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Abstract
Listeners can reliably identify speech in noisy conditions, al-
though it is generally not known what specific features of speech
are used to do this. We utilize a recently introduced data-driven
framework to identify these features. By analyzing listening-test
results involving the same speech utterance mixed with many
different noise instances, the framework is able to compute the
importance of each time-frequency point in the utterance to its
intelligibility. This paper shows that a trained model resulting
from this framework can generalize to new conditions, success-
fully predicting the intelligibility of novel mixtures. First, it can
generalize to novel noise instances after being trained on mix-
tures involving the same speech utterance but different noises.
Second, it can generalize to novel talkers after being trained
on mixtures involving the same syllables produced by different
talkers in different noises. Finally, it can generalize to novel
phonemes, after being trained on mixtures involving different
consonants produced by the same or different talkers in different
noises. Aligning the clean utterances in time and then propa-
gating this alignment to the features used in the intelligibility
prediction improves this generalization performance further.
Index Terms: speech in noise, intelligibility prediction,
glimpses, generalization

1. Introduction
Normal-hearing listeners are remarkably good at understanding
speech in noisy environments, much better than hearing-impaired
listeners [1, 2] and automatic speech recognition systems [3–6].
Understanding this robustness and reproducing it in machine
listeners would likely enable vast improvements in hearing aids
and conversational interfaces. One promising theory of the mech-
anism underlying this process is that listeners detect relatively
clean “glimpses” of speech in the acoustic signal and assemble
them into a hypothesized utterance [3, 7–9]. We have recently
shown that some glimpses are more useful than others for cor-
rectly identifying a particular utterance in noise [10], yielding
a determination of “where” in the speech signal listeners find
noise robust linguistic information.

Specifically, in [10] we describe a listening test and two
analyses for identifying time-frequency regions of individual
utterances that are important for those utterances to be correctly
identified in noisy mixtures. The human listening test mea-
sured the intelligibility of mixtures of the same exact utterance
with many different instances of “bubble” noise, which approxi-
mated randomized glimpsing. A descriptive analysis was able
to identify important time-frequency regions from these data. A
predictive analysis was able to learn to predict the intelligibility
of particular mixtures, i.e., to generalize across noise instances.

This paper measures the ability of that framework to gener-
alize across different utterances. Specifically, we show that it is
able to generalize to new instances of the same word spoken by
the same talker and by different talkers. We also show that these
models are able to predict better than chance the intelligibility of
somewhat different words by virtue of the words’ similarity to
one another. In order to improve the ability of these classifiers
to make these predictions, we introduce a technique to align
the clean utterances using dynamic time warping (DTW) and
propagate this alignment into the features used by the classifiers.

2. Background
This work is inspired by methods from several fields. In [11], we
measured the band importance function (BIF) for several speech
datasets, and found that these functions were very consistent
across listeners, but very dependent on the speech material under
analysis. These data imply that importance may be a property
of the speech itself, not a global property of the frequency spec-
trum. With this in mind, we introduce here the time-frequency
importance function (TFIF), a weighting of the importance of
each time-frequency point in an utterance to its intelligibility. A
TFIF is essentially a time-varying and utterance-specific BIF.

Ma et al. [12] showed that ad-hoc time-frequency weighting
functions can improve the performance of objective predictors
of speech intelligibility. We believe that our data-driven TFIFs
should improve these predictions even more. Li et al. [13]
introduced the idea of measuring the intelligibility of the same
utterance under a variety of modifications, including truncation
in time and frequency and the addition of uniform noise. While
this technique can only be applied to initial and final phonemes
of utterances, our technique can be applied to phonemes in any
position in a word, even in the context of running sentences.

The “audio bubbles” listening test methodology is based
on the visual bubbles test [14], which uses a visual discrimina-
tion task to identify the regions of images important for viewers
to identify expressivity, gender, and identity. Recently, [15]
proposed an application of the Classification Image, a related
technique, to the auditory task of discriminating /b/ from /d/.
Their use of white Gaussian noise as the corruption required
more than 3000 mixtures of each token to generate a reliable
analysis. Our audio bubbles require an order of magnitude fewer
mixtures to perform a similar task by exploiting the large varia-
tion in importance of different “glimpses” of the clean speech.

