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MODELING THE NOISE DAMAGED COCHLEA

Jont B. Allen

Acoustics Research Dept., AT&T Bell Labs 
Murray Hill, NJ 07090, USA

Introduction

The purpose of this paper is to present a specific model (Allen, 1980) of the cochlea 
which replicates normal cat threshold neural tuning curves. TT»is model is first introduced 
as a linear passive model. In the process of fitting the model to the neural data, it was 
discovered that changes in the basilar membrane stiffness could modify the model cilia 
frequency response in a manner similar to the noise damaged neural tuning curves of 
Liberman and Dodds (1984). Liberman and Dodds found that the tips of the tuning curves 
become elevated by more than 40 dB, and the tails become hypersensitive by about 10 
dB, after a noise trauma that damages the outer hair cells. After recording tuning curves 
from the noise damaged cells, they found a systematic loss of outer and/or inner hair cells 
associated with the noise trauma neurons. They then correlated the hair cell loss to the 
frequency response of the associated tuning curves. In this paper we model the Liberman 
and Dodds noise damaged tuning curves by associating the loss of normal outer hair cells 
with a decrease in the basilar membrane stiffness (increased compliance).

We believe that the compressive and frequency dependent cochlear nonlinearities that 
have been observed in the basilar membrane response and in inner and outer hair cell 
receptor potentials (for a review see Allen, 1988) are a related phenomenon, and we 
propose a model for the nonlinear cochlea based on this approach. In this model, the outer 
hair cell length changes, which occur during cell depolarization (Brownell et al. 1985), 
dynamically increase the basilar membrane compliance. The effect of this dynamically 
modified compliance would be a compression of the dynamic range of the basilar membrane 
motion, and therefore of the excitation to the inner hair cells. This nonlinearity is important 
to compress the dynamic range of the acoustic signal to match that of the inner hair cells.

This model is being offered as a physically realizable alternative to the active (negative- 
resistance) cochlear amplifier model of Neely and Kim (1983).

Neural Excitation Patterns

One of the basic problems in cochlear modeling is the determination of the model 
parameters from physical data in a systematic way. Frequency domain models give a 
response along the basilar membrane for a given input-signal frequency, whereas the 
experimental data (neural tuning curves) to be matched are functions of frequency for a 
given position along the basilar membrane. To side step this computational problem, it 
is possible to transform the neural tuning curve data to place. These place tuning curves 
are called excitation patterns in the literature. This transformation represents a major 
simplification of the data-fitting process. If the neural excitation patterns are accurately 
fitted by the model in the place domain for several well separated frequencies, then the 
frequency tuning data should fit as well.

The transformation to excitation patterns is best understood by example. Fig. 1 shows a 
family of normal cat tuning curves collected by Liberman. Liberman has also measured the
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Figure 1: This family of cat tuning curves was provided by Liberman and Delgutte. The phase was 
generated by the Fourier Transform minimum phase method.

relation between the characteristic frequency (CF) and position on the basilar membrane 
fcF(x).  Our procedure then is the following. First compute the phase for each tuning 
curve using the minimum phase method. The complex frequency responses are then loaded 
into the response matrix 0 ( x , , f j ), where x, is the index that labels each tuning curve, and 
fj  is frequency. To find x,-, look across frequency to find /c f ( i» ) . the frequency of the 
maximum of 10(x,, fj)\. Then use / c f (x) to determine x<, the row index for each tuning 
curve, from the fcF  of the row. The excitation pattern is then 0 (x j, fj )  vs. x< for any 
given f j , as shown in Fig. 2. These threshold response are for single tones as a function of 
position along the basilar membrane. The lower panel of Fig. 2 shows the derived phase 
along the basilar membrane for a given frequency. Since this phase was generated from 
the tuning curves using the minimum phase method, it is not necessarily the phase that one 
would measure neurally. The models, however, approximately match this phase. The close 
match demonstrates that the models approximately have a minimum phase response.

Modeling the Tuning Curve Data

In this section we show model fits to the neural excitation patterns of Fig. 2. The 
macromechanical model is the two-dimensional model of Sondhi (1979). The microme
chanical model being used is the resonant tectorial-membrane model described in [Allen, 
1980; Allen, 1988]. The basilar membrane to cilia transfer function Ht (x ,u ) is used to 
modify the basilar membrane displacement response to give the cilia displacement. The 
difference between the 1980 model and the one here is in our choice of model parameters 
and the addition of a resistive element to the basilar membrane impedance. The comparison 
of the model to the neural data was made using a simple middle ear model.
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Figure 2: Transforming neural data tuning curves to place gives excitation patterns. These are more 
readily compared to model responses, since the model also gives excitation patterns for each input 
frequency.

