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This work is devoted to the study of the wave propagation in infinite two-dimensional structures

made up of the periodic repetition of frames. Such materials are highly anisotropic and, because of

lack of bracing, can present a large contrast between the shear and compression deformabilities.

Moreover, when the thickness to length ratio of the frame elements is small, these elements can res-

onate in bending at low frequencies when compressional waves propagate in the structure. The

frame size being small compared to the wavelength of the compressional waves, the homogeniza-

tion method of periodic discrete media is extended to situations with local resonance, and it is

applied to identify the macroscopic behavior at the leading order. In particular, the local resonance

in bending leads to an effective mass different from the real mass and to the generalization of the

Newtonian mechanics at the macroscopic scale. Consequently, compressional waves become dis-

persive and frequency bandgaps occur. The physical origin of these phenomena at the microscopic

scale is also presented. Finally, a method is proposed for the design of such materials.
VC 2012 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4744975]
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I. INTRODUCTION

Two considerations may explain the great number of

studies devoted to the dynamic properties of periodic reticu-

lated (or cellular) structures, namely structures obtained by

repeating a unit cell made up of interconnected beams (or

plates). The first reason is that they are frequently encoun-

tered. For example, they appear in sandwich panels, stiffened

plates, and truss beams used in aerospace and marine struc-

tures. They can also represent idealized buildings or the

microstructure of foams, plants, bones,…. The second reason

is that the dynamic behavior of periodic materials is very

rich. They are known for the existence of frequency bandg-

aps, that is to say, intervals of frequencies at which wave

propagation cannot occur.1,2 Moreover, in pass bands, waves

travel in preferred directions3–5 because of the anisotropy. In

most cases, frequency bandgaps are caused by Bragg scatter-

ing when the wavelength is on the order of the cell size. This

corresponds to the framework of phononic crystals. However,

frequency bandgaps can also appear at wavelengths much

greater than the cell size, which defines the notion of meta-

materials. This was evidenced theoretically in the pioneering

Ref. 6 by considering an elastic composite with a high con-

trast between the rigidities of the two constituents and in Ref.

7 for lattices. The consequence of the rigidity contrast is that

the softer component resonates at low frequencies when mac-

roscopic waves propagate in the stiffer component. The

effects of the local resonance were also observed experimen-

tally.8,9 Metamaterials have unusual properties.10 In particu-

lar, at the macroscopic scale, the effective mass differs from

the real mass. It depends on the frequency, which leads to

non-local effects in time. Therefore the description of the

behavior at the macroscopic scale is a generalization of the

Newtonian mechanics.11 Metamaterials represent a specific

class of generalized continua. A review of recent advances

on this topic can be found in Ref. 12.

This work analyzes the propagation of plane waves in

two-dimensional periodic structures the unit cell of which is a

frame (Fig. 1). Such materials are highly anisotropic because

the resisting elements are oriented only according two direc-

tions. Also the elements are more flexible in bending than in

tension-compression. As the frames are not braced, the shear

deformability is much greater than the compression deform-

ability. Moreover, when the thickness to length ratio of the

elements is small, they can resonate in bending at low fre-

quencies. In that case, the propagation of compressional

waves with a wavelength much greater than the cell size can

induce the resonance of the elements in bending. This phe-

nomenon makes it possible to realize metamaterials with only

one constituent contrary to the other metamaterials based on

the stiffness contrast between the different components. The

objective is the description of the behavior of the structure at

the macroscopic scale and the research of its physical origin

at the microscopic scale. This enables to identify the condi-

tions of existence of atypical behaviors and to propose a

method for the design of new materials.

Specific numerical methods have been developed for the

study of the wave propagation in periodic media.1,2,5 They

are based on the Floquet–Bloch theorem, which enables to

reduce the study of the whole structure to the study of the

unit cell. Another approach consists in replacing a discrete

structure by an equivalent continuum.13–15 When the wave-

length is much greater than the cell size, it is possible to use
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the rigorous asymptotic methods of homogenization that

require no assumption about the nature of the continuum.

Earlier works can be found in Refs. 16 and 17 for composite

media and in Ref. 18 for reticulated structures. The method

was also successfully applied to the study of Rayleigh scat-

tering in periodic media.19 For reticulated structures, the

physics of the unit cell can be described either using the con-

tinuum mechanics as in the method of multiple parameters

and scale changes20,21 or using the beam theory as in the ho-

mogenization method of periodic discrete media.22,23 Other

procedures that extend homogenization to higher frequencies

can be found in Refs. 24 and 25 for continuous structures

and in Ref. 26 for discrete mass-spring systems.

Here, the homogenization method of periodic discrete

media (HPDM) is used. This method has already given inter-

esting results on the dynamic behavior of frame structures in

the absence of local resonance.27,28 Its main advantages are:

(1) The equivalent continuum (a Cauchy continuum, a gen-

eralized medium or a metamaterial) is derived rigorously

from the properties of the cell. The only assumption is

scale separation, which means that two scales with very

different characteristic lengths can be defined. The mac-

roscopic or global scale is given by the wave propagation

and the microscopic or local scale is given by the size of

the cell.

(2) The method is completely analytic. This provides a clear

understanding of the mechanisms governing the behavior

of the structure and of the role of each parameter. Such a

knowledge is desirable for the design of new (meta)ma-

terials with prescribed properties.

(3) Once the macroscopic behavior is identified, it is always

possible to come back to the microscopic scale to deter-

mine the deformation of the cell as well as the forces and

moments in the elements.

(4) Superior orders of the expansions are obtained relatively

easily. This is particularly interesting for frame structures

because the shear stiffness and the tension-compression

stiffness do not have the same order of magnitude.

Because the method of multiple parameters and scale

changes is generally limited to the leading order, it

misses the shear properties and the coerciveness of the

macroscopic description is lost.21

The implementation of the HPDM method is realized in

two steps23: the discretization of the momentum balance and

the homogenization process itself. As in Refs. 27 and 28, the

HPDM method is coupled with the scaling of all the parame-

ters to correctly take into account the physics of the problem.

Moreover, the homogenization process has been adapted to

situations with local resonance.42

Section II describes the studied structures and the prin-

ciples of the HPDM method. Then the equivalent contin-

uum obtained in the absence of local resonance is presented

in Sec. III. In Secs. IV and V, the wave propagation is ana-

lyzed at two frequency ranges. The first case corresponds to

the classical domain of homogenization, whereas the sec-

ond case deals with local resonance. The application of the

results to real frame structures is discussed in Sec. VI, and

a method is proposed for the design of metamaterials.

II. HOMOGENIZATION OF PERIODIC DISCRETE
MEDIA

A. Studied structures

The studied structures are infinite and periodic in the

plane ðx; yÞ of the wave propagation. They are made up of

horizontal elements (called floors) supported by vertical ele-

ments (called walls). Elements are beams or plates behaving

as Euler–Bernoulli beams in the plane ðx; yÞ. They are

linked by perfectly stiff and massless nodes. Moreover, the

walls and the floors have similar properties. The following

notation will be used (Fig. 2):

(1) The characteristics of walls (i ¼ w) and floors (i ¼ f ) are:

‘i, length; ai, thickness; h, depth according to the axis z;

Ai ¼ aih, cross-section area; Ii ¼ ðha3
i Þ=12, second

moment of area with respect to the axis z; qi, density;

�qi ¼ qiAi, mass per unit length; and Ei, elastic modulus.

(2) The position of the node located at the intersection of the

floor f and the wall w is determined either by the ordered

pair of integers ðw; f Þ or by the continuous coordinates

x ¼ w‘f and y ¼ f ‘w.

FIG. 1. Example of structures.

