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a b s t r a c t

Cochlear neuropathy, i.e. the loss of auditory nerve fibers (ANFs) without loss of hair cells, may cause
hearing deficits without affecting threshold sensitivity, particularly if the subset of ANFs with high
thresholds and low spontaneous rates (SRs) is preferentially lost, as appears to be the case in both aging
and noise-damaged cochleas. Because low-SR fibers may also be important drivers of the medial oli-
vocochlear reflex (MOCR) and middle-ear muscle reflex (MEMR), these reflexes might be sensitive
metrics of cochlear neuropathy. To test this hypothesis, we measured reflex strength and reflex threshold
in mice with noise-induced neuropathy, as documented by confocal analysis of immunostained cochlear
whole-mounts. To assay the MOCR, we measured contra-noise modulation of ipsilateral distortion-
product otoacoustic emissions (DPOAEs) before and after the administration of curare to block the
MEMR or curare þ strychnine to also block the MOCR. The modulation of DPOAEs was 1) dominated by
the MEMR in anesthetized mice, with a smaller contribution from the MOCR, and 2) significantly
attenuated in neuropathic mice, but only when the MEMR was intact. We then measured MEMR growth
functions by monitoring contra-noise induced changes in the wideband reflectance of chirps presented
to the ipsilateral ear. We found 1) that the changes in wideband reflectance were mediated by the MEMR
alone, and 2) that MEMR threshold was elevated and its maximum amplitude was attenuated in
neuropathic mice. These data suggest that the MEMR may be valuable in the early detection of cochlear
neuropathy.

Published by Elsevier B.V.
1. Introduction

Auditory neuropathy is defined clinically by normal OAEs with
an absent or grossly abnormal ABR. There are likely numerous
etiologies, but in such patients, outer hair cells (OHCs) must be
functioning normally, while auditory nerve fibers (ANFs) and/or
inner hair cells (IHCs) are presumably absent or dysfunctional.
Some patients with auditory neuropathy have normal audiometric
thresholds, but extreme difficulty understanding speech even in a
quiet environment (Starr et al., 1996). In such cases, the degree of
nerve loss/dysfunction must be extreme, and in such patients the
MEMR is often absent (Berlin et al., 2005).

Recent work in animals shows that noise exposures that do not
permanently damage hair cells can nevertheless cause a permanent
partial loss of auditory-nerve peripheral synapses (Kujawa and
Liberman, 2009; Liberman et al., 2015). This more moderate type
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of neuropathy results in a “hidden hearing loss,” in which cochlear
thresholds, as assayed by either auditory brainstem responses
(ABRs) or otoacoustic emissions (OAEs), fully recover, but supra-
threshold amplitudes of the ABR wave I, which represent the
summed activity of auditory nerve fibers, are permanently reduced.
This disconnect between threshold and suprathreshold patho-
physiology arises because the noise preferentially damages the
subset of auditory nerve fibers with higher thresholds and lower
spontaneous firing rates (low- and medium-SR fibers), which
constitute ~40% of the auditory nerve population (Furman et al.,
2013).

This type of cochlear neuropathy is an important component of
age-related hearing loss (Sergeyenko et al., 2013), noise-induced
hearing loss (Kujawa and Liberman, 2009), and other types of ac-
quired sensorineural hearing loss (e.g., Ruan et al., 2014). Behavioral
audiograms can remain unaffected by neuropathy until it is near-
total (~80e90%) thanks to the redundancy of IHC innervation
(Schuknecht and Woellner, 1955; Lobarinas et al., 2013). However,
more moderate neuropathies, while unlikely to cause perceptual
impairment as profound as classic auditory neuropathy, are likely
to cause significant deficits in hearing-in-noise, particularly if low-
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SR fibers are preferentially lost, due to the relative insensitivity of
low-SR fibers to masking by continuous noise (Costalupes et al.,
1984).

