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7. Introduction.  

TI~E most important  contribution during the last years to the fundamenta l  
conceptions of theoretical physics seems to be the development of a new 
theory of light which contains the acknowledged one as a l imiting case, bu t  
connects the optical phenomena with those of a very different kind, radio- 
activity. The idea tha t  the photon is not an elementary part icle  but  a 
secondary one, composed of simpler particles, has been first mentioned by 
p. Jordan 1. His argument was a statist ical  one, based on the fact, t h a t  
photons satisfy the Bose-Einstein statistics. I t  is known from the theory 
of composed particles as nuclei, atoms or molecules, tha t  this stat ist ics may 
appear for such systems, which are compounds of elementary particles 
satisfying the Fermi-Dirac statistics (e.g., electrons or protons). After the 
discovery of the neutrino, de Broglie 2 suggested tha t  a photon hv is composed 
of a " neutrino " and an " anti-neutrino," each having the energy �89 He  
has developed some interesting mathematical  relations between the wave 
equation of a neutrino (which he assumed to be Dirac's equation for a vanish- 
{ngly small rest;mass) and Maxwell's field equations. But de Broglie has 
not touched the central problem, namely, as to how the Bose-Einstein statist ics 
of the photons arises from the Fermi-statistics of the neutrinos. This ques- 
tion cannot be solved in the same way as in the cases mentioned above 
(material particles) Where it  is a consequence of considering the composed 
system as a whole neglecting internal motions. This is possible because of 
the strong forces keeping the primary particles together. But  in the case of 
neutrinos we have no knowledge of such forces, and it would contradic t  the 
simplicity of de Broglie's idea to introduce them. 

1 p. Jordan, "Die Lichtquanten hypbthese," Erg. der Exakt. Naturw., 1928, 17, 158. 
P. Jordan, Zeits. f. Phys., 1935, 93, 464; 1936, 98, 709 and 759; 1936, 99, 109. 

2 L. de Broglie, C.R., 1932, 195, 536, 577, 862; 1933, 197, 1377; 1934, 198, 135; 1934, 
199, 445, 1165. A coherent representation is to be found in his book Une Nouvelle Conception 
de Ia Lumlere (181, Act. Sci. et Ind.). Further L. de Broglie and J. Winter, C.R., 1934, 
199, 813. 
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This f u n d a m e n t a l  problem has  been  solved b y  Jordan.  I-Ie has  shown 
tha t  no forces be tween neutr inos  are required bu t  the  way of their  in te rac t ion  
with electric churges leads to the  effect t h a t  pairs of neutr inos behave 
generally as  photons .  J o r dan  has formulated the  principles involved and 
has proved ra the r  deep ma themat i ca l  theorems expressing the  relat ion of 
neutrinos and photons.  The fuller development  of the  mathemat ica l  method 
is due to R. de L. Kronig  3 who.is working in close co:operation wi th  Jordan.  
We shall give here a repor t  on the present  s i tuat ion,  as far as i t  has  come to 
our knowledge and hope t h a t  th is  will be welcome to the  readers, not  only 
because the  original papers  are sca t tered  over several periodicals bu t  are 
extremely difficult to  read as t h e y  contain  some apparent  contradic t ions  
which have  not  been avoided even in the  la tes t  paper. 

We disagree wi th  J o r dan  and Kronig only in one essential point .  I t  is 
t ha t  we see no reason to int roduce the spin of the  neutr ino,  bu t  t h a t  we can 
describe the  difference between the  two kinds of neutr inos in the  same way  
as the difference between electrons and posi t rons in Dirac's theory  of holes. 

We have  t r ied to make this  report  comprehensive wi thou t  much  
recourse to l i te ra ture .  

2. The Neutrino. 

The part icles  which  physics  considers to-day as e lementary can be ordered 
corresponding to  the i r  masses in 3 groups, each containing two types  : 

1. Par t ic les  of great  mass : proton,  neut ron  ; 
2. Part icles  of small mass : electron, positron ; 
3. Part icles  of zero mass : photon,  neutr ino.  

The central  problem of fu ture  physics  is the  explanat ion  of the  existence 
of these different types  of par t ic les  and the  der ivat ion of thei r  propert ies  
from a fundamenta l  principle.  As to the  first two groups, we t h ink  t h a t  the  
solution mus t  lie in the  direct ion of a non-l inear  field theory ,  as has  been 
tried to develop. ~ Bu t  the  par t ic les  of the  th i rd  group correspond classically 
to the case of ve ry  weak field, where the non- l inear i ty  plays  no r0Ie. This 
l imiting case was genera l ly  assumed to be known w i t h  any  desired accuracy,  
as represented b y  the quant ised field equat ions of Maxwell. But  the  discovery 
of the n e u t r o n  has  shaken  this  convic t ion  and we are compelled to revise the  
very principles even of the  l imi t ing case, before we can hope to tackle  the  
(probably non-linear) laws governing the  h igher  part icles.  

a R. de L. Kronig, Physica, 1935, 2, 491, 854, 968. 
4 M. Born, Proc. Roy. Sac., (A), 1934, 143, 410. 
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The experimeataI facts which lead Pauli to the assumption of neutrinos 
are connected with the fi-decay of radio-active nucleii. The spectrum of the 
emit ted electrons (or positrons in the case of induced radio-activity) is con- 
tinuous and has a wide range of velocity. :But the emitt ing nucleus and the 
resulting nucleus are in every respect definite systems. All a t tempts  to 
account for this fact by a simultaneous emission of 7-rays have failed. 