FIG. 2. Notation (structure).
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(3) As the connections are perfectly stiff, the motions of

each endpoint connected to the same node are identical

and define the discrete kinematic variables of the system.

For the node ðw; f Þ, the motion in the plane ðx; yÞ is

described by the displacements in the two directions

Uðw; f Þx , U
ðw; f Þ
y and by the rotation hðw; f Þ.

The study is conducted within the framework of the

small strain theory and the linear elasticity. Moreover, the

structure vibrates at a given circular frequency x. As a

result, every variable can be written in the following way:

Xðx; y; tÞ ¼ <ðXðx; yÞeixtÞ where t is the time. Because of

the linearity of the problem, the time dependence can be sim-

plified and will be systematically omitted.

B. Discretization of the dynamic balance

The aim of the first step is to reduce the study of the mo-

mentum balance of the whole structure to the study of the

momentum balance of the nodes. This process is performed

without loss of information. The discretization consists in

expressing explicitly the forces at the endpoints of an ele-

ment as functions of the nodal kinematic variables. Then the

balance of forces and moments applied by the elements con-

nected to a same node is written, and these equations consti-

tute the discrete description of the dynamic behavior of the

structure. The process is detailed afterward.

The element linking the node B to the node E is consid-

ered (Fig. 3). It is characterized by the parameters ‘, A, and

I. In the local beam frame, s stands for the coordinate along

the beam axis, u, v for the transverse and axial displace-

ments, respectively, and h for the rotation. The primes

denote the differentiation with respect to s. The axial force

N, the shear force T, and the bending moment M act by con-

vention from the left part to the right part. No external force

is applied on the beam.

The longitudinal vibrations in harmonic regime are

described by the momentum balance along the beam axis

and by the compression constitutive law:

N0ðsÞ ¼ qAx2tðsÞ

NðsÞ ¼ �EA t0ðsÞ
)

t00ðsÞ ¼ �v2tðsÞ

where v ¼
ffiffiffiffiffiffiffiffiffi
qx2

E

r
¼ 2p

kc
:

8>><
>>:

kc is the compression wavelength in the element at the stud-

ied circular frequency x.

The transverse vibrations are described by the momen-

tum balance along the transverse axis, the moment of mo-

mentum balance, and the bending constitutive law:

T0ðsÞ ¼ qAx2uðsÞ
M0ðsÞ ¼ �TðsÞ
MðsÞ ¼ �EI u00ðsÞ

)
u0000ðsÞ ¼ b4uðsÞ

where b ¼
ffiffiffiffiffiffiffiffiffiffiffi
qAx2

EI

4

r
¼ 2p

kb

:

8><
>:

kb is the bending wavelength in the element.

Both wavelengths are related by a purely geometric

relationship:

k2
b ¼ kc2p

ffiffiffi
I

A

r
¼ kc

2paffiffiffiffiffi
12
p ) kb

kc
¼ O

a

kb

� �
� 1: (1)

Indeed, the Euler–Bernoulli beam description requires that

the bending wavelength is much greater than the thickness

of the element. Thus the bending wavelength is always

smaller than the compression wavelength.

The previous equations are now integrated between the

nodes B and E using the unknown displacements and rota-

tions of the endpoints (uB, vB, hB and uE, vE, hE) as boundary

conditions. This provides the expressions of the forces at the

extremities of the element in its local frame:

NB ¼ N vB; vE
� �

NE ¼ �NðvB; vEÞ
TB ¼ T uB; uE; hB; hE

� �
TE ¼ T �uE;�uB; hE; hB

� �
MB ¼ M uB; uE; hB; hE

� �
ME ¼ M uE; uB;�hE;�hB

� �
;

(2)

where

Nðt1; t2Þ ¼
EAv

sinðv‘Þ
�
t1 cosðv‘Þ � t2

�

Tðu1; u2; h1; h2Þ ¼
EIb3

1� cosðb‘Þ coshðb‘Þ
�

u1

�
coshðb‘Þ sinðb‘Þ þ sinhðb‘Þ cosðb‘Þ

�
� u2

�
sinðb‘Þ þ sinhðb‘Þ

�

þ h1

b
sinðb‘Þ sinhðb‘Þ � h2

b

�
cosðb‘Þ � coshðb‘Þ

��

Mðu1; u2; h1; h2Þ ¼
EIb2

1� cosðb‘Þ coshðb‘Þ
�

u1sinðb‘Þ sinhðb‘Þ þ u2

�
cosðb‘Þ � coshðb‘Þ

�

þ h1

b

�
coshðb‘Þ sinðb‘Þ � sinhðb‘Þ cosðb‘Þ

�
� h2

b

�
sinðb‘Þ � sinhðb‘Þ

��
: (3)

FIG. 3. Notation (element).
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The dynamic balance of each element being satisfied, it

remains to write the balance of the nodes. Because their mass

is negligible and there is no external force, it consists in add-

ing the forces (or moments) applied by the four elements (two

walls and two floors) connected to the same node. Here the

geometry of the structure is explicitly taken into account. In

the global frame ðx; yÞ (Fig. 2), the balance of the nodes is:

(1) Balance of momentum in the x direction:

TE
w Uðw; f�1Þ

x ; Uðw; f Þx ;�hðw; f�1Þ;�hðw; f Þ
� �
� TB

w Uðw; f Þx ; Uðw; fþ1Þ
x ;�hðw; f Þ;�hðw; fþ1Þ

� �
þ NE

f Uðw�1; f Þ
x ; Uðw; f Þx

� �
� NB

f Uðw; f Þx ; Uðwþ1; f Þ
x

� �
¼ 0:

(4a)

(2) Balance of momentum in the y direction:

NE
w Uðw; f�1Þ

y ; Uðw; f Þy

� �
� NB

w Uðw; f Þy ; Uðw; fþ1Þ
y

� �
þ TE

f Uðw�1; f Þ
y ; Uðw; f Þy ; hðw�1; f Þ; hðw; f Þ

� �
� TB

f Uðw; f Þy ; Uðwþ1; f Þ
y ; hðw; f Þ; hðwþ1; f Þ

� �
¼ 0: (4b)

(3) Balance of moment of momentum:

ME
w �Uðw; f�1Þ

x ;�Uðw; f Þx ; hðw; f�1Þ; hðw; f Þ
� �
�MB

w �Uðw; f Þx ;�Uðw; fþ1Þ
x ; hðw; f Þ; hðw; fþ1Þ

� �
þME

f Uðw�1; f Þ
y ; Uðw; f Þy ; hðw�1; f Þ; hðw; f Þ

� �
�MB

f Uðw; f Þy ; Uðwþ1; f Þ
y ; hðw; f Þ; hðwþ1; f Þ

� �
¼ 0: (4c)

Once the nodal variables have been determined, it is always

possible to calculate the forces and displacements inside

each element. Therefore the discrete description offered by

these finite difference equations is fully equivalent to the

complete description.

C. Scale separation and local resonance

The principles of homogenization are now used to

derive the differential equations describing the behavior of

the equivalent continuum. The key assumption is scale sepa-

ration. This means that the characteristic length L of the de-

formation of the structure under vibrations is much greater

than the characteristic length ‘c of the basic frame. Thus the

scale ratio � ¼ ‘c=L is a small parameter (�� 1), and it is

possible to expand the kinematic variables and some forces.

In this study, the dimensions of the frame in the x and y
directions have the same order of magnitude and ‘c ¼ ‘w by

convention. The size L is related to the macroscopic wave-

length and is unknown for the moment.

If the frequency of the vibrations of the structure is

much lower than the natural frequencies of the frame ele-

ments, then the condition of scale separation is respected.