Low-SR afferents may also be important drivers of the medial
olivocochlear reflex (MOCR: Liberman, 1988, 1991; Ye et al., 2000)
and the middle-ear muscle reflex (MEMR: Liberman and Kiang,
1984; Roullier et al., 1986; Kobler et al., 1992). These reflexes can
reduce the sound-evoked excitation of inner hair cells by either
decreasing the gain of the cochlear amplifier, as is the case for the
MOCR, or increasing the impedance of the middle ear, as is the case
for the MEMR. The effective stimulus attenuation from either reflex
can protect the cochlea from damaging sounds (MEMR: Simmons,
1960; Borg, 1966; MOCR: Rajan, 1995; Reiter and Liberman, 1995).
A trauma-induced impairment of the reflexes may initiate a vicious
cycle wherein reduced reflex strength worsens cochlear damage,
which further reduces the strength of the negative feedback, which
may ultimately lead to hair cell loss and permanent threshold shifts
(Wang and Ren, 2012). Furthermore, because both MOC and MEM
reflexes can enhance signal detection in noise (e.g., Kawase et al.,
1993; Pang and Guinan, 1997; respectively), their weakening
could exacerbate any hearing-in-noise and word-recognition defi-
cits arising from a loss of low-SR fibers.

Neurotrophin overexpression can repair noise-induced neu-
ropathy in transgenic mice (Wan et al., 2014), but a major imped-
iment to the application of neurotrophin therapies to humans is the
inability to diagnose this subtotal primary neural degeneration. The
amplitude of ABR wave I is a useful indicator of neuropathy in
animals and has been shown to scale well with synaptic loss as
documented in post-mortem histopathology (Kujawa and
Liberman, 2009; Furman et al., 2013). However, although group
differences in the ABRwave-I amplitude can be detected in humans
(e.g., Schaette and McAlpine, 2011), they are highly variable in the
clinic, which may limit their diagnostic utility (Gorga et al., 1988;
Nikiforidis et al., 1993). The envelope-following response may be
a more robust diagnostic tool (Plack et al., 2014; Shaheen et al.,
2015), but a battery of short-duration tests may be most useful in
differential diagnoses.

If the MOC and MEM reflexes are driven by the low- and
medium-SR fibers that are selectively destroyed in cochlear neu-
ropathy, then some measure of reflex strength might serve as a
useful, non-invasive, and objective assay to aid in the detection of
hidden hearing loss in humans. In the present study, we tested this
hypothesis by measuring MOC and MEM reflexes in anesthetized
mice with noise-induced cochlear neuropathy.

2. Materials and methods

2.1. Animals and groups

Male CBA/CaJ mice were used in this study. Group 1 (n ¼ 12)
mice were received at 6 wks. At 7 wks, half the animals were
exposed to neuropathic noise. Cochlear function tests (see below)
were measured 2 wks post exposure, and at least 2 days after that,
contra-noise modulation of DPOAEs was measured. The cochleas
were then harvested from a subset of exposed and control mice for
histological analysis. Group 2 (n ¼ 8) mice were received at 10 wks.
At 16 wks, half were exposed to neuropathic noise. Cochlear
function and contra-noise modulation of wideband acoustic
reflectance was measured at 24 h, and 1, 2, 4, and 8 wks post
exposure. The cochleas were then harvested for histological anal-
ysis. When required, curare alone or curare with strychnine was
injected intramuscularly at 4 mg/kg and 10 mg/kg, respectively,
after tracheostomy andmechanical ventilation. For all physiological
measurements, mice were anesthetized with ketamine (100 mg/
kg) and xylazine (20 mg/kg) and placed inside an electrically and
acoustically shielded room maintained at 30 �C. Heart rate was
monitored via the ABR electrodes. Booster injections (1/3 of the
original dose) were given when whisking-related noise was
observed on the ABR trace, which was typically 30e45 min
following the last injection. Curarized animals were given boosters
at 30 min intervals. All procedures were approved by the Animal
Care and Use Committee at the Massachusetts Eye and Ear
Infirmary.

2.2. Noise exposure

Awake mice were placed unrestrained inside a mesh container
within a reverberant chamber and were presented with spectrally
flattened, octave-band noise (8e16 kHz) for two hours. The SPLs
were 97.5 and 99 dB SPL for Group 1 and Group 2, respectively.

2.3. Stimulus calibration

Acoustic systems were regularly calibrated in a small custom
coupler by comparing the output voltage of the probe tube
microphone to that of a calibrated ¼ condenser microphone
(Larsen-Davis Type 2530). For each subject and each placement of
the acoustic system, the ear-canal SPL was calibrated with a
moderate-level chirp stimulus to determine the transducer voltage
required to produce the target SPLs.