3. Listening test
The speech material was selected from the corpus described
in [16]. Two different experiments were performed using two
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different sets of utterances. Both used several pronunciations
of six vowel-consonant-vowel (VCV) nonsense words. The
nonsense words were of the form aCa: acha, ada, afa, aja, ata,
ava. Experiment 1 used three utterances of each word from
a single female talker (number W3). We selected the slowest
and fastest versions of each utterance from approximately 10
versions along with one of an intermediate duration. Experiment
2 used one version of each utterance from three different talkers,
numbers W2, W4, and W5. These talkers were selected because
their recordings were of the highest quality and they showed a
large variation in speaking style. We selected talkers of the same
gender so that they had similar pitches and formant positions.
We selected female talkers because they had fewer pronunciation
mistakes than the male talkers. The utterances were all 2.2
seconds long including surrounding silence.

Each utterance was mixed with 200 instances of “bubble”
noise. This noise was designed to provide glimpses of the speech
only in specific time-frequency bubbles. To construct this noise,
we began with speech shaped noise with an SNR of −24 dB,
sufficient to make the speech completely unintelligible. The
noise was then attenuated in “bubbles” that were jointly parabolic
in time and ERB-scale frequency [17]. The center points of the
bubbles were selected uniformly at random in time and in ERB-
scale frequency, except that they were excluded from a 2-ERB
buffer at the bottom and top of the frequency scale to avoid edge
effects. Mathematically, one instance of bubble noise is given by

B(f, t) =

I∑
i=1

exp

{
− (t− ti)2

σ2
t

− (E(f)− E(fi))
2

σ2
f

}

N(f, t) = γS(f) min

(
1,

10−η/20

B(f, t)

)
(1)

where E(f) = 21.4 log10(0.00437f + 1) converts frequencies
in Hz to ERB, {(fi, ti)}Ii=1 are the randomly selected centers of
the I bubbles, γ controls the overall gain, and S(f) is the average
spectrum of all of the clean utterances used in the experiments.
We used a maximum suppression of η = 80 dB and set σt and
σf such that the bubbles were 350 ms wide at their widest and
7 ERB high at their highest, the smallest values that would avoid
introducing audible artifacts. The number of bubbles was set
such that listeners could correctly identify approximately 50%
of the mixtures, which we found to be 15 bubbles per second.

Subjects were 8 volunteers having normal hearing as defined
by audiometric thresholds on day of test ≤ 20 dB HL at octave
frequencies from 250 to 8000 Hz [18,19]. They were aged 18–22
and participated for extra course credit. They were seated in a
double-walled IAC sound booth in front of a computer running a
custom MATLAB presentation interface. Sounds were presented
diotically via Echo D/A converters and Sennheiser HD280 PRO
headphones. Sound presentation levels were calibrated via Lar-
son Davis sound level meters and couplers so that mixtures were
presented at 75 dBA.

Each listener was assigned to either Experiment 1 or 2 and
was assigned 900 mixtures, 50 involving each of the 18 VCVs
from the relevant set. Each mixture was heard by a single lis-
tener. One mixture at a time was selected for presentation at
random from those assigned to the listener. The listener then
selected the word that they heard from a closed set of six using a
textual MATLAB interface. There were two 5-minute training
periods where the listener was given feedback on their responses.
The first used the clean utterances and the second used noisy
utterances. No feedback was given during the main listening test,
which took approximately one hour per subject.