There are only two ways of explanation : either the law of the conserva- 
tion of energy does not hold in these cases or there are particles emi t ted  which 
cannot be detected by our experimental methods, because of their  extreme 
penetrating power. 

To avoid the first unpleasant alternative,* Pauli has put  forward the 
idea that  very light, uncharged particles are emit ted simultaneously with the 
electron when a neutron is converted into a proton (or vice versa), and he 
has called them neutrinos. I t  is not quite hopeless to prove their existence 
by using very light atoms made radio-active with the help of Fermi's method of 
neutron bombardment. One could observe the recoil of these atoms when 
emitting the electrons and measure the  energy and momentum of both the 
particles. If there is a third particle involved in the process, its energy E and 

E _ 23  momentum p should be connected by the  relativistic relation ~-, moeC 2 

where c is the velocity of light and m0 its rest-mass. If m0 turns out to be 
constant (for instance zero), there cou]d be no doubt about the existence of 
the neutrino. Experiments of this kind have been under taken in the 
Cavendish laboratory at Cambridge.~ 

Fermi 6 has shown that  the hypothesis of neutrino emission for fl-decay 
together with some simple and natural  assumption about the interaction 
energy leads to a definite law of distribution for the emitted fi-rays which is 
in good agreement with observation, if the rest-mass of the neutrino is taken  
as very small, very much smaller than  tha t  of the electron. I t  seems very 
probable that  the rest-mass is exactly zero just  as that  of the photon.  

These meagre facts are the experimental  evidence on which the neutr ino 
theory of light is based. The leading idea is that the neutrinos are the ~rimar_v 

* New experimental results of R. S. Shankland (Phy. Rev., 1936, 49, 8") on. the Compton 
Effect (simultaneous emission of photons and electrons) indicate a failure of the conservation 
laws. P. A. M. Dirac has, therefore, concluded (Nature, 1936, 137, 298) that the said laws 
have to be given up. Nevertheless, we think it worth while to study carefully the possible 
way out of this dilemma pointed out by the neutrino theory. 

5 Bainbridge [Science, 1936, 83, 38 (Suppl.)] claims to have a direct proof of the 
existence of the neutrino from considerations about the stability of isotopes. 

G E. Fermi, Nuovo Cimento, 1934, 11, 1. 
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particles moving with the velocity of light, and that the processes usually described 
in terms of photons or light waves are really simultaneous actions of several 
neutrinos. 

Jordan and de Kronig have followed de Broglie in the assumpt ion  t h a t  
there are two kinds of neutrinos, neutr inos and anti-neutrinos,  differing by 
their  spin. This is the  only poin t  where we do not  agree wi th  them.  We 
have found that the whole theory could be devel@ed by assuming only one kind of 
neutrino which can have positive or negative energy. Since in the  the rmal  
equilibrium at absolute zero all negative s tates  are occupied, the  to t a l  negative 
energy becomes infinite. This inconvenience is overcome by using the  
number of unoccupied states as variables and to call them anti-neutrinos,  
just  as in Dirac's theory  of holes represent ing positrons. But  whereas in 
the case of the electrons, the  formulat ion of this theory  of holes ieads to great 
difficulties,; arising from the  external  fields which have to be t a k e n  in to  
account, i t  is very simple and sa t is factory  here in the case of the neutr inos 
which are not  a t t acked  by  external  forces. 

3. Fermi Statistics of Neutrinos. 

We describe the  mot ion  of the  neutr inos and anti-neutrinGs wi th  the 
help of two infinite sets of non-commuting variables  aK, }'K which  we numera te  
(for sake of convenience) wi th  the help of half  numbers, ~ = �89 :], .~, �9 . . . .  
We define the a~, ~ also for negat ive indices w i th  the help of the  relat ions :* 

(1) ~_~---- ~lc +;  ~_~ = ~ K  +, ~ > 0 
where the * means the  ad jo in t  operator.  

The meaning of tkese variables can be described, using the  correspondence 
principle, as Fourier-coefficients of wave func t ions ;  for ins tance  in one 

dimension 

(2) 

f O0 
4, ( t  - = , v  

K = = ~ O 0  

x (t  - x / c )  = 

~K e27rivl K (t - x/c) 

Ylr #r tr ( t  - x/c) = ~+, 

where vl corresponds to the  fundamenta l  f requency of the  waves in the  
finite space considered (Hohlraum). We can in terpre t  K as the  posi t ive or 
negative energy of the corresponding s ta te  in uni t s  of hv 1. 

W. Heisenberg, Zeits. ] .  Phy., 1934, 90, 209; and 1936, 98, 714. 
P. A. M. Dirac, Proc. Camb. Phil. Soc., 1934, 45, 245; and Quantum Mechanics, 

1935, Chap. 13. 
* There is really no use of using two kinds of variables; we introduce the ytr only to be 

in conformity with Jordan and to have symmetry bet~veen neutrinos and anti-neutrinos. 
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The functions ~b, X are not self-adjoint ; but  X ----r Ins tead  of using 
the states of negative energy, one can introduce the holes amidst  the  s ta tes  ; 
the wave funct ion describing them is X = r and to each positive energy I< 
belongs a neutr ino (z~, or aK) and a hole or anti-neutrino (X or 7K). 

