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HSR VS. ASR ERROR

� Table summarizing the results of Lippmann 1997, sorted on the ratio of

machine to human error.

% Error Error

Corpus Size in Words Conditions Machine Human Ratio

Alphabetic 26 20-talkers 8-listeners 5.0isolated 1.6ontinuous 3

Resource 1000 null grammar 17 2 8

WSJ-NAB 5000 quiet (trained) 7.2 0.9 8

Switchboard 14,000 spontaneous (tel. BW) 43 4 11

WSJ-NAB 5000 10 dB (trained) 12.8 1.1 12

WSJ-NAB 65,000 close mic 6.6 0.4 16

WSJ-NAB 65,000 omni mic 23.9 0.8 30

Resource 1000 word–pair grammar 3.6 0.1 36

WSJ-NAB 5000 quiet (not trained) 42 0.9 47

WSJ-NAB 5000 22 dB (not trained) 77.4 0.9 86

word

spotting

20 judgment errors 24 0.3 80

TI-digit 10 connected 0.72 0.009 80
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MOTIVATION

� Lippmann (1997) compared human (HSR) and machine (ASR)
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^
 machine has big advantage here

− ASR ERROR = 3 x HSR ERROR −

− ASR ERROR = 30 x HSR ERROR −

− ASR ERROR = 80 x HSR ERROR −

� Machine recognition error 3-80 times human rate

� Modern Speech Recognizers are not robust to noise
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ABBREVIATIONS

ASR Automatic Speech Recognition

HSR Human Speech Recognition
SNR Signal to Noise Ratio

AI Articulation Index

IT Information Theory
CV consonant-vowel (ex. “pa, zee”)

CVC consonant-vowel-consonant (ex. “poz, hub”)

VOT Voice onset time
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JONT’s DEFINITIONS

phone A speech sound e.g., consonant, vowel, nonsense word

word A meaningful phone or phone cluster

phoneme The smallest phone conveying a distinction in meaning

allophones All the phone variants for a given phoneme

recognition Probability measure p
n

of correct phoneme identification

intelligibility Recognition of words (i.e., meaningful speech)

articulation Recognition of “nonsense words”

robustness Relative recognition with filtering and noise

event A binary subunit of articulation [e.g., Voicing: /ba/ vs. /pa/]

trial A single presentation of a set of events

context A phone sequence constraint (e.g., words have context)

information I

n

= log

2

(1=p

n

), n = 1; � � � ; N

entropy Average information:

H =

N

X

n=1

p

n

I

n

conditional entropy A measure of context: high entropy =) low context
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KEY HSR STUDIES

� The first articulation experiments date from Lord Rayleigh’s 1908 and

George Campbell 1910 phoneme identification experiments

� A basic probabilistic approach was developed by Stewart & Fletcher 1921

Details were proprietary within AT&T

– Detailed review of Fletcher’s AI theory: Allen IEEE 1994

� French and Steinberg 1947 following work during WWII

� Shannon 1948+

� G.A. Miller, Heise and Lichten 1951; G.A. Miller & Nicely 1955

� Language and communication G.A. Miller, 1951 McGraw Hill

Miller first introduces IT to language modeling, following Shannon

� Miller 1962 Grammer � 4 dB of SNR

� Boothroyd JASA 1968; Boothroyd & Nittrouer JASA 1988

� Bronkhorst et al. JASA 1993

� Van Petten et al. 1994
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WHAT I WANT TO SHOW:

� HSR is a bottom–up, divide and conquer strategy

– We recognize speech based on a hierarchy of context layers

– As in vision, entropy decreases as we integrate context

� Humans have an intrinsic robustness to noise and filtering

– Robustness does not seem to interact with semantic context effects

� HSR: robust articulation; excellent context models

� ASR: bad articulation; weak context models

– It is critical to control for language context effects

� Comments:

– ASR is a top-down strategy, largely driven by low-entropy models

– For continuity, results will presented in cronological order
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FLETCHER’S ARTICULATION EXPERIMENT

� Play nonsense syllables (CV, VC & CVC) to maximize sound

entropy

– Max(Entropy) , Min(context effect)

� Hold the speech corpus constant for each experiment

– constant source entropy

� Average over many (e.g., 10x10) talker-listener pairs

� Vary the phone articulation by:
changing the SNR
LP-HP filtering the speech
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TYPICAL ARTICULATION TEST RECORD

� Basic method of phone (nonsense syllables) error analysis

1500 Hz lowpass filtering

DATA MODELS

March 1928

(CVC syllable model)

(3 phone syllable model)

v � P



(vowels) = 0:909

 � P



(onsonants) = 0:74 s

3

= 0:505

s � P



(phone) = (v + 2)=3 = 0:796

S � P



(syllable) = 0:515

^

S = v = 0:498
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WHAT THEY FOUND

� Phones are recognized as independent units:

– The probability of correct recognition for the average phoneme s

accurately predicts the nonsense syllable score S
v

, where

S

v

= 

2

v

= s

3

�This is a necessary but insufficient condition for independence

� These statistical models are highly accurate

� !!! Remember: This only applies to “nonsense words” !!!