THE TRANSDUCTION FILTER
The transduction filter H t ( x , u )  is defined as the transfer function, assumed here to 

be linear, between the basilar membrane displacement and the inner hair cell stereocilia 
displacement. In this paper H t(x ,u )  consists of three parts, which we call G(x), 

and H tr(u ) .  First is the lever action of the transduction gain G(x), which is 
defined as the ratio of the cilia displacement to the BM displacement, under the condition 
that kc «  k j .  In Allen (1980) a formula was given for this gain (Eq’s. 5 and 6) in terms 
of the physical variables. The estimate of G used here was heuristically determined in the 
process of fitting the neural data. It is desirable to have a large value of the transduction 
gain to increase the hair cell excitation. However, a large value of G seemed inconsistent 
with fitting the data. Second, is the effect of the elastic coupling between the limbus and 
the tectorial membrane &t(z). This elastic element introduces a pole and a zero into the 
transfer function, as described in Allen (1980, Eq. 13), and shown in Fig. 3, upper right 
hand panel. Third H t r ( v )  is defined as a first order high pass filter which represents the 
viscous fluid layer driving the stiffness-dominated inner hair cell stereocilia. H t r  is the 
transfer function developed between the tectorial membrane to reticular lamina (TM-RL) 
shear displacement and the cilia displacement, coupled via fluid viscosity. This component 
of the transduction filter is given by

ju
H t r {u ) — — 0 , • (1)ju) + 2 n fc

If the inner hair cell cilia were attached to the underside of the tectorial membrane, then 
this highpass filtering action would not be present since there would be no slip condition. 
From the above equation, at low frequencies the cilia respond with the velocity of the shear, 
whereas at high frequencies, the cilia follow the TM-RL shear displacement. In the model,
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Figure 3: Model responses for octave frequencies between 6 kHz and 182.5 Hz, assuming an 
eardrum pressure of 14 dB SPL.
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f c = 5.0 kHz. As may be seen from the model response in the upper right panel of Fig. 3, 
the cilia move with the TM-RL shear-displacement for frequencies above / c, and with the 
shear-velocity below f e (Dallos, 1984).

Putting the three factors together gives the transduction filter

H t ( x , s ) =  G ( x ) H t r ( s ) H t m ( x , s )  (2)

shown in Fig. 3 upper right panel.

SUMMARY OF MODEL EXCITATION RESPONSES
A summary of the model responses is given in Fig. 3. The upper left panel shows 

the model basilar membrane center-line and cilia rms displacements at octave frequencies 
between 6.0 kHz and 187.5 Hz at 14 dB SPL. The basilar membrane displacement is 
derived from the per unit length volume-displacement by dividing by the basilar membrane 
width. The lower left panel shows the stapes rms displacement at 74 dB SPL. Also 
shown in this panel is the volume integral of the basilar membrane displacement. The 
stapes volume-displacement and the basilar membrane volume-displacement should be 
equal at all frequencies. Because of the boundary conditions that have been assumed at 
the helicotrema, these two integrals are not exactly the same (Puria and Allen, 1990). The 
difference between them is due to fluid flow through the model helicotrema. The lower 
right panel shows the stapes input impedance Zsc, the ossicle impedance Zme, and their 
sum Z3t, which is proportional to the eardrum impedance.

In Fig. 4 the dashed lines give the model cilia excitation patterns, magnitude and phase, 
at the frequencies 0.5, 1.0, 2.0 4.0 and 6.0 kHz. The units in the upper panel are in 
nanometers (nm), and correspond to 74 dB-SPL constant pressure in the model ear canal. 
The solid lines are the neural data from Liberman. The amplitude scaling for the neural 
curves is arbitrary, but all curves are scaled by the same factor. The lower panel shows the
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Figure 4: The solid curves are the neural data of Liberman and the dashed lines are the model 
responses in nanometers for a 74 dB SPL stimulus.

excitation pattern phase for the model (dashed lines) and of the neural data (solid lines) for 
the octave frequencies. The 4.0 and 6.0 kHz phase curves have been displaced down by 
2nn, where n is an integer, to separate them for clarity of plotting. The neural data is the 
same as shown in Fig. 2. The most significant deviation between the model and the neural 
data is in the phase curves for the 4 kHz tuning curves where the curves are ir radians 
apart below CF (at 0.5 cm). There is also a trend for the model data to show a slightly 
greater phase lag than the neural minimum-phase result. This effect may also be seen by 
comparing Fig. 1 to Fig. 5.