However, having a quasi-static state at the local scale is only

a sufficient condition, and homogenization can sometimes be

applied with local resonance. This notion is illustrated by

considering a structure vibrating at different ranges of fre-

quency. At very low frequencies, both bending and compres-

sion waves generated in the elements have wavelengths

much longer than the length of the elements. Consequently,

the parameters v‘ and b‘ are very small:

v‘ ¼ 2p
‘

kc
� 1 and b‘ ¼ 2p

‘

kb
� 1;

and the trigonometrical functions can be expanded in the

expressions of the nodal forces and moment [Eq. (3)]:

Nðv1; v2Þ ¼
EA

‘
ðv1 � v2Þ �

ðv‘Þ2

6
ð2v1 þ v2Þ�

ðv‘Þ4

360
ð8v1 þ 7v2Þ

 !
þ O

�
ðv‘Þ6

�

Tðu1; u2; h1; h2Þ ¼ �
12EI

‘3
ðu1 � u2Þ þ

‘

2
ðh1 þ h2Þ�

ðb‘Þ4

840
ð26u1 þ 9u2Þ �

ðb‘Þ4‘
5040

ð22h1 � 13h2Þ
 !

þ O
�
ðb‘Þ8

�

Mðu1; u2; h1; h2Þ ¼
6EI

‘2
ðu1 � u2Þ þ

‘

3
ð2h1 þ h2Þ�

ðb‘Þ4

2520
ð22u1 þ 13u2Þ �

ðb‘Þ4‘
2520

ð4h1 � 3h2Þ
 !

þ O
�
ðb‘Þ8

�
: (5)

When the frequency is increased, both wavelengths decrease,

but kc is always longer than kb [see Eq. (1)]. The previous

expansions remain valid until the bending wavelength kb

becomes of the same order as the length of the elements:

‘ � kb

2p
� kc

2p
) b‘ ¼ Oð1Þ and v‘� 1:

In that case, elements are in resonance in bending and the

expressions (3) have to be kept for the shear force and the

bending moment. Nevertheless as the compression wave-

length kc is much greater, it is still possible to expand the

axial force and to apply homogenization. If the frequency is

increased again, the method remains valid provided that the

two following conditions are respected. First, the compression
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wavelength kc in the stiffer elements should be much greater

than their length ‘ to define a macroscopic scale. Second, the

bending wavelength kb in the more flexible elements should

be much greater than their thickness a to use the Euler–

Bernoulli beam model.

Another consequence of scale separation is that nodal

motions vary slowly from one node to the next. Therefore

the nodal variables can be considered as the discrete values

of continuous functions of space variables x and y:

Uðw; f Þx ¼ Uxð�; x ¼ w‘f ; y ¼ f ‘wÞ
Uðw; f Þy ¼ Uyð�; x ¼ w‘f ; y ¼ f ‘wÞ
hðw; f Þ ¼ hð�; x ¼ w‘f ; y ¼ f ‘wÞ:

These new functions are assumed to converge as �
approaches 0 and are replaced by asymptotic expansions in

powers of �:

Xð�; x; yÞ ¼ X0ðx; yÞ þ �X1ðx; yÞ þ �2X2ðx; yÞ þ…

(6)

where X stands for Ux, Uy, or h and Xj are continuous func-

tions of order j. In the sequel, the physically observable

variables of a given order in � are written with a tilde:
~X

jðx; yÞ ¼ �jXjðx; yÞ.
Equations (4a)–(4c) describing the balance of a node

also depend on the motions of the four neighboring nodes.

Because the structure is periodic, the distances between the

nodes are constant. They are equal to ‘w ¼ �L in the vertical

direction and to ‘f ¼ �‘�L where ‘� ¼ ‘f =‘w ¼ Oð1Þ in the

horizontal direction. These values are small with respect to

x and y, which enables expressing the variations of the

motions with Taylor’s series:

Xðw; f 61Þ ¼ X0ðw‘f ; f ‘wÞ

þ � X1ðw‘f ; f ‘wÞ6L
@X0

@y
ðw‘f ; f ‘wÞ

� �
þ…

Xðw61; f Þ ¼ X0ðw‘f ; f ‘wÞ

þ � X1ðw‘f ; f ‘wÞ6‘�L
@X0

@x
ðw‘f ; f ‘wÞ

� �
þ…:

(7)

This introduces the macroscopic derivatives.

D. Normalization

Normalization consists of scaling the physical parame-

ters (the properties of the elements and the circular fre-

quency) according to the powers of �. It ensures that each

mechanical effect appears at the same order whatever the

value of �. Thus the same physics is kept at the limit �! 0,

which represents the homogenized model.

The choice of the properties of the elements determines

the stiffness contrast and then the possible mechanisms in

the structure. Here the frames have similar walls and floors

with a thickness to length ratio of order �:

Ef

Ew
¼ Oð1Þ

qf

qw

¼ Oð1Þ ‘f

‘w
¼ Oð1Þ hf

hw
¼ Oð1Þ

aw

‘w
¼ Oð�Þ af

‘w
¼ Oð�Þ: (8)

As for the circular frequency, the scaling is imposed by the

balance of the elastic and inertia forces at the macroscopic

level. If the frequency is underestimated, the structure has a

quasi-static behavior. On the contrary, if the frequency is

overestimated, displacements vanish because the inertia

forces cannot be greater than the elastic forces. Nevertheless,

the elastic forces can have two origins: the bending or the

tension-compression of the elements, and there are two pos-

sibilities for the order of magnitude of the frequency. The

reference circular frequency is by convention:

xr ¼
1

L

ffiffiffiffiffiffi
Ew

qw

s
:

The two frequency ranges of interest are x ¼ Oð�xrÞ and

x ¼ OðxrÞ.

E. Macroscopic description

Finally, the expansions in powers of � [Eqs. (5)–(7)] and

the scaling of the parameters [Eq. (8)] are introduced in

Eq. (4) describing the balance of the nodes. The relations

obtained being valid for any small enough �, the orders can

be separated. This leads to a set of differential equations for

each order, which can be solved in increasing order.

The homogenized model is given by the leading order,

which corresponds to the limit when � approaches zero. How-

ever, in a real structure, the macroscopic length L and the mi-

croscopic length ‘c are finite, and the physical scale ratio ~� is

necessarily a finite quantity. Consequently, the kinematic var-

iables of order 0 ( ~U
0

x , ~U
0

y , and ~h
0
) are an approximation of the

real motion (the accuracy of which depends on the order of

magnitude of ~�). The terms of superior orders are correctors

that improve the accuracy of the macroscopic description by

taking into account phenomena of lesser importance.

The following sections focus on the leading order. First the

equivalent continuum is characterized and then the wave propa-

gation is studied. To simplify the equations, some macroscopic

parameters are defined. They are integrated over the depth of

the elements hw and hf so that they do not have the usual units.

Mw ¼ �qw=‘f : contribution of the walls to the mass per

unit surface (kg/m2)

Mf ¼ �qf =‘w : contribution of the floors to the mass per

unit surface (kg/m2)

Ms ¼ Mw þMf : mass per unit surface (kg/m2)

Ex ¼ Ef Af =‘w : elastic modulus in the x direction (N/m)

Ey ¼ EwAw=‘f : elastic modulus in the y direction (N/m)

Gw ¼ 12 EwIw
‘2

w‘f
: contribution of the walls to the shear mod-

ulus (N/m)

Gf ¼ 12
Ef If

‘w‘
2
f

: contribution of the floors to the shear mod-

ulus (N/m)
1

G
¼ 1

Gw
þ 1

Gf
: shear modulus (N/m)
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III. EQUIVALENT CONTINUUM

This section and the next present the behavior of the

structure at the lowest circular frequencies giving a dynamic

description: x ¼ Oð�xrÞ. In that case, the implementation of

the HPDM method provides the following equations, corre-

sponding to the balance of momentum in the x and y direc-

tions for orders 0, 1, 2 and the balance of moment of

momentum at the leading order.

