may also be
sensitive to differences across replaceable tips, which may not have perfectly identical geometries.

2.4.2 Noise

Acoustic measurements are sensitive to environmental noise, which can include both audible noise
and mechanical vibration. In a clinic or hospital, such noise is often inescapable. In these cases,
some ways to obtain better data include increasing averaging times, and taking retest measure-
ments. A set of retest measurements may in some cases be averaged (e.g. using the power re-
flectance), or the measurement with lowest noise may be selected during analysis. An example of
this is given in Appendix D.1 for test-retest measurements of ears with negative middle-ear pressure
(NMEP).

In addition to noise in the environment, acoustic noise from vocalizations and physical movements
of a the subject may also affect measurements. Infant data often has the most measurement noise
because it is taken in busy hospitals, and infants cannot be asked to sit still and be quiet during
measurement. Additionally, movement of the probe cable can contribute acoustical or electrical
noise, which means it is important to choose a cable with good flexibility and electrical shielding.

8Etymotic Research, Elk Grove, IL
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2.4.3 Probe insertion

Both the depth of the probe in the ear canal and the probe seal may affect the measured reflectance,
though the effect of probe depth is typically assumed to be small. Power reflectance at low fre-
quencies has been shown to decrease (absorbance level increases) with the probe distance from the
eardrum (Lewis & Neely, 2015; Voss et al., 2008, 2013). In adult ears, this effect is relatively small9

when the probe is situated in or close to the bony portion of the ear canal because this region
is most similar to a rigid-walled cavity and thus has smaller acoustic losses. Outside of the bony
region, the cartilaginous section of the ear canal has much greater compliance, leading to more
acoustic losses. Therefore, it is best if the probe tip is inserted deeply enough to reach the bony
part of the ear canal. Probe location in the ear canal may also vary due to different probe tip
types across measurement systems. For instance, ‘umbrella’ tips which may be used for pressurized
tympanometry measurements are placed against the opening to the ear canal. Thus, measurements
made with these tips will be more affected by the ear canal than those made with more deeply
inserted ear tips.

Air leaks around the probe tip can also cause measurement error, particularly at low frequencies.
Most leaks occur because the probe tip does not properly seal in the ear canal, or may shift in the
ear canal over the course of the measurement. An example of an acoustic leak is given in Figure 2.5.
These measurements come from a normal ear from (Thompson, 2013), where the probe insertion
drifted across tests made over the course of a few minutes. As the leak in the probe seal increases
in size, the low-frequency absorbance level increases, and the impedance phase increases (Groon
et al., 2015). This increased absorbance is due to power dissipating through the leak around the
probe tip. The impedance phase is perhaps a better indicator, as it should be close to −π/2 at low
frequencies in a sealed cavity.

2.4.4 Normal variation

Normal middle ears are known to have a fairly wide range of variation in power reflectance and
absorbance level (Rosowski et al., 2012). The largest source of intrasubject variability (e.g. test-
retest) is probe placement in the ear canal (Voss et al., 2013), though this variability is smaller
than the variability across a population of normal ears (Rosowski et al., 2012; Abur et al., 2014),
partucularly when the probe is deeply inserted. Middle-ear pressure within a normal range may
also cause intrasubject variations (Shaver & Sun, 2013).

Intersubject variation (e.g. across ears) is assumed to be due largely to differences in middle-ear
physiology. Variability in the small minima and maxima exhibited in the power reflectance and
absorbance level in the mid-frequency region is likely related to the acoustics of the TM, ossicles,
and middle-ear space (Rosowski et al., 2012; Stepp & Voss, 2005). When expressed as absorbance
level, mid-frequency variations occur over a small decibel range (Fig. 2.3). Voss et al. (2008)
found, using manipulations in cadaveric ears, that variations in the volume of the middle-ear space
produced larger variability in power reflectance measurements than variation in probe insertions.
The middle-ear cavities can affect the power reflectance and absorbance level over a broad frequency
range, and may play a role in variability across normal subjects.

9Acoustic losses due to canal wall compliance are larger in reflectance measurements made in infants and newborns.
The most rapid changes occur in the first six months of life, as the inner two-thirds of the ear canal ossify during
maturation (Kei et al., 2013). This fact differentiates low-frequency reflectance norms of newborns from older
populations.
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Figure 2.5: Example of the effects of a leak in probe insertion on the absorbance level and impedance
phase in a normal ear, plotted against the 10-90th percentile (gray region) for normal ears from
Rosowski et al. (2012). As the size of the acoustic leak increases (e.g. the probe insertion slowly
loosens), there is an increase in the low-frequency absorbance level, and an increase in the impedance
phase. The effect propagates upward in frequency as the leak size increases. Left plot from “Middle-
ear reflectance: Concepts and clinical applications” by J. B. Allen, S. R. Robinson, J. A. Lapsley
Miller, P. S. Jeng and H. Levitt in Scientific Foundations of Audiology: Perspectives from Physics,
Biology, Modeling, and Medicine (p. 17) by A. Cacace, E. de Kleine, A. Holt, & P. van Dijk (Eds.).
Copyright c©2016 Plural Publishing, Inc. All rights reserved. Used with permission.

2.5 In-the-ear (ITE) calibration for hearing measurements

Many acoustic assessments of the inner ear, including OAE and hearing threshold (e.g. audiogram)
measurements, rely on the transmission of sound stimuli to the cochlea via the ear canal and middle
ear. Therefore, proper calibration of such stimuli requires an understanding of the magnitude and
phase effects introduced by propagation through the ear canal and middle ear. It follows that
WAI, which quantifies the impedance of the ear canal and middle ear, may be applied to improve
stimulus delivery.

Standard practice to account for middle-ear effects is to calibrate stimuli using a middle-ear
simulator, often referred to as ‘reference equivalent threshold sound pressure level’ (RETSPL)
calibration (ISO, 1997). However, ear simulators do not account for variation of the middle-ear
properties across individuals. More importantly, they do not account for the specific probe insertion
depth, which varies across ears and measurement sittings. Probe insertion depth is of particular
importance because of acoustic standing waves in the ear canal between the measurement probe
and the TM (Siegel, 1994), as described in Section 2.2.

Two other quantities, the initial forward pressure and emitted pressure, are also described in
this section. These are not specifically used for ITE calibration, but have other applications to
measurements of hearing. Initial forward pressure was first defined by Keefe (1996), and can be
used to Thévenin calibrate an acoustic probe using a single long tube.10 However, initial forward
pressure is not as effective for ITE calibration as FPL (Souza et al., 2014). Emitted pressure is
defined by Charaziak & Shera (2017), and describes the retrograde propagation of OAEs in the ear
canal.

10A better calibration may be found using at least two tubes (Keefe & Simmons, 2003).
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2.5.1 Forward pressure level

Research shows that the forward pressure level (FPL) should be used for ITE stimulus calibra-
tions, to account for standing wave effects on the stimulus magnitude and phase in individual ears
(Scheperle et al., 2008; Souza et al., 2014; Withnell et al., 2009). FPL has been shown to limit
intrasubject variability for pure-tone audiometry, which can improve long-term monitoring of hear-
ing (McCreery et al., 2009; Lapsley Miller et al., 2017). The FPL is defined as the steady-state
forward component of the pressure wave, Ψ+(x, f), as previously described. One may determine
the forward pressure at the microphone from the total pressure as

Ψ(f) = Ψ(0, f) = Ψ+(0, f) + Ψ−(0, f)

= Ψ+(0, f)

(
1 +

Ψ−(0, f)

Ψ+(0, f)

)
= Ψ+(0, f)(1 + Γ(0, f)). (2.31)

Solving for Ψ+(0, f) gives

Ψ+(f) =
Ψ(f)

1 + Γ(f)
. (2.32)

Therefore, given the measured pressure Ψ(f) and the measured complex reflectance Γ(f), the
forward pressure Ψ+(0, f) can be computed. This is accomplished by varying the loudspeaker
voltage so that Ψ+(0, f) is constant at the desired level. Using the FPL, the ear-canal standing
wave can be precisely removed. Figure 2.6 shows the magnitude of the normalization factor |1+Γ(f)|
in decibels for 10 human ears and 2 ear simulators, taken from Voss & Allen (1994).
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Figure 2.6: Forward pressure level normalization factor |1 + Γ|, which corrects for the ear-canal
standing wave, for 10 normal ears and two ear simulators from Voss & Allen (1994). At the
frequency of the null, the phase of the complex reflectance is approximately 180 degrees (Withnell
et al., 2009). The frequency of the null critically depends on the round-trip delay between the probe
tip and the TM (Eq. 2.28d). This delay is different for each ear, as it depends on the insertion
depth of the probe and the geometry of the ear canal and TM. As the ear-canal delay decreases,
the standing-wave null shifts upward in frequency.

Considering Figure 2.6, at low frequencies, the forward and retrograde pressures are approxi-
mately in phase, requiring little correction. At frequencies above 3 [kHz], the phase of Γ(f) plays
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a very important role, as it results in a deep null in the correction factor, due to the quarter-
wavelength ear-canal standing wave. The frequency of the correction factor null increases as the
distance between the probe and TM decreases.11 For example, the null associated with the DB-100
ear simulator, measured with a very short ‘canal,’ is above the frequency range shown. To un-
derstand the effect of the TM reflectance on the standing-wave null frequency, consider a distance
of 10 [mm] between the probe and TM. This gives a round-trip delay of about 58 [µs], thus the
standing wave null might be estimated to occur at 8.6 [kHz]. However, including the additional
delay of the TM and ossicles (about 33 [µs] (Parent & Allen, 2010)), the actual null frequency will
be lower.

Based on the deep nulls in the FPL correction factor (due to ear canal standing waves) observed
in Figure 2.6, it would not be reasonable to normalize the total pressure Ψ(f) to be a constant
for delivering stimuli to the cochlea. Such a normalization would boost the stimulus level at the
standing-wave null frequency by as much as 25 [dB]. For instance in Equation 2.32, if Ψ(f) is held
constant, there is a peak in the forward pressure corresponding to the null of |1+Γ(f)|. Calibration
using an ear simulator will typically not be effective either, even if an artificial ear canal of similar
length is included in the measurement. Consider the correction factors for the two ear simulators
shown in Figure 2.6. The DB-100 has a very short ear canal, such that the correction factor is
nearly constant. In the case of a longer simulated canal, the B&K 4157, it is unlikely that the
length of the simulator canal will precisely equal the distance between the probe microphone and
TM. Because the correction factor minima are so narrow and deep, this length must be extremely
precise to avoid introducing a deep attenuation at the false null frequency, in addition to boosting
the forward pressure level much too high at the true null frequency.

The low-frequency factor of 2. Note that the correction factor in Figure 2.6 approaches 6 [dB]
at low frequencies, where the eardrum is nearly rigid and |1 + Γ| → 2. However, at this frequency
there is approximately no effect due to the ear-canal standing wave, so it would seem that this
factor of 2 is in error. One way to eliminate this factor is to define a modified forward pressure,

Ψ̃+ = Ψ

(
1 + |Γ|
1 + Γ

)
, (2.33)

where the modified correction factor (1 + |Γ|)/|1 + Γ| ≈ 1 at low frequencies. This modified
forward-pressure expression does not appear to be tested in the literature, but seems worthy of
consideration.

First, 1 ≤ 1 + |Γ| ≤ 2, meaning that the modified FPL results will never differ by more than 6
[dB] from traditional FPL, which has proven to be effective. Second, this formula is closely related
to another ear-canal compensation method, the integrated pressure level (IPL), which has proven
just as effective as FPL (Lewis et al., 2009; Souza et al., 2014). Lewis et al. (2009) define the IPL
as

IPL = |Ψ+|+ |Ψ−|, (2.34)

which is insensitive to the ear-canal standing wave because the phases of the forward and retrograde
pressure waves have been eliminated. However, this loss of phase information is sub-optimal for
many types of stimuli. Therefore, it may be improved.

11In a rigidly terminated tube, the quarter-wavelength null frequency is given by fnull = c/(4L).
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In fact, the IPL is intimately related to Equation 2.33,

IPL = |Ψ+|+ |Ψ−|

=

∣∣∣∣∣ Ψ

1 + Γ

∣∣∣∣∣+

∣∣∣∣∣ Ψ
1
Γ + 1

∣∣∣∣∣
= |Ψ|

(∣∣∣∣∣ 1

1 + Γ

∣∣∣∣∣+

∣∣∣∣∣ Γ

1 + Γ

∣∣∣∣∣
)

= |Ψ|

(
1 + |Γ|
|1 + Γ|

)

=

∣∣∣∣∣Ψ
(

1 + |Γ|
1 + Γ

)∣∣∣∣∣. (2.35)

Therefore, the IPL is the magnitude of the modified FPL given in Equation 2.33. It would seem
that the modified FPL is not likely to perform worse than traditional FPL, and accounts for the
low-frequency factor of 2 in a rigorous way.

2.5.2 Initial (incident) forward pressure level

The incident, or initial, forward pressure is a property of a measurement probe for a given voltage
stimulus, similar to (and derived from) the Thévenin equivalent source pressure and impedance.
Keefe (1996) defines the initial forward pressure in the time domain,

ψ(t) = ψ+
i (t) + ψr(t), (2.36)

as the component of the pressure measured before any reflected signal (from the load) arrives back
at the microphone. To derive an expression for ψ+

i (t) ↔ Ψ+
i (f), Keefe (1996) used the following

frequency-domain relations:

Ψ(f) =
Z(f)Ψs(f)

Zs(f) + Z(f)
, Z(f) = z0(f)

1 + Γ(f)

1− Γ(f)
, Zs(f) = z0(f)

1 + Γs(f)

1− Γs(f)
, (2.37)

where Ψ is the average pressure measured at the probe, Z and Γ are the measured impedance and
reflectance of a load, and Zs and Γs are the impedance and reflectance looking into the probe. At
the interface between the probe and the load, there is a shared characteristic impedance z0.

Combining these relations gives an expression for the pressure in terms of the source pressure,
source reflectance, and load reflectance,

Ψ =
1

2
Ψs(1− Γs)

1 + Γ

1− ΓΓs
(2.38a)

=
1

2
Ψs(1− Γs)

[
1 + (1 + Γs)Γ + . . .+ (1 + Γs)Γ

nΓn−1
s + . . .

]
, (2.38b)

where the term 1/(1−ΓΓs) has been expanded into a geometric series and rearranged. In the time
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domain, this expression becomes

ψ(t) =
1

2
ψs(t) ? (δ(t)− γs) ?

[
δ(t) + (1 + γs) ? γ + . . .

]
. (2.39)

Because the initial forward pressure is defined as the time-domain pressure in the absence of any
reflections, it is given by the above expression when all terms convolved with the load reflectance
γ are set to zero,

ψ+
i (t) =

1

2
ψs(t) ? (δ(t)− γs). (2.40)

Thus in the frequency domain, the initial forward pressure is given by

Ψ+
i (f) =

1

2
Ψs(f)(1− Γs(f)). (2.41)

Though the initial forward pressure is not as effective as FPL for ITE calibration, it has other
utility. Keefe (1996) uses it to perform a Thévenin calibration in a single long cavity, a procedure
that usually requires at least two measurements (to solve for two unknown source parameters).
Furthermore, the incident pressure is closely related to the source pressure. Separating the incident
pressure from the load reflections provides a good measure of how much energy is sent into the
system, independent of the load impedance. Therefore, this quantity might be used to adjust
the speaker voltage in order to help balance the pressure response over a broad range of load
impedances.

2.5.3 Emitted pressure level

Charaziak & Shera (2017) define the emitted pressure level for OAEs propagating out of the middle
ear towards the probe as

ΨOAE,EPL = ΨOAE

(
1− ΓΓs

e−jωLrec/c0(1 + Γs)

)
, (2.42)

where the ear canal is modeled is a uniform cylinder of length Lrec. They found that using
this measure to quantify OAEs allowed for smaller test-retest variability across probe insertions,
particularly at high frequencies. Note that the stimuli were all calibrated ITE using the FPL.

In a similar manner to the initial forward pressure calculation, this formula separates the initial
signal propagating out of the middle ear (back towards the TM) from the steady-state solution.
To use this method, it is necessary to estimate the ear-canal length, which is accomplished in
Charaziak & Shera (2017) using the method proposed by Rasetshwane & Neely (2011).12

12Note they did not try to estimate the ear-canal area function; rather, they determined Lrec by locating the first
major reflection from the TM in the time-domain reflectance γ(t).
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CHAPTER 3

METHODS AND THEORY: VARIABLE-AREA ACOUSTIC

TRANSMISSION LINES

3.1 Transmission line analysis for acoustic horns

In acoustic horn waveguides, only plane waves propagate for frequencies below a diameter-dependent
‘cuttoff frequency.’ This plane-wave propagation can be analyzed using transmission-line tech-
niques. Therefore, in many cases, it is only necessary to solve for the impedance characteristics
of the horn. In such cases (assuming linearity), the wave amplitude does not matter, and the
impedance may be described using the axial propagation characteristics. For plane-wave propaga-
tion, transmission-line analysis methods may be used to describe the pressure and velocity, which
are analogous to the voltage and current, respectively. To do this, the problem must first be cast
in one dimension along the axis of the horn.

3.1.1 Volume velocity and average pressure

It is helpful to cast the problem in one dimension, the axis of propagation or ‘range’ variable x.
This is accomplished by describing the motion of an infinitesimally thin ‘slice’ of air particles. This
‘slice’ width is assumed to be very small compared to the wavelength. Wave propagation in a slice
may be described by the ‘volume velocity’ and the average pressure over the slice. The volume
velocity is defined as

v(x, t) =

∫∫
Aslice

~u · x̂dA↔ V(x, ω), (3.1)

where ~u is the particle velocity and x̂ is normal to the slice. The average pressure is defined as

ψ(x, t) =
1

A(x)

∫∫
Aslice

pdA↔ Ψ(x, ω). (3.2)

The geometry of the slice is very important. The slices are defined to be ‘iso-pressure.’ Except in
the case of a cylindrical horn, the iso-pressure contours will not be planar cross-sections. This dis-
tinction becomes important when working with variable-area horns. When the pressure is constant
over the slice

ψ(x, t) = p(x, t) (iso-pressure slice). (3.3)

3.1.2 Acoustic telegrapher’s equations and the wave equation

A computationally convenient method for impedance analysis is to form two one-dimensional equa-
tions in the average pressure Ψ and volume velocity V (using x to represent the axial direction of
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propagation). In the frequency domain,

∂

∂x

[
Ψ(x, ω)
V(x, ω)

]
= −

[
0 Z(x, s)

Y(x, s) 0

] [
Ψ(x, ω)
V(x, ω)

]
, (3.4)

where Z is the per-unit-length series impedance, and Y is the per-unit-length shunt admittance of
the transmission line. The two equations in Ψ and V are the acoustic analogue of the telegrapher’s
equations. These equations are developed from the lossless or lossy equations of state, continuity,
and force, which are described in Appendix A.

Equation 3.4 gives the wave equations1

Ψ =
1

Y
∂

∂x

1

Z
∂Ψ

∂x
or V =

1

Z
∂

∂x

1

Y
∂V
∂x

. (3.5)

The following analyses consider the pressure wave equation and its general solutions. Note that an
analogous derivation may be performed beginning with the velocity wave equation and its general
solutions.

Wave equation for a uniform-area horn. If the acoustic horn in question is of uniform area,
then Z and Y are independent of the axial coordinate x, and may be factored out of the wave
equation,

∂2Ψ

∂x2
= ZYΨ. (3.6)

This differential equation gives the homogeneous solutions

Ψ± = α±e
∓
√
ZYx, (3.7)

where the coefficients α± can be functions of frequency. Therefore, for a uniform acoustic trans-
mission line the wave-propagation function κ(s) is defined as

κ(s) =
√
ZY. (3.8)

The lossless and lossy solutions for a uniform-area horn are discussed at length in Section A.2.

Webster horn equation for a variable-area horn. When Z and Y are spatially dependent,
the wave equation will not have the form of Equation 3.6. For lossless wave propagation,

Z =
sρ0

A(x)
and Y =

sA(x)

η0P0
, (3.9)

due to the conservation of momentum and conservation of mass equations, respectively. With this
dependence on the area function A(x), the wave equation (Eq. 3.5) may be simplified as

1

A(x)

∂

∂x
A(x)

∂Ψ

∂x
= ZYΨ. (3.10)

This is the Webster horn equation (Webster, 1919), and its solutions Ψ± will have more than an
exponential dependence on x (e.g. Eq. 3.7), if they exist at all. The existence of solutions to this

1These equations may also be written as ∂2Ψ
∂x2
−
(
∂
∂x

lnZ
)
∂Ψ
∂x

= ZYΨ and ∂2V
∂x2
−
(
∂
∂x

lnY
)
∂V
∂x

= ZYV.
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differential equation depends on the existence of an orthogonal coordinate system describing A(x)
(Agulló et al., 1999; Keefe & Barjau, 1999), or preferably a separable coordinate system. This is
discussed in some detail in Section A.4. The Webster horn equation is also studied in detail in
Allen (2016).

For wave propagation with thermal and viscous losses (described in Appendix A), the parameters
Z and Y have a more complicated dependence on x,

Z =
sρ0

A(x)

[
1− F (rv(x, s))

]−1

(3.11a)

Y =
sA(x)

η0P0

[
1 + (η0 − 1)F (rt(x, s))

]
, (3.11b)

where rv and rt represent ratios of the effective radius of the wavefront to the viscous and thermal
boundary layers, respectively. The function F will depend on the cross-sectional geometry of the
horn. For circular cross sections, F is a ratio of Bessel functions, and for rectangular cross sections
it is a tangent function, as described in Section A.3. For large enough values of rv and rt, F is
small. In this case, Equation 3.10 is approximately true, and use of the lossy value for κ in the
final solution will approximate the effect of visco-thermal losses.

3.1.3 Forward- and reverse-traveling waves

In general the wave-equation solutions take the form

Ψ(x, ω) = Ψ+ + Ψ− (3.12a)

V(x, ω) = V+ − V−

=

(
V+

Ψ+

)
Ψ+ −

(
V−

Ψ−

)
Ψ−

= y+
c Ψ+ − y−c Ψ−. (3.12b)

In many applications, the average pressure Ψ and volume velocity V are specified for some input
impedance (e.g. one-port network) of interest at point x, where the positive direction is defined
as into the port. The characteristic impedance at the test point x is defined as the ratio of
pressure to volume velocity for a single plane wave propagating in one direction, in the absence of
any reflections.2 This is the same as the input impedance of a semi-infinite horn having an area
function consistent with the local area variation. It is defined as

z±c (f, x) ≡ Ψ±(f, x)

V±(f, x)
=

1

y±c (f, x)
. (3.13)

2This is one common definition (https://en.wikipedia.org/wiki/Characteristic impedance).
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Equation 3.4 can be used to determine y±c by relating Ψ±, V±, Z and Y. These equations yield

V± = ∓ 1

Z
∂Ψ±

∂x
(3.14a)

Ψ± = ∓ 1

Y
∂V±

∂x
(3.14b)

y±c = ∓ 1

Z
∂

∂x
ln Ψ± = ∓

[
1

Y
∂

∂x
lnV±

]−1

=
1

z±c
. (3.14c)

For a horn of uniform area, the characteristic impedance is independent of direction,

z+
c = z−c =

√
Z
Y
≡ z0 (constant A(x) = A0). (3.15)

In the wideband acoustic immittance (WAI) literature, the reflectance is traditionally defined using
z0 as in Equation 2.6. However, using this definition, the characteristic impedances of the forward-
and reverse-traveling waves are not equal (z+

c 6= z−c ) if the local area function A(x) is not uni-
form. For example, a conical horn has the general pressure solutions and directional characteristic
impedances given by

Ψ± = α±
e∓κr

r
(3.16a)

y±c (r) =

√
Y
Z

(
1± 1

κr

)
= y0

(
1± 1

κr

)
=

1

z±c (r)
, (3.16b)

where α± are functions of frequency and r is the distance from the vertex of the cone (x = r−R0).
These equations and further derivations for the conical horn are given in Appendices A and B. In
the time domain, given lossless propagation (κ = s/c0), the time-domain characteristic admittances
and impedances are given by

y±c (r, f)↔ 1

r0

(
δ(t)± c0

r
u(t)

)
(3.17a)

z±c (r, f)↔ r0

(
δ(t)∓ c0

r
e∓c0t/ru(t)

)
. (3.17b)

The surge resistance r0 and conductance 1/r0 are defined as the coefficient of the δ(t) function of the
time-domain impedance and admittance. This component does not vary with direction. However,
at time t = 0+, the local curvature of the horn contributes to the characteristic impedance and
admittance. The forward-traveling component has a positive time-domain step function (diverging
wave) while the reverse-traveling component has a negative time-domain step function (converging
wave).

The fact that the characteristic impedance depends on direction, z+
c 6= z−c , has implications for

the definition of reflectance. The reflectance must be carefully defined in the presence of a locally
varying A(x), as discussed next.
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3.2 A strict definition for reflectance in horns

The reflectance can be derived using a frequency-domain factorization of the impedance,

Z =
Ψ

V
=

Ψ+ + Ψ−

V+ − V−
=

(
Ψ+

V+

)
1 + Ψ−/Ψ+

1− V−/V+
. (3.18)

Note that here we consider only the plane-wave solutions for Ψ and V. Also note that there is an
implicit direction in which we are viewing the system; let the impedance Z (and reflectance Γ) be
that of the load looking in the ‘+’ direction from the test point. Typically, it is assumed that the
ratios of reverse- to forward-traveling pressure and velocity are the same. However, if z+

c 6= z−c ,
then

Ψ+

V+
6= Ψ−

V−
=⇒ ΓΨ =

Ψ−

Ψ+
6= V

−

V+
= ΓV , (3.19)

where the pressure and velocity reflectances are defined as ΓΨ and ΓV respectively, to acknowledge
that their values will be different if the characteristic impedance depends on direction. In this case,
the impedance and reflectance are related by

Z = z+
c

(
1 + ΓΨ

1− ΓV

)
. (3.20)

Therefore, the relationship between the impedance and pressure (or velocity) reflectance must be
carefully defined using the directionally dependent characteristic impedance z±c .

3.2.1 Reflectance definition given a locally varying area function

To define a consistent reflectance given a locally varying area function, it is necessary to choose
whether to work with the pressure or velocity reflectance. Here we choose to work with the pressure
reflectance ΓΨ. Note that typically Γ is defined as the pressure reflectance in WAI literature.
Additionally, the primitive spherical wave solutions in the conical horn (Sec. A.4) indicate that the
pressure reflectance may have a simpler form than ΓV , since the primitive velocity solutions have
two terms.

We will work with the pressure reflectance ΓΨ, the admittance Y and the characteristic admit-
tances y±c for this derivation. In this case, the admittance formula may be factored as

Y (x, s) = y+
c

1− V−/V+

1 + Ψ−/Ψ+

=
y+
c

1 + ΓΨ

(
1− y−c Ψ−

y+
c Ψ+

)

=
y+
c − y−c ΓΨ

1 + ΓΨ
. (3.21)

A rearrangement of these terms yields the following definitions of the pressure reflectance (looking
in the ‘+’ direction):

ΓΨ(x, s) =
y+
c − Y
y−c + Y

=
Z/z+

c − 1

Z/z−c + 1
. (3.22)
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Table 3.1: Re-defining the characteristic impedance for a consistent definition of reflectance, for
uniform, parabolic, conical, and exponential horns. Note that κ =

√
ZY and z0 =

√
Z/Y. For

a lossless horn, κ = s/c0 and y0 = A(x)/ρ0c0. For the conical and exponential horns, the term
1/k ∝ 1/s, and has the inverse Laplace transform of a unit step.

Type Area function Pressure Ψ± Characteristic admittance

y±c = ∓ 1
Z

∂
∂x ln Ψ±

Uniform A(x) = A0 Ψ± ∝ e∓κx y0

Parabolic A(x) ∝ x Ψ± ∝ J0(κx) ∓ Y0(κx),
where Jn are Bessel
functions and Yn are
Neumann/Weber func-
tions

y0

[
±J1(κx)−Y1(κx)
J0(κx)∓Y0(κx)

]
, which is a ra-

tio of Hankel functions.

Conical A(r) ∝ r2, where
r = R0 + x is the
distance from the
cone apex

Ψ± ∝ e∓κr

r y0

[
1± 1

κr

]

Exponential A(x) ∝ e2mz Ψ± ∝ e−(m±
√
m2+κ2)x y0

[√
1 + m2

κ2 ± m
κ

]

The formulas to calculate impedance and admittance from the pressure reflectance are

Y (x, s) =
y+
c − y−c ΓΨ

1 + ΓΨ
and Z(x, s) = z+

c z
−
c

(
1 + ΓΨ

z−c − z+
c ΓΨ

)
. (3.23)

Note that Y , ΓΨ, y±c and z±c are all functions of frequency (ω or s) and space (x). This result is
consistent with the formula given by Farmer-Fedor & Rabbitt (2002), and simplifies to Equation
2.6 for a uniform-area horn.

Some examples of y±c = 1/z±c are given for different area functions A(x) in Table 3.1 for lossless
horns. The uniform-line characteristic admittance y0 =

√
Y/Z is widely used to define reflectance

in the literature. However, it appears that any local area variation at the measurement location
may cause errors in the calculation of reflectance.
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3.2.2 Supporting evidence and applicability

To our knowledge, the formula for the reflectance given in Equation 3.22 is not widely known. Some
instances of this and related formulas in the literature are discussed in this section. Equation 3.22
will be exact when exact solutions to the Webster horn equation (a Sturm-Liouville problem with
integrating factor A(x)) are available, such that y±c may be calculated. Benade (1988) gives the
formula for z+

c for a conical horn, but does not note that z−c is different. Agulló et al. (1988) and
Amir et al. (1995) give the strict reflectance formula for the conical horn, but do not generalize it
to other horn shapes.

Note that when the local horn curvature is unknown, or is discontinuous at the point of interest,
it is impractical to define the reflectance in this manner. In this case, it is better to use the surge
resistance r0 (lossless case) or the equivalent uniform-horn characteristic impedance z0 =

√
Z/Y

(lossy case) since these quantities do not depend on the direction of the wave (they only depend
on the local cross-sectional area).

Equivalence to Farmer-Fedor & Rabbitt (2002) result. Farmer-Fedor & Rabbitt (2002)
derived the same result, but it is heavily obscured by their notation. They defined

Ψ±(f, x) = α±(f)B(x)e∓φ(f,x), (3.24)

separating the pressure waves into a frequency-dependent coefficient α±(f), an amplitude function
B(x) which depends on the axial coordinate x, and an exponential function with a phase φ(f, x)
which depends on both frequency and location (e.g. for a conical horn, B(x) = 1/(x + R0) and
φ(f, x) = κ(x + R0)). For non-separable coordinate systems, Farmer-Fedor & Rabbitt (2002)
calculated a solution of this form using the Wentzel, Kramers, and Brillouin (WKB) approximation,
which did not yield a robust solution (this problem with the WKB approximation is well known).

Farmer-Fedor & Rabbitt (2002) found that the pressure reflectance may be derived by taking
the spatial derivative ∂

∂x ln(Ψ+ + Ψ−) and re-grouping the terms to form the ratio

Γ =
α−
α+

e2φ =
∂
∂x ln Ψ− ∂

∂x lnB + ∂
∂xφ

− ∂
∂x ln Ψ + ∂

∂x lnB + ∂
∂xφ

. (3.25)

This equation relates to the transmission-line parameters via

∂

∂x
ln Ψ = −ZY (3.26a)

± ∂

∂x
lnB +

∂

∂x
φ = Zy±c , (3.26b)

which yields Equation 3.22 for the pressure reflectance. We feel that the derivation given here is
much easier to follow, and more intuitive for researchers who are familiar with transmission-line
theory.

The step admittance and ‘type-II’ reflectance of Rasetshwane & Neely (2011). Rasetshwane
& Neely (2011) found they needed to define reflectance using a Heaviside step function u(t)↔ 1/s
in addition to y0 =

√
Y/Z in simulations and measurements of horns; they give an equation similar

to Equation 3.22 and refer to it as type-II reflectance.3 However, they did not properly derive the

3Note that Rasetshwane & Neely (2011) was published first, but the inverse method is detailed in the later
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origin of the 1/s term. As discussed in this section, the 1/s term originates from the characteristic
admittance y±c and their type-II reflectance is equivalent to Equation 3.22 when there is a local
conical flare. Using Equation 3.22, there need only be one definition of reflectance.

Rasetshwane & Neely (2011) used a lossless, reflectance-based inverse solution method to deter-
mine A(x) from the impedance at the mouth of the horn. For calculations with reflectance, they
found it was necessary to define

Γ(x, ω) =
y0(x)− [Y (x, ω)− Ys(x, ω)]

y0(x) + [Y (x, ω)− Ys(x, ω)]
, (3.27)

where y0(x) =
√
Y/Z = A(x)/(ρ0c0) is the characteristic admittance of a uniform transmission

line having the same area, Y is the measured (simulated) admittance, and the ‘step admittance’
Ys was calculated from Y via

Ys(x, ω) =
y0

jω
lim
ω→∞

jω

[
Y (x, ω)

y0
− 1

]
. (3.28)

This formula appears to be related to the initial value theorem of the Laplace transform (Lundberg
et al., 2007). Ideally the limit would be taken as <(s) = σ → ∞, but the full admittance Y (s)
is not available for measured data (though Y could be fit with a pole-zero rational approximation
(Gustavsen & Semlyen, 1999; Robinson et al., 2013)). This calculation yielded a ‘step admittance’

Ys(x, s) =
y0(x)

κ
β(x) (3.29)

=
c0y0(x)

s
β(x) (lossless), (3.30)

where β is a constant that depends on the axial depth x at which the reflectance is calculated.
This function is called the step admittance because it is the Laplace transform of the Heaviside
function u(t) ↔ 1/s. Note that when analysis is conducted using Fourier transforms (necessary
with real data) the step function u(t) ↔ πδ(ω) + 1/jω, since the Fourier transform is not well-
equipped to treat causal functions. The subtle problem with the Fourier transform is not addressed
in Rasetshwane & Neely (2011) or Rasetshwane et al. (2012).

When Ys is combined with y0 rather than Y , it gives

y0 ± Ys = y0

(
1± β

κ

)
. (3.31)

This term is same as the characteristic admittances y±c of a conical horn, as given in Table 3.1.
Under this interpretation, re = 1/β is the effective distance to the cone apex, which describes the
local flare of the horn as a first-order approximation. This term is also approximately equal to the
characteristic admittances y±c for an exponential horn of area A(x) = e2βx,

y0 ± Ys ≈ y0

(√
1 +

β2

κ2
± β

κ

)
. (3.32)

In their calculation of the area function, Rasetshwane & Neely (2011) implicitly attribute expo-

publication Rasetshwane et al. (2012). This method is also used in Rasetshwane & Neely (2015).
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nential curvature to each area segment calculated, as will be discussed in Section 3.4.2.
The results of this section suggest that Rasetshwane & Neely (2011) calculated the pressure

reflectance correctly according to Equation 3.22, but should attribute Ys to the characteristic
admittance,

Γ(x, ω) =
[y0(x) + Ys(x, ω)]− Y (x, ω)

[y0(x)− Ys(x, ω)] + Y (x, ω)
=
y+
c − Y
y−c + Y

. (3.33)

Therefore, Rasetshwane & Neely (2011) find

β(x) =
1

2

∂

∂x
ln(A(x)) =

1

2A(x)

∂A(x)

∂x
, (3.34)

which is equal to 1/r in the case of a conical horn and equal to m in the case of the exponential
horn (Table 3.1). For the parabolic horn this conical approximation would overestimate the local
flare, which seems to have led to some computational problems for Rasetshwane & Neely (2011).

3.3 Synthesis of acoustic horns of known area function

This section treats the problem of describing the properties of an acoustic horn, such as its
impedance and transfer function, given its area function A(x). The primary method described
is that of two-port network modeling. This has applications for modeling the ear canal and esti-
mating the WAI of the middle ear. Additionally, it can be used to describe sound-delivery systems
such as the measurement probe, as described in the next chapter. Particularly, a probe tip that is
added on as part of the measured impedance is studied.

Exact calculation of plane-wave solutions in variable-area horns is not usually possible, due to
limitations of the wave-equation solutions. Exact solutions are generally only available when there
is a separable coordinate system describing the entire horn, and the system is assumed to be lossless.
Typically, a variable-area horn may be adequately described using a concatenation of conical or
cylindrical horns, which have known impedance properties. For low frequencies and constricted
passages, where the viscous and thermal boundary layer is more than one-tenth of the effective
radius, thermo-viscous losses should be approximated. Note that these methods may or may not
take into account curvature of the iso-pressure wavefront in a given horn.

Alternatively, approximations to the wave equation may be made in order to describe a special,
tractable coordinate system for the given area function. One example of such a method is the curvi-
linear horn equation (Agulló et al., 1999; Keefe & Barjau, 1999). This equation allows adjoining
orthogonal curvilinear coordinate systems to be sewn together via a ‘thickness function.’ In theory,
this should provide more exact results, though in practice is likely to yield small corrections at the
cost of a much higher complexity. A simple theory approximating the area function as a Fourier
series is also presented in this section.

3.3.1 Two-port network modeling

A two-port network model, described by Figure 3.1, describes the impedance and transfer properties
from an input (port 1) to an output (port 2). These properties can be completely described in
the frequency domain using a 2 × 2 matrix. Matrices for cylindrical tubes, conical horns, and
step discontinuities are given in Appendix 3.3.1. These networks may be connected in cascade to
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approximate any area function, resulting in a single 2× 2 matrix. Properties of two-port matrices
are discussed at length in Appendix B.