2.4. Cochlear function tests

For DPOAEs, f1 and f2 primary tones (f2/f1 ¼1.2) were presented
with f2 varied between 5.6 and 45.2 kHz in half-octave steps and
L1eL2¼10 dB. At each f2, L2 was varied between 10 and 80 dB SPL in
10-dB increments. DPOAE threshold was defined as the L2-level
eliciting a DPOAE of magnitude 5 dB SPL. Stimuli were generated
with 24-bit digital IeO cards (National Instruments PXI-4461) in a
PXI-1042Q chassis, amplified by an SA-1 speaker driver (Tuck-
ereDavis Technologies, Inc.), and delivered from two electrostatic
drivers (CUI CDMG15008-03A) in our custom acoustic system. An
electret microphone (Knowles FG-23329-P07) at the end of a small
probe tubewas used tomonitor ear-canal sound pressure. For ABRs,
tone pips (5-msec duration, 0.5-msec ramp) were presented in
alternating polarity at 40 Hz using the acoustic assembly described
above. At each test frequency (5.6e45.2 kHz in 1/2-octave steps),
stimulus levels were incremented from 10 to 80 dB SPL. Responses
were measured from needle electrodes in vertex-to-pinna config-
uration with the ground just above the tail. A Grass pre-amplifier
(Model P511) amplified (10,000X) and band-pass filtered
(0.3e3 kHz) the ABR waveforms. 1024 artifact-free waveforms (512
of each polarity) were averaged to produce the final ABR trace.
Threshold was defined by visual inspection of the stacked wave-
forms.Wave-I amplitudewas defined as the difference between the
maximum of the peak and the minimum of the subsequent trough.

2.5. Modulation of DPOAEs by contralateral noise (group 1)

DPOAE-eliciting stimuli were presented to the ipsilateral ear at
f2 ¼ 32 kHz (f2/f1 ¼ 1.2). First, DPOAEs were measured in a 13 � 13
level-matrix (1-dB resolution) with primary tones presented
continuously for 0.5 sec at each L1-L2 combination. Then, a6�6 level
matrix, centered at the appropriate L1-L2 combination (see Results),
was measured in 1-dB resolution. For the second matrix, primary
tones were presented continuously for 7 sec at each L1-L2 combi-
nation, and the contralateral noise was presented during the 6th
second (5-msec ramp). The contralateral noise was spectrally flat-
tened, 2 octave-bandnoise centered at f2 andpresented at 95dB SPL.
A 5-sec period of silence was interposed between each level step.



M.D. Valero et al. / Hearing Research 332 (2016) 29e38 31
2.6. Modulation of wideband acoustic reflectance by contralateral
noise (group 2)

Ipsilateral stimuli (probes) were 80 dB SPL, 2-msec Hanning-
windowed “chirps,” upswept from 4 to 64 kHz and presented at
40 Hz. The phase spectrum was adjusted to compensate for the
effect of the Hanning window, yielding a chirp with a flat magni-
tude spectrum (Neumann et al., 1994). Two seconds following the
onset of the “chirp train,” the contralateral noise (reflex elicitor)
was presented for 1 sec (20-msec ramp). The elicitor was high-pass
(16e45.2 kHz), spectrally flattened, frozen noise. Each 6-sec chirp
train was presented in two contiguous trials with the elicitor pre-
sented once in each trial in alternating polarity to eliminate any
acoustic cross-talk from the contra noise. The sound pressure
waveform in the ipsilateral ear canal was averaged over corre-
sponding time points from the two 6-sec trials, and the spectrum
was computed separately for the average chirp waveform before vs.
during the elicitor presentation. The elicitor was then incremented
from 72 to 100 dB in 2-dB steps. See text for further details.

2.7. Cochlear immunostaining

Mice were perfused intracardially with 4% paraformaldehyde
(PFA) for 5 min, after which the cochleas were exposed and
perfused with 4% PFA after opening the oval and round windows.
The perfused cochleas were extracted, post-fixed for 2 hr in 4% PFA,
and decalcified in EDTA for 48 hr at room temperature. They were
then dissected into half-turns and incubated in primary antibodies:
1) mouse (IgG1) anti-CtBP2 from BD Transduction Labs at 1:200
and 2) mouse (IgG2) anti-GluA2 from Millipore at 1:2000. Primary
incubations were followed by 1-hr incubations in species-
appropriate secondary antibodies.