Ex
@2 ~U

0

x

@x2
¼0 ðx0Þ

Ex
@2 ~U

1

x

@x2
¼0 ðx1Þ

Ex
@2 ~U

2

x

@x2
þGw

@~h
0

@y
þ@

2 ~U
0

x

@y2

 !
ðx2Þ

þMsx2 ~U
0

x¼0

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

Ey

@2 ~U
0

y

@y2
¼0 ðy0Þ

Ey

@2 ~U
1

y

@y2
¼0 ðy1Þ

Ey

@2 ~U
2

y

@y2
þGf �

@~h
0

@x
þ
@2 ~U

0

y

@x2

 !
ðy2Þ

þMsx2 ~U
0

y¼0

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

Gw
~h

0þ@
~U

0

x

@y

 !
�Gf �~h

0þ
@ ~U

0

y

@x

 !
¼0 ðm0Þ: ð9Þ

(

The equations according to the x and y directions describe

the balance of the forces per unit surface, which suggests

using the notion of stress as in continuum mechanics. The

normal stress in the x direction rxx, the normal stress in

the y direction ryy, the shear stresses sxy and syx are

defined by:

rxxðUÞ ¼ Ex
@Ux

@x
¼ Ex�xxðUÞ

ryyðUÞ ¼ Ey
@Uy

@y
¼ Ey�yyðUÞ

sxyðh; UÞ ¼ Gw hþ @Ux

@y

� �
¼ �2ŝxyðh; UÞ

syxðh; UÞ ¼ Gf �hþ @Uy

@x

� �
¼ �2ŝyxðh; UÞ; (10)

where rxx, ryy, ŝxy, and ŝyx have the same order of

magnitude and U denotes the displacement vector. Taking

U ¼ U0 þ �U1 þ �2U2 and adding, on the one hand, the

(x0), (x1), (x2) of Eq. (9), and, on the other hand, the (y0),

(y1), (y2) of Eq. (9), yield the Cauchy’s equations of motion

valid up to the �2 order:

@rxx

@x
þ @sxy

@y
þMsx

2Ux ¼ oð�2Þ

@syx

@x
þ @ryy

@y
þMsx

2Uy ¼ oð�2Þ:

8>>><
>>>:

Moreover, as in continuum mechanics, the balance of moment

of momentum described by the (m0) of Eq. (9) implies that

sxyð~h
0
; ~U

0Þ ¼ syxð~h
0
; ~U

0Þ. Therefore it is possible to elimi-

nate the node rotation ~h
0
:

~h
0 ¼ Gf

Gw þ Gf

@ ~U
0

y

@x
� Gw

Gw þ Gf

@ ~U
0

x

@y
; (11)

which leads to the usual expression of the shear stresses.

sxyð~h
0
; ~U

0Þ ¼ syxð~h
0
; ~U

0Þ ¼ G
@ ~U

0

y

@x
þ @

~U
0

x

@y

 !
:

The expression of the shear modulus G (given in Sec. II E)

shows that G is built from the combination of Gw and Gf as

springs in series.

After the elimination of ~h
0
, (x2) and (y2) of Eq. (9)

become:

Ex
@2 ~U

2

x

@x2
þ G

@2 ~U
0

y

@y@x
þ @

2 ~U
0

x

@y2

 !
þMsx

2 ~U
0

x ¼ 0 ðx2Þ

Ey

@2 ~U
2

y

@y2
þ G

@2 ~U
0

y

@x2
þ @

2 ~U
0

x

@x@y

 !
þMsx

2 ~U
0

y ¼ 0 ðy2Þ:

(12)

The main feature of the macroscopic medium is its extreme

anisotropy due to the large difference in magnitude of the

moduli Ex, Ey, and G. Because of the quasi-static state at the

local scale, the moduli only depend on the elastostatic prop-

erties of the frame elements. The two elastic moduli, Ex and

Ey, are related to the tension-compression rigidity of the

floors and to the one of the walls, respectively. On the con-

trary, the shear mechanism results from the bending of the

walls and the floors connected in series. Because beams are

far less stiff in bending, the shear modulus G is much less

than the elastic moduli:

G

Ex
¼ Oð�2Þ G

Ey
¼ Oð�2Þ:

This is the reason why it is necessary to calculate equations

up to order 2.

Although the shear modulus and the elastic moduli have

different orders of magnitude, the equivalent continuum

appears as a “classical” continuum in the sense that only the

translational motion appears at the leading order. The macro-

scopic behavior is completely described by Eqs. (x0), (x1),

(y0), (y1) of Eq. (9), and Eq. (12), which do not contain ~h
0
.

The node rotation has the status of a “hidden” variable.

However, to come back to the local scale and to determine
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the forces and the displacements in the frame elements, it is

necessary to calculate ~h
0

with Eq. (11) describing the inner

equilibrium of the basic frame.

Finally, note that the previous description of the macro-

scopic medium established for circular frequencies such that

x ¼ Oð�xrÞ remains valid as long as the frame elements are

not in resonance in bending. In particular, it applies to

statics.

IV. SHEAR WAVES

The wave propagation in the medium is now analyzed.

Because every wave can be expressed as a superposition of

plane waves, the study focuses on this kind of waves and the

displacement field is sought in the following way (remember

that the time dependence expðixtÞ is systematically omitted):

Uð�; xÞ¼ u0 exp½�ikðaÞna �x�þ �U1ðxÞþ �2U2ðxÞþ…:

(13)

Only the expression of the displacement field in the homoge-

nized medium U0ðxÞ ¼ u0exp½�ikðaÞna � x� is imposed. It

corresponds to a plane wave with amplitude u0 and wave

number kðaÞ traveling in direction na (Fig. 2). The correctors

could be determined without any assumptions by the resolu-

tion of the equations of superior orders as in Ref. 19. Their

study is out of the scope of this paper, but the following

property will be used. As the medium is infinite and the mac-

roscopic field U0 is invariant under a translation perpendicu-

lar to the direction of propagation, the correctors should also

be invariant under such a translation.

Expression (13) is introduced in (x0) and (y0) of Eq. (9):

�Exk2ðaÞcos2ðaÞ~u0
x exp½�ikðaÞna � x� ¼ 0 ðx0Þ

�Eyk2ðaÞsin2ðaÞ~u0
y exp½�ikðaÞna � x� ¼ 0 ðy0Þ: (14)

For cosðaÞ 6¼ 0 and sinðaÞ 6¼ 0, the only solution is u0 ¼ 0.

At this frequency range, waves cannot propagate diagonally.