Model Timing Curves
After computing the model response at 7 locations along the basilar membrane for a 

large number of frequencies we find the results shown in Fig. 5. This figure should be 
compared to Fig. 1. An important degree of freedom that remains in comparing these 
curves is the threshold sensitivity of the model hair cell. For both Fig. 4 and 5 we would 
like to know if the sensitivity of the BM at the characteristic frequency ( /c f )  is realistic. 
A discussion of the sensitivity question may be found in Hudspeth (1983). Denk and Webb 
(1989) have shown that hair cells transduce their cilia Brownian motion. The magnitude of 
this motion depends on the real part of the mechanical impedance of the stereocilia in situ. 
Hair cell sensitivity is an important and open question that has caused many to speculate on 
the need for a cochlear amplifier in the basilar membrane (Neely and Kim, 1983; Mountain 
and Hubbard, 1989; Patuzzi et al. 1989). Estimates of cilia displacements are complicated 
by the uncertainty introduced by the unknown transduction filter. It is not known if inner 
hair cells are velocity or displacement sensitive in vivo. Dallos (1984) has estimated that 
there is a velocity to displacement transition with a transition frequency of about 1 kHz. In 
the present model we assume a similar velocity to displacement as described in Eq. 1, but 
with f c — 5.0 kHz.

It is assumed here that the rate threshold for the cat corresponds to an eardrum pressure
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Figure 5: Once the model parameters have been determined, it is practical to compute the frequency 
tuning curves at points along the basilar membrane. These tuning curves are shown here, and should 
be compared to Fig. 1. As before, the upper panel is the cilia displacement in nanometers for a 
stimulus level of 14 dB SPL. The lower panel is the corresponding phase.

of 14 dB SPL. From Fig. 3, the model BM motion is 120 pm at the CF of 1 kHz and 
14 dB SPL. The stapes displacement at 1 kHz for the model is 3.5 picometers at 14 
dB-SPL. This means that the model basilar membrane has a gain of 31 dB at 1 kHz. 
Threshold displacements as low as 0.1 nm (100 pm) for cilia displacements have previously 
been estimated by Hudspeth, AJ. (1983). Nuttal et al. (1990) found basilar membrane 
displacements of 0.5 nm at 35 dB for his most sensitive animals. They also showed 
BM displacement data for several animals that showed a nonlinear input-output response 
growth at 80 pm for 50 dB SPL. Sellick et al. (1983) estimated the BM threshold at 350 
pm, while Robles et al. (1986) have estimated the BM threshold at 1.9 nm.

THE BASILAR MEMBRANE STIFFNESS
During the parameter fitting process it was found that the basilar membrane stiffness 

was much more sensitive than other parameters in its effect on the basilar membrane 
tuning curve. Fig. 6 shows this effect. In this figure the basilar membrane stiffness was 
modified by a relative factor of 0.3 to 1.0 times the normal value (the value that gave a 
match to the tuning curve data). From this figure one may see that the tip of the model 
tuning curve becomes less sensitive by 40 dB and the tail of the model tuning curve is 
more sensitive by about 10 dB. There are several reasons for these changes in the model. 
First, as the stiffness decreases, the CF shifts toward the base. This means that the CF is 
shifting into the ’zero’ ( f2) of the resonant tectorial membrane transfer function. Because 
of the presence of the zero, the CF threshold rises dramatically. A second important effect 
is the hyper-sensitive tails of the tuning curve. As the volume of fluid motion at the 
CF is reduced, the volume-motion in the tail increases because the net fluid motion must 
remain constant, as required by conservation of fluid mass. These model results should be 
compared to those of Liberman for noise damaged cochlea.
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Figure 6: For an input frequency of 5.0 kHz, I<b m (x ) was varied from 30% to 100% of its 
normal value. This response should be compared to the tuning curves for damaged outer hair cell as 
found by Liberman.

