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Sound propagation in the sonic crystal (SC) along the symmetry direction is modeled by sound prop-

agation through a variable cross-sectional area waveguide. A one-dimensional (1D) model based on

the Webster horn equation is used to obtain sound attenuation through the SC. This model is

compared with two-dimensional (2D) finite element simulation and experiment. The 1D model pre-

diction of frequency band for sound attenuation is found to be shifted by around 500 Hz with respect

to the finite element simulation. The reason for this shift is due to the assumption involved in the 1D

model. A quasi 2D model is developed for sound propagation through the waveguide. Sound pres-

sure profiles from the quasi 2D model are compared with the finite element simulation and the 1D

model. The result shows significant improvement over the 1D model and is in good agreement with

the 2D finite element simulation. Finally, sound attenuation through the SC is computed based on

the quasi 2D model and is found to be in good agreement with the finite element simulation. The

quasi 2D model provides an improved method to calculate sound attenuation through the SC.
VC 2012 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4744930]
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I. INTRODUCTION

Sound propagation over a periodic arrangement of scat-

terers has been of interest over the past few decades. The ini-

tial study began with Martinez et al.1 in 1995, when it was

found that an artistic creation has possible engineering appli-

cations. The structure was based on a minimalistic design (an

art movement in the 1950s based on simplistic forms and

designs), consisting of hollow steel rods, 3 cm in the outer di-

ameter, arranged on a square lattice with a lattice constant of

10 cm. When sound propagates through this structure, it was

found that certain bands of frequencies are significantly atte-

nuated compared to other frequencies. This finding led to

increased interest among researchers to explore sound propa-

gation through periodic structures. Periodic structures come in

different configurations. When the medium of wave propaga-

tion (the host) is fluid and scatterers are solid (as in the present

case) or vice versa, such structures are referred as sonic crys-

tals (SCs). When both the host and scatterers are of the same

media, such as solid in solid, these are known as phononic

crystals.

It has been found that periodic structures do not behave

homogeneously with respect to waves of all frequencies.

Certain bands of frequencies can propagate through the

structure, while certain bands of frequencies cannot propa-

gate through the structure, which are referred to as band-

gaps.2 It should be noted that the bandgaps appear for an

“infinitely periodic structure.” Figure 1(a) shows a two-

dimensional (2D) array of circular scatterers which extends

infinitely. Such a structure is referred to as a periodic struc-

ture. For a periodic structure, sound does not propagate in

the bandgap region. However, in practice, the structure is of

finite size. Especially for sound waves in the audible fre-

quency range, the size of the repeating unit is of the order of

few centimeters, and the structure becomes large with a

number of scatterers arranged periodically. It is therefore im-

portant to study not just the bandgap for a periodic structure

but also the sound attenuation through the finite structure.

For such a finite structure or SC, significant sound attenua-

tion is observed in the frequency range corresponding to the

bandgap. This is explained by the evanescent wave in the

bandgap region due to a nonzero imaginary part of the wave-

number.2 The sound attenuation is not due to absorption or

viscosity in the model. The sound attenuation in the SC is

due to the interference of the wave after passing through the

periodic structure.

SCs have promising applications in engineering and sci-

ence. Trees arranged in a periodic arrangement3 gave better

sound attenuation compared to a green belt or forest. The

frequencies attenuated corresponded to the periodicity of the

lattice, and the array of trees works like a SC. Hence it was

proposed that these periodic arrays of trees can be used as

green acoustic screens. Similarly, in another study,4 periodic

structures of size 1.11 m� 7.2 m with cylinders of diameter

16 cm were used as acoustic barriers. The results showed

good agreement with those predicted by Maekawa5 for bar-

riers. It was further proposed that introducing holes or vacan-

cies in the structure will improve the behavior of the sample

as a noise barrier for low frequencies.6,7 Hence, further stud-

ies and improvements on the design of such structures would

be quite beneficial.