We postulate the following commutat ion  laws" 

aKa/z + a / z a ~ :  = 0 

(3) y~yg +~gyK = o  

The number of neutrinos and anti-neutrinos of energy K is defined only for 
K > 0 by the  operators 

NK +) = aK + a~: = 1 -- aKaK + 

(4) NK C-) = 7~ +7~ = 1 -- y~ 7K +. 
There are two other expressions for each of these quanti t ies  wi th  the  
help of (1). 

I t  is well known tha t  these operators (4) have only the eigenvalues 0, 1, 
which mean unoccupied or occupied state. As we do not suppose ex tended  
knowledge of literature, we shall explain this a l i t t le closer in the next  section. 

4. M a t r i x  Representat ion of  the Fundamenta l  Operators. 

We star t  with a simple case and define the  matrices* (o (~ 0) o) 
( 5 )  �9 �9 a = , a + = a n d  s = �9 �9 J , t  

0 0 1 0 0 - 1  

which satisfy the  following relations" 

{a ~ = 0 a +2 = 0 s ~" = I 

(6) a+a + a n * =  1 as + sa = 0 a+s + sa+ =0. 

The matrix a is useful to describe a system wi th  one state which could be 
occupied by a particle or not. We define tile " number of particles " in 
this s tate which is of course either 0 or 1, wi th  the  help of the matr ix  (0o) 

(7) a+a = n = 

0 1 

which is diagonal and has the  eigenvalues 0 and 1 
Thus from (5) i t  follows tha t  

(8) an+ = 1 n. 

We remark tha t  one has 
(9) s = 1 -- 2n 

but we do not  enter in a more elaborate discussion of the interesting formalism 
connected with these matrices. 1flow we extend this method to systems wi th  

* They are, closely connected with Pauli's spin matrices: 

(rx= at ~ a.;.a~= i ( a t - -  a); andor =s. 
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more t h a n  one state,  occupied or not,  by  introducing the notion of the  direct  
product  of matrices.  

5. Direct Product of Matrices. 

If a = (akz) and  b ----- (bin.) are two matrices, the  d i r e c t p r o d u c t  is given 
by  

(lO) a • b = (ak~.b,.,,) 
i.e., the elements are all products  of an3" element of a wi th  any  element of b. 

(a • b)k,,,, l,, = a~,~b,.,,. 
• b = 0 i t  follows t h a t  ei ther  a = 0 or b ----- 0. 

(11) 
If  a 

Fur ther  
(1~) (a x b)* = {(a x b)%, k,,,} = (az,+ b., , ,*)  = a* x b*. 

6. Representation of a• and yK. 

We now give a representa t ion  of the  matr ices  aK and VK fulfilling (3) 
with the help of the  direct  products  of matrices consist ing of the fundamenta l  
matrices a and s. This  representa t ion  was discovered by  Jo rdan  and 
Wigner s who have also shown t h a t  the solution is unique apar t  from un i t a ry  
transformations.  Their  representa t ion is given b y  the scheme (next page). 

Using the definit ion (10) of the  direct  product  of matrices and the equa- 
tions (6), (11) and (1"2), i t  can be easily verified t ha t  the representat ions 
of the fundamenta l  operators given in (13) sat isfy the  commutat ion  rules (3). 

7, A New Set of Operators a~: and c~:. 
We will now define, as Jo rdan  has done, a new set of operators as func- 

tions of our fundamen ta l  operators aK and 7K. 
They are 

a~r = ~/2 ' 
(15) 

a K  ~ ~ K  
C K = 

From (15) we can express ~ and y~ as funct;ions of aK and c~ : 
a •  +~icjr 

a ~: = ~/ 2 ' 
(16)  

a x ~ i c x  

VK = ~2 
From (15) and (1) we see t h a t  

a_K + Y-K _ Y~c § + a~  § 

(17) a-K - -  ~ r  

> 0 a - x  --Y-K YK* -- aK* 
C _ K  - -  ___-- 

i # 2  i~/2 C/C+ 

s p. Jordan and E. Wigner, Zeits .  f. Phy . ,  1928, 47, 631. 
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From (15) and (3), we obta in  the  commuta t ion  rules for the operators aK 
and oK. 
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o r  

(I 9) I ,~  = 
~ r / <  �9 :.-.= 

for ~ > 0. 
From (1,5) and  (I9) we find 

CK 't" C K =.a C_K CK ; 

easily, 

Theret~ore 

(23) Z' (L~ ~-N~)  is finite. 
K 

I : rom (22) i t  follows, t h a t  all e igenva lues  of 

From the  r ep re sen ta t ion  (13) of the  ~K, Y,: one sees t h a t  I.,,: --. N,: has no 
diagonal  e lements ,  or t h e  exI)eeta t ion \,alto. 

