Syllabus ECE 493/Math 478

Jont B. Allen

ECE Department, University of Illinois at Urbana-Champaign January 15, 2015

Rubric

Complex Variables Linear Algebra, Advanced Calculus, Boundary value problems, Sturm-Liouville Theory,

ECE-493 is divided into 4 basic sections (I-IV), divided into 40 topics, delivered as 24=4*6 lectures. There will be two mid-term exams and one final. There are (in theory) 14 homework assignments, with a 15 that does not count toward your final grade (HW0 is used for evaluation in the first week). Each exam (I, II and Final) will count as 30% of your final grade, while the Assignments (HW1-14) and class participation, count for 10%.

I	Complex	Variables	(The	frequency	domain)
			\ ./			

[Ch. 21, 23, 24] [Chapter.Section]

[]

Lect. #. Topic

I-1 Addition, multiplication and division of complex numbers Complex functions of a complex function (e.g., Transfer functions H(s), Impedance Z(s))
25. z ∈ C (e.g., complex frequency s ≡ σ + iω), f(z) ∈ C, e^z (Phasors and delay e^{-iωT}), log(z), ∑_n zⁿ [Ch. 21]

I-2	2. 27. Differential calculus on \mathbb{C}	
	28. Cauchy-Riemann Eqs., Analytic functions, Harmonic functions	[21.5] 34. Series: Maclaurin, Taylor,
	Laurent	[24.3]
I-3	Inverses of Analytic Functions;	
	26. Singularities (i.e., poles, branch cuts) [24.4, 21.4.6-7, pp. 1131	-4] 29. Irrotational $\nabla \times \mathbf{V} = 0$ [p. 826]
	and Incompressible $\nabla \cdot \mathbf{v} = 0$ [p. 839-40] fields (e.g., velocity potenti	al $\mathbf{u} = \nabla \phi(x, y, z)$) [16.10]
I-4	30 . Integral calculus on \mathbb{C}	[]
	31. $\oint z^n dz$ on the unit circle	[22.3]
	33. Intro to Cauchy's integral formula	[23.5]
	How to find $\Im Z(s)$ given $\Re Z(s)$	[]
I-5	32. Cauchy's theorem	[]
	33. Cauchy's integral formula	[23.5]
	35 Cauchy's Residue Theorem [24	5] []

	55. Cadeny's Residue Theorem	[24.5]	IJ
I-6	37. Inverse Transforms: Laplace \mathcal{L}^{-1} (contour integration) and Fo	purier \mathcal{F}^{-1}	[]
	Special pole-zero patterns: stable/causal, allpass, Minimum phase	, positive real functions	
I-7	Hilbert Transforms and the Cauchy Integral formula;		
	Review of differences between the Laplace \mathcal{L}^{-1} and Fourier \mathcal{F}^{-1}	methods	[]
I-8	Brune Impedance (Positive real rational approximations (i.e., quas	si-statics))	

 39. ODE's with initial condition (vs. Boundary value problems)
 []

I-9 More Inverse Laplace transformations; Analytic continuation using power series with mirrors

I-10 38. Applications of: Rational fraction (e.g., $Z(s) = \frac{as^2+bs+c}{As+B}$ and Continued fraction

$$Z(s) = s + a/(s + b/(s + c/(s + \cdots)))$$

ladder expansions

Exam I

II Linear Algebra	[Ch. 8, 10, 11, 9]
Lect. #.Topic	[Chapter.Section]
II-1 1.Basic definitions 2.Elementary operations	[8.1] [8.2]
II-2 3.Solutions to $Ax = b$ 4.Matrix inverse	[8.3, App. B, p. 1267] [8.3]
II-3 5.Matrix Algebra; Eigenvalues & vectors6.Transformations (change of basis)	[10.2, 11, 12] [10.2]
II-4 7. Vector spaces \mathbb{R}^n	[9]
II-5 8.Optimal approximation (Least squares minimization)	[9.10, 4.4] [p. 884]
III Advanced Calculus	[Ch. 13, 15, 16]
Lect. #.Topic	[Chapter.Section]
III-1 9.Partial differentiation $(\frac{\partial}{\partial x})$ 10.Line surface and volume integrals	[]
III-2 11.Gradient (∇), Divergence (∇ ·), Curl (∇ ×), Laplacian (∇ ²)	[]
III-3 12.Change of variables (COV) & The Jacobian (COV with volume conservation)	[]
III-4 13.Theorems: Green, Stokes, Divergence	[]
III-5 14.Potentials and conservative fields	[]
Exam II	
IV Boundary value (BV) problems	[Ch. 17, 18, 19]
Lect. #.Topic	[Chapter.Section]
 IV-1 15. PDE: parabolic, hyperbolic, elliptical, discriminant 16. PDE as a limit of system of ODEs (transmission lines) 17. 2nd order PDE from a pair of first order ODEs 	[]
IV-2 18. Separation of variables	[p. 46; 20.2-3]
IV-3 21. Special Equations of Physics: Wave, Laplace, Diffusion	[]
IV-422. Special functions, Fourier Series, Bessel, Legendre Polynomials, Riemann Zeta20. Sturm-Liouville BV Theory[17.7, pp. 88]	37, 965, 1029, 1070, 1080]
IV-5 23. Fourier: Integrals, Transforms, Series, DFT	[]
IV-6 24. Laplace and z Transforms 19. The vector space \mathbb{C}^1	[] [9.6-7, 3]

Final

Abbreviations: WP: Wikipedia; COV: change of variables; BV: boundary value; p.: page; Ch.: chapter; ODE: ordinary differential equation; PDF: partial differential equation; MM: Mickey Mouse; DFT: Discrete Fourier Transform