Figure 3.1: An acoustic two-port network showing the average pressures Ψ and volume velocities
V at the input (1) and output (2). The direction of V2 is defined as into the port, as required by
the definition of the impedance matrix. Two-port properties and solutions for cylindrical tubes,
conical horns, and step discontinuities are discussed at length in Appendix B.

Transmission parameters for the conical horn were originally given by Benade (1988), and step
discontinuities in area were described by Karal (1953). When the effective radius of the cross-
section is much larger than the boundary layer, lossless models suffice. To include the effects of
viscous and thermal losses, typically the lossy propagation function and characteristic impedance
may be calculated using the exact Bessel-function solution (e.g. Keefe (1984)) for circular cross-
sections, as described in Section A.2.2. For non-circular cross-sections, the propagation function can
usually be approximated using an ‘effective radius’ and the cylindrical or parallel plate solution for
visco-thermal losses (Richards, 1986), as described in Section A.3. A similar solution for arbitrary
geometry was first given by Rayleigh (1896).

Typically, a smoothly varying area function can be approximated by the concatenation of many
short conical or cylindrical segments. Mapes-Riordan (1993) approximated horn functions using
both of these methods, and found that conical horns provided the best approximation. However,
he did not include the Karal (1953) correction for step discontinuities in the cylindrical model,
which would likely improve the approximation.

A small number of conical horns may also be used to determine an area function via least-squares
model fitting. For example, Lewis & Neely (2015) use seven conical sections and a low-order model
for the middle ear to fit WAI data measured in the ear canal. However, this fitting procedure relies
heavily on knowledge of the terminating impedance, the TM and ossicles, to accurately determine
the ear-canal area function. The next section describes inverse methods that rely on the time-
domain impedance and reflectance. Using these methods, the terminating impedance does not
affect the estimated area function, because the area function is estimated up to some point using
time-domain information preceding the round-trip travel time to that point and back.

General two-port solution. For wave propagation in a tube (A(x) = A0) or horn (A(x)), first
represent the average pressure and volume velocity by a matrix. Assume that the solutions are
separable into a frequency-dependent amplitude term, and a frequency- and space-dependent term
with axial coordinate x, such that 4

Ψ(x, ω) = α+(ω)Ψ̂+(x, ω) + α−(ω)Ψ̂−(x, ω). (3.35)

4In terms of Equation 3.24, Ψ̂±(x, ω) = B(x)e∓φ(x,ω).
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If the horn is terminated in a load at port 2 (e.g. Fig. B.1), x = L = x2, the amplitude terms will
be related by a reflection coefficient Γ2(ω) = α−(ω)/α+(ω). The pressure and volume velocity are
given by [

Ψ(x, ω)
V(x, ω)

]
=

[
Ψ̂+(x, ω) Ψ̂−(x, ω)

y+
c (x, ω)Ψ̂+(x, ω) −y−c (x, ω)Ψ̂−(x, ω)

][
α+(ω)
α−(ω)

]
. (3.36)

Recall that y±c (x, ω) = V±(x, ω)/Ψ±(x, ω) is the characteristic admittance, which depends on
direction for a variable-area horn. It is possible to solve for the coefficients α±(ω) in terms of the
load pressure and volume velocity, Ψ2 and V2. At this step, we may also define the direction of V2

as ‘into the port,’ which is convenient for analysis of the corresponding impedance matrix. This
gives [

Ψ2

−V2

]
=

[
Ψ̂+(x2, ω) Ψ̂−(x2, ω)

y+
c (x2, ω)Ψ̂+(x2, ω) −y−c (x2, ω)Ψ̂−(x2, ω)

] [
α+(ω)
α−(ω)

]
[
α+(ω)
α−(ω)

]
=

1

Ψ̂+
2 Ψ̂−2 (y−c,2 + y+

c,2)

[
y−c,2Ψ̂−2 Ψ̂−2
y+
c,2Ψ̂+

2 −Ψ̂+
2

][
Ψ2

−V2

]
. (3.37)

By substituting the expression for α±(ω) back into Equation 3.36, the following expression may be
obtained: [

Ψ1

V1

]
=

1

Ψ̂+
2 Ψ̂−2 (y−c,2 + y+

c,2)

[
Ψ̂+

1 Ψ̂−1
y+
c,1Ψ̂+

1 −y−c,1Ψ̂−1

][
y−c,2Ψ̂−2 Ψ̂−2
y+
c,2Ψ̂+

2 −Ψ̂+
2

][
Ψ2

−V2

]
=

[
A B
C D

] [
Ψ2

V2

]
=

[
A B
C D

] [
Ψ2

−V2

]
. (3.38)

The input impedance Z1 = Ψ1/V1, and the load impedance Z2 = −Ψ2/V2. Using the two-port
model, the input impedance may determined given the load impedance, and vice versa.

3.3.2 Fourier series analysis of the area function

The differential equation for an exponential horn is separable and easily solved5 (Pierce, 1981;
Beranek & Mellow, 2012; Allen, 2016). This offers an interesting solution to the Webster horn
equation (Eq. A.91), as an arbitrary area function of finite length L may be represented using a
Fourier series,

A(x) =

∞∑
n=−∞

ane
jνnx, νn = 2πn/L (3.39)

where νn are discrete spatial frequencies. Note that the use of a Fourier series implies that the area
function is periodically extended. Applying this series expansion to the Webster horn equation
gives

∂

∂x

[ ∞∑
n=−∞

ane
jνnx

]
∂

∂x
Ψ =

[ ∞∑
n=−∞

ane
jνnx

]
κ2Ψ. (3.40)

5When not accounting for the curvature of the iso-pressure wavefronts (Agulló et al., 1999; Keefe & Barjau, 1999)
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By superposition, this yields a (potentially infinite) sum of primitive pressure solutions Ψn, as the
equation for each spatial mode is

1

ejνnx
∂

∂x
ejνnx

∂

∂x
Ψn = κ2Ψn (3.41a)

jνn
∂Ψn

∂x
+
∂2Ψn

∂x2
= κ2Ψn. (3.41b)

This equation is the familiar equation for a horn with an exponentially varying area function
A(x) = e2mz = ejνnz which has a well-known solution (e.g. Table 3.1). The nth equation has the
forward- and reverse-traveling pressure solutions

Ψ±n ∝ e−(jνn/2±
√
κ2+(jνn/2)2)x. (3.42)

Therefore, the total pressure may be described by

Ψ(ω, x) =

∞∑
n=−∞

[
αn,+(ω)e−(jνn/2+

√
κ2−ν2

n/4)x + αn,−(ω)e−(jνn/2−
√
κ2−ν2

n/4)x

]
, (3.43)

where the coefficients αn,±(ω) must be determined by the impedance boundary conditions of the
horn.

This method bears resemblance to the work of Schroeder (1967) and Mermelstein (1967), who
estimated the area function of the vocal tract using measured vowel formant frequencies. Schroeder
(1967) specifically mentions that the area function may be represented by a Fourier series, but fails
to note that this would lead to an exact solution (due to the fact that when the area function is
exponential, the Sturm-Louisville equation has an exact solution). Thus this expansion is a key
result, presented here for the first time. Note that solutions to this method require assumptions
regarding the terminating load impedance.

3.4 Inverse solution for horns of unknown area function

The area function of an unknown acoustic horn may also be estimated using time-domain inverse
methods. These methods are far less dependent on knowledge of the load impedance (e.g. the
middle ear), as they consider the early-time signal, prior to any reflections from the load. In
general, the area function up to some point xa in the horn can be estimated from the first 2ta [s]
of the time signal, defined as the time it takes for an impulse at the input to travel to the point
xa and back. Two inverse methods are presented in this section. The first method is based on
the time-domain impedance impulse response, and was developed by (Sondhi & Gopinath, 1971),
though preceded by similar methods such as that of Youla (1964). The second method is based
on the time-domain reflectance and the Webster horn equation, as described by Rasetshwane et
al. (2012). This method appears to be similar to the ‘step reflectance’ method given in Sondhi &
Resnick (1983).

Consider the variable-area horn shown in Figure 3.2. To analyze the area at xa in the time
domain, it can be related to the time-of-travel ta to that point for an impulse entering the system
at x = 0,

ta =

∫ xa

0

1

c0
dx =

xa
c0
, (3.44)
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Figure 3.2: Diagram of an arbitrary variable-area acoustic horn of area function A(x). The x
coordinate represents the central axis; typically slight curvature of this axis does not have a large
effect on the acoustic results. The coordinate x = xa represents an arbitrary point of analysis. The
horn is terminated in an unknown acoustic load at x = L.

where c0 is the speed of sound in a lossless acoustic horn. As noted by Youla (1964), if the velocity
depends on position, this may be described by the integral over the function c(x),

ta =

∫ xa

0

1

c(x)
dx. (3.45)

For a lossless acoustic system, a spatially dependent speed of sound c(x) would be due to spatial
changes in equilibrium pressure, density, temperature or other gas properties. For the systems
considered in this thesis, such changes do not apply. It is important to note that lossy acoustic
horns will have dispersion, such that the phase velocity is a function of frequency as well as position,

c(x, ω) =
ω

=[κ(x, ω)]
. (3.46)

In this case, the travel time ta for a plane wave to the point xa will be frequency-dependent. Sondhi
& Resnick (1983) offer a modified inverse method accounting for visco-thermal losses, but note that
the solutions computed will be non-unique.

Note that time-domain analysis is limited by the bandwidth of the WAI measurement. Good
resolution in the time domain and description of the signal near t = 0 (e.g. delta function and unit-
step behavior) is contingent upon a broad frequency range of measurement, and the high-frequency
signal. Additionally, WAI measurements are very sensitive to low-frequency noise, so data below
100-200 Hz is not typically available, which limits the accuracy of the time-domain reflectance
estimation.

3.4.1 Impedance method

The impedance-based method proposed by Sondhi & Gopinath (1971) is based on the convolution
relationship between the time-domain impedance at x = 0 (e.g. Fig. 3.2) and the average pressure
and volume velocity,

ψ(0, t) = z(0, t) ? v(0, t), (3.47)

and the time-domain continuity equation

∂v

∂x
= −A(x)

ρ0c2
0

∂ψ

∂t
. (3.48)
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Area function from the continuity equation. To solve for the area function from the con-
tinuity equation, both sides of the equation are integrated over x ∈ (0, xa) and t ∈ (t0, t0 + ta).
These intervals describe the depth xa and time of travel ta to some point along the horn for an
impulse entering the system at t = t0. This gives∫ t0+ta

t0

dt

∫ xa

0
dx
∂v

∂x
= − 1

ρ0c2
0

∫ xa

0
dxA(x)

∫ t0+ta

t0

dt
∂ψ

∂t
(3.49a)∫ t0+ta

t0

dt

[
v(xa, t)− v(0, t)

]
= − 1

ρ0c2
0

∫ xa

0
dxA(x)

[
ψ(x, t0 + ta)− ψ(x, t0)

]
. (3.49b)

A crucial step in simplifying these equations requires some intuition regarding the behavior of
a wave propagating through space and time in the horn. For an impulse entering the system
at t = t0 and x = 0, no disturbance is expected at x = xa until time t = t0 + ta. Therefore,
v(xa, t) is expected to be 0 over the time range of integration on the left-hand side of this equation.
Consequently, at t = t0 there should be no disturbance for x > 0; therefore, ψ(x, t0) is equal to 0
over the spatial range of integration on the right-hand side of this equation. This gives∫ t0+ta

t0

v(0, t)dt =
1

ρ0c2
0

∫ xa

0
A(x)ψ(x, t0 + ta)dx. (3.50)

In order to relate the velocity v(0, t) at the input to the area function, it is necessary to impose
the condition

ψ(x, t0 + ta) = 1, 0 ≤ x ≤ xa. (3.51)

For clarity, we will use the subscript a to denote the velocity function va(0, t) that produces this
condition

ψ(0, t0 + ta) = 1 = z(0, t) ? va(0, t)

∣∣∣∣∣
t=t0+ta

. (3.52)

Under the unity condition on the spatial pressure function, the integral of the time-domain velocity
at the input gives the volume of the horn up to xa,

V (xa) =

∫ xa

0
A(x)dx =

1

ρ0c2
0

∫ t0+ta

t0

va(0, t)dt. (3.53)

Therefore, in order to determine the area function, it is possible to solve for the volume function
over a discrete set of values xa, and find the area function by taking the derivative of V (x). Note
that a new function va(0, t) leading to the condition ψ(x, t0 + ta) = 1 for x ∈ [0, xa] must be found
for each xa.

Time-domain volume velocity va(0, t) for constant pressure at time t0 +ta. The solutions
va(0, t) for various values of xa are obtained using the convolution formula for the impedance
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impulse response at x = 0,

ψ(0, t) = v(0, t) ? z(0, t)

=

∫ ∞
−∞

v(0, τ)z(0, t− τ)dτ

=

∫ t

t0

v(0, τ)z(0, t− τ)dτ. (3.54a)

The bounds of the convolution are determined by the fact that the impedance is causal (z(0, t−τ) =
0 when τ > t) and the velocity must be zero before the system is excited at t0. This is a Volterra
integral equation of the first kind, whose solution is the function v(0, t) given known functions ψ
and z. Decomposing the impedance into a delta-function and remainder component, setting t0 = 0,
and taking the pressure at t = t0 + ta = ta,

z(0, t) = r0δ(t) + ẑ(t) (3.55a)

ψ(0, ta) = 1 = r0va(0, ta) +

∫ ta

0
va(0, τ)ẑ(0,+ta − τ)dτ. (3.55b)

This is a Volterra integral of the second kind, which can be solved to find va(0, t) for t ∈ [0, ta].
The advantage of using this equation over the previous one is that it specifically treats the δ(t)
function at t = 0 in the time-domain impedance.

Using the functions va(0, t) for t ∈ [0, ta], the discrete solution for the area is

A(xan) =
1

ρ0c2
0

[∫ tan+1

0 van+1(0, t)dt−
∫ tan

0 van(0, t)dt

xan+1 − xan

]
. (3.56)

Symmetric solution. Sondhi & Gopinath (1971) create a symmetric Fredholm integral equation
by constructing symmetric functions such that

ψ̃(x, t) = ψ(x, t) + ψ(x,−t) (3.57a)

ṽ(x, t) = v(x, t)− v(x,−t), (3.57b)

which still satisfy the equations of continuity and motion (e.g. Eq. 3.4). To proceed, the following
relationship is necessary:

ψ̃(0, t) = 2 & ṽ(0, t) = 0, |t| ≤ ta =⇒ ψ(x, 0) = 1, 0 ≤ x ≤ xa. (3.58)

This proof relates to the Cauchy problem for differential equations, and is discussed in detail in
Gopinath & Sondhi (1971). Under these conditions, the solution is also unique. It follows from
Equation 3.58 that v(0, t) = v(0,−t).
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Begin with the convolution relationship

ψ̃(0, t) = v(0, t) ? z(0, t) + v(0,−t) ? z(0,−t)

=

∫ t

t0

v(0, τ)z(0, t− τ)dτ +

∫ −t
t0

v(0,−τ)z(0,−t− τ)dτ

= r0v(0, t) +

∫ t

t0

v(0, τ)ẑ(0, t− τ)dτ + r0v(0,−t) +

∫ −t
t0

v(0,−τ)ẑ(0,−t− τ)dτ. (3.59)

If t0 = −ta, it is possible to simplify this equation using Equation 3.58,

ψ̃(0, t) = 2 = 2r0v(0, t) +

∫ t

−ta
v(0, τ)ẑ(0, t− τ)dτ +

∫ −t
−ta

v(0,−τ)ẑ(0,−t− τ)dτ

= 2r0v(0, t) +

∫ t

−ta
v(0, τ)ẑ(0, t− τ)dτ −

∫ t

ta

v(0, τ ′)ẑ(0,−t+ τ ′)dτ ′, τ ′ = −τ

= 2r0v(0, t) +

∫ t

−ta
v(0, τ)ẑ(0, t− τ)dτ +

∫ ta

t
v(0, τ ′)ẑ(0,−(t− τ ′))dτ ′

= 2r0v(0, t) +

∫ ta

−ta
v(0, τ)ẑ(0, |t− τ |)dτ. (3.60)

To form the final equation, we allow the impedance kernel ẑ to be a symmetric function. Since the
impedance z is causal, and the delta-function component has been removed, this is an acceptable
construction (the postive- and negative-time functions do not overlap).

This gives the Fredholm integral equation

r0va(0, t) +
1

2

∫ ta

−ta
va(0, τ)ẑ(0, |t− τ |)dτ = 1, |t| ≤ ta, (3.61)

whose solutions are the functions va(0, t), |t| ≤ ta. The symmetry of this equation helps to simplify
discrete solution methods (e.g. Caflisch (1981)). Given a numerical impulse response z(t), the
solution to this integral is the inversion of a convolution matrix. Matlab packages for numerically
solving such Fredholm integrals for continuous functions are also available online (Atkinson &
Shampine, 2008).

Tracking the constants. As Sondhi & Gopinath (1971) set all constants to 1, it is helpful to
determine what the solution is in terms of these constants. Putting the above equations in the
same form as Sondhi & Gopinath (1971) gives

1

r0ρ0c2
0

= fa(0, t) +
1

2

∫ ta

−ta
fa(0, τ)h(0, |t− τ |)dτ, |t| ≤ ta (3.62a)

V (xa) =

∫ xa

0
A(x)dx =

∫ ta

0
fa(0, t)dt, (3.62b)

fa(0, t) =
1

ρ0c2
0

va(0, t) (3.62c)

h(0, |t|) =
1

r0
ẑ(0, |t|) =

1

r0

[
z(0, |t|)− r0δ(t)

]
. (3.62d)
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Taking the derivative of Equation 3.62a, Sondhi & Gopinath (1971) showed that

A(xa) =

[
fa(0, ta)

]2

. (3.63)

Therefore, the area function may be determined directly from the solution fa, given that the
Fredholm integral is solved in the form given in Equation 3.62a.

3.4.2 Reflectance method

The inverse solution of Rasetshwane & Neely (2011) (developed in Rasetshwane et al. (2012))
uses the time-domain reflectance to determine the unknown area function, assuming lossless wave
propagation. This is accomplished via a formulation of the Webster horn equation (Eq. A.91) in
terms of the forward and retrograde pressure signals. Recall that

Γ(0, f) =
Ψ−(0, f)

Ψ+(0, f)
↔ ψ−(0, t) = ψ+(0, t) ? γ(0, t). (3.64)

Due to the convolution relationship between the forward and retrograde pressures, if ψ+(0, t) = δ(t)
then

ψ−(0, t) = γ(0, t). (3.65)

The reflectance method takes advantage of this fact, using the theoretical (or measured) time-
domain reflectance impulse response at the input.

Note that a correct definition of reflectance is critical to the success of this method. As discussed
in Section 3.2.2, Rasetshwane et al. (2012) ultimately used the correct definition,

Γ =
y+
c − Y
y−c + Y

. (3.66)

Rasetshwane et al. (2012) did not correctly identify the contribution of the term y±c ±y0, attributing
it to the measured (or simulated) admittance Y rather than to the characteristic admittance.
However, their final solution is correct. The following derivations will be stated in terms of y±c
for clarity. Rasetshwane et al. (2012) effectively approximated the characteristic admittance y±c at
each spatial step as

y±c (x, ω) ≈ A(x)

ρ0c0

[
1± c0β(x)

jω

]
(3.67a)

β(x) = lim
ω→∞

jω

[
Y (x, ω)

y0
− 1

]
. (3.67b)

Wave variables. The forward and retrograde wave variables Ψ+ and Ψ− may be derived from
the pressure and velocity equations

Ψ = Ψ+ + Ψ− (3.68a)

V = y+
c Ψ+ − y−c Ψ−. (3.68b)
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Solving these equations for Ψ± ↔ ψ± yields

Ψ±(x, ω) =
1

2

[(
1∓ c0β(x)

jω

)
Ψ(x, ω)± 1

y0(x)
V(x, ω)

]
(3.69a)

ψ±(x, t) =
1

2

[
ψ(x, t)∓ c0β(x)

∫ t

0
ψ(x, t′)dt′ ± 1

y0(x)
v(x, t)

]
. (3.69b)

By differentiating the time-domain pressures in time and space, and using the conservation of
mass and momentum equations,

∂ψ

∂x
= − ρ0

A(x)

∂v

∂t
and

∂v

∂x
= −A(x)

ρ0c2

∂ψ

∂t
,

they define the directional derivatives[
∂

∂x
± 1

c0

∂

∂t

]
ψ± = −1

2
β(x)ψ(x, t)∓

[(
1

2

1

A(x)

∂A

∂x
− 1

2
β(x)

)
v(x, t)

y0(x)
+
c0

2

∂β

∂x

∫ t

0
ψ(x, t′)dt′

]

= −1

2
β(x)ψ(x, t)∓

[(
ε(x)− 1

2
β(x)

)
v(x, t)

y0(x)
+ η(x)

∫ t

0
ψ(x, t′)dt′

]
. (3.70)

Solution. Beginning with Equation 3.70 and ψ±(x, t), A(x) and β(x) at x = 0, they used a
finite-difference time-domain method to solve for these parameters (and ε(x) and η(x)) at each
spatial step. Note that each spatial step ∆x = c0∆t for lossless propagation, where ∆t is the
time-of-travel across a distance of ∆x.

At each step of the algorithm, the total pressure and volume velocity were recalculated as

ψ = ψ+ + ψ− (3.71a)

v = y+
c ? ψ

+ − y−c ? ψ−

= y0(x)

[
ψ+ − ψ− + c0β(x)

∫ t

0
ψ(0, t′)dt′

]
. (3.71b)

Additionally, a boundary condition requiring the retrograde pressure to vanish at the wavefront
was imposed,

ψ−(x, t) = 0, x ≥ c0t. (3.72)

This boundary condition states the no wave is propagating back from beyond the wavefront, since
the wave has not penetrated the system past this point. These equations provided sufficient infor-
mation to calculate ε(x) and η(x) at each step.

The area function and flare parameter were incrementally adjusted at each step of the algorithm
via

A(xn+1) = A(xn)e2c0εn∆t = A(xn)e2εn∆x (3.73a)

β(xn+1) = β(xn) + 2ηn∆t = β(xn) +
∆β

∆x
c0∆t = β(xn) + ∆β. (3.73b)
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Note that the area solution has an exponential form,

A(xN ) =

N∏
n=1

e2εn∆x = e2∆x
∑N
n=1 εn . (3.74)

For a continuous function β(x), this expression becomes

A(x) = e2
∫ x
0 β(x′)dx′ . (3.75)

Rasetshwane et al. (2012) found ε(x) = β(x), which they said was unexpected. However, arguably
this occurs by design rather than coincidence. The characteristic impedance is fitted at each step
to a conical (or approximately exponential) flare. Therefore, by construction

ε =
1

2

1

A(x)

∂A(x)

∂x
≈ 1

2

1

e2βx

∂e2βx

∂x
= β. (3.76)

This exponential form of the area function was therefore determined by the choice of the form of
yc±. Consequently, it is probably not necessary to solve for both ε(x) and β(x).

As previously noted, the formulation of y±c is exact for a conical horn, and only approximate for
an exponential horn. Therefore, we suggest a correction to the area function calculation to match
the conical horn case. It requires more computational operations, but may provide better stability
for the inverse method. Let a(xn) be equal to the planar radius,

a(xn) =

√
A(xn)

π
. (3.77)

The effective distance to the cone apex at each algorithm step is given by re,n = 1/βn, as shown in
Figure 3.3. At step n+1, the new effective apical distance is estimated. This gives the relationships

sin(θn+1) = anβn+1 (3.78a)

tan(θn+1) =
∆a

∆x
. (3.78b)

Therefore, the change in cross-sectional radius is described by

a(xn+1) = a(xn) + ∆a (3.79a)

∆a = ∆x
a(xn)β(xn+1)√

1− (a(xn)β(xn+1))2
. (3.79b)

Prior to the next algorithm step, it seems that βn+1 should be adjusted as well, to maintain the
angle θn+1 when it is paired with the new radius an+1. This increment should be

r′e,n+1 = re,n+1 +
√

(∆a)2 + (∆x)2 (3.80a)

β′n+1 =
βn+1

1 +
√

(∆a)2 + (∆x)2
. (3.80b)

Relationship to the ‘step reflectance’ of Sondhi & Resnick (1983). Sondhi & Resnick
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Figure 3.3: A description of incremental changes in local flare, using re = 1/β as the effective
distance to the apex of a cone. This approximates the local change in radius via straight line of
some slope described by the angle θn+1.

(1983) formulate the inverse problem in terms of a function

S(t) =

∫ t

0
γ(t′)dt′. (3.81)

They form directional derivatives similar to Equation 3.70, but impose a different condition on the
forward time-domain pressure,

ψ+(0, t) =

{
u(t) Sondhi & Resnick (1983)

δ(t) Rasetshwane et al. (2012).
(3.82)

Given the relationships ψ = ψ+ + ψ− and ψ− = ψ+ ? γ, the function S(t) using the pressure
condition for Rasetshwane et al. (2012) becomes

S(t) = −1 +

∫ t

0
ψ(0, t′)dt′, Rasetshwane et al. (2012). (3.83)

The time integral of ψ(0, t) appears throughout the method of Rasetshwane et al. (2012) to account
for the local curvature of the area function. Therefore, we can hypothesize that the ‘step reflectance’
of Sondhi & Resnick (1983) meets a similar need.

3.5 Pole-zero fitting and reflectance factorization

This section details a method described in Robinson et al. (2013) for analysis of WAI measurements
made in the ear canal. This method consists of two main operations:

1. Fitting poles and zeros to the frequency-domain reflectance data using the method of Gus-
tavsen & Semlyen (1999),

2. Factoring the pole-zero fit into its minimum-phase and all-pass components to estimate the
WAI at the TM.
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An important assumption of this method is that there is very little area variation in the ear canal,
such that the measurement

Γ(ω) ≈ e−jω(2L/c0)Γtm(ω). (3.84)

The method allows for a lossless, frequency-dependent delay to be removed from the reflectance
measured at the input. A non-uniform-area canal will cause both magnitude and phase effects on
the measured WAI, as reviewed later in this section. However, this factorization appears to remove
some phase effects due to variable area, and yields reasonable estimates of the TM impedance.
Additionally, it preserves the magnitude reflectance, which is the current diagnostic standard for
WAI.

3.5.1 Pole-zero representation

Poles and zeros may be expressed in terms of a rational polynomial fraction, as the roots of the
denominator and numerator, respectively. Such a function will have the form

F̂ (s) =
bNzs

Nz + bNz−1s
Nz−1 + ...+ b1s+ b0

sNp + aNp−1sNp−1 + ...+ a1s+ a0

= bNz

∏Nz
i=1(s− zi)∏Np
i=1(s− pi)

, (3.85)

where s is the complex angular frequency variable (s = σ + jω), ai and bi are the polynomial
coefficients, Np is the number of poles, Nz is the number of zeros, pi are the poles, and zi are the

zeros (Van Valkenburg, 1964). Note that the coefficients ai and bi must be real for f̂(t) to be real.
The poles and zeros give

F̂ (s)|s=zi = 0 (3.86a)

F̂ (s)|s=pi →∞. (3.86b)

When these poles and zeros have non-zero real parts, F̂ (s)|s=jω will have minima and maxima
rather than zeros and poles. Therefore, the poles and zeros generally describe the local minima
and maxima of the fitted data F (ω). The closer the poles and zeros lie to the jω axis, the more
extreme these minima and maxima become. Therefore, the real part of a pole or zero describes the
‘damping’ of that extremum.

Poles and zeros are a familiar concept in impedance analysis. Considering Equation 2.6, the
reflectance must also have poles and zeros via a simple algebraic transformation. Thus, F̂ (s) may
fit the impedance Z, the reflectance Γ, or some other simple algebraic transformation of the data.
Robinson et al. (2013) found that fitting the data in the reflectance domain typically yielded the
best results, due to the small dynamic range and smooth behavior of the reflectance function.

3.5.2 Pole-zero fitting method

While it is more common to fit poles and zeros in the time domain, using methods such as au-
toregressive moving-average (ARMA) modeling (e.g. Recio-Spinoso et al., 2011), this is not usually
practical for WAI data. This is because WAI data is usually bandlimited (e.g. 0.2 to 6 or 8 [kHz]),
particularly for clinical systems. This bandwidth limitation is due to a number of factors, including
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transducer output and noise floor, range of accurate Thévenin calibration, and noisy environments
(particularly in clinics and hospitals). This typically prevents the acquisition of a quality time-
domain impedance or reflectance signal. Therefore, pole-zero fitting was accomplished using a
frequency-domain method.
F̂ (s), where s = σ + jω is the complex angular frequency variable, will be used to denote the

complex frequency-domain fit, and F (ω) will be used to denote the measured complex frequency-
domain data. It is important to note that the data is only available as a function of ω, thus the
data is related to the fitted function by

F (ω) ≈ F̂ (s)|s=jω. (3.87)

Because the middle ear is not a lossless system, the poles and zeros of the fit are typically located off
the ω axis (have non-zero σ values related to the damping). Thus F̂ (s)|s=jω typically has minima
and maxima instead of zero and infinite values.

The data (e.g. the complex reflectance Γ(ω), impedance Z(ω), or admittance Y (ω) = 1/Z(ω)) is
fit to a causal, stable residue expansion of the form

F̂ (s) =

Np∑
i=1

Ci
s−Ai

+D + Es, (3.88)

where the constants D and E are real quantities, while the constant poles and residues, Ai and Ci,
are either real or occur in complex conjugate pairs. Note that if E is non-zero, the numerator order
(Nz, as in Eq. 3.85) is one greater than the denominator order (Nz = Np + 1). Similarly, if E is
zero and D is non-zero the numerator and denominator orders are equal (Nz = Np), and if both D
and E are zero the numerator order is one less than the denominator order (Nz = Np − 1). Since
the poles and zeros of a 1-port network impedance are restricted to first order, with a relative order
of |Nz − Np| ≤ 1, the functional form of Equation 3.88 is sufficient for fitting impedance domain
data (Van Valkenburg, 1964). The reflectance does not have the same constraints, but given its
relationship to impedance (Eq. 2.6) we assume it will also fit well to this form.

It is important to note that while the total number of parameters may seem daunting, there
are typically fewer ‘degrees of freedom’ than it seems because the complex poles and zeros are
constrained to come in complex conjugate pairs. For instance, if a fit has twelve poles and ten of
them are complex, there are only seven ‘degrees of freedom’ related to the poles because five (half)
of the complex poles are constrained by conjugate symmetry. This constraint is preserved under
the transformation in Equation 2.6. Most WAI data with a (0.2 to 6 [kHz]) range can be fit with
10-20 unique parameters, with a mean-squared error of less than 3% (Robinson et al., 2013).

The vector fitting procedure derived by Gustavsen & Semlyen (1999) is a two-step process,
which converts a nonlinear least squares problem to a linear least squares problem by introducing
an unknown scaling function with known poles. This procedure is detailed in Appendix C. Given
a fixed number of poles, the algorithm converges very rapidly, usually within a few iterations. The
algorithm may be re-run with an increasing number of poles, until some error criterion is met.
For some measurements, the fitting procedure may return a set of poles and zeros with nearly
overlapping pole-zero pairs, due to small extrema from measurement noise. Such pairs may be
considered to ‘overfit’ the data, and it is often possible to eliminate them from the fit without
causing an appreciable increase in the fitting error.
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3.5.3 Characteristics of the pole-zero fit

The pole-zero fitting method is limited by the data provided, and will typically not be accurate
outside of the measured frequency range (either above or below). For example, the appropriate
relative order of the fit (Nz vs. Np) is related to high-frequency asymptotic behavior of the data,
which may be unknown. As stated in Section 3.5.2, the relative order is determined by the values of
D and E in Equation 3.88; these fit the high-frequency data because all other terms (e.g. Ci/(s−Ai))
go to zero for large ω values.

Pole-zero fits to the data are also impacted by the estimated surge resistance r0 (Eq. 2.6) because
the complex reflectance depends on this parameter. The use of an incorrect area value to calculate
r0 will cause errors in the calculation of the reflectance (Rasetshwane & Neely, 2011). For the
Mimosa Acoustics HearID system, the canal area A0 is set according to the size of the foam tip
used. It has been shown that small variations in the ear canal area relative to the calibration
cavity area, within 20%, cause a negligible change in the reflectance measurement (Keefe et al.,
1992; Voss & Allen, 1994). Nonetheless, such a change will impact the pole-zero approximation of
the reflectance.

Correction to the surge impedance r0. Robinson et al. (2013) determined empirically that
the fit parameter E (Eq. 3.88) should be set to zero when fitting in the reflectance domain, while
the value D should not (though it is typically small). When E is forced to zero, the inverse Laplace
transform of the reflectance fit Γ̂(s) is

γ̂(t) = Dδ(t) +

Np∑
i=1

Cie
Aitu(t). (3.89)

Thus, a non-zero fit parameter D corresponds to an initial Dirac δ-function singularity of the time
domain reflectance (Lundberg et al., 2007); this value D is related to the reflectance fit via

lim
σ→∞

[
Γ̂(s)

]
= D. (3.90)

Now consider the surge resistance r0, which is defined as the magnitude of the initial δ-function
singularity of the time domain impedance. For a transmission line model of the ear canal and
middle ear (e.g. having wave propagation) the impedance Z(s) at the probe tip has the property

lim
σ→∞

[
Z(s)

]
= r̄0, (3.91)

where r̄0 is the true surge resistance, a real-valued constant. Considering Equation 2.6 in this limit
(assuming lossless propagation, z0 = r0), we find

lim
σ→∞

[
Γ(s)

]
=
r̄0 − r0

r̄0 + r0
. (3.92)

If r0 is equal to the true surge resistance r̄0, the limit of Γ(s) as σ → +∞ must be zero. This
means there must be no initial δ-singularity in the time domain reflectance. Thus, considering
Equation 3.90 and 3.92, D should be zero; a non-zero value of D may indicate a fitting inaccuracy,
or the use of an incorrect r0 value. In the latter case, if the fitting procedure yields a good
approximation of the initial singularity in the time-domain reflectance (due to an incorrect r0

value), D might be used to estimate the true surge resistance value from the complex reflectance
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data via

r̄0 = r0
1 +D

1−D
. (3.93)

In practice, the bandwidth of the data is too limited to achieve accurate estimates of D. This is
consistent with the observed low sensitivity to variations in r0 (or equivalently, A0).

Network modeling application. Pole-zero fits may also be used to synthesize network models
of the complex impedance (e.g. Brune (1931) and Van Valkenburg (1964)). However, such RLC
networks will not necessarily be unique. Networks synthesized from pole-zeros fits of complex
reflectance measurements will often lack direct physical interpretations present in other models,
such as the Zwislocki (1962), Kringlebotn (1988), or Parent & Allen (2010) models. Therefore,
network synthesis using the pole-zero fits is outside the scope of this thesis.

3.5.4 Reflectance factorization

Under the assumption that the ear canal is approximately a lossless uniform tube, and the rest of
the middle ear system has loss, the reflectance may be factored such that the residual ear canal
effect is approximately removed. Using the Weiner spectral factorization technique

Γ̂(s) = Γ̂ap(s)Γ̂mp(s) (3.94a)

Γ̂ap(jω) ≈ e−jω(2L/c0) (3.94b)

Γ̂mp(jω) ≈ Γtm(ω), (3.94c)

where Γ̂mp(s) is the ‘minimum-phase’ component and Γ̂ap(s) is the ‘all-pass’ component of the
pole-zero fit Γ̂(s). Using this factorization, it is possible to preserve the magnitude reflectance
while removing variable residual canal delay. Note that by design of the pole-zero fitting method
and the definition of the Laplace transform, the reflectance fit is causal and stable.

Construction of minimum-phase and all-pass components. By definition, it is required
that all poles and zeros of a minimum-phase function lie in the LHP. To construct the minimum-
phase component Γ̂mp(s), we must factor a component out of Γ̂(s) that accounts for all zeros that
lie in the RHP (if the fit was performed in the reflectance domain, all poles will be constrained
to the LHP by the fitting algorithm). Let the function Γ̂LHP (s) contain all the poles and zeros
of Γ̂(s) that lie in the LHP; let Nz,RHP be the number of RHP zeros of Γ̂(s), with values qi. The
reflectance fit may be factored as follows:

Γ̂(s) = Γ̂LHP (s)

Nz,RHP∏
i=1

(s− qi)

= Γ̂LHP (s)

Nz,RHP∏
i=1

(s− qi)
(s+ q∗i )

(s+ q∗i )

=

[
Γ̂LHP (s)

Nz,RHP∏
i=1

(s+ q∗i )

]
︸ ︷︷ ︸

Γ̂mp(s)

[Nz,RHP∏
i=1

(s− qi)
(s+ q∗i )

]
︸ ︷︷ ︸

Γ̂ap(s)

. (3.95)
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Considering Equation 3.95, overlapping poles and zeros are introduced in the LHP at s = −q∗i .
Grouping the terms, a component emerges with LHP poles and RHP zeros symmetrically placed
about the ω axis. This is called the all-pass component because its magnitude |Γ̂ap(jω)| is 1 for
all frequencies in the fitting range; it passes all frequencies with no attenuation. The factorization
required to form the all-pass component is unique. The remaining terms contain only poles and
zeros in the LHP and form the minimum-phase factor Γ̂mp(s). When working with poles and zeros,
this factorization requires no additional calculations.