NK( +~ and  NK (') are the  number s  of neu t r inos  and an t i -neu t r inos  in t he  s t a t e  K. 
We cart "assure . �9 e t h a t  all st~ttes abow~ a ce r t a in  s t a t e  are unoccui ) ied  , 

NK(+) == 0 and  N~(-) .--- 1), for K > K. 

a r e  

K 

finite. Therefore  

Z' 1",~ and  Z' NK are finite ; ~ > O. 
/c K 

We shall  m a k e  use of these  resul ts  la ter .  

Witl~ t h e  help  of t he  opera tors  a K and  "K we wilt p r e s e n t l y  define t h e  
i ,nporI:ant  ope ra to r  bk first d i scovered  by  J o r d a n  which  obeys t h e  Bose- 
E ins t e in  c o m m u t a t i o n  rules. 

A3 F 

a. : (z  F + a/ ,  aK = 8 F . - K ;  

(181 ct~ Cl~ -}- ct, CK = 8la..-K ; 

a,: c~L + c F a~: = 0 ;  

forK, t, = • ,t + :, + ,L . -  

A s  the new operators a,c and ('K obey the c<)mmutation rule.~ (18), a Jordan- 
\Vigtler repre.~entat{on can be developed for them. Thus a._p,, a K or aK* a K 

h:ts gilt: ei.Kcltvahtes () :tim uni ty .  Similar  is the  cast. of c_. K cK or Gc + /'~:. 
We define opera tors  c m m e c t e d  wi th  these  as 
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8. The Operator b~. 

.Tordan has defined the operator bk as 

(25) 
i oo 

2, ate Ck-K 
bk V l k l  K = - o o  

fo rk  = 4- 1, 4- 2, 4- 3,  . . . . .  

We first observe tha t  

(%) bk* = b-k 

f o r  

(27) 
Thus 

bk+ = -- -~/{k] 27 Ck-K+aK* -- ~/]k[ _Xoo a~+c+~_K 

i oo i oo 
--= 27 a-m C-k+m = 2 ,  aK C-k-K = b-k 

r  _oo ~ I k l  .~o  

We will now obtain the commutat ion rules for b~. 

1 
--  --  s jam ck_m, ~t c/-,], [bk, b/] = (b~, b i bi bk) ~/ [ k j I m,L 

Ea~ ck-~, a~ c/_,] = a,~ [ck_~, 4, c/_,.] + [a,~, a~ ci_J c~-K 

= - a~ at {ek-~, c/-d + {aK, a,} % ,  c~_~ 

= - -  am a t  3 ~ _ K , _  i+~ + ci_t c,_~ 3~, _,, 

(28) [bk, bi] = ~/ I k j [  -ooZ (aK ak+/-K - c/+~ Ck-K). 

To evalnate the series we remember the result (2~) tha t  

(29) 2LK = Za_Ka~ and Z'NK =27C-KCK 
/r  / r  K K 

are convergent. We fttrther assume tha t  the series 

O o  o O  

(30) 27 a-K+r a~ and • c-K+. cK 

for any finite r, are convergent.* 

Now we reorder the expression (28) in such a way tha t  only terms of the 
form (30) appear:  

OO c o  

( [k j[  [bk, b/] = - 2 a,+/_m a,c + 2, Ck_K Ci+K + 

* This condition which has not been explicitly stated by Jordan, but which he really uses, 
seems to us to be indispensable. 
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--}- Z CU< ak+i -K  - Z C:'+~< Q, ~ 
_ ~ _ .,, 

,,.. .t ,.. :. 

Replacing in the th i rd  series -- g by  k + j - ,c and  in the  four th  series -- g 
b y k  - . j  - - ~ , w e g e t  

v/ ! k j (  [b,c., b/] = - -  Z av+/-,c ~< + Y; c , -K  ci+x 
~. :, 

(32)  + Z a,~.+i_x a~ - -  Z c/._~: c:'+x 
:,, + j + .' h - .i -'.-" 

o r  

(aa)  = - 

1 ~ + i - !  
--.% Z 

! 

Thus using the  commutation rules 

r, + j -  ,.., /e -. j - " 
Z a,~+i-~< aK + Z '  C,_,< C/'+,< -.=- 

k - - j - - ~ .  

(a,~.+:'-~c aK -+- aK a,+i-,r + ~ Z 

If 

' , / !  ~ j l Ibm., b/] = o, 

k + ]  = 0  

k [bk, a_~] = .1.. z 

(a4) = k. 

(~ 8) 

i l k  + j-,-~ 0. 

(c/.,.,r c/+,r + c:.+~ c/,...K). 

(c,.~ c-k+,~ + c.,+,~ c/:_,~) = �89 

~/k:" 

7 x  ins tead of a~, 

Thus we get  the  commuta t ion  rules for b, as 

(35) b , ~ b i  - b i b k  = 0 ,  i lk + j : #  0, 
b,~ b - k -  b-k bk = 1, k > O. 

9.  E x p r e s s i o n  . for bk i n  "l"erms of a x  a n d  

If we sub~t i tu te  in the expression (25) for b,, c~, 

wi th  the  help of (15) we get 
~O 

CK 

But 

O O  

Z: 

= ~ z  
OQ 

(ajr ak-K - -  "/~r 7k-1r - -  C~K Y,~'-K '~- "/,: a~.-K). 