Discussion: A Nonlinear Cochlear Model

A nonlinear version of this model remains to be explored, and an approach toward this 
end is described next. As the basilar membrane displacement increases with level, the 
depolarization of the outer hair cell increases due to the increased shearing of the sterocilia 
of the outer hair cell at the higher input levels. We propose that as the cell depolarizes, the 
induced hair cell shortening reduces the basilar membrane stiffness in the way assumed in 
Fig. 6 . The published sensitivity of the hair cell length changes is 20 nm/mv (Santos-Sacchi 
and Dilger 1987). In Fig. 6 the stiffness changes are uniform along the basilar membrane, 
whereas in the nonlinear model they would be signal dependent and thus nonuniform. 
Since the stiffness variations would be low-pass filtered by the membrane capacitance of 
the outer hair cells, the stiffness variations would not follow the signal on a cycle-by-cycle 
basis. In this sense, the model could be characterized as a nonlinear parametric model. 
If the stiffness variations at high frequencies (e.g. 10-20 kHz) do not follow the signal 
waveform, then the term ’cochlear amplifier’ does not apply to this class of model. It 
is an ’active* model in the usual electrical engineering sense, just as the Davis model of 
the hair cell is ’active.’ However, this use of the term ’active’ is not what is usually 
meant in cochlear modeling, where the term is frequently used interchangeably with the 
term ’cochlear amplifier’, implying gain on a cycle by cycle basis. The details following 
the cell depolarization which lead to the basilar membrane stiffness change are presently 
unknown and we have assumed here that such a dependence is plausible. To study the site 
of the nonlinearity in a more systematic way, it may be helpful to model the frequency 
response of the 2/i — fa distortion product for constant fa. These distortion products may 
be modeled using quasi-linear techniques by introducing voltage sources in series with 
K bm  to represent the generation of the nonlinear components. From the equivalent model 
of the micromechanical circuit (Allen, 1980, Fig. 10), a source in series with I<bm  would 
see the series impedance of the tectorial membrane, which has a minimum at f z. This 
suggests that the nonlinearity might have maximum coupling to the fluid at this frequency.
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A little analysis shows that this would give a maximum of the distortion product amplitude 
when 2/i -  f 2 -  f 2. First we argue that the distortion product is generated at, or near, 
*2, which is defined as the fa place. Next we define 0(x) = f t ( x i ) /  f i f a )  as the ratio 
of f z to f i  at X2. It follows that the distortion product amplitude will have its maximum 
at / 2//1 — 2.0/(l +  /?). For (3 in the range of 0.7 to 0.5, as it is in this model, this 
would give a best frequency ratio of 1.18 to 1.33, which is close to the range of observed 
maximum values (Wilson, 1980).
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Comments and discussion

LYON
In your first step, you convert iso-response tuning curves to "excitation patterns" that 

appear to be in terms of an iso-intensity situation. This would be a sensible 
transformation for a linear system, such as your model, but how can it be interpreted for a 
system with a strong input-output compression nonlinearity, such as the cochlea from 
which the data were taken ?

ALLEN
I agree with your observation which you make in your paper that the frequency 

dependent compression of the type that has been observed in the basilar membrane 
response will have an impact on the response characteristics as the input level is varied. 
These nonlinear properties make the job of modeling BM responses much more difficult. 
The question then is one of the philosophy of how to go about this difficult task. Two 
points need to be made about this.

The first point goes back to my paper in Keele (Allen, 1988) where I discussed the 
three regions of the amplitude and frequency space where we see different nonlinear 
behavior. Observations of basilar membrane nonlinearities are considerably reduced in 
the apical region of the cochlea (for example, for frequencies below 4 or 5 kHz and for 
levels below about 60 to 65 dB-SPL.) Evidence for this statement is documented in my 
Keele paper. It follows that the effects you describe are most important in the base of 
the cochlea, which I have not attempted to modeled for this conference. As I said in 
Keele, we must be very careful about not generalize the effects we see in the base of the 
cochlea to the apex region.

Second, in a nonlinear system it is helpful if one can hold the signal to the nonlinear 
element constant when specifying the systems response. In the case of the basilar mem
brane, there is not one nonlinear element but a nearly continuous distribution of nonlinear 
elements. In the case of neural tuning curves, such as I have been trying to match, we 
have not only the basilar membrane nonlinearity, but also the hair cell rate level nonlin
earity. In making a tuning curve one attempts to minimize the nonlinear effect of the 
inner hair cell transduction nonlinearity by measuring the locus of pressures as a function 
of frequency that produce a constant output firing rate. The analogous measurement in the 
case of basilar membrane measurements would be to hold the excitation to the nonlinear 
elements constant To the best of our present knowledge, this nonlinear element is the 
outer hair cell, which is controlled by the receptor voltage. Since the experimenter does 
not have direct control of this voltage, the basilar membrane velocity or displacement is 
typically help constant This implies that the nonlinearity is varying over the course of 
the measurement, which greatly complicates both the interpretation and modeling of the 
measurement.
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