The minimum-phase and all-pass factors have the following properties:

|Γ̂mp(jω)| = |Γ̂(jω)| (3.96a)

|Γ̂ap(jω)| = 1 (3.96b)

∠Γ̂mp(jω) + ∠Γ̂ap(jω) = ∠Γ̂(jω). (3.96c)

The reflectance magnitude is maintained in the minimum-phase component of the fit, while the
component of the reflectance that is uniformly lossless across the frequency range of the fit, including
any pure delay, is accounted for in the all-pass component. Because the factors are multiplied, their
phases add.

Estimating other WAI quantities at the TM. Using the estimated Γtm(ω), and assuming
that the canal area is approximately the same at the TM and the probe, all WAI quantities may
be estimated at the TM. For example, the normalized TM impedance can be calculated using
Equation 2.6 (assuming the ear canal is lossless),

Ztm(s)

r0
=

1 + Γtm(s)

1− Γtm(s)
. (3.97)

When the approximate residual ear canal contribution has been removed, the magnitude TM
impedance |Ztm(jω)|/r0 typically has no high-frequency notch due to ear canal standing waves
(Robinson et al., 2013, 2016). The TM impedance estimate is similar to the ‘propagated impedance’
function described by Voss & Allen (1994), calculated by removing a pure delay from the reflectance.
The advantage of the pole-zero factorization procedure is that it allows for a method to estimate
the pure delay present in the reflectance frequency response, without necessitating the use of the
high-frequency phase, which may not be available.

In theory, this factorization does not work for a variable-area horn because the reflectance mag-
nitude will be altered as well as the phase. In practice it seems to work well for measurements
made in the ear canal (Robinson et al., 2016), which we expect will generally have small variations
in area compared to, for instance, a measurement probe tip such as that described in Section 4.3.
If the all-pass component has a frequency-dependent phase, it may be indicative of area variations
in the ear canal.

Note that any lossless TM delay, as described by Puria & Allen (1998) and modeled by Parent
& Allen (2010), may also be included in the REC component. Conversely, because we enforce
Γrec ≈ Γap = 1 for all frequencies, thermoviscous losses due to the walls of the ear canal will be
mistakenly attributed to the middle ear. The longer the residual ear canal, the more pronounced
these losses will be, particularly if the probe is seated outside of the bony portion of the ear canal.
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3.5.5 Minimum-phase/all-pass decomposition for a variable-area ear canal.

Consider a variable-area horn, which can be expressed as an ABCD transmission matrix, according
to Figure 3.1 in Section 3.3.1. If this network is terminated in a load impedance Z2 = ZL, then
the input impedance Z1 = Zin is related to the load impedance via

Zin =
AZL +B

CZL +D
. (3.98)

To assess the minimum-phase/all-pass decomposition of the input reflectance, we must first calcu-
late Γin and ΓL using Equation 2.6. Let the characteristic impedance at the input be z0,in, and
that at the load be z0,L.

It can be shown that the input and load reflectances are related via

Γin =
ÃΓL + B̃

C̃ΓL + D̃
. (3.99)

Therefore, the load and input reflectances are only related by a multiplicative factor when B̃ =
C̃ = 0. Furthermore, this factor is ‘all-pass’ only when |Ã/D̃| = 1.

The coefficients of this möbius transformation are given by

Ã = Az0,L −B − Crinz0,L +Dz0,in (3.100a)

B̃ = Az0,L +B − Cz0,inz0,L −Dz0,in (3.100b)

C̃ = Az0,L −B + Cz0,inz0,L −Dz0,in (3.100c)

D̃ = Az0,L +B + Cz0,inz0,L +Dz0,in. (3.100d)

The reason factorization seems to work for the ear canal is that the ear canal in many cases may be
reasonably approximated by a uniform cylinder, for which B̃ = C̃ = 0 and |Ã/D̃| = |e−jω(2L/c0)| =
1.

Thus, reflectance factorization will be a good approximation when

|B̃| << |Ã| (3.101a)

|C̃| << |D̃| (3.101b)

|Ã| ≈ |D̃|. (3.101c)

For large variations in area, like those seen for the probe tip (Sec. 4.3), this method will not be
nearly precise enough, and two-port modeling or inverse techniques must be used instead.

Restrictions on the TM-WAI imposed by reflectance factorization. Considering the real
and imaginary parts of the impedance (Z = R + jX) and the admittance (Y = G+ jB), and the
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typical definition of reflectance (Eq. 2.6), the following set of relationships holds:

R

r0
=

1− |Γ|2

|1− Γ|2
(3.102a)

X

r0
=

2={Γ}
|1− Γ|2

(3.102b)

Gr0 =
1− |Γ|2

|1 + Γ|2
(3.102c)

Br0 =
−2={Γ}
|1 + Γ|2

. (3.102d)

Thus, normalized impedance and admittance quantities will be bounded based on the values of Γ(ω).
Restricting reflectance of the TM to minimum phase narrows the ranges the real and imaginary
parts of Γtm = Γmp can occupy.

Figure 3.4: The reflectance is bounded by |Γ| ≤ 1, thus values of the complex function Γ(ω) may
fall anywhere within the unit circle. The minimum phase function Γmp(ω) must fall within the
grey region shown because its phase is constrained by −π/2 ≤ ∠Γtm(ω) ≤ π/2.

Table 3.2: Bounds on impedance and admittance quantities for the probe and estimated TM
responses.

Probe quantities TM quantities

0 ≤ R/r0 ≤ ∞ 0 ≤ Rmp/r0 ≤ ∞
−∞ ≤ X/r0 ≤ ∞ ∞ ≤ Xmp/r0 ≤ ∞

0 ≤ Gr0 ≤ ∞ 0 ≤ Gmpr0 ≤ 1

−∞ ≤ Br0 ≤ ∞ −2 ≤ Bmpr0 ≤ 2

Consider Figure 3.4. The reflectance measured at the probe is bounded by |Γ| ≤ 1, thus values
of the complex function Γ(ω) may fall anywhere within the unit circle. However, the minimum
phase function Γmp(ω) must fall within the grey region shown because its phase is constrained by
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−π/2 ≤ ∠Γtm(ω) ≤ π/2. Thus the following inequalities must be true:

0 ≤ |1 + Γ| ≤ 2 (3.103a)

1 ≤ |1 + Γtm| ≤ 2 (3.103b)

0 ≤ |1− Γ| ≤ 2 (3.103c)

0 ≤ |1− Γtm| ≤
√

2. (3.103d)

Thus, the impedance and admittance quantities are bounded as shown in Table 3.2. These bounds
may partially explain why the conductance Gtm bears a greater similarity to the absorbance (1−
|Γ|2) as discussed in Section 6.4.2, since it is bounded between 0 and 1.
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CHAPTER 4

METHOD AND RESULTS: MEASUREMENT-PROBE DESIGN

For clinical use, a wideband acoustic immittance (WAI) measurement probe should have stable
Tévenin parameters (or be easy to calibrate), fit into adult, child, and infant ear canals, and
have disposable single-use ear tips or covers to keep the probe clean between subjects. For other
measurements such as otoacoustic emissions (OAEs), it is important that the probe have low
harmonic distortion and distortion products, and a low noise floor across the frequency range of
interest. Additionally, we require low acoustic crosstalk between transducer channels and a rugged,
acoustically sealed housing.

For the purposes of this thesis, the following discussion is limited to the WAI measurement
capabilities of the prototype probe. Specifically, the use of a probe-tip extension, beyond the
point of Thévenin calibration,1 is studied. This is different from the traditional method of probe
calibration, where a probe is calibrated with the complete ear tip on, and thus the microphone
channel must be separated up to the front end of this tip. Single-use foam and rubber tips meeting
this criteria, such as those used with the ER-10C (Etymotic Research, Elk Grove Village, IL), have
very small central sound outlets so that they can fit in the smallest (infant) ear canals. These tips
lead to a wave-spreading effect at the outlet of the probe into the ear canal (e.g. Karal (1953)).
The purpose of the probe-tip extension studied here is to allow the loudspeaker output to spread
as much as possible before entering the ear canal, by choosing an appropriately sized tip for the
subject in question. This study is a feasibility study, and does not represent the performance of
the current commercial probe supported by Mimosa Acoustics.

4.1 Thévenin calibration

WAI can be derived using many calibration methods such as the ‘two microphone’ method, or the
‘standing-wave tube’ method (Beranek & Mellow, 2012; Shaw, 1980). The two microphone method
requires a precise calibration of the microphones, and precise knowledge of their relative placement;
the standing wave tube method requires manual manipulation of the microphone placement with
reference to the end of a tube. Many of these methods have been shown to be relatively inaccurate
due to their sensitivity to precise placement of the microphone(s). The four-cavity Thévenin method
is suitable for clinical use because it is less sensitive to precise placement of the microphone.

Typically, a WAI measurement is made by playing a broadband sound stimulus in the ear canal,
such as a chirp, and measuring the sound pressure at the probe microphone. The sound source
must be calibrated in order to correctly interpret the ear-canal sound pressure response. Most
techniques for measuring reflectance use multiple cylindrical cavities of known lengths to calibrate

1The point of Thévenin calibration is where the microphone and speaker channels are separated. The probe
cannot be Thévenin calibrated beyond the point where the channels have mixed.
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the probe; various approaches differ primarily in terms of the size, length and the number of
calibration cavities used (Keefe et al., 1992; Neely & Gorga, 1998). For instance, Mimosa Acoustics’
HearID (Champaign, IL) uses a four-cavity method described by Allen (1986). In this method, the
pressure responses of four cylindrical cavities, and their theoretical cavity impedances, are used to
determine the Thévenin equivalent source parameters, which characterize the output of the probe
loudspeaker(s) in response to a stimulus voltage level.

Figure 4.1: Thévenin equivalent circuit for calibration of a WAI measurement probe. Ψs and Zs
are the source pressure and impedance, while Ψk and Zk are the measured pressures and theoretical
impedances of the cylindrical calibration cavities. All of these quantities will vary with frequency
ω.

A diagram of the Thévenin equivalent circuit is shown in Figure 4.1. The measured pressure
responses and the theoretical impedances of the known cavities, considering thermal and viscous
losses (Keefe, 1984), are used to determine the source pressure and impedance by solving the
overdetermined system of equations

Z1 −Ψ1

Z2 −Ψ2

Z3 −Ψ3

Z4 −Ψ4

[Ψs

Zs

]
=


Z1Ψ1

Z2Ψ2

Z3Ψ3

Z4Ψ4

 , (4.1)

at each frequency. As this system is of the form Ax = b, the solution is xopt = (AtA)−1Atb.
Once the Thévenin parameters of the source, Zs(f) and Ψs(f), have been calculated, the impedance
measured at the ear canal is simply

Z = Zs
Ψ

Ψs −Ψ
, (4.2)

where Ψ(f) is the measured pressure.

Determination of the cavity lengths. The lengths of the calibration cavities are needed to
calculate the impedance models Zk. These lengths may be determined by one of two methods.

1. Minimization of the least-squares error of Equation 4.1.

2. Determination of the acoustic length from the pressure null.

When these two methods yield equivalent lengths, it is more straightforward to calculate the lengths
directly from the pressure nulls. However, in some cases these lengths are not in agreement, due
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to the length effect of the Karal (1953) spreading mass at high frequencies. This occurs for short
cavities with the ER10C, when the pressure null is above 8 or 9 [kHz].

A further complication is that the acoustic lengths do not always match the physical lengths.
In general, it was found that the acoustic lengths determined for the ER10C probe were usually
1-2 [mm] longer than the measured lengths, while the acoustic lengths for the Mimosa Acoustics
prototype probe were typically about 1 [mm] shorter than the measurement lengths. Either length
difference may need to be accounted for when modeling measurements (e.g. two-port probe-tip
models). However, this difference may create more problems for the Mimosa probe, since its
effective plane of Thévenin calibration is therefore about 1 [mm] in front of the probe.

Evaluating the calibration. To evaluate the performance of the calibration (Allen, 1986) as a
function of frequency, we consider the following normalized, complex, frequency-dependent cavity
length:

L̂k(f) =
ln Γk(f)

−2Lkκ(f)
(4.3)

where Lk is the cavity length determined by the calibration and κ(f) is the complex propagation
function accounting for lossy sound propagation in a cylindrical cavity. The measured cavity
reflectance Γk(f) of the kth cavity is theoretically Γk(f) = e−2Lkκ(f). Therefore, it is possible to
define L̂k using the measured Γk for each cavity defined by the Thévenin solution, the determined
length Lk, and the theoretical value for κ.

Thus, we may place a calibration ‘pass’ criterion on the normalized length L̂k(f) such that its
magnitude must be correct within 1%, and its phase must be within 1 degree of 0

|L̂k(f)− 1| < 0.01 (4.4a)

∠L̂k(f) < 1◦. (4.4b)

Figure 4.2 shows an example calibration. The top-left quadrant shows the cavity pressure re-
sponses and the magnitude |L̂k(f)− 1| for each cavity. Note that the phase of this quantity always
‘passes’ calibration when the magnitude passes, so it is not shown. The upper-right quadrant shows
the measured cavity reflectances compared to their theoretical values. The bottom-right quandrant
shows the fit of the model (dashed line) to the pressure data (dots) at the pressure null. Finally,
the bottom-left quadrant shows the magnitude source relfectance and impedance of the current
probe, as compared to an example calibration of the ER10C.

The cavities causing large errors in the least-squares solution may typically be identified using
the L̂k metric. Alternatively, the least-squares solution may be analyzed to determine how each
two-cavity solution is weighted in the final answer (Haghighatshoar et al., 2015). It is best to detect
and remove error-prone cavities or regions from the solution, particularly near pressure poles, which
may be affected by level-dependent nonlinearities in the microphone, and the pressure nulls, which
may dip into the noise floor.
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Figure 4.2: Example of a successful calibration of a prototype Mimosa Acoustics probe. The top-
left plots show the magnitude response (in [Pa/V]) and the magnitude normalized length L̂k(f) for
each cavity. The bottom-left plots show the magnitude source impedance and source reflectance of
this probe, compared with the ER10C. The top-right plots show the magnitude reflectances and the
bottom-right plots show the measured pressure response nulls, compared with the cavity models.

4.2 Effects of microphone nonlinearity

Both the loudspeaker and microphones used in the measurement probe exhibit nonlinear behavior.
Typically the loudspeaker impedance is nonlinear with level, but this nonlinearity can generally
be avoided by sticking to one operating voltage across measurement levels. Nonlinearities of the
microphone can cause much more serious problems, in response to pressure poles and, for some
microphones, mild mechanical shock.

Electret microphones. Microphones used in insert-earphone measurement probes tend to be
electret microphones (Sessler & West, 1962). However, the type of bias circuit used for the micro-
phone’s transistor can determine whether or not the microphone gain is stable over time, and how
fast it settles back to equilibrium. This time-dependent gain may be acceptable for certain appli-
cations (e.g. cell phones), but is unacceptable for WAI devices. If the microphone gain changes
over time, a stable Thévenin calibration cannot be achieved. Figure 4.3 shows example cavity
measurements over time, using a probe build with a Knowles EM series microphone.

The EM microphone transistor is biased using a diode circuit, which improves the signal to
noise ratio of the measurements (Van Rhijn, 2003), but causes a time-varying gain. Alternatively,
Knowles’ EK series microphones, which are used in the ER10C probe, have a very stable output
over time due to resistor-biasing of the internal transistor. This increases the total size of the
microphone, but eliminates this gain instability. Some microphones employ a back-to-back diode
circuit, which dramatically reduces the microphone recovery time (Van Rhijn, 2003). However,
it can be difficult to determine which microphones are built this way (for instance, some FG
microphones by Knowles have this fast recovery time, while others behave more like the EM shown
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Figure 4.3: Knowles EM microphone with changing gain. The calibration may be achieved and
applied using measurements where the microphone gain has settled back to equilibrium. However,
every time the probe is touched during calibration, the microphone gain will change.

in Fig. 4.3).

Pressure poles. A related type of nonlinearity is caused by high-level signals, typically due
to the pressure response poles of the impedance load being measured. If the microphone has a
fast settling time, it will recover from the effect of the pole within one time-averaged signal block.
However, a nonlinear artifact appears locally in the de-chirped impulse response, as shown in Figure
4.4. This artifact will appear when the pole frequency is excited by the measurement chirp.

Figure 4.5 shows the chirp frequency as a function of group delay, indicating which frequencies
are played at which times. Comparing this to Figure 4.4, it is clear that the cavity 4 pole fre-
quency of about 8 [kHz] falls about 50 [ms] into each block. Therefore, this pole is responsible
for the nonlinear artifact appearing near 50 [ms] in Figure 4.4. Furthermore, all frequencies of the
cavity 4 measurement falling in the affected time region of the chirp may be contaminated by this
nonlinearity.

This time-domain signature can be used to help identify nonlinear pressure measurements, as
the nonlinearity can result in an inaccurate Thévenin calibration at the affected frequencies. This
effect is of particular importance when modeling the probe tip because the lengthened probe-tip
system, particularly when placed in a rigidly terminated cavity, can produce very large pressure
poles.
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Figure 4.4: Time and frequency effects of a high-amplitude pressure pole for cavity 4 (about 22
[mm] long). The left-hand plot shows the original cavity impulse response (solid blue). The impulse
response decays rapidly in the first 5-10 [ms], and should not get larger. However, an artifact of the
non-linearity occurring when the chirp frequency passes through the cavity pole is seen between 40
and 60 [ms]. The signal P4,mod (dashed cyan) is calculated by removing this time-domain artifact.
The corresponding frequency-domain quantities are shown in the right-hand plot, along with the
difference in the spectra, given by ∆ (solid cyan). This demonstrates that the nonlinearity causes
a low-frequency error in the frequency-domain pressure.
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Figure 4.5: Chirp frequency as a function of group delay. The approximate pole frequencies are
marked in red and blue for cavities 3 (about 18 [mm] long) and 4 (about 22 [mm] long).
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4.3 Model for a removable probe tip

The probe tip may be described by a cascade of frequency-dependent two-port matrices, as shown
in Figure 4.6. Two-port transmission matrices for the uniform tube, conical horn, and step dis-
continuities in area are given in Appendix B; the general derivation for such matrices is described
in Section 3.3.1. The models used in this chapter include viscous and thermal losses, though their
effects on sound transmission are minimal for relatively wide ducts such as the test probe tip
(d1 = 7.5 [mm], d2 = 4.0 [mm]). Figure 4.6 shows the general configuration for a measurement in
the ear canal using the probe tip. The goal of modeling the probe tip is to accurately estimate the
load impedance ZL (or preferably the TM impedance Ztm, as discussed in the next chapter) using
the impedance measured in the plane of Thévenin calibration.

Figure 4.6: Configuration and model for a middle-ear WAI measurement made using the probe tip.
The original probe tip studied had d1 = 7.5 [mm], d2 = 4.0 [mm], L1 = 6.5 [mm], and L2 = 13.3
[mm]. This tip is somewhat large for adult ears.

Theoretical effect of the load impedance on the measured WAI. When the load impedance
ZL of Figure 4.6 is infinite, there is a non-uniform delay effect due to the non-uniform area of the
probe tip, but the reflectance measured at the probe is 1 for all frequencies in the lossless case
(e.g. equivalent to the reflectance of the load). However, when the load impedance is not infinite,
the reflectance at the probe and that at the TM have a much more complicated relationship, which
is governed by the two-port properties of the probe tip (e.g. Eq. 3.99).
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Figure 4.7: Model for the ear-canal and middle-ear load, assuming a uniformly cylindrical ear
canal. The middle-ear impedance Ztm = R+ [j2πfC]−1, where R = 3r0 and C ≈ 6.6× 10−5r0. To
approximate measurements in the Mimosa Acoustics average-ear simulator, or a human ear, it is
necessary to add acoustic delay representing the ear canal (and TM). This is accomplished using a
uniform cylinder model of length Lec and diameter 7.5 [mm].

First, we examine the effect of a variable-length ear canal on the measured WAI, using a simulated
load impedance as shown in Figure 4.7. A simple, smooth model approximating the average middle-
ear absorbance is used to represent the middle ear. This model is given by

Ztm = R+
1

j2πfC
=
ρ0c0

A0

[
3 +

2400

jf

]
. (4.5)

This quasi-static model must be concatenated with a delay in order to approximate measurements
made in the Mimosa Acoustics average-ear simulator, or in human ears. This is accomplished
using a uniform cylinder model of length Lec and a diameter of 7.5 [mm]. Using a simple, smooth
middle-ear model, it is easier to observe the effects of the probe tip on the measured WAI. The
only parameter varied in the following simulation will be the ear-canal length.

Figure 4.8 shows the effect of different ear-canal lengths on the WAI measured in the plane of
Thévenin calibration, given the area function of the probe tip and the average middle ear. The
longer the ear canal, the greater the effect of the probe tip on the measured absorbance level
(left). Therefore, it is not only the change in area that matters, but also the relative delays of
segments of different areas. These results predict that the area function can cause a high-frequency
decrease in the measured absorbance level. This high-frequency roll-off is known to vary across
ears (sometimes it is not present), and thus may be related to ear-canal area variations (Lewis
& Neely, 2015). Finally, note that the total transfer function across the probe tip and ear canal
(right) indicates an up to 10 [dB] attenuation of the signal delivered to the middle ear at high
frequencies. This may cause problems for stimulus delivery in OAE measurements.

Theoretical effect of the probe-tip dimensions on the measured WAI. With the ear-
canal length held constant at 10 [mm], the effects of the cone length relative to the total probe-tip
length, and the effects of the total tip length, were simulated. The results are displayed in Figure
4.9.

The left-hand plot shows the effects of varying the total probe tip length. In this case, a shorter
probe tip leads to a lower absorbance (higher reflectance) at high frequencies. A longer probe tip
has less dramatic effects on the measured absorbance magnitude, but these effects appear lower in
frequency. The right-hand plot shows the effect of the cone angle, for a probe tip of fixed total
length. The extrema of this variation occur when the area discontinuity is located at the point
of Thévenin calibration (cone length goes to zero) and when the area discontinuity is located at
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Figure 4.8: Effects of varying load (ear-canal) delay on the measured absorbance at the point of
Thévenin calibration (left), and the transfer function across the probe tip and ear canal, from the
calibration point to the middle ear (right). Longer ear-canal models (with more delay) produce more
extreme changes (from the black curve) due to the variable-area tip. Based on these simulations we
conclude that these changes are due to the combination of the jump discontinuity and the delays
of the probe tip and ear canal.

the outlet of the probe tip (there is no decrease in area except for a constriction at the end of the
tip). The range of variation of these simulations is relatively small, indicating that the relative
dimensions of the taper matter less than the total length of the tip and the total change in area.
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Figure 4.9: Variation in the measured WAI (absorbance level) with probe-tip dimensions. Only
one parameter is varied at a time. For both plots, the ear canal length is always 10 [mm]. When the
probe-tip length is varied (left), the cone and cylinder are scaled equally, and when the cone length
is varied (right) the cylinder (L2) is varied so that the total length (L1 + L2) remains constant.
The relative length of the cone (e.g. steepness of taper) causes much less variation than the total
length (delay) of the tip.

4.4 Probe-tip measurements

The following section describes two types of measurements:

1. Ear-simulator measurements using the probe tip, from which the tip effect was extracted
using its theoretical two-port model (e.g. Appendix B).

2. A two-port matrix calibration of the probe tip, using three cylindrical-cavity loads (described
in Sec. B.3).

Figure 4.10 shows the probe tip sealed into a cylindrical cavity, with the aid of a metal washer and
a glue gun. This configuration is used to perform the two-port matrix calibration of the probe tip.

4.4.1 Extracting the probe-tip effects

Figures 4.11 and 4.12 examine measurements of an ear simulator using the probe tip. In Figure
4.11, the green lines show the original measurement of an ear simulator without the probe tip
(solid), and a simulation of the corresponding WAI that would be measured with the probe tip on
(dashed). Conversely, the black lines show a measurement of the same ear simulator with the probe
tip on (dashed), and with the probe tip computationally extracted (solid). These results agree with
each other in general, but the process of adding (rather than extracting) the probe tip seems to be
more computationally stable. This may be due in part to the high reflectance measured at high
frequencies with the probe tip on. This high reflectance is due to the constriction of the tip, which
limits access to the response on the other side.

Figure 4.12 shows multiple measurements of the ear simulator using the probe tip and two
different probes. The ear simulator measured without the probe tip (solid black) is the load
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Figure 4.10: Probe tip connected to a uniform cylindrical syringe of 7.5 [mm] diameter. A jump
discontinuity between the probe tip and the syringe was created using a washer as a flat plane,
fused to the probe tip using a glue gun. To measure the two-port parameters of the probe tip, the
plunger depth was varied (and carefully measured) to create test cavities of known impedance.

absorbance we hope to calculate via extraction of the probe tip. For the measurements shown here,
this extraction works well up to 3-4 [kHz]. Above this frequency, the extraction fails. This failure
could be due to inaccuracies in the probe-tip model (e.g. Figs. 4.13 and 4.14) or inadequacy of
the probe calibration. The fact that the effective calibration point of the Mimosa prototype probe
is about 1 [mm] in front of the probe (e.g. inside the probe tip) may also play a role. In similar
experiments using the ER10C, it was possible to accurately extract the effect of the probe tip up
to 4-5 [kHz] (a small improvement over the Mimosa Acoustics prototype probe).

4.4.2 Measuring the ABCD parameters of the probe tip

The two-port parameters of the probe tip were measured using three known cylindrical loads, as-
suming that the probe tip is reciprocal. Note that the lossy conical model is not quite reciprocal
(as explained in Sec. B.2.2), but this may be due to the approximations made to obtain solu-
tions to the lossy wave equation, rather than physical reality. Reciprocity is a fair approximation
(Van Valkenburg, 1960), as any transmission line composed of series and shunt impedance elements
is by definition reciprocal, and the probe tip could be modeled to high accuracy in this fashion.
Figures 4.13 and 4.14 show the results of these calibrations for 3 combinations of 3 (out of 4) cavity
loads (corresponding to approximately 2.5, 5, 7.5, and 10 [mm]). The experiment was performed
twice using two different Mimosa Acoustic prototype probes.

Considering Figure 4.13, the measured ABCD matrix is very similar to the theoretical matrix
(solid black line). A significant deviation of the data from the model occurs for the B parameter.
This effect appears to be that of a series compliance placed between the probe tip and the load,
such that

Tpt =

[
A′ B′

C ′ D′

]
=

[
A B
C D

] [
1 ZC
0 1

]
=

[
A (ZCA+B)
C (ZCC +D)

]
. (4.6)

Using a compliance in parallel with a resistor,

ZC(f) =
R0

1 + j2πfC0R0
, (4.7)
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Figure 4.11: Measurements of the Mimosa Acoustics average-ear simulator with (solid black) and
without (solid blue) the probe tip. By adding or extracting (subtracting) the computational model
for the probe tip (Fig. 4.6), each measurement is used to predict the other (dashed lines). The
estimate is better when adding the probe tip on (dashed blue), rather than extracting its effects
(dashed black).

with C0 ≈ 6.3 × 10−12 and R0 ≈ 3.6 × 107, the behavior of the element B may be approximated,
without degrading the model fit for the other ABCD (and Z matrix) elements. It is unclear whether
this model addition is attributable to problems with this specific test system, to the probe tip itself,
or to non-ideal properties of the plane of the area discontinuity. The compliance C0 corresponds to
a volume with cubed root V −1/3 ≈ 1 [mm], while the resistance R0, if taken to equal ρ0c0/A0 for a
cylindrical area, corresponds to a radius of 1.9 [mm]. Such dimensions could be related to crevices
in the interface between the probe tip and cavity load. Or, the added compliance could instead be
due to non-rigid properties of the glue-gun glue.

Considering Figure 4.14, the measured impedance matrix elements are similar to the model,
though they are slightly lower at low frequencies. This low-frequency deviation may be easily
approximated by adding a very small leak to the model, between the probe tip and the test load,
as

Tpt =

[
A′ B′

C ′ D′

]
=

[
A B
C D

] [
1 0
YR 1

]
=

[
(A+ YRB) B
(C + YRD) D

]
, (4.8)

where YR is the impedance of an infinite tube with a radius of approximately 0.1 [mm]. It is quite
likely this leak is present in this test setup, which was difficult to acoustically seal. However, it is
unlikely that the leak also exists when the probe tip is sealed in the ear simulator using an ear-tip.
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Figure 4.12: Attempt to extract the probe-tip effect from measurements of the Mimosa Acoustics
average-ear simulator, made with the probe tip on. The simulator response without the probe tip
is shown as a solid black line. Three colored curves show measurements made with the probe tip
on, and mathematically extracted using the two-port probe-tip model. The WAI at the output of
the tip can be accurately estimated from measurements with the tip on up to 3-4 [kHz].

4.5 Summary

Variable-area horns are known to present computationally difficult problems, particularly when
constrictions are present (Sondhi & Resnick, 1983). In the current study, the two-port modeling
strategy is insufficient for estimating the ear-canal WAI at high frequencies. In the following
chapter, it will be shown that this direct synthesis of the known area function still performs better
than many inverse methods.

In this chapter, it was shown that the relative length of the conical section has little effect on
the measured impedance. Decreasing the probe-tip length shifts its effects upward in frequency,
due to the reduced delay. Additionally, the measured impedance and transfer function are highly
dependent on the load impedance; they are adversely affected when more delay is present in the
load. With these considerations in mind, a probe tip may be designed to minimize these sources
of variation. Additionally, a model-fitting procedure might be used to relate the experimental
measurements of the two-port network with the computational model.
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The probe-tip effects on WAI (Fig. 4.8) coincidentally demonstrate the effect of an area constric-
tion in the ear canal. Such effects are seen in real ears (Lewis et al., 2009; Voss & Allen, 1994; Allen
et al., 2005), though they are typically less severe. The high-frequency roll-off of the absorbance
level is often attributed to mass-like characteristics of the middle ear (Allen et al., 2005). However,
these simulations show that ear-canal area variations might cause similar effects.
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Figure 4.13: Transmission (ABCD) matrix calibrations of the probe tip for two different prototype
probes, calibrated using three known loads according to Section B.3 (assuming that the lossy probe
tip is approximately reciprocal). Multiple combinations of three-load calibrations were calculated
using the measured 2.5, 5, 7.5, and 10 [mm] cylindrical loads; three of four load combinations were
shown for each probe. The measurements and model are in reasonable agreement, except for B
(top right) at low frequencies. As discussed in the text, the large deviation in B is likely due to
the compliance of the glue holding the probe tip and cylindrical cavity together.
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Figure 4.14: Impedance matrix calibrations of the probe tip for two different prototype probes,
calibrated using three known loads according to Section B.3 (assuming that the lossy probe tip is
approximately reciprocal). Multiple combinations of three-load calibrations were calculated using
the measured 2.5, 5, 7.5, and 10 [mm] cylindrical loads; three of four load combinations were shown
for each probe. The measurements and model are in reasonable agreement. The measurements fall
slightly below the model at low frequencies; this phenomenon is easily modeled by adding a small
leak between the output of the probe tip and the two-port calibration load.
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CHAPTER 5

RESULTS: EFFECTS OF THE EAR CANAL

To compare wideband acoustic immittance (WAI) measurements across ears, it is necessary to
remove or avoid the effects of the residual ear canal (REC), which is of unknown dimensions. The
goal is to estimate the WAI at the tympanic membrane (TM). As described in Chapters 1 and 2,
it is possible to (mostly) avoid the effects of the REC by considering the magnitude reflectance
only. This chapter compares methods for estimating the complex WAI at the TM by accounting for
magnitude and phase effects of the REC. Additionally, delay effects of the TM itself are analyzed
using the distributed models given in Table 2.2.

The pole-zero fitting and reflectance factorization method described in Section 3.5 was originally
used to analyze REC effects and measurements of negative middle-ear pressure (NMEP), described
in the following chapter (Robinson et al., 2013, 2016). In this chapter, it is shown that this method
compares favorably to other methods of characterizing the ear canal (Rasetshwane & Neely, 2011;
Lewis & Neely, 2015). As a computationally fast, frequency-domain method, pole-zero fitting
appears to be the most straightforward way to estimate the complex WAI at the TM, particularly
when the frequency range of the data is limited.

5.1 Pole-zero fitting and reflectance factorization

In this section, the reflectance factorization into minimum-phase and all-pass parts is examined.
Recall that the magnitude of the all-pass component is constrained to be one,

|Γec| ≈ |Γap| = 1. (5.1)

Therefore, the ear canal is assumed to have the magnitude effects of a lossless, uniform tube. In the
case of a uniform-area ear canal, the group delay is expected to be constant, τ = 2L/c0. However,
the phase of the all-pass component may contain a frequency-dependent group delay,

Γec = e−jωτ , (5.2)

where τ is a function of frequency s = σ+ jω. Intuitively, this factorization can capture the phase
effects of a variable-area canal, even though it cannot account for the magnitude effects.

The pole-zero method will first be validated using known volumes in a syringe. Then, the all-pass
factors for middle-ear data from Robinson et al. (2016) will be examined. In the next section, this
method will be compared to other methods for estimating the ear-canal area function and WAI at
the TM.
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5.1.1 Verification in a syringe

The reflectance factorization algorithm was experimentally verified by measuring the WAI of known
volumes in a syringe. For each of two calibrated probe tips, 32 measurements were made, for a
total of 64 measurements. The foam tipped probe was sealed in the syringe, which was terminated
by a rubber stopper attached to a plunger, and the volume was controlled by changing the plunger
depth. Note that this termination, which is acoustically rigid, is expected to be different from the
eardrum because it has no delay or acoustic loss. The syringe diameter was about 8.7 [mm], slightly
larger than the average diameter of the adult ear canal (about 7.5 [mm]). The rubber stopper had
small conical peak, with a negligible volume of approximately 0.03 [mL].
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Figure 5.1: Volumes in a syringe, estimated from WAI using the reflectance factorization method
(Robinson et al., 2013). The volume range of 0.2 to 1.7 [mL] corresponds to a length range of
about 3 to 29 [mm]. Variability in the measured lengths may be partially due to visual estimation
of the syringe length, as the measured lengths appear to be quantized. Considering only the lossless
delay, the volumes estimated from WAI are about 5% smaller than the measured volumes.

Figure 5.1 shows WAI estimates of the syringe volume made over a range of 0.2 to 1.7 [mL],
corresponding to a length range of about 3 to 29 [mm]. Some variability in the WAI estimates versus
the measured lengths may be due to visual estimation of the syringe length, as the measured volumes
appear to be quantized according to the volume markings on the syringe. A linear regression
(r2 = 0.98) shows that the volumes estimated via reflectance factorization are about 5% less than
the measured volumes. This is likely due to acoustic losses in the syringe (Keefe, 1984), as the
reflectance factorization considers only lossless delay. Using the raw, unfiltered measurements
(including losses), the regression line is y = 0.98x+ 0.06 (r2 = 0.99).

5.1.2 Residual ear canal group delays

Recall that the group delay factor, when constant, corresponds to a time-domain delay. By the
time-delay property of the Fourier (or Laplace) transform

Γtme
jωτ ↔ γtm(t− τ). (5.3)
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Therefore, the group-delay function τ(ω) describes the ear-canal delay, and lends much more insight
than the phase.

Figure 5.2 shows group delay functions for ears from Robinson et al. (2016). This study examined
the effects of negative middle-ear pressure (NMEP) on WAI in normal ears. The details of the
experimental procedures and inducement of NMEP are described in the following chapter. In brief,
eight ears were measured at both ambient middle-ear pressure (AMEP) and NMEP. AMEP and
NMEP measurements were interleaved, with each subject experiencing a consistent NMEP level. In
general, little to no change in ear-canal sound propagation is expected between the two conditions,
unless the TM is significantly deformed by NMEP.
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Figure 5.2: The estimated residual ear canal (REC) group delay, τrec(f) (Eq. 2.28c), is shown for all
ears. Ambient middle ear pressure (AMEP, gray solid) and negative middle ear pressure (NMEP,
black dashed) states are shown, ordered by mean NMEP tympanic peak pressure (TPP). Note that
these responses are smooth due to the parametric fit to the complex reflectance, Γ(f), from which
τrec(f) is derived. Some ears, particularly ear S1, show differing responses across measurements
which do not depend on the pressure state. As discussed in the text, this is likely due to changes
in the probe insertion.

The residual ear canal (REC) delays shown in Figure 5.2 are ordered by mean NMEP. AMEP
and NMEP states are shown as gray solid and black dashed lines, respectively. As expected, the
frequency-dependent REC delays, τrec(f), are relatively constant across pressure conditions and
retest measurements for most ears. These responses are smooth due to the parametric fit to the
complex reflectance, Γ(f), from which Γrec(f) and subsequently τrec(f) are derived. All ears show
some frequency-dependent variation in group delay, though the range of this change varies by ear.
We hypothesize that this frequency dependence relates to area variations in the ear canal.

Though probe insertions were not intentionally modified between measurements, a few ears show
changes in τrec(f) that are independent of pressure state. For example, ear S1 (top left plot) shows
a varying τrec(f) function across measurements, meaning the estimated REC length changed during
data collection. The largest change in τrec(f) for S1 occurred between 2 and 3 [kHz], where there
is a peak in τrec(f) that changed with time.

The TM delay, τtm(f), and the total delay, τ(f), are also shown for ear S1 in Figure 5.3. When the
REC delay is removed from the total delay (left), the resulting TM delay, τtm(f) = τ(f)− τrec(f)
(right), is more coherent across trials. The variation in τtm(f) is slightly greater in the AMEP
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Figure 5.3: The total group delay, τ(f), and tympanic membrane (TM) group delay, τtm(f), for
subject S1. Ambient middle ear pressure (AMEP, gray solid) and negative middle ear pressure
(NMEP, black dashed) states are shown. Removing the group delay due to the residual ear canal
(REC), τtm(f) = τ(f) − τrec(f), visibly reduces variability in τtm(f) with respect to τ(f). Note
that these responses are smooth due to the parametric fit to the complex reflectance, Γ(f), from
which τ(f) and τtm(f) are derived.

state. This is consistent with a greater variation of the absorbance level, which will be shown in
the following chapter (Fig. 6.2). This variation may be due to an inadequate release of the NMEP
between trials.