QUESTION

� What do these models imply about coarticulation?
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THE NEXT STEP

� Next they dissected s � P

orret

(phone) into frequency

bands!

SPECIFIC DEFINITIONS

SYMBOL DEFINITION

� gain applied to the speech

(�) � P



(consonantj�) consonant articulation

v(�) � P



(vowelj�) vowel articulation

s(�) = [2(�) + v(�)℄=3 average phone articulation for CVC’s

e(�) = 1� s(�) phone articulation error

f



high– and low–pass cut–off frequency

s

L

(�; f



) s for low-pass filtered speech

s

H

(�; f



) s for high-pass filtered speech

S(�) nonsense syllable (CVC) articulation

W (�) word intelligibility

I(�) sentence intelligibility



WCA Aug 9, 2002 12 Human Speech Recognition

FLETCHER’S TWO BAND FORMULATION

� Split the speech into low and high bands, having articulations

s

L

(�; f



) and s

H

(�; f



)

� Fletcher proposed a linearizing transformation of the phone

articulations

A(s

L

) +A(s

H

) = A(s)

– This is a nonlinear transformation of probabilities
– There was no guarantee that such a transformation exists

However, Fletcher’s intuition was correct



WCA Aug 9, 2002 13 Human Speech Recognition

WHAT THEY FOUND

� For nonsense fC,Vg syllables the phone articulation transformation is:

A(s) =

log(1� s)

log(e

min

)

;

with e

min

= 0:015 (1.5% error, or 98.5% correct)

– This relationship took years to discover from the empirical curves

� Solving for e � 1� s(A):

e = e

A(s)

min

= e

A(s

L

)+A(s

H

)

min

= e

A(s

L

)

min

e

A(s

H

)

min

� In terms of the error probabilities e = 1� s, e
L

= 1� s

H

and

e

L

= 1� s

L

:

e = e

L

e

H

:
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FLETCHER’S TWO BAND EXAMPLE

� If we have 100 spoken sounds, and 10 errors are made while listening to

the low band, and 20 errors are made while listening to the high band,

then

e = 0:1� 0:2 = 0:02;

namely 2 errors will be made when listening to the full band, so

s = 1� 0:02 = 0:98

S = s

3

= 0:941

� This is an unexpected, simple, and amazing result

– What does this mean? Why does it turn out this way?

DEMO of the the McGurk effect
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THE FLETCHER-STEWART MULTI-CHANNEL MODEL

� Fletcher 1921 generalize the two-band case to K = 20 frequency bands

1� s = e

1

e

2

� � � e

k

� � � e

K

� e

visual

= (1� s

1

)(1� s

2

) � � � (1� s

K

) � (1� s

visual

)

where

e

i

� 1� s

i

–This formula forms the basis of articulation index theory

–It was never formally tested

–Why K = 20 bands?

Each band equals 1mm along the basilar membrane

–It was observed to hold over a hundreds of transmission systems,

giving a solid indirect confirmation

� I have added a visual channel, to account for the McGurk effect

(Channel 21)

� Probability of error e
i

models events, as in the visual example
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MODEL OF BAND EVENT ERRORS

� When the SNR is varied they found that the event-error is

e

k

= e

SNR

k

=K

min

where SNR

k

is the signal to noise ratio in dB, divided by 30, such that

0 � SNR

k

� 1:

� Total error:

e = e

1

e

2

� � � e

K

= e

(SNR

1

+SNR

2

���SNR

K

)=K

min

� The speech SNR (not the energy) determines the event errors e
k

and thus

the phoneme articulation s = 1� e

1

e

2

� � � e

K
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THE RECOGNITION CHAIN

� The cochlear critical bandwidth defines the SNR

k

� The event-error model: e
k

/ e

SNR

k

min

(SNR in dB units)

� The average-phone articulation model:

s = 1� e

1

e

2

� � � e

k

� � � e

K

� The nonsense CVC syllable articulation model: S = s

3

� Heuristic degree of freedom context models Fletcher; Boothroyd; see Allen 1994

– Word: W = 1� (1� S)

j

– Sentence: I = 1� (1�W )

k

– Sentence with context: C = 1� (1� I)

l

� Layers of context:

– j depends on the ratio of words to pseudo-words in the corpus,
– k depends on the number of salient words in a sentences,
– l depends on the word salience and topic context.
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COMPOSITION LAWS

� Rules regarding �

i

P

(i)

error

versus product �
i

P

(i)

orret

?