For cosðaÞ ¼ 0, (y0) of Eq. (14) implies that ~u0
y ¼ 0 and

the expression of U0 becomes:

U0ðxÞ ¼ ~u0
x

0

� �
exp½6ikðp=2Þy�: (15)

This means that the direction of propagation is y (direction of

the walls) and the direction of polarization is x (direction of the

floors): it is a pure shear wave. To determine the wave number

kðp=2Þ, expression (15) is introduced in (x2) of Eq. (12):

Ex
@2 ~U

2

x

@x2
þð�Gk2ðp=2Þ þMsx

2Þ~u0
x exp½6ikðp=2Þy� ¼ 0;

and the invariance of the corrector under a translation paral-

lel to the x direction is used:

@2 ~U
2

x

@x2
¼ 0 ) kðp=2Þ ¼ x

ffiffiffiffiffiffi
Ms

G

r
: (16)

For sinðaÞ ¼ 0, the results are similar but the roles of x and y
are reversed. Pure shear waves travel in the x direction and

are polarized in the y direction (~u0
x ¼ 0). (y2) of Eq. (12)

gives the same expression of the wave number as in the other

direction:

Ey

@2 ~U
2

y

@y2
þ ð�Gk2ð0Þ þMsx

2Þ~u0
y exp½6ikð0Þx� ¼ 0

) kð0Þ ¼ x

ffiffiffiffiffiffi
Ms

G

r
¼ kðp=2Þ:

To sum up, at low frequencies, waves can only propagate in

two directions because of the anisotropy. Nevertheless, the

speeds cðaÞ are identical in both directions:

cðaÞ ¼ x
kðaÞ ¼

ffiffiffiffiffiffi
G

Ms

s
:

The speed depends on the shear modulus G and the mass Ms

as in a classical elastic medium. The expression of G (given

in Sec. II E) shows that these waves are generated by the

local bending of the elements (Fig. 4).

Note that x ¼ Oð�xrÞ is really the lowest circular fre-

quency giving a dynamic description at the macroscopic

scale. For a smaller x, the inertial term Msx2U0 is relegated

to a higher order and vanishes in balance equations (12).

V. COMPRESSIONAL WAVES AND LOCAL
RESONANCE

The circular frequency x is now increased up to OðxrÞ
to investigate the behavior of the medium when the inertia

forces balance the tension-compression forces. For this fre-

quency range, the bending wavelength in the elements kb is

of the same order as their length ‘, but the compression

wavelength kc remains much longer. It corresponds to the

situation presented in Sec. II C where homogenization

applies with local resonance in bending. This phenomenon is

illustrated in Fig. 5, which shows a compressional wave trav-

eling in the x direction. As its wavelength K is much greater

than the length of the floors ‘f , the condition of scale separa-

tion is respected. Therefore homogenization can be used

even though the propagation of the wave induces the vibra-

tion of the walls and their resonance in bending.

FIG. 4. Shear wave traveling in the x direction.
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The consequence of the local resonance is that the shear

force and the bending moment in the elements can no longer

be expanded contrary to the axial force. The other parts of

the HPDM method are unchanged, and the balance of mo-

mentum of the macroscopic medium is described by the fol-

lowing equations.

Ex
@2 ~U

0

x

@x2
þðMf þMw f ðx̂wÞÞx2 ~U

0

x ¼ 0 ðx0Þ

Ey

@2 ~U
0

y

@y2
þðMwþMf f ðx̂f ÞÞx2 ~U

0

y ¼ 0 ðy0Þ

pGw

ffiffiffiffiffiffiffi
x̂w

p

8 feðx̂wÞ
4sin

3p
4

ffiffiffiffiffiffiffi
x̂w

p� �
sinh

3p
4

ffiffiffiffiffiffiffi
x̂w

p� �
~h

0 þ 3p
ffiffiffiffiffiffiffi
x̂w

p

2 foðx̂wÞ
cosh

3p
2

ffiffiffiffiffiffiffi
x̂w

p� �
� cos

3p
2

ffiffiffiffiffiffiffi
x̂w

p� �� �
@ ~U

0

x

@y

 !

�
pGf

ffiffiffiffiffiffi
x̂f

p
8 feðx̂f Þ

�4sin
3p
4

ffiffiffiffiffiffi
x̂f

q� �
sinh

3p
4

ffiffiffiffiffiffi
x̂f

q� �
~h

0þ
3p

ffiffiffiffiffiffi
x̂f

p
2 foðx̂f Þ

cosh
3p
2

ffiffiffiffiffiffi
x̂f

q� �
� cos

3p
2

ffiffiffiffiffiffi
x̂f

q� �� �
@ ~U

0

y

@x

 !
¼ 0 ðm0Þ

(17)

with

x̂w ¼ x
2 ‘w

3p

� �2 ffiffiffiffiffiffiffiffiffiffi
�qw

EwIw

r
� x

xw1

x̂f ¼ x
2 ‘f

3p

� �2
ffiffiffiffiffiffiffiffi
�qf

Ef If

s
� x

xf 1

f ðx̂Þ ¼ 8

3p
ffiffiffiffî
x
p

foðx̂Þ
sin

3p
4

ffiffiffiffî
x
p� �

sinh
3p
4

ffiffiffiffî
x
p� �

foðx̂Þ ¼ sin
3p
4

ffiffiffiffî
x
p� �

cosh
3p
4

ffiffiffiffî
x
p� �

þ sinh
3p
4

ffiffiffiffî
x
p� �

cos
3p
4

ffiffiffiffî
x
p� �

feðx̂Þ ¼ sin
3p
4

ffiffiffiffî
x
p� �

cosh
3p
4

ffiffiffiffî
x
p� �

� sinh
3p
4

ffiffiffiffî
x
p� �

cos
3p
4

ffiffiffiffî
x
p� �

:

The fundamental difference with Secs. III and IV is the pres-

ence of terms depending on the frequency. They are written as

functions of the dimensionless frequencies x̂w and x̂f . The

first one x̂w is equal to the ratio between x, the circular fre-

quency, and xw1, the circular frequency of the first bending

mode of the walls with two fixed ends. Similarly x̂f corre-

sponds to the ratio between x and xf 1, the circular frequency

of the first bending mode of the floors with two fixed ends.

Moreover, the natural frequencies of a beam that is fixed at

both extremities are the solutions of the following equation:

2 foðx̂Þfeðx̂Þ ¼ 1� cos
3p
2

ffiffiffiffî
x
p� �

cosh
3p
2

ffiffiffiffî
x
p� �

¼ 0;

where the function fo vanishes at the frequencies of the odd

bending modes and the function fe vanishes at the frequen-

cies of the even bending modes.

(x0) and (y0) of Eq. (17) contain the same elastic terms as

in Sec. III, which are related to the tension-compression of the

elements. In addition, there are the inertial terms the order of

magnitude of which has changed due to the increase of the fre-

quency. Because of the local resonance in bending, the real

mass is replaced by an effective mass depending on the fre-
quency and the direction. (x0) of Eq. (17) describes the momen-

tum balance when the floors experience tension-compression

and the walls experience resonance as presented in Fig. 5.

Therefore the mass of the walls Mw is multiplied by a frequency

dependent function f giving an effective mass. In (y0) of

Eq. (17), the roles of the walls and the floors are reversed, and

the function f modifies the mass of the floors Mf . As for (m0)

of Eq. (17), at lower frequencies, it gives the equality of the

macroscopic shear stresses associated to the bending of the ele-

ments. Consequently this equation is strongly affected by the

local resonance. Nevertheless it still expresses the inner equilib-

rium of the basic frame and it enables to calculate the “hidden”

variable ~h
0
.

In the sequel, the study focuses on (x0) and (y0) of

Eq. (17), which describe the wave propagation. First, the

type of waves and the influence of the direction of propaga-

tion na are determined. Then the properties of the effective

mass are examined. Finally, (m0) of Eq. (17) which imposes

additional kinematic conditions, is considered.
FIG. 5. Compressional wave in the floors ) resonance in bending of the

walls.
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A. Effect of the anisotropy

The analysis of the wave propagation is carried out

using the same method as in Sec. IV. Expression (13) of the

displacement field is introduced in (x0) and (y0) of Eq. (17):�
�Exk2ðaÞcos2ðaÞ þMwðx̂wÞx2

�
~u0

xexp½�ikðaÞna � x� ¼ 0 ðx0Þ
�
�Eyk2ðaÞsin2ðaÞ þMf ðx̂f Þx2

�
~u0

yexp½�ikðaÞna � x� ¼ 0 ðy0Þ (18)

with Mwðx̂wÞ ¼ Mf þMw f ðx̂wÞ
Mf ðx̂f Þ ¼ Mw þMf f ðx̂f Þ:

The existence of a non-zero solution implies that:

�Exk2ðaÞcos2ðaÞ þMwðx̂wÞx2 ¼ 0 (19a)

or � Eyk2ðaÞsin2ðaÞ þMf ðx̂f Þx2 ¼ 0: (19b)

When Eq. (19a) is satisfied, then ~u0
y ¼ 0, and all the nodes

move in the x direction [Fig. 6(a)]. Conversely, when

Eq. (19b) is satisfied, then ~u0
x ¼ 0, and all the nodes move in

the y direction [Fig. 6(b)]. These two modes of polarization

are called X-mode and Y-mode, respectively.