2.8. Innervation analysis and hair cell counts

Cochlear lengths and a frequency-place map were obtained
for each case from micrographs of dissected pieces using
an image J plugin (http://www.masseyeandear.org/research/ent/
eatonpeabody/epl-histology-resources/). Confocal z-stacks were
collected using a 100� oil-immersion objective (N.A. ¼ 1.4) and 2�
digital zoom on a Leica TCS SP2 confocal at cochlear frequency lo-
cations corresponding to the physiological assays. Synapses in the
IHC areawere counted using Amira (Visage Imaging) to find the xyz
coordinates of all the ribbons (CtBP2-positive puncta), and custom
re-projection software was then used to assess the fraction of rib-
bons with closely apposed glutamate-receptor patches (i.e. GluA2
puncta). OHCs were counted under DIC microscopy with a Nikon
Eclipse E800 microscope following confocal analyses.

2.9. Statistical analyses

Statistics were performed in Kaleidagraph (Synergy Software) or
MATLAB. Two-way repeated-measure ANOVAs adjusted with the
Holm-Bonferroni correction were used to assess the significance of
group differences.

3. Results

3.1. Verifying noise-induced cochlear neuropathy

The first group of 7-wk old mice was exposed to noise
(8e16 kHz) at 97.5 dB SPL for 2 hr. This exposure caused an acute
threshold shift of ~40 dB when measured 24 hr post-exposure (see
Kujawa and Liberman, 2015). When measured 2 wk post-exposure,
ABR thresholds recovered to baseline at all but the highest
frequency (Fig. 1B), and DPOAE thresholds recovered at all fre-
quencies (Fig. 1E). Despite the nearly complete threshold recovery,
suprathreshold ABR wave-I amplitudes were decreased by 40e50%
at 32 and 45 kHz (Fig. 1C), while suprathreshold DPOAE amplitudes
recovered to control values at all but the highest frequency (Fig. 1F).

In hopes of producing a more completely reversible threshold
elevation, even at the highest test frequencies, we exposed a second
group of mice at 16 wks of age, when they are slightly less
vulnerable (Kujawa and Liberman, 2006). 24 hr following exposure,
ABR and DPOAE thresholds were elevated by > 40 dB at 32 kHz
(Fig. 1B,E). Indeed, thresholds measured 2 wk later had recovered
completely at all test frequencies. Once again, the suprathreshold
wave-I amplitudes were reduced by up to 40% at high frequencies
(Fig. 1C), while the DPOAE suprathreshold amplitudes recovered at
all frequencies (Fig. 1E).

The histopathology was consistent with that observed in pre-
vious studies of cochlear neuropathy (e.g., Kujawa and Liberman,
2009; Liberman et al., 2015; Shaheen et al., 2015): the number of
synapses was reduced by 40e50% in the basal half of the cochlea
(Fig. 1A), while there was no loss of IHCs anywhere in the cochlea
(not shown). OHCs remained intact at all cochlear regions except
the extreme basal tip (Fig. 1D).

3.2. Contra-noise modulation of DPOAEs

We first aimed to measure the effects of noise-induced cochlear
neuropathy on MOC reflex strength using the modulation of ipsi-
lateral DPOAEs by contralateral noise (e.g., Collet et al., 1990).
BecauseMOC efferents lower the gain of the cochlear amplifier, and
because the cochlear amplifier effects are strongest at low SPLs,
contra-sound modulation of DPOAEs is typically greatest at low
ipsilateral stimulus levels (see Guinan, 2006). However, in mice,
contra-sound effects on low-level DPOAEs are greatly reduced by
anesthesia (Chambers et al., 2012), and the remaining suppression
is not mediated by the MOC system (Maison et al., 2012). When
elicited with high-level primary tones, DPOAEs saturate, and MOC
activation elicits only small changes in DPOAE amplitude. However,
the MOC-mediated modulation of high-level DPOAEs can be
magnified around the non-monotonicity, or “notch,” in the ampli-
tude vs. level function, which occurs at primary-tone levels be-
tween 70 and 90 dB SPL (Kujawa and Liberman, 2001). When MOC
effects are measured around this notch, DPOAE enhancement or
suppression can be observed, depending on whether primary-tone
levels are below or above the notch.