As shown in Figure 5.2, some ears show changes in τrec(f) that are independent of pressure state,
which may indicate ‘drift’ in the probe insertion. Such drifts could be caused by small movements
of a subject’s head between measurements, or the weight of the cable slowly pulling the probe out
of the ear canal. Considering τrec(f) for subject S1 (top left plot), the REC group delay changed
systematically with time during data collection, showing an increasing mid-frequency peak. Such
a peak is functionally consistent with an area constriction in the REC (Karal, 1953; Puria, 1991),
which could be due to the angle of the probe in the ear canal (e.g. a drooping probe insertion).
Considering Figure 5.3, removing the time-varying REC delay gives a more consistent estimate of
the complex WAI at the TM, which indicates that the reflectance factorization method can account
for variation in the REC dimensions.

5.2 Comparison of methods

In this section, the reflectance factorization method is validated via comparison to other published
methods for computing the ear-canal area function and WAI at the TM. These methods were
previously described in Chapter 3. They include the inverse solutions of Sondhi & Gopinath
(1971), Sondhi & Resnick (1983), and Rasetshwane & Neely (2011); the frequency-domain fitting
of an ear-canal and middle-ear model by Lewis & Neely (2015); and the pole-zero fitting and
factorization procedure given by Robinson et al. (2013). A summary of the methods and their
corresponding acronyms is given in Table 5.1.
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Table 5.1: Methods for computing the ear-canal area function and middle-ear immittance.

Acronym Method

RN2011 Time-domain inverse solution using reflectance (Rasetshwane & Neely, 2011;
Rasetshwane et al., 2012; Rasetshwane & Neely, 2015). This method typi-
cally yields a very smooth estimation of the area function. Matlab code is
publicly available at http://audres.org/cel/refl/measures.html.

LN2015 Frequency-domain fitting procedure using impedance (Lewis & Neely, 2015).
This method fits the data to a seven-conical-segment model of the ear canal,
and a simplified middle-ear impedance described by Kringlebotn (1988).
Matlab code for this method was generously provided by the authors.

SG1971 Time-domain inverse solution using impedance (Sondhi & Gopinath, 1971).
This solution calculates the area function by solving a Fredholm integral
equation. The problem may be cast as a Fredholm integral of either the
1st or 2nd kind. The stability of the solution depends on the inversion of a
convolution matrix.

SR1983 Time-domain inverse solution using ‘step’ reflectance estimate of impedance
impulse response (Sondhi & Resnick, 1983). This method uses a Fredholm
integral of the 2nd kind as in Sondhi & Gopinath (1971). However, the
time-domain impedance is estimated from the step reflectance (described in
Sec. 3.4.2).

RNA2013 Frequency-domain fitting procedure using reflectance or impedance (Robin-
son et al., 2013, 2016). The WAI at the TM is determined by factoring out
the all-pass component of the reflectance fit, as described in Section 3.5.
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5.2.1 Simulation results

Figure 5.4 shows the results of these assorted inverse methods for a simulation of a variable-area
horn, with dimensions shown by the thick black line. These dimensions were chosen to mimic the
probe tip tested in Chapter 4. The left-hand plot shows a variable area system terminated in an
infinite-tube matched load, while the right-hand plot shows the same system terminated in a rigid
wall at about 30 [mm]. These simulations are only performed up to 20 [kHz], since WAI typically
is not measured above this frequency. This imposes a serious limitation on time-domain methods,
and we expect the time-domain inverse method results would improve if the bandwidth of the
simulation were extended.
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Figure 5.4: Determination of a simulated area function (thick black line) using multiple inverse
methods. A variable area horn resembling the probe tip of Chapter 4 is terminated in an infinite-
tube matched load (left) and a rigid wall (right). The simulation was performed over a 0-20 [kHz]
range, mimicking the typical maximum range of WAI data. Line colors denote the method used to
estimate the area function, with line styles representing variations of the same method.

Note that when the system is terminated in an infinite-tube matched load, the pole-zero method
(RNA2013) and the method of Lewis et al. (2009) (LN2015) fail. This not surprising, as both of
these methods expect a terminating impedance causing a major reflection. The remaining methods
show relatively poor fits to the area function. The reflectance inverse method (RN2011) produces an
overly smooth result which is stable, but does not accurately capture the minimum and maximum
values of the area function, or the sharp corners. A circle marks the estimated length of the system,
which is determined from the peak value of the time-domain reflectance (Rasetshwane & Neely,
2011).

The remaining three curves show the time-domain inverse methods of Sondhi & Gopinath (1971)
and Sondhi & Resnick (1983), denoted as SG1971 and SR1983.1 The dashed lines denote solu-
tions computed from Fredholm integrals of the second kind, where the surge component of the
impedance, r0δ(t), has been removed from the time-domain impedance convolution integral, as de-
scribed in Section 3.4.1. Similar to the RN2011 method, these methods provide relatively smooth,
but inaccurate, solutions. The Sondhi & Gopinath (1971) method was also implemented using
a Fredholm integral of the first kind (solid line). As the bandlimited reponse will have an ill-
defined delta-function behavior at t = 0, this method was intended to relax the assumptions of

1These methods were regularized as suggested by Sondhi & Resnick (1983). These inverse methods are notoriously
computationally unstable (Allen & Sondhi, 1979).
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the Fredholm integral of the second kind by not attempting to remove the surge component of the
impedance. This results in a better, though less stable estimate of the area function.

The right-hand plot shows the results for the rigidly terminated simulation. As the time-domain
inverse methods RN2011, SG1971 and SR1983 depend on the early-time signal for round-trip
propagation to a point x and back, these results are similar to the matched-load case. As a major
point of reflection has been included in this model, the RNA2013 and LN2015 methods now also
provide solutions. The LN2015 method provides a more accurate approximation of the area function
than the time-domain inverse methods. It is worth noting that the model-fitting procedure for this
method had an average fit time 3.8 minutes per measurement for the canonical data set of Voss
& Allen (1994), and failed catastrophically for one ear (subject 6). In comparison, the remaining
methods all run for less than 0.2 seconds on average.

An initial solution and two further interpretations are given for the pole-zero factorization
method. Note that this method benefits from an improved estimate of the surge resistance, as
given by the RN2011 method.

1. (solid line) A(x) = ρ0c0/r0 for 0 ≤ x ≤ Lec, where the ear-canal length is estimated from the
difference in low-frequency volume compliances (Y versus Ymp), as described in Section 6.4.1.

2. (dashed line) A(x) was determined from the group delay of the all-pass component Γap,
by fitting a three-segment lossless cone model of varying segment lengths using Matlab’s
fminsearch with the terminating boundary impedance Zmp = r0(1 + Γmp)/(1− Γmp).

3. (dotted line) A(x) was determined from the group delay of the all-pass component Γap, by fit-
ting a seven-segment lossless cone model of equal segment lengths using Matlab’s fminsearch
with the terminating boundary impedance Zmp = r0(1 + Γmp)/(1− Γmp).

The cone-model fits were performed using the two-port modeling techniques described in Section
3.3.1 and Appendix B. The fits were constrained such that diameters and volumes far outside of
the initial estimates incurred an error penalty. This fitting procedure demonstrates that group
delays such as those shown in Figure 5.2 may be associated with area variations in the ear canal.
In Figure 5.4 (right), the dashed-line fit to the all-pass group delay yields A(x) similar to that of
the LN2015 method. This method might be refined in the future to estimate the effects of A(x)
on the magnitude reflectance, using the pole-zero method. Note that these fminsearch methods,
similar to LN2015, require far more computational time than the pole-zero fit.

5.2.2 Human-ear and ear-simulator measurements

This section compares the estimated TM admittance using different methods to extract the ear-
canal effect. Note that the inverse methods of Sondhi & Gopinath (1971) and Sondhi & Resnick
(1983) are not used because they are too computationally unstable, even using regularization
techniques. Therefore, the pole-zero fitting method (RNA2013) is compared to the RN2011 and
LN2015 methods only. Not that for the examples shown here, the fitting range was limited to 7.0
[kHz], to avoid over-fitting of high-frequency noise ripples in the reflectance.

Figure 5.5 shows the results for subject 1 of Voss & Allen (1994). Line colors indicate the
estimation method, while line styles (described in the caption) indicate variations of, or quantities
related to, a particular method. Considering the impedance magnitude and phase (bottom), the
pole-zero method agrees closely with the LN2015 method up to about 3 [kHz]. The estimated ear-
canal length (top right) from the pole-zero method is similar to the length estimated by LN2015,
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and corresponds to the flat portion of the area function determined by RN2011. Additionally, the
dashed-line fit to the all-pass group delay yields an area function similar to that of LN2015. Note
that the impedance-smoothing procedure used by RN2011 creates a low-frequency aberration in
the magnitude reflectance.

Figure 5.6 shows the results for a measurement provided by the authors of RN20112 for running
their inverse method code. This data is compatible with the impedance-smoothing method used
in the inverse code, such that the low-frequency reflectance is not altered by the RN2011 method.
Considering the impedance magnitude and phase (bottom), the pole-zero result lies in between
the RN2011 and LN2015 methods. The estimated ear-canal length (top right) from the pole-zero
method is similar to that estimated by LN2015 and roughly corresponds to the flat portion of the
area function determined by RN2011. Additionally, the fits to the all-pass group delay yield an
area function similar to that of LN2015.

Finally, Figure 5.7 shows the results for the DB-100 ear simulator (‘Zwislocki ear’) as measured
by Voss & Allen (1994). Considering the impedance magnitude (bottom left), the pole-zero method
agrees closely with both other methods. Considering the impedance phase, the pole-zero method
agrees more closely with the LN2015 method at low frequencies, and the RN2011 method at higher
frequencies. The estimated ear-canal length (top right) from the pole-zero method is very short for
this ear (3 [mm]), which is expected for this ear simulator. Note that the LN2015 method estimates
the ear-canal length to be 0 [mm].

In contrast, the RN2011 method estimates the ear canal of the DB-100 simulator to be over
10 [mm] long. This area taper appears in all three measurements fitted here, and in the results
presented in Rasetshwane & Neely (2011). In general, it estimates the ear canal to be 10-15 [mm]
longer than that estimated by LN2015 or the pole-zero method. Therefore, this taper may be
related to the taper in the area under the TM, sound transmission on the TM, or some signal
processing artifact related to the apparent over-smoothing of the area function. When the LN2011
area function A(x) is used with a shorter length estimated (blue square, Figs. 5.5, 5.6, and 5.7,
top-right), the TM impedance estimates match the RNA2013 and LN2015 estimates more closely
(dashed blue line, Figs. 5.5, 5.6, and 5.7, bottom).

2http://audres.org/cel/refl/measures.html

82



0 10 20 30
0

5

10

15

Position [mm]

D
ia

m
et

er
 [m

m
]

Area Function

 

 
RN2011
LN2015
RNA2013

0.1                     0.5                           1                       5                             10          
0

0.2

0.4

0.6

0.8

1

Frequency [kHz]

|Γ
|

Reflectance Magnitude

0.1                     0.5                           1                       5                             10          
      1     
      
            5                             10    
      
            50                            100   
      
            500                           1000  

Frequency [kHz]

|Z
| [

M
Ω

]

Impedance Magnitude

0.1                     0.5                           1                       5                             10          
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Frequency [kHz]

∠
 Z

 [r
ad

/π
]

Impedance Phase

Figure 5.5: Estimated area function and TM impedance for RN2011, LN2015, and pole-zero
(RNA2013) methods for Subject 1 of Voss & Allen (1994). For the magnitude reflectance (upper
left), solid lines are used to represent the raw/smoothed data for each method. The dashed line for
RN2011 indicates the frequency-domain window, and the dashed lines for RNA2013 and LN2015
indicate the final model fit. The area functions (upper right) are displayed in the style of Figure 5.4.
Estimated ear-canal lengths are marked with circles, and the dashed and dotted lines show A(x)
determined from the all-pass group delay (RNA2013). The impedance plots (bottom) show the
original measured impedance (gray), and the TM impedance estimated by each model. The dashed
line for LN2015 represents the fitted model, while the solid lines for RN2011 and LN2015 show
the result of extracting A(x) using ABCD modeling. The dashed blue lines in the bottom plots
show when an ear-canal length corresponding to the blue square (top-right) with A(x) specified by
RN2011 has been removed.
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Figure 5.6: Estimated area function and TM impedance for RN2011, LN2015, and pole-zero
(RNA2013) methods for an ear provided with the RN2011 code. For the magnitude reflectance
(upper left), solid lines are used to represent the raw/smoothed data for each method. The dashed
line for RN2011 indicates the frequency-domain window, and the dashed lines for RNA2013 and
LN2015 indicate the final model fit. The area functions (upper right) are displayed in the style of
Figure 5.4. Estimated ear-canal lengths are marked with circles, and the dashed and dotted lines
show A(x) determined from the all-pass group delay (RNA2013). The impedance plots (bottom)
show the original measured impedance (gray), and the TM impedance estimated by each model.
The dashed line for LN2015 represents the fitted model, while the solid lines for RN2011 and
LN2015 show the result of extracting A(x) using ABCD modeling. The dashed blue lines in the
bottom plots show when an ear-canal length corresponding to the blue square (top-right) with A(x)
specified by RN2011 has been removed.
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Figure 5.7: Estimated area function and TM impedance for RN2011, LN2015, and pole-zero
(RNA2013) methods for the DB-100 ear simulator as measured by Voss & Allen (1994). For the
magnitude reflectance (upper left), solid lines are used to represent the raw/smoothed data for
each method. The dashed line for RN2011 indicates the frequency-domain window, and the dashed
lines for RNA2013 and LN2015 indicate the final model fit. The area functions (upper right) are
displayed in the style of Figure 5.4. Estimated ear-canal lengths are marked with circles, and the
dashed and dotted lines show A(x) determined from the all-pass group delay (RNA2013). The
impedance plots (bottom) show the original measured impedance (gray), and the TM impedance
estimated by each model. The dashed line for LN2015 represents the fitted model, while the solid
lines for RN2011 and LN2015 show the result of extracting A(x) using ABCD modeling. The
dashed blue lines in the bottom plots show when an ear-canal length corresponding to the blue
square (top-right) with A(x) specified by RN2011 has been removed.
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5.3 Other factors influencing area function and delay

This section investigates two other factors which may impact estimation of the ear-canal area
function: TM delay and ear-canal curvature. Based on a quick test measurement, curvature appears
to have a minimal impact on the measured WAI when compared to area variations. Therefore, it
is not studied in great detail.

5.3.1 Tympanic membrane delay

Tympanic membrane delay, as described in Chapter 2, may contribute a large delay to the measured
WAI. Therefore, it would be helpful to determine how the ear-canal estimation methods interpret
this delay. As no data of an isolated TM was available at the time of this writing, the distributed
TM models described in Figure 2.2 are analyzed. These models include a uniform tube terminated
in a transformer (Puria & Allen, 1998; O’Connor & Puria, 2008), a wave-digital-filter model (Parent
& Allen, 2007, 2010), a string model (Goll & Dalhoff, 2011; Milazzo et al., 2017), and a two-piston
model (e.g. Shaw (1977)) with added delay (Keefe, 2015b).

Model preparation. For comparison and simulations, all TM models were cast in two-port
form. This form is known for the uniform tube model, and was specified exactly in the model of
Keefe (2015b). The ABCD model of Parent & Allen (2010) was computed using simulation code
provided by the authors, by modifying boundary conditions at the umbo.

The model of Goll & Dalhoff (2011), based on the intuition of Parent & Allen (2010), models
wave propagation on a one-dimensional string. In this case, one end of the string is fixed (either
rigidly or non-rigidly) at the rim of the TM, and the other end represents the umbo boundary
condition. This model was transformed into ABCD form by imposing boundary conditions on
the given differential equations for the string. Note that Milazzo et al. (2017) suggested a slightly
different boundary condition for the pressure at the TM, making it constant instead of linearly
increasing along the string length. The ABCD models for both pressure conditions, with rigid and
non-rigid suspension at the TM rim, were calculated for this analysis.

Two-port models. Figures 5.8 and 5.9 show the frequency-dependent transmission and impedance
matrix parameters for the TM models described above, simulated over a 0-12 [kHz] range. Con-
sidering the transmission matrix, many of these models are similar to the uniform-tube model.
This is due to the delay present in each of the models. The B parameter experiences the most
variation across models. The Parent & Allen (2010) model has very different magnitudes for the A
and C quantities, which is likely a transformer effect, such that the overall transformer ratio from
the ear canal to the umbo is different for this model. The pressure conditions distinguishing the
Goll & Dalhoff (2011) and Milazzo et al. (2017) models cause much less variation in the two-port
properties of the TM than the flexibility of the TM rim boundary condition.

Considering the impedance matrix (Fig. 5.9), these models look very similar. Note the high-
frequency standing wave nulls in these impedances, which indicate TM delay. These delays may
appear to be additional length when using inverse area-function methods. Note that these models
all estimate the TM radius to fall somewhere between 3.5 and 5 [mm], corresponding to a quarter-
wavelength standing wave frequency of 17 [kHz] or higher. However, the slower wave-speed on the
TM makes the distance to the umbo appear longer.
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Figure 5.8: Transmission-matrix parameters for various models of the eardrum. Many models bear
similarity to the uniform-tube model, including a high-frequency minimum in the A parameter due
to delay (with the exception of the Keefe (2015a) model). The models of Goll & Dalhoff (2011)
and Milazzo et al. (2017) use different boundary conditions for the pressure distribution at the
eardrum (dashed vs. solid), but this condition has far less impact on the model than the rigidity of
eardrum-rim boundary condition. The B parameter experiences the most variation across models.

Finally, Figure 5.10 shows the reflectance magnitude and phase of the TM when the umbo is
blocked. When there is a flexible boundary condition for the Goll & Dalhoff (2011) and Milazzo
et al. (2017) models, a sharp minimum appears in the magnitude at high frequencies, likely due to
the string resonance at this boundary. Also note that the reflectance of the Keefe (2015b) model
resembles the magnitude reflectance of the normal ear (Fig. 2.3). This seems like it may be fitting
some energy absorbance of the middle ear and cochlea to the TM instead.

Application of area methods to the TM. An important question is, What do these dis-
tributed TM models look like to inverse-area and area-fitting methods? Since the TM contains
delay, it may be mis-identified as an extension of the ear-canal area function rather than a separate
entity. It remains unclear whether removing lossless delay from the TM would improve or degrade
estimates of the WAI at the TM.

Figure 5.11 shows the area function results using a number of methods, as described in Table
5.1. The presentation of this data is similar to that of Figure 5.4. For all TM models, the pole-zero
method and the fit of Lewis & Neely (2015) predict a much shorter ear canal than Rasetshwane
& Neely (2011). As in Figures 5.5, 5.6, and 5.7, the RN2011 method predicts a taper of the area
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Figure 5.9: Impedance-matrix parameters for various models of the eardrum. Note that Z11 is the
input impedance of the eardrum when the umbo is blocked (immobilized).

function. Therefore, it is likely that this taper, when it appears in measurements of human middle
ears, represents sound transmission on the TM.

5.3.2 Propagation around a bend

Bends in the ear canal may also affect sound propagation and estimation of the ear-canal area
function. There is some literature on this topic (Miles, 1947; Keefe & Benade, 1983), but a quick
measurement sufficed to show that any effect due to a bend will be small compared to the effects
of ear-canal area variation.

Measurement. Two measurements were made using rapid-prototyped cylinders 3 [cm] in length
along their central axes. One cylinder was bent at a 90o angle, as shown in Figure 5.12, such that
the diameter remained constant throughout the bend. At one end a measurement probe was sealed
into the tube, and at the other the tube was sealed to the input of an ear simulator using poster
putty.

Figure 5.13 shows the resulting complex WAI measurements for the configuration in Figure 5.12,
for both the bent tube and a straight tube of the same length. These results show good agreement
between the bent and straight tubes. Slight differences in these measurements appear to be due to
a small change in the test tube length and, at high frequencies, the putty seal. Note that due to
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Figure 5.10: Input reflectance of the eardrum when the umbo is blocked (immobilized). Note that
the reflectance of the Keefe (2015b) model resembles the magnitude reflectance of the normal ear,
possibly attributing loss to the eardrum that should be associated with the middle ear.

differences in insertion into the ear simulator, and extra delay and losses from the added length,
both measurements differ from that of the ear simulator with no tube extension.
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Figure 5.11: Inverse-area and fitted-area solutions for four distributed models of the eardrum,
including a uniform tube and transformer (O’Connor & Puria, 2008), a wave-digital-filter model
(Parent & Allen, 2007), a two-piston model with delay (Keefe, 2015b), and a string model (Goll
& Dalhoff, 2011) with a flexible boundary condition at the eardrum rim. Note that the LN2015
method failed for the (Goll & Dalhoff, 2011) simulation.

Figure 5.12: Measurement of a 90o bend in a uniform-area horn 7.5 [mm] in diameter.
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Figure 5.13: Measurements of an average middle-ear simulator with the probe only (solid yellow),
a 3 [cm] straight uniform-tube extension (solid black) and a 3 [cm] uniform-diameter extension with
a right-angle bend (dashed red). The extensions were sealed to the probe using matched threads
and an O-ring, and sealed to the ear simulator using rubber cement and putty. The tube extensions
were 7.5 [mm] in diameter. Little change was observed in the WAI response between the straight
and bent extensions.
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5.4 Comparison to tympanometry

For the assessment of middle ear admittance, tympanometry is the clinical standard. In this
procedure, the ear canal admittance, Y (related to the impedance by Z = 1/Y , and typically given
in milliliters), is measured at a single frequency, typically 226 [Hz], using a probe that is hermetically
sealed in the ear canal. The static pressure in the canal is then varied, typically from +200 to -400
[daPa], as described in Chapter 1. A single-frequency precursor to WAI, tympanometry attempts
to remove the effects of the ear canal using pressurization. In this section, removal of the ear canal
effect in tympanometry is briefly compared to the pole-zero reflectance factorization method, using
tympanograms and WAI measurements from Robinson et al. (2016).

Some fundamental assumptions of tympanometry are that (1) at 226 [Hz] the probe admittance
is purely compliant (no friction losses), (2) it may be modeled as the sum of two compliances,
|Yprobe| ≈ 2πf(Cme + Crec), where Crec is proportional to the volume of the REC and Cme is the
aggregate middle ear compliance at the TM, and (3) for extreme canal pressures Cme is zero (Shanks
et al., 1988). Based on these three assumptions, the high pressure ‘tails’ of the tympanogram are
assumed to be equal to the REC compliance Crec ≈ Cprobe|+200[daPa], which is subtracted from
the probe compliance at TPP to obtain the compliance of the middle ear at the TM, Cme =
Cprobe|TPP − Cprobe|+200[daPa].

Assumption (3) has been questioned by several investigators (Rabinowitz, 1981; Shanks & Lilly,
1981; Shanks et al., 1988), who found that Cme is underestimated because it does not go to 0
at extreme pressures (thus the volume of the REC is overestimated). Rabinowitz (1981) models
this error by relating changes in canal pressure to changes in hearing thresholds. Shanks & Lilly
(1981) compare REC volumes estimated by tympanometry with measured volumes to assess this
error. They showed that while both methods have errors larger than 20%, the negative tail of the
tympanogram is a better estimator of REC volume than the positive tail.

Pressurizing the ear canal to eliminate the REC is a poor approximation above 500 or 600 [Hz]
because the admittance at the TM is not a simple compliance (assumption (2)). At higher frequen-
cies, investigators using tympanometry typically consider the conductance G and susceptance B
tympanograms, representing the real and imaginary parts of the complex admittance, respectively
(Shanks et al., 1988; Vanhuyse et al., 1975).

Here we relate WAI to tympanometry by directly estimating the REC volume and the equivalent
compliance at the TM from the complex WAI. In this way we define a relationship between WAI
and three parameters derived from the tympanogram: TPP, peak compliance, and REC volume.
Using the pole-zero reflectance factorization method (Robinson et al., 2013), we remove REC delay
from WAI at all measured frequencies, approximating the WAI response at the TM.

5.4.1 TM Admittance at 226 [Hz]: WAI vs. Tympanometry

Figure 5.14 shows peak compensated static acoustic admittance values estimated via tympanometry
at 226 [Hz], |Ytm|f=226[Hz], compared with |Ytm|f=226[Hz] values estimated using WAI at AMEP.
WAI estimates include AMEP Cme values given in Figure 6.8b, along with rc values (not shown),
according to the model in Figure 6.7b. Boxplots of |Ytm|f=226[Hz] are shown for WAI (gray) and
tympanometry (black). Note that the tympanometric measurements were rounded to the nearest
0.1 [mL] by the measurement device; this quantization can be seen in the boxplots. Tympanometric
estimates of |Ytm|f=226[Hz] are significantly lower than WAI estimates for all ears except S3 and
S8. The variability is similar for both methods of estimating the 226 [Hz] TM admittance, though
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slightly higher for the WAI measurements. The average standard deviations are 0.10 and 0.08 for
WAI and tympanometry, respectively (excluding outliers).
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Figure 5.14: Comparison of mean 226 [Hz] tympanic membrane (TM) admittance magnitude values,
|Ytm|f=226[Hz], estimated by tympanometry (black box plots) with those estimated from wideband
acoustic immittance (WAI, gray box plots) at ambient middle ear pressure (AMEP). The tympa-
nometric estimates are significantly lower than the WAI estimates for all ears except S3 and S8
(p < 0.005). On average, tympanometry underestimates the TM compliance by 27%, as previously
observed (Rabinowitz, 1981; Shanks & Lilly, 1981).

Figure 5.14 shows that the 226 [Hz] TM admittance is consistently lower when estimated via
tympanometry, compared to WAI. As noted by Rabinowitz (1981) and Shanks & Lilly (1981), our
results show that it is incorrect to assume that the compliance at the TM is zero at static ear canal
pressure extremes, such as +200 [daPa] (assumption (3) of tympanometry, as described above).
This assumption causes the admittance (compliance) at the TM to be underestimated. In Figure
5.14, mean tympanometric estimates are 7% to 46% lower than mean WAI estimates (excluding
outliers), 27% lower on average, in agreement with Rabinowitz (1981). The variation in these errors
is most likely related to individual characteristics of the TM and middle ear when the ear canal
pressure is +200 [daPa].

Part of the error in the tympanometric estimates of the 226 [Hz] TM admittance is due to the fact
that these estimates are typically lower when the positive tympanogram tail is used to compensate
for the REC volume (Shanks & Lilly, 1981). Shanks & Lilly showed that the error in REC volume
estimated at 220 [Hz] was 39% using the positive tail, and 24% using the negative tail. However,
in this study it was prudent to compensate for the REC using the positive tail because negative
shifts in the TPP due to NMEP could artificially raise the compliance of the negative tail.

Though these results indicate that the tympanometric errors in |Ytm|f=226[Hz] are significant, their
clinical relevance is tied to the current utility of the peak compensated static acoustic admittance
parameter. In tympanometry, peak compensated admittance is a measure of middle ear compliance,
as the admittance at the TM is dominated by stiffness characteristics at 226 [Hz] (Figs. 6.7, 6.4,
and 6.5). Low compliance (high stiffness) is linked to middle ear pathologies such as middle ear
effusion, otosclerosis, thickened TM, and malleus fixation (Shanks & Shohet, 2009). Therefore, if
the estimated value of |Ytm|f=226[Hz] is too low, it could lead to a false positive diagnosis indicating
one of these disorders.

According to Shanks & Shohet (2009), the clinical utility of the peak compensated admittance is
questionable, due to high normal variability and significant overlap between |Ytm|f=226[Hz] distri-

93



butions for normal and pathological middle ears. They hypothesize that some of this variability is
related to inconsistent compensation methods (e.g. whether the positive or negative tympanogram
tail is subtracted from the peak). Further variability is due to the fact that the compliance at
the TM does not go to zero at static pressure extremes. Instead, individual ears have varying
TM compliance characteristics at the pressure extremes used in tympanometry. It is likely that
the error in |Ytm|f=226[Hz] as estimated via tympanometry is one of the primary reasons why the
parameter is not clinically useful.
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CHAPTER 6

RESULTS: NEGATIVE MIDDLE-EAR PRESSURE

The results of this chapter are drawn from Robinson et al. (2016), and supporting unpublished
analyses. In that paper, pole-zero fitting was used to analyze complex WAI data. The results
of the previous chapter support the use of this method of analysis instead of inverse methods
(Rasetshwane et al., 2012) and large-scale model fitting (Lewis & Neely, 2015). These methods of
estimating the TM admittance are typically comparable over the frequency range analyzed (0.2 to
6.0 [kHz]).

The goal of this study was to determine the effects of negative middle-ear pressure (NMEP) on
WAI. Identification of these effects has implications for diagnosis of middle-ear conditions and for
all measurements of hearing made with an acoustic probe placed in the ear canal. Various types
of such measurements are described in Chapters 1 and 2.

6.1 Background

Chronic negative middle-ear pressure (NMEP) is one of the most common middle-ear pathologies
(Shaver & Sun, 2013). It typically occurs when the Eustachian tube is dysfunctional, such that
the pressure behind the TM cannot be equalized to the ambient atmospheric pressure (Bluestone
& Klein, 2007). This pressure imbalance can cause a retraction of the eardrum, resulting in com-
pression of the ossicular chain (Shaver & Sun, 2013). It can result in a combination of NMEP and
fluid in the middle ear cavity, and lead to chronic conditions such as otitis media with effusion and
bacterial biofilm (Bluestone & Klein, 2007; Nguyen et al., 2012, 2013; Monroy et al., 2015). Middle-
ear pressure can be directly measured using tympanometry (Shanks & Shohet, 2009). Middle-ear
pressure is approximately equivalent to the tympanic peak pressure (TPP), as described in Chapter
1.

Because negative middle-ear pressure is so common, a number of studies have considered its
impact on otoacoustic emissions (OAEs), including transient evoked OAEs (Marshall et al., 1997;
Prieve et al., 2008) and distortion product OAEs (DPOAEs, Sun & Shaver (2009); Thompson et
al. (2015)). As they require no behavioral response, OAE tests are widely used for infant hearing
screening. However, middle-ear pathologies such as middle-ear fluid and NMEP confound the
results of OAE tests, which depend on the round trip of a signal to and from the cochlea via the
middle ear. Even small NMEPs less negative than -100 [daPa], which are considered to be in the
‘normal’ range, can compromise OAE test results (Sun & Shaver, 2009).

The middle-ear pressure naturally varies when the Eustachian tube is functioning normally.
Typically it is negative during waking hours, and slightly positive when the subject is recumbent
or sleeping (Tideholm et al., 1998). When a subject with normal middle-ear function swallows
or yawns, the Eustachian tube briefly opens, causing a pressure equalization, leading to a time-
varying middle-ear pressure (on the order of minutes). This natural variation, or lack thereof,
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may be used to diagnose Eustachian tube dysfunction. By having subjects alter their middle-ear
pressure, using the Valsalva and Toynbee maneuvers, the Eustachian tube function may be directly
assessed (Holmquist & Olen, 1980; Honjo et al., 1981). In the case of extreme dysfunction (e.g. otitis
media with effusion) it is not possible to assess the middle-ear pressure via tympanometry, due to
extreme changes in the TM admittance resulting in no measurable TPP. As we will show, even in
normal ears modest changes around zero TPP (e.g. -65 [daPa]) can produce easily observed changes
in the WAI at the TM.

Previous WAI studies. Two recent studies investigated the effects of static middle-ear pressure
on the power reflectance. Voss et al. (2012) showed there was a systematic increase in the power
reflectance (decrease in the absorbance level) below 2 [kHz] as a function of the static middle-
ear pressure in eight cadaver preparations with controlled MEPs over a ±300 [daPa] range. For
individual ears, this increase was monotonic. Above 2.6 [kHz], NMEP caused a decrease in the
power reflectance (increase in the power absorbance level). Voss et al. (2012) modeled these acoustic
changes using the network model of Kringlebotn (1988), assuming NMEP reduces the compliance
of the TM and middle-ear ligaments.

Similar results were obtained from 35 human subjects by Shaver & Sun (2013), who trained
subjects to self-induce NMEPs, which they measured using tympanometry. They reported averaged
WAI data from four NMEP ranges, but did not show data from individual ears. Shaver & Sun found
that the power reflectance increased for low- to mid-frequencies and decreased above 3 [kHz], with
the largest changes occurring in the 1.0 to 1.5 [kHz] and 4.5 to 5.5 [kHz] ranges, respectively. They
observed that the average magnitude of these changes increased with TPP magnitude. Additionally,
they used wideband tympanometry to compensate for NMEP, by measuring WAI while applying an
equivalent pressure in the ear canal, which estimates WAI at the TPP. They found that, on average,
compensating for the NMEP restored the power reflectance to near-baseline values. Considering
the power reflectance results in Figures 1 and 3 of Shaver & Sun (2013), the average absorbance
level would be about 2 [dB] higher at the compensated NMEP than at ambient middle-ear pressure
(AMEP) around 200 [Hz], and about 0.5 [dB] higher around 1 [kHz]. Sun & Shaver (2009) also
show that, averaged across ears, there is no significant difference between compensated-NMEP and
AMEP measurements of DPOAEs. These studies show that average WAI measurements made at
TPP and ambient ear canal pressure are similar in normal ears.

6.2 Experiment

WAI data in ears with static NMEP were collected by Suzanne Thompson at City University of
New York. These data were taken as part of a study designed to investigate the effects of middle-ear
pressure on DPOAE measurements (Thompson et al., 2015).

For the measurements presented here, the probe was sealed in the ear canal at ambient atmo-
spheric pressure. As in the Shaver & Sun (2013) study, subjects were trained to induce consistent
TPP levels using the Toynbee maneuver (Thompson et al., 2015). Though it was not possible to
simultaneously measure the TPP and WAI in the current study, the subjects were able to perform
this task consistently and hold the NMEP for the duration of each test.
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6.2.1 Subjects

Twenty-six adult subjects were recruited for the study, which was approved by the institutional
review board of the City University of New York Graduate Center. All subjects had normal hearing
and normal middle ear function, confirmed by a test battery including otoscopic examination,
pure-tone threshold testing, tympanometry, and acoustic reflex testing. Subjects had little to no
cerumen accumulation, healthy intact TMs, pure-tone air-conduction thresholds below 15 [dB-HL]
(in octaves from 125 to 8000 [Hz]), normal 226 [Hz] tympanograms (GSI 33 Middle Ear Analyzer,
Grason-Stadler), and acoustic reflex thresholds below 95 [dB].

Of the 26 subjects trained to induce consistent NMEP, eight completed the study. NMEPs
more negative than -50 [daPa] were desirable, as NMEPs in this range have been shown to affect
middle-ear transmission (Marshall et al., 1997; Prieve et al., 2008; Sun & Shaver, 2009).

6.2.2 Data Collection

Subjects were trained to perform the Toynbee maneuver, in which NMEP is induced by pinching
the nose while swallowing to completely block the passage of air, thus sucking air out of the middle-
ear cavity via the Eustachian tube. Tympanometry was used to assess subjects’ ability to induce
and maintain consistent NMEPs. A total of 16 admittance tympanograms were taken at 226 [Hz]
for each subject at a sweep rate of -50 [daPa/s], alternating 8 trials at NMEP and 8 trials at AMEP,
such that each NMEP measurement was made from a separate attempt of the Toynbee maneuver.
Subjects were taught to swallow or yawn between trials to equalize the middle-ear pressure. For
each admittance tympanogram, the REC volume was estimated based on the positive pressure tail
at +200 [daPa].
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Figure 6.1: Subjects were able to induce consistent negative middle-ear pressures (NMEPs), esti-
mated from the tympanic peak pressures (TPPs), using the Toynbee maneuver. Box plots show
the measured TPPs at ambient middle-ear pressure (AMEP, gray) and NMEP (black) states. Each
box plot divides the measurements into quartiles, showing the median measurement as a horizontal
line, and the first and third quartiles as the bottom and top of the thin box. Outliers are shown
as circles. TPPs are less variable in the AMEP state, as expected. All box plots show N=8 trials,
except for S6 and S8 (N=7, NMEP), and S7 (N=5, AMEP; N=7, NMEP).

Figure 6.1 shows NMEPs induced by the 8 subjects over a -50 to -385 [daPa] range. Each box
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plot shows 8 TPP measurements, collected from separate performances of the Toynbee maneuver,
alternated with pressure equalizations. The measurements are divided into quartiles, with each
median measurement shown as a horizontal line, the first and third quartiles as the bottom and
top of a thin box, and outliers as circles. The gray box plots show the AMEPs, while the black box
plots show the NMEPs. The subjects induced NMEPs with an average standard deviation of 22
[daPa] (individual standard deviations ranged from 2 to 39 [daPa], excluding outliers). For all ears,
the standard deviation was less than 25% of the mean NMEP magnitude (16% on average). As
expected, there is little variation in the TPP values at AMEP, with an average standard deviation
of 6 [daPa] (individual standard deviations ranged from 2 to 13 [daPa]).