Equation (19a) shows that the X-mode can exist for waves

traveling in all directions except in the y direction ½cosðaÞ ¼ 0�.
For waves traveling in the x direction (a ¼ 0), the direction of

propagation and the direction of polarization are identical. They

are pure compressional waves with the following properties:

kð0Þ ¼ x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mwðx̂wÞ

Ex

s
) cð0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ex

Mwðx̂wÞ

s
: (20)

The speed cð0Þ is similar to the one of a compressional wave

in a classical elastic medium provided that the real mass is

replaced by the effective mass.

The X-mode waves traveling diagonally are shear-

compression waves. This type of waves is frequently

encountered in anisotropic media. Here the particularity is

that the direction of polarization is independent of the direc-

tion of propagation. It is just imposed by the orientation of

the elements. However, the properties of the X-mode waves

strongly vary with the direction of propagation:

kðaÞ ¼ kð0Þ
jcosðaÞj ) cðaÞ ¼ jcosðaÞjcð0Þ:

The mechanisms at the microscopic scale governing these

waves are explained in Fig. 7. The gray grid represents the

structure before deformation. All the nodal displacements are

in the x direction, as shown by the arrows on the left. The

motions are caused by the propagation of pure compressional

waves in the floors that are out-of-phase, so that all the points

on a straight line perpendicular to the direction na have the

same displacement. As a result, at the macroscopic scale, a

wave traveling in the direction na is observed. The amplitude

of the compressional waves in the floors is represented by the

gray sinusoids at the bottom of the figure. Their wavelength is

Kð0Þ ¼ 2p=kð0Þ. The wavelength of the macroscopic wave

KðaÞ is the projection of Kð0Þ onto the direction na. Conse-

quently the wavelength (and therefore the speed) is maximal

when the macroscopic wave travels in the x direction. More-

over, this mechanism cannot generate a macroscopic wave

traveling in the y direction. The vertical black sinusoids repre-

sent the deformation of the walls due to the phase difference

between the compressional waves in the floors. The total defor-

mation is obtained by adding the deflections induced by the

local resonance (drawn with dotted lines on the top left corner).

For the Y-mode, the roles of the floors and the walls are

reversed. Macroscopic waves with the following properties

can travel in all directions except in the x direction:

FIG. 6. Nodal displacements for the two modes of polarization.

FIG. 7. Description of the mechanisms which generate a macroscopic shear-

compression wave traveling in the direction na with the X-mode.

FIG. 8. Variations of the speed of the macroscopic waves according to the

direction of propagation.
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k
p
2

� �
¼ x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mf ðx̂f Þ

Ey

s
) c

p
2

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ey

Mf ðx̂f Þ

s

kðaÞ ¼
k p

2

� �
jsinðaÞj ) cðaÞ ¼ sinðaÞ c

p
2

� �
:

						 (21)

Figure 8 sums up the variations of the speed of the macro-

scopic waves for the two modes of polarization.

B. Effect of the local resonance

The influence of frequency is now investigated. To sim-

plify, walls and floors are assumed perfectly identical. Thus

subscripts “w” and “f ” can be removed. The dimensionless

mass mðx̂Þ is defined by the ratio between the effective

mass and the real mass:

mðx̂Þ ¼ Mðx̂Þ
Ms

¼
�q
‘
ð1þ f ðx̂ÞÞ

2�q=‘
¼ 1

2
ð1þ f ðx̂ÞÞ;

where x̂ � x=x1 is the ratio between x and the circular fre-

quency of the first bending mode of the elements with two

fixed ends. The dimensionless mass is plotted in Fig. 9. As

the frequencies of the bending modes of Euler–Bernoulli

beams are proportional to the sequence of the squares of the

odd integers, the modes of the elements correspond to the

following abscissas:

x̂1 �
32

32
¼ 1; x̂2 �

52

32
� 2:78; x̂3 �

72

32
� 5:44;…:

Figure 9 shows that the limit of the effective mass at very

low frequencies is the real mass as expected. At most of the

frequencies higher than the one of the first bending mode of

the elements, mðx̂Þ is between 0 and 1. This means that the

structure seems lighter thanks to the local resonance. On the

contrary, close to the frequencies of the odd bending modes

of the elements, the effective mass becomes infinite and

changes its sign. Such an atypical behavior is not observed

close to the frequencies of the even bending modes.

The effective mass differs significantly from the real

mass because the points of the cell are in relative motion.

According to the definition of the macroscopic variables, the

macroscopic wave describes the motion of the nodes. At low

frequencies, the whole cell undergoes the same translational

motion. Consequently, the sum of inertia forces acting on

the whole frame equals the real mass of the frame multiplied

by the acceleration of the nodes. When bending resonance

occurs, the motion of the other points can strongly differ

from the one of the nodes and some points can even be in

antiphase. In these conditions, the sum of inertia forces act-

ing on the basic frame is more complex.

This analysis of the physical origin of the effective mass

is verified by calculating the deformation of a wall caused by

the propagation of a macroscopic wave in the x direction with

the X-mode. In that case, the extremities of the wall move in-

phase in the transverse direction. Moreover, (m0) of Eq. (17)

shows that there is no rotation of the nodes. The ratio between

u the amplitude of the deflection of the wall and Û the ampli-

tude of the motion of the nodes is plotted in Fig. 10. As x
approaches x1, the circular frequency of the first bending

mode of the wall [Fig. 10(a)], the deflection is getting larger

and larger because of the resonance. It is in-phase with the

nodes when x is below x1 and in antiphase when x is above

x1. At the frequency of the second bending mode [Fig. 10(b)],

the boundary conditions do not cause the resonance of the

wall. Nevertheless the motion is not uniform, which induces

an effective mass smaller than the real mass. This behavior is

consistent with the variations of the effective mass (Fig. 9).

The consequences on the wave propagation are examined

by considering a more realistic case with damping. Now

the elastic modulus of the material is a complex number:

Ê ¼ jEjeig with 0 < g� 1. In what follows, all calculations

will be made with g ¼ 2:10�2. As a result, the effective mass

becomes a complex number with a finite modulus. The modu-

lus and the argument are plotted in Fig. 11.

Owing to the variations of the effective mass, there is dis-

persion of the wave speed. In Fig. 12, the thick line represents

ĉ the ratio between the speed calculated by taking into account

the local resonance and the speed obtained by neglecting this

phenomenon. The thin line corresponds to the attenuation per

wavelength dK. This means that the amplitude of the wave is

multiplied by e�dK when it travels one wavelength.

As expected, the limit of ĉ at very low frequencies is 1,

and ĉ decreases when x approaches x1. At most of the cir-

cular frequencies higher than x1, waves propagate faster

thanks to the local resonance. As the frequency approaches

the one of an odd bending mode from below, the speed first

decreases and then increases considerably. At the same time,FIG. 9. Variations of the effective mass according to the frequency.