In mice, the notch is robust when f2 is at 32 kHz (Fig. 2A), the
frequency of maximal synaptic damage (Fig. 1). Because notch
depth is sensitive to the L1-L2 combination, prior studies have
measured contra-noise effects for a matrix of ipsilateral L1-L2
combinations (Kujawa and Liberman, 2001; Maison et al., 2012).
Adopting that approach, we measured DPOAE amplitude in 1-dB
increments of L1 and L2 (Fig. 2B). Notches were always present,
and the primary levels needed to elicit them overlapped in exposed
and control ears (Fig. 2C). L1 and L2 primary tones were presented
in a 6 � 6 level matrix (1-dB increments) centered on the notch
(Fig. 2E), and at each of the 36 L1-L2 combinations, the change in
DPOAE amplitude was measured during a 1-sec contra-noise pre-
sentation (Fig. 2D). The maximum contra-noise enhancement was
seen exactly at the L1-L2 combination evoking the deepest notch
(Fig. 2F vs. E). Identical measurements made ~45 min post-mortem
(not shown) revealed no system distortion at 2f1ef2: with L1-L2
ranging from 81/80e93/92, the mean (SD) amplitude at 2f1ef2
was �7.6 (2.27) dB SPL.

In control mice, mean contra-noise enhancement and sup-
pression were ~10 dB (Fig. 3A). To rule out acoustic crosstalk, we
measured contra-noise effects before and after removal of the
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Fig. 1. Effects of neuropathic noise on cochlear synapses, OHCs, threshold and suprathreshold responses. A,D: Mean survival of IHC synapses and OHCs, respectively, for the two
groups of noise-exposed animals. B,E: Mean threshold shifts as measured by ABRs or DPOAEs, respectively, at either 24 hr (teal) or 2 wk (red) post-exposure. C,F: Mean supra-
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contralateral tympanic membrane: the effects disappeared
(Fig. 3C). To determine the contribution of the MEMR to this effect,
we injected curare at a dose that paralyzes striated muscles,
including the MEMs, but has no effect on the MOC system
(Elgoyhen et al., 1994; Maison et al., 2012). Curarization signifi-
cantly attenuated the effect, suggesting that the MEMR dominates
the contra-noise modulations of high-level DPOAEs in the anes-
thetized mouse. Consistent with MEM activation, the ear-canal SPL
of the primary-tones shifted during the contralateral noise (Fig. 3B).
Although the shift was tiny (usually < 0.1 dB), it was reproducible
and always disappeared after curare (Fig. 3B). To determine
whether the small contra-noise effect seen after curarization was
mediated by the MOC reflex, we added strychnine, a potent
antagonist at the a9/a10 nicotinic acetylcholine receptor through
which MOC terminals inhibit OHC amplification (Elgoyhen et al.,
2001; Rothlin et al., 1999; Sridhar et al., 1995). Following strych-
nine, no contra-noise modulations of DPOAEs could be measured
(Fig. 3A, green).

With both the MOC and the MEM reflexes intact, the contra-
noise modulation of DPOAEs was significantly attenuated in
neuropathic mice when compared to age-matched controls
(Fig. 4A). However, after inactivating the MEM with curare, the
small remaining modulations were not significantly affected by
neuropathy (Fig. 4B).

3.3. Contra-noise modulation of wideband acoustic reflectance

Given that contra-noise effects in the ketamine/xylazine-
anesthetized mouse seemed to be dominated by MEMs, and
given that the effect was significantly weakened in neuropathic
mice, we aimed to design an assay better suited to study this
MEMR. In the clinic, the contralateral MEMR is studied by
measuring contra-sound evoked changes in the sound pressure of a
low-frequency (<1 kHz) probe tone presented to the ipsilateral ear
canal. However, the MEMR threshold is dependent on the fre-
quency of both probe tone and contralateral reflex elicitor
(McMillan et al., 1985). By using a wideband probe, like those uti-
lized in measurements of wideband acoustic reflectance (e.g., Keefe
et al., 1992; Feeney and Keefe, 2001), the effect of the MEMR on a
wide frequency range could be examined. In the present study, the
contra-noise mediated change in SPL was used as a proxy for
reflectance, although the relationship between the two is depen-
dent upon several variables not considered here (see Rosowski
et al., 2013 for a review). Because MEMRs have not previously
been measured in mice, and because the DPOAE assay suggested
that the MEMR could modify the reflectance of tones as high in
frequency as 32 kHz, the passband of the chirp (4e64 kHz) was set
to cover nearly the full audible range of the mouse. The use of high-
level (80 dB SPL) ipsilateral chirps (Schairer et al., 2013) minimized
contamination of the ear-canal SPL by stimulus-frequency OAEs
(Guinan et al., 2003).

With respect to the contralateral noise, broadband elicitors can
elicit the MEMR at lower intensities than pure tones (e.g. Margolis,
1993; Feeney and Keefe, 2001; Feeney et al., 2003, 2004), and they
are more sensitive to cochlear pathology (Popelka et al., 1976;
Gelfand and Piper, 1981; Gelfand et al., 1983). Here, the pass-band
of the reflex elicitor (Fig. 5B, gray shaded area) was set to cover
cochlear frequencies where neuropathy was maximal and OHCs
were intact (Fig. 1A, D).