C O  

(~K a~-K + a.,c.-K aK) = 0 
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O0 O0 

Z yxY*-x=  �89 Z 
-- O0 

and Z y~a,-K = --Z 
--00 -- O0 

Thus we get 

(YK Yk-x + y~-K Y~r = 0 

o o  o o  

c~k_ ~ y~ -- Z ak+~ y-~ = -- Z 
- - ~  --00 

(36) 
oo 

bk = - v '  l k i  2 7  ~ 7k-,: 
- o o  

o r  

(37) 
o o  

A third expression given by Jordan is gained by splitting the above sum into 
terms with only positive indices" 

(38~ = -- aK Y~-x Z (a~+x ax + -- Y~+x TK +) b, V~ k 1~= �89 ~=~ 

O O  

B = Z (NK(+) -- NK(-)) 

(40) 
= Z (~K + ~ -- y~+ Y~). 

The two definitions can be shown to be equivalent if we transform a's 
and o's to a's and y's and by using the commutation rules. The first defini- 

tion in (40) shows immediately (as pointed out by Jordan) that B has whole 
number eigenvalues 0 ~- I, _ 2, ...., .... 

Kronig has shown that B commutes with all bk defifled in (25). We 
simply reproduce his proof. 

1 o~ 
= -- Z al C-l am Ok--m, Bb~ r ~. , , ,  

10. The Operator B and .its Commutation Properties with bk. 

The operator B is defined by Kron~g as 

o O  

(39) B = i  27 alc-t  
O O  

and by Jordan as 
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(41) 

1 O 0  

Bb~ - -  b~B = 7- Z 
~/I k I l, , .  

1 oo 
--= ~ / i k l  I 

(am Ck-m a/c-1 -- a lc_  l am Ok-m) 

(az az,-z + c_~ cz,+~) = O, 

- -  o O  

using the commutation rules for a's and c's. 

77. Photons. 

It is known that the.photons in a I-Iohlraum can be represented by a 

set of variables b~ which satisfy commutation rules of the type (35). In 

the case of a one-dimensional I-Iohlraum the light wave could be represented 
by a wave functiou 

oo 

(42) ~ It - x/c) = z bk e~=i~ik(t-x/c) = C- 

In 3-dimensions there are some geometrical complications arising from the 

polarisation of light which do not affect the use of the variables* ~k but 
we do not treat these questions here. 

Before Jordan's work it was generally believed that there were two 

fundamental statistics, the Fermi-Dirae statistics and the Bose-FAnstein 

statistics. The former is connected with wave functions anti-symmetric 

in the particles of the assembly, the latter with symmetric wave functions. 

Jordan's  mathematical  results can be interpreted as the fundamenta l  physical  
statement that the only pr imary  statistics is the Fermi-Dirac  one with anti- 
symmetric wave funct ions .  If applied to processes in empty space, 
this leads to the idea tha t  photons (as pr imary  Bose-Einstein particles) do 
not exist at  all, but  tha t  they are only a secondary effect appearing under 
special circumstances. The phenomena in empty  space have really to be 
described by movir/g neutrinos and anti-neutrinos (or the corresponding 
waves). The phenomena at tr ibuted usually to photons are, according to 
~ordan, really simultaneous actions of pairs of neutrinos and anti-neutrinos. 
The exact formulation of these actions follows from the formulae (25). 

For a state with given numbers of neutrinos ~(+) and ~(-), the operator 
representing the number of photons in the k th  state.  

(43) Pk = bk + bk = b-k b~, 
is in general not a diagonal matrix, i.e., the number of photons has not definite 
values. But we can calculate its average or expectation va lue~ the  diagonal 
element of P2" 

Pk (t112, I-i/2, ts/~, t-a/~, �9 . . . .  , . . . . .  ) 

* P. A. M. Dirac, Quantum Mechanics, 1985, p. 229. 
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= z l ( t % ,  t%i , . . . . ;  
~tll2,  ~t p i .... 1f2, t 3~o.~ t .3,]o, 

hi',., t-112, tal2, t-81~, " . . . .  ) I ~ 

We observe t h a t  each aK has only one non-vanishing element • 1, when 
t' K makes the  jump 0 -+ 1 and when all the other t's remain unchanged ; aK § 
behaves in the  same fashion except tha t  the jump for t'~ would be 1 -+ 0. 
The 9'K behaves jus t  in a similar way round as indicated in the scheme (14). 
Therefore aK~'k-K for �89 < K ~< k -  ,_1,- has only one non-vanishing element 
+ 1 for t K ' 0 - +  ] and tK-~'0--> 1 

One term of the  first sum is consequently 

!xT~(+) lxTh_K( -~. 

In  the  same way the terms of the other sums are 

Nk+~(+) (1 - NK(+)) and Nk+~(-) (1 -- NK(-)). 

Ik-- �89 1 oo 
(45) = z + z (1--  

~=r K =�89 
+ -"XT~+K(-) (1 -- NKI-;)}. 

Jo rdan  interprets  this formula in the following way �9 There are two kinds of 
in terac t ion  of neutrinos and mat ter  which are equivalent to an interact ion 
of photons wi th  mat ter"  

(1) Simultaneous absorption of a neutrino and an anti-neutrino whose 
total energy is equal to that of the energy change of the atom" 
~c + (k -- •) = k (usually ascribed to the absorption of one photon). 