WAI was measured during the same session using Mimosa Acoustics’ HearID Middle Ear Power
Analyzer (MEPA3). The system was calibrated according to the manufacturer’s guidelines before
collecting measurements. As in the tympanometry trials, eight trials each at AMEP and NMEP
conditions were interleaved. During each trial, up to eight test-retest measurements were attempted,
for a total of up to 64 measurements per pressure condition in each ear. Though WAI measurements
typically have good signal-to-noise ratios, they can be affected, particularly at low frequencies, by
mechanical noise in the environment or subject movements. This can be seen in the absorbance
level curve below 500 [Hz], where the absorbance is small. Because this frequency range is of
interest for data analysis and modeling, WAI measurements presented here are chosen from sets
of test-retest measurements to have the smoothest curves at low frequencies. The probe was
not re-inserted between trials, so the residual ear canal (REC) volume remained approximately
constant for all measurements for a given subject. Finally, the low-frequency phase of the measured
impedance was investigated for air-leaks (Groon et al., 2015). At 200 [Hz], nearly all impedance
phase measurements fell on the interval (−π/2,−3π/8) [rad], indicating a good acoustic seal.

6.3 Absorbance level

Figure 6.2 shows absorbance level measurements in decibels for the 8 individual subjects, sorted by
mean NMEP TPP (from Fig. 6.1, excluding outliers). Gray solid lines show the absorbance level
for AMEP, while black dashed lines show it for NMEP. The light gray region shows normative data
(±1 standard deviation) from Rosowski et al. (2012). For these eight ears, the magnitude change
in A(f) with NMEP is 5 [dB] or less in most ears, though it is up to 10 [dB] for ear S8.

Most ears show a depression of the absorbance level due to NMEP for some range of frequencies
below 2 [kHz]. This depression has a frequency range of at least 1 [kHz] for all ears, and varies in
size and location. The ears with the most severe NMEPs, S7 and S8, have the widest frequency
ranges of separation between the pressure states, extending from at least 0.6 to 4.0 [kHz]. Above
2 to 3 [kHz] the absorbance is generally similar between the AMEP and NMEP states. Half of
the ears, S3, S5, S7, and S8, show a slight increase in absorbance level due to NMEP above 4
[kHz], in agreement with the results of Shaver & Sun (2013) and Voss et al. (2012). For most ears,
the absorbance level across trials in each pressure state remains fairly constant. Ear S3 shows the
largest variation across measurements for a given pressure state, and the greatest overlap between
the pressure states (particularly below 1 [kHz]). Ears S4 and S8 appear to have an intermediate
pressure state, likely caused by inconsistencies in subjects’ performance of the Toynbee maneuver.

The effects of NMEP may be grouped by similarity across ears. For the first group, ears S1,
S2 and S7, NMEP change is characterized by a mid-frequency depression in the absorbance level
beginning around 0.5 to 1.0 [kHz]. In Figure 6.2 we label these ears group A. The group B ears, S4,
S5, and S8, show a large separation due to NMEP, extending all the way down to 0.2 [kHz]. For
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Figure 6.2: Power absorbance level measurements at ambient middle-ear pressure (AMEP, gray
solid) and negative middle-ear pressure (NMEP, black dashed) states for all ears, ordered by mean
NMEP tympanic peak pressure (TPP). For each ear, N=8 measurements are shown, selected to
have the lowest noise from a pool of up to 8 retest measurements (except for ear S1 (N=6, AMEP
and NMEP), ear S2 (N=7, NMEP), and ear S7 (N=7, AMEP)). For the majority of the ears there
is a decrease in the absorbance level below 2 [kHz] due to NMEP, and a small increase above 4 to
5 [kHz]. The light gray region shows ±1 standard deviation for normative data from Rosowski et
al. (2012).

group B, NMEP appears to cause not only a depression of the absorbance level over this frequency
range, but a systematic shift of its low-frequency rising slope, upward in frequency. Ears S3 and S6
are less easily grouped. For ear S6 the NMEP curves are most separated from the AMEP curves
from 0.8 to 1.5 [kHz], but show slight separation of the states down to the lowest measurement
frequencies. Ear S3 shows no absorbance level change below 1.5 [kHz], but has a mid-frequency
change due to NMEP around 2 [kHz]. Thus, ear S3 appears to be most similar to group A, while
S6 seems most similar to group B (labeled (A) and (B)).

NMEP changes appear to be related to the baseline AMEP measurements. For example, ears S3
and S6 have noticeable small resonances (local minima and maxima) in the mid-frequency region
from 1.0 to 4.0 [kHz]. This structure is altered by the NMEP in a systematic way; local resonances
in the mid-frequency range become more pronounced, or shift upward in frequency due to the
NMEP. Disparities in the effects of NMEP at low frequencies between groups A and B appear
to be related to differences in the compliance (stiffness) characteristics of the middle ear, which
dominate below 0.6 to 1.0 [kHz]. This is investigated in the following sections by considering the
WAI at the TM, which shows that the group B ears experience a greater decrease in the compliance
at the TM due to NMEP.

Figure 6.3 summarizes the results across ears, as compared to the study of normal ears by
Rosowski et al. (2012). Normative data from Rosowski et al. are displayed using a solid line for the
mean curve and error bars showing ±1 standard deviation. Mean curves for the current experiment
are shown as dashed lines for the AMEP (open circles) and NMEP (solid squares) states, along
with regions of ±1 standard deviation (light gray and dark gray, respectively, and medium gray
where the regions overlap). Mean and standard deviation calculations were weighted to favor each
ear equally. The AMEP distribution from this study shows excellent agreement with normative
data from Rosowski et al., as the mean AMEP curve is within 1 [dB] of the Rosowski et al. mean
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Figure 6.3: Absorbance level distributions showing ±1 standard deviation for the ambient middle-
ear pressure (AMEP, light gray, N=61) and negative middle-ear pressure (NMEP, dark gray, N=61)
states (medium gray indicates where the standard deviation regions overlap). Mean curves for each
state are shown as dashed lines (AMEP, open circles; NMEP, solid squares). Mean and variance
calculations were weighted to favor all ears equally. Normative data from Rosowski et al. (2012)
are shown as a solid line (mean curve) with error bars showing ±1 standard deviation (N=58). The
AMEP mean from this study is in close agreement with the Rosowski et al. (2012) normal mean.

for all measured frequencies. Mean curves show a decrease in the absorbance level for low- to
mid-frequencies due to NMEP, and an increase above about 4 [kHz].

Using the eight individual mean curves at both AMEP and NMEP, significance testing was
performed at each frequency point. Considering the NMEP change relative to baseline AMEP
measurements (using a paired t test), the absorbance level was significantly lower at NMEP
from 0.4 to 2.0 [kHz] (p < 0.01), and higher from 4.5 to 6.0 [kHz] (p < 0.05). Considering the
overall separation of NMEP and AMEP results (using an unpaired t test), the absorbance level was
significantly lower from 0.6 to 2.0 [kHz] (p < 0.01), and the most significant separation occurred
from 0.8 to 1.9 [kHz] (p < 0.002; p < 10−15 using all data in Figure 6.3). In Figure 6.3, there is
almost no overlap of the ±1 standard deviation regions in the 0.8 to 1.9 [kHz] range, where the
separation between mean AMEP and NMEP curves is 2 [dB] on average.

6.4 Complex WAI estimated at the eardrum

Figures 6.4, 6.5 and 6.6 show the estimated complex TM impedance, Ztm(f) = Rtm(f) + jXtm(f)
(Eq. 6.2). Specifically, the resistance, Rtm(f), reactance, Xtm(f), and magnitude impedance,
|Ztm(f)|, are shown. Consistent with the absorbance level results in Figure 6.2, these TM impedance
estimates show systematic separation of the AMEP and NMEP states.

Figures 6.4 and 6.5 give the estimated wideband TM resistance and reactance for each of the eight
ears. As in Figure6.2, the results are ordered by mean NMEP TPP, for the AMEP (gray solid) and
NMEP (black dashed) states. From Equation 6.2b the resistance is expected to be approximately
independent of frequency. For most of the ears in Figure 6.4, the resistance remains between 2 and
6 times the surge resistance, r0, of the ear canal (by which the impedance is normalized), especially
in the AMEP state. While the TM resistance changes with NMEP for some range of frequencies
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Figure 6.4: Wideband tympanic membrane (TM) resistance estimates, Rtm(f) (the real part of the
TM impedance, Ztm(f)). Ambient middle ear pressure (AMEP, gray solid) and negative middle
ear pressure (NMEP, black dashed) states are shown for all ears, ordered by mean NMEP tympanic
peak pressure (TPP). These curves are normalized by the ear canal surge resistance, r0, defined for
Equation 2.6. For most of the ears the resistance remains between 2 and 6 normalized units. These
data are smoothed at all frequencies by the parametric fitting procedure; low-frequency variability
below 400 [Hz] may be due to measurement noise and to the large disparity in magnitude between
the TM resistance and reactance.

in all ears, the largest change in Rtm occurs in ears S7 and S8, which had the largest NMEPs. The
reactance curves in Figure 6.5 all have a 1/f dependence up to at least 500 or 600 [Hz], as predicted
by Equation 6.2. The NMEP measurements fall below the AMEP measurements, corresponding
to a decreased aggregate compliance at the TM (Cme, Eq. 6.2c). Ears S4, S5, and S8 (group B)
show the largest separation of pressure states at low frequencies, indicating the largest decrease in
middle ear compliance due to NMEP.

Note that at frequencies below 400 [Hz], the resistance can be an order of magnitude smaller
than the reactance, resulting in unreliable estimates of the TM resistance (Fig. 6.4). Though the
low-frequency TM resistance curves appear smooth, due to the parametric fitting procedure, large
variations (e.g. S1, S7, S8) can occur due to measurement noise (e.g. Sec. 2.4.2). For example, the
NMEP data for S8 in Figure 6.2 (bottom right) appear to be very noisy (jagged) at frequencies
below 400 [Hz]. Considering Figure 6.5, the normalized TM reactance for this ear is very large
(less than 20) below 500 [Hz]. Thus, the corresponding TM resistance curves (of much smaller
normalized magnitudes) have a wide range of values at low frequencies, including nonphysical
negative values.

Figure 6.6 gives the estimated wideband TM impedance magnitudes in the style of Figures 6.4
and 6.5. Below about 0.5 to 1.0 [kHz], |Ztm(f)| is dominated by the compliance at the TM
(|Ztm| ≈ |Xtm| ≈ 1/(2πfCme)), which appears as a straight line with a negative slope of 1 on a
log-log scale. In the mid-frequency range where the TM reactance (Fig. 6.5) becomes small, the
TM resistance (Fig. 6.4) dominates.

Comparing Figures 6.4, 6.5 and 6.6, the largest systematic effect of NMEP is a decreased com-
pliance (increased stiffness) at the TM, characterized by a low-frequency decrease in Xtm(f) and
increase in |Ztm(f)|. NMEP also appears to shift various local middle ear resonances, as in Figure
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Figure 6.5: Wideband tympanic membrane (TM) reactance estimates, Xtm(f) (the imaginary part
of the impedance, Ztm(f)). Ambient middle ear pressure (AMEP, gray solid) and negative middle
ear pressure (NMEP, black dashed) states are shown for all ears, ordered by mean NMEP tympanic
peak pressure (TPP). These curves are normalized by the ear canal surge resistance, r0 (Eq. 2.6).
The low-frequency reactance has a 1/f dependence, as predicted by Equation 6.2c. NMEP causes
an increase in the TM reactance magnitude (decrease in Cme, Eq. 6.2c) below 2 to 4 [kHz] for most
ears.

6.2. For example, ear S5 has a small 3 to 6 [dB] minimum in the TM impedance magnitude at
AMEP at 1.5 [kHz] (Fig. 6.6, bottom left). In the NMEP state, this local minimum shifts to 2.5
[kHz], corresponding to a similar shift observed in the NMEP absorbance level (Fig. 6.2, bottom
left).

6.4.1 A simple model

The reflectance factorization results allow us to determine the parameters of a simplified middle
ear model shown in Figure 6.7a, consisting of a tube transmission line of length Lrec representing
the REC, Cme representing the aggregate compliance of the middle ear at the TM, and a cochlear
load resistance rc, required to match the transmission lines of the middle ear and cochlea (Møller,
1960; Zwislocki, 1962; Lynch et al., 1982). The compliance Cme is nonlinear (represented by an
arrow) since its value changes with NMEP. The model in Figure 6.7a qualitatively captures the
behavior of the human middle ear up to 4 to 5 [kHz]. Due to its simplicity, the model cannot
capture individual variations in the WAI above 600 [Hz].

Figure 6.7b defines a low-frequency (e.g. < 600 [Hz]) network model for Figure 6.7a. The REC
volume, Vrec, is related to the REC compliance by

Vrec = Crecρ0c
2, (6.1)

where ρ0 is the density of air and c is the speed of sound (Shanks et al., 1988). The reflectance fac-
torization algorithm analyzes WAI for all frequencies, according to Figure 6.7a. For tympanometry
(the industry gold standard for middle ear diagnostics, described in Sec. 5.4), the input impedance
of the middle ear is typically modeled by Figure 6.7b, at a single low frequency (e.g. 226 [Hz]),
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Figure 6.6: Estimated wideband tympanic membrane (TM) impedance magnitudes, |Ztm(f)|. Am-
bient middle ear pressure (AMEP, gray solid) and negative middle ear pressure (NMEP, black
dashed) states are shown for all ears, ordered by mean NMEP tympanic peak pressure (TPP).
These curves are normalized by the ear canal surge resistance, r0 (Eq. 2.6). |Ztm(f)| is dominated
by the reactance, Xtm(f) (Fig. 6.5), at low frequencies, and by the resistance, Rtm(f) (Fig. 6.4),
at mid-frequencies, where Xtm(f) is small.

assuming rc = 0. Adding a resistor to this model improves the fit to WAI data.
To relate the WAI results to the model, we first consider the complex TM impedance, Ztm(f) =

1/Ytm(f), calculated via reflectance factorization. The TM impedance is considered, rather than
the TM admittance, because its mathematical relationship to the model parameters is simpler.
The TM impedance (due to Cme and rc, with no REC component) is the same for both models in
Figure 6.7,

Ztm(f) =
1

Ytm(f)
= Rtm(f) + jXtm(f) (6.2a)

Rtm(f) = rc (6.2b)

Xtm(f) =
−1

2πfCme
, (6.2c)

where the resistance, Rtm(f), and reactance, Xtm(f), of the middle ear are related to the param-
eters rc and Cme, respectively. Thus, the model may be used to estimate Cme, and rc from the
low-frequency WAI at the TM.

To estimate the REC compliance, Crec, we must consider the reactance at the probe, X(f),
which is due to the REC and TM responses combined. Below 500 to 600 [Hz], the compliances
dominate the probe response and the reactance is modeled by

X(f) ≈ −1

2πf(Crec + Cme)
, (6.3)

from which Crec and subsequently Vrec may be estimated (Eq. 6.1). From WAI rather than a
single-frequency measurement, such frequency-dependent behavior is easily modeled.

103



Figure 6.7: (a) A simplified wideband model of the residual ear canal (REC) and middle ear,
showing the REC as a tube transmission line and the lumped middle ear compliance Cme and
resistance rc at the tympanic membrane (TM). This model qualitatively describes middle ear
behavior up to about 4 or 5 [kHz], capturing the general behavior of WAI but not individual
variability. (b) A low-frequency approximation of panel (a), where the tube transmission line is
replaced by a compliance Crec (proportional to the REC volume, Eq. 6.1). The resistor, rc, is
primarily due to the cochlear load and is necessary to match the transmission lines of the middle
ear and cochlea (Zwislocki, 1962; Lynch et al., 1982). The compliance Cme is nonlinear (represented
by an arrow) and changes with middle ear static pressure.

Model parameters. The REC volumes, Vrec, and middle ear compliances, Cme, estimated from
the WAI data are given in Figure 6.8. The model described by Figure 6.7b (Eq. 6.2) was fit to the
complex TM impedance, Ztm(f), below 500 [Hz] (mean fit error was less than 10% for over 90%
of the measurements). AMEP and NMEP results are displayed as gray and black boxplots, in the
style of Figure 6.1. Figure 6.8a shows the REC volumes (Eq. 6.1), ordered by mean NMEP TPP.
These volumes are significantly different (p < 0.05 using an unpaired t test) between the AMEP
and NMEP states for ears S3, S4 and S5. The change in median REC volume due to NMEP ranges
from 0.01 to 0.18 [mL]. Corresponding REC lengths (assuming a constant canal area) are given on
the right-side axis.

Considering Figures 5.2 and 6.8a, the frequency dependent REC delays, τrec(f), and the esti-
mated volumes, Vrec, are relatively constant across pressure conditions and retest measurements for
most ears. For six of the ears, Vrec is estimated to be slightly larger in the NMEP condition. This
could be due to systematic shifts of the probe during the Toynbee maneuver, or to displacement
of the TM due to NMEP. Changes in Vrec are small compared to the changes in Cme with NMEP
(ranging from 6% to 35% of the Cme value, except for S3).

Figure 6.8b shows the estimated middle ear compliances, Cme, ordered by mean NMEP TPP.
These values are given in milliliters (calculated using Eq. 6.1), which allows for comparison to
tympanometry, and direct comparison of Vrec and Cme magnitudes. The middle ear compliance
values at the TM are significantly lower in the NMEP state (p < 0.01, using an unpaired t test),
except for ear S3. The change in median Cme due to NMEP ranges from 0.21 to 1.34 [mL] (not
including S3). Ear S3 has a wide spread of Cme and Vrec values, likely due to measurement variation
and noise, visible in the absorbance curves of Figure 6.2. The group B ears (S4, S5, S8), which
showed greater separation at low frequencies due to NMEP in Figures 6.2, 6.5 and 6.6, have larger
changes in Cme than the group A ears.

Median rc values are shown in Figure 6.9. At AMEP, middle ear resistances, assumed to be due
primarily to the cochlea, are between 1.8 and 4.3 times the surge resistance, r0, except for S4. These
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Figure 6.8: (a) Residual ear canal (REC) volumes estimated via reflectance factorization, pro-
portional to Crec (Eq. 6.1). The right-side axis gives the corresponding estimated REC lengths,
assuming a uniform ear canal area. (b) Lumped middle ear compliances Cme at the tympanic
membrane (TM), estimated from the TM impedance, Ztm(f) (Eq. 6.2). These values are given in
milliliters (via Eq. 6.1) for easy comparison with the Vrec values and tympanometry. Black box
plots show the negative middle ear pressure (NMEP) results, and gray box plots show the ambient
middle ear pressure (AMEP) results, ordered by mean NMEP tympanic peak pressure (TPP). For
all ears (other than the high variance subject S3) the TM compliance, Cme, is significantly lower in
the NMEP state (p < 0.01), and for most ears the Vrec estimates show an insignificant or relatively
small change between the pressure states.

values are significantly different in the NMEP state only for ears S4 and S7 (p < 0.01). Therefore,
NMEP values in the studied range primarily affect the aggregate compliance of the middle ear, but
do not create significant acoustic loss.

6.4.2 Detection of NMEP

Figure 6.10 gives a receiver operating characteristic (ROC) analysis of this data, for detection of a
NMEP. Figure 6.10a shows ROC curves for the absorbance level 1− |Γ|2 at 1.7 [kHz] (black), TM
admittance magnitude |Ytm| at 0.7 [kHz] (red), TM conductance Gtm at 1.7 [kHz] (green), and TM
susceptance Btm at 0.4 [Hz] (blue). The abscissa shows the false positive rate (specificity) and the
ordinate shows the true positive rate (sensitivity) for detection of the data with some threshold.
Best performance occurs as this curve approaches a right angle ((0,0) to (0,1) to (1,1)). The curves
shown are those where the area under the ROC curve was at a maximum.

Figure 6.10b shows the areas under the ROC curves at all frequencies, for various WAI quantities.
The susceptance and reactance, Btm and Xtm, are the best detectors of NMEP at low frequencies
because NMEP decreases the low-frequency TM compliance. The conductance, Gtm, performs best
at 1-2 [kHz] because NMEP decreases the mid-frequency conductance. Gtm has almost the same
area under the ROC curve as the absorbance level for all frequencies, indicating that these quantities
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Figure 6.9: Lumped middle ear resistances rc at the tympanic membrane (TM), assumed to be
primarily due to the cochlear load. These values are estimated from the normalized TM impedance,
Ztm(f)/r0 (Eq. 6.2), and are therefore unitless. Black box plots show the negative middle ear
pressure (NMEP) results, and gray box plots show the ambient middle ear pressure (AMEP)
results, ordered by mean NMEP tympanic peak pressure (TPP).

may have some sort of order-preserving mapping. The reactance, Xtm, appears to combine some of
the best detection characteristics of the conductance and susceptance, showing the highest AROC
for most frequencies.

The relationship between Gtm and the absorbance may be partially explained by the minimum-
phase constraint on Γtm. As shown in Section 3.5.5, the quantities Gtm and Btm have a limited
range of values based on this assumption, as compared to other quantities (G, B, X, R, Xtm,
Rtm). However, the results of the ROC analysis suggest that there is some more intimate mapping
between these two quantities, such that the ‘ordering’ of measurements remains approximately the
same across frequencies.

It is hardly surprising that it is difficult to create a detection criterion for NMEP, even for this
small dataset. As middle-ear pressures as low as -100 [daPa] might be considered ‘normal,’ it may
be impossible to detect WAI changes caused by NMEPs in this range. Further, small NMEPs may
be present in normative WAI data. Given the variation in frequency-dependence of NMEP effects
across ears, small NMEPs may be expected to contribute to both intra-subject and inter-subject
variability of normal ears.
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Figure 6.10: (a) ROC curve at a single frequency (see legend) for the absorbance, TM admittance,
TM conductance, and TM susceptance. These curves are computed using the median measurement
for each ear in each pressure state (16 total measurements). (b) Area under the ROC curve as a
function of frequency for various complex TM immittance quantities.

6.5 Discussion

6.5.1 Dependence of WAI changes on NMEP

General changes in the power absorbance level with NMEP, characterized by a depression below
about 2 [kHz] followed by a small elevation at higher frequencies, as seen in Figures 6.2 and 6.3, are
consistent with the results of Voss et al. (2012) and Shaver & Sun (2013). Figure 6.3, which shows
the means and standard deviation regions for the AMEP and NMEP absorbance level measurements
across ears, indicates that the mid-frequency region from 0.8 to 1.9 [kHz] is optimal for detecting
NMEP in these ears, as shown in Figure 6.3. This is in agreement with the results of Shaver & Sun
(2013), who found that the largest change in the power reflectance occurred from 1.0 to 1.5 [kHz].
Based on this observation, for each of the 8 ears we averaged the absorbance level from 0.8 to 1.9
[kHz] to explore its relationship to TPP, as shown in Figure 6.11. Outliers from Figure 6.1 and
suspected intermediate pressure states from Figure 6.2 (S4 and S8) are excluded in this analysis.
A TPP more negative than -50 [daPa] causes a decrease in the mean 0.8 to 1.9 [kHz] absorbance
level for all ears, except S3. There is a significant linear regression of these quantities (r2 = 0.79,
p < 0.001). However, a quadratic regression provides a similar fit (r2 = 0.81, p < 0.001), implying
that the relationship between power absorbance level and TPP may be nonlinear.

Though Figure 6.11 yields a significant relationship between TPP and WAI for these 8 ears,
investigators should be careful when averaging data in frequency bins. Considering the absorbance
level measurements of Figure 6.2, the frequency ranges and magnitudes of NMEP effects vary across
ears. For instance, in ear S3, NMEP causes a mean depression of the absorbance level of about -2
[dB] at 2 [kHz]. Though this magnitude change is similar to those observed for the other ears, it
occurs outside of the 0.8 to 1.9 [kHz] frequency range over which the absorbance was averaged. Also
consider ears S5 and S6, which have similar NMEP TPPs but show disparate NMEP effects at low
frequencies (this is true of S3 and S4 as well). Increased stiffness of the middle ear due to NMEP
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Figure 6.11: Mean power absorbance level over the 0.8 to 1.9 [kHz] range as a function of mean
tympanic peak pressure (TPP). Error bars show ±1 standard deviation for each quantity (excluding
outliers). Ambient middle-ear pressure (AMEP) data are shown as open symbols, and negative
middle-ear pressure (NMEP) data are shown as filled symbols. There is a significant quadratic
regression (r2 = 0.81, p < 0.001). As expected, the AMEP data are clustered around 0 [daPa];
note that the symbols for ears S1 and S4 are partially hidden by those for ears S3, S6, and S8.

shifts features of the absorbance level (such as the low-frequency rising slope, and local resonances)
upward in frequency, but the effect varies due to intersubject variability at AMEP. Thus, the 0.8
to 1.9 [kHz] region merely contains the most overlap of NMEP changes across ears. Alternatively,
fitting these data to a parametric model can be a more meaningful approach to characterize WAI
change.

Changes in WAI at the TM with NMEP are consistent with increased stiffness (decreased com-
pliance) in the middle ear. This is seen in the TM reactance and magnitude impedance responses in
Figures 6.5 and 6.6, as a separation of the AMEP and NMEP states at low frequencies, and shifts
in the mid-frequency local resonances. The decrease in compliance due to NMEP is captured by
the model parameter Cme in Figure 6.8b. The group B ears (S4, S5, S8) show the largest changes in
Cme, but did not all have the largest pressures. It is likely that the level of change in Cme is related
to intersubject variability at AMEP. For instance, the middle-ear cavity volume contributes to the
compliance at the TM and could be a source of variability across subjects below 2 [kHz] (Voss et
al., 2008, 2013), which could affect the NMEP change in Cme. Intersubject variability may also be
due to the differences in the nonlinear compliance characteristics of the TM and ossicular chain.

6.5.2 Mechanisms for pressure-dependent changes in WAI

As discussed with regard to Figures 6.2, 6.6 and 6.8b, the effect of NMEP on WAI may be primar-
ily described as an increased stiffness in the middle-ear system, characterized by Cme (Fig. 6.7).
A NMEP-dependent stiffness measured at the TM could be due to many middle-ear structures
including the TM, ossicle joints, muscles, and ligaments (Voss et al., 2012). However, it is not
fully understood which middle-ear structures contribute to WAI changes due to NMEP, and to
what extent. It is commonly assumed that the TM is the largest contributor to nonlinear, NMEP-
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dependent stiffness characteristics in such data. For example, in assumption (3) of tympanometry
it is often stated that the TM itself becomes stiff when pressurized. However, it has been shown
that the TM functions primarily as a delay line (Puria & Allen, 1998). Thus it is more likely that
the nonlinear NMEP effect is primarily due to the middle-ear ligaments, particularly when the
NMEP is within the range of normal variation (Pang & Peake, 1986).

Retraction of the TM due to NMEP is likely similar to TM displacement due to contraction
of the tensor tympani muscle. Unlike the stapedius muscle, the tensor tympani is not activated
as part of the acoustic reflex in humans (Møller, 1983); thus, how it functions, what causes it to
contract, and its effects on the acoustic impedance are not well understood (Mukerji et al., 2010;
Aron et al., 2015). Studies in cats, rabbits (Møller, 1983) and humans (Bance et al., 2013; Aron et
al., 2015) indicate that the effect of tensor tympani contraction on WAI would be similar to that of
stapedius muscle contraction. In vivo measurements in human ears of the acoustic stapedius reflex,
which applies a force on the annular ligament, increasing its stiffness and changing the motion of
the stapes footplate (Møller, 1983), show similar changes in the WAI to those found here (Feeney
& Keefe, 1999; Feeney et al., 2004; Schairer et al., 2007). Thus it seems likely that NMEP is acting
on the annular ligament or tensor tympani, or both.

The nonlinear characteristics of the annular ligament have been previously measured and modeled
(Lynch et al., 1982; Pang & Peake, 1986; Murakami et al., 1997; Lauxmann et al., 2014). The effects
of NMEP on WAI found here are consistent with changes in the stapes response due to a pressure
differential across the annular ligament (Lynch et al., 1982; Lauxmann et al., 2014). According to
measurements of Lynch et al. (1982) in cat, a partial middle-ear system consisting of the stapes,
annular ligament and cochlea gives an impedance change due to static pressure (in the cavity
around the stapes) that is similar to the impedance changes observed in Figure 6.6. In human
cadaver ears, Murakami et al. (1997) found a decrease in stapes (as well as umbo) vibration at
low frequencies (related to an increase in impedance, as in Figure 6.6), and an increase at high
frequencies, given a decrease in middle-ear pressure. The same research team also found a decrease
in stapes velocity at low frequencies when the pressure in the cochlea was increased instead (Myers
et al., 1998).

The overall shift in TM impedance due to increased stiffness, seen here as an increase in the
impedance below 1 to 2 [kHz], followed by a small decrease in impedance at high frequencies (for
some ears), is described via a simple resonance by Feeney & Keefe (1999). The term ‘resonance’
is typically defined by a second-order system, such as a series capacitor-inductor system, modeling
a stiffness and mass (e.g. a simple harmonic oscillator). The so-called ‘middle-ear resonance’ is
better characterized as a resistor in series with a capacitor, namely the first-order system described
by Figure 6.7a.

As noted in Section 6.4, the resistance at the TM, modeled by rc, depends on NMEP for some
frequencies, particularly at large NMEPs. These changes are related to power dissipation in the
middle ear, which could be due to a compression of the ossicle joints. This effect is most severe for
ears S7 and S8, which have the largest NMEP TPP values.

6.5.3 Clinical implications

For clinicians and investigators working with WAI, it is important to understand how a wide range
of pathologies, including NMEP, may affect their measurements. Here we see a systematic stiffness
change due to NMEP, which is similar to that due to otosclerosis or the acoustic stapedius reflex.
Understanding the particular effects of NMEP on WAI can aid in better differential diagnoses of
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similar pathologies. Our results indicate that TPP is not a reliable predictor of immittance changes
at the TM over a broad range of frequencies (Figs. 6.2 and 6.11). Future modeling of individual
variations in these measurements, due to the stiffness of the middle-ear ligaments and volume of the
middle-ear cavity space (Voss et al., 2008, 2013), can greatly improve characterization of NMEP
effects.

Unlike traditional 226 [Hz] tympanometry, WAI provides precise, wideband information about
acoustic transmission in the presence of NMEP. The effects of NMEP on the absorbance level are
relatively small when the NMEP is not extreme (e.g. -400 [daPa], or no measureable TPP); in
this study, a mean decrease of 2 [dB] in the region of maximum separation was observed, and the
largest effects were about 5 [dB]. Such small changes are unlikely to significantly affect hearing
thresholds, as observed by Rabinowitz (1981). However, other diagnostic measurements may be
affected. For instance, DPOAE measurements (Sun & Shaver, 2009; Thompson et al., 2015) rely
on both forward and reverse transmission through the middle ear, which could double the level
effect of NMEP. Note that WAI and OAEs are often measured using the same equipment, which
may motivate the use of WAI to evaluate middle-ear function prior to OAE measurements.

One proposed method to circumvent the effects of NMEP on other measurements of hearing is
to apply a compensatory pressure in the ear canal, and measure WAI and DPOAEs at the TPP
(Sun & Shaver, 2009; Shaver & Sun, 2013). It is important to recognize that there may be subtle
differences in middle-ear transmission when using such methods. For instance, the results of Lynch
et al. (1982), Lauxmann et al. (2014), and Myers et al. (1998) indicate that the difference between
the middle and inner ear pressures may have an effect that is independent of the difference between
the ear canal and middle-ear pressures. Using ambient WAI, this experiment has demonstrated
that it is possible for subjects to alter their middle-ear pressure without re-insertion of the probe.
Thus in some cases, if NMEP is suspected during a measurement sitting, the clinician or researcher
could coach the subject to equalize their middle-ear pressure, and then re-measure WAI.

Ambient WAI estimated at the TM provides a more accurate assessment of acoustic properties
of the TM than tympanometry, over a much broader frequency range. In traditional WAI analysis,
the effect of the REC is removed by considering only the power reflectance and absorbance level
measured in the ear canal. Studies have shown that many properties of the middle ear can be
analyzed using these magnitude-only quantities. In this study, we have estimated the phase response
at the TM as well, which provides useful information regarding middle-ear signal delay. Such delay
information may help to pinpoint the source of disruption in middle-ear sound transmission, via
modeling. Refining this and similar methods of estimating the complex acoustic response at the
TM should improve differential diagnosis of middle-ear pathology, resulting in increased utility of
WAI.

6.5.4 Summary and future directions

Our methods remove REC delay from the complex WAI, allowing for direct estimation of the
complex WAI (magnitude and phase) at the TM. For the 8 subjects presented here, NMEP has the
largest and most significant effect between 0.8 and 1.9 [kHz], causing a mean reduction of 2 to 3
[dB] in energy absorbed by the middle ear and cochlea. However, WAI results vary considerably in
magnitude and frequency range across ears. General changes in the WAI at the TM due to NMEP,
characterized by an increase in the TM impedance (decrease in the absorbance level) below 2 [kHz],
and a decrease at higher frequencies, appear consistent with previous results, and may be related
to a stiffening of the tensor tympani, annular ligament and other middle-ear structures due to
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middle-ear pressure.
A more detailed model of middle-ear pressure might be fitted to the TM impedance estimates

(e.g. Figs. 6.4, 6.5, and 6.6). This could be accomplished using models of the middle ear such
as those given in Tables 2.1 and 2.2. Many models can be fit using a widely available error-
minimization function such as fminsearch in Matlab, similar to the procedure of Lewis & Neely
(2015). However, the simple model presented here demonstrates the overall change in WAI due to
NMEP, without the danger of over-fitting the data. Furthermore, a more detailed model would
benefit from exact measurements of the pressure and middle-ear cavity volume, such as those
obtained by Voss et al. (2012) using cadaver preparations.
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APPENDIX A

ACOUSTIC WAVE EQUATION AND SOLUTIONS

A.1 Acoustic variables and relationships

In this thesis, models of sound propagation in air are used for multiple purposes. This appendix
is intended to summarize the assumptions made by those models. Equations and assumptions
are stated for both lossless and lossy cases, and the wave equation and solutions are given for
cylindrical and conical horns. A list of physical constants and acoustic variables is given at the
beginning of this thesis in the List of Symbols. Approximate values are given for some constants;
a list of acoustic constants as a function of temperature is given by Keefe (1984).

For the purposes of this thesis, all vibrations are assumed to be quite small (e.g. pressure wave
amplitudes of < 1 [Pa] are very small compared to the ambient pressure of approximately 105 [Pa]).
Under this assumption, all equations are linearized by neglecting any terms ∆n for n ≥ 2, where
∆ is a ‘small’ number. In the lossy cases, there are two primary losses to account for: (1) thermal
losses due to heat conduction, and (2) viscous losses to due friction between fluid particles.

In general, an attempt will be made to use lowercase variables in the time domain, and uppercase
variables in the frequency domain. This rule may be violated in the case of constants such as P0

(the ambient air pressure) or volumes and areas (dV , V , dA, A). Vectors will be denoted using an
arrow above the letter or symbol.

A.1.1 Variables and relations

The primary variables of concern are the air pressure, density, and particle velocity. Sound waves in
air cause small disturbances from the total air pressure ptot and density ρtot. Typically, air particles
are displaced about an equilibrium position, so the particle velocity is also small,1 as there is no
net flow. The definitions of interest are

p = ptot − P0 = excess pressure [Pa] (A.1a)

~u = particle velocity [m/s] (A.1b)

σ =
ρtot − ρ0

ρ0
= condensation (relative density displacement, unitless) (A.1c)

θ = θtot − θ0 = temperature displacement [K]. (A.1d)

For the purposes of the following derivations, p, ~u, σ and θ are considered to be quite small. Thus,
equations in these variables may be ‘linearized’ by eliminating nonlinear terms (e.g. ‘square of the
motion’ or higher (Rayleigh, 1896)). Condensation is often represented by the variable s in the

1For a plane wave in free space (lossless), p/|~u| = ρ0c0 ≈ 407 [Rayls], therefore |~u| = p
ρ0c0

must be small.
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literature; here σ is used, so that s may be used to represent the complex Laplace frequency. The
equilibrium pressure P0 and density ρ0 have values of approximately 105 [Pa] and 1.2 [kg/m3] for
air at room temperature. Note that the temperature θ is used to relate p and σ when there are
thermal losses due to heat conduction.

A ‘particle’ of the fluid (air) may be thought of as an infinitesimal volume, dV . Because the
particle is in motion, any time derivatives related to the particle must take into account any motion
of its ‘frame of reference.’ This is accomplished by using the ‘material derivative’

D

Dt
=

∂

∂t
+ ~u · ~∇. (A.2)

The variables p, ~u, and σ, represent three unknowns, thus three equations are necessary to relate
them to each other. These equations will differ between the lossless and lossy cases. They are

1. Equation of state (EOS): A thermodynamic equation, typically relating the pressure, con-
densation (density) and temperature.

2. Equation of continuity (EOC): An equation describing conservation of mass for fluid particles,
typically relating velocity to density.

3. Equation of motion (EOM): An equation describing the balance of forces on a fluid particle
(conservation of momentum), typically relating force and momentum per unit volume, ρ~u.

By combining these three equations, a differential equation in just one variable (e.g. p(x, t) or
~u(x, t)) may be obtained. Using this differential equation along with the boundary conditions, the
propagation of pressure or velocity waves in a given geometry can be described. When incorporating
the effects of thermal or viscous loss, thermal loss is described by the equation of state (by including
heat conduction), and viscous loss is described by the equation of motion (by including frictional
forces).

The Theory of Sound, a monumental work by Lord Rayleigh (Baron John William Strutt) was the
first text to describe the following acoustics concepts in such thorough detail. Rayleigh drew upon
the earlier works of Marin Mersenne, Sir Isaac Newton (who authored Principia), Leonhard Euler,
Pierre-Simon Laplace, Hermann von Helmholtz and Gustav Kirchhoff. The works of Helmholtz
and Kirchhoff were particularly important for describing lossy wave propagation.