Although the above represent a few recent research

studies on bandgap structures in the field of acoustics, such

properties of periodic structures have been extensively stud-

ied in the 1970s and 1980s in relation to light waves
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(photonic crystals),8 elastic waves,9 and matter waves.10

Methods such as the plane wave expansion method11–13 and

the multiple scattering methods14 were used for calculating

the band structures. These methods were mainly developed

for photonic crystals which are also applied to SCs and pho-

nonic crystals. Bandgaps have also been explained based on

the spring mass system.15

In the present work, sound propagation through the SC

is modeled by sound propagating through a waveguide.

Sound propagating through a waveguide with a variable

cross-sectional area can be represented by the Webster horn

equation which is an approximate equation, with the assump-

tion of uniform pressure across the cross-section. This

reduces the problem to a one-dimensional (1D) model repre-

sented by an ordinary differential equation.

Some of the drawbacks of the Webster equation are that

it assumes sound hard lining, there is no mean flow, and

pressure is assumed to be uniform across the cross-section.

In some of the recent studies on Webster horn equation,16

Rienstra has used the perturbation method and method of

slow variation to obtain the Webster equation for such cases.

Rienstra has also generalized the derivation to ducts with

non-uniform speed of sound, ducts with irrotational mean

flow, and ducts with acoustic lining.

Martin17 has obtained some generalization on the Web-

ster horn equation for higher order variants using a power se-

ries for an axis-symmetric waveguide. He has obtained a

hierarchy of 1D ordinary differential equations for an axis-

symmetric waveguide. The equations were obtained by solv-

ing the Helmholtz equation using a power-series expansion

method in a stretched radial coordinate. The lowest approxi-

mation turns out to be the Webster equation. In a similar

way we have included a quadratic term to the Webster equa-

tion which serves our purpose of modeling sound propaga-

tion through the SC satisfactorily.

In the present work, we have considered sound propa-

gation in the SC along the symmetry direction (CX) (Fig.

1). Since the structure is symmetric about the plane AB and

CD, the structure can be reduced to a strip model as shown

by the rectangle in Fig. 1(b). Further using the symmetry

about the center line, the model is reduced to a waveguide

problem [Fig. 1(c)]. In Sec. II A the modeling of sound

propagation through a waveguide using the Webster horn

equation is discussed. Section II B gives the 2D finite ele-

ment simulation for the pressure field. Section III discusses

the computation of sound attenuation by the SC over the

frequency range of 500–6000 Hz. Results on sound attenua-

tion obtained from the Webster horn equation model and fi-

nite element simulation show some agreement but there is a

shift of �500 Hz for the attenuation band frequencies. We

have also compared these results with the experimental

result.2 In Sec. IV, we discuss the reason for this shift and

present a quasi 2D model as an improvement to the 1D

Webster horn equation. This model assumes a parabolic

pressure profile over the cross-section, and the set of equa-

tions is derived from the weighted residual method. The

results when compared with finite element results and

experiment showed significant improvement over the Web-

ster horn model.

II. SOUND PROPAGATION THROUGH THE SC ALONG
A SYMMETRY DIRECTION

The problem considered is shown in Fig. 1(b). A planar

sound wave propagates along the symmetry direction CX of

an array of circular scatterers arranged periodically. Since

the problem is symmetric about AB and CD, the model can

be reduced to a strip model as shown by the rectangle in

Fig. 1(b). We consider sound attenuation over five layers of

scatterers, which reduces to an array of five scatterers. The

model is further reduced by taking the symmetry about

the center line to give a waveguide as shown in Fig. 1(c).

The top and bottom surfaces including the cylinders are

modeled as sound hard boundaries. There is a sound source

at the inlet end, and radiation boundary condition is applied

at the outlet end. The problem is effectively reduced to one

of sound propagation through a symmetric waveguide as

shown in Fig. 1(c). The first solution to this problem is

obtained by using a 1D model based on the Webster horn

equation.

