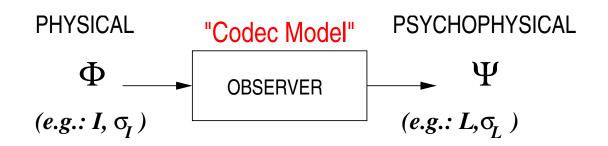
Loudness and the JND


An introduction to loudness Psychophysics

Jont Allen

ECE-437

The intensity JND is internal uncertainty

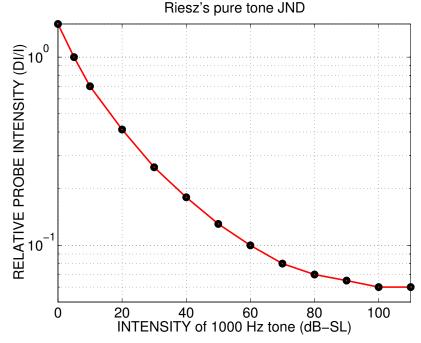
- Perception is stochastic: Each time you hear (see) the same short tone (light) pulse, you hear (see) it with a different loudness (brightness)
- The intensity JND_I (ΔI) is a measure of this internal perceptual fluctuation (noise) given by $\sigma_{\mathcal{L}}$

- The Loudness JND $\Delta \mathcal{L} \propto \sigma_{\mathcal{L}}(\mathcal{L})$
- The loudness JND is proportional to the internal "loudness noise"

Weber's Law (1846)

- In 1846 Weber showed experimentally that $\Delta I \propto I$
 - I is the physical intensity, and ΔI is called the JND
 - Weber used weights of varying relative mass
- Def: $\Delta I/I$ is called the Weber Fraction
- Def: Weber's Law says the Weber fraction is constant
- Weber's law sometimes holds:
 - Wide band noise Intensity discrimination (Miller, 1947)
 - The Weber fraction is not constant for pure tones (Riesz, 1928).
- A floating point converter obeys Weber's Law

Pure-tone intensity discrimination


- Weber's "law" says that $\Delta I \propto I$
 - Weber's Law holds for floating point conversion
 - For fixed point, $\sigma_I = \Delta I$ is a constant
 - Is the ear a fix or floating point converter?
- 1928 Riesz establishes the near-miss to Weber's law for tones

Weber's Law (1846)

PROBLEM: Weber formulated his problem in the physical domain, but the noise is internal

Near-miss to Weber's Law (1846)

Riesz used two beating tones 3 Hz apart for this measurement (i.e., 1000 Hz masker and a low-level 1003 Hz probe)

- The near-miss to Weber's Law results from the fact that the internal noise $\sigma_{\mathcal{L}} \propto \Delta \mathcal{L}(\mathcal{L})$ is not independent of \mathcal{L} .
- In fact noise is Poisson-like: [Allen and Neely 1997]

$$\Delta \mathcal{L}(\mathcal{L}) \approx \sqrt{\mathcal{L}}$$

Fechner's Hypothesis (1860)

- Fechner 1860 is called the father of psychophysics.
- Fechner's hypothesis (or postulate) was that the loudness JND $\Delta L(I)$ is constant:

$$\Delta L(I, L)$$

- Fechner assumed "that the total change in loudness between two intensities I_1 and I_2 may be found by counting the number of JNDs."
- From Fechner's hypothesis and the "counting formula:"

$$N_{\mathsf{JND}} \equiv \int_{L_1}^{L_2} \frac{dL}{\Delta L} = (L_2 - L_1)/\Delta L$$

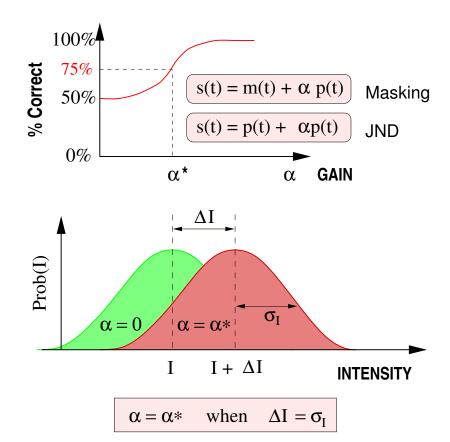
Fechner's JND theory

• Fechner's idea was that the loudness $\mathcal{L}(I)$ is proportional to the number of JND steps N_{JND} , which is given by:

$$N_{\text{JND}} \equiv \int \frac{d\mathcal{L}}{\Delta \mathcal{L}(\mathcal{L})} = \int \frac{dI}{\Delta \mathcal{I}(I)}$$