– Parallel processing) P

e

= �

k

e

k

e.g., e = e

L

e

H

and the McGurk example

– Serial processing) P



= �

k

s

k

e.g., S = s

3

� HSR seems to be a problem in combinatorics,

of elementary events.
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CONCLUSIONS ABOUT FLETCHER’S AI (HSR)

� Context effects are strong and confound the study of recognition

� To study HSR, we must control for language context

– Maximizing entropy factors HSR models (e.g., S = s

3)

� We recognize speech based on a cascade of layers

– Entropy decreases along this cascade

� The phone s � P



is derived from independent event error probabilities

s = 1� e

1

� � � e

K

� Elementary events seem to account for Fletcher’s “independent-band

articulation” channels

� Each event error probability depends on the band SNR

k

, not the energy
e

k

/ e

SNR

k

min
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SUMMARY OF FLETCHER’S RESULTS

� Hierarchical probability relations:

band SNR !

band errors (events) !

phoneme errors !

syllable errors !

nonsense word errors !

true word errors, etc.

� The HSR error is established well before language is accessed!

HSR error depends only on the SNR in bands
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HOW WE RECOGNIZE SPEECH?

� Hierarchical “bottom up” analysis

� Accurate statistical models of performance at each stage

Layer Layer

Event

kk

Words

SNR WSse

Cochlea Phones Syllables

Recognition level

s(t)

???Analog objects Discrete objects

"Back−end""Front−end"

F
ilt

e
rs

L
a
y
e
r

L
a
y
e
r

� Entropy drops (i.e., context is integrated) in stages
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SPEECH ENTROPY VS. THE WIDEBAND SNR

� P



(H; SNR) Miller, Heise and Lichten 1951

� Many of the results of MHL51 expand on the AI model
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CONFUSION MATRIX PARTITIONING

� Miller & Nicely 1955 Confusion Matrix (Table III)

– MN55 established a natural phone hierarchical clustering:

UNVOICED VOICED NASALS
RESPONSE

S
T

IM
U

L
U

S

“This breakdown of the confusion matrix into five smaller matrices . . . is
equivalent to . . . five communication channels . . . .” –Miller & Nicely 1955
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MILLER’S BINARY FEATURES

� Miller & Nicely derived binary consonant features [i.e., events]

“ . . . the impressive thing to us was that . . . the [binary] features were
perceived almost independently of one another.” –Miller & Nicely 1955
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SVD REPRESENTATION OF THE PERCEPTUAL SPACE

� 4dim SVD perceptual representation of the confusion matrix
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WORD SEMANTICS: IP DEFINITION

� 704 isolated words were truncated in 50 ms steps Van Petten 1999

� Isolation point is defined as the time of the discontinuity in recognition

Expt. I – Neutral sentences: “The next word is test-word.”
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� Categorical perception
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WORD SEMANTICS: IP VS. DURATION

� Isolation point vs. word durations (real words, no sentence context)

ISOLATION POINT (IP)

DURATION
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ERP MEASURE OF CONTEXT RE IP

� Expt. II – Event related scalp potential (ERP) re IP, from Exp. I

Sentence semantics effects

dollars
dolphins
scholars

Cohort congruous
Cohort incongruous

IP

Time

Pay with ...

Rhyme

scholars dolphins

dollars

� dollars vs. dolphins: Word context, as measured by the IP,

is independent of the sentence context!



WCA Aug 9, 2002 29 Human Speech Recognition

ERP MEASURE OF CONTEXT RE IP

� Expt. II – Event related scalp potential (ERP) re IP, from Exp. I

Sentence semantics effects

dollars
dolphins
scholars

Cohort congruous
Cohort incongruous

IP

Time

Pay with ...

Rhyme

scholars dolphins

dollars

� Rhyme word scholars is recognized as being out of context

before it is even recognized (at its IP)!
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FROM CONTINUOUS TO DISCRETE

Φ Ψ
OBSERVER

PHYSICAL PSYCHOPHYSICAL

CONTINUOUS DISCRETE

� �-domain signals

Speech signal

Cochlear filter outputs
Neural rate
Voltage in cochlear nu-
cleus cells

� 	-domain objects

Words
Syllables
Phonemes
Events [Miller’s features]

CATEGORICAL PERCEPTION

� Meaningful words are recognized before they end

� Word context (i.e., the IP) seems independent of

sentence context
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SUMMARY

� Miller & Nicely found 5 independent channels, described by

discrete events [Miller’s features]

� SNR

k

) events ) phones ) phonemes ) syllables ) words ) . . .

– SNR determines discrete event errors
– Discrete event errors label phone errors
– Phone errors determine syllable errors
– Syllable errors determine word errors
– The HSR word error is established well before language is accessed!
– HSR error depends only on the SNR in bands

� Language model performance is independent of noise robustness!

– Cochlear filtering is important to robustness
– Performance established at the event level
– Strong parallels to visual processing

� ASR and HSR are fundamentally different

� To study HSR, entropy must be controlled

� Studies need to report raw phone/word errors

� Speech psychophysics is an important tool for studying HSR
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FUTURE GOALS

� We need psychophysics to gain insight of how events are extracted

– What are the physical parameters supporting each event?

� Any increase in insight will lead to invention of new signal processing

methods for robust machine speech recognition
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THE RECOGNITION CHAIN

Layer Layer

Event
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Words
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