(2) Raman effect of neutrinos or anti-neutrinos : One neutrino (anti- 
neutrino) of the energy k + K is absorbed, another of the same 
kind of the energy K is emitted. 

The processes (1) and (2) are not essentially different, i f  we use the idea of 
only one kind of neutrinos having positive and .negative energy states; the 
process (1) coll!d be considered also as a Raman effect where a neutrino 
of positive energy is absorbed and one of negative energy is emitted. This 
is mathemat ica l ly  represented directly by the short formula (37). 

72. Statistical Equilibrium. 
The most impor tant  result of Jordan is the proof tha t  this new conception 

of radiat ion leads to the correct results for the stat is t ical  equilibrium, i.e., 
Planck ' s  law. 

We have two kinds of neutrinos satisfying the Fermi-Dirac statistics. 
The well=known formula for the en t ropy  of an assembly of Nz(+) neutrinos 

arid N/(-) ant i-neutr inos of nearly equal energy I (in units by1) is 

The result is" 
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(46) S = - -  k Z ~ (].--N/z(+)) log (1--N/z(+)) + 1',7#(+) log NIz(+)~ 
/Z. i + (1--NF(-)) log (1--N/Z(-)) + iX'V(-) log N/Z(-)J" 

k being the Boitzmann Constant.. 

Since the anti-neutr inos correspond to holes in the mult i tude of neutrinos 
with n_~gative energy, a netl tr ino can disappear  only by falling in a hole, or 
by a simultaneous disappearance of an anti-neutrino.  Therefore 

(47) 2 (N/+)  - ~ / - ) )  = B, 
/z 

is constant.  Besides we have the  to ta l  energy given as 

(ds) r / z  (N/+)  + ~/z(-)) F, 
/z = h-v1" 

Usi~lg two nmItipliers which we call %fl and fl, we get by the var ia t ion 
of S given by (~6) under  the two conditions (47) and (48) 

log 1 . -- NT(+) 
N~(+) /3 (Z + r 

log 1 -- N/-) N/-)  = # (z - ,~)' 

From ~his we find the ~Fermi dis t r ibut ion law 

1 N~C-) = 1 
(49) N~(+) = if~c,'+~) + 1' e~cz-r + 1 

or if we introduce the notat ions 

y =e-#Z and a = e - # r  

(50) IN.l(+) = a y  and  Nz(-) = ,7 
l + a y  I + Z  

a 

Int roducing these into the  expression of the  en t ropy  and applying the  second 
law of thermodynamics  i t  is shown in the  well-known manner  t ha t  fl = hv,/kT.  
We subs t i tu te  these expressions (50) in Jordan ' s  fornmla (45), 

1 z - � 8 9  1 ~ {Nz+~(+I(I_NK(+I)+Nz+~e)(I_NK(_))}" Pz = T 27 N~(+)Nz_K(-) + - y ~  �89 
K : � 8 9  : 

Denoting 

w e  h a v e  

K 
T = O ~ ,  

e- f~  = y ~  

and dK = ldw, vl l = v. 
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We replace the sum by integrals* and get 
1 

f aya~ ~yl-O~ (51) P ( u ) =  l+ay~ '  1+~,3,~-~ 
0 

The first we write 

o o  

1 
dw ~- 1 + ayZ+w " 1 + a3,r 

0 

+ 
I 

* / +o.,"1 ~ y~o do~. I+~ -+-a 

I I f  (I +a.y W) (1 + ,.y ) 
0 0 I 

which by changing in the second integral co to 1 + ~ becomes 
O 0  

3' (1 + ayOO) (1 + ~ yZ-O0) (1 + ayZ+a~) (1 + 1 
o 

The second integral here cancels the first part  of the remaining integral in 
(51) so that  

I{i ' } i5 0') = Y 1 + ayOO) (1 + i 5 '>w) § (i + i y,+W) (1 + i yOU) dw 
0 

= y  
o o  

(1 + ay ~o) (1 + ~y-~o-~} H- (1 + ay-r (1 + ay-OJ-1)" dco 
0 

o o  

- -  I aY~ - i i  + a2o,) ( i  + aye - l )  

We write the above formula as 

daJ. 

o o  

f -(z - d .  
ayaJ-1 

(52) P (v) = i + ay~O 1 + aya,-~/ 

(5a) T - N~-z) 

* One can also readily evaluate these integrals by substituting 1-_.z for ,~yOO in the first integral and 

l_._z: for a), 1 H-oo and "--Zz for l y  1 H-co in the other integrals, z 
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We can interpret this formula by assuming only one kind of neutrinos with the 
m~mber NK in the state K where ~c may be ibositive or negative. Then the formula 
gives the average pho ton  dens i ty  of energy  l as a Raman e.ffect with  the uni- 
versal rule : absorpt ion  of a neut r ino  of any  (pos i t ive  or negative) energy K 
and simultaneous emission of a neut r ino  wi th  the  energy x -- l. We men- 
tion this to confirm our idea t h a t  the  in t roduc t ion  of a spin of the neutr ino 
by Jordan is quite  unnecessary.  