A.1.2 Wave equation: Lossless case

In the ‘lossless’ case, the following relations are used (Pierce, 1981):(
ptot
P0

)
=

(
ρtot
ρ0

)η0

(state) (A.3a)

0 =
∂ρtot
∂t

+ ~∇ · (ρtot~u) =
Dρtot
Dt

+ ρtot(~∇ · ~u) (continuity) (A.3b)

0 = ρtot
D~u

Dt
+ ~∇ptot (force) (A.3c)

where η0 = cp/cv is the ratio of heat capacities at constant pressure and constant volume. The
constant η0 = (F0 + 2)/F0, where F0 is the number of degrees of rotational and translational
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freedom2 of the air molecules. Air consists primarily of diatomic molecules which have 5 degrees
of freedom (3 translational and 2 rotational), thus η0 ≈ 7/5 = 1.4.

Equation A.3a is a restatement of the adiabatic law for a gas, PV η0 = constant. Because the air
is not enclosed in a volume V0, it is necessary to express this law in terms of the density. Sound
propagation in air may be approximated as an adiabatic process because it happens so rapidly
that heat energy, rather than temperature, remains approximately constant. This equation may
be linearized by first approximating

p = ptot − P0 =

(
dptot
dρtot

)
(ρtot − ρ0), (A.4)

where (dptot/dρtot) is calculated from the rearranged Equation A.3a as

d

dρtot

[
1 =

ρη0
0

P0
ptotρ

−η0
tot

]

0 =
ρη0

0

P0

[
ptot(−η0)ρ−η0+1

tot +
dptot
dρtot

ρ−η0
tot

]
dptot
dρtot

=
η0ptot
ρtot

≈ η0P0

ρ0
. (A.5)

Thus, Equation A.4 becomes

p =
η0P0

ρ0
(ρtot − ρ0) = η0P0σ, (A.6)

where η0P0 ≈ 1.4× 105 [Pa] is the bulk modulus (incompressibility) of air.
Substituting ρtot = σρ0 + ρ0 and eliminating ‘small’ terms, the second equation becomes

0 =
∂

∂t
(σρ0 + ρ0) + ~∇ · ((σρ0 + ρ0)~u)

0 = ρ0
∂σ

∂t
+
�
�
�7

0
∂ρ0

∂t
+ ρ0

~∇ · (σ~u) + ρ0
~∇ · ~u

0 =
∂σ

∂t
+ ~∇ · ~u+��

��:ε
σ~∇ · ~u +��

��:ε
~u · ~∇σ

0 =
∂σ

∂t
+ ~∇ · ~u, (A.7)

which is the linearized continuity equation. The symbol ε is used to denote terms that are negligible.

2This is related to the equipartition theorem in statistical mechanics, formulated by Waterson, and revised by
Maxwell and Boltzmann, https://en.wikipedia.org/wiki/Equipartition theorem.
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Equation A.3c becomes

0 = (σρ0 + ρ0)

(
∂~u

∂t
+���

��:ε
~u(~∇ · ~u)

)
+ ~∇p+��

�*0
~∇P0

0 = ρ0
�
�
��
ε

σ
∂~u

∂t
+ ρ0

∂~u

∂t
+ ~∇p

0 = ρ0
∂~u

∂t
+ ~∇p, (A.8)

which is the linearized force equation.3 Thus the set of linearized equations in p, ~u and σ is

p = η0P0σ (A.9a)

0 =
∂σ

∂t
+ ~∇ · ~u (A.9b)

0 = ρ0
∂~u

∂t
+ ~∇p. (A.9c)

Eliminating σ gives two equations in p and ~u,

0 =
1

η0P0

∂p

∂t
+ ~∇ · ~u (lossless, linearized continuity equation4) (A.10a)

0 = ρ0
∂~u

∂t
+ ~∇p (lossless, linearized force equation), (A.10b)

Combining these two linearized equations yields the scalar pressure wave equation

∇2p =
1

c2
0

∂p

∂t
(A.11)

and the vector particle velocity wave equation

~∇(~∇ · ~u) =
1

c2
0

∂~u

∂t
, (A.12)

where the speed of sound c0 =
√
η0P0/ρ0. Note that Newton’s original calculation of the speed

of sound was c0 =
√
P0/ρ0 because he assumed sound propagation was isothermal rather than

adiabatic.
The solutions of these equations depend on the boundary conditions and the coordinate system.

For instance, the gradient and Laplacian depend on the coordinate system. The gradient is given

3This equation is commonly referred to as the ‘Euler equation,’ or both the force and continuity equations may
be referred to as the ‘Euler equations.’

4This is a combination of the lossless, linearized equation of state and the linearized continuity equation.
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by

~∇ = x̂
∂

∂x
+ ŷ

∂

∂y
+ x̂

∂

∂x
(rectangular) (A.13a)

~∇ = r̂
∂

∂r
+ θ̂

1

r

∂

∂θ
+ x̂

∂

∂x
(cylindrical) (A.13b)

~∇ = r̂
∂

∂r
+ θ̂

1

r

∂

∂θ
+ φ̂

1

r sin θ

∂

∂φ
(spherical) (A.13c)

~∇ =
N∑
k=1

x̂k
1

hk

∂

∂xk
(curvilinear coordinates). (A.13d)

When cylindrical or spherical waves have angular symmetry, the θ and φ terms drop out. In
curvilinear coordinates (Kusse & Westwig, 2010), the localized coordinate system is orthogonal,
and the differential thicknesses of a volume are scaled by functions hk(x1, x2, .., xN ).

The Laplacian of a quantity is defined as the divergence of the gradient of a scalar field. Note
that the similar operation on a vector field (e.g. ~∇(~∇ · ~u)) is different from the Laplacian of a
scalar function (e.g. ∇2p) because of the order of operations of the gradient and divergence (these
operators do not commute).

~∇ · ~∇p = ∇2p (A.14a)

~∇(~∇ · ~u) = ∇2~u+ ~∇× (~∇× ~u) 6= ∇2~u. (A.14b)

A.1.3 Wave equation: Lossy case

Energy losses for wave propagation in air are primarily due to (1) heat conduction (or radiation5)
and (2) viscous friction. The effects of heat conduction modify the equation of state (Eq. A.3a),
such that it is no longer perfectly adiabatic. The effects of fluid viscosity modify the equation
of force (Eq. A.3c). The continuity equation, Equation A.3b (or the linearized Eq. A.7), remains
unchanged.

Heat conduction. Following the classic work of Helmholtz (1863), who studied the role of
viscosity in sound propagation (described next), thermal losses were first addressed by Kirchhoff
(1868). He modified the state equation as

ptot
ρtot

=
P0

ρ0
(1 + α0θ), (A.15)

5Rayleigh (1896) states in Section 247 that in free space the effects of heat radiation and conduction are both
quite small. Conduction plays a much larger role in a confined space such as a tube. Therefore, heat conduction
rather than radiation is of primary interest in this thesis.
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where θ is the excess temperature (e.g. Eq. A.1d), which is assumed to be small, and α0 is a constant
coefficient of gas expansion. Assuming infinitesimal displacements, linearizing this equation gives

ptot =
P0

ρ0
(1 + α0θ)(ρ0σ + ρ0)

P0 + p = P0(σ + α0�
�>
ε

θσ + 1 + α0θ)

p = P0(σ + α0θ)

α0θ =
p

P0
− σ. (A.16)

Kirchhoff (1868) relates this change in temperature to the conduction of heat via his equation

κ0∇2θ =
1

α0ρ0

(
cvρtot

∂ptot
∂t
− cpptot

∂ρtot
∂t

)
, (A.17)

where κ0 is the thermal conductivity. Combining Equations A.16 and A.17, Kirchhoff found

ν0∇2(α0θ) =
∂(α0θ)

∂t
− (η0 − 1)

∂σ

∂t
, (A.18)

where the constant ν0 related to the thermal conductivity by

κ0 = ν0ρ0cv. (A.19)

To arrive at Equation A.18, Kirchhoff would have needed to use κ0 = ν0P0cv. Therefore, something
is slightly wrong with his derivation. Note that Equation A.18 is stated here in a slightly different
form than that given by Kirchhoff (1868) and Rayleigh (1896) (Secs. 247 and 347). Kirchhoff and
Rayleigh ultimately solve a differential equation in terms of Θ = α0θ/(η0−1). An attempt is made
here to fix this and to solve for the relevant equations in terms of p, σ and ~u.

Amendment to Kirchhoff’s derivation. A thorough derivation of heat conduction effects is
given in Stinson (1991). This is a modified version of Kirchhoff’s derivation. Stinson begins with
the ideal gas law (Rg,specfic is the specific gas constant, which is 287 [J·kg−1·K−1] for air),

Rg,specific =
ptot

ρtotθtot
(A.20a)

∂

∂t
Rg,specific =

∂

∂t

(
Ptot

ρtotθtot

)

0 =
1

ρ0T0

∂ptot
∂t

+ P0

[
1

ρ0

(
−1

θ2
tot

)
∂θtot
∂t

+
1

θtot

−1

ρ2
tot

∂ρtot
∂t

]
∂θ

∂t
=
θ0

P0

∂p

∂t
− θ0

∂σ

∂t
(linearized). (A.20b)

Note that this derivation may be simplified by taking the natural logarithm of Equation A.20a
before taking the time derivative. The set of equations describing the gas6 and heat conduction is

6When Equation A.20b is taken into the frequency domain, the time-derivative factors cancel out.

117



thus

θ =
θ0

P0
p− θ0σ (A.21a)

κ0∇2θ =
θ0

P0

(
ρ0cv

∂p

∂t
− P0cpρ0

∂σ

∂t

)
. (A.21b)

These equations replace those by Kirchhoff given in Equations A.16 and A.17. Combining the
above equations to eliminate θ, the linearized equation of state becomes the diffusion equation

1

P0
∇2p−∇2σ =

1

ν0P0

∂p

∂t
− η0

ν0

∂σ

∂t
. (lossy, linearized state equation) (A.22)

The same result may be found from Equations A.16 and A.18 by Kirchhoff. Therefore, Kirch-
hoff’s results derived from these equations are correct. However, the relationship he gives for heat
conduction (Eq. A.17) is flawed, and he arrives at the correct answer via an algebraic error.

Viscous friction. Frictional losses were first addressed by Stokes (1845). Rayleigh (1896) gives
the frictional force density (e.g. force per unit volume) in one dimension,

fµ0,x = µ0

(
∇2ux +

1

3

d

dx
(~∇ · ~u)

)
. (A.23)

The coefficient of friction (the ‘viscosity’) is given by µ0. By applying the linearized continuity
equation (Eq. A.7) to the second term,

fµ0,x = µ0

(
∇2ux −

1

3

d2σ

dxdt

)
. (A.24)

Thus, in three dimensions, the equation of motion (for an infinitesimal volume) becomes7

ρ0
∂~u

∂t
= total force density

= −~∇p+ ~fµ0

= −~∇p+
1

3
µ0
~∇(~∇ · ~u)− µ0

~∇× ~∇× ~u

= −~∇p+ µ0∇2~u− µ0

3
~∇

(
∂σ

∂t

)
. (A.25)

This gives the linearized equation of force stated by Kirchhoff and Rayleigh,8

∂~u

∂t
+

1

ρ0

~∇p = µ′0∇2~u− µ′′0 ~∇

(
∂σ

∂t

)
(lossy, linearized force equation), (A.26)

7This is also stated by Stinson (1991).
8Note that Kirchhoff and Rayleigh both give a preliminary equation where the µ′′0 term is positive. However, both

use Equation A.26 in their final derivations.
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where the constants are µ′0 = µ0/ρ0 and µ′′0 = 1
3µ
′
0.

The connection between ν0 and µ0. The thermal conductivity κ0 = ν0ρ0cv and the viscosity
µ0 affect the equation of state and the equation of motion, respectively. However, they are typically
related by molecular properties of the gas (e.g. air). Kirchhoff and Rayleigh claim that thermody-
namic constant ν0 = 5

2µ
′
0, citing Maxwell. However, the factor 5/2 relates cp to the gas constant

for a mono-atomic gas,9 and is therefore not applicable to air, which is predominantly diatomic
(Benade, 1968). Therefore, the following discussion will not relate ν0 = κ0/(ρ0cv) to the viscosity.
Instead, the thermal conductivity can be looked up directly from a table. For reference, Benade
(1968) states that the factor 5/2 should be approximately (9η0 − 5)/4 ≈ 1.9. Note that this is a
relatively small difference (about 25%), which explains why it remained undetected experimentally
(W. Mason, 1928). This gives

ν0 ≈

(
9η0 − 5

4

)
µ′0 =

(
9η0 − 5

4

)
µ0

ρ0
. (A.27)

Final equation. Thus, the full set of linearized equations including thermal and viscous effects
is described by Equations A.22, A.7, and A.26. In the frequency domain (p ↔ P, ~u ↔ ~U , and
σ ↔ E), these become

sP − η0P0sE = ν0∇2P − ν0P0∇2E (state) (A.28a)

sE + ~∇ · ~U = 0 (continuity) (A.28b)

ρ0s~U + ~∇P = ρ0µ
′
0∇2 ~U − ρ0µ

′′
0s~∇E (force). (A.28c)

Eliminating E by substituting the first equation into the second and third, these equations become

ρ0s~U + ~∇P = ρ0µ
′
0∇2 ~U + ρ0µ

′′
0
~∇(~∇ · ~U) (A.29a)

s

η0P0
P + ~∇ · ~U =

ν0

η0P0
∇2P +

ν0

η0s
∇2(~∇ · ~U). (A.29b)

Note that in the lossless case when µ′0 = µ′′0 = ν0 = 0, the two equations above become the
frequency-domain versions of Equations A.10b and A.10a. By solving for ~∇P in the first equation,
and substituting this into the gradient of the second equation,(

ν0

c2
0

(µ′0+µ′′0)+
ν0

η0s

)
~∇(∇2(~∇·~U))−

(
1
s

c2
0

(ν0+µ′0+µ′′0)

)
~∇(~∇·~U)− s

c2
0

µ′0~∇×~∇×~U+
s2

c2
0

~U = 0. (A.30)

This is a vector wave equation in the frequency-domain particle velocity. In the lossless case, this
equation becomes the frequency-domain version of Equation A.12. If ~∇ × ~∇ × ~U = 0, Equation
A.30 has the same coefficients as the scalar wave equation in Θ obtained by Kirchhoff and Rayleigh.
Stinson (1991) notes that this similarity is because both ~U and the temperature displacement θ
must vanish at any wall boundaries, under the assumption that the gas behavior at a wall is
isothermal (e.g. the walls are an infinite reservoir of the equilibrium temperature, θ0). In general,

9According to http://hyperphysics.phy-astr.gsu.edu/hbase/Kinetic/shegas.html, cp = cv +Rg, where cv = F0
2
Rg,

F0 is the number of translational and rotational degrees of freedom, and Rg is the gas constant. This gives cp =
F0+2

2
Rg, which gives cp = 5

2
Rg for a mono-atomic gas.
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the boundary will not be perfectly isothermal; Keefe (1984) derives the effects of a non-isothermal
boundary for wave propagation in a cylindrical tube.

Solution in free space. Losses due to heat conduction and viscous friction can affect the wave
speed (e.g. dispersion) and introduce attenuation. It may be proved that these losses have the most
significant effect when rigid boundaries are present. This is mathematically shown by Kirchhoff
(1868) and Rayleigh (1896) (Sec. 349). Here, the free-space case is briefly analyzed; wave propa-
gation in closed spaces such as tubes and horns is described in detail in the following sections.

In free space, there are no significant dispersion effects, but there is a small attenuation effect.
Kirchhoff (1868) showed that in free space the solution to Equation A.30, in Cartesian coordinates
in one dimension, is

Ux ∝ eκ(s)x = e−mxesx/c0 , (A.31)

where for s = jω,

m =
ω2

2c3
0

(
µ′0 + µ′′0 + ν0

(
1− 1

η0

))
. (A.32)

In the lossless case, m = 0, so the amplitude of this term is 1 for all x. In the lossy case, the
velocity c0 is the same as the lossless case, and there is no dispersion. At 1 [kHz], m ≈ 1.3× 10−5

[m−1], and at 10 [kHz], m ≈ 1.3 × 10−3 [m−1]. Physical constants have been calculated for air at
75o [F] (Keefe, 1984).

The traditional way to evaluate the attenuation is to consider when the wave is attenuated by a
factor of 1/e (8.7 [dB]), which happens when mx = 1. The wave will be attenuated by 1/e or more
for

f >
1

2π

√√√√2c3
0

x

(
1

µ′0 + µ′′0 + ν0(1− 1/η0)

)
=

√
7.5× 1010

x
. (A.33)

Therefore, this effect increases with distance from the origin point of the wave, and causes the most
attenuation at high frequencies. In free space, the distance must be very large, or the frequency
very high, for the wave to be significantly attenuated.

Beranek & Mellow (2012) (Sec. 2.2.2) describe the effect of heat conduction in free space in terms
of the wavelength and speed of the diffusion wave, compared to the wavelength of the primary
vibration. At 1 [kHz], the diffusion wave speed is 0.5 [m/s]; in a half-period, the thermal wave
travels just 2.5×10−4 [m]. This is small compared to half the wavelength of the primary vibration,
which is 0.17 [m] at 1 [kHz].

A.2 Solutions in a constant-area horn waveguide

In this section, solutions are given for wave propagation in a cylindrical horn (Kirchhoff, 1868;
Rayleigh, 1896; Benade, 1988; Keefe, 1984). These solutions separate into radial and axial compo-
nents. In the case of a cylindrical horn, the radial solutions are Bessel functions. In the following
derivation, it is assumed that only plane waves (the 0th order mode) propagate. A full discussion of
transmission-line notation, including the per-unit-length impedance Z and admittance Y, is given
in Section 3.1.
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In a constant-area horn, the plane wave, transmission-line solutions will take the form

Ψ(x, ω) = α+e
−κ(x,jω)x + α−e

+κ(x,jω)x (A.34a)

V(x, ω) = α+y
+
c e
−κ(x,jω)x − α−y−c e+κ(x,jω)x, (A.34b)

where κ(x, s) is the analytic propagation function. Equations 3.4 and A.34 give the relations

κ(x, s)Ψ± = Z(x, s)V±

κ(x, s)V± = Y(x, s)Ψ±

Ψ±

V±
=
κ(x, s)

Y(x, s)
=
Z(x, s)

κ(x, s)
. (A.35)

Therefore, the propagation function and characteristic admittance are given by

κ(x, s) =
√
Z(x, s)Y(x, s) (A.36a)

y±c =

√
Y(x, s)

Z(x, s)
= y0(x, s) =

1

z0(x, s)
. (A.36b)

Furthermore, the wave attenuation along the horn is described by the real part of κ, with the
attenuation given by e−<(κ(x,jω))x. The phase velocity cp(x, jω) = ω/=(κ(x, jω)). If cp is a function
of frequency, the system is dispersive.

Note that in general, for a variable-area horn, the characteristic admittance y±c 6=
√
Y/Z. For

example, the conical horn has direction-dependent characteristic admittances y±c which contain the
term y0, along with another function that depends on the axial coordinate (Sec. 3.1.3). For the
constant-area horn, y±c gives the velocity solution

V = y0Ψ+ − y0Ψ−. (A.37)

A negative impedance or admittance is ‘illegal’ for a passive system (Brune, 1931). In this case,
the negative sign of the y0Ψ− indicates the direction of flow; the retrograde wave propagates in the
negative x direction.

A.2.1 Lossless constant-area solution

For the lossless case, Equations A.10a and A.10b may be recast as a matrix equation

∂

∂x

[
p(x, t)
uz(x, t)

]
= −

[
0 ρ0
1

η0P0
0

]
∂

∂t

[
p(x, t)
uz(x, t)

]
. (A.38)

For a constant cross-sectional area A0, assuming iso-pressure slices, the volume velocity and average
pressure are given by

v(x, t) = A0uz(t) (A.39a)

ψ(x, t) = p(x, t). (A.39b)
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Thus the matrix equation becomes

∂

∂x

[
ψ(x, t)
v(x, t)

]
= −

[
0 ρ0

A0
A0
η0P0

0

]
∂

∂t

[
ψ(x, t)
v(x, t)

]
. (A.40)

This gives the frequency-domain transmission line parameters

Z(x, s) =
sρ0

A0
(A.41a)

Y(x, s) =
sA0

η0P0
(A.41b)

κ(x, s) =
s

c0
(A.41c)

y±c (x, s) =
A0

ρ0c0
(A.41d)

z0(x, s) =
1

y0(x, s)
=
ρ0c0

A0
= r0 =

1

g0
. (A.41e)

Thus in the lossless case, there is no attenuation or dispersion, and the characteristic impedance is
simply a resistance r0 (the characteristic admittance is just a conductance g0).

A.2.2 Lossy cylindrical solution

The transmission line parameters for a lossy cylindrical tube are well known (e.g. Keefe (1984)).
They are presented here in terms of the complex frequency s,

Z(x, s) =
s

c0
r0

[
1− 2

rv

I1(rv)

I0(rv)

]−1

(A.42a)

Y(x, s) =
s

c0

1

r0

[
1 + (η0 − 1)

2

rt

I1(rt)

I0(rt)

]
, (A.42b)

with dimensionless, frequency-dependent parameters

rv(s) = a0

√
sρ0

µ0
(A.43a)

rt(s) = a0

√
sρ0cp
κ0

=

√
µ0cp
κ0

rv(s) =
√

Prrv(s), (A.43b)

where Pr= 0.84 is the Prandtl number (unitless), and a0 is the tube radius. I0 and I1 are modified
Bessel functions of the first kind, such that In(φ) = j−nJn(jφ).

Note that it is not immediately obvious that rv and rt are unitless. However, dimensional analysis
shows that

√
sρ0/µ0 indeed has the units [1/m]. Therefore, the thickness of the boundary layer is

given by [sρ0/µ0]−1/2 [m]. This is plotted as a function of frequency (s = j2πf) in the left-hand
plot of Figure A.1. The boundary layer has the greatest width at low frequencies; therefore, viscous
and thermal effects play the largest role at low frequencies.

The unitless parameters rv and rt given here differ from those described by Keefe (1984) by a
factor of

√
j = eπ/4, due to his use of ω instead of s. Keefe states that these parameters are the
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ratios of the tube radius to the viscous and thermal boundary layers. Examples of this ratio for
different tube radii as a function of frequency are given in the right-hand plot of Figure A.1. From
Equations A.42b and A.42a, it is apparent that the viscous losses are described by Z, and the
thermal losses are described by Y.
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Figure A.1: The left-hand plot shows the boundary-layer width as a function of frequency. The
right-hand plot shows the ratios of the viscous |rv(s)| (solid) and thermal |rt(s)| (dashed) boundary
layers to the tube radius (at each of five different orders of magnitude), for s = j2πf . In the case
of ‘small-r’ tubes, the tube radius is smaller than the boundary layer. In the case of ‘large-r’ tubes,
the radius is many times the boundary layer width. Keefe (1984) gives rv = 2 as the cutoff between
his small- and large-r approximations. Note that the radius of the average adult ear canal is 3.75
[mm].

The ratio rt/rv =
√

Pr ≈ 0.84 at 26.85 [oC] (Keefe, 1984). Therefore, rv and rt are of the
same order of magnitude. Keefe (1984) gives approximations to the Bessel functions of Z and
Y for small and large rv. The ‘small-r’ approximation is a power series for rv → 0, and the
‘large-r’ approximation is an asymptotic expansion for rv →∞. Keefe determines that the small-
rv expansion may be used for rv < 2, and the large-r expansion may be used for rv > 2, with an
accuracy of 1% of the Bessel-function solution. When choosing the small- or large-r approximation,
it is important to consider the entire frequency range over which a solution is desired, since rv is
a function of frequency (∝

√
s). Such approximations can greatly simplify the computational

complexity of the solution, though this simplification is no longer necessary on today’s computers.

Keefe’s series approximations to κ and z0. Approximations to wavenumber κ(s) and char-
acteristic impedance z0(s) can be given by the following truncated series, derived from Equations
A.42a and A.42b. These expressions are modified from Keefe (1984) to accommodate the analytic
nature of rv(s). Allowing the user to substitute the thermal quantities at the appropriate tem-
perature, these complex analytic series in rv(s) are much easier to use than the formulas given by
Keefe.

z0(x, s) =
ρ0c0

A(x)

[
α1rv + α0 + α−1r

−1
v + α−2r

−2
v + α−3r

−3
v

]
(A.44a)

κ(x, s) =
s

c0

[
β1rv + β0 + β−1r

−1
v + β−2r

−2
v + β−3r

−3
v

]
. (A.44b)
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For large-r (rv > 2), the coefficients of the series are given by

α1 = 0 (A.45a)

α0 = 1 (A.45b)

α−1 = 1− (η0 − 1)√
Pr

(A.45c)

α−2 = α−1 +
1

2

(η0 − 1)

Pr
+

3

2

(η0 − 1)2

Pr
(A.45d)

α−3 = α−2 −
1

8
+

1

8

(η0 − 1)

Pr3/2
− 3

2

(η0 − 1)2

Pr3/2
− 5

2

(η0 − 1)3

Pr3/2
(A.45e)

β1 = 0 (A.46a)

β0 = 1 (A.46b)

β−1 = 1 +
(η0 − 1)√

Pr
(A.46c)

β−2 = β−1 −
1

2

(η0 − 1)

Pr
− 1

2

(η0 − 1)2

Pr
(A.46d)

β−3 = β−2 −
1

8
− 1

8

(η0 − 1)

Pr3/2
+

1

2

(η0 − 1)2

Pr3/2
+

1

2

(η0 − 1)3

Pr3/2
. (A.46e)

For small-r (rv < 2), the coefficients of the series are given by

α1 =

√
2

η0

[
1

6
+

(η0 − 1) Pr

8η0

]
(A.47a)

α0 = 0 (A.47b)

α−1 = 2

√
2

η0
(A.47c)

α−2 = 0 (A.47d)

α−3 = 0 (A.47e)

β1 =
√

2η0

[
1

6
− (η0 − 1) Pr

8η0

]
(A.48a)

β0 = 0 (A.48b)

β−1 = 2
√

2η0 (A.48c)

β−2 = 0 (A.48d)

β−3 = 0. (A.48e)

Figure A.2 compares the small-r (Eqs. A.47 and A.48) and large-r (Eqs. A.45 and A.46) approx-
imations of κ and z0 to the exact solution. This figure also demonstrates that the analytic solution
given in this thesis (Eqs. A.42a and A.42b) is equal to the exact solution given by Keefe (1984)
and Benade (1968). The large-r solution using a truncated series (α−2, α−3, β−2, β−3 = 0) is also
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Figure A.2: The propagation function κ(s) and characteristic impedance z0 for the large-r and
small-r series approximations. For the large-r approximation, the dotted line shows the result
when fewer terms of the series are used (α−2, α−3, β−2, β−3 = 0). These values are normalized as
κ/(ω/c0) and z0/r0, so that they are dimensionless functions of |rv| rather than frequency or radius
(e.g. Keefe (1984)). Exact solutions (Keefe, 1984; Benade, 1968) are compared with the analytic
solution given here (Eqs. A.42a and A.42b).

shown. Keefe (1984) uses this truncated series for =(κ) and <(z0) because it is closer to the exact
solution. He says that for an asymptotic series expansion, it is often true that fewer terms lead to
a better approximation.

It bears repeating that these approximations are typically unnecessary on a modern computer.
However, it is useful to study them in order to understand the trajectory of literature in this field.

A.2.3 Approximation used by Rayleigh and Mason

W. P. Mason (1927); W. Mason (1928) used the solutions of Rayleigh (1896) and Kirchhoff (1868)
to approximate the propagation function and characteristic impedance in a tube with thermal
and viscous losses. This solution generalizes to a horn of arbitrary cross-sectional shape, and
provides some insight that is hard to glean from the fourth-order lossy wave equation and Bessel
function solutions for a cylindrical horn. Note that this derivation assumes that the cross-sectional
dimensions of the tube are large compared to the thermal or viscous boundary layer (the large-r
solution).

The W. Mason (1928) study was particularly important because it was the earliest to validate
the model of lossy propagation characteristics (attenuation and sound speed) for a large-r tube,
over a range of frequencies relevant to human hearing. Other early experiments included those of
Kundt,10 Stevens (1902), Grüneisen & Merkel (1922), and Simmons & Johansen (1925).

10https://en.wikipedia.org/wiki/Kundt%27s tube
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Viscous effects. In Section 347 of his book, Rayleigh (1896) derives the equation of motion for a
rigid-walled horn of arbitrary cross-sectional shape. Again, this derivation assumes that the cross-
section is much larger than the boundary layer of fluid adhering to the walls. Rayleigh’s derivation
has been modified to express the equation of motion as a complex function of the frequency s,
similar to the previously presented modification to the solutions of Keefe (1984).

Figure A.3: Infinite, rigid x-y plane, with fluid (air) in the +y half-space. The rigid boundary
condition dictates that the fluid (air) immediately next to the plane must adhere to the plane. In
the left diagram, the plane moves in the x direction with some velocity −~U0(ω) = 0. The right
diagram shows the plane’s moving frame of reference, which can be used to describe the force on
a moving fluid from a stationary rigid plane.

Rayleigh begins by considering the motion of fluid in contact with an infinite rigid x-z plane, as
shown in Figure A.3. The rigid boundary condition dictates that the fluid (air) immediately next
to the plane at y = 0 must adhere to the plane. As derived by Rayleigh (1896), in the left diagram,
the plane moves in the x direction with some velocity −U0(ω) = 0. The motion of the fluid (in the
x direction) is described by the force-density diffusion equation11

µ0
∂2uz
∂y2

= ρ0
∂uz
∂t
↔ sρ0Uz. (A.49)

Note that this equation is the same as Equation A.26, with p and σ set to 0; thus, assuming that
the pressure is constant (and using the lossless equation of state), so is the density. In the frequency
domain, this equation becomes

∂2

∂y2
Uz =

(
sρ0

µ0

)
Uz = κ2Uz, (A.50)

where we introduce the square of the propagation constant κ2 due to the second derivative in space.
This equation has the general solution

Uz(y, ω) = B+e
−κ(jω)y + B−eκ(jω)y, (A.51)

where B± are constants and κ(s) =
√
sρ0/µ0. The following boundary conditions must be applied:

• as y → +∞, Uz → 0

• at the rigid boundary the fluid adheres to the plane, Uz|y=0 = −U0(ω)

11The left-hand side of this equation is a statement of ‘force = mass × acceleration.’
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• only considering the solution above the plane, Uz|y<0 = 0,

which gives the solution

Uz(y, ω) =

{
−U0(ω)e−κ(jω)y y ≥ 0

0 y < 0.
(A.52)

Note that for a ‘signal’ quantity such as the velocity, the end result should be a function of ω
(e.g. substitute s = jω). However, differential equations describing ‘systems’ or impedances will be
written using the complex Laplace frequency s.

To understand the effect of a stationary plane on fluid moving at velocity Uz = U0, consider the
plane’s frame of reference, which moves with a velocity −U0(ω) in the x direction. This scenario is
pictured in the right diagram of Figure A.3. In this case,

Uz(y, ω) = −U0(ω)e−κ(jω) − (−U0(ω)). (A.53)

The per-unit-area tangential force on a stationary plane (Rayleigh, 1896), due to fluid moving with
velocity U0(ω), is given by

µ0
∂

∂y
Uz

∣∣∣∣∣
y=0

= −µ0U0(ω)(−κ(s)) = µ0U0(ω)

√
sρ0

µ0
= U0(ω)

√
sρ0µ0. (A.54)

Figure A.4: Rigid walled tube of cross-sectional area A(x) and perimeter Π(x). Rayleigh (1896)
derived the equation of motion for a slice of infinitesimal volume, Aδx and arbitrary cross-sectional
shape. It is assumed that A(x) is large compared to the boundary layer of fluid adhering to the
walls of the tube.

By Newton’s third law, the force of the plane on the fluid is equal to, and opposite of, the force of
the fluid on the plane. This result will be applied to a rigid-walled horn of arbitrary cross-sectional
shape, as pictured in Figure A.4 (a cylindrical tube is drawn for simplicity). The area of the horn
is A, and its perimeter (e.g. circumference) is given by Π. The ‘boundary layer’ of fluid adhering
to the walls of the horn is assumed to be small compared to the cross-sectional dimensions.

Consider an infinitesimal volume of fluid, Aδx. The area related to the tangential force of the
wall on the fluid is Πδx. In the frequency domain, the one-dimensional linearized equation of force
is

(Aδx)ρ0sUz = −(Aδx)
∂P
∂x
− (Πδx)Uz

√
sρ0µ0

ρ0sUz = −∂P
∂x
− Π

A
Uz
√
sρ0µ0. (A.55)
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To obtain a differential equation in Uz, it is necessary to use the relation

−∂P
∂x

=
c2

0ρ0

s

∂2Uz
∂x2

, (A.56)

which may be derived using the linearized continuity equation sE + ∂Uz/∂x = 0 (Eq. A.6) and the
lossless equation of state P = c2

0ρ0E (Eq. A.7). This gives

∂2Uz
∂x2

=

[
s2

c2
0

(
1 +

Π

A

√
µ0

sρ0

)]
Uz

∂2Uz
∂x2

= κ2Uz, (A.57)

where the solutions to this one-dimensional wave equation take the same form as Equation A.51.
In this case, taking the positive square root,12

κ(s) ≈ s

c0
+

1

c0

(
Π

2A

)√
µ0s

ρ0

κ(s) ≈ s

c0
+
β0

c0

√
s, β0 =

Π
√
µ′0

2A
=

Π

2A

√
µ0

ρ0
. (A.58)

This approximation holds as long as (
β0√
s

)2

� 1. (A.59)

Quick calculations show that (β0/
√
s)2, which is unitless, is approximately equal to −j0.045/f .

Thus, it causes a small error in the phase of κ(s). The magnitude of this term is largest at low
frequencies, approximately 0.0045 at 100 [Hz], 4.5 × 10−4 at 1 [kHz], and 4.5 × 10−5 at 10 [kHz].
It is even more informative to re-cast this expression in terms of rv(s), discussed previously. For a
cylinder,

β0√
s

=
2

rv(s)
. (A.60)

Therefore, the condition given above may be restated as

rv(s)� 2, (A.61)

which is the same condition given by Keefe (1984) for a large-r tube.

Thermal effects. Kirchhoff (1868) found that in a rigid-walled tube of large radius, the approx-

12When selecting the sign for κ, the sign of ±x<(κ) should always be negative so that a complex propagation factor
causes a loss in amplitude.
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imate Bessel-function solution depends on the constant

γ′0 =
√
µ′0 +

(
√
η0 −

1
√
η0

)
√
ν0

=
√
µ′0 +

(
η0 − 1

)√
κ0

ρ0cp
. (A.62)

After substituting
√
µ′0 → γ′0 into Rayleigh’s solution13 for viscous losses in a horn of cross-sectional

area A and perimeter Π, described above, the solution matches the large-r approximate solutions
for (1) a cylindrical tube, and (2) infinite parallel walls. Therefore, at the end of Section 350,
Rayleigh (1896) notes that the substitution

√
µ′0 → γ′0 should be sufficient for any geometry where

the cross-sectional dimensions are much larger than the thermal and viscous boundary layer.
Using the definition ν0 = 5

2µ
′
0 for a mono-atomic gas, Rayleigh finds γ′0 =

√
µ′0[1 +

√
5/2(
√
η0 −

1/
√
η0)]. W. P. Mason (1927) defines γ′0 using µ0 instead of µ′0 = µ0/ρ0, and he defines ν0 = 5

2µ0

instead of ν0 = 5
2µ
′
0. Because he substitutes this quantity for

√
µ0 instead of

√
µ′0, his γ′0 is

ultimately divided by
√
ρ0. Therefore, his analysis is equivalent to those of Kirchhoff and Rayleigh.

However, all three authors make the same error by defining ν0 = 5
2µ
′
0 instead of defining ν0 according

to Equation A.27 for a (mostly) diatomic gas. To avoid this error, the answer here is left in terms
of ν0 (which could be calculated using Eq. A.27).

Modifying κ(s) given in the previous section, the final solution for the wave-propagation factor
of a rigid-walled horn of arbitrary shape, including both thermal and viscous effects, is

κ(s) ≈ s

c0
+
β0

c0

√
s (A.63a)

β0 =
Π

2A

√
1

ρ0

[
√
µ0 +

(
η0 − 1

)√
κ0

cp

]
. (A.63b)

From Keefe (1984) and Benade (1988), κ0/cp = µ0/Pr = [1.846× 10−5(1 + 0.0025∆T )]/[0.8410(1−
0.0002∆T )]2 [kg· s−1·m−1], where Pr is the Prandtl number and ∆T is the temperature difference
relative to T0 = 26.85 [oC]. The expression is accurate for T0± 10 [oC]. For a 7.5 [mm] diameter at
27 [oC], β0 ≈ 1.5.