Talker acha ada afa aja ata ava

W3 v1 72.0 60.5 60.0 70.5 75.0 70.5
W3 v2 72.0 64.5 64.5 69.5 72.0 76.5
W3 v3 74.0 67.5 57.0 64.5 50.0 69.5

W2 32.0 52.5 32.0 49.5 58.5 75.0
W4 75.0 75.5 64.0 54.5 77.0 56.0
W5 52.5 62.5 51.0 47.0 73.5 67.5

Table 1: Percent of mixtures correctly identified by listeners

The percentage of mixtures that were correctly identified for
each clean utterance is shown in Table 1. Note that many of these
percentages are above our target value of 50%. As discussed in
Section 4.2, the effect of this is to reduce the number of mixtures
per utterance that can be utilized in some of our analyses.

4. Analyses
We utilize the descriptive and predictive analyses of [10]. Both
analyses are performed on features computed from each mixture,
Ñj(f, t) = 20 log10Nj(f, t), the noise level at each point in
the spectrogram, and yj , the proportion of times the mixture was
identified as containing the correct word. Note that these features
do not represent the speech, which is only represented implicitly
through groupings of related mixtures. We also introduce here
a procedure to align two clean utterances and propagate that
alignment to the corresponding features.

4.1. Descriptive analysis: Statistical testing

The descriptive analysis performs Pearson’s χ-squared test of
independence at each spectrogram point between Ñj(f, t) and
yj . Points that are not independent of the mixture’s intelligibility
are identified as important to it. The time-frequency importance
function (TFIF) is a matrix with one point corresponding to each
time-frequency point in an utterance’s spectrogram, and a value
at that point reflecting its importance,

Mχ(f, t) = ± exp
(
− 1
α
P (f, t)

)
(2)

where P (f, t) is the p-value of the χ-squared test, α is a sig-
nificance level of 0.05, and the sign is the same as that of the
correlation. This analysis is similar to the correlational method of
identifying band importance functions from listening tests [20].

4.2. Predictive analysis: Support vector machine

The predictive analysis is performed by a linear support vector
machine (SVM), selected because of its interpretable representa-
tion and good generalization performance. We train the model
to predict yj from {Ñj(f, t)}∀f,t. The dimensionality of these
features is very high (approximately 100,000), so we project
them into a 70-dimensional subspace using principal compo-
nents analysis before feeding them into the SVM.

Because SVMs are sensitive to imbalances in the number of
positive and negative training examples [21], we balanced the
classes by discarding examples from whichever class is more
prevalent. Thus, the effective number of training examples was
twice the number in the smaller class. This meant that conditions
that differed substantially from 50% correct reduced the effective
number of training examples because of the resulting imbalance
between intelligible and unintelligible mixtures. We balanced the
number of test utterances in the same way to enforce a baseline
accuracy of 50%.
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(a) Talker W3 v1 (b) Talker W3 v2 (c) Talker W3 v3 (d) Unwarped (e) Warped

Figure 1: Spectrograms (top row) and time-frequency importance functions masking the spectrograms (bottom row) for three versions of
the word ada spoken by the same talker (a)–(c), and the pooled spectrogram and TFIF unwarped (d) and warped (e) to match W3 v3.

Talker acha ada afa aja ata ava

W3 v1 54.5 58.9 53.8 65.3 49.0 54.2
W3 v2 58.0 65.5 58.5 68.0 62.5 59.6
W3 v3 64.4 58.5 64.0 66.2 66.5 56.6

W2 57.8 73.2 52.3 49.5 62.7 55.0
W4 60.0 54.1 57.6 61.0 71.7 58.5
W5 59.5 56.7 52.6 61.2 64.2 53.8

Avg 59.0 61.1 56.4 61.9 62.8 56.3

Table 2: 5-fold cross-validation accuracy within individual utter-
ances. Bold entries are significantly above chance performance
(50%) at a 0.05 level according to a one-sided binomial test.

4.3. Alignment: Dynamic time warping

Because the features used in the various analyses only repre-
sent the clean speech implicitly, some processing was necessary
in order to permit generalization between different utterances.
Various normalizations, including pitch, vocal tract length, and
timing, could be performed between clean utterances and then
propagated to the features of the relevant mixtures. Timing
normalization is the most straightforward to propagate to the
features, so that was the only normalization that we used here.
Specifically, a time warp for a clean utterance was computed
using [22] to minimize the sum of squared errors between its
mel frequency cepstral coefficients and those of a target clean
utterance, with no penalty for insertions or deletions. This warp
was then applied to the features of the first utterance’s mixtures
before performing further analyses.