A. Sound propagation through a waveguide: Webster
horn equation

Sound propagating through a waveguide with a variable

cross-sectional area is modeled by the Webster horn equa-

tion. The Webster horn equation considers the pressure to be

a function of only the direction of wave propagation, and

constant over the cross-section of the waveguide. This

reduces the problem to a 1D model represented by an ordi-

nary differential equation. The Webster equation18,19 is

given by Eq. (1),

d2pðx; tÞ
dt2

¼ c2

S

d

dx
S

dpðx; tÞ
dx

� �
; (1)

where p is the acoustic pressure, c is the speed of sound, and

S is the cross-sectional area of the waveguide.

Assuming that the pressure is harmonic in time,

pðx; tÞ ¼ Re
�

PðxÞeixt
�
; (2)

where P(x) is complex-valued amplitude and x is the angu-

lar frequency of the propagating wave. For harmonic

response, the Webster horn equation reduces to Eq. (3),

d2P

dx2
þ dP

dx

S0

S

� �
þ x2

c2
P ¼ 0; (3)

where S0 represents the first derivative of S with respect to x.
The above equation is discretized along the x-axis using

the second-order finite difference method to obtain a system

of linear equations. The radius of cylinders r is 1.5 cm and

lattice spacing a is 4.25 cm [as shown in Fig. 1(c)]. The

cross-section area function S(x) is shown in Fig. 1(c) by the

dashed line, although the area function S(x) is continuous but

its derivative is not continuous at the beginning and end of

the cylinders. However, this issue can be overcome by

approximating the derivative numerically which takes a
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large numerical value. The results for sound attenuation (in

dB) were checked for mesh convergence and thus the wave-

guide is suitably modeled numerically.

At the inlet node, a constant pressure boundary condi-

tion of 1 Pa was used, while at the outlet node a 1D Sommer-

feld radiation boundary condition was used. The numerical

results for pressure were found to converge for 2000 mesh

points, for frequency up to 6000 Hz. The Helmholtz number

for wave propagation given by ka varies from 0.38 to 4.67 in

the frequency range of 500–6000 Hz.

B. Finite element method

To validate the results from the Webster equation

model, finite element simulations were performed using the

software COMSOL Multiphysics 3.4. A 2D model along with

boundary conditions is shown in Fig. 2, consisting of an

array of five circular scatterers with the same geometric pa-

rameters as mentioned before.

The pressure is assumed to be harmonic in time, and the

wave propagation is modeled by the 2D Helmholtz equation

given by Eq. (4),

r2Pðx; yÞ þ x2

c2
Pðx; yÞ ¼ 0; (4)

where pðx; y; tÞ ¼ ReðPðx; yÞeixtÞ and P(x,y) is the complex

amplitude.

For the finite element analysis, triangular quadratic ele-

ments (T6) were used for meshing the domain. The model

consists of 5004 elements, and the simulation was performed

over a range of frequency from 500–6000 Hz in steps of

10 Hz. The simulation result was checked for convergence

by using a finer mesh for the pressure field at the highest fre-

quency of 6000 Hz. For the current model, the maximum

element size is 5.6 mm, which was less than 1/10 of the

wavelength at the highest frequency simulated (6000 Hz

with a corresponding wavelength of 57 mm in air).

III. SOUND ATTENUATION BY THE SC FROM THE
WEBSTER HORN MODEL AND FINITE ELEMENT
SIMULATION

Sound attenuation by the SC is given by the insertion

loss,

IL ¼ SPLwithout SC – SPLwith SC (5)

where SPLwithout SC and SPLwith SC are the sound pressure

levels at the same position without and with the SC, respec-

tively. From both the models, sound pressure was measured

10 cm (� 2.5 a) away from the last cylinder. As we will see

in Sec. IV, sound pressure after and before the SC at this dis-

tance is mostly uniform across the cross-section, so that the

y position of the point of measurement does not make a dif-

ference. The pressure amplitude obtained at this position cor-

responds to SPL with the SC (SPLwith SC). When the

cylinders are removed, the waveguide becomes a straight

channel with uniform pressure amplitude across the cross-

section, as the other end has radiation boundary condition.