Since y < I we can subs t i tu t e  
1 - - z  

a y o )  - -  _ _  

Z 

1 
so t ha t  ayCO don = z 2 log y dz. 

Then 

P (v) = -- 

1 1 

/ 1 k_yf_=[) dz 11 = y ; dz 

0 �9 ' Y 0 

log y y -- 1 0 1 - -y  

Introducing here the  va lue  of y,  we get  
li v 

e kT 1 
(54:) V (~) = l,v = b y  " 

1 - -  e k T  e I~T - -  1 

This is the well-known expression for the photon  dens i ty  which by mult ipl ica-  
tion with  the  number  of photons  in the  in terval  dv leads to P lanck  s formula. 
of radiation. 

13. Relation between the Energy of Neutrinos and Photons.. 

We have a l ready remarked  t h a t  a neutr ino field wi th  definite numbers  
of neutrinos of bo th  kinds,  NK(+), NK(-) is in general  not equivalent  to  a 
photon field of a given number  of pho tons ,  _P~. I n  the  language of q u a n t u m  
mechanics we can unde r s t and  this in the  following way. There is a t t i l be r t  
space represent ing all the  s ta tes  of the  field. I f  we choose a co-ordinate 
system in which the  quant i t ies  NK( +l, NK( -> are all represented by diagonal 
matrices, the quant i t ies  Pk are not so. Bu t  there will be another  co-ordinate 
system where Pk's are diagonal ; we will t hen  have a pure photon state. The 
question is to form an idea as to the  re la t ion of these different states. 

For this purpose w e  prove an i d e n t i t y  derived first by de Kronig connect-  
ing the to ta l  energy of the  neutr inos w i th  t h a t  of the  photons. The energy 
of the neutr inos is 
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The 

The 

o o  c o  

(55) E =  z n(L,, + N,,) = 2: 

energy of the photons is 

06) w =  z 

proposition is 

P,, 

n (N~(+) + N,,(-)). 

I I, 
where B is the quant i ty  defined in (39) which, as we have shown, commutes 
with all the  b k. Kronig's proof of the  proposition is as follows �9 

o O  o O  

W = Z k P ~  = Z k b k * b ~  
1 1 

c o  O 0  

- - - - Z  Z 

I, m k = I 
- - 0 0  

at C-k-t 4m Ck-ra 

o o  ~ o O  

(58) = Z '  Z al a,,, c-,~-z ck-,,~ + S Z e 4-t  c-,~-z cz,+z, 
1, m k = l  Z- - - - - -co  k = l  

- - O O  

where the dash over the summation sign indicates tha t  l ~= - -  m. 
Changing k to - -k ,  l to m , m  t o l i n t h e  first par t  of (58) and using 
commutat ion laws, we get 

O O  ~ O O  

(59) w = z '  z 
I , m  k = - - i  

From (39) we see tha t  

(60) B " - =  z" 
l, m 

- - O O  

4l 4m C-k-I Ok- m + 
c o  ~ 

X Z 
l = - - c o k = l  

4l 4m C-l C-m + 41 4-I C-I C1 

the 

al tZ-I C-k-I Ck+l. 

We first observe tha t  
o O  o O  O o  o o  

(61) 2 '  Z al a,,  c-k-t ckwn = Z '  az a,, Z c-k-z ck-m ---- O, 
l ,m  k =  --co l ,m  k =  - co 
- - 0 0  ~ c o  

using tke commutat ion r.ules for c's. Thus adding (58), (59) and (60) and 
using (61), we get 

O o  o O  O O  

2 W + B 2 = 2 Z az a-z Z c-k-z ck+z + Z at a-Z c-l cz. 
l = - - -  co k = l  - - c o  

We split the summations in a manner  such tha t  each summation index 
so tha t  k or l assumes only positive values. 
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co co oo l --�89 
2 W + B ~ = 2 27 a l a - i  Z c-,-zc,~+z + 2 Z a-zctz Z 

l =  �89 k = l  l=a/., k = l  
c-k+l Ck-i 

o o  o O  c o  

+ 2 Z a-z az Z c-,~+i c,_l + 2 a_�89 a�89 Z c-z.+�89 ck-�89 
l = 31z k = l + �89 1 

o o  o O  

+ Z a~,a_l c-l cz + . X  a-zazc lC_z  

C O  

= 2 Z  
l = � 8 9  

co co I - � 8 9  
( 1 - L A  2: N,+~+ 27 Lz Z ( 1 -  N-k+z) 

k = l  l=~].,, k =  1 

c O  o o  o O  

+ 2 Z Lz Z N k - z +  2 L�89 Z ~N~_�89 
l=s /2  k = l + � 8 9  k = l  

+ 27 (1 -- Lz) Nz + Z Lz (1 - N~) 
t =�89 z =�89 

co co oo t - - 1  
- - 2  Z (1- -Lz)  Z N i +  9. Z Li Z ( l - - N / )  