5. Results
Figure 1 shows the spectrograms and TFIFs of three different
versions of the word ada spoken by a single talker. It also shows
a pooled spectrogram, computed by averaging the magnitude
spectrograms of all of the individual utterances, and the pooled
TFIF both before and after warping the utterances to align with
W3 v3. It shows that the original utterances are severely mis-
aligned, causing no problem for listeners, but disrupting the
naı̈ve analysis. Aligning them leads to more consistent results.

Figure 2 shows the spectrograms and TFIFs of the word ada
spoken by four different talkers (including one utterance from
the talker in Figure 1). It shows that such utterances exhibit
greater variation than those from the same talker. Aligning them
again helps make them more comparable to one another and the
results more consistent.

Talker Warp acha ada afa aja ata ava

Same + 65.2 74.1 67.0 62.7 74.4 63.5
Same − 63.6 63.4 57.2 63.9 74.0 64.5
Diff + 62.3 69.3 59.9 58.7 73.9 61.6
Diff − 55.7 66.8 61.6 58.9 63.1 59.9

Table 3: Cross-utterance classification accuracy on mixtures
involving a novel utterance. Same-talker models were trained
on two utterances, different-talker models on three. Results are
shown with (+) and without (−) aligning the clean utterances to
a reference. All results are significantly better than chance at a
0.05 level according to a one-sided binomial test.

5.1. Predictive analysis

Table 2 serves as a baseline for subsequent SVM accuracy results.
It shows the accuracy of classifiers trained and tested on mixtures
that involve the same clean speech utterance using 5-fold cross-
validation. Thus the classifiers were trained on 80% of the
mixtures and tested on the remaining 20%, with the training
and testing divisions rotated through the five possibilities and
the accuracies averaged. It shows the accuracy that classifiers
can achieve when required to generalize across noise instances
and not across speech utterances. It is limited, however, by the
amount of training data available for each classifier, at most 160
mixtures per utterance. Table 4 (discussed below) will show
that increasing the amount of training data, even from different
utterances, can improve this accuracy significantly. We would
expect, therefore, that these cross-validation numbers would
continue to improve given additional mixtures for each utterance.

Table 3 shows the cross-utterance classification accuracy of
the SVM classifiers. It shows generalization results for three
different utterances from the same talker and for four different
utterances from four different talkers. In each case, a model was
tested on a single utterance after being trained on the other utter-
ances. This procedure was repeated, rotating through each of the
utterances for testing, with the accuracies averaged together. The
table shows these results for both the unmodified features and
features aligned to W3 v3 for the single-talker condition and W4
for the multiple talker condition using the technique described in
Section 4.3. It shows that these classifiers are able to generalize
across different utterances of the same word spoken by both the
same and different talkers, and that they are better able to do
so when the utterances are aligned to a reference. Subsequent
results will therefore only be reported with the use of warping.
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(a) Talker W3 v1 (b) Talker W2 (c) Talker W4 (d) Talker W5 (e) Unwarped (f) Warped

Figure 2: Spectrograms (top row) and time-frequency importance functions masking the spectrograms (bottom row) for four versions of
the word ada spoken by different talkers (a)–(d) , and the pooled spectrogram and TFIF unwarped (e) and warped (f) to match W4.

T U Ntr acha ada afa aja ata ava

S S 104.9 59.0 60.9 58.7 66.5 59.3 56.8
S D 105.1 57.6 69.5 56.5 62.0 63.7 60.0
S D 262.2 65.2 74.1 67.0 62.7 74.4 63.5

D S 114.3 57.9 60.7 54.1 59.2 61.9 55.4
D D 114.1 50.7 54.8 55.1 49.6 59.0 53.9
D D 464.7 62.3 69.3 59.9 58.7 73.9 61.6

Table 4: Accuracy of cross-utterance classification and cross-
validation within utterances showing the effect of increased train-
ing data. Abbreviations: Talker (T), Utterance (U), Same (S),
Different (D), and number of training points (Ntr). Bold entries
are significantly better than chance at a 0.05 level according to a
one-sided binomial test.