As observed for DPOAE-eliciting primary tones (Fig. 3B),
contralateral noisemodulated the SPL of the chirps in the ipsilateral
ear canal. This modulation of SPL was due to a change in reflectance
at the tympanic membrane. We averaged waveforms separately for
chirps presented with vs. without contralateral noise, then fast
Fourier-transformed each mean waveform and plotted the contra-
noise effect as the difference between the two magnitude spectra
(Fig. 5B). The complex frequency dependence of the effect was
reminiscent of wideband reflectance measured in humans (e.g.,
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Feeney and Keefe, 2001), except shifted to higher frequencies.
Within the frequency band of maximal spectral difference (Fig. 5B,
black box), the effect showed prominent post-onset adaptation
with both a fast and a slow component (Fig. 5C), as has been
observed in human reflexes elicited with high-pass contralateral
noise (Djupesland et al., 1966). Growth functions measured before
and after curare (Fig. 5D) suggested that the contra-noise effects
were mediated exclusively by the MEMR.

Repeated, within-session measurements in a single subject
(Fig. 6) suggested that reflex threshold and strength varied with
anesthetic state. As shown in Fig. 6, the amplitude decreased and
the threshold increased following the administration of boosters,
and both slowly recovered over time. To try and minimize the ef-
fects of this variation in our measurements, attempts were made to
gather data at stereotyped times with respect to anesthetic
boosters.

One day post-exposure, reflex thresholds were �100 dB SPL in
the neuropathic mice, i.e. at the limits of our acoustic system (not
shown). By 1 wk post-exposure, when cochlear thresholds had
returned to normal, reflex effects were once again measurable,
though with reduced amplitude and elevated thresholds. Tests
were repeated at 4 post-exposure times from 1 to 8wks. A repeated
measures analysis of variance indicated that there was no signifi-
cant effect of time after exposure after cochlear thresholds had
recovered (i.e. 1e8 wks post-exposure). Thus, we averaged data
across all these measurement times (Fig. 7). In the neuropathic
mice, the MEMR thresholds were permanently elevated (Fig. 7C)
and the maximum amplitudes of the reflex effects were perma-
nently reduced (Fig. 7E). The inter-group differences were statisti-
cally significant for both amplitude and threshold and for measures
taken either at the onset and the offset of the contralateral noise.

4. Discussion

4.1. The MEMR can modulate DPOAEs in anesthetized mice

Modulation of ipsilateral responses by contralateral sound has
long been used as an assay for either the MEMR or the MOCR in
awake humans and in awake or anesthetized animals (Guinan,
2015). The extent to which each of the two reflexes contribute to
this binaural effect depends on species, stimulus level and the type
and level of anesthesia. In barbiturate-anesthetized cats (Puria
et al., 1996) and guinea pigs (Kujawa and Liberman, 2001), the
contra-noise effects are dominated by the MOCR. In contrast, in
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anesthetized rats (Relkin et al., 2005) and awake rabbits (Luebke
et al., 2002; Whitehead et al., 1991), modulation of DPOAEs by
contralateral noise is mediated primarily by the MEMR. In chin-
chillas, the MEMR- and MOCR-mediated suppression of DPOAEs
can be separated by using a low- or high-frequency elicitor,
respectively (Wolner et al., 2014). A previous study in ketamine/
xylazine-anesthetized mice demonstrated that contra-noise sup-
pression of low-level DPOAEs persisted following surgical or
chemical lesion of the MOC pathway, following paralysis of the
MEMs, and in mice lacking the nicotinic acetylcholine receptors
necessary for MOC synaptic transmission (Maison et al., 2012). In
contrast, the contra-noise modulation of high-level DPOAEs, i.e.
around the notch of the amplitude vs. level function, was elimi-
nated by the combined inactivation of the MEM and MOC reflexes.
The current study replicated the latter finding and further
demonstrated that it is actually the MEMR that dominates the
modulation of high-level DPOAEs, i.e. the reflex strength was
severely weakened following MEM paralysis alone. Thus, the effect
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of cochlear neuropathy on the strength of the MOC reflex remains
an open question. Given that the variability and small size of the
MOC effects in the present study (Fig. 4B) were likely due to
anesthesia, the question will be best addressed in awake mice,
where the MOC-mediated suppression DPOAEs is on the order of
~8e10 dB (Chambers et al., 2012). Here, we focus on the MEMR.