Transmission line parameters for the (W. Mason, 1928) solution. As this solution was
originally derived assuming viscous losses only (Helmholtz, 1863),

Z =
sρ0

A

[
1 +

2

rv(s)

]
(lossy, linearized force equation) (A.64a)

Y =
sA

η0P0
, (lossless, linearized continuity equation) (A.64b)

where the lossless equation of state is used to calculate the continuity equation. These equations
do not result in the correct propagation factor κ(s). Instead, W. Mason (1928) approximated κ(s)

13Benade (1988) says that many papers mistakenly substitute µ0 → µ0[1 + (η0 − 1)(κ0/(µ0cv)], which is not the
same as the substitution suggested by Rayleigh.
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from Equation A.57,

κ(s) ≈ s

c0

[
1 +

1

r′v(s)

]
6=
√
ZY, (A.65)

where Rayleigh’s substitution to add the thermal effects is included via

r′v(s) = rv(s)

√
µ0

γ′0
. (A.66)

To completely describe wave propagation in the duct, the characteristic impedance must still be
calculated. In this case,

Z
κ
6= κ

Y
(A.67)

due to the method for including heat conduction. Therefore, each of these quantities gives a different
solution for the characteristic impedance (typically assumed to be z0 =

√
Z/Y = Z/κ = κ/Y).
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Figure A.5: The propagation function κ(s) and characteristic impedance z0 for different large-r
approximations. These values are normalized as κ/(ω/c0) and z0/r0, so that they are dimensionless
functions of |rv| rather than frequency or radius (e.g. Keefe (1984)). Exact solutions (Keefe, 1984;
Benade, 1968) are given, and compared with the analytic solution given here (Eqs. A.42a and
A.42b). Finally, large-r approximations by Keefe (1984) and W. P. Mason (1927) are given. Note
that Mason’s z0 can be expressed as Z/κ or κ/Y, which gives two different answers because of the
way he approximates κ. Keefe says his large-r approximation is valid for rv > 2.

Figure A.5 shows the values for |rv| over which Keefe’s and Mason’s large-r approximations
match the exact solution. Keefe (1984) recommends truncating the series approximation for <(z0)
and =(κ), so the values shown here match the large-r (fewer terms) curves from Figure A.2. As
expected, for very large radii the propagation number and characteristic impedance approach the
lossless case, κ → s/c0 and z0 → r0. See Figure A.1 for |rv| values as a function of frequency and
diameter. Above Keefe’s cutoff of |rv| = 2, the approximations are equally good for =(κ) and <(z0)
(taking the solution z0 = Z/κ). However, for <(κ) and =(z0), Keefe’s approximation is superior.
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Finally, it is interesting to note that, taking z0 = κ/Y, Mason’s solution is not as good as the other
approximations in the large-r regime, but is closer to the exact solution for the small-r regime.

Again, these approximations are typically unnecessary on a modern computer. However, it is
useful to study them in order to understand historical results and put them in context.

A.3 Solutions for other constant-area geometries

Some authors (e.g. Stinson (1991)) have addressed lossy solutions for plane-wave propagation in ar-
bitrary constant-area horn geometries. As the transmission-line parameters Z and Y are dependent
upon the cross-sectional geometry of the horn, ‘arbitrary’ solutions often require more computation
before they can be used. Cylindrical and parallel-plate geometries are by far the easiest to examine,
as closed-form solutions for the transmission-line parameters may be found.

Richards (1986) compares the transmission-line solutions for a cylindrical horn with those for infi-
nite parallel planes.14 He found that for a wide range of useful sizes, these solutions are nearly iden-
tical. For geometries and frequencies where these solutions are approximately the same, Richards
(1986) proposes that the duct size may be expressed in terms of a generalized radius,

a0 =
2A0

Π0
, (A.68)

where A0 is the duct area and Π0 is the duct perimeter. In the case of a cylindrical tube a0 is equal
to the tube radius, and in the case of infinite parallel plates a0 is equal to the distance between
the plates. Note that the generalized radius of Equation A.68 appeared in the results of Rayleigh
(1896) and W. Mason (1928). Richards (1986) evaluates this formula theoretically in terms of two
different geometries, and experimentally using ducts of atypical cross-sectional geometry.

A.3.1 Solution for infinite parallel plates

Consider two infinite parallel plates, with a uniform gap of height a0 between them, and plane-wave
flow in one direction. Viscothermal losses for this geometry were investigated by Rayleigh (1896)
(Sec. 350). An easy-to-follow derivation of the parallel-plate solution is given by Richards (1986).

The transmission-line parameters are given by

Z(s) =
s

c0
r0

[
1− 2

rv
tanh

(rv
2

)]−1

(A.69a)

Y(s) =
s

c0

1

r0

[
1 + (η0 − 1)

2

rt
tanh

(rt
2

)]
, (A.69b)

where the parameters are independent of the axial coordinate x. Similar to the cylindrical horn
solution,

rv(s) = a0

√
sρ0

µ0
= rt(s)/

√
Pr, (A.70)

and r0 = ρ0c0/A0 where A0 is the area between the plates.

14Richards uses J2/J0 for the ratio of Bessel functions in the cylindrical solution, whereas the correct formula
should have J1/J0.
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A.3.2 Generalization to other geometries

Note the similarities between Equations A.42a and A.42b, and Equations A.69a and A.69b. Both
of these solutions take the form

Z(s) =
s

c0
r0

[
1− F (rv)

]−1

(A.71a)

Y(s) =
s

c0

1

r0

[
1 + (η0 − 1)F (rt)

]
(A.71b)

rv(s) =
2A0

Π0

√
sρ0

µ0
= rt(s)/

√
Pr. (A.71c)

The function F (α) varies by geometry, such that

Fp(α) =
2

α
tanh

(α
2

)
(parallel-plate) (A.72a)

Fc(α) =
2

α

I1(α)

I0(α)
(cylindrical). (A.72b)

As Richards (1986) notes, for α = rv or α = rt = rv/
√

Pr values where Fp ≈ Fc, these solutions
are interchangeable. As these geometries are quite different, it follows that either equation may be
used for an arbitrary geometry, as long as this condition is met. As Richards (1986) notes, in the
large-r limit as α→∞, the functions are approximately equivalent

Fp(α) ≈ 2

α
(A.73a)

Fc(α) ≈ 2

α
. (A.73b)

In the small-r limit as α→ 0, the cylindrical and parallel-plate solutions are slightly different,

Fp(α) ≈ 1− α2

12
(A.74a)

Fc(α) ≈ 1− α2

8
. (A.74b)

Figure A.6 shows how the differences between the functions Fp and Fc affect the propagation
function κ =

√
ZY and the characteristic impedance assuming a uniform-area horn, z0 =

√
Z/Y

(Sec. A.2). Note that z0 and r0 (the surge resistance) depend on the cross-sectional area (and
will vary with x for a variable-area horn of area A(x)). The parallel-plate solutions are expressed
in decibels relative to the exact cylindrical solution (Keefe, 1984). For the entire rv range, the
discrepancies in κ and z0 between the two geometries remain within a small [dB] range. The
largest discrepancy between the solutions occurs in the transition region between small-r and large-
r solutions, near rv = 2. This makes sense, as the shape of the horn plays the largest role in the
determination of the total boundary layer area in this rv range. For very large-r solutions (rv > 10),
these solutions are nearly identical.

From Figure A.6, it appears that both the cylindrical and parallel-plate horn solutions may be
generalized to an arbitrary geometry using the generalized radius given by Equation A.68. In most
cases, this generalization will have far less error than the wrong choice of series expansion for the
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Figure A.6: The propagation function κ(s) and characteristic impedance z0 for wave propagation
between infinite parallel plates, expressed in [dB] relative to the cylindrical-horn solutions (Keefe,
1984). These values are normalized as κ/(ω/c0) and z0/r0, so that they are dimensionless functions
of |rv| rather than frequency or area (e.g. Keefe (1984)). For very large-r (rv > 10), these solutions
are nearly identical. The largest discrepancy between the solutions occurs in the transition region
between small-r and large-r solutions, near rv = 2.

cylindrical horn (e.g. Figs. A.2 and A.5). For rv > 10, it does not matter which solution is used,
as they are identical. For smaller values of rv, choosing the solution for the geometry most similar
to that of the test system should give a reasonable approximation for viscous and thermal losses.

A.4 The Webster horn equation

The Webster horn equation (Webster, 1919) may be used to analyze a variable-area horn. The
horn has a cross-sectional area function A(x), where x is the axis of propagation. To cast this
problem in one dimension, it is necessary to use the volume velocity v(x, t) ↔ V(x, ω) (Eq. 3.1)
and average pressure ψ(x, t) ↔ Ψ(x, ω) (Eq. 3.3) of an infinitesimal slice, as described in Section
3.1. The following results are derived under the quasi-static assumption that the slice width is
much smaller than the wavelength.

Figure A.7 compares the volume-velocity slice for a variable-area horn with that for a constant-
area tube. The cross-sectional slice is perpendicular to the axis of flow at all points throughout
the cross section; therefore, it takes the shape of a cap or lens, rather than a flat plane. This
infinitesimally thin slice represents an iso-pressure surface, which is an equipotential surface for the
volume velocity.

The Webster horn equation is typically given as

1

A(x)

∂

∂x
A(x)

∂p

∂x
=

1

c2
0

∂2p

∂t2
↔ 1

A(x)

∂

∂x
A(x)

∂P
∂x

=
s2

c2
0

P, (A.75)
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where Ψ = P for iso-pressure surfaces of area A(x). Typically, this equation is assumed to hold for
slowly varying area functions A(x). Keefe & Barjau (1999) state that if the horn profile changes
too rapidly with x, the assumption of iso-pressure surfaces will break down. This condition may be
taken to mean that A(x) should be smooth, and that its changes dA/dx (in [m]) should be small
compared to the wavelength λ = c0/f (in [m]) such that the plane-wave assumption holds.

Figure A.7: Cross-sectional slice related to the volume velocity in a cylinder (left) and variable-area
horn (right). The cross-sectional slice should be an iso-pressure curve, which must be orthogonal to
the velocity flow lines (x) for the plane-wave mode (0th order mode). In the case of the variable-area
horn, note that this surface is not a flat plane.

A.4.1 One-dimensional force equation (average pressure)

To cast the lossless force equation (conservation of momentum) into one-dimensional form, it must
be averaged over the area of the slice. Note that x̂ is defined as orthogonal to the iso-pressure slice,
in the −~∇p direction. The force equation becomes

~∇p = −ρ0
∂~u

∂t

1

A(x)

∫∫
Aslice

dAx̂ · ~∇p =
1

A(x)

∫∫
Aslice

dAx̂ ·

(
− ρ0

∂~u

∂t

)

= − ρ0

A(x)

∂

∂t

(∫∫
Aslice

~u · x̂dA

)

= − ρ0

A(x)

∂v

∂t
. (A.76)

The left-hand side of this equation requires careful attention. Ideally, it will be equal to ∂ψ/∂x,
but this is the case only under two conditions:

1. The infinitesimal slice in question is iso-pressure (p = ψ everywhere on the slice).

2. The differential slice thickness is constant over the whole slice (cannot vary with dA).

Under these conditions, the term x̂ · ~∇p will factor out of the integral, and be equal to ∂ψ/∂x.
Assume that the infinitesimally thick slices are bounded by adjacent iso-pressure contours. For

the term x̂ · ~∇p to be independent of dA, it is necessary that the infinitesimal thickness between
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adjacent iso-pressure contours not vary across the slice (e.g. dx does not depend on dA). If this
condition holds, then the x component of the gradient will be equal to ∂/∂x. If the slices are also
iso-pressure, then ∂p/∂x will factor out of the integral. According to Agulló et al. (1999) and Keefe
& Barjau (1999), condition (2) is met only for cylindrical and conical horns, which use cylindrical
and spherical coordinate systems respectively. These coordinate systems are ‘separable,’ such that
the differential length does not depend on the differential area (e.g. dV = (dx)(dr)(rdθ) = dxdA
in cylindrical coordinates or dV = (dr)(r sinφdθ)(rdφ) = drdA in spherical coordinates).

If both conditions (1) and (2) are met, then

− ρ0

A(x)

∂v

∂t
=

1

A(x)

∫∫
Aslice

dAx̂ · ~∇p

=
1

A(x)

∫∫
Aslice

∂p

∂x
dA

=
∂p

∂x

(
1

A(x)

∫∫
Aslice

dA

)

=
∂p

∂x
. (A.77)

Under the assumption that iso-pressure curves exist and the average pressure ψ = p, this gives (in
both the time and frequency domains)

∂ψ

∂x
= − ρ0

A(x)

∂v

∂t
↔ ∂Ψ

∂x
= − sρ0

A(x)
V, (A.78)

which corresponds to the lossless transmission line parameter Z = sρ0/A(x).

A.4.2 One-dimensional continuity equation (volume velocity)

To cast the lossless continuity equation (conservation of mass) into one-dimensional form, it must
be integrated over the volume of the slice,

~∇ · ~u = − 1

η0P0

∂p

∂t∫∫∫
Vslice

dV ~∇ · ~u =

∫∫∫
Vslice

dV

[
− 1

η0P0

∂p

∂t

]
. (A.79)

Note that the density ρ0 is assumed to be constant over the volume slice. Let the axial coordinate
vary by δx, and let n̂ be a vector normal to the surface of the volume slice, Sslice. Consider
the left-hand side of Equation A.79. By the divergence theorem (Gauss’ theorem) this equation
becomes ∫∫∫

Vslice

dV ~∇ · ~u =

∫∫
Sslice

~u · n̂dS

=

∫∫
Aslice(x+δx)

~u(x+ δx) · (x̂)dA+

∫∫
Aslice(x)

~u(x) · (−x̂)dA

= v(x+ δx)− v(x), (A.80)
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the difference in volume velocities going into and out of the slice.15

Now consider the right-hand side of Equation A.79,∫∫∫
Vslice

dV

[
− 1

η0ρ0

∂p

∂t

]
= − 1

η0P0

∂

∂t

[∫∫∫
Vslice

pdV

]
. (A.81)

Under condition (2) from the previous section, in the case where the infinitesimal thickness is
uniform over the slice, ∫∫∫

Vslice

pdV = δx

∫∫
Aslice

pdA = δxA(x)ψ. (A.82)

Putting these results together,

v(x+ δx)− v(x) = − 1

η0P0

∂

∂t

[
δxA(x)ψ

]
v(x+ δx)− v(x)

δx
= −A(x)

η0P0

∂ψ

∂t
. (A.83)

Taking the limit as δx→ 0,

∂v

∂x
= −A(x)

η0P0

∂ψ

∂t
↔ ∂V

∂x
= −sA(x)

η0P0
Ψ, (A.84)

which corresponds to the lossless transmission line parameter Y = sA(x)/(η0P0). Again, it is
important to note that this derivation only holds if the infinitesimal thickness between iso-pressure
curves remains uniform across the slice.

A.4.3 Webster equation for a conical horn (spherical coordinates)

This section presents an alternative derivation of the Webster horn equation beginning from the
wave equation. This exercise is similar to the preceding derivations using the continuity of mass and
momentum equations. It shows how the Webster horn equation may be derived without first casting
these equations in terms of pressure and volume velocity. Additionally, the primitive solutions for
wave propagation in a conical horn are presented.

The Webster horn equation may be derived by combining Equations A.78 and A.84. Another
way to derive the Webster horn equation is to begin with the wave equation,

∇2p =
1

c2
0

∂2p

∂t2
, (A.85)

and integrate both sides over the volume of the slice (as in the previous section). The Webster
horn equation then follows from the form of the Laplacian (∇2) in the chosen coordinate system.

15Note that the wall boundary condition for ~u means that ~u · n̂ = 0 at the horn walls.
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The left-hand side becomes∫∫∫
Vslice

dV∇2p =

∫∫∫
Vslice

dV ~∇ · ~∇p

=

∫∫
Sslice

dSn̂ · ~∇p

=

[∫∫
Aslice

dAx̂ · ~∇p

]
x+δx

+

[∫∫
Aslice

dA(−x̂) · ~∇p

]
x

. (A.86)

To proceed with simplifying this integral, it is necessary to specify the coordinate system and the
locations of the iso-pressure curves. Therefore, the following derivation considers the case of a
conical horn.

Figure A.8: Example of a conical horn of length L, beginning at x = r −R0 = 0. The planar radii
at the ends of the horn are specified by a0 and a1. The areas of the iso-pressure curves are given
by the spherically convex areas A0 and A1.

Shown in Figure A.8, a conical horn may be described by spherical coordinates (r, θ, φ). The
radial spherical coordinate r = R0 + x corresponds the axial coordinate x of the horn; the mouth
of the horn at x = 0 corresponds to the constant radius r = R0. In this case, the infinitesimal slice
width (dx) is not a function of θ or φ. The differential volume and x component of the gradient
are given by

dV = (dr)(r sinφdθ)(rdφ)

= (dx)((R0 + x) sinφdθ)((R0 + x)dφ) = (dx)(dA) (A.87a)

x̂ · ~∇ = r̂ · ~∇ =
∂

∂r
=

∂

∂x
. (A.87b)

Thus, assuming iso-pressure surfaces at x and x + δx, the term x̂ · ~∇p = ∂p/∂x may be factored
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out of the integral. The left-hand side becomes∫∫∫
Vslice

dV∇2p =

[∫∫
Aslice

dA
∂p

∂x

]
x+δx

−

[∫∫
Aslice

dA
∂p

∂x

]
x

= δx
∂

∂x

[
∂p

∂x

∫∫
Aslice

dA

]

= δx
∂

∂x

[
A(x)

∂p

∂x

]

= δx
∂

∂x

[
A(x)

∂ψ

∂x

]
. (A.88)

The right-hand side of the wave equation becomes∫∫∫
Vslice

dV
1

c2
0

∂2p

∂t2
=

1

c2
0

∂2

∂t2

∫∫∫
Vslice

dV p. (A.89)

For iso-pressure curves in spherical coordinates,∫∫∫
Vslice

dV
1

c2
0

∂2p

∂t2
= δx

1

c2
0

∂2

∂t2

∫∫
Aslice

dAp

= δx
A(x)

c2
0

∂2ψ

∂t2
. (A.90)

Combining Equations A.88 and A.90 and dividing by δx yields the Webster horn equation

1

A(x)

∂

∂x
A(x)

∂ψ

∂x
=

1

c2
0

∂2ψ

∂t2
↔ 1

A(x)

∂

∂x
A(x)

∂Ψ

∂x
=
s2

c2
0

Ψ. (A.91)

For a conical horn, the area function is a conical section of a sphere, defined by the angular
ranges of θ and φ. Therefore, it is some fraction of the surface area of a sphere, given by 4πR2

0 for
radius R0. Thus, the area function may be described by

A(x) =
A0

R2
0

(R0 + x)2 (A.92)

such that A(x)|x=0 = A0 describes the area of a cap (or lens) of spherical curvature at r = R0.
Applying this result to the frequency-domain Webster horn equation yields

1

r2

∂

∂r
r2∂Ψ

∂r
=
s2

c2
0

Ψ

∂2Ψ

∂r2
+

2

r

∂Ψ

∂r
= κ2Ψ, (A.93)
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which is the same as the spherical wave equation. This equation gives results of the form

Ψ = Ψ+ + Ψ−

= α+
e−κr

r
+ α−

eκr

r

= α+
e−κ(x+R0)

x+R0
+ α−

eκ(x+R0)

x+R0
, (A.94)

where α± are constants that depend on the horn’s boundary conditions.
The lossless volume velocity wave equation differs from the pressure wave equation, according to

Equation 3.5, and is given by

∂2V
∂r2
− 2

r

∂V
∂r

= κ2V. (A.95)

The general solution for the volume velocity is given by

V = V+ − V− (A.96a)

V± = β±e
∓κr(1± κr)

= β±e
∓κ(x+R0)(1± κ(x+R0)), (A.96b)

where β± are constants that depend on the boundary conditions. The general solutions for V and
Ψ may be verified via substitution into their respective wave equations.

From these general solutions, the direction-dependent characteristic admittance may be derived.
It is given by

y±c (r, s) =
V±

Ψ±
=
Y
κ2

(
κ± 1

r

)
=

1

Z

(
κ± 1

r

)
. (A.97)

Thus, for a conical horn (recall that y0 =
√
Y/Z is the characteristic admittance for a uniform

horn),

κ =
√
ZY (A.98a)

y±c (r, s) =

√
Y
Z

(
1± 1

κr

)
= y0(x, s)

(
1± 1

κr

)
. (A.98b)

A.4.4 Curvilinear horn equation

If the differential thickness of a volume slice is not uniform over its area (meaning the differential
volume is not separable, dV 6= dAdx), then the integrals of Equations A.86 and A.89 become more
complicated. Agulló et al. (1999) and Keefe & Barjau (1999) use orthogonal curvilinear coordinates
to address this issue when formulating the Webster horn equation.

The following discussion uses a ‘pseudo-cylindrical’ curvilinear coordinate system with variables
(x, r, θ) to describe the variable-area horn in Figure A.7. This coordinate system is assumed to be
orthogonal (Agulló et al., 1999; Keefe & Barjau, 1999). The differential volume and x component
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of the gradient may be described by

dV = (hxdx)(hrdr)(hφdφ) = (hxdx)dA (A.99a)

x̂ · ~∇ =
1

hx

∂

∂x
, (A.99b)

where hx, hr and hφ are functions of (x, r, φ), which allow the differential thicknesses to vary with
the other coordinates. Here x is the axis of flow, r is a pseudo-radius (which we allow to have some
curvature, unlike the radius in cylindrical coordinates) and φ is a rotation angle with a range of
2π.

The curvilinear horn equation derived by Agulló et al. (1999) deals with the variable infinitesimal
thickness hxdx by using the averages (over the slice area A(x)) to separate the ~∇p and p terms
from the integrals in Equations A.86 and A.89. These averages are given by

〈hx〉 =
1

A(x)

∫∫
Aslice

dAhx =
1

A(x)

∫∫
Aslice

(hrdrhφdφ)hx

=
2π

A(x)

∫
Rslice

dr(hrhφhx) (A.100a)〈 1

hx

〉
=

1

A(x)

∫∫
Aslice

dA
1

hx

=
2π

A(x)

∫
Rslice

dr

(
hrhφ
hx

)
. (A.100b)

Using these results, the average slice thickness can be represented as 〈hx〉dx, and the average x
component of the gradient becomes 〈1/hx〉∂/∂x.

The left-hand side of the wave equation, given in Equation A.86, becomes∫∫∫
Vslice

dV∇2p =

[∫∫
Aslice

dAx̂ · ~∇p

]
x+δx

+

[∫∫
Aslice

dA(−x̂) · ~∇p

]
x

=

[∫∫
Aslice

dA
1

hx

∂p

∂x

]
x+δx

−

[∫∫
Aslice

dA
1

hx

∂p

∂x

]
x

=

[〈 1

hx

〉∂p
∂x

∫∫
Aslice

dA

]
x+δx

−

[〈 1

hx

〉∂p
∂x

∫∫
Aslice

dA

]
x

=
δx

δx

([〈 1

hx

〉
A(x)

∂p

∂x

]
x+δx

−

[〈 1

hx

〉
A(x)

∂p

∂x

]
x

)

= δx
∂

∂x

[〈 1

hx

〉
A(x)

∂ψ

∂x

]
. (A.101)
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The right-hand side (Eq. A.89) becomes∫∫∫
Vslice

dV
1

c2
0

∂2p

∂t2
=

1

c2
0

∂2

∂t2

∫∫∫
Vslice

dV p

=
1

c2
0

∂2

∂t2

∫∫∫
Vslice

dA(hxdx)p

= δx〈hx〉
1

c2
0

∂2p

∂t2

∫∫
Aslice

dA

= δx〈hx〉
A(x)

c2
0

∂2ψ

∂t2
. (A.102)

This gives the curvilinear horn equation (Agulló et al., 1999; Keefe & Barjau, 1999)

1

〈hx〉A(x)

∂

∂x

[〈 1

hx

〉
A(x)

∂ψ

∂x

]
=

1

c2
0

∂2ψ

∂t2
, (A.103)

which corresponds to the lossless transmission-line parameters

Z =
sρ0

A(x)〈 1
hx
〉

(A.104a)

Y =
sA(x)〈hx〉
η0P0

. (A.104b)

In the case of the conical horn (spherical coordinates), hx = 1, and Equation A.103 reduces to
Equation A.91.

Solutions to the curvilinear horn equation can be difficult to find, as it is not generally possible
to define a single orthogonal curvilinear coordinate system for the entire horn. Agulló et al. (1999)
and Keefe & Barjau (1999) address this issue by using ‘local coordinates.’ Locally, an orthogonal
(but not separable) curvilinear coordinate system (such as spherical or ‘oblate spheroidal’) is used.
An additional function is then used to map these local coordinate systems to the horn profile,
relative to the axial coordinate x. This process is not addressed in detail here, as curvilinear horn
models are not used in this thesis.

Excepting cases where A(x) changes very quickly with x, the change in the Webster horn equation
due to 〈 1

hx
〉 and 〈hx〉 is expected to be small (these quantities are approximately equal to 1). Due

to the high computational cost of this method and the difficulty of defining iso-pressure curve
locations and local coordinate systems for an arbitrary horn shape, this method seems impractical
for many applications. Additionally, it makes assumptions about the iso-pressure curve locations
based on their shape at the mouth of the horn, which may not be valid (Miller, 1991; Kartan,
2013).

A.4.5 Visco-thermal losses in a horn

Historically, visco-thermal losses have been incorporated into the Webster horn equation by sub-
stituting the lossy propagation factor κ in place of the lossless factor κ = s/c0 (Keefe & Barjau,
1999; Mapes-Riordan, 1993). An intuitive extension of this theory is posed here, in terms of the
transmission line parameters Z and Y. Note that the lossy horn equation given here is only valid
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insofar as

Ψ =
1

Y
∂

∂x

1

Z
∂Ψ

∂x
≈ 1

YZ
1

A(x)

∂

∂x
A(x)

∂Ψ

∂x
, (A.105)

which is true when the boundary layer is small compared to the horn radius, or the area function
is very slowly varying (e.g. rv(x, s) is also very slowly varying). Approximations for the lossy horn
equation may also be derived using the method of variation of parameters (Pierce, 1981) or the
Wentzel, Kramers, and Brillouin (WKB) approximation.

Recall that rv(s) and rt(s) =
√

Prrv(s), the dimensionless parameters describing the viscous and
thermal boundary layers. In a cylindrical horn, these parameters were proportional to the radius
a0 (where area A0 = πa2

0). However, this parameter may be more generally derived by relating
the wavefront area to the perimeter of the wall boundary, as described in Section A.4.5 (Rayleigh,
1896; W. P. Mason, 1927; Richards, 1986). Therefore, we can generalize the parameter a0 to

a0 =
2πa2

0

2πa0
→ 2A(x)

Π(x)
, (A.106)

where A(x) is the wavefront area in the horn, and Π(x) is the wavefront perimeter as a function of
the axial coordinate x. Therefore, let

rv(x, s) =
2A(x)

Π(x)

√
sρ0

µ
. (A.107)

Note that the wavefront area in a horn is generally a convex surface (e.g. Fig. A.7). Therefore, if
the planar cross section of the horn is a circle with local radius a0, then the perimeter Π = 2πa0,
but the wavefront area A 6= πa2

0. Since the horn geometry is closer to the cylindrical than the
infinite parallel-plate geometry described in Section A.4.5, the Z and Y parameters for a cylindrical
waveguide should be used to calculate rv.

Therefore, intuitively, the lossy solution for the curvilinear horn is

Z(x, s) =
sρ0

A(x)〈 1
hx
〉

[
1− 2

rv

I1(rv)

I0(rv)

]−1

(A.108a)

Y(x, s) =
sA(x)〈hx〉
η0P0

[
1 + (η0 − 1)

2

rt

I1(rt)

I0(rt)

]
, (A.108b)

where Z and Y have gained factors of 〈1/hx〉 and 〈hx〉 in a similar fashion to the lossless curvilinear
transmission line parameters. This generalization is likely to hold in horns of circular cross section,
or of reasonably smooth perimeter. Note that in these equations, rv(x, s) should be calculated
according to Equation A.112. In the case of the conical horn, 〈1/hx〉 = 〈hx〉 = 1. Note that, for
many horns, it may be assumed that 〈1/hx〉 ≈ 〈hx〉 ≈ 1.
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Boundary layer ratio for the conical horn. Figure A.8 depicts a conical horn in a spherical
coordinate system where r = R0 + x. The wavefront area is given by∫∫

Aslice

dA =

∫ 2π

0
dφ

∫ θ0

0
dθ(r2 sin θ)

= 2πr2

∫ θ0

0
sin θdθ

A(x) = 2π(1− cos θ0)(R0 + x)2. (A.109)

Therefore, in Equation A.92, the area A0 = A(0) = 2π(1− cos θ0)R2
0. In the typical case where the

planar radii a0 and a1 at both ends of the horn are specified, rather than the r coordinate value,
R0 and cos θ0 may be calculated from

sin θ0 =
a0

R0
=

a1

R0 + L
(A.110a)

R0 =
a0L

a1 − a0
(A.110b)

cos θ0 =

√
R2

0 − a2
0

R0
=

√
L2 − (a1 − a0)2

L
. (A.110c)

Furthermore, if a is the planar radius, then

Π(x) = 2πa(x) = 2π sin θ0(R0 + x). (A.111)

Therefore, for the conical horn,

rv(x, s) =
2(1− cos θ0)(R0 + x)

sin θ0

√
sρ0

µ
. (A.112)

This formula calculates the viscous boundary layer ratio as a function of axial depth in the conical
horn in terms of the local (curved) wavefront area, using the generalized radius 2A/Π.
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APPENDIX B

TWO-PORT NETWORKS

Two-port network models make it possible to model a one-port or two-port transmission line using
a concatenation of 2 × 2 matrices. In this thesis, two-port models are used for multiple purposes.
One application is analysis of middle-ear network models, consisting of electrical network elements
such as resistors, capacitors, and inductors. A second application is modeling the transmission of
sound in variable-area horns, such as a probe tip or ear canal. In this thesis, two-port models for
cylindrical and conical horns are used to approximate other variations in area.

B.1 Definitions and properties

Figure B.1 shows a general ‘black box’ two-port network in terms of the ‘forces’ and ‘flows’ at the
input and output ports. For electrical, mechanical and acoustical systems, the ‘force’ variables are
voltage (V ), mechanical force (F ), and average pressure (Ψ), respectively. The ‘flow’ variables are
current (I), one-dimensional mechanical velocity (U), and volume velocity (V). The direction of
Flow2 is defined as into the port. This simplifies the analysis of impedance matrices in the following
sections.

Figure B.1: A general two-port network showing the ‘forces’ and ‘flows’ at the input (1) and
output (2). The direction of Flow2 is defined as into the port, which simplifies the analysis of the
impedance matrix.

144



B.1.1 Transmission (ABCD) and impedance matrices

Transmission through the 2-port network may be described by the following matrix equation:[
Force1

Flow1

]
= T

[
Force2

−Flow2

]
=

[
A B
C D

] [
Force2

−Flow2

]
, (B.1)

where the direction of Flow2 is defined as into the port, as shown in Figure B.1. This convention
is not widely used in the literature. However, it provides the correct direction of the volume
velocity for the impedance matrix, thus simplifying the analysis. Transmission matrices may be
concatenated from left to right via matrix multiplication,

Ttotal =

N∏
k=1

Tk = T1T2T3 . . . TN−1TN . (B.2)

The impedance matrix, where the determinant ∆T = AD −BC, is given by1[
Force1

Force2

]
= Z

[
Flow1

Flow2

]
=

[
z11 z12

z21 z22

] [
Flow1

Flow2

]
=

1

C

[
A ∆T

1 D

] [
Flow1

Flow2

]
. (B.3)

The input impedance of the two-port network when the far right end is ‘blocked’ (Flow2 = 0)
is given by z11 = A/C. If the network is terminated in a load impedance ZL across the output
terminals, then

ZL = Z2 =
Force2

−Flow2
. (B.4)

At the input terminals, the impedance Zin = Z1 is related to the load impedance ZL = Z2 by

Zin =
AZL +B

CZL +D
= z11 −

z12z21

z22 + ZL
=

Force1

Flow1
(B.5a)

ZL = −z22 −
z12z21

Zin − z11
=

Force2

−Flow2
. (B.5b)

The force transfer function is load-dependent, and given by

H =
Force2

Force1
=

1

A+B/ZL
. (B.6)

B.1.2 Reciprocity

A network is reciprocal if the determinant ∆T = 1, and anti-reciprocal if ∆T = −1. When testing
for reciprocity, it is important to note that for a product of matrices,

∆Ttotal =
N∏
k=1

∆Tk = ∆T1∆T2∆T3 . . .∆TN−1
∆TN . (B.7)

1In reverse, the transmission matrix may be expressed in terms of the elements of the impedance matrix by[
Force1

Flow1

]
=

[
A B
C D

] [
Force2

−Flow2

]
=

1

z21

[
z11 ∆Z

1 z22

] [
Force2

−Flow2

]
.
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A network containing traditional circuit elements (such as resistors, inductors and capacitors) in
series and shunt configurations will always be reciprocal. The transmission matrices for series and
shunt elements are given by

Series impedance Z:

[
1 Z
0 1

]
Shunt admittance Y:

[
1 0
Y 1

]
. (B.8)

Both of these matrices have determinants ∆T = 1, therefore, all traditional series and shunt
impedances are reciprocal. According to Equation B.7, any concatenation of these elements will
also be reciprocal. Two more components of import for network modeling include the transformer
and gyrator.

Transformers may be used to describe a lever ratio or ratio of areas in a model. In general, the
function of a transformer is to change the voltage (pressure) at some point along the transmission
line (there is a compensatory change in the current or volume velocity). A transformer with a
‘turns ratio’ of N has the transmission matrix and determinant given by[

A B
C D

]
=

[
N 0
0 1/N

]
(B.9a)

∆T = 1− 0 = 1. (B.9b)

Therefore, a transformer is a reciprocal circuit element. Note that by itself a transformer does not
have an impedance matrix, as 1/C = 1/0 is undefined.

A gyrator may be used to convert between electrical and mechanical/acoustical sections of a
model, as its function is to swap the force and the flow quantities in a circuit. Therefore, a gyrator
is a key component in the model of a loudspeaker (Kim & Allen, 2013). The transmission matrix
and determinant of a gyrator are given by[

A B
C D

]
=

[
0 T0

1/T0 0

]
(B.10a)

∆T = 0− 1 = −1. (B.10b)

Therefore, a gyrator is anti-reciprocal.

B.1.3 Reversibility

A reversible network has the same transmission parameters if its terminals are reversed. To reverse
the terminals in Figure B.1, two operations must be performed. First, the matrix inverse must be
taken, to solve for the output in terms of the input. Second, the directions of Flow1 and Flow2

must be reversed. This is calculated as[
Force1

Flow1

]
=

[
A B
C D

] [
Force2

−Flow2

]
[

Force2

−Flow2

]
=

1

∆T

[
D −B
−C A

] [
Force1

Flow1

]
[
Force2

Flow2

]
=

1

∆T

[
D B
C A

] [
Force1

−Flow1

]
. (B.11)
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Therefore, for a network to be reversible, it must be true that[
A B
C D

]
=

1

∆T

[
D B
C A

]
, (B.12)

meaning A = D/∆T , B = B/∆T , C = C/∆T and D = A/∆T . The conditions for reversibility of
a network are given by

Reciprocal (∆T = 1) : D = A (B.13a)

Anti-reciprocal (∆T = −1) : D = −A, B = C = 0. (B.13b)

If the network is not reciprocal or anti-reciprocal, it cannot be reversible (except for the trivial case
where A = B = C = D = 0). Note that neither the gyrator nor the transformer (described in the
previous section) is reversible.

B.2 Transmission matrices for acoustic horns

Transmission matrices for cylindrical tubes, conical horns, and step discontinuities in area are given
in this section. Solutions for the cylindrical and conical horns are given in terms of the complex
wave propagation factor κ(x, s). In the case of lossless propagation, κ = s/c0. Thus, the lossy
equations are given in terms of hyperbolic functions (sinh, cosh), which become trigonometric
functions (sin, cos) in the lossless case. For reference and comparison to other published models,
note that

sin(x) = −j sinh(jx) (B.14a)

cos(x) = cosh(jx) (B.14b)

tan(x) = −j tanh(jx). (B.14c)

The general derivation for a two-port network given primitive pressure-wave solutions is given in
Section 3.3.1. In the following sections, this general formula is adapted to specific geometries.

B.2.1 Uniform-area horn

In a horn of uniform area, the normalized forward- and backward-traveling waves and characteristic
admittances are given by

Ψ̂±(x, s) = e∓κx (B.15a)

y±c (x, s) = y0. (B.15b)

where the propagation number κ is constant over the length of the horn, and y0 is the complex,
frequency-dependent characteristic admittance incorporating thermoviscous losses.
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Thus, Equation 3.38 becomes[
Ψ1

V1

]
= − 1

2y0

[
e−κx1 eκx1

y0e
−κx1 −y0e

κx1

] [
−y0e

κx2 −eκx2

−y0e
−κx2 e−κx2

] [
Ψ2

−V2

]
= − 1

2y0

[
−y0(eκL + e−κL) −(eκL − e−κL)
−y2

0(eκL − e−κL) −y0(eκL + e−κL)

] [
Ψ2

−V2

]
=

[
cosh(κL) 1

y0
sinh(κL)

y0 sinh(κL) cosh(κL)

] [
Ψ2

−V2

]
, (B.16)

where the characteristic impedance z0 = 1/y0 and the tube length L = x2 − x1. Thus the ABCD
parameters for a cylindrical horn are

A = cosh(κL) (B.17a)

B = z0 sinh(κL) (B.17b)

C =
1

z0
sinh(κL) (B.17c)

D = cosh(κL). (B.17d)

The determinant of this matrix is given by

∆T = AD −BC = cosh2(κL)− sinh2(κL) = 1. (B.18)

Therefore, a cylindrical horn is always reciprocal. Because A = D, a cylindrical horn is also
reversible.