Note that a number of the cross-utterance accuracies in Ta-
ble 3 are higher than the within-utterance cross-validation results
in Table 2. This is rather surprising, as the cross-validation re-
sults only require generalizing across noise instances, whereas
the cross-utterance results also require generalizing across ut-
terances. Table 4 shows that this is mainly due to the increased
number of examples available to train the cross-utterance classi-
fiers as compared to the cross-validation classifiers. Specifically,
it shows the accuracy of cross-utterance classifiers trained on
the same number of examples as the cross-validation classifiers
for each utterance. The number of training points, averaged
across utterances, is shown in the Ntr column. In the limited
data condition, cross-validation models generally outperform
cross-utterance models.

Table 5 compares the ability of these classifiers to generalize
across different versions of the same word with their ability to
generalize across different words. It includes results for both the
same talker and different talkers. The top half of the table shows
that these models are able to predict the intelligibility of mixtures
significantly better than chance for all words in all combinations
of same and different talker and word. Significance is tested
using a one-sided binomial test comparing against a baseline of
50% accuracy with a significance level of 0.05.

In the different word condition, we test each of the classifiers
trained in the same word condition on three randomly selected
utterances of different words. These random words come from
the same talker in the same talker condition and from different
talkers in the different talker condition. The results show that the
classifiers can achieve an accuracy of 57–64% in these condi-
tions, all of which are significant. This is due to the fact that all
of the utterances share the same general structure and pacing, i.e.,
the important regions for distinguishing between these words

Talker Word acha ada afa aja ata ava

Same Same 65.2 74.1 67.0 62.7 74.4 63.5
Same Diff 62.2 61.8 61.9 59.8 57.5 56.8
Diff Same 62.3 69.3 59.9 58.7 73.9 61.6
Diff Diff 64.0 61.4 59.9 62.0 58.0 59.4

Same ∆ 3.0 12.3 5.2 2.8 16.9 6.7
Diff ∆ −1.8 7.9 0.0 −3.3 15.8 2.2
∆ Same 2.9 4.9 7.1 4.0 0.6 1.9
∆ Diff −1.8 0.5 2.0 −2.1 −0.5 −2.6

Table 5: Cross-utterance accuracy for various combinations of
same and different talker and test word, along with comparisons
between them (∆). Bold entries are statistically significant.

are all approximately aligned. Aligning the different words to a
reference has little effect on prediction accuracy.

The bottom half of the table compares various pairs of rows
from the top half, with significant differences in bold. The signif-
icance test used in this case is a two-sided two-proportion z-test
with a significance level of 0.05. It shows that the intelligibilities
of mixtures involving the words ada, ata, and ava are predicted
significantly better than the pooled cross-word results. This
means that the classifiers for those words capture a significant
amount of phoneme-specific information beyond the general
structure shared by all of the words. The bottom half of the
table also shows that afa is significantly better able to generalize
across utterances from the same talker than from different talkers,
indicating that those classifiers are able to capture a significant
amount of talker-specific information.

6. Conclusion

We have shown that the intelligibility prediction framework
of [10] is able to generalize not only to novel noise instances,
but also to novel instances of the same word from the same
talker and from different talkers, and to novel phonemes in aCa
nonsense words. These abilities are the necessary first steps
toward creating a classifier-based intelligibility predictor able
to generalize to arbitrary new mixtures from a finite amount of
human-generated training data. While the current study shows
that this generalization is possible across words that share a
particular form, future studies are necessary to determine the
extent to which it is possible for such models to generalize to
completely different words and to the same words in different
phonetic contexts.
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