Therefore, the SPL without cylinders at the same position is

the same as that corresponding to the incident wave ampli-

tude when the cylinders are present.

Using the standard definition of SPL, the above expres-

sion for insertion loss reduces to

IL ¼ 20� log 10
PI

PO

� �
; (6)

where PI is the amplitude of the inlet pressure wave that is

incident on the SC and PO is the amplitude of the outgoing

pressure wave measured 10 cm after the last cylinder.

For the finite element model and the 1D model, a pres-

sure boundary condition of 1 Pa was applied at the inlet.

However, the prescribed pressure at the inlet boundary is not

the forward traveling incident wave. This pressure at the

inlet boundary is the result of a forward traveling incident

wave and a backward traveling reflected wave. Pressure and

velocity conditions at the inlet boundary were used to extract

the incident pressure wave.

The pressure wave at the inlet is mostly 1D; hence, the

net pressure can be written as a combination of forward and

backward propagating wave,

pðx; tÞ ¼ Re PIe
iðxt�kxÞ þ PReiðxtþkxÞ

n o
¼ RefPðxÞeixtg;

(7)

therefore,
FIG. 2. Model used for the finite element simulation along with boundary

conditions.

FIG. 1. (a) 2D periodic structure consisting of circular scatterers arranged

periodically. (b) Plane wave propagating along the symmetry direction (CX)

of a SC. Symmetry is used to reduce the model to a strip model shown by

the rectangle. (c) A symmetric waveguide used for the quasi 2D model.
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PðxÞ ¼ PIe
�ikx þ PReikx; (8)

where PI and PR are the amplitudes of the incident and

reflected wave, respectively.

Similarly the velocity is given as20

uðx; tÞ ¼ Re
1

qc

�
PIe

iðxt�kxÞ � PReiðxtþkxÞ
�� �

¼ RefUðxÞeixtg; (9)

where

UðxÞ ¼ 1

qc
ðPIe

�ikx � PReikxÞ: (10)

At the inlet (x¼ 0), Eqs. (8) and (10) reduce to

Pjx¼0 ¼ PI þ PR; (11)

Ujx¼0 ¼
PI

qc
� PR

qc
: (12)

The above set of simultaneous equations are solved to get

the amplitude of incident forward traveling wave as a func-

tion of inlet boundary pressure P and velocity U at the

boundary.

PI ¼
Pþ qcU

2

� �����
x¼0

: (13)

The outgoing wave amplitude (PO) can be directly obtained

from the pressure field in the output region as there is no

reflected wave in the output region.

In this way, sound attenuation at a particular frequency

is obtained. The sound attenuation by the SC is independent

of the applied pressure at the inlet. The procedure is repeated

for a range of frequencies from 500–6000 Hz, with a fre-

quency step of 10 Hz to obtain the sound attenuation by five

cylindrical scatterers arranged periodically.

The results for the sound attenuation through the five

circular scatterers are shown in Fig. 3. The results compare

the sound attenuation obtained from the Webster horn equa-

tion and the finite element model along with our previous ex-

perimental result.2 The experiment was conducted with five

acrylic cylinders (similar to Fig. 2) and insertion loss was

measured at the same location. For further details on experi-

ment, please refer to our previous work.2

The sound attenuation results from the 1D model shows

a significant sound attenuation (more than 20 dB) in the fre-

quency range of 2900–5320 Hz, with a maximum sound

attenuation of 39 dB. Finite element simulation predicts a

significant sound attenuation in the frequency range of

2720–4820 Hz with a maximum sound attenuation of 38 dB.

The two results also agree with the experimental results.

Below 2500 Hz, there is no significant sound attenuation.