l = � 8 9  ] = l + 1  l=S/ . , .  ] = � 8 9  

C O  

+ 2 Z Lz Z 
I = s/2 k = �89 

o o  C O  c ~  

+ 2 L�89 Z 1'r189 + Z (l-Li)N~ + Z Lz(l-Ni) 
k = l  l-----�89 l---- �89 

co co oo l - - 1  
= (L�89 + N � 8 9  + 2 27 Z N i -+- 2 Z L~ Z I 

l = a / ~  ] = l + l  1---'-- ~[o ] = � 8 9  

Thus 

=2 

O o  o o  

~/o ~/2 
L~ 

o o  C O  ~ o O  

(L�89 + N�89 + 2 2 ( l -  ~) Nz + 2 s (Z -- ~) I,z + 3 2 Nz + 2 Lz 

o o  

z Z ( L z + N A  = 2 F , .  
l = � 8 9  

(62) 2 W + B  ~ =  2 E  
iii i 

o, w I 
~ o w  we can answer  t he  ques t ion  p a t  fo rward  in the  beg inn ing  of th is  

section. 
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The necessary and sufficient condit ion tha t  the whole neutrino energy 
appears in the form of photon  energy is B = 0 or ~T(+) = N(-). These s ta tes  
are called pure pho ton  states or pure light fields. 

The other extreme case is a pure neutr ino field if W = 0 and E = B2/2. 

There are innumerable cases intermediate  between these pure fields. 
As we have shown in (4.1) t ha t  B commutes with all bk, the matrices repre- 
senting b~ are reducible ; they  split  up into finite parts  corresponding to the 
eigenvalues 0, • 1, • 2,. . . . .  of B. For, we can take a matrix representa- 
t ion where B is diagonal ;  if r and s symbolise states of the .neutrinos, then 

B (r. s) = B (r)3 (r, s). 

The commutabi l i ty  
= 

gives in this representat ion 

B(r) 3(r, t) bk (t, s) = bk (r, t) B(t) 3(t, s), 

or B(r) b~(r, s) = bk(r, s) B(s), 

from which we conclude t h a t  b2(r, s) = 0 for each pair of states which do 
not  belong to the  same eigenvalue of B, B(r) ,=/= B (s). Therefore all impure 
fields can be classified with 0, or 1, or 2, . . . .  not compensated neutrinos 
(or anti-neutrinos) ; Jordan  calls this  number  the resultant neutrino charge. 

74. Conclusion. 

The s tandpoint  assumed by Jo rdan  is the following. Before the radio- 
active processes revealed the probabi l i ty  of the existence of the neutrinos, 
the only experimentally known wave fields were those which appear now 
as pare light fields. They tu rn  out to be only a limiting case of a very  much 
larger mult i tude of possible fields, which contain free (not compensated) 
neutrinos. The val idi ty  of this hypothesis  could be experimentally tested 
by a s tudy of a possible influence of radiat ion fields on the fl-decay. If  
i t  is true tha t  the fl-emission is accompanied by an emission of a neutr ino 
there should be an influence of an external  neutrino field on the ]3-emission. 
But since light fields are no th ing  t h a n  neutrino fields (with neutrino pairs) 
we should also expect an influence Of l ight radiation on the E-decay. The 
law of this in terac t ion  has ye t  to be calculated. 

We wish to  make another  remark. Quantum mechanics was  s tar ted 
by replacing the Fourier ampli tudes q~e~Zn'Vo z* of co-ordinate funct ion 
q(t) by matr ix dements  wi th  two i n d i c e s  qA.le~rriVklt. In analogy, 
one could expect t ha t  in a quan tum field theory the Fourier dements  
q~e27n~'ok(t-~k ~ of a quan t i t y  representing a progressive wave q ( t -  x/c) 
should be replaced by  matr ix  dements  q/~le2Zm'/d(t-~lc). Here, as in quan tum 
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mechanics, one should expect  the  combinat ion  law vkz + w,,, = v~,. I n  
the previous theories of radia t ion  fields, there  was no indicat ion t h a t  some- 
thing like t ha t  would lead to a deeper unders tanding.  Bu t  here, in Jordan ' s  
netttrino theory,  we have  for the  pho ton  ampli tudes the expression 

o o  

(6a) k t bk = Z 
i / = _ c o  

where the r igh t -hand  sum is appa ren t l y  the  coefficient of the  two Fourier  
series with the  coefficients a k, c k. Now i t  suggests itself t h a t  we have real ly 
to do wi th  matrices and thei r  mul t ip l i ca t ion  : a,z, c~z and 

i 

( 64 )  oo Z a~z Cld 

where each element  of these matr ices  is again a matr ix  or more generally a 
non-commuting q u a n t i t y  of the  k ind  t rea ted  here. I t  seems to be a t t r ac t ive  
to follow this indicat ion.  

During wr i t ing  this  article, we have received the manuscr ip t  of a new 
article* of Jo rdan  and  de Kronig  in which  t h e y  t rea t  the g-dimensional case. 
There appear no new fundamenta l  difficulties, bu t  there are some interes t ing 
features which are beyond  the scope of th is  art icle to  be reported. Also in 
this paper, Jo rdan  and Kronig  have not  changed their  s t andpoin t  to consider 
the dist inction between the  neut r ino  and t h e  ant i -neut r ino  as the value of 
the spin instead of s t a t e s  and holes as we do here. 

* We are very grateful for having had the prlvilege o~ knowlng about this work before 
publication. 