4.2. A simple model of sound-evoked drive to the MEMR

Since its introduction in the 1940s, MEMR tests have been
widely applied in clinical diagnoses (see Silman, 1984, Thomsen,
1999 for reviews). Some MEMR assays have compared reflex
thresholds elicited by narrow-vs. wide-band stimuli (Flottorp et al.,
1971; Niemeyer and Sesterhenn, 1974; Jerger et al., 1974; Popelka
et al., 1976), or by ipsilateral vs. contralateral stimuli (Mangham
et al., 1970; Hall, 1982), and others have measured input/output
functions (Silman and Gelfand, 1981) or the post-onset decay of
reflex strength (Anderson et al., 1970; Cartwright and Lilly, 1976;
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see Wilson et al., 1984). Classically, the greatest diagnostic value of
the MEMR test has been in the identification of retrocochlear pa-
thology, i.e. auditory nerve dysfunction that is distinct from hair cell
or other intracochlear pathology. Numerous studies have docu-
mented that MEMR threshold can be dramatically elevated or
altogether absent in cases of VIIIth nerve tumors (Anderson et al.,
1970; Cartwright and Lilly, 1976; Silman et al., 1978; see Wilson
et al., 1984) and in patients with severe auditory neuropathy
(Berlin et al., 2005, 2010). Conversely, MEMR thresholds for tonal
stimuli can be normal or minimally elevated in sensorineural
hearing loss with elevation of audiometric thresholds by
~40e60 dB (Popelka et al., 1976; Popelka, 1981) that is likely due to
OHC damage.

Neurophysiological studies of stapedius motoneurons show
exceedingly broad frequency tuning curves (FTCs) with thresholds
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similar to the broadly tuned, low-frequency “tails” of auditory
nerve FTCs (Kobler et al., 1992). Similarly, MEMR thresholds for
tonal stimuli, as measured in the ear canals of anesthetized rabbits,
are similar in tuning and threshold to the low-frequency tails of
ANFs (Borg et al., 1990). These results suggested that the circuitry
driving the MEMR sums activity across ANFs from all cochlear re-
gions and, once a threshold level is reached, sends a signal to the
motoneuron pool that is proportional to this ensemble activity.
Such a model is consistent with the observation that MEMR
thresholds in humans decrease monotonically as the bandwidth of
the elicitor stimulus is increased to cover more of the cochlear
spiral (Margolis, 1993).

A variant of this model suggests that the afferent limb of the
MEMR is dominated by high-threshold, low-SR ANFs (Liberman
and Kiang, 1984; Roullier et al., 1986; Kobler et al., 1992). The
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suggestion is based on two observations about low-SR physiology:
1) in normal ears, the tone-evoked discharge rate in the low-
frequency tails of low-SR fibers increases very rapidly at SPLs
near 85 dB SPL, which is similar to the MEMR thresholds for tones,
and 2) this high-level “component” of the low-SR response is
extremely resistant to cochlear damage (Liberman and Kiang,
1984).

4.3. Cochlear pathophysiology and its effects on the audiogram vs.
the MEMR

Regardless of whether the MEMR is driven by all ANFs or only a
subset, it is useful to consider what this simple model predicts
about the MEMR with different etiologies of sensorineural hearing
loss (SNHL). Neurophysiological studies of noise-induced (Furman
et al., 2013), drug-induced (Lobarinas et al., 2013) or age-related
(Sergeyenko et al., 2013) hearing loss suggest general principles
about the relationship between auditory nerve pathophysiology
and cochlear histopathology that are useful in thinking about the
MEMR in SNHL.

The OHCs are among the most vulnerable cells in the cochlea
(Johnson and Hawkins, 1972; Bohne and Harding, 2000). With pure
OHC loss, auditory nerve FTCs have attenuated “tips” and slightly
hypersensitive “tails,” while dynamic range (typically 20e30 dB)
and maximum discharge rate remain unchanged (Liberman and
Kiang, 1978). Thus, a pure OHC lesion should leave the MEMR un-
affected, despite threshold elevation of up to 50 dB, as is often
observed (Metz, 1946; Jerger et al., 1978; Hyde et al., 1980; Popelka,
1981; Margolis, 1993), since the ensemble ANF discharge to
tones > 80 SPL should not be different from normal.