Although the results are in reasonable agreement, some

observations can be made. The finite element results are much

closer to the experimental results compared to the sound

attenuation from the 1D model. Above 2500 Hz, the sound

attenuation band from the 1D model is shifted to the right by

about 200 Hz to 500 Hz at 2500 and 5000 Hz, respectively,

compared to the experiment and the finite element model.

The reason for this frequency shift in sound attenuation

band is due to the assumption of uniform pressure over the

cross-section in the Webster horn equation. This assumption

may hold true at low frequencies (for a low Helmholtz num-

ber) or when the cross sectional area is varying slowly. How-

ever, near the cylinders or for high frequencies, the pressure

varies significantly in both directions, and hence this 2D

behavior cannot be modeled effectively by the 1D model

based on the Webster horn equation.

IV. QUASI 2D MODEL FOR SOUND PROPAGATION
IN A WAVEGUIDE

The pressure variation in the SC can be studied through

the finite element simulation and is shown in Fig. 4(a). Fig-

ure 4 shows the sound pressure in the strip model at 3500 Hz

where the sound attenuation is quite significant (�37 dB).

The pressure plot shows that there is a very feeble outgoing

wave, and most of the incoming wave is attenuated by the

SC. The frequency of high sound attenuation is chosen to

observe the interaction of sound wave with the SC.

FIG. 3. Sound attenuation over five cylinders obtained from the Webster

horn equation, finite element simulation, and experiment.

FIG. 4. (Color online) (a) Pressure plot in the strip model consisting of five

circular scatterers at 3500 Hz. Pressure wave near the first and second cylin-

der is not uniform across the cross-section. (b) Pressure amplitude at a

cross-section measured 0.5 cm before the first cylinder from different meth-

ods. (c) Pressure amplitude along the x-axis from different methods. The

pressure amplitude from the finite element model overlaps with the quasi

2D model solution.
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As can be seen in Fig. 4(a), sound pressure at a distance

of even one unit cell a before and after the SC is uniform

across the vertical cross-section. However, the pressure field

near the cylinders is not uniform across the cross-sectional

area. Therefore, the assumption in the Webster horn equation

is certainly questionable. To improve upon the Webster horn

equation, we have developed a method to include a non-

uniform (parabolic) pressure profile across the cross-section.

The method is based on implementing the weighted re-

sidual method21 on the 2D Helmholtz equation [Eq. (4)] for

harmonic wave propagation. The residue of the Helmholtz

equation is integrated over the cross-section, with y varying

from 0 to S(x). The pressure across the cross-section is

assumed to be a linear combination of constant and parabolic

pressure profile in the y direction as given by Eq. (14). The

parabolic pressure profile is chosen so that the pressure is

symmetric in the waveguide about the x axis [Fig. 1(c)],

Pðx; yÞ ¼ a0ðxÞ þ a1ðxÞy2: (14)

The Galerkin method is used so that the weighting functions

are the same as the pressure profiles (1 and y2). This leads to

the weighted residual equations as

ðSðxÞ

0

@2Pðx; yÞ
@x2

þ @
2Pðx; yÞ
@y2

þ k2Pðx; yÞ
� �

dy ¼ 0; (15)

ðSðxÞ

0

@2Pðx; yÞ
@x2

þ @
2Pðx; yÞ
@y2

þ k2Pðx; yÞ
� �

y2dy ¼ 0:

(16)

The above formulation results in two ordinary differential

equations

�a000 þ
S0

S
�a00 þ k2�a0

� �
þ 1

S

d

dx

�
ð�a0 � PjsÞS0

�
¼ 0; (17)

�a001 þ
3S0

S
�a01 þ k2�a1

� �
þ 3

S3

d

dx

�
ð�a1 � PjsÞS2S0

�

þ 6

S2
ð�a0 � ajsÞ ¼ 0; (18)

where �a0 and �a1ðxÞ are pressure related quantities, defined in

terms of coefficients of Eq. (14).