FIG. 10. Deflection u of a wall caused by the propagation of a wave in the

x direction with the X-mode. Û is the amplitude of the motion of the nodes,

s is the coordinate along the axis of the wall, and ‘ is the length of the wall.
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dK becomes very important. Therefore the neighborhood of

the odd bending modes of the elements corresponds to fre-
quency bandgaps. However, after the resonance frequencies,

dK decreases faster than ĉ. When dK becomes negligible, ĉ is

still significantly higher than 1.

C. Inner equilibrium of the frame

The inner equilibrium of the basic frame is described by

(m0) of Eq. (17). The reasoning is illustrated by considering

the X-mode, but the same phenomena occur with the Y-

mode. Then (m0) of Eq. (17) becomes:

pGw

ffiffiffiffiffiffiffi
x̂w

p

8 feðx̂wÞ
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p
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At most of the frequencies, the node rotation ~h
0

is proportional

to the shear strain @y
~U

0

x with a rather complicated proportion-

ality coefficient. However, at some frequencies, the functions

have singularities and their physical origin is now examined.

The simplest case corresponds to the very low frequen-

cies. As x approaches 0, the limit of (m0) of Eq. (17) is iden-

tical to the equation of Sec. III that expresses the equality of

the macroscopic shear stresses in statics. The frequencies of

the odd bending modes of the walls ½foðx̂wÞ ¼ 0� can also be

eliminated because the wave propagation is impossible for

the X-mode due to the local resonance.

Frequencies of the even bending modes of the elements

½feðx̂wÞ ¼ 0 or feðx̂f Þ ¼ 0� are more interesting. In their

neighborhood, the effective stiffness of the elements

becomes infinite. This behavior is due to the fact that the

boundary conditions of a beam at its natural frequencies are

not independent.

Another singularity occurs when the coefficient of ~h
0

vanishes. This means that the effective stiffness of the whole

cell disappears. Whatever the node rotation ~h
0
, it generates a

negligible moment that cannot balance the moment caused

by the shear strain. As a result, there is no shear strain, and

the compressional waves in the floors are in-phase.

Even if the wave propagation is described by (x0) and

(y0) of Eq. (17), this example shows that it is necessary to

verify that the kinematic conditions imposed by (m0) of

Eq. (17) are satisfied. Here there are frequencies at which

waves cannot propagate diagonally.

VI. BEHAVIOR OF REAL MEDIA

This section explains how the previous results can help

to understand the dynamics of real frame structures. It begins

with some comments about the scale ratio and the parameter

�, which play a key role during the homogenization process.

Then a method is proposed for the design of real frame struc-

tures with unusual properties.

A. The scale ratio

A macroscopic plane wave with a circular frequency

x traveling in a given frame structure is considered. From a

physical point of view, the scale ratio is defined by the ratio

between the characteristic length ‘c of the basic frame and

the characteristic length L of the deformation of the struc-

ture. In what follows, the scale ratio ‘c=L will be written ~� as

FIG. 12. Speed (thick line) and attenuation per wavelength (thin line) for

g ¼ 2:10�2.

FIG. 11. Modulus and argument of the effective mass in presence of damp-

ing (g ¼ 2:10�2).

J. Acoust. Soc. Am., Vol. 132, No. 4, Pt. 2, October 2012 Chesnais et al.: The local resonance in frame structures 2883

 Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP:  50.81.134.248 On: Fri, 11 Sep 2015 23:02:44



in Ref. 28 to make it different from the small parameter

� used in homogenization. As ‘c and L are finite, the scale ra-

tio is a finite quantity. If ~� is small (~� � 1), it is possible to

homogenize the behavior of the structure.

For this purpose, first the powers of ~� are used as a kind

of “unit of measurement” to convert the numerical values of

the other small parameters (in particular the thickness to

length ratios of the elements) into orders of magnitude. This

provides the proper normalization for the real structure.

Second, homogenization consists in replacing in the scaled

formulation the physical ~� by a mathematical �, which is

made to approach zero. In doing so, the relative orders of

magnitude of the physical terms are kept identical from the

real frame structure to the continuum obtained at the limit.

However, as the physical ~� is a finite quantity, the real

structure is an imperfect realization of the homogenized

model (or the homogenized model is an approximation of the

behavior of the real structure). The smaller ~� is, the smaller

the difference between the model and the structure is. By con-

sidering only the leading order as in the previous sections, the

order of magnitude of the neglected correctors is Oð~�Þ.
All this shows that it is important to have a reliable esti-

mation of ~� for two reasons: to correctly take into account

the physics of the problem and to evaluate the accuracy of

the continuous model. For a given structure, the size of the

frame ‘c is fixed (here ‘c ¼ ‘w), but the macroscopic length

depends on the external actions. In the case of wave propa-

gation, it can be shown29 that:

L ¼ K
2p

) ~� ¼ 2p‘c

K
¼ ‘ck; (22)

where K is the macroscopic wavelength and k the wave

number given by Eq. (16) for pure shear waves, by Eq. (20)

for shear-compression waves polarized in the x direction, or

by Eq. (21) for shear-compression waves polarized in the

y direction. As a result, ~� depends on the frequency. When

x increases, K decreases. Thus ~� becomes greater, and the

continuous model is less accurate. Moreover, as the thick-

ness to length ratios of the elements have fixed values, the

orders of magnitude given by the normalization change.

The expression of the macroscopic wavelength varies

also with the nature of the wave. For example, a shear wave

and a compressional wave both traveling in the x direction

are considered. The associated wave numbers are given by

Eqs. (16) and (20), which are very different. But the thick-

ness to length ratios of the elements are described by Eq. (8)

in both cases. If, in addition, these cases apply to the same

real structure, the thickness to length ratios have a fixed

value. Therefore ~�, and so K and k, should have the same

value for the two types of wave. This is possible only when

the frequency of the shear wave is smaller than the frequency

of the compressional wave. This is the reason why homoge-

nization gives the impression that different types of wave

appear in very different frequency ranges, whereas they can

coexist in the same frequency range in real structures.

Instead of considering a constant wavelength, another

possibility consists in assuming that the frequency is constant.

In that case, the wavelength of the shear wave is smaller than

the wavelength of the compressional wave, and ~� has two dif-

ferent values. As a result, the normalization provides different

orders of magnitude, and the real structure is associated with

two different continua. Note that the accuracy of the descrip-

tions of the macroscopic waves is also different.

B. Design of metamaterials

The analytical formulation of the HPDM method pro-

vides a clear understanding of the mechanisms governing the

behavior of frame structures and of the role of each parame-

ter. This constitutes a framework for the design of new

(meta)materials with prescribed macroscopic properties.

The reasoning is illustrated by considering the design of

a structure that behaves as a metamaterial for pure compres-

sional waves propagating at a given circular frequency x. To

simplify, the basic frame is a perfect square and the walls,

and the floors are made of the same given material. Thus

subscripts “w” and “f ” are removed. The length ‘ of the ele-

ments is fixed. The objective is the determination of their

thickness a. The normalization (8) and the expression (20) of

the wavenumber impose the following condition for the

thickness:

a

‘
¼ Oð~�Þ ¼ Oð‘kÞ ¼ O ‘x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mf þMw f ðx̂wÞ

Ex

s !
:

The expressions of Mf , Mw, Ex are given in Sec. II E, and the

function f is defined in Sec. V. Neglecting the effects of the

local resonance [by taking f ðx̂wÞ ¼ 1� yields:

a ¼ O ‘2x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2qA=‘

EA=‘

s !
¼ O ‘2x

ffiffiffiffiffiffi
2q
E

r !
:

Thus a ¼ â‘2x
ffiffiffiffiffiffiffiffiffi
q=E

p
where â ¼ Oð1Þ is a constant. It is

possible to verify that, in that case, the local resonance

actually appears close to the circular frequency x. For

â ¼ 1, the ratio between the bending wavelength in the ele-

ments kb and their length ‘ is:

kb

‘
¼ 2p

‘

ffiffiffiffiffiffiffiffiffiffiffiffiffi
EI

qAx2

4

s
¼ 2p

‘

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EAa2

12qAx2

4

s
¼ 2p

ffiffiffiffiffi
1

12

4

r
� 3:38:

This corresponds to the beginning of the resonance: x is a

little smaller than the circular frequency of the first bending

mode. For the effects of the local resonance to be more

marked at x, a smaller â should be chosen. This procedure

completely defines the resonating media.