- He assumed that $\Delta \mathcal{I} \propto I$, i.e. Weber's Law
- He assumed that the internal noise $\Delta \mathcal{L} = \sigma_{\mathcal{L}}$ is constant
- These two assumptions give Fechner's "Law":

$$\mathcal{L}(I) \propto \log(I)$$


Fechner's JND theory

- Counting JNDs is a great conceptual start :o)
- Both assumptions
 - Weber's Law
 - Fechner's Hypothesis are wrong :○(
- Fechner's "Law" is wrong

Theory of Signal Detection

L. L. Thurstone 1927 and later David Green 1965: Formally define the intensity JND as "the relative signal level for detection 75% of the time"

• $\Delta I \propto \sigma_I$:

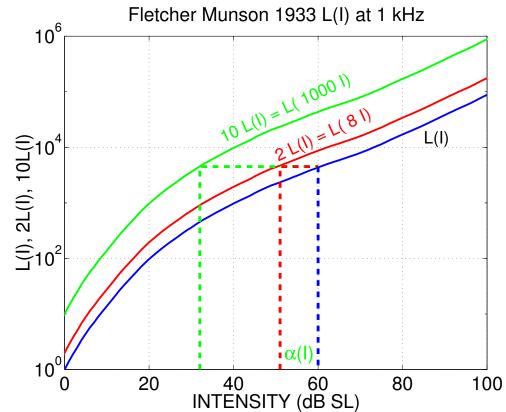
CHRONOLOGICAL DEVELOPMENT

YEAR	CONCEPT	REFERENCE
1846	JND	Weber
1860	Counting JNDs	Fechner
1927	Decision theory model	Thurstone
1928	Near-miss to Weber's law	Riesz
1933	Masking and loudness	Fletcher and Munson
1947	Wide-band JND ($J=0.1$)	G. A. Miller
1966	Signal detection theory	Green and Swets
1997	Loudness and the JND	Allen and Neely

Loudness Additivity

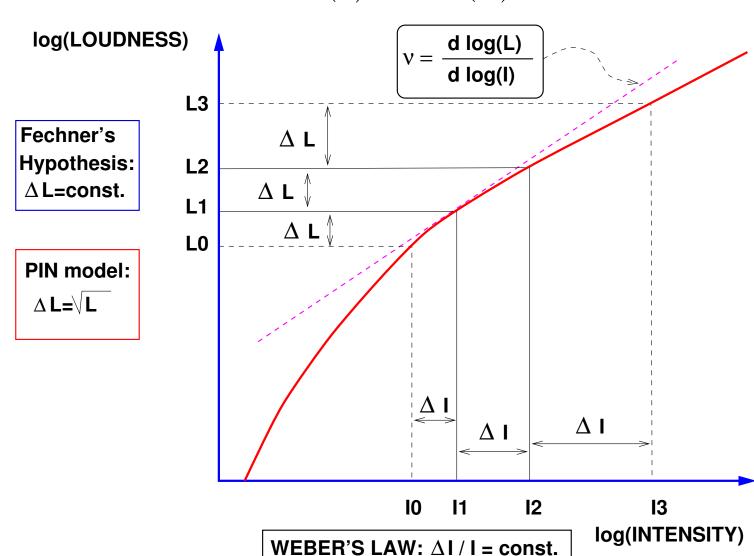
- Fletcher and Munson 1933 showed that loudness adds
 - Adjust I_2 so that: $\mathcal{L}(I_1, f_1) = \mathcal{L}(I_2, f_2)$
 - Two equally loud tones, played together are twice as loud: $\mathcal{L}(I_1, I_2, f_1, f_2) = 2\mathcal{L}(I_1, f_1)$
- Find gain $\alpha(I)$ such that

$$\mathcal{L}(\alpha I_1, f_1) = 2\mathcal{L}(I_1, f_1)$$


• Results: α is about 9 dB (actually it depends on intensity)

Loudness additivity

Fletcher and Munson's 1933 loudness growth data based on loudness additivity is now called:


Stevens' Law:
$$\mathcal{L}(I) = I^{\nu}$$
, with $\nu \approx 1/3$

Loudness vs. intensity for 1, 2, and 10 equally loud components:

BASIC MODEL OF OBSERVER

• Transformation from $\Delta \mathcal{I}(I)$ to $\Delta \mathcal{L}(\mathcal{L})$