�a0ðxÞ ¼

ðSðxÞ

0

Pðx; yÞdy

ðSðxÞ

0

dy

¼ a0ðxÞ þ a1ðxÞ
S2

3
; (19)

�a1ðxÞ ¼

ðSðxÞ

0

Pðx; yÞy2dy

ðSðxÞ

0

y2dy

¼ a0ðxÞ þ a1ðxÞ
3S2

5
: (20)

Also, Pjs is the pressure at top boundary, y¼ S,

Pjs ¼ a0ðxÞ þ a1ðxÞS2: (21)

The above equations were solved simultaneously using the

finite difference method to obtain values of a0ðxÞ and a1ðxÞ.
The pressure P(x,y) is readily obtained using the quasi 2D

model, for a given frequency.

It can be shown that when a1ðxÞ ¼ 0

Pðx; yÞ ¼ a0ðxÞ: (22)

For this case, the quasi 2D model [Eqs. (17) and (18)]

reduces to the Webster horn equation [Eq. (3)]. This shows

that the Webster horn equation is a special case of the quasi

2D model.

The pressure obtained from the quasi 2D model and the

Webster equation model is compared with the finite element

simulation in Figs. 4(b) and 4(c). The results are compared

at the frequency of 3500 Hz. Pressure amplitude across a

vertical cross-section 0.5 cm before the first cylinder is plot-

ted in Fig. 4(b). The result shows that there is a significant

pressure variation across the cross-section. It clearly shows

that the quasi 2D model is able to represent the 2D pressure

variation better than the Webster equation model, as it is

closer to the finite element results. Sound pressure along the

x-axis is also compared in Fig. 4(c). Finite element results

overlap with the quasi 2D model results. The comparison

shows that quasi 2D model is a better representation than the

original Webster equation.

Using the above quasi 2D model, sound attenuation is

calculated for the range of frequencies from 500–6000 Hz.

The sound attenuation curve for this model is closer to the fi-

nite element simulation and the experiment results than the

Webster horn equation model (Fig. 5). This quasi 2D model

predicts sound attenuation more accurately and does not ex-

hibit the shift in frequency of the attenuation band as seen

for the Webster equation model. This explains that the fre-

quency shift in the attenuation band in the Webster equation

model is due to the assumption of uniform pressure across

the cross-section.

V. CONCLUSION

In the present work, we have considered sound propaga-

tion through the SC along the symmetry direction (CX). The

symmetry in the structure is used to reduce the problem to a

FIG. 5. Sound attenuation by an array of five circular scatters. Results com-

paring sound attenuation from the experiment, Webster horn model, quasi

2D model, and finite element model.
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waveguide model as shown in Fig. 1(c). Sound propagation

through the waveguide is modeled by the Webster horn

equation which assumes the pressure to be uniform over the

cross-sectional area. This reduces a 2D problem to a 1D

problem represented by a second order ordinary differential

equation. The Webster horn equation model is used to obtain

sound attenuation over a frequency range of 500–6000 Hz.

Finite element simulation (2D) was performed for the same

problem, and the results show a frequency shift (�500 Hz)

for the sound attenuation frequency range. The reason for

this shift is due to the assumption of uniform pressure across

the cross-sectional area in the Webster horn equation. We

proposed a quasi 2D model which assumes the pressure as a

linear combination of constant and parabolic pressure pro-

file. The set of equations for this model is derived from the

weighted residual method. The results are compared with fi-

nite element results, and it shows significant improvement

over the Webster horn model.

The quasi 2D model can be used in other applications as

an improved version of the Webster horn equation. The quasi

2D model can also be further extended to include higher

order terms. However, for the present work on SCs, the para-

bolic term gives satisfactory results when compared with the

finite element simulation. We can further use the quasi 2D

model to recalculate the bandgap and obtain the decay con-

stant for the SC. This may help us to improve the prediction

of bandgaps for an infinite periodic structure.

The present models based on the Webster horn equation

and quasi 2D model are valid only for wave propagating in

one direction. The work can also be extended in the future

for wave propagating in other directions.
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