The previous example focuses only on the thickness, but

it is also possible to adjust the other geometrical parameters

or the material properties to obtain the desired macroscopic

properties. For instance, if the waves propagating in the me-

dium are always polarized in the same direction, some mass

can be added to the resonating elements to increase the

effects of the local resonance. However, when the walls and

the floors are different, the stiffness contrast should remain

small. Otherwise, a new mechanism appears in the structure

and the macroscopic description is no longer valid.28,30
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Although the results are obtained for a specific class of

structures, their generalization is straightforward for three-

dimensional frame structures and structures the unit cell of

which is a parallelogram. For braced structures such as trian-

gular lattices, the high contrast between the shear and

tension-compression deformabilities is lost. The mechanism

identified for the shear waves probably no longer exists.

However, compressional waves can presumably be associ-

ated with local resonance in bending. Note that macroscopic

beam models obtained with the HPDM method have been

successfully applied to real buildings.31

VII. CONCLUSION

Thanks to the contrast between the bending and tension-

compression properties of the Euler–Bernoulli beams, the

homogenization method of periodic discrete media (HPDM)

is extended to higher frequencies with local resonance in

bending. This method is used for the study of the wave prop-

agation in two-dimensional frame structures. Its main

advantage is the analytical formulation that enables to under-

stand the mechanisms governing the global behavior.

When all the elements of the basic frame have similar

properties and in the absence of local resonance, the equiva-

lent continuum at the macroscopic scale is a “classical” con-

tinuum in the sense that the only kinematic variables are the

translational motions of the nodes and therefore of the whole

cell. However, the continuum is highly anisotropic. It has

different elastic moduli according to the frame axes and a

shear modulus much lower than the elastic moduli. In conse-

quence, the speed of the waves strongly depends on the

direction. Moreover, shear waves appear at lower frequen-

cies than shear-compression waves and two frequency

ranges should be studied.

For shear waves, elements have a quasi-static behavior

at the local scale for both mechanisms: bending and tension-

compression. It corresponds to the usual domain of applica-

tion of homogenization. Shear waves are generated by the

local bending of the elements. They can travel only in the

two discrete directions of the frame elements with the same

speed. The speed is also independent of the frequency.

For shear-compression waves, elements have a quasi-static

behavior at the local scale for tension-compression and a

dynamic behavior for bending. Therefore the behavior of the

structure should be homogenized with the new procedure

adapted to local resonance. Shear-compression waves can travel

in all the directions, but their direction of polarization coincides

with those of the elements. Indeed the macroscopic waves are

generated at the local scale by the propagation of compressional

waves in the elements. The main consequence of the local reso-

nance is that the real mass of the cell has to be replaced by an

effective mass that depends on the frequency and the direction

of polarization. As a result, the speed of the macroscopic waves

also varies with the frequency and the direction of polarization.

Moreover the speed depends on the direction of propagation.

The effective mass exhibits different properties depend-

ing on whether the frequency is smaller or greater than x1,

the frequency of the first bending mode of the elements

affected by the resonance. At very low frequencies, the

effective mass is equal to the real mass. When the frequency

is increased but remains smaller than x1, the effective mass

increases too, which leads to a decrease of the speed of the

macroscopic waves. This behavior is consistent with the ex-

perimental results concerning the Rayleigh scattering. At fre-

quencies close to x1 (and the frequencies of the other odd

bending modes), the inertia forces become huge because of

the resonance. Therefore the effective mass approaches in-

finity, which causes frequency bandgaps.

After the resonance, at most of the frequencies higher

than x1, the effective mass is smaller than the real mass and

waves travel faster due to the dynamic effects at the local

scale. This domain is intermediate between the domain of

the Rayleigh scattering (when the wavelength is much

greater than the cell size and the local dynamic effects are

negligible) and the domain of the various phenomena

observed in phononic crystals such as Bragg scattering, fo-

cusing of waves32…. In this latter case, the wavelength is

comparable to the cell size.

At the frequencies of the even bending modes, the effec-

tive mass has a finite value because these modes are not

excited by the propagation of the macroscopic waves. How-

ever, the effective stiffness of the elements becomes infinite.

This is due to the kinematic incompatibility between the

macroscopic waves and the boundary conditions of the

elements.

As other periodic media, frame structures behave as fre-

quency and spatial filters. In the present case, the spatial

properties are particularly pronounced because the waves are

channeled by the elements. Concerning the frequency prop-

erties, the features of the effective mass are similar to those

of the effective masses obtained for other metamaterials con-

sisting either of composite media with a high contrast

between the rigidities of the constituents6 or of hard spheres

coated with a soft material and dispersed in a stiff ma-

trix.10,33 Here another approach to create such materials is

proposed. It is based on the stiffness contrast between bend-

ing and tension-compression in beams instead of the contrast

between the mechanical properties of different materials.

Moreover, the HPDM method being completely analytic, the

results can be easily used to design new metamaterials.

As mentioned in the introduction, the concept of local

resonance in highly contrasted elastic composites has been

evidenced by Auriault and Bonnet in 1985 (Ref. 6) by means

of the homogenization of periodic media with an heuristic

approach and formal expansions. Similar mechanisms were

also identified in double conductivity media34 and double

porosity media (e.g., Refs. 35 and 36) and were proved

experimentally in acoustics.37 In these latter cases, the dif-

ference lies in the fact that the resonance concerns a diffu-

sion phenomenon (related to thermal transfer or mass

transfer driven by viscous effects). In the same spirit, one

may also consider that the local mechanism expressed by the

dynamic permeability of porous media,38,39 relevant when

the thickness of the viscous layer interferes with the pore

size, belongs to the same family of phenomena. Undamped

resonance (as in elastic cases) or damped resonance (as in

diffusion cases) obviously results in different macroscopic

modeling. However, the common feature of these several
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situations is that they lead at the macroscopic scale to a gen-

eralized Newtonian mechanics in the sense that the effective

mass (or thermal inertia, etc.) differs from the actual mass of

the real system.

Interestingly, the theoretical mathematical study of the

local elastic resonance mechanism has been investigated sig-

nificantly later than the heuristic results on realistic materi-

als. The work of Zhikov40 provides results on the

convergence of the asymptotic approach. Note also that the

present work focuses on local resonance when the scale sep-

aration is satisfied. For this reason, it differs from the theo-

ries currently developed in Refs. 24–26 to derive a

macroscopic modeling at high frequencies, i.e., when the

scale separation in the usual sense is no longer satisfied.

Finally, there probably exists other types of waves differ-

ent from the two types described here. For this first study, the

kinematic variables periodicity is identical to the geometric

periodicity. However, other researches on the extension of ho-

mogenization to higher frequencies24–26,41 suggest that this

hypothesis is too restrictive and that the kinematic variables

are often periodic on two cells. Another possible continuation

of the present work could be the study of structures with walls

different from the floors or with a different cell geometry.
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