B.2.2 Conical horn

In a conical horn, the normalized forward- and backward-traveling waves and the direction-dependent
characteristic admittances are given by

Ψ̂±(r, s) =
e∓κr

r
(B.19a)

y±c (r, s) = y0(r, s)

(
1± 1

κr

)
, (B.19b)

where κ(r, s) and y0(r, s) both vary with diameter over the length of the horn. These equations
are exact for a lossless horn, and approximate for a lossy horn. Recall that y0(r, s) =

√
Y/Z is the

characteristic admittance for a uniform horn of A(r). The coordinate r is the radius in spherical
coordinates, originating from a point at r = 0, as shown in Figure A.8. The horn axis x = r − r1

may be defined as beginning at some initial point r = r1, and ending at r = r2 > r1 such that the
length of the horn L = r2 − r1.

For convenience, define y0,1 = 1/z0,1 = y0(r1, s) and y0,2 = 1/z0,2 = y0(r2, s). Thus, Equation
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3.38 becomes[
Ψ1

V1

]
= − r2

2

2y0,2

1

r1r2

[
e−κ1r1 eκ1r1

y+
c,1e
−κ1r1 −y−c,1eκ1r1

] [
−y−c,2eκ2r2 −eκ2r2

−y+
c,2e
−κ2r2 e−κ2r2

] [
Ψ2

−V2

]
= −r2

r1

1

2y0,2

[
(−y−c,2e∆κr − y+

c,2e
−∆κr) −(e∆κr − e−∆κr)

(−y+
c,1y
−
c,2e

∆κr + y−c,1y
+
c,2e
−∆κr) −(y+

c,1e
∆κr + y−c,1e

−∆κr)

] [
Ψ2

−V2

]
=

[
A B
C D

] [
Ψ2

−V2

]
(B.20a)

∆κr = κ2r2 − κ1r1. (B.20b)

Simplifying these expressions for the elements ABCD yields

A =
r2

r1

[
cosh(∆κr)−

1

κr2
sinh(∆κr)

]
(B.21a)

B =
r2

r1

(
z0,2

)
sinh(∆κr) (B.21b)

C =
r2

r1

(
1

z0,1

)[(
1

κr1
− 1

κr2

)
cosh(∆κr) +

(
1− 1

(κr1)(κr2)

)
sinh(∆κr)

]
(B.21c)

D =
r2

r1

(
z0,2

z0,1

)[
cosh(∆κr) +

1

κr1
sinh(∆κr)

]
. (B.21d)

Note that this result is different from that of Mapes-Riordan (1993), which gives the horn trans-
mission matrix parameters in terms of z0,1 only, by making an incorrect substitution

z0,2

z0,1
6= r2

1

r2
2

(lossy case), (B.22)

which is not generally true in the presence of viscous and thermal losses. It is only true in the
lossless case, when z0 = r0 = ρ0c0/A0 for a given area A0.

It is also extremely important to note that this model applies to a lossy conical segment of any
length. In the literature, misinformation about the lossy cone model has been propagated by use
of the lossless model, where κ = κ1 = κ2 is constant throughout the cone. Historically, it has been
considered necessary to break the lossy cone into many small subsections over which the diameter
is assumed to be slowly varying, because the lossy propagation factor κ(s) 6= s/c0 varies with
diameter (Mapes-Riordan, 1993). However, this is simply not necessary, as the application of the
boundary conditions during the derivation leads to a closed-form expression in terms of κ1 and κ2.
Therefore, the lossy cone models published by both Mapes-Riordan (1993) and Kulik (2007) are
incorrect.2

The determinant of the cone transmission matrix is given by

∆T = AD −BC =
z0,2

z0,1

r2
2

r2
1

, (B.23)

2Kulik (2007) attempted to derive an exact model for the lossy conical horn, beginning with the incorrect assump-
tion that ∆κr = κ(r, s)L. Using trigonometric identities, he found that ∆κr =

∫ r2
r1
κ(r, s)dr, which is incorrect.
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which is equal to 1 only in the case of lossless propagation. Therefore, the lossless conical horn
model is reciprocal but not reversible, and the lossy conical horn model is neither reciprocal nor
reversible. Note that since the pressure functions used to analyze the lossy horn are approximations,
this result does not prove that the lossy conical horn is not reciprocal, only that the model is. To
model the transformation from the large end to the small end, the transmission matrix is given by[

A′ B′

C ′ D′

]
=

1

AD −BC

[
D B
C A

]
. (B.24)

Considering Figure A.8, the axial coordinates r1 and r2 can be related to the planar diameters
d1 and d2 at the ends of the conical horn. This is done using the relationship

sin(θ0) =
d1

2r1
=

d2

2r2
(B.25)

which yields the equations

r1 =
d1L

d2 − d1
(B.26a)

r2 =
d2L

d2 − d1
. (B.26b)

Therefore, the ratio r2/r1 = d2/d1. For modeling, it is useful to cast these equations in terms of
the planar diameters and their difference, ∆d = d2 − d1. The ABCD parameters become

A =
d2

d1

[
cosh(∆κd)−

∆d

κ2d2L
sinh(∆κd)

]
(B.27a)

B =
d2

d1

(
z0,2

)
sinh(∆κd) (B.27b)

C =
d2

d1

(
1

z0,1

)[
∆d

L

(
1

κ1d1
− 1

κ2d2

)
cosh(∆κd) +

(
1−

(
(∆d)

L

)2
1

(κ1d1)(κ2d2)

)
sinh(∆κd)

]
(B.27c)

D =
d2

d1

(
z0,2

z0,1

)[
cosh(∆κd) +

∆d

κ1d1L
sinh(∆κd)

]
(B.27d)

∆κd =
L

∆d
(κ2d2 − κ1d1). (B.27e)

If d2 = d1, then ∆d = 0, κ2 = κ1 = κ and ∆κd = κL; in this case, the transmission matrix is equal
to that of the uniform cylinder as expected. Additionally, in the limit as L→ 0, these parameters
are well-behaved. For ∆κd → 0,

cosh(∆κd) ≈ 1 +
∆2
κd

2
+ . . . (B.28a)

sinh(∆κd) ≈ ∆κd +
∆3
κd

6
+ . . . , (B.28b)
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which leads to the well-behaved limits

A|L→0 = κ1/κ2 (B.29a)

B|L→0 = 0 (B.29b)

C|L→0 = 0 (B.29c)

D|L→0 =
z0,2

z0,1

d2
2

d2
1

, (B.29d)

∆κd|L→0 = 0. (B.29e)

For a lossless horn, the ABCD matrix becomes the identity matrix, as L→ 0.
Due to the curvature of the wavefronts in the conical horn (e.g. Fig. A.8), special care must

be given to calculations involving the wavefront area. The characteristic impedance z0(r, s) and
propagation function κ(r, s) should be calculated according to Equation A.44a, where the area is
related to the planar diameter d by

A(d) = 2π

(
L

∆d

)2[
1−

√√√√1−

(
∆d

2L

)2]
d2, (B.30)

where ∆d = d2 − d1 as before. The perimeter function is defined by the planar diameter as

Π(d) = πd. (B.31)

Finally, it should be noted that the length from the input plane to the output plane, L0, is different
from the length L = r2 − r1 between the curved wavefronts. These lengths are related by

L0 = L cos θ0 = L

√√√√1−

(
∆d

2L

)2

L =

√√√√L2
0 +

(
∆d

2

)2

. (B.32)

B.2.3 Step discontinuity

Karal (1953) modeled the impedance of a step discontinuity between two axially symmetric cylin-
drical horns of diameter d1 and d2, for d1 < d2. As for all of the two-port models presented in this
section, this model applies to plane-wave propagation. Therefore, the wavelength of sound must
be much larger than either diameter.

To maintain consistent notation, Ψ1 and Ψ2 are defined to be the plane-wave (0th-order) model.
Here, Ψ1,tot and Ψ2,tot are used to indicate the total pressure across all modes. In general at a
junction, the pressure is assumed to be equal on both sides

Ψ1,tot = Ψ2,tot.

However, in the case of a step discontinuity, the higher-order modes that arise due to the spreading
of the wave from the smaller tube to the larger tube should not necessarily be neglected. Thus
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Karal (1953) breaks the pressure into the plane-wave mode and the higher-order modes,

Ψ1 + Ψ1,1...N = Ψ2 + Ψ2,1...N . (B.33)

It cannot be assumed that Ψ1 6= Ψ2. Rather, some of the pressure is transferred between the
plane-wave and higher-order modes at the discontinuity.

For frequencies and radii within the purview of this thesis, these higher-order modes are typically
evanescent and decay within a few millimeters. Thus, the higher-order modes do not contribute to
the axial flow of the volume velocity. Therefore, the plane-wave modes may be related by a series
impedance,

Ψ1 = Ψ2 + ZV (B.34a)

V1 = V2. (B.34b)

Karal (1953) finds this impedance to be an inductance,

Z = sL

L ≈ 8ρ0

3π2d1
H(α), (B.35)

where α = d1/d2 is the ratio of the diameters (which must fall between 0 and 1). Note that Karal’s
approximation of L leaves out a frequency-dependent term, and he does not justify the elimination
of this term in his paper. Karal defines the function H(α) as

H(α) =
3π

2

∞∑
n=1

J2
1 (αxn)

αx3
nJ

2
0 (xn)

, (B.36)

where xn are the roots of the Bessel function J1(xm) = 0. The function H(α) will be considered
in detail next.

The ABCD matrix for this series inductance is given by

A = 1 (B.37a)

B = sL (B.37b)

C = 0 (B.37c)

D = 1. (B.37d)

The determinant of this matrix is
∆T = AD −BC = 1. (B.38)

Therefore, the Karal correction is reciprocal. Additionally, because A = D, the Karal correction is
reversible.

The terms of the sum H(α) are shown in the left plot of Figure B.2. The first 1000 terms of
the series are plotted, normalized by the n = 1 term. These terms are compared to the harmonic
series 1/n to show that the series converges. The series converges fastest for α values that are not
extrema (e.g. close to 0 or 1). Indeed, for most calculations 50 terms will be sufficient.

The right plot shows H(α) (calculated using 1000 terms) and some common approximations to
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Figure B.2: Examining the series of H(α) from Equation B.35. The left plot shows the decay of
the series terms, normalized by the n = 1 term. These terms are compared to the harmonic series
1/n to show that the series converges. The right plot shows H(α) (calculated using 1000 terms)
and some common approximations to this function.

this function. The simplest approximation is given by

H(α) ≈ 1− α. (B.39)

This approximation was used by Sondhi (1983) and is given in Puria (1991). A higher-order
approximation is given by

H(α) ≈ 1

2

[
(1− α) + (1− α)2

]
. (B.40)

This approximation3 better fits the curvature of H(α). Of course, using modern computing, it
is simple enough to save the function H(α) that has been calculated using the 1000-term series.
When a particular value of α is specified, H(α) may be interpolated from the saved function.

Some authors have found Karal’s H(α) expression for the inductor to be an insufficient model for
describing wave spreading from a small orifice, such as an in-the-ear probe with small central loud-
speaker outlet (e.g. (Rasetshwane & Neely, 2015)).4 This is not entirely surprising, as Karal (1953)
drops an additional frequency-dependent term describing this inductor (in his Eq. 50) without any
justification. Puria (1991) evaluated the Karal correction using a rigidly terminated cascade of 2-3
cylinders of varying area. He found that the Karal correction improves the reflectance model phase
when included between the cylindrical models. He found that, in the case of a constriction (the
middle tube having the smallest diameter), the Karal model alone did not adequately predict the
cavity loss, as quantified by the magnitude reflectance. Note that Puria (1991) did not attempt to
model this loss.

Rasetshwane & Neely (2015) use a two-cone model to account for the impedance of a step
discontinuity. This model was fitted using an error-minimization algorithm, rather than a pre-
determined model based on the size of the discontinuity. It should be noted that the two-port
parameters of the conical horn have a very different form form a series inductor. Benade (1988)

3Given by Jont Allen (informal communication).
4Historically, Mimosa Acoustics tried to use this correction to improve the calibration, but it did not seem to

improve the Thévenin model.
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indicates that the cone may be described by an initial shunt inductor, followed by a uniform
transmission line accounting for delay, a transformer, and a second shunt inductor. The presence
of a shunt branch indicates that the volume velocity is altered by the area change. Karal assumed
that the area change does not affect the volume velocity, which may be an invalid assumption
(particularly if there are viscous and thermal losses due the wall of the jump discontinuity).
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Figure B.3: Two-port matrix parameter magnitudes using different models for a step discontinuity
of 1 [mm] to 7.5 [mm]. The black solid lines show the Karal model, while the black dashed lines
show a cone of infinitesimal length (L= eps = 2.2204−16 [m]). The remaining four models have a
physical length of 3.75 [mm]. The light blue line shows a tube model of this length for comparison.
The blue solid and dashed lines show a tube of this length preceded by the Karal inductor or zero-
length cone, respectively. Finally, the red curve shows the model for a 3.75 [mm] cone connecting
these diameters.

Figures B.3 and B.4 compare Karal’s model for a step discontinuity with the conical horn model.
Both models are calculated for zero-length (just the step discontinuity) and for a tube or cone
length of one radius away from the discontinuity. This is approximately the distance over which
higher-order modes associated with the step discontinuity decay enough that they are negligible.
The zero-length conical model is calculated by setting the length to eps (the smallest number) in
Matlab. The step discontinuity is chosen to mimic the geometry of a measurement probe such as
the ER10C; the step in diameter is taken to be 1 [mm] to 7.5 [mm].
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Figure B.3 gives the ABCD parameter magnitudes for the configurations described. The black
solid lines show the Karal model, while the black dashed lines show a cone of length L= eps =
2.2204−16 [m]. The remaining four models have a physical length of 3.75 [mm]. The light blue line
shows a tube model of this length for comparison. The blue solid and dashed lines show this tube
preceded by the Karal inductor or zero-length cone, respectively. Finally, the red curve shows the
model for a 3.75 [mm] cone connecting these diameters. Note that C is very small for all models,
while A and D are on the order of 1, at least for low- to mid-frequencies. While the magnitude
of B varies, it increases approximately linearly with frequency for all models, not just the Karal
inductor alone.

Thus, these models are all very similar to each other, and to a uniform tube of some length.
This is expected, as the Karal inductor is intended to add acoustic length due to the spreading
inertance. In fact, for very small κL the ABCD model of a tube is approximately

A = 1 (B.41a)

B = z0κL (B.41b)

C =
1

z0
κL (B.41c)

D = 1, (B.41d)

where C will be much smaller than 1, since z0 is usually quite large (for a 1 [mm] diameter,
ρ0c0/A0 = 5.2 × 108, and for a 7.5 [mm] diameter, ρ0c0/A0 = 9.3 × 106). Note that κ ≈ s/c for
‘large’ diameters (e.g. Fig. A.1), so B ∝ s. If more losses are present in the system, other powers
of s (e.g.

√
s) will contribute more to B.

Consider Figure B.4. Note that the Karal model alone does not have an impedance matrix,
because C = 0. The top-left plot shows the input impedance of these models given a ‘blocked’
termination condition. This plot indicates the effective length of each model, as the null frequency
decreases with increasing acoustic length. It is apparent that a zero-length cone is acoustically
longer than the Karal model. Therefore, if the Karal model is inadequate due to its effective
length, cone models offer an increase in this length.
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Figure B.4: Two-port matrix parameter magnitudes using different models for a step discontinuity
of 1 [mm] to 7.5 [mm]. All elements of the impedance matrix for the Karal inductor (solid black,
not shown) will be infinite, since its ABCD matrix has C=0. The black dashed lines show a cone of
infinitesimal length (L= eps = 2.2204−16 [m]). The remaining four models have a physical length
of 3.75 [mm]. The light blue line shows a tube model of this length for comparison. The blue
solid and dashed lines show a tube of this length preceded by the Karal inductor or zero-length
cone, respectively. Finally, the red curve shows the model for a 3.75 [mm] cone connecting these
diameters.
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B.3 Experimental determination of two-port parameters

The two-part parameters (e.g. the transmission or impedance matrix) of an unknown system may be
experimentally measured in a number of ways. When measurements of the input or load impedance
are available, deriving the two-port parameters becomes relatively simple. Other methods using 3-4
microphones (with and without calibrations) are described by Rodriguez et al. (2011) and previous
works cited in that paper. In this thesis, two-port parameters are experimentally determined for
cases where the input impedance may be measured, using a Thévenin-calibrated source.

B.3.1 Reciprocal networks

Reciprocal networks have the related properties

∆T = 1 and z12 = z21. (B.42)

This can be seen by considering [
A B
C D

]
=

1

z21

[
z11 ∆Z

1 z22

]
, (B.43)

where the determinant is given by

∆T =
z11z22

z2
21

− ∆Z

z2
21

=
z11z22

z2
21

− (z11z22 − z12z21)

z2
21

=
z12z21

z2
21

, (B.44)

which is equal to 1 when z12 = z21.
A reciprocal network may be characterized using three input impedance measurements Zin, and

three known load impedances ZL. The load impedances may be measured or modeled, as needed.
Define

TSQ = z12z21 = z2
12, (B.45)

where both z12 and z21 are equal to the positive square root of TSQ. This gives three equations
k = 1, 2, 3 in three unknowns,

Zkin = z11 −
TSQ

z22 + ZkL
. (B.46)

Using a computational tool such as the symbolic package in Matlab or Octave, this gives the
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unique solutions (e.g. Ramo et al. (2008))

z11 =
Z1LZ1inZ2in − Z1LZ1inZ3in − Z1inZ2LZ2in + Z1inZ3LZ3in + Z2LZ2inZ3in − Z2inZ3LZ3in

Z1LZ2in − Z1LZ3in − Z1inZ2L + Z1inZ3L + Z2LZ3in − Z2inZ3L

(B.47a)

z22 =
Z1LZ1inZ2L − Z1LZ1inZ3L − Z1LZ2LZ2in + Z1LZ3LZ3in + Z2LZ2inZ3L − Z2LZ3LZ3in

Z1LZ2in − Z1LZ3in − Z1inZ2L + Z1inZ3L + Z2LZ3in − Z2inZ3L

(B.47b)

TSQ =
(Z1L − Z2L) (Z1L − Z3L) (Z1in − Z2in) (Z1in − Z3in) (Z2L − Z3L) (Z2in − Z3in)

(Z1LZ2in − Z1LZ3in − Z1inZ2L + Z1inZ3L + Z2LZ3in − Z2inZ3L)2 (B.47c)

z12 =
√
TSQ (B.47d)

z21 =
√
TSQ. (B.47e)

Some examples of reciprocal acoustic networks include lossless cylindrical and conical horns. When
visco-thermal losses are present, cylindrical horns are reciprocal, but conical horns are not, as
shown in Section B.2.2.

B.3.2 Anti-reciprocal networks

Anti-reciprocal networks have the related properties

∆T = −1 and z12 = −z21. (B.48)

In this case, the quantity TSQ becomes

TSQ = z12z21 = −z2
12. (B.49)

The solutions for z11, z22 and TSQ are the same as the reciprocal case, and the off-diagonal
impedance matrix terms are given by

z12 = −
√
−TSQ (B.50a)

z21 =
√
−TSQ. (B.50b)

B.3.3 Non-reciprocal networks

Because of the algebraic relationship TSQ = z12z21, it is not possible to determine the individual
parameters z12 and z21 using a fourth set of input and load impedances (Z4in, Z4L). One solution
to this problem is to measure the force transfer function with a known load impedance ZL4. From
the transmission matrix, the load-dependent transfer function H is given by

Force2

Force1
=

1

A+ B
ZL

= H. (B.51)
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Given a fourth known load Z4L and the force transfer function H4, it can be shown that

z21 = H4

(
z11 +

z11z22 − TSQ
Z4L

)
. (B.52)

Once z21 is identified, it is easy to solve for z12 = TSQ/z21.
Using three pairs of input and load impedance measurements, the final solutions for z12 and z21

become

z12 =
Z4L (Z1L − Z2L) (Z1L − Z3L) (Z1in − Z2in) (Z1in − Z3in) (Z2L − Z3L) (Z2in − Z3in)

H4F (Z1LZ2in − Z1LZ3in − Z1inZ2L + Z1inZ3L + Z2LZ3in − Z2inZ3L)
(B.53a)

z21 =
H4F

Z4L (Z1LZ2in − Z1LZ3in − Z1inZ2L + Z1inZ3L + Z2LZ3in − Z2inZ3L)
(B.53b)

F = Z1LZ1inZ2LZ3in − Z1LZ1inZ2inZ3L + Z1LZ1inZ2inZ4L − Z1LZ1inZ3inZ4L

− Z1LZ2LZ2inZ3in + Z1LZ2inZ3LZ3in + Z1inZ2LZ2inZ3L − Z1inZ2LZ2inZ4L

− Z1inZ2LZ3LZ3in + Z1inZ3LZ3inZ4L + Z2LZ2inZ3inZ4L − Z2inZ3LZ3inZ4L. (B.53c)

B.4 Application to Thévenin source parameters

The Thévenin equivalent circuit for a network is given by a ‘force’ source (e.g. voltage or pressure)
and a series impedance. The equivalent force is equal to the force across the output terminals in
the ‘open circuit’ (zero flow) condition. The equivalent impedance is equal to the impedance across
the output terminals when all ‘force’ sources are replaced by short circuits. Such conditions may
be easily enforced on two-port network models.

This section shows how the Thévenin equivalent parameters are related to loudspeaker model
parameters. Additionally, modified Thévenin parameters are calculated for a Thévenin source
cascaded with a known two-port network.

B.4.1 Source parameters for a loudspeaker

A classic example of an anti-reciprocal network is a loudspeaker, which converts an electrical signal
to mechanical movement of a diaphragm, using a magnetic field and wire coil. Hunt (1954) models
the loudspeaker using a gyrator, as[

V1

I1

]
=

[
A B
C D

] [
F2

−U2

]
[
V1

I1

]
=

[
1 Ze
0 1

] [
0 T0
1
T0

0

] [
1 Zm
0 1

] [
F2

−U2

]
, (B.54)

where the signals are input voltage (V1), input current (I1), output force (F2), and output me-
chanical velocity (U2). The electrical impedance (Ze = V1/I1) and mechanical impedance (Zm =
−F2/U2) are series elements on either side of the gyrator. The parameter T0 = B0l is a function of
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the coil length and magnetic field strength. This model has the impedance matrix[
V1

F2

]
=

[
Ze −T0

T0 Zm

] [
I1

U2

]
, (B.55)

which shows that the loudspeaker model is anti-reciprocal, since z21 = T0 = −z12. The transmission
matrix is given by [

V1

I1

]
=

1

T0

[
Ze (ZeZm + T 2

0 )
1 Zm

] [
F2

−U2

]
. (B.56)

For a simple, ideal diaphragm of area A0 moving with velocity U2, the acoustic volume velocity
is given by V2 = U2A0. The conversion between mechanical and acoustical variables may be
represented by a transformer, such that[

V1

I1

]
=

1

T0

[
Ze (ZeZm + T 2

0 )
1 Zm

] [ 1
A0

0

0 A0

] [
Ψ2

−V2

]
. (B.57)

The Thévenin parameters for an arbitrary ABCD matrix are given by

Forces = Force2

∣∣∣
Flow2=0

=
V1

A
(B.58a)

Zs = −Force2

Flow2

∣∣∣∣∣
V1=0

=
B

A
. (B.58b)

Therefore, the mechanical (Fs, Zs,m) and acoustical (Ψs, Zs,a) source parameters are given in terms
of the ‘Hunt parameters’ (Ze, Zm, T0) by

Fs =
V1T0

Ze
Ψs = FsA0 (B.59a)

Zs,m =
(ZeZm + T 2

0 )

Ze
Zs,a = Zs,mA

2
0. (B.59b)

Note that the Norton equivalent source flow is given by Flows = Forces/Zs.

A loudspeaker with acoustic delay. If there is an acoustic system between the diaphragm
and the measured load, the relationship between the Thévenin parameters (Forces, Zs) and the
electro-mechanical parameters of the loudspeaker (Ze, Zm, T0) becomes more complicated. In this
case, the two-port matrix equation becomes[

V1

I1

]
=

1

T0

[
Ze (ZeZm + T 2

0 )
1 Zm

] [ 1
A0

0

0 A0

] [
A B
C D

] [
Ψ2

−V2

]
, (B.60)

where the parameters ABCD characterize an acoustic transmission line, which may be of varying
area.

An example of this is a hearing-aid loudspeaker such as the magnetic balanced-armature receiver
modeled by Kim & Allen (2013). In this case, the loudspeaker diaphragm is housed in a rect-
angular box with a short cylindrical port. Kim & Allen (2013) model this acoustic portion as a
shunt compliance representing the volume of the box housing the diaphragm, and a uniform tube
transmission line representing the port.

160



B.4.2 Revised calibration including a known two-port network

Consider the case where a known two-port network (ABCD) is added to a Thévenin-calibrated
system. An example of this is adding a variable-area probe tip to the Thévenin-calibrated probe
developed in Chapter 4. In this case, the system may be represented via the matrix equation[

Force1

Flow1

]
=

[
A′ B′

C ′ D′

] [
Force2

−Flow2

]
[
Forces
Flows

]
=

[
1 Zs
0 1

] [
A B
C D

] [
Force2

−Flow2

]
. (B.61)

The modified source parameters are given by

Force′s =
Forces
A′

=
Forces
A+ ZsC

(B.62a)

Z ′s =
B′

A′
=
B + ZsD

A+ ZsC
, (B.62b)

where ABCD are the two-port parameters of the known network between the original point of
calibration and the measurement load.

This calculation could be used to analyze pressure measurements made with a microphone placed
at the output of the known two-port network. For measurements made at the original point of
Thévenin calibration, load impedance calculations will be identical to Equation B.5b.
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APPENDIX C

POLE-ZERO FITTING

This appendix appeared in Robinson (2013), and is repeated here for convenience. A vector fitting
procedure developed by Gustavsen & Semlyen (1999) is used to fit complex, frequency domain data
to a function of the form shown in Equation 3.88. The vector fitting procedure is an iterative two
step process, which converts a nonlinear least squares problem to a linear least squares problem
by introducing an unknown scaling function Θ, having known poles. Let the iteration index of the
algorithm be denoted by m=1,2,...,M. Note that the pole order of the algorithm is fixed; if some
error criterion is not met, the algorithm may be re-run with a greater number of poles Np. On
each iteration, a least squares problem is solved based on the following equations:

Hm(s) =

Np∑
i=1

ci,m
s− ai,m−1

+ dm + ems (C.1a)

Θm(s) =

Np∑
i=1

bi,m
s− ai,m−1

+ 1. (C.1b)

These equations are linear in their unknowns ci,m, dm, em, and bi,m. Both Θm(s) and Hm(s)
share the same known poles ai,m−1, which have either been determined in the previous iteration or
initialized by the user. It is important that Θm(s) and Hm(s) have the same poles because the poles
algebraically cancel when a ratio of the functions is taken in a later step of the algorithm (Eq. C.3).
The algorithm iterates to converge on the unknown poles Ai = ai,M of the fit F̂ (s) = FM (s) (which
are a nonlinear unknown in Eq. 3.88). The initial poles ai,0 are the ‘starting poles’ of the algorithm;
their selection will be described below.

The vector fitting method relates Equations C.1a and C.1b to the measured data F (ωk) at a
given frequency index k via

Θm(s)
∣∣∣
s=jωk

F (ωk) = Hm(s)
∣∣∣
s=jωk

. (C.2)

When evaluated over the many available frequency points of F (ω), Equation C.2 results in an
over-determined linear problem in the unknowns ci,m, dm, em, and bi,m. At each algorithm step,
the current fit is given by

Fm(s) =
Hm(s)

Θm(s)
(C.3)

using the estimated values of ci,m, dm, em, and bi,m. This fit is related to the data via

F (ω) ≈ Fm(s)
∣∣∣
s=jω

(C.4)
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and should improve with iteration.
Because Hm(s) and Θm(s) share the same poles, by construction there is a perfect cancellation

in Equation C.3. Thus, upon iteration, the zeros of Θm(s) become the poles of Fm(s). To see this,
consider the product forms of Equations C.1a and C.1b for a non-zero em,

Hm(s) =
em
∏Np+1
i=1 (s− zi,m)∏Np

i=1(s− ai,m−1)
(C.5a)

Θm(s) =

∏Np
i=1(s− ai,m)∏Np
i=1(s− ai,m−1)

, (C.5b)

where zi,m are the zeros of Hm(s), ai,m are the zeros of Θm(s), and ai,m−1 are the known poles of
both functions. Substituting Equations C.5a and C.5b for Equation C.3 yields

Fm(s) =
Hm(s)

Θm(s)
=
em
∏Np+1
i=1 (s− zi,m)∏Np
i=1(s− ai,m)

. (C.6)

Thus, on each iteration the zeros of the scaling function Θm(s) become the poles of the fitted
function Fm(s). On the last iteration, the poles ai,M become the poles of FM (s) = F̂ (s) (Eq. 3.88)
such that Ai = ai,M . Gustavsen & Semlyen found that it is better to calculate the remaining
quantities Ci, D, and E via the least squares procedure outlined by Equation C.2, using ai,M as
the starting poles. Thus, the final quantities Ci = ci,M+1, D = dM+1, and E = eM+1 are the result
of a partial iteration.

An appropriate selection of starting poles ai,0 is necessary for the convergence of the vector fitting
method. For a function with resonance peaks, such as the reflectance, Gustavsen & Semlyen (1999)
suggest that the starting poles (complex conjugate pairs ai,0 = −αi,0 ± jβi,0, with αi,0 = βi,0/100
advised) be linearly distributed over the frequency range of the data. The linear problem can
become ill-conditioned if the starting poles are real. Large differences between the starting poles
and the best fit poles of the response can cause large differences between Θm(s) and Hm(s) resulting
in poor least squares solutions (Gustavsen & Semlyen, 1999).

If the least squares procedure returns unstable poles (Re{ai,m} > 0), their real parts are reflected
to the left half s-plane before the next iteration. Due to this, the error will not always decrease
monotonically with iteration. Depending on the application, it may also be beneficial to impose
additional properties. For example, one might force the impedance to be minimum-phase, instead
of merely stable. This could be done by inverting the real part of any zero that appears in the
RHP, similar to the procedure for enforcing stability of the poles. Such a constraint may cause an
increase in error, but could have utility for physical modeling.

The error depends on the starting pole values due to noise in the data. Additionally, due to
the smoothness of the reflectance function and the number of available parameters, there exist
multiple non-unique fits yielding reasonable fit errors (e.g. within a certain MSE tolerance). Thus
the poles (of an already low error fit) may vary with iteration, resulting in non-monotonic error.
Typically, significant MSE improvement over the first few iterations occurs only for low pole orders
(e.g. Np < 10 over a 0.1 to 10 [kHz] range). For high pole orders (e.g. Np > 20 over the same
range) the fitting procedure achieves close to its lowest MSE within one iteration. When the
order is approximately known, as it is here, the starting poles better cover the entire frequency
range, causing the fit to commonly converge within a few iterations. For low orders of poles, more
iterations may be necessary to migrate the poles to their best fit locations.
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APPENDIX D

MIDDLE-EAR PRESSURE STUDY DETAILS

D.1 Data labels

Measuring the reflectance, eight trials each of AMEP and NMEP conditions were similarly inter-
leaved. During each trial, up to eight test-retest measurements were made, for a total of approx-
imately 64 measurements per condition (AMEP or NMEP) in each ear. The subjects are given
names beginning with ‘N’ (experiment order) and ‘S’ (final presented subjects in order of decreas-
ing NMEP), and measurement test sets are delineated ‘M01’ through ‘M16.’ Of these 16 test sets,
8 are measured in the AMEP condition, and 8 are measured in the NMEP condition. The final
number (1-8) labels each test-retest measurement. For the purposes of this appendix, the data is
labeled as follows:

N01︸︷︷︸
subject

test (01-16)︷︸︸︷
M01 1︸︷︷︸

retest (1-8)

Table D.1 shows the correspondence between ‘N’ labels assigned by Thompson et al. (2015), and
‘S’ labels used in Robinson et al. (2016), which ordered the labels according to decreasing NMEP
TPP.

D.2 Choosing lowest-noise measurements

To select the test-retest measurements with the least noise, we chose the measurement having the
shortest path through the complex reflectance plane (<{Γ} vs. ={Γ}). For test-retest measurements
of the same insertion, this appears to be a very effective method to find the measurement with the
least noise, as it minimizes large deviations due to noise, and minimizes noise loops in the complex
plane. For varying insertions, this method may not be expressly applied, as delay due to the residual
ear canal length is directly related to the path length of the complex reflectance curve.

For comparison three de-noising criteria are proposed:

Table D.1: Subjects included in the NMEP study (Robinson et al., 2016) who were able to induce
repeatable NMEPs, listed in order of decreasing NMEP.

S 1 2 3 4 5 6 7 8

N 11 01 04 14 08 06 13 02

µNMEP [daPa] -65 -107 -123 -129 -156 -156 -266 -384
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Figure D.1: Selection of best (least noisy) measurement from the test-retest set N01M01. The
measurements labeled LΓ and LY are selected because they have the shortest path lengths in the
complex Γ and Y planes. The measurement labeled Mean Γ is chosen because it sits the closest to
the mean complex reflectance curve, across frequency. Here all 8 measurements appear to be low
noise and in agreement with each other.

1. Complex path length in the reflectance domain (LΓ).

2. Complex path length in the admittance domain (LY ).

3. Closeness to the mean across frequency, where the minimum deviation from the mean is

ε = min
m

∑
k

|Γm(ωk)− Γ̄(ωk)|2 (D.1)

for a set of test-retest measurements with indices m = 1...M .

Three different approaches are shown. In Figure D.1, the test-retest measurements are low noise,
and appear to be similar to each other. In this case, most of the measurements appear to be
acceptable for use in the data analysis. In Figure D.2, the measurements are noisy, although
they do appear to be similar to each other, especially at high frequencies. From these plots, it is
clear that these three methods will select some of the lowest noise measurements, but the complex
length estimates LΓ and LY perform best (for measurement set N04M02 they select the same
curve). This makes sense, as the mean curve may be affected by large amounts of noise, especially
at low frequencies. We chose to use LΓ for measurement selection because we typically perform
pole-zero fitting in the reflectance domain, and reflectance values, which are contained within the
unit circle on the complex plane, have a small dynamic range across frequency and are thus more
numerically stable (Robinson et al., 2013).

Finally, Figure D.3 shows an instance where the test-retest measurements do not appear to be
in good agreement with each other. A few measurements are noisy, but many of the curves seem
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Figure D.2: Selection of best (least noisy) measurement from the test-retest set N04M02. The
measurements labeled LΓ and ‘LY are selected because they have the shortest path lengths in the
complex Γ and Y planes. The measurement labeled Mean Γ is chosen because it sits the closest
to the mean complex reflectance curve, across frequency. Here many measurements are noisy, and
both methods select curves that appear less noisy. The path-length determined measurements
appear to be less noisy than the measurement of closest proximity to the mean.
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Figure D.3: Selection of best (least noisy) measurement from the test-retest set N04M05. The
measurements labeled LΓ and LY are selected because they have the shortest path lengths in the
complex Γ and Y planes. The measurement labeled Mean Γ is chosen because it sits the closest
to the mean complex reflectance curve, across frequency. Here the measurements are not in good
agreement with each other. This may be due to slight changes in probe position (drift) or middle
ear pressure. The three methods given are not as reliable in this instance, and all three methods
select very different curves.
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reasonably smooth. We hypothesize that two primary factors may contribute to disagreement
between curves of the same test-retest set.

• Change in middle ear condition. In this experiment, subjects were asked to induce NMEP
using the Toynbee maneuver. If a subject was unable to hold the induced pressure, the
response of the system would change during measurement for the same probe insertion. In the
case of Figure D.3, measurement set N04M05 was obtained in the ‘normal’ condition, which
means (a) the subject may have experienced small changes in pressure due to normal resting
state (e.g. yawning between measurements), or (b) the middle ear pressure may not have
completely equalized prior to measurement and continued to change (e.g. through yawning
or normal breathing between measurements)

• Change in probe location (‘drift’). The probe may have shifted slightly due to change in
posture or other movement of the subject. This could produce small changes in the REC
length between the probe and the TM. Changes in REC length have the most pronounced
effects on the complex reflectance (change in phase due to differing delay), and the low-
frequency absorbance level (due to losses in the ear canal). Measurements with significant
noise and drift may indicate probe insertions that are not very deep (i.e. they are loose).

We conclude that this complex path length method to determine the best measurements is most
effective for a set of measurements that are very similar (excepting noise), meaning that they are
from the same probe insertion with a constant middle ear condition. In the future, we may be able
to use the complex path length method for other applications.

D.3 Tympanometry results

Tables D.2, D.3 and D.4 give the details of the tympanograms measured by Suzanne Thompson, for
each subject. Note that ears N01 and N02 (S2 and S8) were measured on two separate occasions,
giving different tympanometry results for the WAI study (Robinson et al., 2016) and the DPOAE
study Thompson et al. (2015). Any differences between the tympanometry results in the two studies
are highlighted in red in Table D.3.
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Table D.2: Table of tympanometric results, reproduced from Thompson (2013). Note that for the
WAI study, the TPPs were different for ears N01 (S2) and N02 (S8).

Normal NMEP

Subject µTPP [daPa] σTPP Range [daPa] µTPP [daPa] σTPP Range [daPa]

N01 1 9 [-20, 5] -271 30 [-305, 230]

N02 0 9 [-20, 25] -324 95 [-385, -120]

N04 4 3 [0, 10] -123 18 [-150, -90]

N06 -1 6 [-10, 5] -157 13 [-180, -140]

N08 6 7 [0, 20] -145 46 [-201, -55]

N11 4 4 [-5, 10] -65 12 [-80, -50]

N13 -8 7 [-5, 0] -262 39 [-345, 230]

N14 1 13 [-15, 20] -129 30 [-185, -90]

Avg. 1 7 [-20, 25] -185 35 [-385, -50]
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