IHC loss can be induced with carboplatin in chinchillas (e.g.,
Harrison, 1998; Lobarinas et al., 2013) and is often observed in
premature infants (Amatuzzi et al., 2001). Diffuse IHC loss will not
affect audiometric thresholds until the loss exceeds 80% (Lobarinas
et al., 2013) and OAEs can remain unchanged (Liberman et al.,
1997). However, IHC loss will decrease the suprathreshold
ensemble discharge rate in ANFs in direct proportion to fractional
IHC loss, and thus should raise MEMR thresholds more than
audiometric thresholds, as seen for VIIIth nerve tumors. Damage to
IHC stereocilia, as often occurs in noise-induced hearing loss, can
also elevate single fiber thresholds, including the tails of the FTCs
(e.g., Liberman and Kiang, 1984; Liberman and Dodds, 1984). Thus,
in some cases, noise exposure can significantly elevate both MEMR
thresholds and audiometric thresholds, as has been observed in
rabbits with significant damage to IHC stereocilia (Engstrom and
Borg, 1983).

Recent work on noise-induced and age-related hearing loss
shows that the synapses between ANFs and IHCs are the most
vulnerable elements in the inner ear (e.g., Kujawa and Liberman,
2009). Since each spiral ganglion neuron contacts a single IHC by
a single synapse, each missing synapse in a noise-exposed or aging
ear corresponds to an ANF that has lost all response to sound. Thus,
the elevation of MEMR threshold and reduction in suprathreshold
MEMR reflex strength observed here in our neuropathic mice is
consistent with the simple MEMR model. In most types of SNHL,
the damage is a complicated mixture of OHC and IHC loss and
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damage (Liberman and Dodds, 1984), along with the degeneration
of synaptic contacts on surviving IHCs (Kujawa and Liberman,
2009). Therefore, it is not surprising that there are no general
rules relating threshold shift (commonly referred to as “hearing
loss”) and MEMR threshold.

The neuropathic model tested here is useful because there is no
permanent hearing threshold shift to confound interpretation. Any
changes in ANF output are caused only by synaptopathy and not by
OHC damage. The present results help explain how MEMR
thresholds could be significantly elevated in mild hearing loss
(Keith, 1977; Alberti and Kristensen,1970; Jerger et al., 1974; Silman
et al., 1978; Popelka, 1981). Furthermore, the observation that the
elicitor-bandwidth effect, i.e. the lowering of MEMR threshold with
increasing elicitor bandwidth, is reduced in aged listeners with
normal hearing sensitivity (Margolis, 1993) is consistent with the
presence of cochlear neuropathy in the absence of hair cell loss, as
has recently been reported in a human temporal-bone study (Viana
et al., 2015).

4.4. MEMRs in the diagnosis of cochlear neuropathy

Using the standard tonal probe at 220 Hz, a weakened MEMR
can be seen in humans with noise-induced hearing loss with an
elicitor at a frequency within a patient's “normal” audiometric
range (Houghton et al., 1988). However, it may be preferable to
use a frequency glide, or chirp, for the probe. The human MEMR
threshold can be reduced by up to 24 dB by using a wideband vs.
a tonal probe (Feeney and Keefe, 2001). If, as current data sug-
gest, neuropathic patients are vulnerable to further cochlear
damage due to a weakened MEMR, high-intensity reflex elicitors,
i.e. >100 dB SPL, may be contraindicated. Indeed, there have been
cases in which MEMR tests were reported to cause temporary
and permanent threshold shifts (see Schairer et al., 2013). The
addition of the wideband acoustic reflex test also may be a useful
addition to newborn screening programs (Keefe et al., 2010),
particularly for premature or otherwise at-risk infants (e.g.,
Amatuzzi et al., 2001), as it does not require the pressurization of
the ear canal (Schairer et al., 2007), and it may aid in the iden-
tification of more moderate pathologies than can be detected by
the ABR.

Contamination of MEMR measurements by the MOCR could be
minimized with careful parameter choices. For example, the
magnitude of the MOC-mediated effect will be miniscule in com-
parisonwith the MEM-mediated effect if the chirp is presented at a
relatively high level (60e80 dB SPL: Guinan et al., 2003). Unfortu-
nately to date, the published literature examining MEMR in sub-
jects with sensorineural hearing loss includes only tonal probes. In
order to improve its utility in differential diagnostics, there is a
need to examine the effects of various cochlear pathologies on the
wideband MEMR.
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